
911 POOTYPE REAL-TIME MONITOR DESIGN(IJ) CARNEGIE-MELLO /i
UNIV PITTSBURGH PR SOFTUARE ENGINEERING INST
R VAN SCC.' ET AL NOV 87 CNI/SEI-87-TR-38 ESD-TR-87-241

UNLSIFIED F19628-85-C-9883 F/G 12/5 U

IEEE

I°

,ld,

1

I N' 8

J. 1. 25 ".4 1.6

~ ~Jib N TEST CHART

Ill

Technical Report (;
CMUISEI-87-TR-38
ESD-TR-87-201 JfFiEC >

Prototype Real-Time Monitor:
L Design

Roger Van Scoy
CV) Charles Plinta
0) Richard D'Ippolito

Kenneth Lee
00 Michael Rissman

r- November 1987

* S~JANta7 f

Approved 4 WPULLC To

Y *.
A: * *1

Technical Report
CMU/SEI-87-TR-38

ESD-TR-87-201
November 1987

:-,r,

Prototype Real-Time Monitor:
Design-

Roger Van Scoy
Charles Plinta

Richard D'lppolito
Kenneth Lee

Michael Rissman
Dissemination of Ada Software Engineering

CR &. , " ,. ,., : ;; i " i,

fApproved for public release.

,. ~st 1 < ; ! ,D is trib u tio n u n lim ite d .

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

* This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

.%

This work was sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for Do) personnel, DoD contractors and potential oontractors, and other U.S.
Government agency personnel and their contractors. To obtein a copy, please contact DTIC directly: Defense Technical
Information Center. Attn: FDRA, Cameron Station. Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce.
Springfield, VA 22161

MAA l.'~rZ

--

Table of Contents
i 1. Introduction 3

1.1. Instructor-Operator Station 3V 1.2. Debuggers 4

2. System Architecture 5

3. Object Architecture 7
3.1. Reading a Variable 7

3.1.1. Design Objects 7
3.1.2. Object Interactions 9
3.1.3. Error Processing 10

3.2. Reading a Page of Variables 10
3.2.1. Design Objects 11
3.2.2. Object Interactions 11
3.2.3. Error Processing 13

3.3. Writing a Variable 14
3.3.1. Design Objects 14
3.3.2. Object Interactions 14
3.3.3. Error Processing 14

4. Package Architecture 17
4.1. Prototype RTM 17
4.2. Real-Time Monitor 18
4.3. Page Processor 18
4.4. Parameter Manager 20
4.5. Variable Database 20

4.5.1. Library Interface 20
4.6. Dialogue Manager 20

4.6.1. Collect Data 22
4.6.2. RTM Core 22
4.6.3. Sysgen 22
4.6.4. Address Generator 22

4.7. Types Manager 22
4.7.1. Conversions 23

5. Implementation 25
5.1. Variable Database and System Addresses 25
5.2. Communications Interface 25
5.3. Accessing Application Memory 26
5.4. Type Conversions 29

5.4.1. Top-Level Organization 29
5.4.2. Low-Level Implementation 30

5.5. System Architecture Considerations 33
5.5.1. One CPU 34

CMU/SEI-87-TR-38

5.5.2. Two CPUs 34
5.5.3. Host-Monitoring Hardware Environment 34
5.5.4. Host-Multiple Target Environment 34

5.6. Conclusion 36

Appendix A. Software Architecture Notation 37

Appendix B. Data and Control Flow Diagrams 43

Bibliography 47

Index 49

1 .-

i

II CMU/SEi-87-TR-38

List of Figures

P Figure 2-1: System Overview 5
Figure 2-2: Real-Time Monitor Overview 6
Figure 3-1: Reading a Variable 8
Figure 3-2: Displaying a Page of Variables 12
Figure 3-3: Writing a Variable 15
Figure 4-1: Sizing Figures for the Prototype 18
Figure 4-2: RTM Object-Dependency Diagram 19
Figure 4-3: Page Processor Object-Dependency Diagram 19
Figure 4-4: Parameter Manager Object Dependency Diagram 21
Figure 4-5: Variable Database Object-Dependency Diagram 21
Figure 4-6: Dialogue Manager Object-Dependency Diagram 24
Figure 4-7: Types Manager Object-Dependency Diagram 24
Figure 5-1: Communications Interface Definition 26
Figure 5-2: Application Memory 27
Figure 5-3: Setup Code Fragment 27
Figure 5-4: ExtractData Procedure 28
Figure 5-5: Deposit-data Procedure 29
Figure 5-6: Data Conversion Interface 30
Figure 5-7: Type Information Interface 31
Figure 5-8: Convertintegers Package 32
Figure 5-9: Types Conversion Code Fragment 33
Figure 5-10: One-CPU Configuration 35
Figure 5-11: Two-CPU Configuration 35
Figure A-1: Object, Subsystem, and Dependency Notation 38
Figure A-2: Package Notation 39
Figure A-3: Subprogram Notation 40
Figure A-4: Task Notation 41
Figure B-i: Store Notation 43
Figure B-2: Process Notation 44
Figure B-3: Flow Notation 45

..

, CMU/SEI-87-TR-38 Ill

Prototype Real-Time Monitor:
S lDesign

Abstract. This report describes the software design used to implement the prototype
-: real-time monitor (RTM) requirements (D'Ippolito 87]. The design is presented at three

levels: system level, object level, and package architecture level. The report concludes
with a discussion of the key implementation obstacles that had to be overcome to
develop a working prototype: determining system addresses, communicating with an

.J. executing application, accessing application memory, converting data into human read-
able form, and distributed CPU architectures.

" Structure of the Document
Chapter 1 of this document gives an overview of the monitoring problem and compares it to other

areas where "monitor-like" approaches are used. Chapter 2 provides the high-level architecture
for the RTM application system. Chapter 3 examines the objects used to implement tha func-
tional needs of the user by proceeding from the lowest to the highest level of abstraction in the

"' r. system, constantly keeping in mind the needs of the user and building on top of each layer of

II- abstraction. Chapter 4 takes a more "formal" view of the system. Here, object dependency
diagrams describe the software architecture (i.e., packaging structure) used to implement the

• "objects described in Chapter 3. Finally, Chapter 5 discusses the key technical issues involved
with implementing the RTM, including issues related to performance and use of the RTM in a
multiple CPU configuration.

k iAssociated Documents

, American National Standard Reference Manual for the Ada Programming Language
[Ada 83]

• Prototype Real-Time Monitor: Requirements [D'Ippolito 87]

* Prototype Real- Time Monitor: User's Manual [Van Scoy 87a]

e Prototype Real-Time Monitor: Ada Code [Van Scoy 87b]

* User's Manual for a Form Generator System in Ada [Texas Instruments 85a]

* User's Manual for an ANSI X3.64 Compatible Virtual Terminal in Ada [Texas Instru-
ments 85b]

Conventions Used In This Document
The conventions used in this document are listed in the left-hand column below; their associated
meanings are listed in the right-hand column.

code Ada language construct
package Ada package name
subsystem Ada subsystem
COMMAND RTM command

.8

- CMU/SEI-87-TR-381

I 9 :

Context of Report
The prototype real-time monitor described in this report was built to address two specific technical
questions raised by the Ada Simulator Validation Program (ASVP) contractors:

1. How can user tools find, access and display data hidden in the bodies of Ada
applications?

2. How can user tools be layered on top of Ada applications?

The prototype is documented by this report because the ASVP contractors had a need for a
monitor tool, but did not have the contract resources to develop one. The prototype RTM is
intended to be a simple tool which is easily rehostable and extendable. It is not intended to be an
example of what a well-documented system should include. Since it was a prototyping effort, no

*standard documentation or development methods were applied, and no attempt was made to
solve all the traditional "monitor" problems.

, .
,5-

.4

'p./

'p

'p

.5,MIE-8-R3

5jg

1. Introduction
A real-time monitor is, in its simplest form, a tool which a software engineer can use to read and
write data memory (i.e., variables) in an executing application without halting the CPU. The RTM
allows the engineer to do this without requiring any prior knowledge about which memory loca-
tions (i.e., variables) need to be operated on. It is real-time because it is intended to be used in
conjunction with real-time applications and run in available spare time (in this way it does not

Uperturb the essential timing of the application).

Clearly, this definition contains many elements that are common to other applications:

e The notion of real-time, where the timely execution of the application cannot be dis-
turbed.

o A user interface intended to communicate effectively with a human operator.

o A system interface connecting the RTM to an executing application.
o A transfer of information from the user through the RTM to the application and back

to the user.

These concepts are found in other areas under other names. We will highlight two examples of
these areas to demonstrate the universal nature of the problem and the general applicability of
the solution presented in this report.

1.1. Instructor-Operator Station
The first example is drawn from the flight simulator world. In flight simulators, all training devices

r" possess an instructor-operator station (lOS). This is a user interface device which allows the
instructor to control a training exercise. It is used in two ways:

e To set up the configuration for the exercise prior to involving the student.

* To interact with the student while the training exercise is occurring. This allows the
instructor to introduce unexpected malfunctions into the simulator and monitor the
student's responses.

A pattern is apparent at once: the lOS is a specialized RTM. It has a user interface, allows for
the dynamic observance and modification of an application, and is non-interfering (otherwise the
exercise is not realistic). The lOS is an example of monitoring when one can predict exactly
which parameters will be of interest.'

1An 10S rypically 1ethe aN it parameters on every communication cyde, even though all the data are not needed at
any given Ume.

CMU/SEI-87-TR-38 3

1.2. Debuggers
A second example is the traditional source-level debugger Among the Characteristics of a de-
bugger are

* It allows control over the execution flow of the application.

e It allows read and write access to an application's data objects.

* It is closely tied to a host operating system and target compiler.

* It is very intrusive of the timing of the application.

In light of the functioning of an RTM, the debugger can be viewed as a generalization of the R ,.
concept. It allows for all the access operations of an RTM, but extends this notion to include
specific control over the execution of the application (and as a result loses the ability to not

* interfere with the real-time nature of an application). The debugger normally has intimate knowl-

edge of how the compiler/linker allocates memory. As we will see later, this information is also
needed by the RTM. Both need to interface to the user on a human level and are required to
translate data from the internal notation of the computer to the external notation of the user.

Thus, the RTM stands midway between the relative simplicity of an lOS and the complexity of a
debugger. The monitor problem is not unique to flight simulators, and the solution presented here
is applicable to other domains.

44,O

0

~CMU/SEI-87-TR-38

2. System Architecture
The discussion of the RTM starts with the top level view Shown' in F,gire 2 ' (see Apprld B cI,

a complete description of this notat!on) This figure provides the system .eve cor".e,' I wt

the RTM operates Ir it are tour objects

d . User the human operator contrelling some (or all) the other obtects ir the SySem

• Real-time monitor the system which allows the user to observe the iterna foncn',c
of the application program

e Appl cation program the system of interest to the user The RTM views tne app.
cation as a cyclic task whicr has spare processing cycles available for use uy tr
RTM

* System hardware the physical devices being driven by the application sot:ware (no,
the computing hardware on which the real-time monitor and applicator a'e
executing)

... T M -N N,

eAp cation Application

IRTme4 Aplian rogra

interfacerPrfacMoniur

User T I
User to Applicationto Application to
RTM. In" iace :System:

Interface / - Interface,

Use System

.. ... System ..- Hardware
Interface

Figure 2-1: System Overview

In addition to these objects are a number of interfaces: user-to-RTM, user-to-application, user-to-

0., system, RTM-to-application, and application-to-system. Of these interfaces, only the user-to-
RTM and RTM-to-application are of interest here (the remaining interfaces are not accessible to

the RTM). The user-to-RTM interface is the primary focus of the Prototype Real-Time Monitor
User's Manual [Van Scoy 87a] and does not enter into the discussions in this report. The inter-

face of most interest in this report, however, is the RTM-to-application interlace. The locus is on

how the interface is established, how it is manipulated, and how it changes as the system config-

uration changes.

CMUISEI-87-TR-38 5

4

".." O'e add a,onal item to note about Figure 2-1 is that no partitioning of the software among the

p'ocessos in the system is implied by the diagram. This is a deliberate attempt to isolate the
mp;emeotat-or issues of processor configuration from the conceptual (requirements) issues of
, s~.gg a, RTM for Ada applications

'- ' ea. time monitor porion of Figure 2-1, the RTM is composed of the four classes of objects
s.,o * ir Figire 2-2

* Data dspiay objects handle the RTM side of the user-to-RTM interface.

- Suppor objects perform set up and bookkeeping functions for the RTM.

e Data access c-jects handle the RTM side of the RTM-to-application interface.

e RTM core obtec, handles the application side of the RTM-to-application interface.

~Data

-U Use, Display
.. . Objects

Support Data T
.' Supo t Access Cre

" OjetsObjects Ojec

V . Figure 2-2: Real-Time Monitor Overview

The emphasis of this report is on the data access and RTM core objects since they are central to
answering two primary issues:

1 How can user tools find, access, and display data hidden in the bodies of Ada
applications?

% 2 How can user tools be layered on top of Ada applications?

This is not to say that the other objects are unimportant. In this situation, they are simply sub-
ordinate to work needed to answer the above questions.

6 CMU/SEI-87-TR-38

0.

3. Object Architecture
3 IIn this chapter, we describe the object architecture of the system by looking at a specific user

command and then studying the objects used to implement that command. Specifically, we
explain the design by describing:

* all the objects needed to implement the functionality

•* the interactions between the objects

* -* error situations and how they are handled by the objects

3.1. Reading a Variable
The lowest level operation available to the user is reading and displaying a single variable. If the
user wished to read the value of the variable foo in package x.y, the following command would
have to be issued:

- READ(name => x.y.foo);

The objects necessary to implement this operation (or command) form the framework of the
monitor and are shown in Figure 3-1.

3.1.1. Design Objects
Following is an overview of all the objects needed to perform the READ operation:

* realtimemonitor is the interface to the user. It takes the user's input, parses the
input, and dispatches the command.

9 parameter manager manages:

• verifying the validity of the request
" extracting the data from the application
• presenting the data to the user

e variabledatabase builds and manages the collection of all variables accessible to
the user. It does this by maintaining a database with all the information needed on
any variable accessible to the user through the RTM. This database contains (as a
minimum):

•- the Ada variable name (i.e., the full Ada path name)
, •the Ada type

.the base address of the variable

. -j e dialogue manager hides the details about accessing the data and formatting the raw
data into a user-readable form. Using the variable information from the
variabledatabase, the dialogue manager is able to extract variable values from the
application and (using the type&_manager) format it so that the user can understand
it. Internally, the dialoguemanager must maintain, for every active variable (i.e., any
variable whose value is requested by the user):

* the current value of the variable

• the time tag for the current value

CMU/SEI-87-TR-38 7

tdat

Chara~lef Dv edCmadtSau

daa isla d ata d Frmte

F~~~gure kl 3:Rain aVariabl

*~~Atvt chrce strngrinoattttrng
* ti~cor is n astrationforthe ppliatin; i is he nalype of aaplictoncd

which he RT now abou (or as an contol fvr dalso In artl fteuppi
cationit can xecute nly whe the aplicatio givesit lice ie o s. h

8 CMUExtract data

rtmcore operates on the assumption that there is some smallest piece of data which
can be accessed (and nothing smaller). It then reads a block of these smallest unitsfand returns the data to the dialoguemanager. It performs two primitive operations:

* get systemstorageunit(s), which returns the value(s) at the specified
address(es)

* put system storageunit(s), which writes the specified value(s) into the speci-
fied address(es)

standard Interface subsystem hides the details of parsing user command lines. It
uses standard Ada procedure call notation for the command line format. Included in
this subsystem is the RTM's command language definition and interpreter (CLI).

. virtual terminal subsystem hides the device dependencies by exporting a set of
terminal independent control operations, that are mapped onto the target display
device(s) using UNIX termcap-style definitions (see [Texas Instruments 85b]).

P forms management subsystem hides the details about how the target display is
formatted for output and how the target display is accessed (by treating the screen
as a fill-in-the-blank form, see [Texas Instruments 85a]). Included in this subsystem
is the RTM's user interface definition.

3.1.2. Object Interactions
With these basic objects in place, we can now look more closely at the interaction among the
objects (shown in Figure 3-1) needed to read a variable.

The interaction starts when the user enters the "character data" which form a command line into
the forms management subsystem via the virtual terminal subsystem. These data are sent
to the realtimemonitor as the "user command line." The realtimemonitor then issues a com-
mand to the standard Interface subsystem to "parse command line" and waits for the "parser

status" signal. If the "parser status" indicates a syntactically (not semantically) legal command
line, the command "read" is issued to the parameter manager. If the "parser status" indicated a
syntactically incorrect command line a "parser error message" is sent to the user, and the user
must start the interaction again.

The next step in processing the READ command is semantic verification. When a command
reaches the parameter manager, it is known to be syntactically correct (this check is performed

by the standard Interface subsystem when the command is parsed), so the semantic verifi-
cation process simply consists of:

"-' 1. Request the "command arguments," one at a time, from the standard Interface
subsystem.

2

2. Query the variable database to determine if the selected "variable is available."

Once that determination is found to be true, the data can be scheduled for extraction. The
parameter manager does so by instructing the dialoguemanager to "activate variable for data

collection." The activation of the variable causes the dlalogueamanager to request "variable

,-Ihis is a peculiarity of Ow command line mnrwrer software.
.9.

CMU/SEI487-TR-38 9

"a.

information" from the variabledatabase and schedule a read operation in the active read list.
When the time for the operation occurs, the dialoguemanager takes the variable information
from the schedule and sends an "extract data" request to the rtm_core. The rimcore will proc-
ess the request during its next time slice and return the "unformatted variable value" to the
dialoguermanager The data are now available to any other process in the RTM.

To summarize what has taken place thus far:

* The user has requested that a variable be read.
e The request has been successfully verified.

l?'.-. - The data have been successfully extracted from the application.
o The data are now sitting in the dialogue_manager awaiting further disposition.

The fact that the data of interest have been moved from one area of memory (or one processor)
to another is of little interest to the user What is now needed is for the information to be
presented to the user This presentation occurs when the parameter manager requests the
"to'matted variable vaiue" from the dialogue manager. The dialogue manager has the data in
an nterna, format t does not know what to do with them. To fulfill the request, the
dialogue manager passes tme unformatied vanable value" to the types-manager, which con-
verts the oot str ,i gr.j a 1ofmatned variable value" for the dialogue-managerto send back to the

* parameter manager

Once the data are converted into a human-readable form, the parameter manager sends the
"display data for varable e to the torms management subsystem for presentation to the user.
The command has now oeen successfully executed, and the RTM is ready to process another
command

p.

3.1.3. Error Processing
There are two classes of errors which can arise in the course of this processing. First, the
variable may not be accessible to the RTM (i.e., it does not exist in the database of available
variables). In this situation, the parameter manager informs the user that the variable is not

-p accessible and the processing is complete. Second, the variable may be accessible, but an error
may occur in the rim core when the data are accessed. Here, the parameter manager informs
the user that the variable could not be read from application memory and the processing is
complete.

3.2. Reading a Page of Variables
The user can now access any available variable in the system by issuing READ commands to the
RTM. Powerful as this is, it is a tremendous burden to use the READ command to repetitively
examine one variable, let alone a group of variables. Clearly, there is now a need for a higher-
level abstraction. This abstraction Is called a "page." A page is simply a collection of individual
variables which are extracted and displayed as a group. Using a page, one command can
produce a wealth of Information. Still, if this is a repetitive request, the user cannot control the
regularity of the extraction process. Thus, we introduce an update rate, which Informs the RTM
that a page is to be processed and displayed at a periodic rate determined by the user. With a
page and an update-rate, the user has a powerful abstraction for monitoring an application.

',.1

10 CMU/SEI-87-TR-38

-

.-

3.2.1. Design Objects
The objects used to implement reading a page of variables are the same as those used in Sec-
tion 3.1 to read a single variable, with one exception: the parameter manager is replaced by the
page_.processor (shown in Figure 3-2, which is structurally equivalent to Figure 3-1), the dif-
ferences are highlighted by bold typeface.

The pagejprocessor object manages:

* verifying the validity of the request
e extracting the data from the application
e presenting the data to the user

3.2.2. Object Interactions
There are three distinct sequences of interactions which occur in Figure 3-2, each initiated by a

•. N different user command. To start with, the interactions needed to create a page begin with the
user issuing the command:

EDIT 0;

The object which implements the editing or building of a page is the forms management
subsystem. The forms management subsystem is essentially an editor which allows the user
to construct a display template by full-screen editing and later allows the RTM to place the col-
lected data in this template. The editing process is fully described in the Prototype Real-Time

l Monitor: User's Manual[Van Scoy 87a]. Since the forms management subsystem has no
knowledge about variables in the variable-database, there is a companion command to EDIT
which can be used. The command:

CHECK (page => example);

can be used after the EDIT command to perform error checking (described below) on a page
without actually starting active data collection on that page.

Once a page has been created, that page must be invoked for processing. In this case, the
command looks like:

START (page .> example, update rate => 0.5);

Again, when a command reaches the pageprocessor, it is known to be syntactically correct, so
the semantic verification processing consists of:

1. Request the "command arguments," one at a time, from the standard Interface
subsystem.

2. Request the "page definition data" from the forms management subsystem.

3. Add the new page to the list of active pages.

The pageprocessor takes the "page definition data" and queries the variabledatabase to deter-
mine if the "variable is available" for each variable defined on the page. Once that determination
is found to be true, each variable Is scheduled for extraction. Again, this is done by instructing
the dialogueL.manager to "activate variable for data collection" for each variable. The activation

CMU/SEI-87-TR-38 11

E,.. .

'rsrr~r r~r ru.r-'---- -DisplayV

da a b e om anl r

Ordic Portererror mess" e alTie onto
'Sw~ -u~ytn Su1sstr

dat
k j

Unfw Forms fw rynabie
TemnlPo Srmn

rumn$ Sadr

Susse aapet.9~oo nelc

F~~gur1 3d:Dspaigatag o Variables

12 CMU/collection3

of the variable causes the dialogue-manager to request "variable information" from the
variabledatabase and schedule a read operation in the active read list. When the time occurs
for the page to be updated, the dialoguemanager takes the variable information from the
schedule and sends an "extract data" request for each variable to the rim_core. The rtm_core
will process the requests during its next time slice and return the "unformatted variable value" to
the dialogue-manager. The data are now waiting in the dialogue-manager for the next
scheduled display update, at which time the page-processor requests the "formatted variable
value" for each variable on the page. The data and control information are combined to form the

"display data for page" which is sent to the forms management subsystem for presentation to
the user. Since the START command has an associated update_rate, this processing will con-
tinue until terminated by the user.

The final processing sequence occurs when the user terminates an active display. To accom-
plish this, a command like:

STOP (page => example);
'd.

is issued. Here, the processing consists of:

1. Request the "command arguments" from the standard Interface subsystem.

2. Request the dialogue manager to "deactivate variable" (where it removes the vari-
able from the active read list and releases its data storage) for each variable on the
page.

3. Remove the page from the list of active pages.

4. Remove the page from the display device.

This covers the complete cycle of page operations: building a page to displaying a page to ter-
minating a page.

3.2.3. Error Processing
There are four classes of errors which can arise in the course of this processing. First, the
requested page may not be accessible. In this situation, the page_processor informs the user
and the processing is complete. Second, a variable may not be accessible to the RTM (i.e., it
does not exist in the database of available variables). In this situation, the page-processor
deletes the varable from the page and informs the user that the variable is not accessible. Proc-
essing then continues on any remaining variables defined for the page. Third, a variable may be
accessible, but an error may occur in the rim_core when the data are accessed. Here, the
parameter manager informs the user that the variable could not be read from application memory
and processing continues on any remaining variables. Fourth, the limit number of active pages
may have been reached. In this case, the processing never starts and the user is informed of the

-, error. It is then up to the user to STOP a currently active page and START the desired page.

CMU/SEI-87-TR-38 13

606.....Mjj

3.3. Writing a Variable

The final operation available via the RTM is the ability to modify application memory. This re-
quires revisiting the first object, the parameter manager (shown in Figure 3-3, which is struc-
turaliy the same as Figures 3-1 and 3 2, with differences highlighted by boldface type), and
considering some additional functionality. Suppose the user wished to change the value of the
variable foo in module x.y and the following command is issued:

Set (name =2 x.y.foo, value =3. 10);

3.3.1. Design Objects
The objects in the system are the same ones discussed in Section 3.1. The difference occurs in
the low-level processing needed to implement the operation.

* 3.3.2. Object Interactions
After the "user command line" has been successfully parsed, the next step is semantic verifi-
cation. When a comma--i reaches the parametermanager, it is known to be syntactically cor-
rect, so the semantic verification process simply consists of:

1. Request the "command arguments," one at a time, from the standard Interface
subsystem.

2. Query the variabledatabase to determine if the selected "variable is available."

If that determination is found to be true, the data can be scheduled for modification. The

parameter manager does so by instructing the dialogue-manager to "activate variable for data
deposit." The activation of the variable causes two actions to occur:

1. The dialogue manager passes the "fot matted variable value" to the types - manager
'-'2. and receives "unformatted variable value" in exchange (which is logged internally).

2- The dialogue_manager requests "variable information" from the variabledatabase
and schedules a write operation in the active write list.

When the time for the operation occurs, the dialogue-manager takes the variable information

from the schedule and sends a "deposit data" request to the rtmcore. The rtm_core will process
the command request during its next time slice and return the "deposit status" to the
dialogue-manager. The "deposit status" is then returned to the parameter manager for subse-
quent presentation to the user.

3.3.3. Error Processing
There are three classes of errors which can arise in the course of this processing. First, the
variable may not be accessible to the RTM (i.e., it does not exist in the database of available
variables). In this situation, the parameter manager informs the user that the variable is not
accessible and the processing is complete. Second, the variable may be accessible, but an error
may occur in the rtmcore when the data are accessed. Here, the parameter manager informs
the user that the variable could not be written to application memory and the processing is com-
plete. Third, the user may have entered data in an inappropriate format for the variable (i.e.,
attempting to assign the value 1Oz instead of the integer 100). In this case, the input is rejected
and the user must reenter the command.

14 CMU/SEI-87-TR-38

"'...

ase erroZ mesReal-Tirme Monitor

Write P.~ Parser

data% cotrolCmrmand Status

Display

Virtua CF- Sandaa

Termutaif tSubsystemSusse eguby

daia

a. C

Ufvriatted % Fo matted
for dta 4 variable

deoi

Fiue Da: tings a Vaiable MngrCr

m%* *-r

CM ISI87TRa 15er Deoi tau

inomtinau

S~D

ata-

-

'S

'S.

5%

'S.

4-

'S.

'S.

S..

"S

55J

Si

S-i.

'4.

.4

"PS,

6~

V.

'S

SI..

S~.S.

>1*

5~

pp..'
p.

16 CMUISEI-87-TR-38

@4

IS.'

'.5

4. Package Architecture
This chapter provides a guided tour through the architecture of the RTM, giving an overview of
the prototype and briefly explaining the purpose and key abstractions each package encap-
sulates. The top level of the RTM is shown in Figure 4-2 (see Appendix A for a complete
description of this notation), with the successive levels shown in Figures 4-3 through 4-7.

. 4.1. Prototype RTM

The complete picture of the capabilities and usage of the RTM are found in the Prototype Real-
Time Monitor: User's Manual [Van Scoy 87a]. Here, we briefly give an overview of the prototype.
The commands implemented in the prototype are:

* EDIT 0;
* CHECK (name => <page>);
e QUITO;

- .e READ (name => <variable>);
* SET (name => <variable>, value => <numberlstring>);
o * START (name => <page>, update_rate => <time>;
o STOP (name => <page>);

.. ,•

. -. The following restrictions have been imposed on the prototype:

o Single display device with VT1 00 terminal characteristics:

- 80 columns by 24 lines
i, • keyboard input only
, '-'. o No simultaneous input and output to the display device (i.e., screen updating halts

, during user command entry).

o Integer, float, and enumeration data types3 only.

o Generation of the variable database and type conversion routines is the user's re-
sponsibility.

This prototype was built using as much existing software as possible. Figure 4-1 gives the
"- statement count and total line count for the RTM development task. Only the 13% list for the

RTM subsystem (shown in line 1 of Figure 4-1) is newly developed software. The remainder of
the code is from the Ada Software Repository and reused without modification.

3accegs type variables can be used to monitor the underlying object.

CMU/SEI-87-TR-38 17

- wU lr U W ' VUiW W W W' ' - - r.III

Subsystem Statement s 4 Total Lines s

RTM 1218 8058

Forms 2293 6894
Virtual Terminal 2421 6269
Parser 1896 9600
Utilities 1522 6154
Totals 9350 36999

Figure 4-1: Sizing Figures for the Prototype

4.2. Real-Time Monitor

The realtimemonitor package (shown in Figure 4-2) holds the entire structure together. It
functions primarily as a cyclic executive for the RTM:

* Takes user input using the forms management subsystem and the virtual termi-
nal subsystem.

o Parses the input using the standard Interface subsystem.

e Dispatches commands for execution using the page_processor and
parameter manager packages.

e Periodically updates the display device using the forms management subsystem
and the virtual terminal subsystem.

4.3. Page Processor

The pagejprocessor package (shown in Figure 4-3), as discussed earlier, encapsulates the page
abstraction. It is solely responsible for managing the interface to the page objects created by the
user. It does this by hiding all the details about how a page is:

o Invoked (Start_Page).

* Periodically updated (Update-Page and dialogue manager) and displayed (using
the forms management subsystem).

" Terminated (StopPage).

* Represented internally (Setup_Page and CheckPage).

" Checked for consistency using the variable database package.

'he stalment count is produced using another Ada Software Repostoy utility, Pae. which counts Ada statements (excluding
comment lines) rather than semicolos.

$Ail lines in all files.

18 CMU/SEI-87-TR-38
6l

- U U- ,-, *U U

Fb Tui

Figure 4-2: RTM Object-Dependency Diagram

4.*"*

.in

444 PRP h~ "

Figure 4-3: Page Processor Object- Dependency Diagram

CMU/SEI-87-TR-38 19

4.4. Parameter Manager
The parametermanager package (shown in Figure 4-4) performs the same basic functions as

the page processor package. The major difference is that it manages the intenace to single
varable operations It does this by encapsulating:

• How a variable is read (Read).

* How a variable is written (Set)

* How a request is verified and processed using the dialogue-manager package.

* How a request is displayed using ti e forms management subsystem.

4.5. Variable Database
Tre variable database package (snow- in Figure 4-5) is the heart of the RTM. Without this

abstraction, nothing else in tne system can function it is responsible for knowing which variables
are accessible to the user (via the information it obtains from the library-interface). The
variable_ database is not responsible for generating the database information (see the

library interface below) Its functions inc'ude

* Building the structure which holds tne information (Initialize-Database).
* Managing the structure
* Providi..g the interface needed to access the structure (Find)

This allows the rest of the system to specify the minimum amount of information needed for the

RTM to function and isolate itself from how the information is generated and controlled.

4.5.1. Library Interface
The library-interface package (shown in Figure 4-5) is actually responsible for generating the

information which goes into the variable database. There are several reasons for this split be-

tween the variabledatabase and the library interface. First, the variabledatabase need not
have any knowledge of the items in the structure which it manages Second, it allows for further
isolation of the system-dependent parts of the RTM. Clearly, most systems cannot supply the

information required to construct the database. Thus, the ability to build this database is system

dependent. The more information the libraryinterface can provide to the variable_database, the
more flexibility the user has in monitoring capability.

4.6. Dialogue Manager
If variabledatabase is the heart of the system, then the dialogue-manager package (shown in

.. Figure 4-6) is the soul of the system. It manages the interface between the RTM and application.

It hides all the details related to reading and writing application memory, the scheduling of these

operations, and the conversion of bit strings extracted from the application into character strings

for the user.

20 CMU/SEI-87-TR-38

0 " " " q " "' " " "% " " " " " . . . " s -, <,

- - - - - - - - - -- -

1 t,

Ione

Figure 4-4: Parameter Manager Object Dependency Diagram

Ir.

Figure 4-5: Variable Database Object-Dependency Diagram

E4CMU/SEI-87-TR-38 21

4.6.1. Collect Data
While the dialogue-manager does the scheduling of the read and write operations, it is the re-
sponsibility of the collect data package (shown in Figure 4-6) to:

* Format the commands (Bulld_Rtm_CoreCommands).
* Communicate with the rimcore package (FromApplication).
. Store the results (Retrieve Rtm_Core Results).

4.6.2. RTM Core
The rim core package (shown in Figure 4-6) is the actual agent which reads and writes appli-
cation memory. As noted previously, this is the abstract application with which the RTM commu-
nicates. In a real system, this package becomes part of the application and provides the interface
needed by the RTM. Thus, it hides all the details related to actually manipulating application
memory. A more detailed discussion of the internal functioning of this package can be found in
Chapter 5.

4.6.3. Sysgen
The sysgen package (shown in Figure 4-6) provides the ability to partition the software based on
the available hardware suite (discussed in Section 5.5) and to control the timing of the resulting
system. Using the parameters in this package, the user can tailor the RTM to match the available
resources of the system- This tailoring is fully discussed in the Prototype Real-Time Monitor.

User's Manual [Van Scoy 87a].

4.6.4. Address Generator
The addressgenerator package (shown in Figure 4-6) is responsible for supplying the address

abstraction used by the RTM. It supports this function by

1. Exporting the abstract address type. Address_Representation

2. Exporting the ComputeAddress function to generate abstract addresses

This package is responsible for hiding the manner in which system addresses are generated,
thus allowing for different address-genera *.on schemes to be used interchangeably-

4.7. Types Manager

Finally, the lowest-level package in the RTM is the types manager package (shown in Figure

4-7). Due to the nature of the interface Detween the dialogue manager and the rtm_core, the
data from the the application come across the interface as a bit string, with no attempt at inter-
pretation. The result is that a data conversion must Occur before the results can be presented to

, the user. The typesmanager is the object that knows how to map bit strings into character

strings. This object allows the RTM to be insulated from these low-level details and thus im-
proves the portability of the system (since the underlying bit patterns of a value will probably

change from machine to machine)

22 CMU/SEI47-TR-38

- p.. -

4.7.1. Conversions
To ease the burden of converting all the variants on the base Ada types, the conversions pack-
age includes three generic conversion packages (based on Text_10 utilities). These generics
convert arbitrary bit strings into character strings. These routines also do the low-level bit shifting
needed when using the RTM in a multiple, heterogeneous CPU configuration.

C.1.

'o-.

,0.

CMU/SEI-87-TR-38 23

" i RTU R RV.- ra

Figure 4-6: Dialogue Manager Object-Dependency Diagram

Ge~ Tpe CEWSI Vypes~

an-

77

5. Implementation
While this chapter does not consider the entire RTM implementation, it does discuss the key
implementation obstacles overcome in implementing the RTM. These are:

* Generating the variable database and determining system addresses.
* Communicating interface to the application.
* Accessing application memory.
* Converting data into human readable form.
* System architecture.

Each of these areas is important and will be discussed in detail below.

5.1. Variable Database and System Addresses

As noted in Chapter 4, the variabledatabase is the foundation of the monitor. Without the ability
to determine if a variable is in the application and then determine its address, the RTM cannot
function. This applies equally to the symbolic debugger (which gets this information from the
compiler and linker) and lOS (which forces the data of interest to known addresses), discussed in
Chapter 1. Thus, the RTM needs the following:

* Compiler/linker output: variable, address, type.

* Type information: length (in bits), record formats, component offsets, indirection
(access type) indications.

* Computation routines for address of record/array element accesses.

* Computation routines for dynamic objects (local variables, loop variables, etc.).

The RTM isolates these system dependencies by using a database of available variables
(structured as an ordered binary tree), a database of available types, and an address compu-
tation function that processes the type and variable information in the databases to produce a
system address. A complete discussion of the approach used in the prototype to generate its
variable database can be found in the Prototype Real-Time Monitor: User's Manual[Van Scoy
87a].

5.2. Communications Interface

Given that addresses can be generated for application data objects, the next consideration is how
the user's commands are communicated to the application. As discussed previously, the
rtmcore package is the object that ultimately affects the application. The interface between the
RTM proper and the rim_core (which is synonymous for the application) is composed of two
buffers: a command buffer and a data buffer, shown in Figure 5-1. The command buffer is
composed of a sequence of commands. Each command contains the fields:

1. Status/operation to be executed (some of these are rtm_core control operations):

a. buffer available
b. results available
c. deposit

CMU/SEI-87-TR-38 25

' "

d. extract
e. end of buffer

2. Address of the data to operate on:

a. base address
b. address offset
c. indirection indicator

3. Amount of data to be read/written.
4. Location in the data buffer where deposit data reside or extract data are to be

stored.

package Rtm Core Is
subtype Buffer Range Is Integer range I..Sysgen.CoreBufferSize;
type BufferEntryRepresentation Is record

Command: Rtm_CoreCommandRepresentation := End_OfBuffer;
DataAddress: AddressGenerator.AddressRepresentation;
DataCount: Buffer Range;
DataLocation: BufferRange;

end record ;

CommandBuffer: array (1..Buffer RangeLast) of
BufforEntry_Represenation := (others =>

(Eno Of Buffer,AddressGenerator. NullAddress, 1));

DataBuffer: array (1..BufferRange'Last) of
Sysgen.Smallest-Unit := (others => 0);

end Rtm_Core;

Figure 5-1: Communications Interface Definition

This command structure allows the rtm_core processing to be extremely simple. Only the deposit
and extract operations (which are discussed in detail later) require any significant processor time.
Also, all the components of the commandbuffer are integers or subtypes of integers. This
allows the interface to the rtm_core to be easily separated from the rest of the RTM and placed
with the application on a separate processor (discussed in detail later).

5.3. Accessing Application Memory

As noted previously, the deposit and extract operations are the only ones which require processor
time. To isolate the RTM from the application, Ada language dependencies, and system architec-
ture constraints, all addresses are treated internally as records containing:

" base address (as integer)
" address offset (as integer)
" indirection indicator

In this way, application memory is viewed as a block of elements of type smallestunit (or bit
string), which is defined as an adjustable parameter in sysgen. By treating the base address and

offset as integers, the RTM need not deal with differences in address space between the RTM
and application. Also, by viewing all application data as a single abstract type, we can treat the
data as strings of bits without any knowledge of the underlying data type.

26 CMU/SEI-87-TR-38

To illustrate how this information can be used, see Figure 5-2. This figure shows a segment of

application memory where three variables - foo, blark and ratio - reside. For the RTM to read
the value in the variable too, for instance, it must somehow determine that the data reside at
address 164 in application memory. To do this, the RTM obtains the address of too from
address_generator.computeaddress. Using the type information obtained from
types manager, commands are formatted to instruct the rtmcore to extract the value of too.

smallestunit

164 fd t oo

165 btark

166

167 ratio

168

Figure 5-2: Application Memory

The key to the rim core is the manner in which these addresses are manipulated. The first code
fragment, shown in Figure 5-3, performs the setup needed before processing an address. In this
fragment:

1. A type is created which accesses an object of type smallestunit.

2. A data object is created which accesses a value of type smallestunit.

3. Uncheckedconversion is instantiated to convert an integer into an access value
for an object of type smallestunit.

This lays the groundwork for actually using the integer to access data objects in the application.

with Unchecked Conversion;
type ValuePointer * ecce SmallestUnit;
TheValue: Value-Pointer;
functlon GetAddkes Is new UncheckedConversion

(Souroe -> Integer,
Target -> ValuePointer);

Figure 5-3: Setup Code Fragment
"The code shown in Figure 5-4 is used to extract a value from application memory. Here, the

RTM:

1. Computes the actual address of the data object using integer arithmetic.

2. Converts the integer into a pointer to a value of type smallest-unit.

CU"2

CMU/SEI-87-TR-38 27

3. Uses the access variable to move the data from the application memory into the

databuffer, without any data conversion taking place.

This is the key: the bit pattern in application memory must be moved into the communications
area without any alterations by Ada. Otherwise, the data value extracted from the databuffer
later in the processing will not be the original bit pattern. This is achieved by creating a pointer to
the smallest-unit type (even though the actual bit pattern at the address corresponds to a differ-
ent type) and manipulating the data as if it were actually of type smallestunit.

procedure ExtractData (Data-Addess: In Integer;
CommandNumber: In Buffer-Range) Is

-J- ...

-IDescription:
-I Moves the data from apphcalion memory into data-buffer passed
-/ bacA to the RTM

- ° -/ Parameter Description:
-/ data-address -> The computed address of the desired data
-/ In the case of a mulirple unit read. tis
, -- I is Mhe address of the first unit in the block

-/ command number -> Command being prooessed in the command buffer.

-I Notes:
- none

..
NextAddress Integer -DataAddress;
The-Value VauePointer:. Get_Address(NextAddress);

"-" DataOffset BufferRange renames CommandBufter(CommandNumber) DataLocabon;
begin

for NextDataPositon In 0 Command Buffer(CommandNumber) DataCount-I loop
Data_Buffer(Next DataPosition + Data._Offset) := TheValue.alt;
NextAddress = NextAddress + 1,
TheValue := GetAddress(NextAddress).

end loop.
end ExtractData,

Figure 5-4: ExtractData Procedure

The final procedure involves writing data into application memory. This is shown in Figure 5-5.
The RTM:

V. 1 Computes the actual address of the data object using integer arithmetic.

2. Converts the integer into an access to a value of type smallestunit.

3 Moves the bit pattern in databuffer into application memory using the access
variable, again without any data conversion taking place.

This is simply the inverse of the extraction operation discussed above. Taken together, this code
allows the RTM to read and write application memory (without any detailed knowledge about the

*; underlying types being manipulated).

28 CMU/SEI-87-TR-38

4_: - - , , ' - - - , - * - ,% - -

procedure Deposit -Data (Data Address: In Integer;
CommandNumber: In Buffer-Range) Is

...

-I Description:
-/ Moves the data from the databuffer passed by Me RTM into
-/ applcaton memory.
-/
-/Parameter Description:
-/ data address -> The computed address of the desired data.

In the case of a muliple unit read, tis
° 4 -I is the address of the first unit in the block

-/ commandnumber -> Command being processed in the command buffer.

-/ Note:
-/ none

..................... ...
NextAddress: Integer := DataAddress;
The._Value: ValuePointer := GetAddress(NextAddress);

"Will!Data_Offset: BufferRange renames CommandBuffer(CommandNumber).DataLocation;
begin

for NextDataPosition In O..Command Buffer(CommandNumber).DataCount-i loop
TheValue.all := DataBuffer(NextDataPositon + DataOffset);
Next-Address := NextAddress + 1;
TheValue := GetAddress(NextAddress):

end loop;
end Deposit-Data;

Figure 5-5: Depositdata Procedure

5.4. Type Conversions

5.4.1. Top-Level Organization
The final link in the chain for data coming from the application is conversion to a human under-
standable form. There are several objectives:

o Bit strings (or blocks of smallest..units) coming from the application have to be
converted into human readable character strings.

e All the details about performing the low-level bit manipulations and conversions have
to be hidden. This is done by using the two procedures shown in Figure 5-6:

- ConvertValueTo String, which takes the bits and makes the character
string for the user.

- ConvertStrlng_To_Value, which takes a user-entered value and makes the
application a bit string.

. All the details about the internal structure of types and what types exist within the
system need to be hidden. This is accomplished by the two procedures in Figure
5-7, namely:

-Find, which takes the name of a type and returns an internal Identifier for that
type.

- Get_Typeinformation, which takes a type identifier and returns that infor-
mation about a type that must te available to the outside world.

This top-level organization provides sufficient abstraction and hiding for our purposes. Now, we
look at the low-level implementation which actually converts the bit stings into character strings.

CMU/SEI-87-TR-38 29

(4A
Jill

4.

4', procedure ConvertValueToString (DataType: In ValidRtm_Type;
RawData: In System.Address;
Number OfCharacters: In Integer;
The-Value: out String);

...

-I Description:
-/ This module converts from the internal representation used
-I by the RTM in storing variable values into strings that
-I are displayabe to the user.

-I Parameter Description:
-I datajype ->The Ada data type of raw data.
-/ rawdata -> The address of the binary bit string to convert
-i numberofcharacters -> The number of characters needed in the
-I value string.
-/ the_value -> A string containing the dsplayable value.

procedure ConvertIStringToValue (DataType: in ValidIRtm_Jype;
Raw Data: In System.Address;
The-Value: In String);~-/...

-I Description:
-/ This module converts from the string entered by the user
-I into the internal representation used by the RTM and in
-/ storing values.

-I Parameter Description:
-/ data type -> The Ada data type of raw data.
-I raw_data -> The address of the binary bit string to convert.
-I thevalue -> The string whose value the user wishes deposited into
-I application memory.

-.....................................

Figure 5-6: Data Conversion Interface

5.4.2. Low-Level Implementation
The code examples shown here all deal with converting bit strings into integer character strings.
The same concepts and techniques are used to convert floats and enumerations6 to character
strings. An inverse approach is used to convert from character strings into bit strings. The basic
approach to converting the bit strings is similar to that used in accessing the application data,
relying heavily on access7 types and Unchecked-Conversion.

*I All the actual low-level conversion (for integers) is done by the generic package convertintegers,
shown in Figure 5-8. This particular generic takes in the type of the source and a routine which

converts the target processor's data representation into the host processor's data representation.

To illustrate these points, an instantiation of convertintegers is shown in Figure 5-9.

, The MakeString procedure uses the Target_Conversion routine to map the target data into
the host's form; the value is then converted to a string using the services available in Text_lO.

OFor enumeration conversions, the body of ypes_manager package must have a definition of each enumerated type.

'Care must be taken in the use of the 'address attribute since it may need to be adjusted to obtain the true address of
the data.

30 CMUISEI-87-TR-38

0lT- W I F

-Type identifier, used externally to refer to a namedtpe

type ValidRtmType is private;

function Find (Name: In String) return Valid_RtnType;

-I Description:
-/ This module is the lookup entry used to locate legal types,
-/ It maps data obtained from the library interface into types
-/ which the typesmanager can convert
-/

-/Parameter Description:
-I name .> The name of the Ada type associated with
-I a variable.
-/ return -> The internal Identifier used to refer
-I to the type.

-..........

procedure GetTypeInformation (Type_Identifier: In Valid_Rtm_Type;
TypeLength: out Integer;
IndirectionIndicator: out Boolean);

-I Description:
-/ This module takes a type identifier and returns detailed
-/ information about the structure of the type to the caller.
-/

-/ Parameter Description:
- typeindentifier -> Identifier of the type about which

information is needed.
"- typelength -> The size of the underlying type in the

-/ size of the storage units used by the RTM
-/ (i.e. smallesLunits).
-/ indrectionjindicator -> A boolean flag which when
-/ true => an access type
"-I false => any other type

private

type Valid RtmType Is new Integer;

Figure 5-7: Type Information Interface

The Default IntegerConversion procedure is a dummy routine setup for the single CPU con-
figuration of the RTM. In this case, it simply takes the address of a bit string and returns an
integer value. In a multiple CPU configuration, this procedure might be called upon to convert
from the application processor's integer representation to the host processor's integer represen-

I ,tation. The generic can now be instantiated with this conversion routine and perform its proc-
essing without any knowledge of the differences in numeric representation between the various
processors in the system. Using this service, Convert_ValueToString can now accept any bit
string from the application and convert it to a character string for the user. By adding additional
functionality, these services could also produce octal, binary, or hexadecimal output.

CMU/SEI-87-TR-38 31

I t.. I.. .

with System;

- Need the y "Adress"

package Convert integers Is

generic

- Default Width of The Generated Character Strings.
Width: Positive := 15;

- Integer type Source. This Is The Host Machine'S type
type SourceRepresentation Is range <>;

- Low Level Conversion Routine Needed To Convert From The Target
- Representation To The Host Representation of The Source type

(Referred To As Source Representation)
with function Target-Conversion (RawValue: In System.Address)

return Source Representation;
End Convert-integers;

package generic package body Convert-Integers Is
procedure Make String (RawValue: In System.Address;

FieldSize: In Integer;
Value: out String) Is

-/Description:
* -/ Makestring takes a binary bit string and oonverts it into

-/ an integer character string. It does this by using
-/ target conversion to map the target bit representaion of and
-/ integer into the host version of an integer and then
-/ uses text_io to convert the bits into an integer character string.

-/Parameter Description:
-/ raw value -> The address of the binary bit string to be
-/ converted.
- field size -> The number of characters needed in the output
-I string.
-/ value -> The character image of the binary bit string, as
-/ an integer.
-/
-/Notes:
- none

begin
If Width > FieldSize then

Value(1-.Field-Size) := (1-.FieldSize => -)

else
Internallo. Put (To => Value(1..Width),

Item => Target.Conversion(RawValue));
end If ;

exception
when others => RAISE;

end MakeString;
end ConvertlIntegers:

Figure 5-8: Convertintegers Package

32 CMU/SEI-87-TR.38

type ilnteeir _Pointer Is access Integer;
function Address_-To integer _Pointer Is new Unchecked-Conversion

(Source => System.Adcdress,
Target .> Integer-Pointer);

function Defauhj-ntegorConversion (Raw.Yaiue: In System.Address)
return Inter Is
...............
-IDescription:
-IConvert from a bit stning at a system address to an integer
-'value. Ths is valid for a one CPU configuration
-~only.

-Parameter Description:
-/raw vlaue -> The address of the bit string to convert

-jNotes:
-/none

Value_-Pointer: Integer-Pointer;
begin

Value_-Pointer := Address -To -Integer _Pointer(RawValue);
RETURN ValuePointer.a1i:

end Default Integer Conversion;
pragma Inline (Defaultjintegeronversion);

.1* - Create the pacage to convert from bit strings to integers.

package Rtmlntegers Is new Convert-Integers
(Width => 15,
Source-Representation => Integer,
TargetLCoversion >~ DefaultjlntegeirConversion);

Figure 5-9: Types Conversion Code Fragment

5.5. System Architecture Considerations
There are several points that arise when trying to design an "add-on" system that does not
perturb the timing of the original system:

*"You should design the system right in the first place."

* "it canl be done with a software-only approach."
* "You need additional processors to minimize the impact."
* "You need a hardware-only solution which has access to all the address, data, and

control lines of the CPU."

Clearly, the ability to design anything perfectly is beyond the scope of human capabilities. The
J only thing that can make a software-only approach feasible is for the "add-on" system to execute

in the background with CPU cycles not needed by the application. Additional CPUs allows us to
off load most of the processing from the application CPU, but there is still a small Imp~act on the
application processor when Its memory is accessed. The final option will be given additional
consideration later.

CMU/SEI-87-TR-38 3

M V- . - -

One additional problem which imposes itself on this design is that we have no control over the
'V target hardware for the RTM application system. Therefore, we approached the design with the

view that if two (or more) processors are available, the RTM needs a natural breakpoint that can
accommodate this. But if everything must execute on one system, it must also operate in this
environment. It was partly for this reason and partly to abstract away the application that the
rtm_core was created. The interface between the dialogue-manager and the rim_core is the
breakpoint for a multi-processor system.

5.5.1. One CPU
In the one-CPU configuration (shown in Figure 5-10), the RTM and the application are both

executing as dependent tasks of a controller application (under control of the Ada run-time sys-
'tem or the host operating system), with the rtm_core as part of the monitor. The timing and

control of the application knows when there is time available for background processes and
*, suspends itself for a predetermined length of time to allow the RTM to execute.

5.5.2. Two CPUs
In the two-CPU configuration (shown in Figure 5-11), the RTM and the application are executing
on different CPUs connected by a DMA hardware link, and the rimcore is a part of the appli-
cation software. Thus, only the rim_core and the application share address space. The RTM is
executing independently and communicating to the user. When the dialogue manager communi-
cates with the rtmcore, it is a bus transfer. The concept is the same: a block of commands are
formatted and transferred to the rtm core, while the dialogue-manager waits for the results.
When the application has spare time on its processor, it allows the rtmcore to execute. When
the rim_core finds commands in its command buffer, it processes them and places the results in
the data buffer, sends these results to the RTM, and returns control to the application.

- 5.5.3. Host-Monitoring Hardware Environment
One interesting variation on the two CPU configuration occurs when the second CPU is not the
rim-core running on the application processor, but rather a hardware monitoring device sitting on
the address and data lines of the target processor. What this variation can accomplish is the
ultimate goal of nonintrusive monitoring with an abstract user interface. Depending on the intelli-
gence of the monitoring hardware (i.e., is it programmable):

o An intelligent hardware monitor can be set up to understand the same commands as
the rtm_core.

e A dumb hardware monitor can be commanded by modifying the dialogue-manager
to generate commands in a new format.

Either approach has the advantage of not altering the user interface in any way. All changes are
low-level communications changes which are highly insulated from the rest of the RTM.

5.5.4. Host-Multiple Target Environment
Finally, the generalization of the RTM from a two-CPU environment (one for the RTM and one for
the application) to a multiple CPU environment (one for the RTM and n for the application) is
straightforward. It requires generalizations to:

34 CMU/SEI-87-TR-38

. '%. **'.* * .*'.'.,*~*~*. - - -

W .~4 ~

for coWog eo
V~ShAds 6x. dno

Execut I %suoped Execue 1 Suepwinded

Th~oT"o

C0,401.A

CoomaExecute

S ko

% 1L

Figre5-0:OneCP Cnfgation

Exeut Ihw £xc~

ccxtun"i

0 Noe --- ,

Figure 5-11: Two-CPU Configuration

CMU/SEI-87-TR-38 3

e The variable-database and library interface abstractions to include CPU information

e The address abstraction to include a CPU designation.

* The dialoguemanager so that it knows how to use the CPU information in the ad-
, dress abstraction to communicale with the appropriate processor (for a given

command).

* The typesmanagerto convert low-level bit representations from multiple CPUs.

All these changes are in low-level, system-dependent packages and do not impact the basic

structure or functionality of the RTM. The forms management subsystem still runs on a single
CPU and interfaces to the user. The rim-core is still part of an application (running on each of

the application CPUs) and interfaces to one copy of the RTM, running the user interface.

5.6. Conclusion
,..

:." The discussions presented above were meant to highlight the troublesome areas encountered

while implementing the RTM. Further detail about the implementation and how these items were

addressed can be found in the Prototype Real- Time Monitor: Ada Code [Van Scoy 87b]

-"

,-

4,

4L .

'
-4

b
.

.:-

4,.

.5

I
36 CMU/SEI-87-TR-38

'''C C II I

Appendix A: Software Architecture Notation
The notation used in this report to describe software architecture is a modified form of the nota-
tion expounded on by Grady Booch in his books on software engineering with Ada [Booch
87a] and reusable software components with Ada [Booch 87b]. The notation used is true to the

intent of Booch's notation. The variations (i.e., extensions) are:

" We use reduced package, subprogram, and task icons inside larger icons rather than
the object (or blob) icon.

" We use object dependency arrows more subtly, to distinguish different types of de-
pendencies (discussed in Figure A-1 (c)).

" We layered the diagrams, i.e., we show a diagram of top-level dependencies and
then expand the bodies of the figures to show the next layers of detail.

;, • We do not show the internal details of any reusable subsystem, package, sub-
program, or task that is used.

One final note about the notation: the figures need not show all the fine-grained detail of a pack-

age or subprogram. When the code of a package (or subprogram) is compared to a figure

associated with that package (or subprogram), there may be nested procedures or packages not
shown on a particular picture, or it may depend on a package not explicitly shown in the figure.
The guidelines for these cases are:

* Utility packages or services are not shown (text-io, reusable data structure
packages, math libraries, etc.).

* The figures are meant to show the significant details at a particular level, not all the
details.

* The definition of "a significant detail" is solely at the discretion of the designer.

With these ideas in hand, Figures A-1 through A-4 explain the meaning of each of the icons
available using this notation.

CMU/SEI-87-TR-38 37

4

Object Subsystem Object
Dependency

a b C

Figure A-I: Object, Subsystem, and Dependency Notation

The object (or blob) icon, shown in Figure A-1 (a), represents an identifiable segment of a system
about which we have no implementation information (either by choice or ignorance).

The subsystem icon, shown in Figure A-1 (b), represents a major system component that has a
clearly definable interface, but is not representable as a single Ada package.

The object dependency symbol, shown in Figure A-1 (c), indicates that the object at the origin of
the arrow is dependent on the object at the head of the arrow. The origin of the arrow indicates
where the dependency occurs. If the origin is in the white area of an icon (shown in subsequent
figures), it indicates a specification dependency. If the origin is in a shaded area, it indicates a
body dependency.

3

38 CMU/SEI-87-TR-38

0,

Package Package Package
Specification & Specification Body
Body

a b C

. Package with Package with Generic

Nested Subpackages Nested Subprograms Package

d e f

Figure A-2: Package Notation

The package specification and body icon, shown in Figure A-2 (a), represents an Ada package

specification (the white area) with an associated package body (the shaded area). This icon can
be broken apart to show a package specification, Figure A-2 (b), or a package body, Figure A-2
(c).

Figures A-2 (d) and (e) are variations on the package icon which show greater detail. Figure A-2
(d) is used to represent packages that have nested subpackages within the body; if the small
package icon were placed within the specification, it would indicate visible nested packages.
Similarly, Figure A-2 (e) illustrates the notation used for separate subprograms within the body of
a package.

Finally, Figure A-2 (f) illustrates the icon used for generic packages. Everything discussed above
regarding regular packages can also be applied to generic packages.

CMU/SEI-87-TR-38 39

A-

." Subprogram Subprogram
Specification and Body
Body

a b

Subprogram with Subprogram with Generic
Nested Subprograms Nested Subpackages Subprogram

c d e

Figure A-3: Subprogram Notation

Much of what was discussed previously regarding packages also applies to subprograms. The

P.? subprogram specification and body icon, shown in Figure A-3 (a), represents an Ada subprogram
specification (the white area) with an associated subprogram body (the shaded area). This icon
can be broken apart to show a subprogram body, Figure A-3 (b).

Figures A-3 (c) and (d) are variations on the subprogram Icon which show greater detail. Figure
A-3 (c) is used to represent subprograms that have nested subprograms within the body.
Similarly, Figure A-3 (d) illustrates the notation used for separate subpackages within the body of
a subprogram.

Finally, Figure A-3 (f) illustrates the icon used for generic subprograms. Everything discussed
above regarding regular packages can also be applied to generic subprograms.

40 CMUISEI-87-TR-38

"IAML RWkMCt, ARO& IL

9.
J..

Task Task Task
Specification & Specification Body
Body

"i

C'w

Figure A-4: Task Notation

Again, much of what was discussed previously regarding packages and subprograms applies to

tasks. The task specification and body icon, shown in Figure A-4 (a), represents an Ada task
specification (the white area) with an associated task body (the shaded area). This icon can be
broken apart to show a task specification, Figure A-2 (b), or a task body, Figure A-4 (c). Although
they are not shown, nested packages and subprograms are represented in exactly the same
manner as shown in Figure A-2 for packages and subprograms.

CMU/SEI-87-TR-38 41

'p.

'I,.-

'p.
a.

a.

-J

'--a.
-p. -~
a.. -

A,. -

.t -J.

'a...

p. ~ F,

a.. ~
F.. *~

'a

F.. ~

Js
'U

0,.

42 CMU/SEI-67-TR-38

a

Appendix B: Data and Control Flow Diagrams
The notation used for data and control flow in this report is a modified form of the notation
expounded on by Paul Ward and Stephen Mellor in their book on the design of real-time software
[Ward 85]. The notation used is true to the intent of Ward and Mellor's notation. The only

variations are:

9 use of rectangles with rounded comers for processes

* use of a square for external entities

Aside from these minor cosmetic changes, the data and control flow diagrams used here follow
the conventions set forth by Ward and Mellor. We have not developed the pictures to the their

* fullest extent, but rather used an existing notation to illustrate the thinking involved. Figures B-1
through B-3 briefly explain the symbols available using this notation.

"' Data Event
Store Store

a b

Figure B-i: Store Notation

The data store icon, shown in Figure B-1 (a), represents a place where data are held until needed

by a process.

The event store icon, shown in Figure B-1 (a), represents a place where control signals are held
until needed by a process.

CMU/SEI-87-TR-38 43

'3 MMJIIIII

Data Control Extrnal

Transformation Transformation Entity...................................

a b C

Figure B-2: Process Notation

The data transformation icon, shown in Figure B-2 (a), represents a process which accepts input
data from a data flow(s), control signal(s) from an event flow(s), performs processing on the input
data, and transfers the data out over a data flow(s).

The control transformation icon, shown in Figure B-2 (b), represents a process which accepts a
control signal(s) from an event flow(s), performs processing on the control signal, and transfers

. information out over an event flow(s).

The external entity icon, shown in Figure B-2 (c), represents a physical device capable of gener-
ating and/or accepting data and control flows.

"e
-S=~o

.5 o

44C-ISI87TR3

Data Event Time-continuous
Flov Flov Flov

-. a b c

iiI

Figure B-3: Flow Notation

The data flow symbol, shown in Figure B-3 (a), represents the transfer of data from one process

to another or to an external entity. This a discrete transfer, i.e., the data are available until read

and then no longer available via the flow.

The event flow symbol, shown in Figure B-3 (b), represents the transfer of a control signal from

one to another process or to an external entity. This a discrete transfer, i.e., the signal is avail-
able until read and then no longer available via the flow.

The time-continuous flow symbol, shown in Figure B-3 (c), represents the transfer of data from
one process to another or to an external entity. This a continuous transfer, i.e., there is always

data available via this flow. For example, this flow might come from an external monitoring
device.

.4

U.

U,

CMU/SEI87-TR-38 45

~.. -. % '%. b - a"~ W'W -vw-w~~*-. '''. 2rrVVj..g1Vr. --

w

.1

.4

4

a

'4

a.

.4
4,..

4

'.4

A
j

'p
'p
'p

46 CMU/SEI-87-TR.38

6

Bibliography

[Ada 83] American National Standard Reference Manual for the Ada Programming
Language,
ANSI/MIL-STD-1815A-1983, 1983.

[Booch 87a] Booch, Grady.
Software Engineering with Ada.
Benjamin/Cummings, Menlo Park, CA, 1987.

[Booch 87b] Booch, Grady.
Software Components with Ada.
Benjamin/Cummings, Menlo Park, CA, 1987.

[D'lppolito 87] D'Ippolito, R., K. Lee, C. Plinta, M. Rissman, and R. Van Scoy.
Prototype Real- Time Monitor: Requirements.
Technical Report CMU/SEI-87-TR-36, Software Engineering Institute, Novem-

ber, 1987.

[Texas Instruments 85a]
User Manual for a Form Generator System in Ada.
Equipment Group - ACSL, P.O. Box 801, MS 8007, McKinney, TX 75609,

W, 1985.

[Texas Instruments 85b]
User Manual for an ANSI X3.64 Compatible Virtual Terminal in Ada.
Equipment Group - ACSL, P.O. Box 801, MS 8007, McKinney, TX 75609,

1985.

[Van Scoy 87a] Van Scoy, R., C. Plinta, T. Coddington, R. D'lppolito, K. Lee, and M. Rissman.
Prototype Real- Time Monitor: User's Manual.
Technical Report SEI-CMU/SEI-87-TR-37, Software Engineering Institute,

November, 1987.

[Van Scoy 87b] Van Scoy, R.
Prototype Real- Time Monitor: Ada Code.
Technical Report CMU/SEI-87-TR-39, Software Engineering Institute, Novem-

ber, 1987.

[Ward 85] Ward, Paul T., and Stephen J. Mellor.
Structured Development for Real-Time Systems.
Yourdon Press, Englewood Cliffs, N.J., 1985.

CMU/SEI-87-TR-38 47

E

'N
U

1~~

'4' -.

-u

4'. -

vs ~,

0

4'-.
4',

*0

.4.
TM,

.4

V
5,

48 CMU/SEI-87-TR-38

@0
4.-

4.,

4'

Index
commandbuffer 26 Set (name => x.y.foo, value => 10); 14

Set 17, 20
'address 30 SetupPage 18

Smallest unit 26. 27, 28, 29
(name => x.y.foo) 7 Standard-interface subsystem 9, 11, 14, 13, 9, 18

START 11, 13.17
* Access 17, 30 StartPage 18

Addressgenerator 22 STOP 13, 17
" Addressgenerator.-..,nputeaddress 27 StopPage 18
, AddressReprasenitw',:rn 22 Subsystem 1

Sysgen 22, 26
BuildRtriCorG-Commands 22

TargetConversion 30
Check 11,17 Text 10 23,30
Check-Page 18 Typesmanager 7, 10, 14, 22, 27. 30, 36

- Code 1
Collect-data 22 Unchecked-conversion 27, 30
Command 1 Update-Page 18
ComputeAddress 22
Conversions 23 Variabledatabase 7, 9, 11, 14, 18, 20, 25, 34
Convert-integers 30 Virtual terminal subsystem 9, 18
ConvertString ToValue 29
ConvertValueTo String 29, 31 X.y 7, 14

Data buffer 27, 28
DefaultInteger Conversion 30
Dialogue manager 7,9,10, 11, 13,14, 18, 20, 22,

34, 36

7 EDIT 11, 17

,." Find 20, 29
" . ""Foo 7, 14

Forms management subsystem 13, 36, 11, 18, 18,
9, 10, 11, 18, 20A- From_Application 22

Get_TypeInformation 29

InitializeDatabase 20

64 Library_interface 20, 34

Sp. MakeString 30

Package 1
Page.processor 11, 13, 18, 20
Parameter-manager 7, 9, 10, 11, 13, 14, 18, 20

Quit 17

READ 7.9,10,17,20
Realtimemonitor 7,9, 18
RetrieveRtmCore Results 22
RTM subsystem 17
Rtm core 8, 10, 13, 14, 22, 25, 26, 27, 34, 36

CMU/SEI-87-TR-38 49

-0.

04

REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NN
2. SECURITY CLASSIFICATION AUTHORITY 3. DIST RIBUT ION/AVAI LAS ILITY OF REPORT

N/AAPRVDFRPBIREES
2b OIECLASSIFICATION'OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

N/A _

a PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-38 ESD-TR-87-201

6a NAIIE OF PERFORMING ORGANIZATION S.OFFICE SYMBO0L 7a, NAME OF MONITORING ORGANIZATION
If applicable I

SOFTWARE ENGINEERING INSTITUTE ISEI SEI JOINT PROGRAM OFFICE
6c ADDRESS XiCft State and ZIP~ Code, 7t). ADDRESS (C10,. State and ZIP Codeji
CARNEGIE MELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

Sa NAME OF FUNDINGISPONSORING jbo OFF ICE SYMBO8L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it aSplicable)

SEl JOINT PROGRAM1 OFFICE SEl JPO F1962885CO003

Oc ADDRESS sCdfy State and ZIP Code) 10 SOURCE OF FUNDING NOS

CARNEGIE MEfLLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO LMENNOON.N,

~PTTTqRU*RGH- PA 15213N/NANA
I I TI TLE in(4iudir Secui~tY, ClaMif.caiono

PROTOTYPE REAL-TIME MONITOR: DESIGN

12 PER"SONAL AUT -ORiSI

ROGER VAN SCOY, ET AL
13& TYPE OF AEPORI f 3b TIME COVERED j14 DATE OF REPORT 0'r. Mo.. Day) 15. PAGE COUNT

FINAL I FROM _____ TO ___ NOVEMBER 1987 I56
14 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continu.e on rever'se Ifnecesary and IdentIfy by bloe6 number)

FIELD GROUP SUB Gm ADA, REQUIREMENTS, REAL-TIME MONITOR, OBJECT-ORIENTED
DESIGN, BOOCH NOTATION, DATA & CONTROL FLOW, REUSE

13 ABSTRACT 'Con memom eWver*# If eceua'y and idrnItf) b), block num'berj

THIS REPORT DESCRIBES THE SOFTWARE DESIGN USED TO IMPLEMENT THE PROTOTYPE REAL-TIME
MONITOR (RTM) REQUIREMENTS. THE DESIGN IS PRESENTED AT THREE LEVELS: SYSTEM LEVEL,
OBJECT LEVEL, AND PACKAGE ARCHITECTURE LEVEL. THE REPORT CONCLUDES WITH A DISCUSSION
OF THE KEY IMPLEMENTATION OBSTACLES THAT HAD TO BE OVERCOME TO DEVELOP A WORKING
PROTOTYPE: DETERMINING SYSTEM ADDRESSES, COMMhUNICATING WITH AN EXECUTING APPLICATION,
ACCESSING APPLICATION MEMORY, CONVERTING DATA INTO HUMAN READABLE FORM, AND DISTRIBUTED
CPU ARCHITECTURES.

20 OI1STRIGUTION/AVAILAI LIT V OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UF4CLASSIFIED/UNLIMITED 12SAME AS OPT C DTIC USERS X3 UNCLASSIFIED, UNLIMITED

22. INAIIE Of RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

KARL SHNGLER lfet do, Irya Code)Iip
(ALSINLR412) 268-7630 SEX P

SW 5'S V = UWS. Us ,'ruW , 7 Ip r. r~ a r 'p ~ '.- -, --

ii

7.

V

-I.
.7 7..

I

1

4
~I7

S '~ ~ ~ I-~5 S ~ W7TV~U ~WC?

