
EiMC FILE COPI
ARI REsearch Note 87-46

Operation of the World Master
in the

World Modeling System
0)

Keith Barnett
00 Carnegie Mellon-University
00

O for

Contracting Officer's Representative
Judith Orasanu

DTIC
BASIC RESEARCH LABORATORY

NOV2 31987 Michael Kaplan, Director

c D

U. S. Army

Research Institute for the Behavioral and Social Sciences

October 1987

Approved for public release; distribution unlimited.

"7 11 13 048

U. S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON
EDGAR M. JOHNSON COL, IN
Technical Director Commianding

Research accomplished under contract
for the Department of the Army

Carnegie-Mellon University

Technical review by

Dan Ragland r -- CRA&9'j DTIC TZhe

Ju :. , " ..El

F"'

P.17.I [) r:', * " ~....

I7'_

6 !-. " -.

I Tl~his e por t, as1 slubm ited by tth e cO nat actO g, h s been €leared c. Irele ae O Derfen sle T echnic a il Infofrnateon C en er
|(OTICI to comply with regulatory requiements. It has been given no ptimary dl,sttibutionl othe' thaln t0 DTIC

andl well be available ohly thrcsagh DTIC of other reference services such as the National Technicall Information
Ser¢vice (NTISI. The veews. Cplin, end /at findings contained en this reponl are those of the authorlst and

Ishould not be €oflrueu as an off ecia; .eptpmen of the Army pOtion, polhcy or dlecision, unless so designated
by oher offcil documentaton.

COP
"i -ir~~~~~~~~~ PEI"* II II II IIE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wmat Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

IREPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG N4UMBER
ARI Research Note 87-46

4. TITLE (and Subtitle) 1. TYPE OF REPORT & PERIOD COVERED

Operation of the World Master Interim Report

in the World Modeling System January 86 - January 87
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(e)

Keith Barnett MDA903-85-C-0324

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Computer Science Department AREA a WORK UNIT NUMBERS

Carnegie-Mel Ion University 2Q161102B74F
Pittsburgh, PA 15213

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Research Institute for the Behavioral October 1987
and Scoial Sciences, 5001 Eisenhower Avenue, IS. NUMBER OFPAGES
Alexandria, VA 22333-5600 14

14. MONITORING AGENCY NAME & ADDRESS(1 dlfferet from Cmtrolllng Office) IS. SECURITY CLASS. (of thle report)

Unclassified

IS. DECL ASSI FI CATION/DOWN GRADING
SCHEDULE n/a

16. DISTRIBUTION STATEMENT (of thil Report)

Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (o Che absutrr entered In Block 20, It different foat Report)

I6. SUPPLEMENTARY NOTES

Judith Orasanu, contracting officer's representative

ii 1. KEY WORDS (Continue anI tevere. side it necessary and Identify' by block number)
: ,. . Sensory-Effector Interface (SEI);, Problem Solving'

Artificial Intelligence; World Modeling;
Machine Learning , Planning), , . . -o I -

This research note describes the operation of the World Master process of
-the World Modeling System. It is intended to be an aid to maintainers of the
World Master, and implementors of additional simulated physical properties of
the wo rld.i

DD IJ * 1M3 TIOOF INovs OBoLRTK UNCLASSIFIED
i S9CUMTY CLAWP(CATtON OF T"tS PAGE (na DeA Entwfe

L ' r ' ' ' ' ' '" ..' I |I '= '

Table of Contents

1. Introduction 1
2. Message Handling 2

2.1 Adding and Removing Processes 2
2.2 Rights 2
2.3 World States 3
2.4 Changes to World Data Structures 4
2.5 Miscellaneous 4
2.6 Protocol Modification in the World Master 4

3. Update of the World Data Structure 6
3.1 Objects 6
3.2 Emissions 6
3.3 Modifying the World Update 6

4. Collision Detection 7
4.1 Summary 7
4.2 Procedure 8

4.2.1 Plane.Plane (Polygon and Circle) 8
4.2.2 Sphere-Sphere 8
4.2.3 Plane-Sphere a

, 4.2.4 Polygon-Cylinder 9
4.2.5 Sphere.Cylinder 9
4.2.6 Cylinder/Circle.Cylinder 9

4.3 Modifying Collision Detection 10
5. Collision Resolution 11

5.1 Summary 11
5.2 Procedure 11
5.3 Modifying Collision Resolution 12

A
qii

1. Introduction
, The World Master is the core of the World Modeling System. It has two major functions: simulating

the physics of a world, and keeping track of the status of all processes using a given world.

A world operates synchronously, with two major stages in a cycle of world time. During the first

stage, the master must accept messages from other processes, and verify that they are in a format

consistent with the world protocol,,(see The World.Wide Communication Protocol of the World

Modeling System). Some messages will be requests to update the status of processes, and some will

be requests to change data structures used in the simulation of the world. In the latter case, the

master must not only note the changes made by storing them in a buffer, but send them immediately

to all user interface (Ul) processes, so that they may keep a consistent copy of the state of the

simulation. The buffer will be sent later to all Sensory.Effector Interface (SEI) processes, which

during this stage may be busy serving organisms.

The second stage of a cycle occurs after all processes using the world have Indicated that they have

no further requests to make in that cycle. During this stage, the master must examine the objects In

the world, and update their state according to the physics of the simulation. All such changes must

be recorded in a buffer; at the completion of this stage, the buffer will be sent to all Uls, and, along

with the buffer created during the first stage, to all SEIs.

' I -: " -' , ' 73 -

2

2. Message Handling

2.1 Adding and Removing Processes

The procedures for adding and removing processes from a world are outlined in The World-Wide

Communication Protocol. In addition, the master must check and remove a process which

disappears without properly exitting the system. A master attempts to remain connected to the World

Coordinator at all times, but in general communicates with it only when a UI or the master itself is

started.

A limited amount of information is kept for each process: the port to which messages are sent, or

from which messages are received; the type of process (UI or SEI); the number of cycles it is prepared

to accept without interrupting the master with requests; the process, if present, which was

responsible for adding it to the system; and, for an SEI, information concerning the organism it serves,

plus a flag indicating whether the SEI was added to the world in the current cycle. The master sends

a Ul an entire copy of the world immediately upon adding it; the Ul will thereafter function just as any

A. other. An SEI, however, is not fully active until the end of the cycle In which it is added, at which time

it will be sent a copy of the world. -

When an SEI is added, the master requests that a UI (the one requesting the addition) arrange that a

* graphics process be connected to the SEI, if appropriate, in order to simulate vision for the organism.

Related Protocol Commands: MasterStarted, AreYouThere, lAmAlive, WMExit, StartUl,

AttachUl, StartUIReply, UlStarted, UlExit, ShutDownWorld, StartOrganism, AttachOrganism,

StartOrgansimReply, OrganismStarted, OrganismExit, lAmYourMaster, SetOrgansimBody,

SetOrganismName, TerminateOrganism, RequestToStartOrganism, RequestForOrganismVison

2.2 Rights

Many requests are critical In the sense that the requesting process expects a reply, and must be

able to associate the reply with the request. A use making a change to a world data structure might

never se the change, if a second process made a similar request at about the same time. Some
requests may expect a response with no intervening messages. To allow for this, the master permits

(and, in many cases, requires) processes to request send rights before making a request. While one

process holds these rights, any other -process making a request requiring rights will be placed on a

FIFO queue; rights should therefore be held as briefly as possible. After a process has been granted

rights, It is guaranteed to receive no messages from the master except those relating to the requests It

sends.

3

Note that the master must continue processing messages from all processes at all times during the

first stage of a cycle; processes are simply prohibited from sending certain types of requests unless

they hold rights. For this reason, while a message may contain many requests (commands), the text

of every request must be contained entirely within a single message.

All requests resulting in changes to the world data structures require rights. Each time a process

release rights, the master sends all changes buffered while that process held rights to all processes

S'S using the world.

If the master detects a protocol error in a request of a process holding rights, the process will lose

its rights.

Related Protocol Commands: RequestRights, GrantRights, Releasetights, Acknowledge

2.3 World States
If requested to do so, the master will save the state of the world at the end of the first stage of a

cycle; it will do this automatically every few cycles as a checkpoint. The state of the world includes all

world data structures (this is not the same as object files maintained by a UI) plus information

concerning each organism using the world. This information includes a name, the object in the world

corresponding to the organism, and a method for restarting the organism In its current state.

A previously saved state of the world may be restored at any time. The current state is cleared

before loading an old state. An SEI in the system, however, having the same name as an SEI in the

Sd.. state file is polled to see if it can restore Itself. All other SEIs are removed from the system; the
unrestorable ones listed in the state file are restarted. Uls are unaffected.

States are referred to by state (not file) name; two special states are "creation", which simply clears

the world, and a null state, which is the most recently saved state. See Concepts and Nomenclature

in the World Modeling System.

Related Protocol Commands: SaveState, RestoreState, ClearWorld, RequestToStartOrganism,

SetChckpointPath, SetCheckpointFreq, SetCheckpointSaving, RestoreCompleted,

UnableToRestore

4

5i 2.4 Changes to World Data Structures

A process holding rights may request that changes be made to world data structures (see The

World-Wide Communication Protocol and The World Data Structure). This is how an SEI effects the

world for an organsim. Some object fields only the master may change: transforms, enclosures, and,

for complex objects, mass, mass center, and buoyancy.

Related Protocol Commands: SetWorldName, SetDebug, SetTimeStep, SetWorldTime,

SetContacts, SetAtmosphericViscosity, SetDirectedLight, SetAmbientLight, SetAmbientTemperature,

CreateObject, SetObject, InsertNextObject, RemoveNextObject, RemoveSubObject, DeleteObject,

CreateEmission, lnsertNextEmission, RemoveNextEmission, DeleteEmission

2.5 Miscellaneous

Every process in the system must indicate that they are ready to proceed before the master will

begin the second stage of a cycle. This is cumulative, and may be done for any number of cycles in

advance.

At the end of the second stage of a cycle, after sending all buffered changes, the master must notify

all processes of the start of the next cycle.

Any process may broadcast a message to all other processes in the world.

When the master detects an error in a request, it reports as much to the offending process, and, if

the process held rights, broadcasts a message In order to alert other processes that changes about to

be sent may be Incomplete.

Upon request, the master will provide information about the processes it believes to be using its

world.

Related Protocol Commands: OkToProceed, NotOkToProceed, StartNewCycle, DisplayMessage,

ProtocolError, RequestProcessinfo

2.6 Protocol Modification In the World Master

The routine HandleRequestsO in handlereq.c Is the driver for the first stage of a cycle In the

master. From there, routines are called in the same module to handle processing of messages,

including most protocol commands. SetUpProtocolO in handlereq.c and SetUpOProtocolO in

communlcate.c must be modified to indiciate when new protocol commands are valid.'

' 5

Routines to process changes to the world data structures and routines to handle the low-level

mechanics of forming and sending messages are located in communicate.c. These are called from

this module, from m iny places in handlereq.c, and from the driver UpdateWorldO in

updateworld.c, where changes due to simulated physics are made.

See routine descriptions and comments in the code itself for more information.

I
. N

&M
MNI |m mm

6

3. Update of the World Data Structure

See The World Data Structure for a description of each type of structure and the fields represented.

3.1 Objects

The (translational and angular) acceleration, location, and velocity of each top-level (only) object

are updated by the master at the beginning of the second stage of each cycle. The modification is

done in that order: acceleration first so that forces applied during the first stage will have effect

(acceleration is recomputed each cycle) and velocity last so that acceleration does not effect location

twice in one cycle.

The acceleration of an object is the applied force divided by its mass, plus the acceleration due to

gravity as modified by buoyancy.

All changes must be buffered to be sent to processes using the world.

In order to simulate lifting (which is difficult to do without support of collisions involving more than

two primitive objects) the master allows (temporarily, one hopes) what is ;nappropriately called

magnetic force. This is simply a force given to a primitive object; if the object comes into contact with

a second object, the weight of which is less than the magnetic force, normal collision resolution is

ignored, and the second object is attached to the top-level object to which the first object belongs

(which can be the object itself). This attachment (done only in the master) results in a new rigid

object, and is possible to break only by reducing the magnetic force.

3.2 Emissions

The master ignores emissions, except to remove them from the emission list when the duration of

the emission has expired.

3.3 Modifying the World Update

World data structures are updated in the driving routine of the second stage, UpdateWorldO of

updateworld.c. See the code for more information.

:p

4 7

4. Collision Detection

4.1 Summary

The WM includes routines to detect collisions between polygons (polygonal surfaces), circles

(discs), cylinders (right circular shells), spheres (spherical shells), and rigid objects consisting of

combinations of these. There is currently no capability for jointed objects, and collisions involving

more than two objects will not in general be resolved correctly. Collision detection algorithms decide

on a single point of contact between objects; this point is an approximation due to the discrete time

step used in the simulation, and due to the difficulty of resolving collisions along lines, planes, or

multiple points of contact.

Objects are represented in the simulation by a hierarchical tree, with complex objects above their

* constituent parts, and primitive objects at the leaves. The representation of each object, complex or

[- primitive, includes a matrix transform encoding the location, orientation, and scale of dimensions

relative to the parent object (or to the global reference frame, in the case of top.level objects). This

matrix should be invariant for all but the top-level objects, since all objects are rigid. There are also

vectors representing the linear and angular velocity and acceleration -- zero for all but top-level

objects -. and a field used by effecting organisms to indicate a force or torque to be applied at the

center of mass of an object, and its duration. When joints are represented, effecting forces should be

applied at the joints.

Collisions are represented for one time step for each object by a list of points of contact and force of

contact with each (primitive) object involved. A collision between two top-level objects will be

encoded as a single point of contact, whatever the actual geometry; which pair of a set of primitive

objects in contact will be chosen to represent the overall contact will depend on the order in which

objects appear in the tree structure used to represent objects.

Every object includes the radius of an enclosing sphere (used for efficiency in detecting collisions),

and has a buoyancy, mass, and mass center of mass relative to its location. Primitive objects have

coefficients of friction (kinetic only), restitution, and elasticity, and appropriate dimensions and

(invariant) normals to surfaces. Polygons have a list of vertices represented as vectors relative to

location.

I,

.-- rrrrr--w'-w -- V V.

8

4.2 Procedure

Detection algorithms are organized so that minimum effort is expended in cases where there is no

contact between two objects, or where contact is easily determined. The radius of enclosure

associated with each object allows pairs of objects whose radii do not overlap to be ignored.

Ideally, objects will collide in one point; because time is discrete, contact will ususally occur as

overlapping volumes. Time should be interpolated to determine the first point of contact; this is not

done. Depending on the type of overlap observed, assumptions are made as to the manner of initial

contac:, as described below.

4.2.1 Plane-Plane (Polygon and Circle)

The first test rules out pairs where the radius of enclosure of one object does not intersect the plane

of the other. Otherwise, the perimeter of each object will intersect the line of intersection of the

planes in an even number of points (single points taken to be two coincidental points). When

, ordered, these points mark the limits of areas of the objects; if any of these areas overlap, the objects

are in collision.

The center of the longest such overlap is taken to be the point of contact. If the overlap

corresponds exactly to an intersecting area of object A, it is assumed that object A "hit" object B, and

the plane of contact is the plane of object B. Otherwise, it is assumed that edges of the two objects

collided, and the plane of contact is tangent to both colliding edges.

4.2.2 Sphere-Sphere

If the radii overlap, the point of contact is taken to be midway between the overlap, on the line

between the centers; the plane of contact is perpendicular to this line.

4.2.3 Plane-Sphere

If the sphere intersects the plane, it does so in a circle. The point of the plane object nearest the

center of this circle (if the point is not in the circle, there Is no collision) is taken as the point of

contact, unless the plane is a circle with overlapping radius (see Sphere-Sphere). The plane of

contact is tangent to the sphere at the point of contact.

9

4.2.4 Polygon-Cylinder

There is no collision if the cylinder enclosure does not intersect the plane of the polygon, or if the

polygon enclosure if farther from the cylinder axis than the radius of the cylinder. Otherwise, that

portion of the polygon within the height of the cylinder may be projected onto a plane perpendicular

to the axis of the cylinder; the circular intersection of the cylinder may be treated as the

Polygon-Sphere case to detect collision.

If the center of the circular intersection is not in the interior of the polygonal projection, an edge of

the polygon is assumed to have "hit" the side of the cylinder, and the plane of contact Is tangent to

the cylinder at the point of contact (which will be on an edge of the polygon). Otherwise, an edge of

the cylinder is assumed to have "hit" the polygon; the point of contact is the point of the polygon

projecting to the center of the cylinder, and the plane of contact is the plane of the polygon.

4.2.5 Sphere-Cylinder

There is no collision if the sum of the radii is greater than the distance between the sphere center

and the cylinder axis, if the sphere is farther "above" the height of the cylinder than the radius of the

sphere, or if one contains the other (if the line segment along the side of the cylinder parallel to its

axis and farthest from the center of the sphere is inside the sphere, but does not intersect the shell of

the sphere, the cylinder is contained by the sphere).

In the last case, the point of contact is the point of intersection of the line segment with the sphere

(nearest the cylinder center if there are two). In all other cases, collision reduces to that of

Sphere-Sphere, using circles of Intersection in a plane perpendicular to the cylinder axis, through an

end of the cylinder or the sphere center, whichever is nearer the cylinder center. The plane of

*, contact is tangent to the sphere at the point of contact.

4.2.6 Cylinder/Circle-Cylinder

This is messy. There is no collision if the sum of the radii is greater than the perpendicular distance

between the axes, or if one object is a circle and the cylinder enclosure does not intersect its plane.

Otherwise, the line passing through both axes and perpendicular to both is computed, and Its points

of intersection with the cylinders found. If the line does not intersect a cylinder, or the pairs of

intersecting points do not overlap, there is no collision.

If the pairs of points are interleaved, the point of contact is taken to be the center of the overlap, and

the plane of contact s perpendicular to the above line (tangent to the cylinders). Otherwise, one

cylinder might be contained within the other, which is where it gets messy: collision reduces to that of

10

a circle with an ellipse. This can be solved with a quartic equation; unfortunately, I could not find

robust solutions to quartic equations. I won't attempt to describe here the algorithm detecting

containment.

4.3 Modifying Collision Detection

Collision detection, called from UpdateWorldO, is carried out by routines in updateworld.c. See

'k routine definitions and comments in the code for more information. Routines to detect collisions

between cylinders, which should probably be rewritten, can be found in cylinders.c.

.1l

A..

"4Z

.4-.

al

11

5. Collision Resolution

5.1 Summary

Given that the following assumptions and approximations are made, collision resolution is

reasonably accurate, accounting for three-dimensional resolution of linear and angular forces.

" All collisions occur between two isolated primitive objects. No attempt is made to model
multiple collisions, including instances of stacked objects at rest. The results of such
collisions will depend on the order in which they are resolved.

" The point and plane of contact are approximations at best and arbitrary at worst.

" The coarser the time scale, the less accurate detection and resolution will be.

" A primitive object has uniform density.

* Associated with each primitive object are a modulus of elasticity and a coefficient of
restitution, as measured in collisions with an object of the same material.

* Associated with each primitive object is a single, constant coefficient of friction; the
friction used in a collision is the average of the frictions of the two objects involved.

* The inertia of a polygonal surface is approximated by that of a disc with radius 20%
smaller than the enclosure of the polygon.

" It is assumed that an immense, massive circle (or similar object) with zero buoyancy will
serve as a base to the world.

The collision resolution algorithm is based on a discussion in Impact, by Werner Goldsmith, pp.

11-17. (Edward Arnold (Publishers), ltd., London 1960.)

5.2 Procedure

During every cycle, the accelerations of each object are set using effector requests and a

gravitational constant. Displacements are modified, using the new accelerations and the velocities

calculated during the previous cycle. Velocities are modified using the new accelerations. Finally,

collision resolution takes place. This order Is important. For instance, If velocities were updated

before displacements, a falling object which hit the floor in the previous cycle might have its resulting

upward velocity negated by gravity during the current cycle, and fall through the floor. If collision

detection were done first, an organism would not be able to react to collisions without the delay of a

cycle.

412

4 Collisions are resolved by calculating the impulse generated, and using this to compute final

velocities.

An impulse may be split into components parallel and perpendicular to the plane of contact; the

parallel impulse is the frictional force. For smaller coefficients of friction or lesser perpendicular

impulses (to which the frictional force is proportional) sliding will occur in the plane of contact. In

other cases, the frictional force may become great enough to eliminate (perhaps temporarily, if the

collision is elastic) relative velocities between the colliding objects, in the plane of contact.

The magnitudes of the initial relative velocities in the direction of compression determine the

magnitude of the greatest possible perpendicular impulse, defining a plane of greatest compression.

'4% Similarly, the magnitudes of the initial relative velocities in the plane of contact define a line of no

sliding, where relative velocity becomes zero. The path followed in impulse space as a function of

time lies along a cone defined by the coefficient of friction; the points at which this path intersect the

. plane of compression and line of no sliding determine the value of the final impulse. It seemed a bit

much to try to solve the set of third order differential equations defining this path, so it is

approximated by a straight line.

The impulse is computed by determining where the friction cone intersects the line of no sliding and

plane of greatest compression. For high coefficients of friction, the impulse path will reach the former

first, and continue along the line (the friction then being great enough to prevent sliding). Otherwise,

when the latter is reached, the path will appear to be "reflected", as the compression force begins to

decrease. The length of the path following intersection with the plane of greatest compression

depends on the elasticity of the collision.

M5.3 Modifying Collision Resolution

Good luck. Called from UpdateWorldO with a point and plane of contact, resolution is handled by

ResolveCollisionO and other routines in resolve.c. See the code for more Information.

On

