
-t 92P TE USE OF REPRESENTT ION CLRSES AMO 1/1IIPtENENTATIOU-DEPENDENT FEATURES I..(U)
CREGIE-NELI.GN UNIV PITTSBURGH PA SOFTWARE ENGINEERING

tUNKLR~llE I T .. 8 MYES TAL. JUL 87 F/0 12/5 M

,NOESENEEEE

1111 Ao 2

11111 L. 6

'JA *WjW W

'57

A 5% -S. .:OR

t,~ ,

Technical Report -.)
CMU/SEI-87-TR-19 % .

___ ESD-TR-87-170
___ _ Carnegie-Mellon University " FILE COP.

Software Engineering Institute

The Use of Representation Clauses
and Implementation-Dependent
Features in Ada:

IVA. Qualitative Results for Ada/M(44)
Version 1.6

({J B. Craig Meyers PT! C
01 Andrea L. Cappelilni DT"
00 July 1987 'LEfCTE

00 JN 2 7988

ppm\ /uc e-e

// S" T/E
, /

/ ,

a'Distri atin 4Jnlizdt-4

0 2 3

*, I "i

..- 'I-Ii. -

Technical Report
CMU/SEI-87-TR-19

ESD/TR487-1 70
July 1987

The Use of Representation Clauses
and Implementation-Dependent

Features in Ada:
IVA. Qualitative Results for AdaIM(44)

Version 1.6

B. Craig Meyers
Andrea L. Cappellini

Ada Embedded Systems Testbed Project

Ae;,nFor

By P

.. cIE1

D-St _ _ _ _ ..

Approved for public release.
Distibitlon unlimited.

Software Engineering Institute
Carnegie Mellon University

Piltsburgh, Pennsylvania 15213

jq

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information

exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Daniel Burton
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright C 1987 by the Software Engineering Institute

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
soentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Atn: FDRA, Cameron Station. Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering.
please contact NTIS directly: National Technical Information Services. U.S. Department of Commerce. Springfield, VA 22161

Ada is a registered trademark of the U.S. Department of Defense, Ada Joint Program Office MicroVAX, VAX. VAXELN, and VMS
are trademarks of Digital Equipment Corporation

"%

Table of Contents
1. Introduction 1

2. Discussion 3

3. Relation to Examples In Volume 7
4. Summary 11 ,

References 13

Appendix I: Questions Relevant to the Use of Representation Clauses and 15
Implementatlon-Dependent Features

I

N

CMUSEI-.TR-, 9

'IlI t

The Use of Representation Clauses
and Implementation-Dependent Features

In Ada:
IVA. Qualitative Results for Ada/M(44)

Version 1.6
Abstract: This report, one In a series, provides a qualitative assessment of the support of
representation clauses and implementation-dependent features in Ada provided by the
Ada/M(44) compiler, Version 1.6. The evaluation questions that were presented in a previ-
ous report of this series form the basis of the qualitative assessment. A subjective evalu-
ation of the support provided for these features is also presented.

1. Introduction
The Ada language was developed as a general purpose language applicable to the development and
maintenance of mission-critical systems for the Department of Defense (DoD). In the development of
the language, a need to allow the language to interact with the underlying machine architecture was
recognized. This coupling is discussed in Chapter 13 of the Reference Manual for the Ada Program-
ming Language [1].

A frequent characteristic of mission-critical systems is that they employ "packed" data structures.
Furthermore, within such packed structures there may be nonstandard data representations. For
example, an integer type may have a length of 12 bits, or some fixed-point type may have arbitrarily
scaled precision.

Such packed data structures are defined in Ada through the use of representation clauses. The use
of these clauses is highly machine dependent. That is, some compilers may provide only limited
support, while others may provide a full set of capabilities. Since representation clauses are imple-
mentation dependent, their use may affect the portability of any code which uses these features.

This report is one of a series of reports related to the use of representation clauses and
implementation-dependent features in Ada. The first report in the series, reference [2], provides an
overview of the use of representation clauses and Implementation-dependent features and contains a
series of case study examples. A second report, reference 131, formulated a list of questions ap-
plicable to the evaluation of a particular compiler from the perspective of representation clauses and
inplementation-dependent features. This Is followed by a discussion of experimental procedures and
methodologies, in reference [4]. Finally, In reference [5], a qualitative assessment of the support
provided for representation clauses and Implementation-dependent features for the VAx Ada compiler
was performed.

The purpose of this report is to provide a qualitative assessment of the support of representation
clauses and implementation-dependent features in Ada provided by the AdaIM(44) compiler. Thus,
the questions raised In reference 13] are answered here; the emphasis Is principally qualitative.

CMU/SEI-TR-19 1

X .

.

The decision to assess the Ada/M(44) compiler was motivated by the following reasons. First, the

development of this compiler Is funded by the Navy. This development is coupled to the Aa Lan-

guage System (ALS) which was originally funded by the Army. Second, the Ada/M(44) targets to the
AN/UYK-44, which is a Navy standard processor. Thus, the results reported here are expected to be

of interest to applications that use the Ada/M(44) compiler.

This report is organized In the following manner. In Chapter 2 we present a discussion of the qualita-
tive results applicable to the use of representation clauses and implementation-dependent features

for the Ada/M(44) compiler. As in reference 15], a generalized subjective assessment based on the

detailed results is also given. In Chapter 3, the relation between the results obtained and the ex-

amples presented in reference [2] is discussed. This discussion illustrates the use of qualitative
results, such as reported here, for application-specific problems. A brief summary appears in Chapter

4, followed by a list of the applicable references. The actual results, which are answers to specific
questions, are provided in Appendix I.

This report has been prepared by the Ada Embedded Systems Testbed Project at the Software
Engineering Institute (SEI). The SEI is a federally funded research and development center (FFRDC)

sponsored by the Department of Defense (DoD) and established and operated by Carnegie Mellon

University. This report was prepared while the authors were on sabbatical leave at the SEI.

J

-"=

,-. '-..

2 CMU/SEI-87-TR-19

4 •

WWWrMW W E PF f W W EVWU.r W. LIV W7U 2rfW r~yrwPr .vwwllrw w% '%~g.m '%.X 7U 'r. - U K - UWW

2. Discussion
A basic goal of reference [31 was to define a set of questions relevant to the assessment of a partic-
ular compiler from the perspective of representation clauses and implementation-dependent features.--
The questions appearing in reference [31 are of a qualitative nature, as well as quantitative. Refer-
ence [51 shows the application of that set of questions for the purpose of qualitatively assessing the
support provided for representation clauses and implementation-dependent features for the VAX Ada
compiler.

It is the purpose of this Section to provide a response to the questions posed in reference [31 for the
Ada/M(44) compiler in the same manner as was presented in reference [5] for VAX Ada. As the
emphasis here is toward a qualitative level of assessment, the reported results emphasize this aspect
of evaluation. In other words, the focus in this report is on whether a particular aspect of represen-
tation clauses and implementation-dependent features is supported, as well as the amount of sup-
port. Questions which are principally quantitative in nature may be evaluated according to the meth-
odology described in reference [4] and will not be addressed here. Thus, no attempt to evaluate
compiler performance is made in this report. In spite of this, it is believed that dissemination of these
results is warranted and are of interest to the application development community. -

The responses to the questions have been obtained from consideration of the applicable documen-
tation, as well as examination of selected generated code. The particular version of the Ada/M(44)
compiler which was used for this assessment was Version 1.6. The questions and answers are
presented in Appendix I. In the responses, we have attempted to cite the document that provided the
required information. The particular documents are cited in the following manner:

1. PSEH = AdaIM(44) Program Support Environment (PSE) Handbook [6]
2. RTEH - AdaIM(44) Run-Time Environment Handbook [7]
3. DN - Ada/M(44) Delivery Notes ADAM [8]
4. TD = AN/UVYK-44 Technical Description [9]

Some of the questions appearing in Appendix I can only be answered by detailed assessment, and
such questions have been so indicated. The detailed assessment requires quantitative procedures
such as those described in reference [4]. For our purposes, the term quantitative is used in a broad . ,
sense in that it refers to performance issues and measurements and also to detailed examination of
generated code to extract information about the internals of the compiler.

Although the responses presented in Appendix I are cast in qualitative terms, it is quite evident that
there is a considerable amount of information available. It is recognized that many users will desire
an overview of the support provided for representation clauses and implementation-dependent fea-
tures. Thus, in reference [5], a set of subjective criteria was discussed from which support of the
major aspects of representation clauses and Implementation-dependent features may be assessed.
The set of subjective criteria is the following:

1. Full Support: The compiler provides support for the language feature, subject to natu-
ral limitations Imposed on the hardware Implementation.

S.%

CMU/SEI-TR-19 -

9 ~ L .~A A AWAA..u A ~ A . 1'

2. Support with Minor Umitatlons: The compiler provides support for the language fea-
ture subject to only minor limitations. This implies, then, that the support provided
should be satisfactory for many applications.

3. Support with Major Umltatlons: The compiler provides support for the language fea-
ture but there are major limitations. This should be understood to mean that use of the
indicated language feature in many applications would be difficult.

4. Unsupported: The compiler provides no support for the language feature.

We stress that the criteria listed above are subjective in nature. There may be cases where a
particular category is supported with only minor limitations. It may be, however, that the minor limita-
tions could cause a serious problem for some applications. In spite of the caveat about the subjective
nature of the judgments to be presented, nevertheless, we believe they have merit.

The results presented are basically organized in correspondence with the categories appearing in
Appendix I. One category not present in Appendix I yet deemed sufficiently important enough to
include in this subjective evaluation is that of support facilities. We are referring specifically to docu-
mentation and debugging facilities. Below, each category title is given, followed by the subjective
rating. The rating is then followed by explanatory information where it is deemed especially relevant.

1. Pragma OPTIMIZE: Full Support.
2. Data Types Supported: Supported with Minor Limitations. The lack of support for

floating-point types with precision greater than six (decimal) digits may cause problems
for some applications.

3. Pragma PACK: Full Support.
4. Length Clauses: Supported with Minor Limitations. It is required that fixed-point types

be represented according to a constant size. This could present problems for certain
applications.

5. Enumeration Representation Clauses: Full Support. .5,.

6. Record Representation Clauses: Supported with Minor Limitations. Where a record
contains a component of a fixed-point type, restrictions on the size of the component
may be a problem due to the limitations imposed by the compiler.

7. Address Clauses: Supported with Major Limitations. Address clauses are not sup-
ported for objects.

8. Data Conversion and Assignment: Full Support. -
9. Representation Attributes: Full Support. Ada/M(44) provides an additional attribute

which allows the user to access physical addresses and may be helpful for some sys-
tems.

10. Pragma INTERFACE: Supported with Major Limitations. Only subprograms written in
assembler may be specified.

11. Support Facilities: Supported with Major Limitations. No symbolic debugger is cur-
rently available for the ANIUYK-44 target. Additionally, the documentation does not
provide as much information as a user would perhaps require. For example, in the
Ada/M(44) references 161 through 191, there is no Appendix F. Appendix F lists the
implementation-dependent characteristics. As another example, the Reference Manual
for the Ada Programming Language states that whether or not a record component can , -
overlap a storage boundary is implementation-defined. The Ada/M(44) references do
not specify whether or not storage boundary overlaps are allowed. , ,

4--

4CMU/SEI-87-TR-1 9

- -. -. .~ -~~. . . dy.*.~ .%

From the preceding summary, it is evident that the support for representation clauses and
Implementation-dependent features by Ada/M(44) has considerable variation. In some cases, there

Is more support than required by the language, such as representation attributes. In other cases,

notably address clauses, there is only minimal support provided or, as with length clauses, the sup-
port provided has restrictions as to details of implementations. The preceding illustrates two points.
First, the results presented here serve to illustrate the compiler-dependent aspects of support pro-
vided for representation clauses and implementation-dependent features. A second point - and of
possibly greater significance to application developers - is that the selection and use of a particular
compiler must be made with extreme care.

It must be stressed that the results presented in this report are of a qualitative nature. As such, they
describe the support for a particular aspect of representation clauses and implementation-dependent
features. The issue of support for a language feature is clearly different from either the performance
of the compiler or the assessment of the effect of use of the feature. Issues of the latter type are ,.-_
principally quantitative in nature.

4%

4,

"'p+

CMUISEI-TR-1 9 5 i'e

C-4

Ilk

6 CMUSEI-8-TR-1

LOV q

3. Relation to Examples in Volume I
In the preceding chapter, we presented a synopsis of the support provided by the Ada/M(44) compiler
for representation clauses and implementation-dependent features. The synopsis abstracted some,'
general results from the detailed answers.

It may be well, however, to consider the manner in which a report such as this would be used by
application developers. This is clearly an important issue and is now demonstrated. Thus, in the first
volume of this series, reference [21, a number of case study examples were presented. Those ex-
am•ples were drawn from the mission-critical systems community and contain certain characteristics
representative of problems typically encountered.

In the following, a brief statement of the problem for each example in reference 12] is presented. The
implementation of the particular example is then considered, based on the Ada/M(44) compiler which
is targeted for the AN/UYK-44. The ability to affect a solution to the stated problem is presented. The .,
discussion is based on the results presented in Appendix I. That is, we provide specific references to -".
the questions (and answers) deemed relevant for the example under consideration. It is believed that '.

such a procedure illustrates the manner in which a report such as this may be used by application
developers. .

In the following paragraphs, references are made to the questions and answers appearing in Appen-
dix I. Questions and answers are referenced by category letter followed by the number of the ques-
tion. For example, "F.3" refers to question 3 under category F, which is Record Representation
Clauses.

In Section 5.2 of the first report in this series, reference [2], an introductory example was given '

illust~ating the use of representation clauses. The example was that of a message header that
appears in every message used for communications between a shipboard Inertial Navigation System
(INS) and some external computer (EC). This example illustrates the length, enumeration, and
record clauses, with data of type integer and enumeration. The assumed value of
SYSTEM.STORAGEUNIT for the examples is equal to 8 and the default value for Ada/M(44) is 16.
Thus, this implementation would be invalid for Ada/M(44). Though, as stated in J.4, pragma
STORAGEUNIT is supported and can be used to change Ada/M(44) SYSTEM.STORAGEUNIT to
8 for these examples. With the inclusion of pragma STORAGEUNIT, this example would be legal
for Ada/M(44) since the requirements for this example are within the following restrictions:

1. The size specified in a length clause for an integer type must not exceed 16 bits (as
stated in D.2).

2. The storage specified in a component clause must be enough to hold any value of the
component type (as noted in F.3).

3. Record components are allowed to overlap storage unit boundaries (see F.4).

A note should be made that as stated in A.2, Ada/M(44) ordering of bits and storage units is right to ..

left, and these examples use left to right ordering. Thus, when examining the actual contents of
memory, the results will be different from that expected. If right to left ordering is required, say by '.
some external system, then these examples will not be valid for Ada/M(44).

CMU/SEI-TR-19 7

"p.'

'W 'W

The second example, given in Section 5.3 of reference [2], is that of a Test Message which is used to
test the communications interface between the INS and EC. This example contains a message
header (implemented in the previous example) and integer test data. As in the last example, the
requirements here are within the restrictions listed in F.3 that the storage specified in the component
clause must be enough to hold any value of the component type, and in F.4 that storage unit bound-
ary overlaps are allowed. Also, the implementation of this example, and some of the examples to
follow, use a predefined type INTEGER which is assumed to be 32 bits. Ada/M(44) predefined type
INTEGER is 16 bits, as seen in B.1. Note also in B.1 that there is another pre-defined type,
LONGINTEGER, which is 32 bits. Therefore, with the inclusion of pragma STORAGEUNIT and
replacing type INTEGER with LONGINTEGER, this implementation would be valid for Ada/M(44).

The next example, in Section 5.4 of reference [2], is slightly more complicated than the previous
examples in that it contains both fixed- and floating-point data. A navigation message is the example,
and it is used to send data such as ownship latitude, longitude, and speed to an EC. This example
contains a requirement that fixed-point data be represented in less than 32 bits. AdaIM(44)
represents fixed-point types in 32 bits as discussed in B.2. Based on this and the restriction listed in
F.3 that a component clause must specify enough storage to hold any value of the component type,
this implementation is illegal for Ada'M(44). To implement this example using Ada/M(44), a conver-
sion routine must be considered that converts the actual data field in the message to the default
Ada/M(44) 32-bit fixed-point representation. This will be the representation from which calculations . '

are performed.

The fourth example, Section 5.5 of reference [2], illustrates an implementation of analog conversion.
In this example, ship heading, roll, and speed data are DMA mapped to particular addresses and
must be converted into actual values. The requirement that data are DMA mapped was met by the
use of address clauses. This example would not be valid on Ada/M(44) since, as stated in G.1,
address clauses for objects are not supported.

In Section 5.6 of reference [2], an example of a message checksum was given. This function com- I
putes the checksum of the navigation message that was implemented in Section 5.4 of reference [2]
and discussed above. Recall that the implementation of the navigation message was invalid for
Ada/M(44). Thus, this checksum implementation would be invalid since it depends on that message

implementation. A general-purpose checksum routine based on the use of the generic function
UNCHECKED CONVERSION and dealing with valid message implementations would be legal for .I-6

Ada/M(44) since the following restrictions are met:

1. The size specified for an integer type must not exceed 16 bits (as stated in D.2).
2. Ada/M(44) supports UNCHECKEDCONVERSION (reported in H.3). ..-

3. The size of the source and target objects used by an instantiation of •

UNCHECKEDCONVERSION must be equal (as stated in H.4).

Also, as previously noted, type INTEGER must be replaced with LONG INTEGER.

The final example given in reference [2], Section 6.4.2, illustrates the use of pragma INTERFACE.
The problem in this example is the need to allocate and access some data structure containing data
and status information for an INS gyro. As part of this problem, a conversion must be performed to

8 CMU/SEI-87-TR-19

. ° . - = • • --• • . . • ° .-.' ° = • ° * • .o -,.. . °° . % - •.. '. -. - .- -.°

obtain a 32-bit, fixed-point quantity that has 15 bits of precision from arbitrary fixed-point quantities.
This conversion was performed by an assembler routine that is accessed via pragma INTERFACE
with representation attributes providing the appropriate parameters to that routine. This example is
compilable on Ada/M(44) with the following providing relevant information to verify this:

1. There are no restrictions on the use of 'ADDRESS (see 1.1).
2. There are no restrictions on the use of 'FIRST BIT (see 1.4).
3. There are no restrictions on the use of 'LAST BIT (see 1.5).
4. Pragma INTERFACE is supported, though the language name is restricted to

MACROMNORMAL which is the AN/UYK-44 assembler (see J.5).

The preceding has illustrated the use of results presented in this report to assess problems that are
representative of mission-critical systems. The purpose in presenting the above discussion, there-
fore, is to illustrate how reports such as this may be used. It is to be noted that the emphasis in the
above discussion has been on application of qualitative results. That is, the emphasis is more toward
obtaining a solution to a problem, as opposed to an assessment of how "well" the solution imple-
ments the problem requirement.

"N,

CMU/SEl-TR-1 9 9...

~ ~i '~' ~% ~ I

_____________ - ~r' 54-' r -J-' -4. W~ ~ rv L~ ~ WWU U U -' '9 N*WJ*'M*J'*'~~P TPTKW'*A ~.'. I

A
L~.

V

'-p

I-
I...

'4$

N
*St

4-.

t-ft

r

-4,
4-'.

.4'.

*4~ p

r

t~9

C%

a

.5

.5

4% 2
4.

4-.

10 CMU/SEI-87-TR-1 9

*44~

.4.

VV '% * 4. '% '4% ' ~ a- %*%~ '.%%8.V.%%'%%.-/.~."' '4~..~I b'4V~
4 .

4. Summary
This report is one of a series dealing with the use of representation clauses and implementation-
dependent features in Ada. This report provides a qualitative assessment of the Ada/M(44) compiler,
Version Release 1.6. Subjective criteria were established to provide an overall assessment of the
support provided by this compiler for representation clauses and implementation-dependent features.
In general and based upon those subjective criteria, this compiler provides support with minor limita-
tions for the implementation of representation clauses and implementation-dependent features.
Some exceptions, however, have been noted.

This report may be used in conjunction with the results of a detailed experimental assessment of the
Ada/M(44) compiler to determine its characteristics for use by specific applications. . r

SA

.. 1

CMU/SEI-TR-19 11

-'J -, .

*)OW'j INN

777,77 Ix IR WXVWJ%.7U

V

12 CMISE"7TR'1

X -

Moog

References
1. Reference Manual for the Ada Programming Language, Department of Defense MIL-

STD-1815, 1983. -
2. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Irplementation-Dependent Features in Ada. /. Overview, CMU/SEI-87-TR-14, ESD- .e

TR-87-115, July 1987.
3. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Implementation-Dependent Features in Ada. IIA: Evaluation Questions, CMU/SEI-87-
TR-15, ESD-TR-87-116, July 1987.

4. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and
Implementation-Dependent Features in Ada. 11B: Experimental Procedures,
CMU/SEI-87-TR-18, ESD-TR-87-126, July 1987.

5. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and
Implementation-Dependent Features in Ada. liA: Qualitative Results of the VAx Ada
Compiler, CMU/SEI-87-TR-17, ESD-TR-87-118, July, 1987.

6. Softech, Inc., AdaIM(44) Program Support Environment (PSE) Handbook, Final Volume
I, 30 September 1986, Contract N00024-85-C-7037.

7. Softech, Inc., Ada/M(44) Run-Time Environment (RTE) Handbook, Final, 30 September
1986, Contract N00024-85-C-7037.

8. Softech, Inc., Ada/M(44) Delivery Notes, 3 October 1986, Contract N00024-85-C-7037.
9. Sperry Univac, ANIUYK-44 Technical Description, January 1984.

16
',,-V

•.9,

0.5

5%

CMU/SEI-TR-19 13 .

14 CMU/SEI-87-TR-1 9

Appendix I: Questions Relevant to the Use of
Representation Clauses and Implementation-Dependent
Features

A. General:

1. What Is the basic unit of SYSTEM.STORAGEUNIT? (This Is useful when defining record
layouts.)

One word or 16 bits. [PSEH, page 7-71

2. What Is the ordering of allocation for storage units? Is It left-to-right or right-to-left with
respect to each other? How are bits numbered within storage units? Is It left-to-right or
right-to-left? Does the numbering always begin with zero? (This Is useful when defining
record layouts and verifying the actual allocation of record layouts.)

Bits within storage units are numbered 0 .. 15 starting at the right. [PSEH, page 7-11J The ordering of
storage units with respect to each other is right to left.

3. it Is also appropriate to consider the role of the underlying architecture, particularly
regarding data conversions from representation clauses to other formats. Does the machine
Include Instructions for inserting and extracting bit-length fields? What are the restrictions on
the use of such Instructions (for example, what Is the maximum field size to which an Instruc-
tion may be applied)?

In the current instruction set for AN/UYK-44, there are no instructions that support arbitrary bit length
insertion and extraction. Samples of machine code generated for AN/UYK-44 showed that calls were
generated to the runtime library to perform general purpose bit operations, e.g. bit move. There are,
however, instructions to perform masked substitution of bit fields but these instructions are restricted
to correspondina bit fields.

It Is interesting to note that the instruction set also supports basic mathematical functions, e.g.,
square root, sine, arcsine, in hardware.

[TDJ

4. Is pragma OPTIMIZE supported? if so, are there any restrictions on Its use?

Yes. The default argument is SPACE and the OPTIMIZE option must be given to the compiler for this
pragma to be in effect. [PSEH, page 7-3]

5. The use of representation clauses may present unusual problems throughout design and
coding. What facilitles exist for verifying results when representation clauses are used? We
are speaking here of the debugger; thus, are there restrictions on the use of the debugger
when representation clauses are used?

CMU/SEI-TR-19 15
K%

,

The DEBUG option to the compiler is not supported for Ada/M(44). Thus, currently there are no

symbolic debugging facilities with Ada/M(44). [PSEH, page 9-41

It should be noted that there are other facilities, namely MTASS, for simulation and/or debugging of
object code for the AN/UYK-44.

6. Does the compiler provide a load map that contains sufficient details to Identify the loca-

tion of quantities specified using representation clauses?

Neither the Ada/M(44) compiler nor linker provides an option for a load map with physical location of
program variabli-s. [PSEH, page 9-3 and page 11-51

7. Are there any restrictions on representation clauses?

There are no documented restrictions.

8. Compiler Implementors currently have the option as to what degree, If any, the features In
Chapter 13 of the Reference Manual for the Ada Programming Language will be supported. It Is
conceivable that upgraded versions of an Implementation will enhance the support originally
available for such features as representation clauses. How is the documentation upgraded?
Is It by release notes or page changes? The manner In which this Is accomplished can affect '."

the ease with which documentation can be used.

The principal documents referenced by us, namely references 16] and M7J, are final deliveries on the
contract. We are not aware of change pages or release notes to the above documents. It is not
known at this time the mechanism by which documentation will be upgraded. A set of delivery notes, -*

reference [81, accompanied the documentation received and listed known problems in the software.

1,-

16 CMU/SEI-87-TR-1 9

' 'S

flPl yFlflll 'UN"--v r r. V ml

J

B. Data Types Supported:

1. What amr the basic ImplementatIons of integer types?
a-%,

Ada/M(44) offers the following two Integer types:

" INTEGER with range -2"'(15) .. 2"(15)-1
" LONGINTEGER with range -2"(31).. 2"(31)-1

[PSEH, page 7-6]

Type INTEGER Is stored as a word, which is 16 bits. Type LONGINTEGER is stored as a pair of
words, where the most significant portion of the object is stored at the even word address and the
least significant portion of the object is stored at the next odd address. [PSEH, page 8-2]

2. Wat are the basic Implementations of fixed-point types?

Each fixed-point type is stored as a right justified integer within 32 bits and with an implicit scale
factor. [PSEH, page 8-3] .,-

3. What are the basic Implementations of floating-point types?

Ada/M(44) offers one floating-point type:

FLOAT with precision of 6 digits in the range
-7.237005E75 .. 7.237005E75.

[PSEH, page 7-6]

Type FLOAT is stored as two longword-aligned addresses. Longword-aligned means that the least I.
significant bit of the first word of the object must be bit 0 of an even memory address. [PSEH, page
8-31

4. Does the compiler provide predefined unsigned data types? If not, Is it permissible for a
user to define these types? For example, Is the following legal:

type UnsignedSmallInt Is range 0 .. 7;
for Unsigned_Small_lnt'SIZE use 3; .-

Ada/M(44) does not provide any unsigned data types though the example above compiles without
error. Thus, it is permissible to define unsigned integer types that are less than or equal to 16 bits
since the largest value allowed for the size specified in a length clause for an integer is 16. (See
D.2). -j

CMU/SEI-TR-19 17
d

4.1

e -C

C. Pragma PACK:

1. Does the compiler support the use of pragma PACK?

Yes. [PSEH, page 7-3] ',

2. What restrictions are placed on the use of pragma PACK? For example, are there certain
types that may or may not be packed?

There are no documented restrictions on the use of this pragma. [PSEH, page 7-3]

When pragma PACK is in effect, the compiler does not override the default size of an integer or
enumeration type, unless a length clause is given. If a length clause is given, the smaller size of
either the default size or the size specified in the clause is used. JPSEH, page 8-2] -'

oqr

,,-.

18 CMU/SEI-87-TR-19

a a S

D. Length Clauses:

1. Does the compiler support the use of length clauses? What are the restrictions on their
use?

Yes. [PSEH, page 7-81 There are no documented restrictions.

2. Are there restrictions on the use of the SIZE attribute designator In a length clause?

The following restrictions exist:

* For integer types specified with range L.. R the size, n, specified must be such that:

*:n!516 where R < 2 n1-l and L -2n
-

1 < n: <15 where Rs 2n-1 and L > 0"

By default, a size 16 is used when R < 215-1 and L > -215; otherwise, a size of 32 is
used.

" For fixed-point tes, the size specified can only be 32.u
* For floating-point types, the size specified can only be 32.

" For enumeration types, the size, n, specified must be such that:

2 n < 16 where 'FIRST and 'LAST both fal within the range -215 .. 1

* 1 c n < 15 where 'FIRST > 0 and 'LAST < 2('SIZE)-1

The default size is 16.
" For arrays and records, the size specified must be less than or equal to 231-1. IPSEH,

7-11]

[PSEH, page 7-8]
3. Are there restrictions on the use of the STORAGESIZE attribute designator In a length

clause?

There are no documented restrictions.

4. Are there restrictions on the use of the SMALL attribute designator In a length clause?

There are no documented restrictions.

5. When using a SIZE attribute designator In a length clause the Reference Manual for the

Ada Programming Language states that the value of the expression specifies an upper bound
for the number of bits to be allocated. The presence of a range constraint or the use of a
predefined type Implicitly defines the maximum number of bits required to allocate objects. If
extra bits are specified In the length clause, are these extra bits allocated by the compiler?

With the available documentation and the absence of a facility that provides a load map, we were
unable to resolve the issue raised above. Due to this fact, detailed experimentation is required for
resolution of this issue.

CMU/SEI-TR-19 19

~ .q.~
4 .

j~ ~ ~ %V.
Tieq-.,' ~~4

6. Suppose a type, with associated length clause, has been specified storage where the
number of bits Is not sufficient to store the specified range of values. For example, suppose
an Integer type with range 10 .. 13 Is defined, and three bits of storage are allocated for that
type. Is an error generated for this case? If no error Is generated by the compiler, how Is a
case such as this treated?

The following was compiled and an error stating "not sufficient storage" was received:

type Int is range 10 .. 13; p.
for Int'SIZE use 3;

7. What Impact does the length clause have on the packing algorithm of composite types?

Detailed experimentation is required for resolution of this.
.-'.

8. What Is the effect of pragma OPTIMIZE (TIME) on storage allocation when length clauses
are used?

Detailed experimentation is required for resolution of this.

9. What Is the effect of pragma OPTIMIZE (SPACE) on storage allocation when length
clauses are used? ...

Detailed experimentation is required for resolution of this.

10. What Is the effect of pragma PACK on storage allocation when length clauses are used?

Detailed experimentation is required for resolution of this.

% %q

. 4 °

o'a

.4,

20 CMU/SEI-87-TR-1 9.

a.

.,

E. Enumeration Representation Clauses:

1. Does the compiler support the use of enumeration representation clauses? What are the
restrictions on their use?

Yes. [PSEH, page 7-81 There are no documented restrictions. Preliminary tests show negative code
values are allowed.

2. Consider an enumeration type and associated enumeration representation clause where
the enumerated values specified are not contiguous Integers, such as:

type Name Is (Name 1, Name 2, Name 3, Name_4); " r
for Name use

(Name 1 => 1, Name_2 => 5, Name_3 => 12, Name_4 => 163);

The enumeration type may not be efficiently Implemented because of the noncontiguous na-
ture of the Integers specified In the enumeration representation clause, Illustrated above.
Hence, how are enumeration types represented Internally, particularly In the case where
enumeration clauses are specified with noncontiguous values?

Detailed experimentation is required for resolution of this.

3. What Is the effect of pragma PACK on storage allocation when enumeration represen-
tation clauses are used?

Detailed experimentation is required for resolution of this.

4. What Is the effect of pragma OPTIMIZE (TIME) on storage allocation when enumeration
representation clauses are used?

Detailed experimentation is required for resolution of this.

5. What Is the effect of pragma OPTIMIZE (SPACE) on storage allocation when enumeration
representation clauses are used? I
Detailed experimentation is required for resolution of this.

CMUISEI-TR-19 21

,r "

F. Record Representation Clauses: S.

1. Does the compiler support the use of record representation clauses? What are the

restrictions on their use?

Yes. [PSEH, page 7-81 There are no documented restrictions. IN

2. What are the restrictions on the use of the alignment clause In a record representation

clause?

The only values allowed for alignments are 1 and 2 (for word or doubleword alignment). [PSEH, page

7-111

3. What are the restrictions on the use of component clauses In a record representation .- ,,

clause?
A component clause must specify enough bits to hold any value of the type of the component being

allocated. Components of the following types cannot be specified with a component clause: access,
array, record, and task. [PSEH, page 7-11]

4. Are there restrictions on the overlap of record components with respect to the basic

machine storage unit? For example, If a machine has a SYSTEM.STORAGE UNIT equal to 16
bits, is it permitted to have components of a record that are larger than this value?

Preliminary tests showed components can overlap storage unit boundaries. Thus, components can

be larger than 16 bits, which is SYSTEM.STORAGEUNIT.

5. Consider the case when a record is specified with a record representation clause. Where
Is a record component placed which has no associated component clause?

Storage is first allocated to those components that have component clauses. Following this, storage
is allocated for the remaining components of the record using a first-fit algorithm. In particular, if there

are gaps between the components specified with a component clause, the storage within these gaps
is allocated by a first-fit algorithm. Note that the use of the a first-fit algorithm as indicated above
minimizes total storage allocated for a record.

[PSEH, page 8-5] .

6. What Is the effect of pragma OPTIMIZE (TIME) on storage allocation when record repre- A,
sentation clauses are used? 6

Detailed experimentation is required for resolution of this.
41

7. What Is the effect of pragma OPTIMIZE (SPACE) on storage allocation when record repre- ,.

entatlon clauses are used? -

Detailed experimentation is required for resolution of this. .,.,
5%

22 CMU/SEI-87-TR-19
-, e-,

t ' " r • _.¢ -, " , . .-.._ - . 5 " '' ' "" "" "'", p" ""," -t" " '" *"*"'" .. '-r ,"""""""" """,

8. What Is the effect of pragma PACK on storage allocation when record representation
clauses are used?

Detailed experimentation is required for resolution of this.I

Z.

.1M2

A

G. Address Clauses:

1. Does the compiler support the use of address clauses? What are the restrictions on their
use?

Yes. An address clause is only allowed for a single task entry. An address clause is allowed only
within a task specification compiled with the EXECUTIVE compiler option. The values allowed for the
simple expression in an address clause are the allowable interrupt entry addresses given in Appendix
C, of reference [7]. If more than one task entry is equated to the same address, the most recently

executed entry permanently overrides any previous entries. [PSEH, page 7-12]

Note that programs with an address clause specified for an object compile and link without error.

2. What Is the type SYSTEM.ADDRESS?

Type SYSTEM.ADDRESS represents virtual addresses in the range 0
SYSTEM.MEMORYSIZE-1. [PSEH, page 7-7] "i.

3. What Is the effect of pragma OPTIMIZE (TIME) on storage allocation when address
clauses are used?

Detailed experimentation is required for resolution of this.

4. What Is the effect of pragma OPTIMIZE (SPACE) on storage allocation when address
clauses are used?

Detailed experimentation is required for resolution of this.

5. Does the compiler enforce strong typing In the presence of address clauses? For ex-
ample, Is the following recognized as erroneous by the compiler:

type Tjl Is range O .. 100;
O_1 :T_ 1;
for_1 use at 16#1000#;

type T_2 Is digits 2 range 0.0 .. 100.0;
O_2:T 2;
forO_2 use at 16#1000#;

In spite of the fact that address clauses for objects are not supported, this example (using allowable
addresses) does compile without error.

6. Does the compiler or linker recognize potential conflicts when address clauses are used?
That is, suppose an address clause Is present that references some address, say X. Assume
that the address X Is such that It lies within the address space of generated code. How Is this
case treated by the compiler and/or linker?

-!
This is not applicable to Ada/M(44) since the only allowable values for the simple expression in an
address clause are predefined by Ada/M(44). Thus, such conflicts will not occur.

24 CMU/SEI-87-TR-19

'
Cs . -V

'JV" w M p ~ MI' W71 XL -. V'Wfv"L 7X -14 V -'9~ ~W I IV wY " = v W-jV VW' ~ V

I.I

H. Data Conversion and Assignment:

1. How Is conversion accomplished between values of a type specified by the default repre-
sentation and a type that Is specified with a representation clause? (This refers to the use of a
new (derived) type that Is defined In terms of a representation clause.)

Detailed experimentation is required for resolution of this.

2. For conversions between objects of different types, does the compiler produce In-line
code or generate a call to a library routine to accomplish the conversion?

Examination of generated code from preliminary tests showed the following:

" when converting an integer value to a floating-point value, the integer value is viewed as
a fixed-point value and the AN/UYK-44 instruction, FXC, which converts fixed-point
values to floating-point values, is used

" when converting a floating-point value to an integer value, a call was made to a run-time
library support routine to affect the conversion id

The AN/UYK-44 instruction set also includes an instruction, FLC, which converts floating-point values
to fixed-point values.

[TDI

3. Is support of the generic function UNCHECKEDCONVERSION provided?

Yes. [PSEH, page 7-12]

4. Are there any restrictions on the use of UNCHECKED CONVERSION? For example, are U..

there any restrictions on the source and target types for UNCHECKEDCONVERSION? Do
they have to be of the same size?

The size of source and target objects must be the same. [PSEH, page 7-12]

1

CMU/SE-TR-19 25 -,

I. Representation Attributes:

1. What are the restrictions on the use of the 'ADDRESS representation attribute? How

does the compiler interpret the use of this attribute?

There are no documented restrictions.

2. What are the restrictions on the use of the 'SIZE representation attribute? How does the

compiler Interpret the use of this attribute?

There are no documented restrictions.

3. What are the restrictions on the use of the 'POSITION representation attribute for a record

component?

There are no documented restrictions.

4. What are the restrictions on the use of the 'FIRST-BIT representation attribute for a -

record component?

There are no documented restrictions.

5. What are the restrictions on the use of the 'LASTBIT representation attribute for a record

component?

There are no documented restrictions.

6. What Is the effect of pragma OPTIMIZE (TIME) on the values of the representation
attributes?

Detailed experimentation is required for resolution of this.

7. What Is the effect of pragma OPTIMIZE (SPACE) on the values of the representation

attributes?

Detailed experimentation is required for resolution of this.

26 CMU(SEI-87-TR-1 9

J. Miscellaneous:

1. Suppose an object has been allocated storage where the number of bits Is not sufficient
to store the specified range of values. For example, suppose an object has been allocated
three bits of storage, but Is specified to be In the range 10 through 13. Is an error generated
for this case? If no error Is generated by the compiler, how Is a case such as this treated?

The following was compiled and an error stating "not enough storage specified for Rec.B" was
received:

type Int is range 10.. 13;

type Rec is
record

A: Int;
B "Int;

end record;

for Rec use
record

A at 0 range 0 3;
B at 0 range 4.. 6;

end record;

2. Does the compiler support the use of pragma SUPPRESS?

Yes. [PSEH, page 7-41

3. What restrictions are placed on the use of pragma SUPPRESS? For example, can every
check be suppressed?

The following restrictions exist:

* suppression of OVERFLOWCHECK applies only to integer operations
* the pragma only has effect within the compilation unit in which it appears except if

ELABORATIONCHECK is suppressed which applied at the declaration of a sub-
program or task unit applies to all calls or activations.

[PSEH, page 7-4]

4. Is pragma STORAGEUNIT supported? If so, are there any restrictions on the argument?

Yes. This pragma must appear at the start of the first compilation when creating a library. [PSEH,
page 7-3]

5. Is pragma INTERFACE supported? If so, are there any restrictions on the allowable
forms and places of parameters and calls?

Yes. Pragma INTERFACE (argl, arg2) is supported where the first argument specifies the language
and is restricted to the value MACROMNORMAL. The second argument specifies the name of the

CMU/SEI-TR-19 27

externally supplied subprogram. Thus, one can only interface to assembler language. [PSEH, page
7-3] -1

6. Is pragma SHARED supported? If so, are there any restrictions on Its use?

Yes. There are no documented restrictions. [PSEH, page 7-3] ',"

7. Are there other Implementation-dependent features supported such as pragmas or
attributes?

There is one Ada/M(44) defined attribute relevant to this area, namely PHYSICAL ADDRESS. This
attribute applies to an object and yields the absolute address in physical memory of the object.
However, in a test case this attribute was applied to a variable inside a procedure and an error was
received. [PSEH, page 7-5]

There is an option to the AdaM(44) compiler, EXECUTIVE, which allows the user code to run in the
executive state of target, and allows access to runtime support library subprograms and data. As
stated in G.1, this option must be in effect when using address clauses. [PSEH, page 9-5]

*. .'.

,::

2-

28 CMU/SEI-87-TR-1 9"

S CURITV CLASSIFICATION OF THIS PAGE ._ p%'

REPORT DOCUMENTATION PAGE ,',

'Z."

Ia REPORT SECURITY CAS SIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED NONE i

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2. OECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-SEI-87-TR-19 ESD-TR-87-170

0& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7g. NAME OF MONITORING ORGANIZATION -

E f applicable) ".

SOFTWARE ENGINEERING INSTITUT SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State gnd ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731 , ,:

Go. NAME OF FUNDING/SPONSORING Si. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION if applicablel

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003

Ic. ADDRESS (City. State gnd ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMENTC4 PAO.21 NA NA N/A%

SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO NO. NO NO
PTTTRCRH. PA 15213 N/A N/A N/A"'"

11. TITLE fInclude Secrity Class'ficatont I -"

The Use of Representation Clauses and Implemintation-Depe dent Featu es in Ada:
12. PERSONALAUTHOR(SI IVA. Qualitative Results for Ada/Mk44) version 1.b
B. Craig Meyers and Andrea L. Cappellini

13. TYPE OF REPORT I13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. D,) 15. PAGE COUNT,

FINAL FROM _ TO July 1987 28
1S. SUPPLEMENTARY NOTATION

17. COSATI CODES 16. SUB3JECT TERMS (Continuae on rauerse of~ necessary and identify by block nunibert

FIELD GROUP SUB. GR. representation clauses in Ada
implementation-dependent features in Ada .,
qualitative results for Ada/M(44), Version 1.6 ..

19. ABSTRACT l ~ontiut on euor,oef necessary iad ienify by block number)

rhis report, one in a series, provides a qualitative assessment of the support of
representation clauses and implementation-dependent features in Ada provided by the
Ada/M(44) compiler, Version 1.6. The evaluation questions that were presented in a

previous report of this series form the basis of the qualitative assessment. A
subjective evaluation of the support provided for these features is also presented.

-,3

20. DISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED][SAME AS RPT 0 DTIC USERS X3 UNCLASSIFIED, UNLIMITED
'i

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL i. .nclude A e Codep b

KARL SHINGLER (412) 268-7630 SEI JPO

DO FORM 147.3 A. APR EDITION OF 1 JAN7 3 IS OBSOLETE INI TMITF). 1INCI.ASS1FI.T)

ILMsD

,\I'xMC.ff, I',

