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Prototype Real-Time Monitor:
l Design

Abstract. This report describes the software design used to implement the prototype
real-time monitor (RTM) requirements [D'lppolito 87). The design is presented at three ‘
levels: system level, object level, and package architecture level. The report concludes \
with a discussion of the key implementation obstacles that had to be overcome to |
9 develop a working prototype: determining system addresses, communicating with an 3
w executing application, accessing application memory, converting data into human read-

able form, and distributed CPU architectures.

' E~' Structure of the Document

Chapter 1 of this document gives an overview of the monitoring problem and compares it to other |
A areas where "monitor-like" approaches are used. Chapter 2 provides the high-level architecture |
_— for the RTM application system. Chapter 3 examines the objects used to implement the func-

tional needs of the user by proceeding from the lowest to the highest level of abstraction in the
system, constantly keeping in mind the needs of the user and building on top of each layer of
abstraction. Chapter 4 takes a more “formal” view of the system. Here, object dependency |
diagrams describe the software architecture (i.e., packaging structure) used to implement the
objects described in Chapter 3. Finally, Chapter 5 discusses the key technical issues involved
with implementing the RTM, including issues related to performance and use of the RTM in a
multiple CPU configuration.

o
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Associated Documents

» American National Standard Reference Manual for the Ada Programming Language
[Ada 83]

» Prototype Real-Time Monitor: Requirements [D'Ippolito 87] J
» Prototype Real-Time Monitor: User's Manual [Van Scoy 87a] |
» Prototype Real-Time Monitor: Ada Code [Van Scoy 87b]

e User's Manual for a Form Generator System in Ada [Texas Instruments 85a)

e User's Manual for an ANSI X3.64 Compatible Virtual Terminal in Ada[Texas Instru-
ments 85b]
Conventions Used in This Document
The conventions used in this document are listed in the left-hand column below; their associated
meanings are listed in the right-hand column.

BRI

b code Ada language construct
package Ada package name
. subsystemm  Ada subsystem
N COMMAND  RTM command
4
2
[
A
s
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Context of Report
The prototype real-time monitor described in this report was built to address two specific technical
questions raised by the Ada Simulator Validation Program (ASVP) contractors:

1. How can user tools find, access and display data hidden in the bodies of Ada
applications?

2. How can user tools be layered on top of Ada applications?

The prototype is documented by this report because the ASVP contractors had a need for a
monitor tool, but did not have the contract resources to develop one. The prototype RTM is
intended to be a simple tool which is easily rehostable and extendable. It is not intended to be an
example of what a weli-documented system should include. Since it was a prototyping effort, no
standard documentation or development methods were applied, and no attempt was made to
solve all the traditional "monitor” problems.

2 CMU/SEI-87-TR-38
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1. Introduction

A real-time monitor is, in its simplest form, a tool which a software engineer can use to read and
write data memory (i.e., variables) in an executing application without haiting the CPU. The RTM
allows the engineer to do this without requiring any prior knowledge about which memory foca-
tions (i.e., variables) need to be operated on. It is real-time because it is intended to be used in
conjunction with real-time applications and run in available spare time (in this way it does not
perturb the essential timing of the application).

Clearly, this definition contains many elements that are common to other applications:

» The notion of real-time, where the timiely execution of the application cannot be dis-
turbed.

» A user interface intended to communicate effectively with a human operator.
» A system interface connecting the RTM to an executing application.

* A transfer of information from the user through the RTM to the application and back
to the user.
These concepts are found in other areas under other names. We will highlight two examples of
these areas to demonstrate the universal nature of the problem and the general applicability of
the solution presented in this report.

1.1. Instructor-Operator Station

The first example is drawn from the flight simulator world. In flight simulators, all training devices
possess an instructor-operator station (I0S). This is a user interface device which allows the
instructor to control a training exercise. It is used in two ways:

» To set up the configuration for the exercise prior to involving the student.

e To interact with the student while the training exercise is occurring. This allows the
instructor to introduce unexpected malfunctions into the simulator and monitor the
student's responses.

A pattern is apparent at once: the I0S is a specialized RTM. It has a user interface, allows for
the dynamic observance and modification of an application, and is non-interfering (otherwise the
exercise is not realistic). The I0S is an example of monitoring when one can predict exactly
which parameters will be of interest.!

1An I10S typically feiches all its parameters on every communication cyde, even though all the data are not needed at
any given time.

CMU/SEI-87-TR-38 3




L e e Bea A Aa Bd Sod Ak aus hed i dnd Ak wnk Bad - ‘&“,!

-
‘-
“u
4
N
"
X 1.2. Debuggers
A second exampie s the traditional source-ievel debugger. Among the characteristics of a de-
'\" bugger are:
‘_:j « It allows control over the execution flow of the application.
. « It allows read and write access to an application’s data objects.
o It is closely tied to0 a host operating system and target compiier.
:{ o It is very intrusive of the timing of the application.
N In light of the functioning of an RTM, the debugger can be viewed as a generalization ot the R ...
o concept. It aliows for all the access operations of an RTM, but extends this notion to include
specific control over the execution of the application (and as a result loses the ability to not
5 interfere with the real-time nature of an application). The debugger normally has intimate know!-
- edge of how the compiler/linker allocates memory. As we will see later, this information is also
‘e needed by the RTM. Both need to interface 10 the user on a human level and are required to
2 translate data from the internal notation of the computer to the external notation of the user.
o Thus, the RTM stands midway between the relative simplicity of an 10S and the complexity of a
- debugger. The monitor problem is not unique to flight simulators, and the solution presented here
< is applicable to other domains.
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2. System Architecture

The aiscussion of the RTM starts with the top level view shown in Fgure 2 * (see Append s B 1o
a complete descnption of thus notaton) This figure provides the system igve COMtes’ = wr.i*
the RTM operates In it are tour objects

e User the human operator contrcliing some (or all) the other obgec!s i» the system

+ Real-time monitor the system which aliows the user 10 observe the interna tunclic
of the applicaton program

e Application program the system of interest to the user The RTM views the app:

cation as a cyclc task which has spare processing cycles avalable 1or use by the
RTM

s System hardware the physicai devices being driven by the application sof'ware (no’

the computing hardware on which the real-time monitor and apphcanhor are
executing)

s N 4 R

~sc RTM TN

Real- — to — o
Time le—— Appircation Application
Moniior - Llertace Program

N W, A Y,

fa] w7 XY TN
User to v Applic hon.
to Application . 1o
RTM . Injprtace +  System |
Interface v interface
. \ ]
[+ 4 . 4w
User
‘ System
User 1
<~~~ System =<A\Y Hardware
[ Interface —

Figure 2-1: System Overview

In addition to these objects are a number of interfaces: user-to-RTM, user-to-application, user-10-
system, RTM-to-application, and application-to-system. Of these interfaces, only the user-to-
RTM and RTM-to-application are of interest here (the remaining interfaces are not accessible to
the RTM). The user-to-RTM interface is the primary focus of the Prototype Real-Time Monitor:
User's Manual [Van Scoy 87a) and does not enter into the discussions in this report. The inter-
face of most interest in this report, however, is the RTM-to-application interface. The focus is on
how the interface is established, how it is manipulated, and how it changes as the system contig-
uration changes.

CMU/SEI-87-TR-38 5
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3 Ore agguonal item to note about Figure 2-1 1s that no partitioning of the software among the
processors in the system is implied by the diagram. This is a deliberate attempt to isolate the
) mp:ementaton issues of processor configuration from the conceptual (requirements) issues of
.. aes:gn.ng an RTM for Ada appiications
.‘jQT I "me rea. tme monitor portion of Figure 2-1, the RTM is composed of the four classes of objects
- smow” i Figure 2-2
« Da‘a display objects handie the RTM side of the user-to-RTM interface.
:'_} * Support objects perform set up and bookkeeping functions for the RTM.
» » Data access chjects handie the RTM side of the RTM-to-application interface.
- * RTM core object handies the application side of the RTM-to-application interface.
o
‘ 3
L]
- 4
4 R |
B ‘ )
. |
t
<
b
J
; .f_'_,
14, -
;Q.
v -
i
"n
e Figure 2-2: Real-Time Monitor Overview
v
o
'
< X The emphasis of this report is on the data access and RTM core objects since they are central to
) .r: answering two primary issues:
o .
~ 1 How can user tools find, access, and display data hidden in the bodies of Ada
I applications?
>
> 2 How can user t00ls be layered on top of Ada applications?
This 1s not to say that the other objects are unimportant. In this situation, they are simply sub-
- ordinate to work needed to answer the above questions.
e
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3. Object Architecture

In this chapter, we describe the object architecture of the system by looking at a specific user
command and then studying the objects used to implement that command. Specifically, we
explain the design by describing:

« all the objects needed to implement the functionality
« the interactions between the objects
o error situations and how they are handled by the objects

3.1. Reading a Variable

The lowest level operation available to the user is reading and displaying a single variable. if the

user wished to read the value of the variable o0 in package x.y, the following command woulid
have to be issued:

READ(name => x.y.fo0);

The objects necessary to implement this operation (or command) form the framework of the
monitor and are shown in Figure 3-1.

3.1.1. Design Objects
Following is an overview of all the objects needed to perform the READ operation:

e real_time_monitor is the interface to the user. It takes the user's input, parses the
input, and dispatches the command.

® parameter_manager manages:

« verifying the validity of the request
+ extracting the data from the application
* presenting the data to the user

e variable_database builds and manages the collection of all variables accessible to
the user. It does this by maintaining a database with all the information needed on

any variable accessible to the user through the RTM. This database contains (as a
minimum):

» the Ada variable name (i.e., the full Ada path name)
* the Ada type
* the base address of the variable

» dialogue_manager hides the details about accessing the data and formatting the raw
data into a user-readable form. Using the variable information from the
variable_database, the dialogue_manager is able to extract variable values from the
application and (using the types_manager) format it so that the user can understand
it. Internally, the dialogue_manager must maintain, for every active variable (i.e., any
variable whose value is requested by the user):

« the current value of the variable
» the time tag for the current value

CMU/SEI-87-TR-38 7
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Figure 3-1: Reading a Variable
types_manager knows how to convert:

0pS

e « bit strings into character strings

¢ A « character strings into bit strings

: 2 * rtm_core is an abstraction for the application; it is the only piece of application code
* which the RTM knows about (or has any control over). Also, being part of the appli-
{;;. cation, it can execute only when the application gives it a slice of time to use. The
o
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rtm_core operates on the assumption that there is some smallest piece of data which
can be accessed (and nothing smaller). it then reads a block of these smallest units
and returns the data to the dialogue_manager. It performs two primitive operations:

» get system_storage_unit(s), which returns the value(s) at the specified
address(es)

« put system_storage_unit(s), which writes the specified value(s) into the speci-
fied address(es)

» standard Interface subsystem hides the details of parsing user command lines. It
uses standard Ada procedure call notation for the command line format. Included in
this subsystem is the RTM's command language definition and interpreter (CLI).

o virtual terminal subsystem hides the device dependencies by exporting a set of
terminal independent control operations, that are mapped onto the target display
device(s) using UNIX termcap-style definitions (see [Texas Instruments 85b]).

o forms management subsystem hides the details about how the target display is
formatted for output and how the target display is accessed (by treating the screen
as a fili-in-the-blank form, see [Texas Instruments 85a]). Included in this subsystem
is the RTM's user interface definition.

3.1.2. Object Interactions

With these basic objects in place, we can now look more closely at the interaction among the
objects (shown in Figure 3-1) needed to read a variable.

The interaction starts when the user enters the "character data” which form a command line into
the forms management subsystem via the virtual terminal subsystem. These data are sent
to the real_time_monitor as the “user command line." The real_time_monitor then issues a com-
mand to the standard Interface subsystem to “"parse command line” and waits for the "parser
status” signal. If the "parser status” indicates a syntactically (not semantically) legal command
line, the command "read" is issued to the parameter_manager. If the "parser status” indicated a
syntactically incorrect command line a “parser error message” is sent to the user, and the user
must start the interaction again.

The next step in processing the READ command is semantic verification. When a command
reaches the parameter_manager, it is known to be syntactically correct (this check is performed
by the standard Interface subsystem when the command is parsed), so the semantic verifi-
cation process simply consists of:

1. Request the “"command arguments,” one at a time, from the standard interface
subsystem.?

2. Query the variable_database to determine if the selected “variable is available.”
Once that determination is found to be true, the data can be scheduled for extraction. The

parameter_manager does so by instructing the dialogue_manager to "activate variable for data
collection.” The activation of the variable causes the dialogue_manager to request “variable

2This is a peculiarity of the command ine interpreter software.

CMU/SEI-87-TR-38 9
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information” from the vanable_database and schedule a read operation in the active read list.
- When the time for the operation occurs, the dialogue_manager takes the variable information
from the schedule and sends an “extract data” request to the rtm_core. The rtm_core will proc-
", ess the request during its next time slice and return the "unformatted variable value” to the
dialogue_manager. The data are now available to any other process in the RTM.

» To summarize what has taken place thus far:
) :
aY » The user has requested that a variable be read.
s * The request has been successfully verified.
-_-'_-.:’_ * The data have been successtully extracted from the application.
- » The data are now sitting In the dialogue_manager awaiting further disposition.
w
S The fact that the data of interest have been moved from one area of memory (or one processor)
to another is of ittie interest to the user What is now needed is for the information to be
A presented 10 the user This presentation occurs when the parameter_manager requests the
': “tormarted varable vaiue™ from the dialogue_manager. The dialogue_manager has the data in
NS an nterna: format but does not know what to do with them. To fulfill the request, the
o .
Vo] didiogue manage’ passes the “unformatted variable value™ to the types_manager, which con-

verts the bt strng .r~> a Jormatied vanabie value” for the dialogue_manager to send back to the

.,.:_ pdarameter manage:
\,\ Once the data are corverted nto a human-readable form, the parameter_manager sends the
:’,‘\-f ‘display data for vanabie” 10 the forms management subsystem for presentation to the user.
‘ The command has now been successfully executed, and the RTM is ready to process another
T, command
.
ff:' 3.1.3. Error Processing
'-;C- There are two classes of errors which can arise in the course of this processing. First, the
' variable may not be accessible to the RTM (i.e., it does not exist in the database of available
,',J variables). In this situation, the parameter_manager informs the user that the variable is not
o accessible and the processing is complete. Second, the variable may be accessible, but an error
e?;: may occur in the rtm_core when the data are accessed. Here, the parameter_manager informs
R the user that the variable could not be read from application memory and the processing is
My
® complete.
el
o 3.2. Reading a Page of Variables
;;?,E, The user can now access any available variable in the system by issuing READ commands to the
RTM. Powerlul as this is, it is a tremendous burden to use the READ command to repetitively
Lt examine one variable, let alone a group of variables. Clearly, there is now a need for a higher-
. :;}: level abstraction. This abstraction is called a "page.” A page is simpiy a collection of individual
SSEN variables which are extracted and displayed as a group. Using a page, one command can
‘.' - "*' produce a wealth of information. Still, if this is a repetitive request, the user cannot control the
e regularity of the extraction process. Thus, we introduce an update_rate, which informs the RTM
;._;; _ that a page is to be processed and displayed at a pem rate deter'mir'\ed by the usgr. With a
R "j page and an update_rate, the user has a powerful abstraction for monitoring an application.
e
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3.2.1. Design Objects
. The objects used to implement reading a page of variables are the same as those used in Sec-
tion 3.1 to read a single variable, with one exception: the parameter_manager is replaced by the
page_processor (shown in Figure 3-2, which is structurally equivalent to Figure 3-1), the dif-
‘;3 ferences are highlighted by bold typeface.
A
The page_processor object manages:
5 « verifying the validity of the request
2k e extracting the data from the application
e presenting the data to the user
.,
ot
S 3.2.2. Object Interactions
There are three distinct sequences of interactions which occur in Figure 3-2, each initiated by a
qf different user command. To start with, the interactions needed to create a page begin with the
RS

user issuing the command:
EDIT ();

&Yy

The object which implements the editing or building of a page is the forms management
subsystem. The forms management subsystem is essentially an editor which allows the user
.- to construct a display template by full-screen editing and later allows the RTM to place the col-
lected data in this template. The editing process is fully described in the Prototype Real-Time
Monitor: User's Manual [Van Scoy 87a). Since the forms management subsystem has no
knowledge about variables in the variable_database, there is a companion command to EDIT
which can be used. The command:

- e
1
.

A

t— CHECK (page => example);
&‘

can be used after the EDIT command to perform error checking (described below) on a page

J without actually starting active data collection on that page.
™ Once a page has been created, that page must be invoked for processing. In this case, the
“u command looks like:
™
,:1 START (page => example, update_rate => 0.5);
,& Again, when a command reaches the page_processor, it is known to be syntactically correct, so
< the semantic verification processing consists of:
1. Request the "command arguments,” one at a time, from the standard Interface

>3 subsystem.
B 2. Request the "page definition data” from the forms management subsystem.
- 3. Add the new page to the list of active pages.
o
LY

The page_processor takes the "page definition data” and queries the variable_database to deter-
mine if the “variable is available” for each variable defined on the page. Once that determination
is found to be true, each variable is scheduled for extraction. Again, this is done by instructing
the dialogue_manager to "activate variable for data collection® for each variable. The activation

X e
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of the variable causes the dialogue_manager to request “variable information™ from the
‘ . variable_database and schedule a read operation in the active read list. When the time occurs
for the page to be updated, the dialogue_manager takes the variable information from the
schedule and sends an "extract data” request for each variable to the tm_core. The ntm_core

-~ will process the requests during its next time slice and return the "unformatted variable value® to
the dialogue_manager. The data are now waiting in the dialogue _manager for the next
scheduled display update, at which time the page processor requests the “formatted variable
9“. value® for each variable on the page. The data and controi information are combined to form the
e "display data for page” which is sent to the forms management subsystem for presentation to
"3 the user. Since the START command has an associated update_rate, this processing will con-
. tinue until terminated by the user.
- The tinal processing sequence occurs when the user terminates an active display. To accom-
;;Z- plish this, a command like:

STOP (page => example);

Ty

is issued. Here, the processing consists of:
1. Request the “"command arguments” from the standard interface subsystem.

:‘_- 2. Request the dialogue_manager to “deactivate variable” (where it removes the vari-
) able from the active read list and releases its data storage) for each variable on the
page.

3. Remove the page trom the list of active pages.

-~

&

4. Remove the page from the display device.

This covers the complete cycle of page operations: building a page to displaying a page to ter-
minating a page.

g

3.2.3. Error Processing
There are four classes of errors which can arise in the course of this processing. First, the
requested page may not be accessible. In this situation, the page processor informs the user

~ 5

-
&

- and the processing is complete. Second, a variable may not be accessible to the RTM (i.e., it
T does not exist in the database of available variables). In this situation, the page processor
deletes the variable from the page and informs the user that the variable is not accessible. Proc-

\ ? essing then continues on any remaining variables defined for the page. Third, a variable may be
o accessible, but an error may occur in the rtm_core when the data are accessed. Here, the
“ parameter_manager informs the user that the variable could not be read from application memory

: 3; and processing continues on any remaining variables. Fourth, the limit number of active pages

may have been reached. [n this case, the processing never starts and the user is informed of the
error. Itis then up to the user to STOP a currently active page and START the desired page.

-~ .-
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3.3. Writing a Variable

The final operation available via the RTM is the ability to modify application memory. This re-
quires revisiting the first object. the parameter_manager (shown in Figure 3-3, which is struc-
turaliy the same as Figures 3-1 and 3-2, with differences highlighted by boldface type), and
considering some additional functionality. Suppose the user wished to change the value of the
variable 00 in module x.y and the following command is issued:

Set (name => x.y.foo, value => 10);

3.3.1. Design Objects
The objects in the system are the same ones discussed in Section 3.1. The difference occurs in
the low-level processing needed to implement the operation.

3.3.2. Object Interactions

After the “user command line" has been successfully parsed, the next step is semantic verifi-
cation. When a comma-- reaches the parameter_manager, it is known to be syntactically cor-
rect, so the semantic verification process simply consists of:

1. Request the "command arguments,” one at a time, from the standard Interface
subsystem.

2. Query the vanable database to determine if the selected "variable is available.”

it that determination is found to be true, the data can be scheduled for modification. The
parameter_manager does so by instructing the dialogue_manager to "activate variable for data
deposit.” The activation of the variable causes two actions to occur:

1. The dialogue_manager passes the “formatted variable value” to the types_manager
and receives "unformatted variable value" in exchange (which is logged internally).

2. The dialogue_manager requests “variable information” from the variable_database
and schedules a write operation in the active write list.

When the time for the operation occurs, the dialogue_manager takes the variable information
from the schedule and sends a "deposit data” request to the rtm_core. The rtm_core will process
the command request during its next time slice and return the "deposit status™ to the
dialogue_manager. The "deposit status” is then returned to the parameter_manager for subse-
quent presentation to the user.

3.3.3. Error Processing

There are three classes of errors which can arise in the course of this processing. First, the
variable may not be accessible to the RTM (i.e., it does not exist in the database of available
variables). In this situation, the parameter_manager informs the user that the variable is not
accessible and the processing is complete. Second, the variable may be accessible, but an error
may occur in the rtm_core when the data are accessed. Here, the parameter_manager informs
the user that the variable couid not be written to application memory and the processing is com-
plete. Third, the user may have entered data in an inappropriate format for the variable (i.e.,
attempting to assign the value 10z instead of the integer 100). In this case, the input is rejected
and the user must reenter the command.

14 CMU/SEI-87-TR-38

) XWX OO
SRR MM N AN .'af.‘nf.'l N

"“-——-'T



- -,.
1..":’ ':".{'.,': i

h "-'.';

Tl o of o = .
£ k” e,

..‘
e

3
[

-~
-

N
-

% N

AR

ROLESROE

< _‘)'v;

L o]

BARNE |

.

<

™y

4

;

I’,...... » oy - P .
G A A AN IR NN N

Dsplay
data f
- Depay User_command line i
User Device baner srormessage | R€I-Time Monitor
input
daia \_.
\\ N N \
\ \ o
Cheracter \ Device \ Write Parse \ Parser :
data \ control \ command, Status |
\ \ kne , N
Yy N Duplay A N N )
data e Dispiay data
< for vanable
¥'o"‘r‘:1dnd Forms Parameter | Command arguments Stangard
Subsystem > Management Manager Intertace
y Charadier Subsystem Subsystem
dara \
4
)
Vanabie is avaiiable \ Deposit
] status
Activate '
variable Formatted
for data ¢ variable
deposit \ Yslue
Deposit data
caceascaaas -‘\
Vanabie
information Deposit status
Unformatted Formatted
variable variable
value ! vajue
Types
Manager
Figure 3-3: Writing a Variable
CMU/SEI-87-TR-38 15

»
‘n.l Lk )

. . . TXPr 2 >0
Lo Anlh X !'; A .'h‘!'- ?'t‘?h ?‘u'., !‘...»‘. B2 )

> > 2. 8% 0% > e ~ "8,
ok TN U LN AN PN O




a1
e
’

v
3 2

] "‘."

;’;"’_ Edld

‘o,
[P

MERE S

1

v s
Y
PR

'y

2 =
A A
PP LS.

\%‘
”;

sty
L]

AR

vre s v
2
“ s o

L]

" »
PR
VPR
el e
SN

x
t,

,\.
3 I-'
~

[ ] .,
oot O

7’
P N

-
-

R

R

-
[]
Wt
AN

)

“v

T
¢

P

o
- Ix’'2

2
l* -

I

»
e

-

»
3 ..I.'J Ed

»

W 16 CMU/SEI-87-TR-38

(N ’

9, AT T R N CADGOAONO0 DCIORIOASOOLICIGET JOLA KA L
N '»' A% 1% “-.“:’"*“’h'”"‘-‘."t' a."l"':t" . t,"u‘,".,’ h‘!l:"l.'t!»"i.’!h"ar‘?n‘.f Wb AT R T DERMRY



g 9 - Ry T T oy EBAT A e aa= Bt Bat O "y ﬂ"‘rrwr'v'T

-

NS

oy $;‘

bt

K,

s~

: '.*:‘

X- 4. Package Architecture

. n This chapter provides a guided tour through the architecture of the RTM, giving an overview of

j the prototype and briefly explaining the purpose and key abstractions each package encap-

b sulates. The top level of the RTM is shown in Figure 4-2 (see Appendix A for a complete
‘v

description of this notation), with the successive levels shown in Figures 4-3 through 4-7.

b, - 4.1. Prototype RTM

The complete picture of the capabilities and usage of the RTM are found in the Prototype Real-

B

i‘ Time Monitor: User's Manual [Van Scoy 87a). Here, we briefly give an overview of the prototype.
The commands implemented in the prototype are:
Iy « EDIT ();
" * CHECK (name => <page>);
: e QUIT ();
. e READ (name => <variable>);
:‘ o SET (name => <variable>, value => <number|string>);

] » START (name => <page>, update_rate => <time>;
¢ STOP (name => <page>);

,j < The following restrictions have been imposed on the prototype:
-, « Single display device with VT100 terminal characteristics:
ARY
‘ * 80 columns by 24 lines
b * keyboard input only
; - ¢ No simultaneous input and output to the display device (i.e., screen updating halts
‘ during user command entry).
2 « Integer, float, and enumeration data types® only.
. + Generation of the variable database and type conversion routines is the user’s re-
sponsibility.
3 ?',".: This prototype was built using as much existing software as possible. Figure 4-1 gives the
1 <. statement count and total line count for the RTM development task. Only the 13% list for the
(.. RTM subsystem (shown in line 1 of Figure 4-1) is newly developed software. The remainder of
"-2‘ the code is from the Ada Software Repository and reused without modification.
-
‘
« G
) :\'
L o
L
] -
W
<
8
'.‘ .- access type variables can be used to monitor the underlying object.
+ ~,
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o
§ Subsystem Statements* Tota! Lines®
4
RTM 1218 8058
- Forms 2293 6894
- Virtual Terminal 2421 6269
-: Parser 1896 9600
2 Utilities 1522 6154
W Totals 9350 36999
: Figure 4-1: Sizing Figures for the Prototype
o
s
N 4.2. Real-Time Monitor
N
S The real_time_monitor package (shown in Figure 4-2) holds the entire structure together. It
o functions primarily as a cyclic executive for the RTM:
i » Takes user input using the forms management subsystem and the virtual termi-
z. nal subsystem.
:: » Parses the input using the standard interface subsystem.
L e Dispatches commands for execution using the page processor and
r” parameter_manager packages.
» Periodically updates the display device using the forms management subsystem
and the virtual terminal subsystem.
4.3. Page Processor

The page_processor package (shown in Figure 4-3), as discussed earlier, encapsulates the page
abstraction. lt is solely responsible for managing the interface to the page objects created by the
user. It does this by hiding all the details about how a page is:

« Invoked (Start_Page).

<
' « Periodically updated (Update_Page and dialogue_manager) and displayed (using
the forms management subsystem).

wte ¥y

AN » Terminated (Stop_Page).
* Represented internally (Setup_Page and Check_Page).
. » Checked for consistency using the variable_database package.

&
T
'~
)
A “The statement count is produced using another Ada Sohware Repository utility, Pager, which counts Ada statements (excluding
comment lines) rather than semicolons.
$ SAll lines in all files.
.h
e
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. 4.4. Parameter Manager

The parameter_manager package (shown in Figure 4-4) performs the same basic functions as
s.j the page processor package. The major difference is that it manages the intenace to single
var.able operations. It does this by encapsulating:

~ » How a variable is read (Read).
+ How a variable is written (Set)
N * How a request is verified and processed using the dialogue_manager package.

* How a request is displayed using the forms management subsystem.

4.5. Variable Database
p. - Tre varniable_database package (show~ in Figure 4-5) is the heart of the RTM. Without this
: abstraction, nothing eise in the system can function It s responsible for knowing which variables
I'_: are accessile 10 the user (via the informaton 1t obtains from the library interface). The
B variable_database 1S not responsibie for generatng the database information (see the
hbrary nterface below) lts functions inctude
» Buiiding the structure which holds the intormation (Initialize_Database).
+ Managing the structure
+ Providing the interface needed to access the structure (Find).
; This allows the rest of the system to specify the minimum amount of information needed for the
: RTM to function and isolate itself from how the information is generated and controlied. i
- 4.5.1. Library Interface ‘
-~ The library_interface package (shown in Figure 4-5) is actually responsible for generating the 1
Y information which goes into the vanable database. There are several reasons for this split be- i
~] tween the variable_database and the library_interface. First, the variable database need not !
:, have any know!edge of the items in the structure which it manages. Second, it allows for further ;
N isolation of the system-dependent parts of the RTM. Clearly, most systems cannot supply the |

information required to construct the database. Thus, the ability to build this database is system
dependent. The more information the library_interface can provide to the variable_database, the
more fiexibility the user has in monitoring capability.

4.6. Dialogue Manager

If variable_database is the heart of the system, then the dialogue_manager package (shown in
Figure 4-6) is the soul of the system. It manages the interface between the RTM and application.
It hides all the details related to reading and writing application memory, the scheduling of these
operations, and the conversion of bit strings extracted from the application into character strings
for the user.

v
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o 4.6.1. Collect Data
K While the dialogue_manager does the scheduling of the read and write operations, it is the re-
‘ sponsibility of the collect_data package (shown in Figure 4-6) to:
o « Format the commands (Bulld_Rtm_Core_Commands).
N » Communicate with the rtm_core package (From_Application).
- » Store the results (Retrleve_Rtm_Core_Results).
L 4.6.2. RTM Core
.-: The rtm_core package (shown in Figure 4-6) is the actual agent which reads and writes appli-
- cation memory. As noted previously, this is the abstract application with which the RTM commu-
:\ nicates. In a real system, this package becomes part of the application and provides the interface
Y
46 needed by the RTM. Thus, it hides all the details related to actually manipulating application
memory. A more detailed discussion of the internal functioning of this package can be found in
s Chapter 5.
T 4.6.3. Sysgen
The sysgen package (shown in Figure 4-6) provides the ability to partition the software based on
the available hardware suite (discussed in Section 5.5) and to control the timing of the resulting
7 system. Using the parameters in this package, the user can tailor the RTM to match the available
‘{ resources of the system. This tailoring 1s fully discussed in the Prototype Real-Time Monitor.
K> User's Manual [Van Scoy 87a.
Oy
4.6.4. Address Generator
-, The address_generator package (shown in Figure 4-6) 1s responsible for supplying the address
: abstraction used by the RTM. It supports this function by
. 1. Exporting the abstract address type. Address_Representation.
WA 2. Exporting the Compute_Address function to generate abstract addresses.
" This package is responsibie for hiding the manner in which system addresses are generated,
,,.‘! thus allowing for different address-generaton schemes to be used interchangeably.
! [ ]
¢ ..
priz 4.7. Types Manager

[ )
~ Finally, the lowest-leve! package in the RTM 1s the lypes manager package {shown in Figure
22 4-7). Due to the nature of the interface between the dialogue_manager and the rtm_core, the
_:: data from the the application come across the interface as a bit string, with no attempt at inter-
: pretation. The result is that a data conversion must occur before the results can be presented to
® the user. The types_manager is the object that knows how to map bit strings into character
; strings. This object allows the RTM to be insulated from these low-level details and thus im-
proves the portability of the system (since the underlying bit pattemns of a value will probably
" change from machine to machine).
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4.7.1. Conversions
i To ease the burden of converting ali the variants on the base Ada types, the conversions pack-
. age includes three generic conversion packages (based on Text_lO utilities). These generics
convert arbitrary bit strings into character strings. These routines also do the low-level bit shifting
needed when using the RTM in a multiple, heterogeneous CPU configuration.
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5. Implementation

While this chapter does not consider the entire RTM implementation, it does discuss the key
implementation obstacles overcome in implementing the RTM. These are:

« Generating the variable database and determining system addresses.
« Communicating interface to the application.

¢ Accessing application memory.

» Converting data into human readable form.

+ System architecture.

Each of these areas is important and will be discussed in detail below.

5.1. Variable Database and System Addresses

As noted in Chapter 4, the variable_database is the foundation of the monitor. Without the ability
to determine if a variable is in the application and then determine its address, the RTM cannot
function. This applies equally to the symbolic debugger (which gets this information from the
compiler and linker) and 10S (which forces the data of interest to known addresses), discussed in
Chapter 1. Thus, the RTM needs the following:

o Compiler/linker output: variable, address, type.

+ Type information: length (in bits), record formats, component offsets, indirection
(access type) indications.

« Computation routines for address of record/array element accesses.
+ Computation routines for dynamic objects (local variables, loop variables, etc.).

The RTM isolates these system dependencies by using a database of available variables
(structured as an ordered binary tree), a database of available types, and an address compu-
tation function that processes the type and variable information in the databases to produce a
system address. A complete discussion of the approach used in the prototype to generate its
variable database can be found in the Prototype Real-Time Monitor: User's Manual [Van Scoy
87a).

5.2. Communications Interface

Given that addresses can be generated for application data objects, the next consideration is how
the user's commands are communicated to the application. As discussed previously, the
rtm_core package is the object that ultimately affects the application. The interface between the
RTM proper and the rtm_core (which is synonymous for the application) is composed of two
buffers: a command buffer and a data buffer, shown in Figure 5-1. The command buffer is
composed of a sequence of commands. Each command contains the fields:

1. Status/operation to be executed (some of these are rtm_core control operations):

a. buffer available
b. results available
C. deposit

CMU/SEI-87-TR-38 25




N
bl
.;-I'.
o
K)
o
0
",
::.s d. extract
! €. end of buffer
‘ 2. Address of the data to operate on:
=4
e a. base address
=y b. address offset
o c. indirection indicator
W% .
. 3. Amount of data to be read/written.
RN 4. Location in the data butfer where deposit data reside or extract data are to be
/ ,:.-_ stored.
Ayl
~'=| . package Rtm_Core Is
'.l' > subtype Buffer_Range Is Integer range 1..Sysgen.Core_Buffer_Size;
type Buffer_Entry_Representation Is record
] Command: Rtm_Core_Command_Representation := End_Of_Buffer;
ol Data_Address: Address_Generator. Address_Representation;
e Data_Count: Buffer_Range;
§ - Data_Location: Buffer_Range;
o~ end record ;
2.4
M Command_Buffer: array (1..Buffer_Range’Last) of
Butfer_Entry_Representation := (others =>
2 (Ena_Of_Butfer, Address_Generator. Null_Address,1,1));
A
SO Data_Buffer: array (1..Buffer_Range‘Last) of
‘-::‘ Sysgen.Smallest_Unit := (others => 0);
oy end Rim_Core;
A2

Figure 5-1: Communications Interface Definition

§ This command structure allows the rtm_core processing to be extremely simple. Only the deposit
: *j and extract operations (which are discussed in detail later) require any significant processor time.
X Also, all the components of the command_butfer are integers or subtypes of integers. This
:) allows the interface to the rtm_core to be easily separated from the rest of the RTM and placed

a8 with the application on a separate processor (discussed in detail later).
g
4
W ¥, . . .
v, 5.3. Accessing Application Memory
i';
As noted previously, the deposit and extract operations are the only ones which require processor
u time. To isolate the RTM from the application, Ada language dependencies, and system architec-
e ture constraints, all addresses are treated internally as records containing:
% ¢ base address (as integer)
e  address offset (as integer)
o: o indirection indicator
l"‘
" 3 In this way, application memory is viewed as a block of elements of type smallest_unit (or bit
x; string), which is defined as an adjustable parameter in sysgen. By treating the base address and
) offset as integers, the RTM need not deal with differences in address space between the RTM
N and application. Also, by viewing all application data as a single abstract type, we can treat the
% data as strings of bits without any knowledge of the underlying data type.
s
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To illustrate how this information can be used, see Figure 5-2. This figure shows a segment of
application memory where three variables — foo, blark and ratio — reside. For the RTM o read
the value in the variable foo, for instance, it must somehow determine that the data reside at
address 164 in application memory. To do this, the RTM obtains the address of foo from
address_generator.compute_address. Using the type information obtained from
types_manager, commands are formatted 10 instruct the rtm_core to extract the value of foo.

smallest_unit

Addresses ] Yadables

'\r\'\’\'V\'\

164 I\I\/\/\I \I\I\ 'w
VAR A N A s
RACRNNARN

165 blark

166

167 ratio

168

Figure 5-2: Application Memory

The key to the rtm_core is the manner in which these addresses are manipulated. The first code
fragment, shown in Figure 5-3, performs the setup needed before processing an address. In this
fragment:

1. Atype is created which accesses an object of type smallest_unit.

2. A data object is created which accesses a value of type smaliest_unit.

3. Unchecked_conversion is instantiated to convert an integer into an access value
for an object of type smallest_unit.

This lays the groundwork for actually using the integer to access data objects in the application.

with Unchecked_Conversion;
type Value_Pointer is saccess Smallest_Unit;
The_Value: Value_Pointer;
function Get_Address Is new Unchecked_Conversion
(Source => integer,
Target => Value_Pointer);

Figure 5-3: Setup Code Fragment

The code shown in Figure 5-4 is used to extract a value from application memory. Here, the
RTM:

1. Computes the actual address of the data object using integer arithmetic.
2. Converts the integer into a pointer to a value of type smallest_unit.
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:.- 3. Uses the access variable to move the data from the application memory into the
P data_butter, without any data conversion taking place.
q This is the key: the bit pattem in application memory must be moved into the communications
K :f:: area without any alterations by Ada. Otherwise, the data value extracted from the data_buffer
'.:-: later in the processing will not be the original bit pattern. This is achieved by creating a pointer to
"':\ the smallest_unit type (even though the actual bit pattem at the address corresponds to a differ-
"' . ent type) and manipulating the data as if it were actually of type smallest_unit.
.V W
¥ :-,‘ procedure Extract_Data (Data_Address: in Integer;
by Command_Number: in Butfer_Range) Is
0. _[reesnees .
¢ “'5 | Description:
' —| Moves the data from application memory into data_buffer passed
> —| back to the RTM.
-/
y -.;' —| Parameter Description:
. —-| data_address -> The computed address of the desired data.
s -/ In the case of a mulitple unit read, this
. -/ is the address of the first unit in the block.
Af —| command_number -> Command being processed in the command_butfer.
l.‘ _./
-/ Notes:
-/ none
-". Next_Address' Integer .= Data_Address
R The_Value Value_Pointer = Get_Address(Next_Address);
-; Data_Offset Butter_Range renames Command_Buffer(Command_Number) Data_Location;
= begin
for Next_Data_Position in 0..Command_Butfer(Command_Number).Data_Count-1 loop
Data_Buffer(Next_Data_Position + Data_Offset} = The_Value.all ;
Next_Address = Next_Address + 1;
" The_Value = Get_Address(Next_Address);
~,,.\ end loop .
TN end Extract_Data;
"\
" B Figure 5-4: Extract_Data Procedure
‘¢ '_’: The final procedure involves writing data into application memory. This is shown in Figure 5-5.
o The RTM:
A%
:; 1. Computes the actual address of the data object using integer arithmetic.
* ."' 2. Converts the integer into an access to a value of type smallest_unit.
}{ 3. Moves the bit pattern in data_buffer into application memory using the access
N variable, again without any data conversion taking place.
::" This is simply the inverse of the extraction operation discussed above. Taken together, this code
.'/-: allows the RTM to read and write application memory (without any detailed knowledge about the
. underlying types being manipulated).
N
L) .
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procedure Deposit_Data (Data_Address: in Integer;
Command_Number: in Buffer_Range) is

—| Description:

~| Moves the data from the data_buffer passed by the RTM into
-| application memory.

=/

—| Parameter Description:

—~| data_address -> The computed address of the desired data.

-~/ In the case of a muilitple unit read, this

-~/ is the address of the first unit in the block.

-/ command_number -> Command being processed in the command_bufler.
-/

—| Notes:

-/ none

=
Next_Address: Integer := Data_Address;
The_Value: Value_Pointer := Get_Address(Next_Address):
Data_Offset: Buffer_Range renames Command_Buffer(Command_Number).Data_Location;
begin
for Next_Data_Position in 0..Command_Buffer(Command_Number).Data_Count-1 loop
The_Value.all := Data_Buffer(Next_Data_Position + Data_Offset);
Next_Address := Next_Address + 1;
The_Value := Get_Address(Next_Address);
end loop ;
end Deposit_Data;

Figure 5-5: Deposit_data Procedure

5.4. Type Conversions

5.4.1. Top-Level Organization
The final link in the chain for data coming from the application is conversion to a human under-
standable form. There are several objectives:

« Bit strings (or blocks of smallest_units) coming from the application have to be
converted into human readable character strings.

» All the details about performing the low-level bit manipulations and conversions have
to be hidden. This is done by using the two procedures shown in Figure 5-6:

- Convert_Value_To_String, which takes the bits and makes the character
string for the user.

» Convert_String_To_Value, which takes a user-entered value and makes the
application a bit string.

e All the details about the internal structure of types and what types exist within the
system need to be hidden. This is accomplished by the two procedures in Figure
5-7, namely:

* Find, which takes the name of a type and retums an internal identifier for that
type.
» Get_Type_Information, which takes a type identifier and returns that infor-
mation about a type that must be available to the outside world.
This top-level organization provides sufficient abstraction and hiding for our purposes. Now, we
look at the low-level implementation which actually converts the bit stings into character strings.
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i i: procedure Convert_Valus_To_String (Data_Type: in Valid_Rtm_Type;
. Raw_Data: In System.Address;

Number_Ot_Characters: In Integer;

L. The_Value: out String);
4, .‘_ — I
) i- —| Description:
1 0 -/ This module converts from the internal representation used
> —| by the RTM in storing variable values into strings that
‘o —| are displayable to the user.

t
'y —[ Parameter Description;
‘2 —-| data_type ->The Ada data type of raw data.
X }j ~| raw_data -> The address of the binary bit string to convert

4 —|  number_of_characters -> The number of characters needed in the

o -/ value string.
~| the_value -»> A string containing the displayable value.
ot

] procedure Convert_String_To_Value (Data_Type: in Valid_Rwm_Type;
o Raw_Data: In System.Address;
The_Value: In String);

-, =i
N —~{ Description:
~ ~| This module converts from the string entered by the user

—/| into the internal representation used by the RTM and in
~| storing values.

-:" -/

- —| Parameter Description:

- —| data_type -> The Ada data type of raw data.

b, —| raw_data -> The address of the binary bit string to convert.
T ~| the_value -> The string whose value the user wishes deposited into
p. -/ application memory.

| -

LY .

L Figure 5-6: Data Conversion Interface
R

",

- 5.4.2. Low-Level Implementation

Y

The code examples shown here all deal with converting bit strings into integer character strings.
The same concepts and techniques are used to convert floats and enumerations® to character

: strings. An inverse approach is used to convert from character strings into bit strings. The basic
ne approach to converting the bit strings is similar to that used in accessing the application data,

) relying heavily on access’ types and Unchecked_Conversion.

‘ All the actual low-level conversion (for integers) is done by the generic package convert_integers,
y shown in Figure 5-8. This particular generic takes in the type of the source and a routine which

\: converts the target processor's data representation into the host processor’s data representation.

' :: To illustrate these points, an instantiation of convert_integers is shown in Figure 5-9.

"

) The Make_String procedure uses the Target_Conversion routine to map the target data into

.'o. Fy the host's form; the value is then converted to a string using the services available in Text 0.
o

e,

f.{'_ ®For enumeration conversions, the body of types_manager package must have a definition of each enumerated type.

. ’Care must be taken in the use of the ‘address attribute since it may need 1o be adjusted to obtain the true address of

the data.

o

! _
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. — Type identifier, used extemnally to refer to a named type.

type Valid_Rtm_Type is private ;

function Find (Name: in String) return Valid_Rtm_Type;
=~/
—| Description:
—| This module is the lookup entry used to locate legal types,
z —~| It maps data obtained from the library_interface into types
) ~| which the types_manager can convert.

»ee

—[ Parameter Description:

N —| name -> The name of the Ada type associated with
. - a variable.

o —~| retum -> The intemal Identifier used to refer

-/ to the type.

,: -/

" a procedure Get_Type_information (Type_ldentifier: In Valid_Rtm_Type;
Type_Length: out Integer;
indirection_Indicator: out Boolean),

=l
g ~{ Description:
—| This module takes a type identifier and returns detailed
—| information about the structure of the type to the caller.
N —| Parameter Description:
~| type_indentifier -> Identifier of the type about which
-~/ information is needed.
type_length -> The size of the underlying type in the
-/ size of the storage units used by the RTM
-~/ (i.e. smallest_units).
—~| indirection_indicator -> A boolean flag which when
-/ true => an access type
-/ false => any other type

~
2
!
-~

€
Y

private

type Valid_Rtm_Type is new Integer;

b\

a2 .

Figure 5-7: Type Information Interface

BN

The Default_Integer_Conversion procedure is a dummy routine setup for the single CPU con-
figuration of the RTM. In this case, it simply takes the address of a bit string and returns an
§ integer value. In a multiple CPU configuration, this procedure might be called upon to convert
from the application processor's integer representation to the host processor's integer represen-

» tation. The generic can now be instantiated with this conversion routine and perform its proc-
}'}s essing without any knowledge of the differences in numeric representation between the various

processors in the system. Using this service, Convert_Value_To_String can now accept any bit
- string from the application and convert it to a character string for the user. By adding additional

functionality, these services could also produce octal, binary, or hexadecimal output.

g
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with System;
— Need the type "Address”.

package Convert_Integers ls
generic

— Detault Width of The Generated Character Strings.
Width: Positive = 15;
— Integer type Source, This Is The Host Machine'S type
type Source_Representation Is range <>,
~ Low Level Conversion Routine Needed To Convert From The Target
— Representation To The Host Representation of The Source type
- (Referred To As Source_Representation)
with function Target_Conversion (Raw_Value: in System Address)
return Source_Representation;
End Convert_Integers;

package generic package body Convert_Integers is
procedure Make_String (Raw_Value: In System Address;
Field_Size: in Integer;
Value: out String) is

cesonne

—| Description:
—| Make_string takes a binary bit string and converts it into

=/
=/
-
=/

an integer character string. It does this by using

target_conversion to map the target bit representaton of and
integer into the host version of an integer and then
uses text_io to convert the bits into an integer character string.

--| Parameter Description:

"' ) t.l‘i
RN RO R IO

—/ raw _valve -> The address of the binary bit string to be

-/ converted.

~| field_size -> The number of characters needed in the output
-/ stnng.

—~| value -> The charactar image of the binary bit string, as

-~/ an integer.

—/ Notes:

-~/ none

e

begin

If Width > Field_Size then
Value(1..Field_Size) := (1..Field_Size => ™');
else
Internal_lo.Put (To => Value(1..Width),
Item => Target_Conversion{Raw_Value));
end If;
exception
when others => RAISE ;
end Make_String;
end Convert_Integers;

Figure 5-8: Convert_integers Package
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type Integer_Pointer is access Integer;
function Address_To_Integer_Pointer is new Unchecked_Conversion
. (Source => System.Address,
Target => Integer_Pointer);

. function Default_Integer_Conversion (Raw_Value: In System Address)
. return Integer is

—| Description:
—| Convert from a bit string at a system address to an integer
Q ~| value. This is valid for a one CPU configuration
o -/ only.
—/ Parameter Description:
':\ —| raw_viauve -> The address of the bltsrnng to convert.
- ~| Notes:
-/ none
= =l
- Value_Pointer: Integer_Pointer;
.. begin

Value_Pointer := Address_To_Integer_Pointer(Raw_Value);
RETURN Value_Pointer.all ;

'::i end Default_Integer_Conversion;
& pragma Inline (Default_Integer_Conversion);
1 o — Creata the package to convert from bit strings to integers.
p -
o package Rtm_Integers is new Convert_lntegers
(Width => 15,
¥ Source_Representation => Integer,
‘ Target_Conversion => Default_Integer_Conversion),
“r Flgure 5-9: Types Conversion Code Fragment
"¢

5.5. System Architecture Considerations

<3

There are several points that arise when trying to design an "add-on™ system that does not
perturb the timing of the original system:

-
Y]
:" » "You should design the system right in the first place.”
. "It cant be done with a software-only approach.”
::j- * "You need additional processors to minimize the impact.”
‘ * "You need a hardware-only solution which has access to all the address, data, and
- control lines of the CPU."
Clearly, the ability to design anything perfectly is beyond the scope of human capabilities. The
", only thing that can make a software-only approach feasible is for the "add-on" system to execute
ig in the background with CPU cycles not needed by the application. Additional CPUs allows us to

offload most of the processing from the application CPU, but there is still a small impact on the
d application processor when its memory is accessed. The final option will be given additional
‘ consideration fater.
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One additional problem which imposes itself on this design is that we have no control over the
target hardware for the RTM application system. Therefore, we approached the design with the
view that if two (or more) processors are available, the RTM needs a natural breakpoint that can
accommodate this. But it everything must execute on one system, it must also operate in this
environment. it was partly for this reason and partly to abstract away the application that the
rtim_core was created. The interface between the dialogue_manager and the rtm_core is the
breakpoint for a multi-processor system.

5.5.1. One CPU

In the one-CPU configuration (shown in Figure 5-10), the RTM and the application are both
executing as dependent tasks of a controller application (under control of the Ada run-time sys-
tem or the host operating system), with the rim_core as part of the monitor. The timing and
control of the application knows when there is time available for background processes and
suspends itself for a predetermined length of time to allow the RTM to execute.

5.5.2. Two CPUs

In the two-CPU configuration (shown in Figure 5-11), the RTM and the application are executing
on different CPUs connected by a DMA hardware link, and the rtm_core is a part of the appli-
cation software. Thus, only the rtm_core and the application share address space. The RTM is
executing independently and communicating to the user. When the dialogue_manager communi-
cates with the ntm_core, it is a bus transfer. The concept is the same: a block of commands are
formatted and transferred to the rim_core, while the dialogue_manager waits for the results.
When the application has spare time on its processor, it allows the rtm_core to execute. When
the rtm_core finds commands in its command butfer, it processes them and places the results in
the data buffer, sends these resutts to the RTM, and retums contro! to the application.

5.5.3. Host-Monitoring Hardware Environment
One interesting variation on the two CPU configuration occurs when the second CPU is not the
rtm_core running on the application processor, but rather a hardware monitoring device sitting on
the address and data lines of the target processor. What this variation can accomplish is the
ultimate goal of nonintrusive monitoring with an abstract user interface. Depending on the intetli-
gence of the monitoring hardware (i.e., is it programmable):

» An intelligent hardware monitor can be set up to understand the same commands as
the rtm_core.

e A dumb hardware monitor can be commanded by modifying the dialogue_manager
to generate commands in a new format.
Either approach has the advantage of not altering the user interface in any way. All changes are
low-level communications changes which are highly insulated from the rest of the RTM.

5.5.4. Host-Multiple Target Environment

Finally, the generalization of the RTM from a two-CPU environment (one for the RTM and one for
the application) to a multiple CPU environment (one for the RTM and n for the application) is
straightforward. It requires generalizations to:
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- e The variable_database and library_interface abstractions to include CPU information.
"" e The address abstraction to include a CPU designation.
N » The dialogue_manager so that it knows how to use the CPU information in the ad-
AW dress abstraction to communicate with the appropriate processor (lor a given
N command).
; : » The types_manager o convert low-level bit representations from multiple CPUs.
N All these changes are in low-level, system-dependent packages and do not impact the basic
] ’_‘-_ structure or functionality of the RTM. The forms management subsystem still runs on a single
o CPU and interfaces to the user. The rtm_core is still part of an application (running on each of
:: the application CPUs) and interfaces to one copy of the RTM, running the user interface.
*|
e 5.6. Conclusion
N
;C The discussions presented above were meant to highlight the troublesome areas encountered
-Jf:j while implementing the RTM. Further detail about the implementation and how these items were
o
e addressed can be found in the Prototype Real-Time Monitor: Ada Code [Van Scoy 87b].
? ,_
"-
v
¥
[
2
-
i hd
i .
>
1.
. i
-('- .
ot
0
v
ot
@,
7
-
D ‘x:'
0,4
o
g'
A2 36 CMU/SEI-87-TR-38
.:g;

OO RN IOUIHGEBESOUOLONO M B GO K A MO P St B O LML S
) l,‘ﬂt."‘l'f‘n‘tt!.".{'ﬂl_'u C N N e T R e e

X .
)
RITAN A M 0,




P s MM Ak 4l a4 e s 2 Sk Sl Sl Sl ek Sed Sk Ml -0l Aed-Aath Bl hak S A e st A d o Rra gl A e AUa B3 Sts ALe hoh S dae-Ahechln e Al i ieal

Appendix A: Software Architecture Notation

The notation used in this report to describe software architecture is a modified form of the nota-
tion expounded on by Grady Booch in his books on software engineering with Ada [Booch
87a] and reusable software components with Ada [Booch 87b]. The notation used is true to the
intent of Booch’s notation. The variations (i.e., extensions) are:

* We use reduced package, subprogram, and task icons inside larger icons rather than
the object (or blob) icon.

« We use object dependency arrows more subtly, to distinguish different types of de-
pendencies (discussed in Figure A-1 (c)).

! » We layered the diagrams, i.e., we show a diagram of top-level dependencies and
then expand the bodies of the figures to show the next layers of detail. p

« We do not show the internal details of any reusable subsystem, package, sub-
program, or task that is used.

One tinal note about the notation: the figures need not show all the fine-grained detail of a pack- h
- age or subprogram. When the code of a package (or subprogram) is compared to a figure
' associated with that package (or subprogram), there may be nested procedures or packages not *

shown on a particular picture, or it may depend on a package not explicitly shown in the figure. f
3 The guidelines for these cases are:

o Utility packages or services are not shown (text_io, reusable data structure
h packages, math libraries, etc.).

« The figures are meant tc show the significant details at a particular level, not all the
details.

« The definition of "a significant detail” is solely at the discretion of the designer.

With these ideas in hand, Figures A-1 through A-4 explain the meaning of each of the icons
available using this notation.
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-L"" Object Subsystem Object
:‘ Dependency

b )
Y ZlEl=]

- I
1 ;___) {
A '

2 a b c

N Figure A-1: Obiject, Subsystem, and Dependency Notation

The object (or blob) icon, shown in Figure A-1 (a), represents an identifiable segment of a system
-3 about which we have no implementation information (either by choice or ignorance).

N The subsystem icon, shown in Figure A-1 (b), represents a major system component that has a
. clearly definable interface, but is not representable as a single Ada package.

o The object dependency symbol, shown in Figure A-1 (c), indicates that the object at the origin of
. the arrow is dependent on the object at the head of the arrow. The origin of the amow indicates
X where the dependency occurs. If the origin is in the white area of an icon (shown in subsequent
~ figures), it indicates a specification dependency. If the origin is in a shaded area, it indicates a
:: body dependency.
"
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Figure A-2: Package Notation

A\ |

The package specification and body icon, shown in Figure A-2 (a), represents an Ada package
specification (the white area) with an associated package body (the shaded area). This icon can
o be broken apart to show a package specification, Figure A-2 (b), or a package body, Figure A-2
(c).

b}

wn

Figures A-2 (d) and (e) are variations on the package icon which show greater detail. Figure A-2
(d) is used to represent packages that have nested subpackages within the body; if the small
package icon were placed within the specification, it would indicate visible nested packages.
Similarly, Figure A-2 (e) illustrates the notation used for separate subprograms within the body of
a package.

B

Finally, Figure A-2 (f) illustrates the icon used for generic packages. Everything discussed above
regarding regular packages can also be applied to generic packages.

s Mooy
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Figure A-3: Subprogram Notation

. Much of what was discussed previously regarding packages also applies to subprograms. The
B ﬁ subprogram specification and body icon, shown in Figure A-3 (a), represents an Ada subprogram
e specification (the white area) with an associated subprogram body (the shaded area). This icon
A7 can be broken apart to show a subprogram body, Figure A-3 (b).

Figures A-3 (c) and (d) are variations on the subprogram icon which show greater detail. Figure

8 A-3 (c) is used to represent subprograms that have nested subprograms within the body.

K 'Sf, Similarly, Figure A-3 (d) illustrates the notation used for separate subpackages within the body of
» a subprogram.

@; Finally, Figure A-3 (f) illustrates the icon used for generic subprograms. Everything discussed
iy above regarding regular packages can also be applied to generic subprograms.
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Task Task
Specification & Specification
Body

Figure A-4: Task Notation

Again, much of what was discussed previously regarding packages and subprograms applies 1o
tasks. The task specification and body icon, shown in Figure A-4 (a), represents an Ada task
specification (the white area) with an associated task body (the shaded area). This icon can be
broken apart to show a task specification, Figure A-2 (b), or a task body, Figure A-4 (c). Although
they are not shown, nestec packages and subprograms are represented in exactly the same
manner as shown in Figure A-2 for packages and subprograms.
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Appendix B: Data and Control Flow Diagrams

The notation used for data and control flow in this report is a modified form of the notation
expounded on by Paul Ward and Stephen Meillor in their book on the design of real-time software
[ward 85]. The notation used is true to the intent of Ward and Mellor's notation. The only
variations are:

» use of rectangles with rounded comers for processes
s yse of a square for extemmal entities

Aside from these minor cosmetic changes, the data and control flow diagrams used here foliow
the conventions set forth by Ward and Mellor. We have not developed the pictures to the their
fullest extent, but rather used an existing notation to illustrate the thinking involved. Figures B-1
through B-3 briefly explain the symbols available using this notation.

Data Event
Store Store

L3 U N L N NE UL W N

LS S NS S G NN

a b

Figure B-1: Store Notation

The data store icon, shown in Figure B-1 (a), represents a place where data are held until needed
by a process.

The event store icon, shown in Figure B-1 (a), represents a place where control signals are held
until needed by a process.
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Figure B-2: Process Notation

The data transformation icon, shown in Figure B-2 (a), represents a process which accepts input
data from a data flow(s), control signal(s) from an event flow(s), performs processing on the input
data, and transfers the data out over a data flow(s).

The control transformation icon, shown in Figure B-2 (b), represents a process which accepts a
control signal(s) from an event flow(s), performs processing on the control signal, and transfers
information out over an event flow(s).

The external entity icon, shown in Figure B-2 (c), represents a physical device capable of gener-
ating and/or accepting data and control flows.
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2 Figure B-3: Flow Notation
. The data flow symbol, shown in Figure B-3 (a), represents the transter of data from one process
;-, to another or to an external entity. This a discrete transfer, i.e., the data are available until read
- and then no longer available via the flow.
The event flow symbol, shown in Figure B-3 (b), represents the transfer of a control signal from
one to another process or to an external entity. This a discrete transfer, i.e., the signal is avail-
. able until read and then no longer available via the flow.
' The time-continuous flow symbol, shown in Figure B-3 (c), represents the transfer of data from
- one process to another or to ar external entity. This a continuous transfer, i.e., there is always
“; data available via this flow. For example, this flow might come from an external monitoring 1
2 device. {
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