
0-IS92 EOT ON THE SEI MORKSHOP ON NO IN FRESHIRN COURSES I/I

(U) CEGE-MELLON UNJV PITTSBURGH PR SOFTMRRE
ENGINEERING INST G FORD DEC 8? CM/SEI-87-TR-44

UNCLRSSIFIEDESD-TR-87-207 F1962B-B5-C-663 F/O 12/ NL

EEElllllllEEl

Imonsoo

11111 1.0
~: I~

__

11111

8
3 Z2

iiiii 1*~

Iii~~mi~
_

_125 /1//)14 1111 16

IIiI1:~~

~ %.5-

Technical FiportCMU/SEJ-87-TR..44
ESD-TR-87-207

Carnegie-Mellon University

Software Engineering Institute

.'

or

Report on the SEI Workshop on ::

Ada in Freshman Courses
Gary Ford, Editor

Itt December 1987 JI(
CELECTE

IID

CA
APloved fmoi rleel

nlzi zm (ez'ze

oo .. w j:) III '

* *

*• I

' 22. 019 I .£

-',Q' .%.2."3"L.'',-"S
*
'..' .. '-.' -..-.- ' ,' ,' - ' -' tN '".'- S* \.''.-- .'-,'* ,,S ." 5. *,'.' ." "3' SN..,",',,,.,, ",,, '- ' ' ,

,
..

Technical Report
CMU/SEI-87-TR-44

ESD-TR-87-207
December 1987

Report on the SEI Workshop on Ada in
Freshman Courses

-

Gary Ford, Editor
Undergraduate Software Engineering Education Project

Accesion For

NTIS CR&l
1ThC TAB Li

JL;sith: F C~" :,

M ~ .i , ly,! , , I

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Table of Contents
1. Workshop Background 1

1.1. Goals 1
1.2. Selection of Participants 2
1.3. Position Papers 2

2. Workshop Summary 3
2.1. Workshop Discussions 3
2.2. Conclusions and Recommendations 5

3. Position Papers 7
Position Paper 9

Lionel Deimel

Position on Alternative Course Structure 11
Miohael Elinger

Programming with Components 13
Gary Ford

Concepts for Computer Science and Software Engineering 15
J. D. Gannon

Position Paper 19
Norman Gibbs

Position Paper 21
Elliot Koffman

Position Paper 23
Daniel McCracken

Position Paper 25
Terry Mellon

Position Paper 27
Philip Miller

Position Paper 29
Richard Pattis

Position Paper 33
Stuart Reges

Position Paper 35
Frances Van Scoy

Appendix: List of Participants 41

'.w

Report on the SEI Workshop on Ada in
Freshman Courses

Abstract. The Undergraduate Software Engineering Education Project of the SEI Edu-
cation Program sponsored a workshop on Ada In Freshman Courses, in June 1987.
The workshop brought together several educators to discuss how the software engi-
neering content of beginning programming and data structures might be improved.
This report describes the workshop and summarizes the discussions and conclusions,
and it also Includes the position papers prepared by the participants.

1. Workshop Background
The SEI Education Program derives its mission from this sentence in the SEI Charter: "[The SEll
shall also influence software engineering curricula development throughout the education
community.* Because a large percentage of the next generation of software engineers in the
mission-critical computer resource (MCCR) community will have only undergraduate degrees, it is
Important that software engineering education at that level be improved. The Undergraduate
Software Engineering Education Project comprises SEI education efforts in this area.

A common complaint from industry is that new employees with a bachelor's degree in computer
science are Ill-prepared for the responsibilities of professional software engineering. In particular,
these new employees have too much of a programming-in-the-small view of software. Because
many attitudes about programming are formed in the first programrr,,,g course in college, it is
Important to examine these courses and attempt to redirect them somewhat in the direction of
programming-in-the-large, including team programming.

The Ada programming language has been developed to support software engineering, partic-
ularly for embedded real-time systems. It has been suggested by many educators and prac-
titioners that using Ada in the undergraduate curriculum would contribute to improving the situa-
tion.

To examine the issues related to the use of Ada in beginning programming courses, the SEI
Education Program sponsored a workshop, the Ada In Freshman Courses workshop. This report
describes that workshop, its conclusions and recommendations, and SEI efforts that have grown
out of those recommendations.

1.1. Goals
The following goals were established for the workshop:

Determine possible changes in content or course structure for the freshman courses
that would enhance the development of the software engineering profession.

Identify specific tasks for the SEI to Support educators in pursuit of better software
engineering education.

1.2. Selection of Participants
The success of the workshop depended greatly on the quality of the participants. Educators with
a variety of experiences and expertise were needed, including:

" Texftbok Authors: A good textbook is critical for the first programming courses.
Most Ada textbooks were written for relatively experienced programmers, and were
niot suitable for first courses. ht was believed that textbook authors would bring an
important perspective to the workshop with respect to the difficulty in writing an be-
ginning textbook using Ada. At least seven of the participants had written textbooks.

" Innovative Educators: Educators with a reputation for innovation were chosen be-
cause they could provide Ideas for new approaches to programming courses that
might be valuable when introducing Ada in these courses. Four of the participants
were known for their curriculum Innovations.

" Contribuors to ACM CS1 and CS2 Curriwlum Recommendations: The ACM has a
great influence on undergraduate comp~uter science education through its curriculum
recommendations. Two of the participants were members of the ACM Curriculum
Task Forces for CS1 and CS2.

" Educators Who Had Used Ada: There Is no substitute for experience, so educators
who had used Ada in the undergraduate curriculum were selected. They would be
able to identify some of the problems encountered, and perhaps describe some of
the solutions. Four participants had such experience.

1.3. Position Papers
To stimulate their thinking before the workshop, the participants were asked to write position
papers on one of several issues related to the beginning courses. The Issues and the papers
submitted by the participants appear in Chapter 3 of this report.

2

: N N

S%

-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ M ri FUNw MM.M MWr.nrr,'.wrnw,,.. rWU2Ww. r ...-

2. Workshop Summary
The workshop was held at the SEI on June 22 and 23, 1987. The agenda was established as: a

June 22, morning: Identification of issues for the freshman courses tE

June 22, afternoon: discussion of those Imses
June 23, morning: specification of tasks that the SEI might perform to improve the teaching

of these courses
June 23. afternoon: summary

2.1. Workshop Discussions
To open the discussion on Identification of Issues, four questions were placed on the table at the
beginning of the first session:

1. How do computer science and software engineering differ?
2. What should be taught In the freshman year?

3. What Is the impact of the programming language used?
4. What are some possible alternative course structures?

The discussion was wide-ranging and did not actually give clear answers to any of these ques-
tions.

The differences between computer sclence and software engineering were niot easily Identified,
but there was a belief that identifying them would not contribute much to the design of the early

courses. At this level, students of either discipline need essentially the same material.

Topics and concepts that are now taught in the freshman courses were identified and generally
supported, Including modern programnming techniques, data abstraction, and the beginnings of
analysis of algorithms. (See the position paper of Norm Gibbs for a list of topics that were
generally accepted by the participants.) Three additional topics were suggested: communicating
what you have done, increased emphasis on verification and validation, and the process of in-
cremental software development.

The discussion of programming language issues focused on the deficlencies of standard Pascal
for teaching data abstraction. The Importance of data abstraction requires that educators

change, as soon as possible, to a language that supports this concept.

Alternative course structures that were discussed included what were called read before write
and programming by comrponents. (See the position papers by Lionel Delmel and Gary Ford,
respectively, for descriptions of these course structures.) Because Dr. Deimel was unable to
attend the workshop, there was no champion of the former structure, so its possible impact did 4

niot receive a full discussion. The latter structure was seen to have considerable merit, but it
requires a substantial amount of support In the form of pre-existing software components of all
kinds. It was suggested that the SEI might provide some of this support.

Subsequent discussions could be grouped into three areas: the relationship between software
engineering and the first courses, the kinds of support materials needed for improved courses,
and the role of Ada in these courses.

It was generally agreed that most of the problems of software engineering cannot really be ap-
preciated by students at the beginning programming level. Therefore, instead of trying to teach
major pieces of software engineering, it was suggested that the role of the first courses should be
to plant seeds of software engineering knowledge, and to start students in a direction that could
more easily lead to advanced study of software engineering. Among the seeds that were men-
tioned were:

" the engineering process (the idea of tradeoffs: arriving at solutions to problems
through analysis of alternatives, measuring or estimating costs and benefits, etc.)-

" that there are definable and repeatable processes by which one can do requirements
analysis, design, coding, and testing

" that large systems are built from small components
" that a software system is only very rarely built by an individual person
" that software persists alter it compiles successfully and runs on a single test case
" that code is not the only software entity that can be expressed formally

Support materials were recognized as being a major part of the effort to develop better freshman
courses with more software engineering content. As mentioned above, a programming by com-
ponents approach requires a body of components. This includes not only libraries of reusable
code, but other kinds of software work products. Interesting programs with associated specifi-
cations, designs, test plans and suites, and other documents, could be used by instructors as the
basis for student projects. The instructor could give the students most of the program, along with
good specifications for the missing piece, including its interface to the given piece; the students
would then build the missing piece. Several different projects could be created from one such
program. For example, early in the course the students might be asked to supply only a very
simple piece, while later they might be asked to supply a more complicated piece.

Case studies were proposed as another useful kind of support material. These would include
various kinds of software work products, up to and including entire systems, that could be 4
studied. Included should be guidelines for instructors and students about what to look for or look
at in the code or documents. Good exercises that do not involve coding were recognized as
being valuable, and such exercises might be based on case studies.

Programming environments also were suggested as a kind of support that would improve theA
freshman courses. Professional software engineers are moving toward sophisticated software
engineering environments. Students who have experienced working with a substantial number of
support tools will be able to function better in that professional environment. .

However, there Is another kind of programming environment for students. That kind is designed
to support learning as well as programming, and such environments will have a variety of capabil-
Rties to show the student what is really happening inside a program. Prototypes for such environ-

4

.1 W V

mentsi

ments already exist in a number of places, and it would be desirable for educators to have more
exposure to them and their capabilities.

One other kind of support material was discussed: textbooks. The opinion was expressed that .0"
textbooks do not appear as fast as new ideas and methods of teaching beginning programming
courses. Therefore it is desirable for there to be a more timely way of producing textbook-like
materials to support, for example, programming by components or programming in Ada. Small
technical reports on specific topics or methods, designed to be used by educators and students in
conjunction with an existing textbook, were suggested as a possible solution to this problem.

Despite the title of the workshop, the discussion of Ada in the freshman courses did not occupy
the majority of the time. This can probably be attributed to the fact that most of the participants
had only a cursory knowledge of Ada's features and capabilities. One widely accepted sugges-
tion was that the vast majority of instructors of freshman-level courses had even less knowledge
of Ada, and that an effort by the SEI to raise that knowledge level would be beneficial.

The participants were unanimous that Pascal is insufficient for teaching data abstraction they way
it should be taught. Modula-2 and Ada both provide substantially better capabilities, and there
are now textbooks for data structures courses (CS2) using both of these languages. It was also
generally accepted that it is undesirable to change the programming language from CS1 to CS2,
so efforts should be made to influence educators to adopt one of these newer languages through-
out the freshman course sequence.

Because of the lack of experience among the participants with either Modula-2 or Ada in fresh-
man courses, there was no strong recommendation that either is better than the other. It was
suggested that there is an advantage with using Ada because it has a standard definition, rather '.q

than Modula-2, because its Inventor, Niklaus Wirth, continues to make changes in the language.
Also, Ada provides some additional features that Modula-2 does not (such as exception handling
and generics), although it was not clear how important these advanced features would be in
freshman courses.

For a variety of reasons, it is unlikely that the educational community will adopt a single program- %
ming language for CS1 and CS2 anytime soon. Therefore it was recommended that the SEI
concentrate on software engineering issues, and that it provide support materials in all three
languages to allow the most widespread use of the materials. It was also suggested that the very
limited number of low level Ada textbooks could be offset somewhat by providing Ada versions ot
the examples In existing textbooks that use other languages.," "'

2.2. Conclusions and Recommendations

The workshop participants generally agreed on two major points:

e The freshman courses, assuming they are taught along the guidelines of ACM
courses CS1 and CS2, do not need any revolutionary changes. They can be im-
proved by a number of smaller changes, including changing the emphasis from ouild-
ing complete programs to building components, the inclusion of packaging concepts

,".""

. " ",- .- .. ' . -. :.. "..- S,

(Information hiding, modularity, separate compilation) earlier in the courses (which
probably is a corolL y of adopting the programming by components approach), and
planting a number of seeds of software engineering that will have benefits in later
courses.
*A language other than Pascal, probably Modula-2 or Ada, ought to be adopted for
these courses. This will require a substantial support effort to raise the level of
knowledge of instructors and to supply appropriate teaching materials.

The major recommendations to the SEI were the following:
1. The SEI should take the lead in promoting the kind of interaction among instructors

of beginning courses that will lead to sharing of ideas and materials and to rapid
Improvement of the courses.

2. The SEI should become a clearinghouse for information about course structures,
course content, textbooks, compilers, programming environments, and support
materials and should disseminate this information widely.

3. The SEI should produce, both internally and with the help of faculty from affiliated
colleges and universities, a variety of educational materials to support the improved
teaching of the freshman courses. Foremost among these should be support for
using the programming by components approach, support for using Ada, and for
increasing the software engineering content of the courses.

4. The SEI should promote an increased knowledge of the capabilities and benefits of
Ada as a beginning language, especially among instructors responsible for fresh-
man courses.

5. The SEI should use its influence, where possible, to cause government agencies to
provide more support for undergraduate education. A specific example is to in-
fluence the AJPO to address issues related to high quality affordable Ada compilers
for the student environment.

6. The SEI should not promote an undergraduate curriculum in software engineering
at this time, but instead should promote improvements in the undergraduate coin-
puter science curriculum. It should work with the ACM curriculum committees and
other professional society curriculum efforts, rather than being seen as a com-
petitor.

The project plan for the Undergraduate Software Engineering Education Project has been revised
to reflect these recommendations. Activities have begun that implement some of these sugges-
tions. For example, planning has begun for a workshop on data abstraction and object-oriented
programming, including how Ada supports these concepts. The workshop will be held in
February 1988 and will be jointly sponsored by the SEI and by the ACM Special Interest Group
on Computer Science Education (SIGCSE).

6

3. Position Papers
The participants were asked to prepare position papers in advance of the workshop. They were
asked to address one of the following issues:

1. To what extent should undergraduate education provide specific employment skills? 'V
Since most computer science majors are employed developing software, should
software engineering have a more important role in undergraduate education.
Should there be separate computer science and software engineering majors?

2. What are the concepts that must be taught in the freshman year? Are these differ-
ent for computer science and software engineering? To what 6e;. does the pro-
gramming language used influence the concepts that are taught or how well they
are taught? What are the relative merits of Pascal, Modula-2, and Ada in freshman
courses?

3. Are there alternative course structures that would facilitate teaching better computer
science or better software engineering in the freshman courses? Some examples
of course structures are:

e Traditiona, programming-in-the-small; each program built from'scratch, be-
ginning with a "Hello, world" program

* Read before Write: spend a substantial amount of time reading well-written,
large programs; students modify these programs to change or enhance func- -
tionality rather than writing programs from scratch

e Programming by Components: a substantial number of program components
are available to students, and most programs are built by gluing those com-
ponents together in appropriate ways

4. What materials, including textbooks, compilers, other software tools, and program
components, are needed to teach effective freshman courses? What specific
materials are needed to support some of the alternative course structures?

7"

'- a

-a2-

-..

*

p

p
p

-p

p
P

,aij

A
-~1
F-u

8

-i
EM

'4

Si

r r r Ct ? C.Ca

ZJ.~JiVSW&<L A{d&9AA ?NWAWAA.%A\Aa\' krVYrSi% ~t t..LW~J

Position Paper
Lionel Deimel

Software Engineering Institute
Carnegie Mellon University "

Pittsburgh, PA 15213

Five years ago, David Moffat and I, in a paper called "A More Analytical Approach to Teaching
the Introductory Programming Course"' suggested a course structure which deserves additional
conskeration in light of the increased interest in software engineering. The inspiration for this
paper came to me one day as I was trying, as I often have, to decide why so many of my
programming students did poorly. My conclusion at the time was that many students did not
understand what the "game" was--they were being asked to write programs without understand-

ing why and without understanding just what a program is. Instead of the traditional organization
of the first course, we proposed a four-phase introduction in which the student would participate
in the following activities In the order given:

1. Become a user of programs, preferably of many and varied programs.

2. Study programs and their algorithms. Reading and hand tracing are prominent
here. The student learns about both algorithms and a particular programming lan-
guage.

3. Test, debug, and modify existing programs. .

4. Design and implement original programs.

Using programs was to provide motivation for the programming enterprise; the student could see
why programs were useful and could begin to appreciate the role of user documentation and the
significance of the user interface. Phase two was to demystify programs and to provide models
for the student to emulate. Phase three was to provide a gentle introduction to program produc-
tion and to emphasize the organic nature of software. The observation that some students are -_

quickly overwhelmed by the programs they are asked to produce influenced our proposal here.
In the final phase, of course, students do what they are "supposed" to do in a first course.

When we made our original proposal, I was most taken with the "read before write" aspect of it.
Novelists, after all, read many novels before ever writing one. In retrospect, though, I think it is
the way our organization leads the student to a more realistic view of the software life cycle which
is the most important aspect of our proposal. I think the organization

Highlights the fact that programs are not written for programmers. I
" Forces the student to consider ideas easily overlooked in a traditional

organization-the need for user documentation, the importance of the user interlace,
and the need for reasonable structure and comments in the code.

'Deimel, L. E. and Moffat, D. V. *A More Analytical Approach to Teaching tie Introductory Programming Course"
Proc. NECC '82. Columbia, Mo.: The Curators of tfe Univ. of Mo., 1982 The ideas in this paper were reformulated,
expanded upon, and supplemented with anecdotal support in a later paper: Deimel. L E., Hodges, L F. and Mottat,
D. V. "Restructuring the Introductory Programming Course. AEDS Monitor 21, 7-8 (Jan/Feb 1983). 11-15

9
I

-a ~ ~ ~ * ftft ~ ~'ft 'it -~ft . .'~"~ft-'ft *-~-*. ft. -,f

" Encourages a more complete view of the software life cycle.
" Subordinates coding to a more realistic place in software development.
" Allows early on and in a very natural way for design, testing, documentation, debug-

ging, and redesign (modification) exercises to be incorporated into teaching.

What would I advocate today, and how does Ada fit in? Certainly I would say certain things
differently today, but I would not change the way the course begins and ends. There is no reason
programming-in-the-small cannot be introduced in the context of programming-in-the-large. (The
student can work on a *team," some of whose members are niot present.) Using programs (an
introduction we sometimes do quite well for "literacy* students) ought to come first and extensive
code writing should come last. There is room for experimentation in the middle. Perhaps pro-
gramming by components can be introduced early, for example.

As to the role of Ada, I do not think it has a proper role beyond that of any other programming
language. Ada facilitates teaching certain concepts, of course, and makes some introductory
approaches more attractive (programming by components, for example). The more important
issue, however, Is really how we introduce the student to the software development process
generally, and this issue is not language specific. Further, the extensive use of program reading
could make the use even of "messy" implementations of concepts acceptable so long as the
concepts themselves can be communicated clearly. (There is even some advantage to using
such implementations, though I would niot want to press this point too far.) Information hiding can
be disussed in the abstract and illustrated, even imperfectly, in, say, Pascal. It does niot hurt to
be using Ada, but to do so is not essential. The overall organization of the course and the
pragmatics of the language vehicle used are really more important.

The question I would pose to the Workshop is this: What are we trying to accomplish in the first
course and how should we go about doing it? It is, I submit, more important that the student
come away with the right point of view than that he come away with the "right" bag of tricks in the
"right" language. As for the notion that the needs of computer science and software engineering
might be divergent in the first course, I think it can be dismissed quickly. Computer science has
been and will continue often to be driven by practical considerations of developing real software,
Even the computer scientist must know what computers are for.

10

Position on Alternative Course Structure
Mihael Edlinger

Computer Science Department
Harvey Mudd College
Claremont, CA 91711

I would argue that the 4 Issues expressed by Gary Ford are inter-related in such ways that it is
difficult to present arguments that only address a particular issue. Thus, in the following position
statement concerning alternative course structures I have included topics from the other issues.
What follows immediately are expressions of my fundamental biases:

*Computer science and software engineering are really only different views of the
same discpine. (I use the word discipline to try to avoid the confusion associated
with the usual Labels, I.e., computer science, software engineering. etc.) Both views
must be presented in any major or course that purports to be concerned with the
discipline. I think one of the fundamental problems faced in education and in indus-
try Is the failure to merge these concepts. I hear teachers saying "this is a small
program, thus we can ignore any software engineering issues" or "this is such a
theoretical approach that it has no applicability to practice.* I hear design teams
saying "we will just build the software system and then reverse engineer It."

" I believe software engineering must be taught in the introductory programming Ian-
guage course from the first day of class. Students must learn the interplay of soft-
ware engineering, algorithm design, and programming.

" My final bias to be expressed here concerns the choice of programming language.
In order to lntergrate 4 years of varied courses and varied instructors, a single pro-
gramming language should be used throughout the curriculum. (Such an idea
seems to parallel the use of English in the humanities). I am not proposing that all
other languages be omitted, but rather that a single programming language be the
base language in all courses. I believe this provides at least the following benefits:
the students know and understand a particular language in great detail; projects and
examples can be easily integrated across courses; and with a fundamental knowl-
edge in a single language, students can more easily understand other languages by
comparing them against the base language. Also, in those courses where the base
language is totally inappropriate, the students can learn why the base language is
inappropriate. Thus a single programming language with capabilities in numerous
areas is required in the curriculum.

I would approach (and plan to this fall) the freshman course with the following type of structure: a
programming language with significant software engineering attributes and a single large ex-
ampleproblem.

I believe Ada Is the most appropriate language for the curriculuim. It has the capabilities I require 4

in the base language and I believe it is time (availability of compilers and tools) to install Ada as
the base programming language. I will say no more about Ada as the base language as I am -

sure much will be said at the work~shop, but I(think it is necessary to expand on my approach to
the course structure.

I foresee developing a problem that students are slightly familiar with, but not completely knowl-

% % %

edgeable of as the primary pedagogical example. My point here is that if students have a de-
tailed understanding of the problem, they can be prejudiced in the solution. Also, a single large
problem lets many aspects of the course develop simultaneously. The program design can be
accomplished in whatever approach (top down, object oriented, etc.) appears proper. Also, the
steps prior to design can be introduced, e.g., requirements analysis, user requirements, testing,
and verification. Programming in the small can be used for the various modules of the solution. It
is in this way that the various programming in the small features of the language can be intro-
duced. The read before write approach can also be utilized because some modules can already
be coded. Thus the students can read existing modules and discover how the modules they are
building interface into the existing solution.

I think it is difficult in my approach to the introductory course to develop the large example prob-
lem. Besides the problem, parts of the solution must be established to show the interfacing
aspects of software engineering and individual modules must be developed in an order that pro-
vides a method of teaching the programming in the small aspects of the language. I think such
an approach is possible, but much work needs to be done in order for the approach to be prac-
tical.

12

N,.

Programming with Components
Gary Ford

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

A single change In the orientation of freshman courses might provide a large number of benefits.
That change is to emphasize the construction of program components rather than main pro-
grams. Advantages of this approach include:

-N1. More interesting programs can be built earlier in the courses if the students supply
some components and the instructor supplies the rest of the program. The instruc-
tor can assign to the students only those components that address the program--
ming issues being taught at that time.

2. The emphasis on throw-away programs will be decreased. Students can learn to
keep components and reuse them in later programs.

3. The students get a more realistic view of software development. It is rare in the 4

professional world for a single person to write an entire program. Programming
with components helps promote the ideas of a software team, with either student-
student cooperation or student-instructor cooperation.

4. The importance of the specification of interfaces becomes more visible. When aA
single person is writing the code on both sides of an interface, it is possible to
ignore the interface specification and tinker with the code on both sides to make it
work. With components written by different persons, the issues related to interfaces
can be seen and appreciated.

5. The concepts of abstract data types as program components can be taught more
easily If the students are used to thinking in terms of components.

6. Students can be taught to work with higher level abstractions. For example, they
can learn to use stacks and queues long before they learn to implement them.

7. The concepts of unit testing and building testbeds can be presented, rather than the
monolithic testing approaches to entire programs. .

All the topics in freshman courses can be taught with components as well as whole programs. 's'-

Some, such as functional specification, interface specification, and verification, might be taught
better at the component level than at the program level.

To adopt this approach to teaching requires a supply of components, main programs that use
those components, and testbeds. The first two of these can also be used as class examples and
programs for reading, assuming they are well written. Such libraries can be built in a rather short
period of time if several educators share what they and their students develop. The SEO can
contribute by soliciting, collecting, editing, documenting, and distributing these libraries.

The programming language used will have a significant impact on the kinds of comp~onents that
can be built. Separate compilation Is mandatory, so standard Pascal cannot be used. Pascal
variants with separate compilation are available, but vary greatly in what they offer. Modula-2
permits the separate compilation of definition modules and implementation modules. These pro-

13

-

% le

vide direct support for components such as abstract data types, and a somewhat clumsy support
for components at the single procedure level. Ada compilation units include subprogram declara- ON
tions, subprogram bodies, package declarations, package bodies, generic declarations, and
generic instantiations. Nearly all of the kinds of components that might be taught can be struc-
tured in one of these ways.

D

14

'~ ~ -

Concepts for Computer Science and Software Engineering
J. D. Gannon

Computer Science Department
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

Introduction
The success and growth of any engineering discipline has never rested entirely on organization of
trial-and-error knowledge. Application of deep theoretical results is also required to progress
beyond the initial success that spreading common sense brings. The role of the engineer is
sometimes to Invent the required theory; more often it is only to apply an Idea from a more N
abstract discipline to a problem the engineer understands. Furthermore, the application must
meet a requirement peculiar to engineering: it must be in a form that can be used to solve
practical problems.

We have developed a two-semester basic course for computer science much as calculus is a
basic course for mathematics and the physical sciences, concerned primarily with methodology
rather than subject matter. In fact we Introduce a program calculus that deals with the functions
computed by programs. Just as for ordinary calculus, there are two main problems In the pro- .
gram calculus. First, given a program, find its meaning (its derivative), and second, given a
meaning, find a program with that meaning (its integral). This ability to derive functions from
programs In the program calculus is of great value in computer science and engineering as well.
First, it permits a mathematical treatment of program correctness, namely whether a program
specifies correct behavior of the computer for every possible input. But even more Importantly, it
leads to a systematic design discipline for writing programs that are correct.

Programming Methods
Programmning methods (i.e., stepwise refinement and data abstraction) are at the heart of any
introductory course. Programming has two distinct phases:

1. Design-thinking out what the program should be in order to solve the problem.
2. Development-putting the program text in execution form.

In the stepwise refinement of a program, text designed to carry out a task in more detail is called I..
a design part. A design part may Itself contain more detailed task descriptions. The result of the
design phase will be a hierarchy of design parts which collectively solve the problem at hand.

After the program has been entirely refined into a hierarchy of design parts, the translation into7
machine-readable form begins. A sequence of executable programs, each reflecting a larger part ~
of the design, can facilitate orderly and systematic translation into a programming language.
Development programs are accumulations of design parts, which grow In size until the entire
design has been turned Into a program. Each development program is defined so that It can be
executed and tested to verify correct translation at each step of development. During program
Integration, a top-down, functional approach to testing integrates design parts into the devel-
opment program.

N~ V
sV.

Programming Languages
Programs are written in three increasingly complex subsets of the programming language Pascal.
In the simp~lest subset. CF Pascal, there is but a single kind of data (characters) and a single data
structure (files of characters that can only be accessed sequentially). Restricting our attention to
so simple a language emphasizes program design rather than programming language features.

Small, but classical, problems lead to interesting program design problems in CF Pascal. Con-
sider adding two hundred-digIt numbers in different files and writing the result to a third file. The
input files are read left to right, but digits must be added and carries computed from right to left. ft
is easy to see that the problem requires one pass over the two files for the add and carry logic but
three file reverses. With an n2reverse, the solution will execute in n + Un2 tim whre itonl takes
n for what seemed the hard part. So reducing n+3n2 to n+3n.tn(n) by finding an nlin(n) reverse
becomes an interesting problem. CF Pascal is an austere toot that requires a strong sense of
abstraction.

The second language subset, D Pascal, permits the same functions to be created with smaller
and simpler programs than is possible in CF Pascal. D Pascal also contains language features
(type declarations and records) needed to implement data abstractions. Prior data abstractions
become concrete language features in D Pascal. The final Pascal subset, 0 Pascal, introduces
powerful control structures and data types to help optimize programs by providing random access
to statements and data.

Mathematical Basis
The entire mathematical basis for the program calculus rests on just five discrete mathematical
structures of character data: strings, lists, sets, relations, and functions. These five structures are
not only sufficient to deal with program correctness and program design, but also admit treatment
at various levels of formality with a mixture of English and mathematical notation.

Some sets are more easily and precisely described in English than in mathematics, but are sets
no less because of the mode of their description. Many programming problems are better stated
in English than mathematics, and we need to be able to treat questions of program correctness
and design independent of the mode of description.

The mathematical property we study in programs is their effect on computer behavior. Under-
standing a program as a mathematical object is understanding the functional behavior it induces
in a computer.

An execution state is a relation or function whose domain is the identifiers of a program and
whose range is the values attached to those identifiers. The semantic meaning of a program will
be a mathematical relation or function, a set of ordered pairs that defines a correspondence
between one state (the inputs) and another state (the outputs). The meaning of a program will be
taken to be the transformation Implied by this correspondence; certain outputs are paired with
certain inputs because given any such input, the program instructs the Pascal machine to com-
pute that output.

16

Determining the Meaning of Program Parts
A conditional assigment summarizes the effects of several statements, mapping one state to
another. For example, the meaning of the statemnent

swGim
VI : - V2;
V2 : - V3;
IF V1 < V2 TMN V3 :- V1 ELSE V3 := V2

ED

can be expressed as the conditional assignment:
(V2 < V3 -+ V1, V2, V3 := V2, V3, V2) I (V2 V3 -~V1, V2 :V2, V3)

Symbolic execution Is used to trace the values of variables through execution using only their
names, not particular values.

Program Correctness
Given a program specification relation r and a program P, P is correct with respect to r if, for
every . iember x of the domain of r (an instance of input data), P produces some member of the
range of r which corresponds to x. That is, for each input x, P produces result y such that 4cx,y> E
r. What P does to Input data niot in the domain of r is not Important since r should define all
behavior Important to the problem solver. Program P is correct with respect to specification
function f Nf and only If f v-) P - f.

Data Abstraction Correctness
The essence of data abstraction is captured by a diagram showing the relationship between the
concrete world objects manipulated by Pascal procedures (e.g., P), and the abstract world ob-
jects the programmer manipulates with abstract operations (e.g., m) to achieve a solution. A
representation mappng, denoted A... is defined between the values of concrete objects and the d

values of the corresponding abstract objects. By convention, for objects common to the concrete
and abstract worlds, the representation mapping Is identity. Then for any concrete state, the
representation mapping can be extended to map the state to an abstract state.

(abstract states) -i--- (abstract states)

(concrete states) -IJ--.(concrete states)

Intuitively, an implementation Is correct If Its data objects are manipulated in such a way that the
abstract objects to which they correspond, appear to be transformed according to the abstract
operations. That Is, correct implementation uses the concrete procedures and data, but in a way
that mirrors the abstraction. To decide Nf this property holds, we show that the diagram com-
mutes.

Ae om RP aA

Of course abstract operations like m do not really exist except in users' minds. Pascal proce-
dures implementing abstract operations are written with two sets of comments labelled "abs" and
"con". The "abs" comments are added to modules so that users, those in the abstract world,
need not examine the code (or even the "con" comments that document it). The "abs" comments
replace the abstract operations in demonstrations that diagrams commute. If the implementation
has been done property, the abstract comment can be believed, and used in proofs at the ab-
stract level.

A

a"

";

1-8

a" a %. ~ ' ' -. .~. '\'*~*%*- ;...

Position Paper
Norman Gibbs

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

To what extent should undergraduate education provide specific employment skills?

Undergraduate students should be liberally educated with the goal of "training" them to learn on
their own. I am not an advocate of professional undergraduate degrees and will encourage my
children to study liberal arts first and postpone professional education until graduate school. This
is why I have publicly opposed CSAB accreditation of undergraduate computer science degree
programs. I believe Dartmouth College is correct in not awarding ABET accredited undergrad-
uate engineering degrees, but treating engineering as a department with an "engineering major".

Being realistic, however, I know most universities are in the business of professional under-
graduate training with success measured by the number of job offers their students receive and
the magnitude of starting salaries. This being the case, it turns out that most computer science
majors REALLY want to become professional programmers. That is why they "hold their breath
and turn blue" over reasoning about programs, programming style, detailed design, documen-
tation, complexity and formal methods while being willing to hack for hours in C or assembler
language. Reality dictates that professional educators at the SEI need to attempt to influence
most computer science departments to understand what it is they REALLY do and teach more
software engineering. In particular, "throw-away" programs and independently graded exercises
conflicts with what professional programmers or "software engineers" do in industry and govern-
ment. I believe that many, if not most, undergraduate computer science programs really are
oriented toward producing "pre-professional programmers" and as such are really not producing
computer scientists. We will not see a distinction (in title) between undergraduate software engi-
neering and computer science for at least a decade.

What are the concepts that must be taught In the first two courses In computing?
,.". ,1,

Absolutely essential are:

" algorithms

" stored program concept

• files

" programming In the small

* correctness

" preconditions

* postconditions

" invariants

" functional and procedural abstraction

19 I,
- C ... -. .

t~xrt ,,' , '(; " , '. '@--. , _ ' * "1' ., .4.' ', "% ,. V'v' ''_, '"% .'',

writing readable code

* complexity

" modularity

" information hiding

" data abstraction

The role of programming languages is that of representation. The danger with Pascal is that bad
habits may have to be "unlearned" later. Pascal is based on Algol-60 ideas and codifies late
1950's and up to late 1960's thinking about programming -languages. Modula-2 (3rd edition)
includes ideas from the late 1960's and early 1970's while Ada captures some early to mid 1970's
ideas. Universities should plan now to move away from Pascal. Unfortunately, I see a lot of the
same reluctance to abandon Pascal that I saw in the 1970's about abandoning FORTRAN. Pas-
cal is an inferior technology for representing programs that will be shared and developed by
groups of people. It is not well suited for facilitating the management of the complexity of large
programs for expressing abstract data types. It is not a matter of whether the academic commu-
nity will abandon Pascal, but when! 0

In light of the above I believe that we ought to advocate more use of Modula-2 or Ada in the
beginning courses. I think I slightly favor Ada over Modula-2 because I prefer packages over
modules. I agree with Nico Habermann's statements about their being more room to grow within
Ada than Modula-2. -.

Are there alternative course structures that would facilitate teaching better computer sci-
ence or better software engineering In the first courses?

Obviously yes. There is less risk of failure when you adopt the "tried and true" methods and more
potential risk with read before write and assembling programs from components. Of the more
risky alternatives listed, I find programming by components more appealing. I suspect that
hardware people would also strongly support such a notion. After all, electrical engineers do not
build resistors or capacitors but use them to create more interesting devices. Teaching program-
ming using conventional methods of explaining for statements and conditional statements is still "
at the "construct resistors out of carbon" stage and needs to evolve to the "integrated circuit"
stage. Although we have experienced macro improvements in hardware technology we see only
micro Improvements in software technology. That is one reason why the SEI exists.

I have trouble with the read before write model in that humans begin to read at about age 5 or 6
and writing begins to "spiral" in a year or two later. Children do not write sonnets until very much
later - drawing on all lots of previous experience. In programming we are in essence teaching
reading and writing to adults with the constraint that the interesting part is the writing. Perhaps if
all students did learn Logo first and computing was "spiraled" throughout a student's elementary
education, we would have a chance of selling college students read before write. As it stands
now I see little chance of this happening soon.

20 d
,~s ~ - ~ 5 - -

rWUV %w~f'

Position Paper
Elliot Koffman

Department of Computer and Information Sciences
Temple University %

Philadelphia, PA 19122

Dr. Koffman's position on the freshman courses is reflected in the reports of the recent ACM
Curriculum Committee Task Forces for CSI and CSZ, which he chaired. Those reports have
been published in the Communications of the ACM.

Koffman, Elliot B., Philip L. Miller, and Caroline E. Wardle. "Recommended Curriculum For CS1,
1984". Comm. ACM 27, 10 (Oct. 1984), 998-1001.

Koffman, Elliot B., David Stemple, and Caroline E. Wardle. "Recommended Curriculum For CS2,
1984". Comm. ACM 28, 8 (Aug. 1985), 815-818.

21'

VW'Waq"IrvWUL~ll IFWrWKIW ~r rFUV~rl rVW Wr~pfVW .WVW J W jw y J

220

Lt k,

Position Paper

Daniel McCracken
160 Cabrini Blvd.

New York, NY 10033 , V,

, .9.

Let me address two issues: what should be done in the freshman year, and two interlocking
problems in doing anything with Ada in education.

To respond to one of your questions, I don't think there is any difference at the freshman level
between what a future computer scientist needs to study and what a future software engineer
needs to study. There is a body of knowledge that, to my mind, is 99% common between the -,

two. As a matter of fact, I will be interested to hear arguments to the contrary, as applied to the
first three years.

Software engineering, as I understand the term, covers a very broad range of topics, only a small
fraction of which can be dealt with until the student has assembled a significant part of his or her
intellectual toolkit. Good coding style, sure, but that's hardly unique to a software engineering
approach. Modularization and use of library modules/packages, sure, but people are doing that
anyway, especially in the shift toward Modula-2.

Naturally, I assume that by freshman you mean essentially the first year of professional study. At .-
some schools it would be impossible or difficult to take anything more than one introductory
course in the freshman year; at a few, the entire freshman year is laid out, and consists of a
common core with a liberal arts emphasis. Most Of what I see around the horizon seems to be
leaning in that direction, even in professional education; consider the recent reduction in CSAB
computer science requirements, for example.

I'm not prepared to argue the relative merits of Ada vs. the others, and I'm reserving judgment on
the best language for the first course, but I am really convinced that Modula-2 is a lot better for
CS2 than Pascal. I approach this from the perspective of having just finished CS2 books based
on both, as you know. I assume, from my limited command of Ada, that with suitable compilers
and other tools, Ada would have the same (or similar) advantage.

And that is my final-and main--point. If Ada is going to get into the educational world, whether
rapidly or slowly, and for whatever motivations, two things have to happen: there have to be
textbooks, and there have to be student compilers. By the latter I mean simply a fast and cheap
system with super diagnostics running on iho most popular machines, backed up by easy-to-learn
editors and holpful diagnostics. I'm thinking of things like WATFOR and Turbo Pascal, which
revolutionized the way things were done in certain segments of the education sector, in a matter

of a couple of years.

That's one absolutely crucial factor, and the other is texts. But, from my standpoint at least, there
will not be texts until there are student compilers. For myself, I will not even think about doing
anything in Ada until there is some convenient way to test the programs. I might not do it even
then, mind you, but for now it is a total non-issue: I will not write a book with programs that have

23

NO'& 41r-d'~

not been run, to produce the output shown in the book. And if I had access to a mainframe
system to do that, but the students in my market did not, it would be an economic disaster: the
book could not sell.

I invoke the image (Isak Dineson, maybe?), of two locked caskets, each holding the key to the."
other. If SEI or anybody else wants to get Ada into education--freshman, graduate, continuing,

or anything else-a creative solution to this impasse will have to be found. I have no idea what it "
might me. Free enterprise forces have done it with other languages in other years; as time

passes and the same thing continues not to happen with Ada, I begin to wonder what's going on.

I look forward eagerly to a discussion of these and all the other issues at the workshop.

%.

-.

P'S.

"

',

-1

24

Position Paper
Terry Mellon

Computer Science Department
Arizona State University

Tempe, AZ 8528 7

I would like to address the question of course structures.

I feel that the programming assignments that are given in CS1 and CS2 are collectively the best
vehicle we have for teaching the concepts that should be covered therein. Therefore, I feel we
should attempt to produce some models and samples of sets of programming assignments.

Here Is one such model for CS1:

1. An assignment to introduce the computing system, the editor the compiler, the print-
er, etc. No programming should be required - the student simply copies a sample
program.

2. A "Hello, world" type program to introduce output formatting

3. A program to introduce expressions and assignments

4. A program to introduce subprograms

5. A program to introduce control structures

6. A program to introduce text files

7. A program to introduce arrays

8. A program to introduce records, pointers, and non-text files

I feel that assignment 2 should have the student modify an existing program instead of create a
program from scratch. It is crucial that the student's first attempt at programming be based on an
outstanding example thereof. This same technique should also be used at least for the assign-
ment on subprograms. t likewise has application in CS2 where it can be used to facilitate
meaningful, real-life assignments that would otherwise be too large.

I also believe that every assignment should specify exactly how the work will be evaluated. Crite-
ria such as readability, user interface, design, and correctness should be defined, and the value
of each should be stated.

We should also make some statement about the mechanics of evaluating and grading programs.
Should one collect only hardcopies of the listing and output, or should one collect a machine-
readable version of the source code, compile t, list it, and run t (i.e., actually test it)? I favor the
latter, as I favor including the topic of "testing."

What about pseudocode? Should it be taught? Yes. Should guidelines or even a standard be
established? Yes. Should it be required, collected and graded? No. It should be taught and
usqd in lectures in such a manner that the students will use it as a "natural" part of the design of
their programs. If we fail at this, requiring students to turn in pseudoode won't teach them how

25 .,5

100.-.7J . .* .

%%7 % 'F .- W
it',=

to use it - they'll just write it after the code is finished. What about having them turn it in several
days before the code is due (and before they could possible get the code finished)? I feel that
this is also counterproductive because so much of beginning programming is trial-and-error
coding. I much prefer to stress stepwise development, and to have them turn in at least one
intermediate (working) phase for the larger assignments.

I feel that separate compilation (not just inc/udes) should be taught as early as CS1. To allow
students to use large source files (over 200 lines?), even if they are modular, is to teach a habit ,,

that will have to be broken later.

26t

NI

(M.4

.4f

'

'

'

4-.

26 "

44, ~ 4 **o*

Position Paper
Philip Miller

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Employment Skills - I have never believed that undergraduate education should take as primary
objective the preparation of programmers for today's industry. I believe that the university is the
cutting edge, establishing what should exist in software engineering. It is the newv knowledge, the
new techniques, and the new way that should be taught in the university.

Concepts and Languages - I continue to believe that the concept of abstraction (control,
procedural, and data) is the foundation of programming methods and therefore software engi-
neering. The language has a huge impact on what is taught. This is true more in that the
introduction of a language causes teachers to reconsider what they are teaching, rather than the
intrinsic properties of the language. "

Alternative Structures - I believe that Programming by Components is the best way to get
students to understand procedural abstraction. I favor exploring courses that begin by having
students glue together components. Read before Write (or more commonly, Case Studies) is a
great way to teach the student about the decision points in program deveiopment. Mike Clancy
articulates this position well. I believe that case studies can be smoothly integrated into program-
ming by components courses. Finally I believe that programming in the small is an important
component of a first course, but is the capstone, not the foundation. It can be achieved by having
the student design and implement selected components, components which are not a composi-
tion of prepackaged tools.

Course Materials - I believe in programming environments for teaching the freshman courses.
Our MacGNOME environment is an example of what I want to use. it is a structure environment,
it integrates tools of editing, compiling and execution, and it provides alternative program views. I
believe that such environments dramatically improve what can be taught. And I have spent a
great deal of my professional life on creating them. I believe that data visualization will prove to
be very useful. I believe that texts, electronically integrated with programming environments will
be prove to be useful. I believe that such systems will be tough to build.

27

-. & -

a

-'I

0

-j

'WI,

I
-V-r

28

-9
II.

4'

p - 'C
4

W - '%% .'~tt Lit

Position Paper
Richard Pattis

Computer Science Department
University of Washington

Seattle, WA 98195

Background
I've taught CS-1/CS-2 courses continually for the past 5 years; first in Pascal and now (and for

the last 3 years) in Modula-2. I plan to switch both courses to Ada by the Fall of 1988, based on
the belief that (1) students can adequately learn and use Modula-2, and (2) Ada is a better V ̂
language in which to teach the fundamentals. The pedagogical jump from Pascal to Modula-2
was quite large; the jump from Modula-2 to Ada (both being based on Pascal, and its
shortcomings) will be less difficult: more syntactic In nature, although I plan to review completely
the global structure of my courses, adapting them to Ada's unique features and the experience
I've gained while teaching Modula-2.

Main Topic: Alternative Course Structures
1) The traditional programming-in-the-small style is unacceptable in languages like Modula-2 or
Ada. First, students can and should learn how to read and use simple packages (e.g. I/O and S,
utility operations: strings, random numbers, timers, modular numbers, etc). Once students learn
how to write their own subroutines, they can easily be taught how to write their own packages
(statements are to subroutines as subroutines are to packages; well as fields are to records -

and I teach records before subroutines). By instructing students in the use of smaller, simpler I/O
packages (for pedagogic reasons), they can be guided to design and implement small but inter-
esting improvements: such as the function GetlnRange (<message>, <low>, <high>), which has a
natural use in writing programs that select menu items (see the DNA program described below).
Assignments can aternate between writing or augmenting utility packages and writing or aug-
menting applications (using packages previously written by the instructor or the students
themselves).

A note on input output - I favor assignments where students write embedded systems that call
package operations to communicate with the real world (sense and alter the real world). Under a
simulator, sensing is just reading data and acting is just printing data (of course the actual pack-
age implementation is hidden from the student, just as any 1/O implementation would be - see
the cardiac monitor described below). Also, some state may be present in the implementation, to
tie future sensing operations to the results of previous acts. A more advanced testbed would run
a simulation, calling student functions to make crucial internal decisions.

2) The focus of the first three weeks of the programming classes that I teach is learning the
syntax and semantics of types, expressions, and statements (including various functions and
procedures imported from easy to motivate and understand packages). To me, knowing the
"meaning" of a construct means that students can efficiently hand simulate code containing that
construct. Only after students have mastered these basics, do I teach them the syntax that
encloses statements to make complete programs (although I assign them to compile/link/run

29
--a

~'a ~ ' "'a .. o,' " " " '# " " ,,, " " " " ,,' . . .-"%" "- ". "" ,,r .- "," " . .. ,.', .-. , . -," ", . ".- ." ", ". ". .- . .- ". " .- " " . .A . -

prewrltten programs earlier). Thus, the first part of my class Is mostly analysis of code fragments,
which shows the students many important programming idioms, with only a small amount of

synthesis.

I assign no "Hello World" programs; I wait for students to learn enough to write genuinely inter-

esting programs (to do otherwise fosters a poor view of the uses of computers). My first assign-
ment Is for students to write a program that controls an implanted cardiac monitor and automatic -

defibrillator (with distress diagnosed via a simple zero-crossing algorithm). Later, I alternate

programming assignments between writing complete programs and augmenting prewritten pro-

grams or packages. For writing complete programs, I either show my students a stepwise en-

hancement path to the solution (this is what I teach instead of top-down programming - both are
a form of stepwise refinement), or ask them to write a program whose overall control decom-

position is trivial (as a first 1-dimensional array assignment, my students write a small DNA anal-
ysis program, a lot like a one-dimensional editor, that consists of nine operations selected from a
menu; so students can immediately decompose the program into nine subroutine-sized units.

Thus, I still focus on coding at this level, and not so much on design: students need to master
their tools first, but they can accomplish this goal while studying and writing very interesting 0

programs.

3) Most current introductory programming books concentrate on programs as the unit of discus-

sion. This unit is too large and unwieldy for illustrating programming concepts economically.
Instead, the subroutine should be the unit of discourse, but generality is often a problem in
"standard" Pascal, where a lack of arbitrary-sized array types - especially for strings - reduces

the generality of code; also, in Pascal there s no convenient place to put (and refer to) such
code. Ada goes a long way towards overcoming both of these problems, via unconstrained types
and packages. Together these features allow subroutines to be effectively used as the unit of
discourse. The students can augment/create various packages with subroutines. Thus, the
focus can take on a distinct package/tool orientation (although a course that is focused too
closely on writing utility packages can become inbred; every so often the students should be
required to write a complete application program, using previously constructed packages). There

is a danger that should be avoided: instructors may be tempted to show too many package
specifications before students understand basic variables and control structures; this approach,
similar to the "procedures first" approach for which I have many criticisms, will confuse students

and be ineffectual. Instructors need more balance.

I center my CS-2 course on packages: the students study the specification of some obvious

packages (lexical, clock, queue, priority queue, table, stack, list, tree, graph, etc), and experiment
with these packages via some driver packages. As students learn new data structures and
programming techniques, they can re-implement these specifications according to various time

and space efficiencies. My first assignment in CS-2 is for the students to write a cross reference
program (about 2 pages of code), using previously studied lexical, table, queue, clock and string

packages. A later assignment requires them to re-implement tables as trees, and rerun the cross

reference generator.

30J

%0

JV~~J~N~~WKW~WM 7YW.U WWFW.~ MWJ, -I W r. -%R r .6 WU kr -9 I W1 I V V TM TT P7 'V V'~ ~ .'~

Alternative Topics: 2 Cents Worth on Each
1) Both engineering and science freshman take identical calculus, physics, and chemistry
courses; if these disciplines don't have a reason to bifurcate their courses this early, computer
science shouldn't need to split into science and engineering tracks yet either. I view the right first
computer science course as a programming course not a survey of the field (just as a first math
course calculus not a survey of mathematics, and a first physics course is mechanics not a
survey of physics). In each of these courses, students learn some theory and standard models
(and see how they are composed). In a programming course (or any other course where
design" is important) they will also learn some pragmatics of design, but the focus is still on

analysis; design is difficult until students master their tools and are able to concentrate soley on
design. Our undergraduate curriculum is too short for specialization at this level; our majors --

alternate between theory and programming classes; those who wish can take more

"programming-based" senior electives (like graphics, or our one software engineering course).
But to squeeze in more software engineering courses would squeeze out important "theoretical"
courses that will ultimately benefit students more. I think that a detailed study of software engi-
neering is more appropriate at the graduate level.

2) I break CS-1 concepts into three categories: algorithmics, abstraction, and analysis. The first
covers BNF, primitive types, expressions, and control structures. The second covers
composite/advanced data types (records, arrays, unconstrained types), subroutines (function and
procedures), packages (normal and generic - just another form of parameters) and protection
(private types). Analysis covers correctness proofs, big-O notation, basic numerical analysis
(mostly in the forms of problems and warnings), and computer numeracy (speeds, sizes, costs,
etc. of computers and communication hardware). Employers don't need syntactitians; they need
programmers who are trained in broad concepts, not a particular language or its features. Of
course, the language used for instruction should include the largest possible set of coherent
programming features. Beginners pay close attention to syntax; the more these features are
reflected in a language's syntax, the better (for example, the separation of specification and
implementation should appear in the language's syntax, as it does in Modula-2 and Ada).

4) I am writing a book. I would like to have a cheap, fast (meaning compiling and linking - I'd be
glad to use a compiler that correctly generates straightforward but naive code) compiler that
prints good error messages. I expect to design and code all kinds of packages that I will provide
to students (to use, but as importantly to read; so they must be cleanly written, well integrated,
and commented) as an integral part to my book. I don't want a subset compiler for education " -71
(I've heard rumors of these). it will, no doubt, not include the language features that I consider ""-""
important to teach beginners; what are those features? I'm not sure yet, which Is why it is prema-
ture to specify such an educational subset. I would like to see good debuggers with this software,-_ iN
and an Ada profiler that yields statement counts (not timings).

31

= . = , - ,= q " "I* , , " p % ,% ,% ,'=" '.. q,* .",=" .- " ,'. " , .°"%' " ... % '.. . .,,,
' °

""'

r r ~ rr r r Sr .n, ~nwi w~ wi rwi w' y~ ,-~ it WUWIIW

p

'U

S
N,

U.

U,

I,

0
Ut

U-

U-

'S

U,.

I.

.- p.

A

-p.

Up

S.

a
U

32

U.

- -~ ~ *~ .~ -U. *~

Position Paper

Stuart Reges
Computer Science Department

Stanford University
Stanford, CA 94305 V.

Each school must make its own decision about how much to stress employability. At Stanford we
care more about preparation for grad school, so we emphasize concepts over skills and breadth
over depth. The principles of software engineering are taught to all CS majors and a significant
group project is required in the senior year, but the software engineering course is one of a
number of project options. It is probably not possible to provide sufficient coverage of either SE
or CS to allow someone with a BS in SE to keep current. Thus, a major in SE would probably
create more problems than solutions, giving BS/SE graduates and their employers a false sense
of competence.

Two years ago the Stanford School of Engineering redesigned their undergraduate curricula and
spent considerable time discussing the role of software engineering education. Engineering stu-
dents establish engineering breadth by taking five courses in engineering fundamentals. This
category includes basic electronics, thermodynamics, statics, engineering economy, and so on.
Our introductory programming course was redesigned so that it would qualify. The most substan-
tial change has been a shift away from programming skills and towards an understanding of
larger issues. Concepts are emphasized in written assignments and are tested on exams and in
oral grading sessions. Our first course no longer requires a gigantic project and instead takes
time to more carefully introduce decomposition, program logic, testing, and reusability of code.
Our second course now requires 200- rather than 500-line programs so that we have time to
Introduce verification, modules and opaque types. Because of our new emphasis, starting this
year, students in mathematics and science can satisfy their technology requirement by taking our
first course. Thus, software engineering also has a place in service courses for engineering,
math and science students.

The concepts that should be stressed in the first year include the traditional topics of CS1/CS2
and those I have listed above. Beyond that, Stanford, like many other schools, has its own
version of conputer science fundamentals. Our two-quarter sequence first examines formal
models and then implementation details. Thus, the first course is almost a course in paradigms
of programming and the second is almost a traditional programming languages course. Students
learn LISP and Prolog in the first half and UNIX/C and Smalltalk in the second. A parallel
fundamentals course covers assembly language and introduces basic terminology for
hardware/software systems.

The programming language used in the beginning courses can have a profound effect upon the
education. For example, our Pascal system has an extension that allows us to create modules,
but it is impossible to create truly opaque types. Many students never get the message and don't
even know that they aren't getting the message because "it runs, doesn't it?" We will be switch-
ing our second course to another language next year and the only debate is whether to use

• ;- " ,- ." ,. :'.. ;> .';. :,, ... "

Modula or Ada. One side ot the argument is that we should start our kids in Modula for the same
reason that we put training wheels on their bikes, so that the set of possible mistakes they can
make will be limited during their initial learning. The other side of the argument is that whatever
pain might be experienced with Ada is outweighed by the payoff in the end, because they can do
more with Ada and because the future of Modula is uncertain at best.

Our first-year courses can certainly be improved as we move towards Ada/Modula. I am some-
what skeptical of reading before writing, but I have not tried it myself. I have done some prelimi-
nary work in programming by components and I think there is a big payoff here for SE education.

We need some Ada and Modula textbooks with the same level of quality as the current Pascal
books, but we don't need anything radically different. The new books need to adequately ad-
dress issues like modules and opaque types, but will otherwise be almost the same.

Other than good textbooks, the only other prerequisite to moving towards a new course structure
is some time off for instructors to prepare. Each school will want to approach software compo-
nents in their own way, so it is unlikely that anyone outside the institution could help. For ex-
ample, our second course is taken by industrial engineers who feed into a simulation course, so
we will want to develop a module of useful simulation routines and other modules with commonly
used data types. A well-orchestrated course can draw upon its students to perform much of the
raw work. For example, we plan to give a "tools* assignment where students submit software
tools for a class library. This library will be available for later programming assignments. The
best support SEI could give to aftemnative course structures would be to bring together a number
of educators for a significant period of time to rework their courses.

341

.%.

Position Paper
Frances Van Scoy

Department of Statistics and Computer Science
West Virginia University

Morgantown, WV26506-6001

Question I

To what extent should undergraduate education provide specific employment skills? Since most A%

computer science majors are employed developing software, should software engineering have a
more important role in undergraduate education? Should there be separate computer science
and software engineering majors?

Background
West Virginia University is the comprehensive land grant university for the state of West Virginia. %
Additionally many of our undergraduate students are the first generation in their families to attend %
college. Parents of our students and tax payers see a major role for us being providing students
with marketable skills. As a result, my department feels an obligation to provide specific employ-
ment skills.

On the other hand, computer science at WVU is in the College of Arts and Sciences. The
requirements of the college include the usual liberal arts courses, including two years of a foreign
language. The faculty in our department believe so strongly in the value of a liberal education for
our students that last fall we argued against a proposed administrative reorganization that would
have moved computer science to the College of Engineering.

The technical courses at WVU are in four main categories:

1. a 4 semester sequence of PLI (two semesters), assembly language, and data
structures

2. 1 year of calculus, 1 semester of statistics (with calculus prerequisite), I semester
of discrete math, and 1 semester of numerical analysis

3. three required courses in compilers, operating systems, and data base systems (in
each course a 4,000 SLOC term project is required)

4. three upper level computer science electives

We operate in the tension, then, of providing solid technical skills and also exposing students to
the breadth of a liberal arts program. AA

The Issue of Employment Skills
A technology driven field has the need to give students current technical skills and also the skills .
(and mental attitudes) needed for leaming new skills as the technology changes.

A similar problem is the extent to which different but relatively low level skills should be taught in
a college program. For example, it is probably reasonable to expect sophomore computer sci-

35

3" '

once majors to know two high level languages--say C and Ada or Pascal--reasonably welt.
However, If a department knows that likely employers of the students would like them to know
Fortran, Cobol, or Modula 2, should the department respond by adding electives in those lan-
guages at the freshman or sophomore level? How should credit for those courses count towards
the degree: as electives in the major (which might displace more advanc~ed courses), as free
electives towards the degree? If course credit for several introductory language courses Is con-
sidered inappropriate, Is it reasonable to expect students to learn a new language on their own
and it they do so how can they document knowledge of a language to a prospective employer
without a transcript entry?

At the very least, we need to teach students current best practice. Although most of us did niot
realize it at the time, our teaching Pascal to students in the late 1970's was good preparation for
them to learn Ada on the job in the late 1980's. We need regular updating of undergraduate
courses to reflect the best available technology.

The Rote of Software Engineering
Could I single-handedly change the computer science curriculum at WVU I would leave the upper
division program essentially unchanged but I would make major changes in the lower division
program. I would convert the PUI sequence of freshman year to an Ada sequence, move the
data structures course from spring semester of sophomore year to fall semester of sophomore
year (to be taken concurrently with the assembly language course or, possibly, in place of it), and
add a new software engineering course.

I would change the emphasis of the data structures course to the writing of generic packages to
implement abstract data types which would be used by the student in the advanced courses. As
standardized generic packages become readily available, I would again change the emphasis of
the data structures course to learning when to use which abstract data type.

The new software engineering course (at the second semester sophomore level) would be
"Principles, Methods, and Tools of Software Engineering for Small Projects" and would be in-
tended to bridge the gap between the 200 line programs of the current freshman/sophomore
courses and the 4000 line programs of the three required project courses at the junior/senior
level. I propose that we at the workshop compile a list of appropriate topics that should appear in
such a course. The course I am proposing here would extract those aspects of software engi-
neering best applying to 4000 line programs (1) to give the students useful tools for the required
projects courses and (2) to give them an appreciation for the need for software engineering for
constructing industrial sized software.

A Software Engineering Major?
Software engineering is a new field in the situation computer science was in 20 years
ago-immature, with little theoretical basis, generally unrecognized as an independent discipline.
An MSE program is very appropriate now as a professional degree, and there may well be cause
for the establishment now of a few Ph.D. SE programs as well. Software engineering courses
should begin to enter the computer science curriculum in forms such as the sophomore level
course I'm proposing and the senior level projects course developed by Jim Tomayko, but the
time is not yet right for a BSE major.

36

I see the migration path as being: a couple of SE survey courses in a BSCS program, some SE
electives, an SE minor or elective in a BSCS program, and, ten years from now, a full BSSE
program. ,,

Question 2

What are the concepts that must be taught in the freshman year? Are these different for corn-
puter science and software engineering? To what extent does the programming language used
influence the concepts that are taught or how well they are taught? What are the relative merits
of Pascal, Modula-2, and Ada in freshman courses?)

Concepts for Freshman
The freshman year is special. During the freshman year we need to lay the groundiwork for future
study in computer science and/or software engineering.

This spring at West Virginia University half of the students in my introductory computer science
course (required of freshman majors but open to all) had no computer experience whatsoever.
These students had no Idea of what a computer can do or how to make a computer do anything,
even run a word processing package or a game.

I believe strongly that students in a first semester computer science or software engineering
course need hands-on experience writing computer programs. This gives them an appreciation
for the ways a computer can be used.

Students at the novice level need to learn specific skills in three main areas: (1) algorithms, (2)
language, and (3) mechanical.

At the first semester freshman level, students are generally not able to construct elaborate algo- A
rithms. They must be taught explicitly many basic algorithms for operations such as computing
the sum, finding the maximum or minimum, or sorting a collection of numbers.

Regardless of the language studied, students must learn basic syntax and semantics of the lan-
guage and how to map details of an algorithm into language constructs. In the first course they Z
need to learn assignments, control statements, arrays, and subprograms. By the end of the
second course they need to be able to use record types, pointer (access) types, user-defined
types, and files.

The mechanical details required in a freshman course are perhaps the hardest to teach. Novices
need very detailed (where is the power switch?) unambiguous instructions. It is hard to give
explanations of why certain things are done without discussing topics not covered until later
courses.

Students using a mainframe need to learn procedures for logging on and off while students using
micros need to know about system diskettes. All need skill in using a particular editor and in
manipulating files (copying, deleting, printing).

K3

They generally need on-site consulting, especially in the early weeks of the first course. -

Freshman In Computer Science and Software Engineering
At the present time I believe software engineering is a discipline best taught at the graduate level,
so I see no need for different freshman courses for the two groups of students.

Impact of Programming Language
The choice of first language does have an impact on the first course.

PLA/ and Fortran 77 lack user defined types. The concept of a package is such a vital part of Ada
that packages must be taught early in an Ada course (I introduced packages in the first week of a
freshman Ada course last semester.) but is absent from Pascal and PL/I.

Relative Merits of Pascal, Modula-2, and Ada
Pascal processors are inexpensive and readily available. Most colleges already have Pascal
capability (compilers and experienced faculty). Many students can afford to buy Pascal compilers
or interpreters for their personal systems. Pascal is a small language with few enough features
that the language can be taught in its entirety in one semester. it cannot serve as a student's
primary language through college and onto a job in part because of the lack of separately com-
piled units in the standard and the requirement that the size of an array is part of its type (which
has severe impact on the ability to build libraries of subprograms).

I'm less familiar with Modula-2 but I've had trouble porting code between systems because of
very different 1/0 modules in two different implementations. I was surprised to learn last month
that an area empioyer is now seeking people with Modula-2 skills; he considers Ada too expen-
sive (cost of compilers, cost of computer, cost of training) but Modula-2 to have most of the
advantages of Ada.

Validated Ada compilers tend to be expensive and require at least AT class systems (although
that situation is changing). Ada jobs tend to require more system resources than do Pascal jobs
or even PLJI jobs. A college may be reluctant to make the substantial financial investment gener-
ally required for Ada systems or reluctant to allow unrestricted use of Ada for fear of degrading
system performance. Ada is a large language which requires at least two semesters to cover. (I
am now teaching a second Ada course which emphasizes concurrent programming.) Sophis-
ticated and simple features of the language are tangled together; for example, it is difficult to
teach simple text I/0 without mentioning generic packages. However, once learned, Ada can be
used very nicely in nearly all other courses in the curriculum and on the job. Ada supports
software engineering principles and practices, and therefore careful teaching of Ada should buildI
good attitudes and habits in students. I recommend Ada as the language to be used in freshman
computer science and software engineering courses.

Question 3 .

Are there alternative course structures that would facilitate teaching better computer science or
better software engineering in the freshman courses? Some examples of course structures am:r

1. Traditional: programming-in-the-small; each program built from scratch, beginning
with a "Hello, world" program

38

2. Read before Write: spend a substantial amount of time reading weEl-written, large
programs; students modify these programs to change or to enhance functionality
rather than writing programs from scratch

3. Programming by Components: a substantial number of program components are
available to students, and most programs are built by gluing those components
together in appropriate ways

An Alternative Course Structure
I would Ike to teach the freshman course as a true laboratory course. I envision a large pool of
small sample programs illustrating language details and algorithms.

Students would have lab manuals containing directed exercises at several levels.

1. What does pro gram xxx do?

2. What would happen if you made the following change to this program? Why?
3. Modify the program to do such and such.
4. Construct a new program to do such and such.

This way the students would be encouraged to become familiar with all language features
presented in class not just those used in the handful of programming assignments in a typical
course.

I tried to teach PLil in this fashion (in 1982 or 1983) but had to abandon the approach due to
limited computing resources. Currently a master's student is working with me to develop a labo-
ratory manual for such an Ada course.

My original expectation was that this kind of course would be used for a course emphasizing
programming-in-the-small. I believe the approach could be easily adapted, however, to a course
emphasizing programming by components (I envision an exciting graphical interface in this case)
or, perhaps less readily. to a read before write course.

Concerning Programming in the Small
In general I believe that programming in the small is an appropriate approach for the first course.
In learning reading skills, five and six year olds first need to learn reading readiness (those marks
on the paper mean something) while nine and ten year olds can read simple novels. Teenagers
can begin to analyze and critique serious works of literature. Similarly although our goal is that
eventually our students will be able to work on a team in building and maintaining large software

projects we deal in the freshman course with total novices who need some specific skills they can
take pride In and can build on in later courses.I
In many ways I'd prefer that a beginning sophomore be rather skillful in constructing 200 line
programs rather than explicitly aware of many software engineering principles but unable to con-
struct a simple program from scratch (without a specific library of components). I like for a student
to leave the freshman course with skills that can be used on many different systems, not just I
within that particular course environment.

3i

Concerning Read Before Write
This spring I taught Ada to a class of beginners, half of whom had no previous computing experi-
ence. During the first two weeks I introduced basic Ada concepts. The third week I presented an
overview of OOD and worked through a design for a solution to the formatter problem as de-
scribed in one of the SEI course modules. For two weeks I worked our way through an imple-
mentation of the text formatter and then assigned an enhancement of the system (adding break,
center, and space commands and commands to allow the user to set the size of the top and
bottom page margins). This was the least successful unit in my course although I'm eager to try it
again now that I have a better idea of some of the pitfalls.

Concerning Programming by Components
I believe that as software engineering becomes a mature discipline and is taught as a distinct
undergraduate discipline this will be the approach of choice for the introductory software engi-
neering course.

For the time being (while software engineering is not an undergraduate discipline and standard
libraries of reusable components are not available) I hope that, at least at semester's end, stu-
dents In such a course would be given source code for all the components they used in the
course so they could construct programs similar to those they built during the course on their own
once the course was over and they no longer had access to the course environment.

V

4I
40°1

Appendix: List of Participants
Lionel Deimel Daniel McCracken
Software Engineering Institute 160 Cabrini Blvd.
Carnegie Mellon University New York, NY 10033
Pittsburgh, PA 15213

Terry Mellon
Michael Erlinger Computer Science Department
Computer Science Department Arizona State University
Harvey Mudd College Tempe, AZ 85287
Claremont, CA 91711

Philip Miller
Gary Ford Computer Science Department
Software Engineering Institute Carnegie Mellon University
Camegie Mellon University Pittsburgh, PA 15213
Pittsburgh, PA 15213

Richard Pattis
J. D. Gannon Computer Science Department
Computer Science Department University of Washington
Institute for Advanced Computer Studies Seattle, WA 98195
University of Maryland
College Park, MD 20742

Stuart Reges
Computer Science Department

Norman Gibbs Stanford University
Software Engineering Institute Stanford, CA 94305
Carnegie Mellon University
Pittsburgh, PA 15213 Dv.dDavid Rudd .=

Computer Science Department
Harvey Hallman University of New Orleans
Software Engineering Institute New Orleans, LA 70148
Carnegie Mellon University .'
Pittsburgh, PA 15213 F VFrances Van Scoy_.

Department of Statistics and
Elliot Koff man Computer Science
Department of Computer and West Virginia University
Information Sciences Morgantown, WV 26506-6001
Temple University
Philadelphia, PA 19122

Note: Lionel Deimel was unable to participate in the workshop, although he had submitted a
position paper. Harvey Halman was then asked to participate, but he did not have time to submit
a position paper.

41

W, Owl ,

! ..,, . , .. -, ., .,, .. > -. .. -. . -. -. .. -. .,., . .. ,:

424

UNLIMITED. lINCoATSIo W,// 7
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

i. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILASILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

N/A I
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(SI

CMU/SEI-87-TR-44 ESD-TR-87-207

6& NAME OF PERFORMING ORGANIZATION 1b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/XRS1

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

G. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. %

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO NO. NO. NO.

PTTT R1TRGH. PA 1"213 N/A N/A N/A
11. TITLE (Include Security Claswificalion)

REPORT ON THE SEI WORKSHOP ON ADA IN FRESHMAN COURSES

12. PERSONAL AUTHOR(S)
GARY FORD, EDITOR

13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Dayl 15. PAGE COUNT

FINAL FROM TO DECEMBER 1987 44
16. SUPPLEMENTARY NOTATION

17. COSATI COOES 18. SUBJECT TERMS (Continue on reverse itf neceuary and identify by block number)

FIELD GROUP SUB. GR. INTRODUCTORY PROGRAMMING COURSES, DATA STRUCTURE COURSES
UNDERGRADUATE SOFTWARE ENGINEERING EDUCATION

IS. ABSTRACT (Continue on reverse ifnecesaery and identify by block numberi

THE UNDERGRADUATE SOFTWARE ENGINEERING EDUCATION PROJECT OF THE SEI EDUCATION PROGRAM

SPONSORED A WORKSHOP ON "ADA IN FRESHMAN COURSES" IN JUNE 1987. THE WORKSHOP BROUGHT

TOGETHER SEVERAL EDUCATORS TO DISCUSS HOW THE SOFTWARE ENGINEERING CONTENT OF BEGINNING
PROGRAMMING AND DATA STRUCTURES MIGHT BE IMPROVED. THIS REPROT DESCRIBES THE WORKSHOP

AND SUMMARIZES THE DISCUSSIONS AND CONCLUSIONS, AND IT ALSO INCLUDES THE POSITION

PAPERS PREPARED BY THE PARTICIPANTS.

40

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO 11 SAME AS RPT. 0 OTIC USERS U UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INOtVOIAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

KARL SHINGLER Itnclude Area Code)

(412) 268-7630 SEI JPO

DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

U-

- U~~U~W1~

ILMsD

Df 'U

