D-R168 634 SPIRE BASED SPERKER-IND
RECOGNITION USING E

EPENDENT CONTINUOUS SPEECH 172

IXED. . (U AIR FORCE INST OF TECH X
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. R G DANSON
UNCLASSIFIED DEC 87 AFIT/GE/ENG/87D-14 F/G 12/9

L 8% 4% 429 0% Y

R YAR KN

MG S KRN AR NN

PARr

RE AN KNI XN R SN O LU W]

- L .
i == e
= |
[
22 s poe

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

oW ——. W
. \ e ’ -
- e g 4 . .- - - A 4 P . T

‘ - . T CRAN oy -

* .] > ", N ‘l.;‘-:. 'h\

d \ . -(_.-. Can A, [ALOLY 5:.\

¢ AR N

» o ()

L Cs
A 0 'nq.'ﬁ
XY, o T P

J

MNATEANAR AEAFMFNERY

-)

Ay e e = -

PR g a2

- m e

R o

e

-

- gy o o gy W

- - - -
_ .. e
“————

o o - -

4

\
e

.
?t't.:'\3~ A) ML X A

AD-A188 834

THESIS

AFIT/GE/ENG/B7D-14

SPIRE BASED SPEAKER~-INDEPENDENT
CONTINUQUS SPEECH RECOGNITION
USING MIXED FEATURE SETS

Robert G. Dawson, Capt, USAF

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNO

Wright-Patterson Air Force Base, Ohio

"

g been
T |8 2
ShawAd 7Roa 18 calimived.

v R T L I T AL Ly
IO VL B AT N S, A" SO

y N
AR AN N \'.hcl. of

W
LR

4

-d

e

‘-‘

"
)

v

-

L

NN

LOGY

TONTO TN TR WY)

-}.
i
o

%
i d

a4

v 5 v &
i r"é-éfﬁ'?

o 'x
‘-‘

SPIRE BASED SPEAKER-INDEPENDENT :;-'.:
CONTINUOUS SPEECH RECOGNITION ';,..’-;;.» (
USING MIXED FEATURE SETS Ny
A
THESIS T
YOI -
Robert G. Dawson, Capt, USAF "A.:f\."
i Lt
AFIT/GE/ENG/87D-14 ._;-t‘ N

Approved for public release; distribution unlimited

Yo

SR
e
e A8)

f‘.--_.q .’l

O O WAY o M et P e L A M i T Y T T o o o

AFIT/GE/ENG/87D=-14

SPIRE BASED SPEAKER-INDEPENDENT ddy:
!
CONTINUOUS SPEECH RECOGNITION iutut

USING MIXED FEATURE SETS QN\.
THESIS P

Presented to the Faculty of the School of Engineering v*‘ﬁ
of the Air Force Institute of Technology N

Air University RN

In Partial Fulfillment of the °rie

Requirements for the Degree of S wa

Master of Science in Electrical Engineering : ateh

Accession §§%~ M

NTIS GRA&I rF 5y
DTIC TAB e
Unannouniced O \

Justification~______ij ﬁ;,

<
] AN
N

By.
Distr@p\;tiron/ o "
Availability Codes 5\5\‘
Avail aund/or AN
pist | Spectal &.a A

SN
Al Rl

Robert G. Dawson, Capt, USAF

December 1987

Approved for public release: distribution unlimited 4

=2
s

Acknowledgements

5% % S
- -

ores

Ly

This work is dedicated to those I love; my parents, Lt Col and Mrs.

PR L

v
s

William R. Dawson, whose example made this work possible; and my wife,

Monica, whose love made it worthwhile.

P4

[d
AE NS

Ao
¥
Y
x

Also, special thanks to my thesis advisor, Dr. Matthew Kabrisky,

A

'y

]

whose special combination of inspiration, knowledge, and humor made this ’ 3

b
4
¥

work actually fun, SN

~ Al

;’ --
R
B

fan s

A et
AAAPLE
S ARRARA!

N A

" w s
19

N/
g
4"

2
[l s
PO :

X
Sy e
NSRS

ii

S & 4, &) L3)) 3
"-"t
e
)
2
Table of Contents :gﬂ .
£
Page A
Acknowledgements o« o« o o ¢ o o o o o o ¢ o o o o s o o 6 o o o o it Y
~
List of Figures . . L] - . L] L] . * L] L L] L] L] L] L] . L] L) L2 . L] . L] vi q "
ALY
Y
List Of Tables L] L] L * - - L] L] L] . - L] * L] - L[] L] L] L] L] L] L] L] L2 L] Viii » ';'}
AbStY‘aCt e ® & & 8 5 e & 66 e ® & 6 6 * 6 & 6 ° & © o ° & s 6 s @ iX ti h]
S S
I' IntrodUCtion L] L] * L] L] L] . L] . L] L] L] L] L] . * L] L] - L] L[] L] 1-1 .&
i
N
BaCkground e &6 & e & s s & e+ & e & & ¢ & s o s e o 1-1 ¢
Deflnltions » [. [. [. . . [. [. 1-3
Templates and Features .« « o« s o a o o s « o & 1-3 éj?i
Dynamic Programming . « « o« o o o o o o o o o 1-6 ;ﬁf
Connected Speech * * e e e e o o e o o o . 1"7 :ﬂ“:
Speaker Independence . « « ¢ s o o o ¢ o o o o 1-7 Y
Problem L[] - . L] * L] L] L] . - . L) . * . L] L] L] * ® L] * 1_8 .s
Scope . 3 [[] [[. . . [. 3 3 .] L) . . [. ° [3 1-8 5 - "
Appl‘oaCh e o & o o * o s o o e & o o o s * s LI) 1-9 r;fv"vf
Sequence of Presentation . « o o ¢ ¢ ¢ ¢ ¢ 4 0 e 4 1-9 331
II. Acoustic Processing Environment « ¢« 4 ¢ ¢ ¢ ¢ ¢ o ¢ o s o 2=-1 :%:f
e

L
.
¥

Introduction « o ¢ ¢ ¢ o o o o » ¢ o s o o s o o o o

LiSp ® & o @ 6 s © & o 9 & o o e 9 ° 5 2 s e s * o .

2
2
SPIRE ¢« & ¢ ¢ o o o o o o ¢ ¢ o o o o s s s s o o o 2-
2
2

PR AL

J
ON N = =
.‘l’{'l‘

OVervieWw o ¢ o o o o o o o o o o s o o o o o o

»

.F‘}l.‘

.

Interfacing SPIRE « « o ¢ « o ¢ o o o s s o o @ - o
Hardware « o+ o o o o o o o ¢ s o o o s o o s o o o o 2-10 hi
LISP Machine .« ¢« « o o o o o o s e o o o o o & 2-10 N
Array ProcesSsSOor « « « o« s o o o o s s o o o o 2-10 by
Speech DIZItIiZEr v v & o o o o o o o o o o o » 2-11 BN

e
X

Summar‘y of Equ ipment e & & o & 2 & & o o + o . . o 2-1 1 '.,‘.:.(
s
III L] System Design ¢ @ & e & & & & & 8 S+ * o ¢ " s o 0 s+ s 2 o 3"1 :\ Y,

IntPOdUCtiOn ® o e & 8 o e o O s ¢ & © o+ 5 * s s o o

A

3 o,
Utterance Processing o ¢« « ¢ ¢ o o o o o o o o o & o 3-1 \$\$
Feature Extl”aCtion e o o * * o ® e o ° & s o @ 3-1 l*\l
Wide-Band and Narrow-Band Spectrum 3=-1 :‘f\
LPC Spectr‘um) . . . 3-2 ‘~‘:
FOPmantS . ® & ° 8 & & s s 2 o & e o o o 3-2 . ~”‘
Frication Frequency .« « « o ¢ o o o« « o & 3-2 N
Additional Processing e o ® o 8 & 2 ° ® o & & o 3"5 '_‘.".‘.
Clipping e o & o & @ o & o 0 o e & 2 s s 0 3"'5 :::i:;i
Median Filtering e ® ¢ o & & e o & o 8 ® o 3-5 .‘-‘.'-‘
Frequency Compression .« « « « o o o o « & 3-5 AN,
Energy Normalization . . « « o+ o o o & « & 3-6
.%,\
iii :S:;‘
1'.l.’-
ol AN
'.n":.
Y
'_‘.»:.r-

AR T R T IR AR L LRy L LS LRIV W L v-.r-",,..".'
S e L M A A W A A A AT A T T Lt e Ty

o A

Ry

W

i

'.::.\- N
"."
S
S
Ready-Utterance o « « v « o o o o o o ¢ o & o o 3-6 ade
Ready-Template o« « o« o o o ¢ o o o o ¢ s o o o 3-6 i
Dynamic Programming AlgOrithm . « « « o o o o o & 3-6 v
Introduction . « o o o o ¢ o o o o o o o o & @ 3-6
Distance Arrays « « « « ¢ o o o o o o o o o o o 3-7 G,
One-Stage Algorithm for)
Connected Word Recognition . . « ¢« o ¢ o ¢ o & 3-9 oy,
Time Distortion Penalti€S .« o« o o o o o o o o o 3-10 rad
Summary Of StepsS .+ ¢ ¢ « ¢ o o o s o 6 8 o e o 3-11 :\56
SLtOrage « o o o o o o s o s o o o 4 o o o o o @ 3-14 .
Iv Results and DiSCUSSION. o « o « o o ¢ o « o o o o o o o & 4-1 sﬁﬁ
A
INtroduction « o o« « « o o o o o o o o 0 o . e o . e 4-1 N
Distance Array Contour . « « o « o o o « ¢ o o ¢ o o 4-1 VoA
Wide-Band Spectrum . « ¢ o o o s ¢ o o o o o o 4-1 "
Narrow=Band Spectrum .« « « « o ¢ o o o o o ¢ @ 42 (ﬁ}ﬁ
LPC Coefficients . « « o o o o o o o o o o o & 4-2 Ty
LPC SPECLPUM '« & o o o o o o o o o o o o o o o 4-2 NN
FOrMantS « o« o « o o o o o o o o o o o o o o o y-2 Aos:
Frication Frequency . « « o« o o s o o o o o o & 4-3 S?h
Zero Crossing Rate .« « o o o o o o o o o « o & 4-3 Ty
Recognition of Connect Speech « o ¢ & ¢ 2 ¢ o o + & 4.3 fp:}
Speaker-Dependent ResultsS . « o o o ¢ o o o o & 4-3 o
Wide-Band Spectrum « « « « « o o s o« o o o 411 NS
Narrow-Band Spectrum « « « ¢ o « ¢ o o o & 4-1 :*‘fﬁ
Formants « « ¢ « ¢ o o ¢ ¢ ¢ ¢ ¢ o o o o » 4-11 ;:i
LPC SPECLrUM « « o« o o o « o « o » o o o o 4-11 ad~
LPC Spectrum, Formants, Frication Frequency 4-11 8 -
Speaker~Independent Results . . . « « « « .+ & 4-13 p >
Single-Speaker Template Sets « ¢« o « ¢ + & 417 ;
Multi-Speaker Template Sets .« « « « « o . 4-17 "
Overall Results Using LPC Spectrum 4-18 byt ety
Overall Results Using LPC Spectrun, :
Formants, and Frication Frequency . « « « « . 4-19 B
v. Conclusions and Recommendations . « o« o « o o o o o o o &« 5-1 '\,ﬁﬁ
N
Introduction o« o o &« ¢« o ¢ ¢ o o o o e s e 0 s 0. e 5-1 :f:r'
CONClUSIONS & ¢ o o o o« o o ¢ o s o o o s o o o s o 5-1 o
Recommendations .« « o« o o ¢ ¢ o ¢ o ¢ o o s s s . . 5-1 RN
Environmental Stress . « o« o o o o o o o o o o 5-1 s
Tailored Template S€tS .« « ¢ o o o o o o o » o 5-1 Uﬁ::
Additional Features « o o o o o o o o o o o o 5-2 NR
Syntactic RULES v & « o o o o o o o o s o o o o 5<2 u:ﬁgﬁ
Dedicated Hardware .« o« o o o« o o o o o o s o 5=2 T e
SUMMAPLY o« o « o o o o o o o o o o o o o o o o & o o 5-2 I
.':-.J:\
t;'i
ok
- N
)
'd'_'-'_'
...-l‘.‘l
e
R
\"'. .
N

Appendix A: SPIRE Attribute Defaults . ¢ « ¢ ¢ o o ¢ ¢ o o o o A=
Appendix B: Program LiSting « o ¢ o ¢ ¢ o ¢ ¢ ¢ o o o o o o o o B-1

Appendix C: Sample ReSUlts . . ¢ o o o ¢ o o ¢ o o o o ¢ o o & C-1

a:{i
NP

Bibliography s o * & o & & o * o . . * & @ s * & o 2 e o o s Bib-1

b ol o ot
b 'zn Ja g)
LA

Vita ® o e o ® & @ & 5 8 6 & 5 s 6 e 2 e 0 s ° o o s & s s o s o V-1

Sttt y Ny A
A GASNRN
N I s AT

Pyl

o
l"
3)

1x
]

2

>
“
*\J.v
P
PN
thEh

[} Cad N) 0 v 'y) W N e T S T T G e R I T T P I T L PO L I LIS VP IR e
ST N T g 3 A N D A R R I N N TR RN o v Ll o pE e Al S e,

2.2
2.3
2.4
2.5

2.6

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

4,2
4.3
b,y
4.5
b,6

4.7

List of Figures

Original Waveform . ¢« o o ¢« o ¢ o o o o o » o«
Overlaid DisplaysS « « o o ¢ o o ¢ o o o o o &
Synchronized Displays . « « « o o« ¢ o s o o &
Standard SPIRE DisplaysS « « o « « o o o « o o
SPIRE Interface Functions . « « ¢« « ¢ o ¢ o &
SPIRE ReSult Arrays « « « « ¢ s o o s o ¢ o &
Spectral Slices o ¢ ¢« ¢ o ¢ o o ¢ o o o o o .
Formants Frication Frequency . « ¢« ¢ ¢« « « &
Hypothetical Distance Array . .« « « « o« o o &
Hypothetical Accumulated Distance Array ., . .

Time Distortion Penalties ¢« ¢« o o o ¢ o o o &«

Hypothetical Distance Array for Continuous Speech

Transition Rules . ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o s o »
Backpointers From Three Preceding Grid Points
The Backtracking Proceedure . . . v ¢ o o o &
Schematic Diagram . « « ¢ o « o o o s o o o &
Distance Array Contour, Wide-Band Spectrum. .
Distance Array Contour, Narrow-Band Spectrum
Distance Array Contour, LPC Coefficients . .
Distance Array Contour, LPC Spectrum
Distance Array Contour, Formants . . . « « &
Distance Array Contour, Frication Frequency .

Distance Array Contour, Zero Crossing Rate .

Page

2-4

S

Sy
o P

I';I":F-'I)J
L/

-
»

SRR

. \-\.‘:‘c
PP S

<

»

-

T Iy
r";f‘.'t‘v

r.
ol
& Ry

LR

-

g

13
s,

I‘ l‘ A, A,
. ‘d““‘

o]
A

b'.~

-

SN W = e ey ity iR @

o Y "0 K y T %% = e K N, O L L . PN N b - v o’ 4
i Ve it g Y III-} 73 Rag N e} }-ffﬁf&; (AR AR Y .\\!J et a TN, 5 R
”.h 3 d 2 R i) L Ty 26 TR LI & d RN A B PLEFLSEA T [J ’ g [N,
e | OO ROt S AR g S I SOD AT : (L I KRB AINT Py
4

NS Nt e AP
£POT, e ML RIS R AL L PLIS B S U PO LR St A S T - S SO R e

..U.V 4

0 N oo
& = = =
.o
..
..
.o
.o

4.8 Frication Frequency vs. Zero Crossing Rate

4.9 First Formant vs. Second Formant
4,10 Formants Zones Used by Algorithm

*“4. ;
List of Tables e

Page N

4,1 Speaker Dependent Feature ReSUltS . . ¢ ¢ o « o » o o o o o« « H4-13
4,2 Single Template Speaker Independent ResultsS .+ o o o o » o « o H4-17
4,3 Multi-Template Speaker Independent Results . « ¢ ¢ o o « « o H4-17
4,4 Overall Results, LPC SpecCtrum « « « o o o o o o o o o o o o o« U=18 e

4.5 Overall Results, LPC Spectrum, Formants, Frication Frequency 4-19 ~$F

o ':' .c' .-' .' '
X

)

o

N,

.,
L VLY
v

NS SN) "c LS
LR A) Y ’
PR .' P - ..’-:".

R
R

3 .‘. K
MO

.
a_n
A
Wy

VI

viii

DY
Pl

7y

&

e
7’
ok

'J"{r- .
PR A

,.
-

AFIT/GE/ENG/87D-14

-
{
[® i
Abstract .
A
- A system was developed to investigate continuous speech
II
-
recognition. The system incorporates multiple features and dynamic 5
programming to recognize ccntinuous inputs of the spoken digits (zero -

through nine). The fundame-.tal design concept extends from previous

3
successful recognition research efforts involving both isolated and ;t
continuous speech using multiple feature sets, multiple template sets, u‘
o and dynamic programming. Among the features used in the investigation
are wide band spectrogram, narrow band spectrogram, linear predictive i
coding (LPC) coefficients, LPC spectrum, frication frequency, and ?
d formant tracks. An advanced speech research tool called SPIRE provided =X
the computational functions needed to extract the raw features;> The ;
system is implemented in LISP on a Symbolics 3600 series LISP machine. ?

1P Bl oA aVAtatat aav ¢at fah 8.0 gk a0 2ad 4 80 %0 458 A% 4% ~t|--a..'. 2 00 S nae aon A adona gt

SPIRE BASED SPEAKER-INDEPENDENT
CONTINUOUS SPEECH RECOGNITION

USING MIXED FEATURE SETS h

I. Introduction

The ability to communicate using language is considered one of the
hallmarks of the human race. As machines attempt to do more and more of
what humans do, it becomes necessary for them to also have the ability
to use language. And before this can be acheived, machines must be able
to accurately identify spoken words without the aid of syntax or A
semantics., Even simple word recognition by computer would have many
potential applications, from voice controlled television sets to voice
activated displays in the cockpit of an F-16 fighter aircraft.
Ultimately, speech recognition is seen as essential to the total A
automation of the human-machine interface, including automated
dictation, language translation, and artificial intelligence devices.
Although word recognition has improved steadily over the past decade,
general speech recognition devices still do not exist. Therefore, much

research will be necessary before such general speech recognition ’

devices can be perfected,

Yy

L 3o o Lo S S A

Background

Speech recognition is a relatively new field of study made possible
only by recent advances in computer and digital signal processing
technology. Today, a variety of speech recognition systems are
commercially available ranging from expensive stand alone units to
plug-in boards for personal computers. However, many practical problems
still exist., There are many problems yet to be solved if speech
recognizing devices are to find their way into common use. Most current
research is focused upon finding better ways to represent speech, and
once represented, better ways of handling the variations of speech
patterns typical of a diverse population. Only if these problems areas
are solved will the more complex problems of connected speech be solved.

Although speech recognizers have improved steadily over the past
few years, they are still hampered by certain serious performance
problems. The most intractable of these is inaccuracy. There are many
systems avajlable claiming as high as 95% accuracy, meaning the systenm
can correctly identify spoken words 95% of the time. However, in real
environments these claims are more hopeful than true. (14:200)

Current voice recognizers suffer from many operational deficiencies
resulting from inaccuracy. Almost all systems available today require
extensive user training. The user must train the system to recognize
his voice and, therefore, the system is speaker-dependent. There
always seems to be a certain percentage of the population for whom the
system performs very poorly. Some machines work better with male voices
than with female voices or vice versa. Current speech recognizers

perform poorly in the presence of background noise such as office or

1=2

NSRS (L A AR S L A N A

AAARAC T T

o N AL

v,
.
" " e

T A

0. s

P2

-

factory noise. Further, most current speech recognizers can only
recognize purposely isolated words rather than more natural continuous
speech. Finally, current speech recognizers lack large enough
vocabularies to be useful for many applications. (14:200)

Specific problem areas in speech recognition include selection of
good feature sets and template sets, the problem of connected speech,
and the problem of speaker-independent speech recognition. These terms

will be discussed fully in the following paragraphs.

Definitions

Templates and Features. A template is a set of data that represents

each word of the given vocabulary. The fundamental task of speech
recognition is matching the spoken word, called an utterance, to a set
of stored templates and deciding which template the utterance
represents. There is typically a template for each word in the
vocabulary. Templates are created through a process known as "training"
in which the user repeats the vocabulary into the recognizer. Features
are then extracted and stored as templates (12:483). Herein lies the
basic challenge of speaker-independent speech recognition, that is
"creating a set of templates that can be used reliably with many
different speakers" (6).

A template set that can be used reliably with many different
speakers must contain those features that best represent each word of
the vocabulary. Exactly what features carry the essential information
that distinguishes a word from the rest is not completely clear.

Brusueles (2) investigated this problem by extracting 55 different

1-3

L) g~ N P T T e T T T e e et
m T P L s ARt L A AU A XY

N N

4 22" 5" 2"

LA A W

v a.-.'-’-."<

CAAYRY N

"".‘

.: “';‘o"\ LS

» =
v’ st ate s

N

- e~

> -
‘.\.\‘\\-

Ca W, e

features, grouped in six general categories, for each word in a 13 word
vocabulary. The six general categories were:

(1) Wide-band Spectrogram. Graphic depiction of frequency

content.

(2) 2Zero Crossing Rate. A count of the number of times the

waveform passes through a region centered around zero.

(3) LPC gain and

(4) LPC coefficients. Coefficients and gain terms used in a

speech coding technique called Linear Predictive Coding (LPC) in which
the speech production process is modeled rather than the waveform
itself. This is done by an adaptive filtering process in which the
filter coefficients are calculated so as to simulate the vocal tract
which itself is a filter. These coefficients are commonly referred to
as linear predictive coding (LPC) coefficients. These LPC coefficients
can be used to reproduce a copy of the original speech waveform. Doing
S0 allows voice to be digitally transmitted at a very low bit rate and
thus a very small bandwidth or storage capacity. Because of this data
reduction property, LPC coefficients are often used for speech
recognitiorn (4:26).

(5) Formants. Resonant frequencies of the vocal tract.

(6) Time. Time over which utterance is spoken.

While certain of these 55 different features proved useful during
word-template matching, others were less so. Further, their usefulness
changed with different speakers and/or words. Brusueles suggests that
it may be possible to use some sort of statistical weighting of features

to improve the word-to-template matching algorithms (2:68-69),

1-4

.
X & g
SN

S S 5% % N o B

LRIV o

AR 1

P RARAS T LRI

RN SEFLILE -~ 2 Il
U

EAAS

RS g - 0 T s
TN g }ﬂﬁ.ﬁkﬁﬂ.‘f.f‘_i‘siu ‘.F\ \i-'.)\\'.n .AI’.P"-" 'Jn" -'_- \A"L% "’L"F .\ \.rL‘ﬁ

SR e et - Ay . P) W W W W > atat fav_ Faw V. §a> S N MU - 2, . . v Y Vo o ™ A gt N U

"Vector quantization™ is a another coding technique used in speech

recognition. In this method, the different sounds that are produced by d

® the vocal tract are represented by individual numbered codes. Then .
words are represented by vectors made up of these codes. For example, E
the word "Bill" could be represented by the vector <4, 32, 32, 32, 32, E

® 20, 20>, where 4, 32, and 20 represent the sounds "b", "i", and "1" 3
respectively. In their work Burton, Shore, and Buck applied "vector i
quantization" and achieved a recognition accuracy of 98% for speaker-

L

independent recognition of isolated digits, "zero™ through "nine" -
(3:837). Vector quantization is a relatively new speech encoding .

technique. d

Speech can be also modeled as a Markov chain in which the current :
signal state is somewhat dependent on the previous signal state. For
example, vowel sounds are more likely to follow consonant sounds.
Signal modeling based on "hidden Markov models"™ (HMM) may be viewed as -
"a technique that extends conventional stationary spectral analysis
principles to the analysis of time varying signals." Juang and Rabiner
investigated two types of Markov models. One was based on finite 5
mixtures of Gaussian autoregressive densities (GAM), and the other was
based on nearest-neighbor partitioned finite mixtures of Gaussian N
autoregressive densities (PGAM). Juang and Rabiner determined that GAM
and PGAM models have applicability to speaker independent digit
recognizers (5:1404,1412),

A fundamental goal in speaker-independent speech recognition is
that of creating a set of reference data or templates that can be used
reliably with many different speakers. One way that has been used is

that of template averaging. This method is accomplished by recording

1=5

as many as 10 tokens (examples) of each word in the particular
vocabulary and averaging them into one template set (4:32). Brusueles
found that a template made by averaging two males and one female
performed better than a template made by averaging three males in a test
population of seven males and three females suggesting that a wide
variation of reference patterns may be more effective than a narrow
variation (2:28).

Multiple template sets have also been used to support speaker-
independent speech recognition (14:29). In this case the tokens are
stored individually and compared individually as though they were
separate words in the vocabulary. One technique involved "clustering"
100 repetitions of each word in a 39 word vocabulary. The vocabulary
consisted of the 26 letters of the alphabet, the 10 digits, and three
command words (STOP, ERROR, and REPEAT). Average recognition accuracies
of close to 97 percent were obtained on 38 of the 40 talkers (13:583),
This method has the advantage of being able to represent a wider range
of population, however an obvious disadvantage is the increased
computation required to perform necessarily more comparisons than for a
vocabulary represented by single templates. (10:263).

Dynamic Programming. Regardless of the method chosen to accomplish

word-to-template matching, it is usually necessary to establish optimum
time alignment between the input and reference speech data.

Originally, advanced research in speech recognition employed
relatively simple techniques to partition a speech signal into
separate units, then very complex methods to classify the
segments and recover from segmentation errors. It was soon
realized that signals could not be reliably segmented without
prior knowledge of the acoustic sound class. In the early
1970's a technique called "dynamic programming" was

introduced. Dynamic programming improves the segmentation

process by hypothesizing acoustic events and testing each

hypothesis at an acoustic level (4:26).
A one-stage dynamic programming algorithm for connected speech has been
proposed by Ney (10). This algorithm was actually proposed as far back
as 1971 by T. K. Vintsyuk. Ney states that,

An advantage is that the three operations of word boundary

detection, nonlinear time alignment, and recognition are

performed simultaneously: thus, recognition errors due to

errors in word boundary detection or to time alignment errors

are not possible.

Dynamic programming is considered one possible springboard for future

advances in speech recognition (4:26).

Connected Speech. Connected speech, as opposed to isolated speech,
L presents additional unsolved problems. Although some speech recognizers
can, to a limited extent, recognize words without pauses between the
words, they are less accurate and more expensive. Connected speech is
difficult for a number of reasons. One problem is that of detecting
word boundaries. Although some techniques don't require word boundary
detection, these techniques pay a penalty in terms of much more intense
data comparison requirements. The real difficulty of connected speech
recognition stems from the fact that acoustic variation of words spoken
in connected speech is much greater than when the words are spoken in
isolation. This is due to the "coarticulation" of neighboring sounds.
The position of the tongue, jaw, and lips in one speech sound are
affected by their previous and future positions. Further, the time
variations of words is more severe for continuous speech than for

isolated speech (4:27).

ofy

w 4 T W o o) o, P St .ﬁ.: P .r._.-'.r 4‘_ Tt ._. TR A A TR
".i .l‘..t.'. }l K ﬂ,-.. L) .A... ‘.~..\ \ \.‘ \.) » s iy v Y

f.'l' .;~'..-'.- A.t ‘:

e
Lo

E L AR

ATy

RE PR A E A A Y

_.fl
s s "o e

» . -l' Ry “. '--'. ”

e

'#r"f-" o

S%hn Y,

LAy

P AN
ALY

<

I
XA)

o
K o

WPAAY \ " R ARG

Speaker-Independence. It is obvious that humans can recognize the

speech of a variety of speakers without the need of any training
process. Sdmehow, the brain is able to extract the key features of
speech, determining what is being said even though different speakers
may say the same thing differently. Current word recognition systems
simply lack this "robustness" that is necessary for most applications.
One approach to improving "robustness"™ and thus accuracy lies in

developing systems that are speaker-independent (6).

Problem

The primary purpose of this thesis was to develop a system for

R AR

connected speech recognition and examine the usefulness of using n
A,
p

multiple templates, multiple features, and dynamic programming. The f;
.
-
~

system has been implemented on a Symbolics 3600 Series Lisp Machine bt

uay

using an advanced speech analysis tool called SPIRE (Speech Processing

Interactive Research Environment).

Scope

The recognition system developed is based on recognition of
continuously spoken digits, zero through nine. The small vocabulary was
necessary due to limited time and disk space, however, recognition of
the digits provides a sufficient challenge for the purpose of this
research. This research has investigated what features are best suited
for speech recognition and how best combine them. The dynamic
programming algorithm used is identical to the one-stage dynamic
programming algorithm proposed by Ney {(10). Other programming techniques

have not been directly addressed. For the most part, SPIRE is used as

1-8

N o T e N e e S e e T T AN P L N AL e e S

‘l‘- .‘l 4N o‘\

AN &t e e S

\3 AU A S AT AN 4N) AR RS .

a library of functions called by the main LISP program, although SPIRE

can be used in an interactive mode as well.

Approach

The approach is outlined as follows. First, individual feature
performance will be observed by plotting "distance array contours".
Next, a continuous speech dynamic time warping algorithm will be used to
further study features. Finally, speaker-independent continuous speech

will be studied.

L Sequence of Presentation

Chapter two presents the acoustic processing environment. 1In
particular, the chapter introduces SPIRE, a powerful speech analysis
research tool, as well as the Symbolics 3600 Series Lisp Machine.

Chapter three defines the system design including the basic
algorithms developed. A basic explanation of the dynamic time warping
algorythm is included here.

Chapter four presents the results. First, individual feature
performance is investigated to see which feature sets are best suited to
speech recognition and optimal ways of combining multiple feature sets
to increase performance. The best of these are then tested for
speaker-independent performance. Last, multiple template sets are used
in an effort to improve speaker-independent performance.

Chapter six provides conclusions and recommendations, and
appendices present additional results, program description, and

listings.

AV SRR

ATy

II. Acoustic Processing Environment

Introduction

The purpose of this chapter is to introduce the software and
hardware components used to develop the recognition system. The chapter
is divided into three sections. The first section describes the Lisp
programming language. The next section describes SPIRE, an advanced
speech analysis tool that provides many of the computational functions
used for feature extraction and general speech processing. The last
section describes the hardware configuration that is used as well as

other optional hardware.

Lisp

Lisp is a high level programming that takes its name from List
Programming. Lisp, one of the oldest active programming languages, is
widely used in the field of artificial intelligence (11). Lisp is an
extremely powerful language for handling large amounts of data common in
artificial intelligence applications. In fact special purpose computers
called Lisp Machines are designed at the circuit level especially for
running Lisp. Together, these provide a powerful computing environment
with a large virtual address space that make it "particularly attractive
for speech and signal processing applications" (2:5).

There are many dialects of Lisp, however, one dialect called COMMON
Lisp seems to be emerging as a standard. Most Lisp machines now in
production have Common Lisp as a standard feature. Older machines may
use different dialects. The Symbolics 3600 Series Lisp Machine used for

this work uses a dialect called Z~ta Lisp.

2-1

SPIRE

Overview (2:6-12). SPIRE stands for Speech and Phonetics

o Interactive Research Environment. [SPIRE is available by license .
through the MIT Patent Office.] It is a software program that allows :
the user to interactively examine and process speech and other audio “

® signals. The following paragraphs provide an overview of SPIRE's design
philosophy, graphical capabilities, implementation considerations, and
documentation. ;

® . .

SPIRE was designed to be easy enough to use for tha novice,
yet powerful enough for even the most advanced users. In the :
interactive mode, SPIRE takes full advantage of the Lisp Macline's built

e in graphical interface for quick and easy research. For the more
advanced user, SPIRE allows relatively painless customization and
modification. The interactive mode is very useful for learning about K

o the various attributes of speech. The next paragraph describes some of
SPIRE's more common capabilities. For more detailed information :
concerning the use of SPIRE, the reader is referred to various SPIRE X

o documentation (7), (9), (15), and (16). ‘

SPIRE takes full advantage of the graphical capabilities of
the Symbolics Lisp Machine, providing bit-mapped display which is either '
¢ 1280 pixels wide by 760 pixels high or 1216 pixels wide by 773 pixels
high, depending on the model. The following figures illustrate a small
sample of these capabilities for the utterance, "This is the CBS Evening

©
News." f

c y

22 %

‘ %

:
S,y v G e g et S A e oy R .a!

Figure 1,1 Figure 1.1 shows two repetitions of the

orthographic transcription and original waveform of the utterance. Note

. that the scale of the two displays are different to allow closer
examination of waveform details.
Figure 1.2 The second figure shows four displays of the same
¢ utterance; Orthographic Transcription, Wide-Band Spectrogram, Formants,
and Original Waveform. Two of the displays are overlaid--the Wide-Band
Spectrogram and the Formants. Such overlays can make it easier to track
® similarities among various representations of the data.
Figure 1.3 The third figure illustrates another important
feature of SPIRE: its ability to synchronize displays. For example, in
© the top display, there is a "cursor" located at 1.8251 seconds of the
Original Waveform. The curser is automatical place at the same point in
the next display, the Narrow-Band Spectrogrm. The next display shows
-. the Narrow-Band Spectral Slice at that cursor position.
Figure 1,4 The fourth figure identifies typical display types
available from SPIRE.
o
C
C
)
C i
2-3 i
i b
C

’
4

{
- AW A R ER AN T 'y\\\\u Yy NN, - Ty o N
'\ R L T L L Y T N e T AT g L g e A A A R N I O ey

W,

R R P L YWy Cwa ‘B av®.a2n! b a¥s adh ath ' o d.a’t 2’ 2 d.a'%. 2 2.a°h 8L) g ‘i@t abar ata ig 4ep g P Wy

0.5115

%Thlsg Is ETho% c B . § Evening News :
0.0000 NEWSCAST Orthographic Transcription 2.6000

0.5115

0.0000 NEWSCAST Original Waveform 2.6000
0.5115
Is f The
0.2615 NEWSCAST Drthographic Transcription 0.7615
0.5115

0.2615 "NEWSCAST Original Waveform 0.7615

Figure 1.1 Original Waveform

2-4

...............

- P T N I I T g Ry B PR A LI B T T S I R S SR PRI SN P ULP TR R AU N FRRE VRSE Sl W S WAt VS ERCR
*’ﬂ&"{&\d"(‘P ‘m“"\i'{l.-ﬂ'f"_(“.-" P PRI I A T P Tt N A R T T PR I, P e AP S A S AL R e

At > \‘,\'__

Sun Y

Y

NS

PORAGT | S ANRE

R T T A N
R P .-:l‘l‘

B

NN

DA R % gy Y Y

Y .:.'.-’\-‘\

@

+

AR

This | 1s

n— r T——

"The © C . B . § = Evening New

'y

| 0.0000

NEWSCAST | | Orfhographlc fraﬁscrlptlon 2.2559

P A

oy .

‘2 WYy ¥
» L)
v o

eee g W

WSCAST

R
o

N TS

Sy

TRARENLCS q\‘r\ LG
X [4 a3)

0.0000

LT

NEWSCAST Oriainal Waveform 2.2559 3

Y& Ny

Figure 1.2 Overlaid Displays

2~5

@ ',u'.-'{ A

A

N T e W e L o L e S A e e e A N P e e e e
0) D sl an f . "

.........

This

1.8251

The © C i B . S i | Evening| - Ne

0.0000

NEWSCAST ' Orthographlc T'ranAscrIptlon ' 2.2428

Narrow-Band Spectrogram 2.2454

NEWSCAST Narrow-Band Spectral Slice 8000.

Figure 1.3 Synchronized Displays

2-6

LT TUN ML ‘g v'g @ 26 8 8'.8"2.4 2 8082 2% 8. 0a 2'0 4%2.8% 4'4.8% 242 0% 272 A% AV U TR U 4V at S a¥e gV gt Aty o @V, Aa aVo AB. AVL g%, alg gi, gV

List of SPIRE Displays 3

Energy, Total
Energy, 0 to 5000 Hz
Energy, 120 to U440 Hz

@ Energy, 3400 to 5000 Hz
Energy, 640 to 2800 Hz
Formants, All Four
Formant, First
Formant, Second
Formant, Third

® Formant, Fourth
Frication Frequency
LPC Center of Gravity
LPC Gain Term
LPC Predictor Coefficients
LPC Spectrum Slice

o Narrow-Band Spectrogram)
Narrow=-Band Spectral Slice -
Narrow-Band Spectrum Slice
Original Waveform
Orthographic Transcription
Phonetic Transcription

o Pitch Frequency
Waveform Envelope
Wide-Band Spectrogram .
Wide-Band Spectral Slice :
Wide-Band Spectrum Slice
Zero Crossing Rate

e PP T\

-

Figure 1.4 Standard SPIRE Displays

R Ay

Interfacing SPIRE from Lisp. Behind each SPIRE display are the y

underlying computations required for computing that display, for example

o
a Fourier transform. These underlying processes are available through
Lisp as simple function calls. Figure 1.5 describes the primary

° functions used to make SPIRE perform computations on an utterance.

The three functions of figure 1.5 can be combined into a single \

Lisp expression. For example,

(SETQ
® RESULT-ARRAY
(SPIRE:ATT-VAL (SEND (SPIRE:UTTERANCE PATHNAME)
:FIND-ATT ATT-NAME)))

where RESULT-ARRAY is the variable containing the result of the]
L computation defined by the variable ATT-NAME performed on the
utterance defined by the variable PATHNAME.)
When no more computations are necessary on a particular utterance,

® the utterance may be "killed"™ or "unloaded" as follows:

(SEND (SPIRE:UTTERANCE PATHNAME) :KILL)

o
where the variable PATHNAME describes the utterance to be killed.
Note that the method used here does not alter any of SPIRE's
¢ default attributes. Appendix A shows a list of SPIRE's attribute
defaults.
When SPIRE is called to perform a computation on an utterance, the
© result is returned in the form of an array, the dimensions of which ;
depend on the type of computation. Figure 1.6 lists the array types -
returned for various SPIRE function calls.
C
s
)
2-8 '
C

............... e ama e acan
Y LN I S L S LR R 1

‘e gtz abh aka aVh utl a5 p atdan'fug al 8,8 Sad ¢ R URS Y

SPIRE:UTTERANCE
Parameters: pathname (required)
Type: function
Returns: utterance-flavor
Description: The utterance in the file "pathname™ becomes the current
utterance in SPIRE. If needed the utterance is loaded
into memory from disk. This function must be called
before any computation can take place.
sFIND-ATT
Parameters: att-name (required)
Type: message to utterance flavor
Returns: att
Description: att-name is a string that identifies what attribute the
user desires SPIRE to compute. For example, assume we
are to compute the Wide-Band Spectrum of an utterance
stored in the file ">DAWSON>UTTS>ZERO.UTT". First,
select the utterance:
(SETQ TEMP1
(SPIRE:UTTERANCE ">DAWSON>UTTS>ZERO.UTT"))
TEMP1 stores the utterance flavor for the next step:
(SETQ TEMP2
(SEND TEMP1 : FIND-ATT *WIDE-BAND SPECTRUM"))
TEMP2 now holds the att from which the actual values
may be extracted (see next function).
SPIRE:ATT-VAL
Parameters: att (required)
Type: function
Returns: array (results of computation)
Description: This function returns the computed value of the att we

are interested in. For example, if TEMPZ holds the
att (as discussed above), extract the values:

(SETQ TEMP3 (SPIRE:ATT-VAL TEMP2))
TEMP3 now holds the "Wide-Band Spectrum" values.

Similar procedures are followed for obtaining the values
of any of the standard SPIRE computations.

Figure 1.5 SPIRE Interface Functions

Do A &

gESvensns &

s ZEENAN N

<

P .
e A

’ -7".5'\" l; l" l'fl"n" [y

RATAINI

o
l'l.l'll a_¥

Py

L U PR P -
A

Attribute Name Result Array
) Wide-Band Spectrum 2-D, 256 X N
Narrow-Band Spectrum 2-D, 256 X N
LPC Spectrum 2=D, 256 X N
LPC Coefficients 2-D, 19 XN
Formants (four) 2-D, 5 XN
LPC Gain Term 1=-D, N
o LPC Center of Gravity 1-D, N
Zero Crossing Rate 1-D, N
Frication Frequency 1-D, N
Total Energy 1-D, N
N = time ¥ analysis rate
®
Figure 1.6 SPIRE Result Arrays
e
Hardware (13,15:16).
SPIRE is a software package that requires specific hardware to
o run, A brief description of hardware options are discussed below.
Lisp Machine., (Required) SPIRE is designed to run on a Symbolics
3600 Series Lisp Machine. The Symbolics Lisp Machine is a powerful
() computer specifically designed to efficiently run Lisp code. 1t
provides an extremely efficient user interface with extensive graphics
capabilities. Also available from Symbolics is a Floating Point
C Accelerator (FPA) card designed to speed up floating point operations by
about a factor of three., The FPA is an add-on card that is generally
invisible to the application software such as SPIRE.
© Array Processor. Certain versions of SPIRE are designed to support
a Floating Point Systems FPS 100 (or FPS 200) array processor. An array
processor is a special purpose device designed to quickly handle
Cc computations on large arrays of data. The FPS 100 is connected to the
2-10
C

! 0 » % > N ey LI R G A T N PR AL ALY
l‘!‘l',\\‘\‘-'\'.«‘,\‘.x‘n‘.‘t.“!‘l- LG ". oy S x XN W £ M x S, PEPTYE R YR "‘I ". s Oy,

Symbolics Lisp machine through a UNIBUS interface. The array processor

: can drastically reduce the computation time required for certain SPIRE

o
: functions. An approximate comparison between a "bare" Symbolics Lisp
i Machine, one with an FPA, and one with an FPS 100.
o Configuration Ratio Example
. FPS Array Processor 10 1.0 minutes
. Floating Point Accelerator 3 3.0 minutes
\ Bare Lisp Machine 1 10.0 minutes
(]
t
$
o
1 Speech digitizer. SPIRE is designed to operate with a Digital
[}
Sound Corporation (DSC) analog-to-digital converter. The DSC is
i connected to the Symbolics Lisp machine via the UNIBUS interface., The
®
DSC is used primarily to digitize speech and other audio signals. The
i audio input can be direct or prerecorded and fed through line-in jacks.
]
i The DSC can also be used for high quality playback of the digitized
o
Y signals.
y
1
Summary of Equipment
@
The Symbolies Lisp Machine actually used for this speech
] recognition research was an older model Symboliecs 3600 with one
4
A mega-word of RAM operating under version 6.0 of the operating system.
) C
The Lisp Machine was equipped with a Floating Point Accelerator to
] reduce computation time. An FPS 100 array processor was not connected,
; Speech samples were digitized on a using a noise reducing microphone fed
L&
] directly into a DSC A/D converter. Version 17.2 of SPIRE was used.
L]
L)
L)
c
4
. 2-11
C

T T o O U AP NP T AT e T T e et ot T At T A e e e
OROAS AN .""' -* “'\‘ o, VAR A R TR AP Y, AR P PR R o o, S G A P P P A J‘_\-'\'q"_f-‘ o el

III. System Design

Introduction

The purpose of this chapter is to describe the system design. This
chapter will provide details about the major processing functions and
how they are used. It will also describe generally how major groups of
data are handled. Finally, an description of the dynamic programming

algorithm used is given.

Utterance Processing

As mentioned earlier, the continuous speech recognition system is
designed around Zetalisp and SPIRE. SPIRE is used as a function library
that is called by the main Lisp routines. A discussion of how this is
done is given in chapter two. Processing of an utterance consists of
specific computations done by SPIRE on the original digitized waveform,
plus any additional processing done by the main Lisp routines. Several
Lisp functions are defined for this purpose depending on the desired
features. (See Appendix B).

Feature Extraction. Feature extraction consists of calling SPIRE,

with the filename of the utterance and the name of the feature, to
perform the necessary computations and thus return the desired feature,
This is done by a function called COMPUTE-ATT. (See Appendix B). A
discussion of methods used by SPIRE to compute the desired features
follows.,

Wide-Band and Narrow-Band Spectrum. Spectrum calculations are

returned by SPIRE as two dimensional arrays, 256 X N, where N is

proportional to the length of the utterance., In both cases, the

3-1

ﬂff.r«:.r,_r.rrfa.- R Ay AR N "-.'~"."-"~*‘4-"'- ;.,.'.;-‘

N -\~\\-.- IR \-\'\"-‘\\\.

wide-band spectrum and the narrow-band spectrum, the original waveform)
is pre-emphasized and then run through a 256 point Fast Fourier ‘
Transform (FFT) routine incorporating a Hamming window. The wide-band
spectrum is calculated using a filter bandwidth of 300.0 Hz, while the
narrow-band spectrum uses a filter bandwidth of 78.0 Hz. Accordingly,
the narrow-band spectrum provides more frequency resolution than does
the wide-band spectrum. The results are returned in 256 discrete
frequency components representing 0 to 8000 Hz in log-magnitude form.
Figure 3.1 shows an example of wide~band and narrow-band spectral
slices.

LPC Spectrum. The LPC spectrum result is similar to wide-band

spectrum above, except the LPC coefficients are used to calculated the
spectrum. The LPC spectrum generally resembles a smoothed version of
the wide-band spectrum. Figure 3.1 shows an example of LPC spectrum
slice as well as wide-band and narrow-band spectral slices.

Formants. Formants are returned by SPIRE as a two dimensional
array, 5 X N, where N is proportional to the length of the utterance. .
Rows one through four of this array represent the first four formant
frequencies, respectively. Row zero is not used. Formant values are
computed from the LPC Spectrum. The formant peaks are found by fitting ¢
a polynomial to each LPC spectral slice. The polynomial is then

differentiated and solved for zeros. Formant tracts are somewhat

Bt r s s

erratic. The formant tracking algorithm usually loses track during
fricative sounds. Figure 3.2 shows an example of formants along with
original waveform and frication frequency.

Frication Frequency. Frication frequency is returned as a one .

dimensional array of length N, where N is proportional to the length of

3-2

S R LSS

N AENAL ARG IS

cnd at'ad . ' Voocia mie Ay BV¥A B .o Bta gt o A’a AV, a a%a 8% 4'a '8 A%s B'a AY Ya ' 2%a 2% A'a Ata d's A'a A'x £'a AL T ata ab b gl]

o !
1
0.3255 :
@ ¢
@ 0.0000 Original Waveform 0.6000
2716. -
71.842
®
[\’\n A/\\/\/ W\l\
PY 0. SEVEN Narrow-Band Spactral Slice 8000.
2716. .
@ n77.728 2
s N :
AR N AN :
® 0. SEVEN Wide-Band Spectral Slice 8000.
2716.
\ 7821~)
¢ N \ \ »
A ;
0. SEVEN LPC Spectrum Siice 5000 |
®

Figure 3.1 Spectral Slices A

@
0.7683

o

) 0.0000 4331479 Original Waveform 2.4000
0.7683

®

i —
—
—-—c—

' | 18255.0

feto0 |l yal

/\J () ,
® 22
0.0000 4331479 Formants
0.7683
®
C
p’ \//\//\\’Lm _/\J/,\/L/—/ ‘V/.F\’r
® 0.0000 4331479 Frication Frequency 2.4000
¢ Figure 3,2 Formants, Frication Frequency
3-4
C

} Ba® Bab ok BB 8.1

4

“5 v S s MG

-

v - LIPS PR R R R R T IR R O P T I W L e] N L P AR - T e e e T e e e e e .
t‘!‘l‘.th‘. ; ' An\.’. 0,1, ' e o '“."‘ - ' At " "' R "‘-‘-\'.\ SRR TR *. S e T A e T \\'.‘*-..‘\' .

mmmmﬂmmwm‘Wl‘ T O Y KT RO

o
the utterance. It attempts to track the frequency of fricative sounds
in an utterance. During non-fricative sounds the value is below 500,

¢ and during fricative sounds the values are above 1000. Frication
frequency is fair indicator of whether a fricative or vowel sound is
occurring. Figure 3.2 shows an example of Frication Frequency.

¢ Additional Processing. It is necessary to perform additional
processing on SPIRE results. This additional processing is discussed
below.

o

Clipping. The last five time slices of all SPIRE results are

clipped or ignored. Due to the predictive nature of the LPC

e coefficients computations, the last five time slices can't be calculated

and are returned by SPIRE as zero values. As a result of this, any

feature which is built upon LPC coefficients, such as formants, also has

zero values in the last five time slices. To maintain uniformity, that
is, so that any feature extracted from an given utterance will have the
same meaningful length, the last five time slices are ignored for all
SPIRE results.

Median Filtering. Due to the erratic nature of the formant

tracks, these results are further processed through a median filter.
The median filter filters out unwanted spikes in the formant tracks.
(See Appendix B, for the Lisp function MEDIAN-FILTER).

Frequency Compression. To reduce computation requirements,

wide-band, narrow-band, and LPC spectrum results are compressed from 256
discrete frequency components down to 16. Further, this compression is

done so as to emphasize resolution in the lower frequencies and

de-emphasize resolution of the higher frequencies. Briefly, the lower

132 frequency components (0 to 4,125 Hz) are linearly compressed down

-
N
.

3-5

o -\

L
PR

RGOSR AL AR

to 12 components, and the upper 124 components (4,125 to 8,000 Hz) are
linearly compressed down to 4 components. It should be noted here that
since the speech waveforms are pre-emphisized by SPIRE before performing
spectrum calculations, frequency components are averaged instead of
added. (See Appendix B, for Lisp function FREQUENCY-COMPRESS-LFE).

Energy Normalization, Energy normalization is performed on

each time slice of wide-band, narrow-band, and LPC spectrum. This is
done so that energy disparities won't effect the word recognition
process. (See Appendix B, for Lisp function ENERGY-NORMALIZE).

Ready-Utterance. A ready-utterance is simply a name used to

represent the set of data which is the result of all the processing done
on a given utterance. Once computed, a ready-utterances is stored to
disk so that it may be used over and over with out having to re-compute
all its features. A ready-utterance takes the Lisp form of a list of
arrays, where each array corresponds to a processed SPIRE result.

Ready-~Template. A ready-~template is simply a name used to

represent the processed version of the entire recognition vocabulary.
Each utterance of the recognition vocabulary is processed into
individual ready-utterances and combined into one large list of

ready-utterances, Again, this is so that re-computation is reduced.

Dynamic Time Warping Algorithm(10)

Introduction. Dynamic time warping or dynamic programming is a

method by which speech patterns are nonlinearly time aligned. This time

alignment is necessary due to the nonlinear time variations common in

speech, Dynamic time warping was invented by T. K. Vintsyuk. The

- NN S N D S
.(,-,-f-f A o » " - * " ..‘ .I .

AR
o

P R

-

LA a

A =

w e .
N 1
‘l “ »

LRI T 4 Pl
% L1 :

LAY

Fall g ¢ P
DOOLNY! ¥

Y S R g ¥

f‘{ -‘l "l ". .', ". -

g

AR N TN)Y

.‘:
. S
"
algorithm used for this system is one adapted for continuous speech. It ::_
was originally presented by Vintsyuk and later translated by Hermann Ney ;"{
B (10:263)., (See Appendix B, for the Lisp function SCAN-DTW). R
Distance Arrays. A distance array is basically a two dimensional '.:
array, M by N, where M is proportional to the length of the template, :E
b and N is proportional to the length of the utterance or test pattern. |
(Preliminarily, assume isolated speech.) Both the template and
utterance are represented by a sequence of M and N vectors
b respectively. Each vector represents the features of both the template N
r
and the utterance extracted at each moment m and n respectively., Each E
value of subscript (m, n) of the distance array then represents the 't
P vector distance between the template at moment m and the utterance at i-
moment n.
Distance arrays are a key element in the word recognition process.
For isolated speech, a measure of utterance-template similarity is taken
’
by tracing the path from point (0, 0) to point (M, N) of the distance E
array that results in the smallest accumulated distance of all the ‘_'
points in that path. >4
Figure 3.3 shows a simplified example of a distance array using a :_
hypothetical feature set consisting of energy in three frequency bands. :_
For example, at any particular moment, the speech is represented by a 7
3-dimensional vector representing the energy in each of the three ‘:
frequency bands. For isolated speech, the correct word would be E:
identified by calculating a distance array between the test word and :‘\
each word in the recognition vocabulary and then choosing the the E
template that results in the lowest accumulated distance. The distance E
rule used is Minkowski 1 distance, also known as the taxi distance. For '
3-7

. ._.\.‘. e A RN T T AT A A A
» N " Set '“{L'L.!‘mf.\::k_m- AL.L_.\.{._; M.A‘_.A{.:.A.ﬁs.'ﬁs.ﬁ"\.{af

1 13 7 1

1 13 7 1

8 10 2 8

11 1 9 13

1 13 7 1

1 13 ‘ 7 1
(0.3.5) (56.5.0) (1.0.1) (0.2.6)

Test Pattern — S X

Figure 3.3 Hypothetical Distance Array

> (0.25)
(0p)
| (0.2.5)
c
EE (0,0.0)
;_56 (5.4,0)
3 (0.2.5)
©
a (0.2.5)
E
[43]
}_
> (0.2.5)
w
| (0.2.5)
cC
E’ (2.0.0)
£§ (5.4.0)
° (0.2.5)
«
- (0.2.5)
E
Q
-

Figure 3.4 Hypothetical Accumulated Distance Array

25 37 19 7

24 26 12 6

23 13 5 13

13 3 12 25

2 14 21 22

1 14 21 22
(0.3.5) (5,5.0) (0.0.1) (0.2.6)

Test Pattern — S| X

3-8

P A

LS.

.!'.‘

. /'r""\;"",ﬁ.’i.'(v'{ NI RS Y

y)

P
[

ARSAART A

o~

" '/ -

e 2 7
L5 0

“ol@ Y

AR AR Ry AT A e NS e At AT L o o
N\ -hh¥4m5J¥i¥J\45_h$,-.\,.\A SR S N TR G R A T A W T d

\.'"I:'J‘"-"

T S LS
oAt

example the distance between the vectors <0,2,5> and <5,5,0> would be &

+ 3+ 5 =13, In order to find the minimum path through the connected
speech distance array, a new "accumulated distance array" is
constructed, shown in figure 3.4, 1In this array the value of each point
represents an accumulated distance that is equal to the local distance
of that point plus the minimum of the accumulated distances of all
possible preceding points. Notice the problem for isolated speech is
simplified by the fact the begin and end points are known. Also notice
that certain constraints govern the route of the traced path. The path
must continue forward in time for both the template and the test
pattern. Therefore the path cannot go left or down in direction, and
points may not be skipped or hopped over,

One-Stage Algorithm for Connected Speech. What follows is a brief

summary of the algorithm given by Ney [10], which the reader should
consult for further details. The algorithm is summarized as follows. A
composite distance array of grid points (i, j,k) is computed as shown in
figure 3.6, Individual time slices of the test pattern are referenced
by index j. Individual time slices for each template k are referenced
by index i. 1In order to find the minimum path through the composite
array, a minimum accumulated distance D(i, j,k) is defined for each grid
point (i,j,k). Each point D(i,j,k) is the minimum sum of local
distances d(i, j,k) along some path to grid point (i, Jj,k). For any grid
point (i,j,k), D(i,j,k) is found by selecting the predecessor with the
minimum accumulated distance and adding that accumulated distance to the
local distance d(i, j,k). The transition rules consist of

within-template rules and between-template rules. Thus for the

3-9

h)

3
R Y

" . I hd v, .
R J:d’.:f_ PPN F

template interior, j > 1, the recursion rule is,

D(i,Jj,k) = d(i,j,k) + min(D(i-1,j,k),

D(i-1pj-1pk), D(lpj-10k)] (1)
At template boundaries with j = 1, the recursion rule is,
. »]
D(i,j,k) = d(i,j,k) + min{D(i-1,J(k),k)] (2)

where k* = 1,...,K. Figure 3.7 depicts within-template and
between-template transition rules for connected speech distance arrays.
By keeping track of where the path crosses template boundaries, the
problem of boundary detection in the test pattern is handled
automatically.

Time Distortion Penalties. Ideally the total accumulated distance

through the distance array should be independent of the slope of the
path in order to allow all types of time axis distortion. Therefore,
the algorithm applies time distortion penalties using slope dependent
weights. Depending on the three directions, horizontal, diagonal, and
vertical, the local distance is multiplied by the weights (1 + a), 1,

and b prior to evaluating the dynamic programming recursion:

D(i,j,k) = min [(1 + a) . d(i,J,k) + D(i-1,],k),
a(i, j,k) + D(i-1,3-1,k),
b e d(3,J3-1,k) + D(i,J=1.k)]

(In the actual algorithm, this recursive formula is not actually

3-10

Al

ot r % PR RIS ot o |
R ‘y \} n <, , > S

'..v b Y C\‘ﬁ’ n.\-

Ty N N N

et

™~y
oy

R

CENL A S

S

‘,

e

’ 7

ele'e v

&

el Bt 2ot Rk e Bal Eat Al B2 Bo> Bt ol b .0 S8 Sl RV 8.1 6.8 §,% 4.9

implemented recursively but forwardly as the accumulated distance array
is computed.) The number of local distances per input frame is thus 1 +
{(a/2) for slope 1/2, 1 for slope 1, and 1 + b for slope 2. Figure 3.5
depicts the time distortion penalties. Weights of a = 1 and b = 1/2 are
typically used

Summary of Steps. A summary of connected speech algorithm is given

as follows.

J
Step 1) Initialize D(1,j,k) = S d(1,n,k).

n=1
Step 2)
a) For i = 2,..., N, do steps 2b-2e.
b) For k = 1,..., K, do steps 2c-2e.

) D(i,1,k) = d(i,1.k) + min[D(i-1,j(k),k)1.
d) For j = 2,...,3(k), do step 2e.
e) D(i,j,k) = min [(1 + a) e d(i,j,k) + D(i-1,3,k),
d(i,j,k) + D(i-1,j=1,k),
b e d(i,j—],k) + D(i,j-1,k)].

Step 3) Trace back the path from the grid point at a template
ending frame with the minimum total distance using array
D(i, j,k) of accumulated distances.

The unknown sequence is recovered in step 3) above by tracing back the

decisions taken by the "minimum" operator at each grid point. (10:265)

Lo

O

. O O OO OO0 0 O O©
[FURN 1+a 1+a

S - O O O O O
«a < b)/b

x 7 O O O O O O O
“ s v
W O O OO 0O d o o0 o
2 -

|_

TIME FRAME | OF
INPUT PATTERN

Figure 3.5 Time Distortion Penalties

3-11

.-‘. A e, -

O NN P A e N e P T o P v W T m TP ot o
R AT N N NS LR LR STt R R EY, O, (R R N O RO G R,

LBat Aas Bat Ba® La* da' o’ 22 Ba® Aot Rav Bat R0 Lof SV Sob LoV RoP Rev So5 0" Ra- fg ofg" Ka* 38 &3 if o
f
'
r

a

-

-
D

.
-
~

v

T a

®
\ [
|)
\ -
| ”
. 4
l 3(10) 3
|
! il "nine” k=10 ~’
1 ¥
J(9) | Z;
® j| "eight” I k=9 ‘
1 ! b
J(8) Y
i] "seven” k=8 X
] .
® (7 | ,
+ N . |)
G_)] Six | k=7 : 1
w 1 : "
J(6) | ~
. |
Qo j] “five” | k=6 o~
. -+ | b=
© 1 | .
— I . ;
a I "four” | k=35 -
' -t
E 1 W
J(4) v | — ,
L o)} N ! ') ! ~
— j] "three :)) : k=4 By
1 ! ! . 1)
J(3) | : 3
il "two” : 0 k=3 '
| o
| .
1 y
¢ 3Q) :
7] “one" | k=2
1 | "
J(1) -
J "zero” k=1 &
8 1
T 1 T T T T N
vour ' e ' vhreer ' roment nogre ! . .
our 0 three ! three j Jone”, four ! "seven” “‘mne" N
] 1] 1]] N\
1 i N -
"\
o
Test Pattern]
@
Figure 3.6 Hypothetical Distance Array
for Continuous Speech

C

"N T A A R R S A Ca o CpCa T Oy o o N TR LA S R AL LN
M T T L Ry T G A W N o e Vs g L A Y WA Ty £

T
OL Ik
® 0000
S5k O O
c5 o o)
~5 oNeNeXe
Wy
2F
- 1 i N
TIME FRAMES OF INPUT PATTERN

J(K)
0 i
S O0O0O0
é 1 OO® O
S) OTJO0O0
W O0O0O0
2 .
[J

1
1 i N

TIME FRAMES OF INPUT PATTERN

Figure 3.7 (a) Within Template Transition Rules

(b) Between Template Transition Rules

(a)

(b)

o W e - -

Storage. In reality, the whole accumulated array need not be
computed and stored at once. To perform the dynamic programming
recursions from a time frame i, only a small portion of the the complete
array D(i,j,k) of accumulated distances is needed. Thus using only one
column of storage, D(j,k), the recursions (1) and (3) are carried out by
proceeding along the time axis of the test pattern and updating the
storage column point by point. Using this method causes the details of
the path to be lost, and backtracking information (boundary crossings)
must be stored along the way. Two 1-dimensional arrays, length N, are
used for this purpose. The words and boundaries are finally found by
tracing back through the 1-dimensional arrays from end point to begin
point, etc., until the beginning of the test pattern is reached. Figure
3.8 depicts the idea of backpointers for individual grid points while
figure 3.9 depicts the traceback procedure. A flow diagram for the
One-Stage Dynamic Time Warping Algorithm for Connected Speech is shown

in figure 3.10. For more details refer to Ney [10] or Appendix B for

the Lisp function SCAN-DTW.

P W o o o 4 Tz t-w w ¥ X

SO0 el

FPYEXA A

o ST

2 4 4 % v H

o -

« 0 = -
P LR

J(k)
o O OO0 OO0OOO0oO
j—OOOOO// O ©
» . ooo/o—o/o O ©
- oo oo oo O ©
W ow ///
S oio/o/o—oooo
<
® « o/iiooooo
w3 4| o © O 0 0 O
2~
-

o 1-

TIME FRAME i OF
INPUT PATTERN

TIME FRAMES i OF INPUT PATTERN

Figure 3.9 The Backtracking Procedure

®
Figure 3.8 Backpointers from three preceding grid
points (i,j,k) to their starting frames
¢ BACKPOINTER
MINIMUM TEMPLATE 4 3 3 1 4 7)

AL

&

B LELE

S PP LLLS

L -.;"-.'-.'...- ’

“v

‘s 2 s s

5

-

¢

Y ",
‘-.. JLAA) oLy

.
)

)

INITIALIZE ARRAYS OF ACCUMULATED AND BACKPOINTERS.

[LOOP OVER TIME FRAMES OF THE INPUT PATTERN. |

¥
—71 [LOOP OVER TEMPLATES. |
1 ¥
EVALUATE DYNAMIC PROGRAMMING RECURSION ACCORDING
TO BETWEENTEMPLATE RULES.

- UPDATE THE COLUMN ARRAY OF ACCUMULATED DISTANCES.

- UPDATE THE COLUMN ARRAY OF BACKPOINTERS.

1

L
| [LOOP OVER TIME FRAMES OF THE TEMPLATES. |

EVALUATE DYNAMIC PROGRAMMING RECURSION ACCORDING
f TO WITHIN-TEMPLATE RULES.

i - UPDATE THE COLUMN ARRAY OF ACCUM. DISTANCES

- UPDATE THE COLUMN ARRAY OF BACKPOINTERS.

|

{ LOOP CONTROL |

i | LOOP CONTROL |

!)

! KEEP TRACK OF THE TEMPLATE WITH MINIMUM ACCUMULATED DISTANCE
AT ITS ENDING FRAME IN A "FROM TEMPLATE" ARRAY

? KEEP TRACK OF BACKPOINTERS AT THE ENDING FRAME OF THE
CORRESPONDING TEMPLATE IN A FROM FRAME ARRAY.

| LOoOP CONTROL |

RECOVER THE SEQUENCE OF TEMPLATES:

- START FROM THE THE TEMPLATE WITH THE MINIMUM ACCUMULATED
DISTANCE AT ITS ENDING FRAME.

- BACKTRACK THE SEQUENCE OF TEMPLATES USING THE "FROM FRAME"
AND "FROM TEMPLATE"™ ARRAYS UP TO THE BEGINNING FRAME OF
THE INPUT PATTERN.

g

)

Figure 3.10 Schematic Diagram
Source (3:268).

- Ny . LAt iy e e ife e e R T R S PR - -
1 -!'-\"J' 2 R e e, A AT AR Lo o < "."- '."-.'-. --'a"\ R ORCRILT

SRS

e e P P P)

EP Y ERRRS,

LA

PO T ot Y

[% ¢ 'I""b‘i‘v’ll v

IV. Results and Discussion .

Introduction
The purpose of this chapter is to present the results of an
investigation into the applicability of various feature sets to
connected-speech recognition, The chapter begins by examining features !
one by one and observing their distance array contours. Distance
distributions for the distance arrays are given in the form of
histograms. Finally, individual features and combinations of features i
are tested at connected-speech recognition using the one-stage dynamic

time warping algorithm for connected speech of chapter three.

The Distance Array Contour

The distance array contour is a useful way of observing a feature
set's applicability to speech recognition. The distance array contour
is made by calculating an array of distances between a single known
template word and a single known utterance. Distances calculated are
Minkowski 1 distances (taxi distance). Then the distance array is
plotted with distances below a certain threshold represented by black,
and distances above the threshold represented by white. The threshold
is determined by trial and error until about half the area is dark and
half is white. This threshold varies for different feature sets.

Figures 4,1 through 4.7 show distance array contours using the template

word "three" and the utterance "4-3-3-1-4-7-9", along with corresponding
© distribution histograms.
Wide-Band Spectrum. Figure 4.1 shows the distance array contour
using Wide-Band Spectrum as a feature set. Notice where the word
¢ "three™ appears in the test pattern, there are diagonal dark patterns \
41 J
C)

. A - - - - - - . » LI | N 2 W e W™ v . My ¥ LB] . - - - » A Y A | - - - - A - L%) « » » » e " - - - LY
..I.m.'oﬂ .'. S, N0 WY, ., '(LI IRAVALTILSY ,. ('\'P' - ". A 'F " Vit " A n AT .l. »l~ (XN D. (A .-F

8

3 J\,;-rf .(O _.1' NN Py .r.r_'.,,\;. X _'_;_:.r;.,-;;._;.‘:;_: _;. .;.:,;,;..r - J-\ -.'\._-r -r,*\.\.: Valy \.\f_\.- =\ :‘.- _‘.-\.:\-:._'_.'.:\:._

S

extending from bottom to top of the distance array contour. Those dark
diagonal patterns represent the occurrences of "three" in the test
pattern matching up with the template version of "three"™. Even though
the original waveforms of the two occurrences of "three" are markedly
different, this feature is able to show agreement with each and the
template.

Narrow-Band Spectrum. Figure 4,2 shows distance array contour

using narrow-band spectrum as a feature set. This contour looks very
similar to the one for wide-~band spectrum except that the patterns are
more distinct. There is less "noise" in the narrow-band spectrum
representation.

LPC Coefficients. Figure 4,3 shows the distance array contour

using LPC Coefficients as a feature set. In this feature set, the
distances are calculated from the actual LPC filter coefficients. 1In
this case the patterns are not clear, Using this feature in this way
performs poorly in terms of showing agreement between the template and
the test pattern.

LPC Spectrum. Figure 4,4 shows the distance array contour using

LPC Spectrum as a feature set. In this feature set, the distance are
calculated from the spectral components derived from the LPC filter
coefficients. In this contour, the two occurrences of the word "three"
appear even more clearly than wide-band and narow-band spectrum.

Formants. Figure 4.5 shows the distance array contour using
Formants as a feature set. This feature set works well during vowels
sounds, but works erratically during fricatives when the formant tracker
loses track. This contour shows that formants can show agreement

between vowel sounds but not fricatives.

42

R
o .

N
PR T 18 5 %N

N LTS T

PRI JE I I S IR Y

=

.

CON T

"'. Y 3 8 T ¥ ¥

Frication Frequency. Figure 4.6 shows the distance array contour

using Frication Frequency as a feature set. This contour fails to show
any agreement between the template and the input pattern.

Zero Crossing Rate. Figure 4,7 shows the distance array contour

using Zero Crossing Rate as a feature set. This contour also fails to

7. show any agreement between the template and the input pattern.

Recognition of Connected Speech.

In order to fully observe the feature sets' applicability to
connected-speech recognition different features and combinations thereof
are tested using the one-stage dynamic time warping algorithm for
connected speech proposed by Ney (10). Appendix C contains sample

results of the recognition system using the various feature sets for

speaker-dependent continuous speech recognition. In these figures, the

tenplate set is displayed vertically on the left and the test pattern

horizontally on the bottom. The composite distance array contour is

shown in the middle. The template word boundaries are marked by

horizontal lines. The vertical lines represent the word boundaries with

the test pattern as computed by the recognition system. Below the test

pattern waveform are the words as recognized by the system.

Speaker-Dependent Results, Feature sets are tested first for

speaker-dependent performance. In this case the template patterns and

the test patterns are made by the same speaker. The features tested

here are wide-band, narrow-band, and LPC spectrum, foruants, and a

combination of formants, LPC spectrum, and frication frequency. Table

4.1 shows results for each of these feature sets,

3

uonNnqinsig asjueisig Wnnaadg pueg-apim

wnJg3oadg pueg-apiM ‘dnojuo) Leuaay aoueqysi|g

---......___________ _ ____
__—_ ____ 6695C.€10°0 = Ty

l1°f 9J4n3T4

LO19€18°0 = XeN
SIPTIESL00 = UIN
LPLUSSLE D = UPAN

uiajjed 1sa]

£

b .

(s1°0 = proysaiyp) .»q:<.wu=3a_o Ezﬂaoonw-uzqm-w_:.s . ‘ aeqdwma]

4y

wnu309dg pueg-ModdeN ‘dnojuo) Aeady soueysTq g h 94ndTy

uonnqIsyq aouesyg wnijoedg pueg-molreN

uianeqd s3]

Avi1y 3ouw)syq wnijoads pueg-molileN aejdmay

4-5

PRIV AR

SqUaTOTJJ900 041 ‘J4nojuo) AeJddy 80UBYSTIQ §°f 24n3T4

9119681 ¢ = 1€y
ETTLIL6E = XP
PTL00€E°L = UIN
26909°¢1 = uealy

uopnqnsyg adueisyq HU3jafIyac) 41

ulajed 1sd |,

.v&.¢< L f”"f".. . u 4

(S = PIOWsaIYL) Av11y 2ouvisiqQ SIUaIJ20D DT

ayerdwag

ENE B BT MEEE R RS IEALTLLAL SRt) DN libyni OOt RESSOOO AR D PR AL | it DA LIRS 0.....\.\.\{.“
B
’
o
q
el
wnaq03dg Jd1 ‘unojuo) Aeddy souB}SIQ f'h 9JN3ITY .\.w
=4
,”.\M
%
——————__——__-ll ;
SPPITERTIN G = 1A
T65T986°0 = XPW
8PiEP8L0°0 = UIN
wonnqinsig aaueisig wnnaads 471 POSSE06Y 0 = UeII
— t~
=
uiajjed 1sag
(T0 = PlOysaIy L) Aei1y aoueisiq wmnoads Dd71 aveqdwag
IS
o [} e N] S (] - - . -

]
vi.i(q]

alafbata¥a®

~

1N ”.Munf .”u” O ANSALSRIWE .-........(.w 3 i.-lt\\(.\.\.\ A MO ..ﬂ. o W ...I...r,.....fP h &‘\.U P F S ..A-u\ua.r.r.-r““ ,\-a...w..u\\t\ A
§]UBWJO, ‘Jnoquo) AeJAJY 90OUBISTJ G°f SJNITd
‘QOTTLL = e
0°TT6L = Xe N
00 = Uiy
uonnquIsi(] 3dueISi SspueuLIo] 18S0°PL9 = UPAN
ulaneqd 1sa|
P e —— e —
(051 = PIoYsaiy]) Ael1y adue}sig sjueuwriog ayepdua]
TN W | & g |

-

s
P

e
/

4-8

"

&

el
%"

s .
*. A
.AJA.A‘.A_.

S

a-
!

»

: '-'_ .

Syt

.

e

-,
o
Y oa
.

o
e % N

T
¥

AR OES

-

N

.‘\ «

i

LRI XY - A R N o, 3 LYY, 1 AR ; - ‘.--q .| oy py o i Y

L% T e et A " \\\’Jw PR (e AR RTUR AT L S AL A e e RAR ..J..\-\\.H.lr\\\r
P

14

-‘

A

-

-

L

-

v

Fd

N

Kdouanbaug uorjedTUY ‘dnojuo) Aeduay ddUBISTQ Q°h BJNIT4 "
»

Ay
g

.-

b
N

hY

PP PSSTLS 2 1R
0°087E = XPN

usnnqinsyg 3dueisiq Louanbalj uonjesrsy .w.@.cvcﬂ.eu u..”w”
$8¢

4-9

uianed 1sag . !

X0 e
. xv .r

(0s = pIoysaxy) de11y aoueisig Louanbarg uopearry aejdwmay

-

N eI e e e P A QR s s

2jeY JUTSS0J) 0J4d7Z ‘unoquo) Leuddy asoueysIq [L°f 9J4n3T4d M

) L018E°T8L = e
TS16%5°69 = xe

J uonnquIIsig daueysig ey Juissor) 0137 vewmmwmwhﬂ.w NME A

4-10

- uiayed 13|

) ¥
.
» whe — JOE - - - R
. e N
L]

“ T -

> -

¢

~e 9

(0’1 = ploysaryl) ferry aoueysyg ey Suissor) e-ow

1

seeee

aedwmag

2. B g% AV.) & £Vasa dta 8Ya £'a 112 6°A $'m §'8 B'a §° e e 2.0 8. 5.0 B B 22® Ko 307 Ba* Ba® 120" 282208 'alh a'h a%4 a4 2%R 2'8 848" », val *

% N g

Wide-Band Spectrum. The feature set consisting of only

PPttt

wide-band spectrum performs only fair, correctly recognizing 29 out of

38 digits, spoken in five to seven word utterances for the speaker

"RGD".

PR TRREAD)

Narrow-Band Spectrum. This feature set performs about the

same as wide-band spectrum, also correctly recognizing 29 out of 38
digits, spoken in five to seven word utterances for the speaker "RGD".
Formants. The feature set consisting of only the first and

second formant frequencies performed surprisingly well, recognizing 31 By

.

out of 38 spoken in five to seven word utterances for the speaker

.' 1-1

-
.

"RGD". The good performance of this feature, considering how the
formant tracts are lost during fricatives leads to the next feature set,

which is a combination of LPC Spectrum and Formants.

WA

LPC Spectrum. The feature set consisting of only LPC

spectrum performs the best of the three spectrum features, correctly

P R 4

recognizing 35 out of 38 spoken in five to seven word utterances for the

speaker "RGD".

1

LPC Spectrum, Formants, Frication Frequency. This feature set

consists of a combination of LPC spectrum and formants. Frication

e B .) A

frequency is used as a "gate" to determine whether vowels or fricatives

Py

are present. Zero crossing rate could also be used as a gate between

vowel and fricative sounds, because a rate between about 300 and 900
usually indicates a vowel sound. However, zero crossing rate goes to

zero during very low energy periods as shown by figure 4.8,

e . Ta WY e LS
\ \(‘-J J'-_J‘,'I-f'-\ 8",

1 0.5537

0.0000 282828 Zero Crossing Rate 2.0000 :

0.5537 f

0.0000 282828 Frication Frequency 2.0000

0.5537

0.0000 282828 Original Waveform 2.0000

mm AN\~

282828 Wide-Band Spectrum Slice 8000.

Figure 4.8 Frication Frequency vs. Zero Crossing Rate

4-12 N

Therefore, moments between silence and frication, as the zero crossing

L LA AR

rate rises from 0 above 900, would be mistaken for vowel sounds. Using
frication frequency as a "gate™ enables formant tracts to be used while
substituting LPC spectrum distances when the formant frequencies are not V’
valid, This feature set performed very well, correctly recognizing all v
38 of the digits spoken by "RGD". Even the troublesome "two-eight-two-

eight-two-eight" combination was correctly recognized.

R

AL

LPC Spectrum
Wide-Band Narrow-Band LPC Formants
Utterance Spectrum Spectrum Formants Spectrum Fric. Freq.
PY 4331479 7.0/7.0 7.0/7.0 7.0/7.0 7.0/7.0 7.0/7.0 i
282828 0.0/6.0 0.0/6.0 4,0/6.0 5.0/6.0 6.0/6.0 b~
2u68 3.0/4,0 3.0/4.0 4,0/4,0 4,0/4,.0 4,0/4.0
28318 3.0/5.0 3.0/5.0 2.0/5.0 3.0/5.0 5.0/5.0
012345 6.0/6.0 6.0/6.0 6.0/6.0 6.0/6.0 6.0/6.0
56789 5.0/5.0 5.0/5.0 5.0/5.0 5.0/5.0 5.0/5.0
P 01379 5.0/5.0 5.0/5.0 k,0/5.0 5.0/5.0 5.0/5.0
Total 29.0/38.0 29.,0/38.0 32.0/38.0 35.0/38.0 38.0/38.0
Percent 63% 63% 8ug 92% 100%

Sy

AR IR

® Table 4,1 Speaker Dependent Feature Results

Speaker-Independent Results. Two feature sets are used to examine

speaker-independent connected speech recognition. LPC spectrum, since

-

it is so commonly used in practice, is used as a baseline. A possibly

Sy Ay

improved feature set, using LPC spectrum, formants, and frication
frequency is also used. Speaker-independent performance is examined by

simply trying the system out using various combinations of template sets

and test patterns, of course each by different speakers. Finally,

multiple speaker template sets are tested.

4-13

AW WYy e, P T T O T L T N U S P
MR T A A AT W A A O K PR A AT N AN

e gte gle ava gt a0 At Rt B St e Bl N ‘e S 2ab fab Aol pat pot W)

The improved feature set of LPC spectrum, frication frequency, and
formants, is implemented differently than for the speaker-dependent
case, Formant frequencies are rather consistent for given vowels sounds
for a given speaker. However, formant frequencies of different speakers
uttering vowels sounds that are perceived as being the same can be quite
different. Figure 4,9 shows a plot of the first formant frequency (F1)
versus the second formant frequency (F2) for a population of speakers
uttering vowel sounds common to the English language. Those grouped
together were perceived as the same sound. It is clear from figure 4.9
that simple Minkowski 1 distances are insufficient since points from
separate groups can have Minkowsli 1 distances that are smaller than
points from within the same group. Therefore, it is necessary to alter
the way these individual features are combined for the speaker-dependent
case.,

First, a distance array is computed using only LPC spectrum. As in
the speaker-~dependent case, frication frequency is used to locate valid
formant frequencies. Then, each point in the LPC spectrum distance
array is multiplied by 0.4 and thereby emphasizing "agreement" if, (1)
that point results from a valid vowel sound according to frication
frequency in both the template and the test pattern, and (2) the first
and second formants from both the template and the test pattern fall

within the same group. Figure 4.10 shows the groupings used by the

algorithm for each vowel sound.

AR SARY

AT T e T T I

R

T

RhPY

»

IO e

-
'I

*

AN,

y ¥

BRI AR

e .l'l'
LI LS

LN

S e |

+ 4000] ot
3500 L ‘

3000

- -’
-y

e

(‘." ”

2500

2000

U ‘“v' - 'lu.-‘-'-.-
'-';" :’"" -,5-"31

1500

r‘r

FREQUENCY OF F, IN Hz
ryY
54

I

1000

5OOO 200 400 600 800 1000 1200 1400

FREQUENCY OF F, IN Hz)

S Ak

Figure 4,9 First Formant vs. Second Formant
Source (12:44)

» :b '1
‘
~

? 3500
‘ 3000

2500

bet
2000 V.

beet

(Hz) 1500 Bird yd

bEt
1000 Boot / hot

fgt

\

bought

500

200 400 600 800 1000 1200

F, Hz

Figure U4,10 Formants Zones Used by Algorithm

VT IRYY) W W ATV LN ff.' .P-(J' oy g Co o, o € o A " W o S A e e ety A,
0‘. n....‘.,l'.l'o r‘nl.t ®., ("I'I\\ > s ' ". % "\" "\\ L‘. ‘. QQ N\ y \ X \\ -. .0

LR A B AL AR A YA AL BT R o e AN o7 g%

€ T

AR

XY

TP

AR Y
VIOV

N

e IO T

SN,

s Voa ¢ ‘S a0 8 2.2 a't.n'd ek 2 a8 n' a's 2°8 2R 2 'A o't o’ a'h 2k athoad a0 a'h a'h 2'8.a ot

Single-Speaker Template Sets. Table 4.2 shows results for
various template and speaker combinations, In many cases, the addition
+ of formant information improved recognition accuracy.
L Template Speaker LPC Spectrum Plus Formants
JONES RGD 29.5/38.0 34.5/38.0
JONES SKIP 7.5/718.0 11.5/18.0
RGD SKIP 15.5/718.0 18.0/18.0
RGD JONES 26.0/33.0 31.0/33.0
F SKIP RGD 26.5/38.0 28.0/38.0
SKIP JONES 25.0/33.0 31.0/33.0
TOTAL 130.0/178.0 154,0/178.0
PERCENT 73% 87%

Table 4.2 Single Template Speaker Independent Results

Multi-Speaker Template Sets. Table U4.,3 shows results for

various multi-speaker template and speaker combinations. Using

multi-speaker templates further improved recognition accuracy.

Template Speaker LPC Spectrum Plus Formants
SKIP & RGD JONES 27.5/33.0 31.0/33.0
JONES & RGD SKIP 12.5/18.0 18.0/18.0
SKIP & JONES RGD 31.5/38.0 35.5/38.0
TOTAL 71.5/89.0 84,.5/89.0
PERCENT 80% 95%

Table 4.3 Multi-Template Speaker Independent Results

e e e S e

‘PP AL

LI 6 6 €8 & Nughly s v g ¢ o

< a

P i

e
»

P oS
2 .

g
A

YA S Y
A R e LN

"'D‘
ot

S

o

3 'I-}-.’--‘ el <

»
Ry

‘-

Zklx}

et U T -y Chatath atd ats 4% 2¥h 2t 4l 8 g’ s Gl V2% Pl Nah ead vaf sale Ay Ao gl ‘Era AY, FryYYYy ry

Overall Results Using LPC Spectrum. Table 4.4 shows the overall 13
'
h results including both single and multi-templates using only LPC ::
spectrum as a feature set. .
u
-l
¢
e Template (LPC Spectrum) »
SKIP JONES JONES ‘_"
Utterance RGD JONES SKIP RGD SKIP RGD 2
p RGD:
012345 - 5.0/6.0 6.0/6.0 - 6.0/6.0 - -
4331479 - 7.0/7.0 5.0/7.0 - 7.0/7.0 - i
56789 - 2.5/5.0 1.5/5.0 - 2.5/5.0 - .
28318 - 2.0/5.0 3.0/5.0 - 2.0/5.0 - iy
01379 - 3.0/5.0 5.0/5-0 - 5.0/500 - '
o 2468 - b,0/4.0 3.0/4.0 - 3.0/4.0 - =
282828 - 6.0/6.0 3.0/6.0 - 6.0/6.0 - K
JONES: X
4331479 6.0/7.0 - 7.0/7.0 7.0/7.0 - - ”
2555276 7.0/7.0 - 4,0/7.0 7.0/7.0 - - -
. 28318 2.5/500 - 300/5.0 3.0/5.0 - - -
2377097 3.5/7.0 - h,0/7.0 3.5/7.0 - - if
8351561 7.0/7.0 - 7.0/7.0 7.0/7.0 - - Q
SKIP: N
1234 4,0/4,0 1.,0/4.0 - - - 2.0/4.0 -
1549768203 9.0/10.0 4.0/10.0 - - - 8.0/10.0 -
2468 2.5/4.0 2.5/4.0 - - - 2.5/4.0 ,‘
v
:r
'-"
Ky
L ¢
Table 4.4 Overall Results
LPC Spectrum

RPN

1@

=

1

-

™
Y

-.' Lo O

.L,J..

Te _"w oy
G N S A A N N A R N AR A R AT .\}.\.\.\)\&.\.\.{u

vap o . X SLau aid st aUR ath i gl a¥) AVA 218 o P A T T TUR I N TARTUR R AR N R AR AN Y NN AN TNV RGP 4'a.4' d 4" o

Overall Results Using LPC Spectrum, Formants, and Frication

Frequency. Table 4.5 shows the overall results including both single

® and multi-templates using only LPC spectrum, formants, and frication
frequency combined as a feature set.
. 3
Template (LPC Spectrum + Formants)
SKIP JONES JONES
® Utterance RGD JONES SKIP RGD SKIP RGD
RGD:
012345 - 6.0/6.0 6.0/6.0 - 6.0/6.0 -
u331u79 - 7-0/7.0 5-5/7.0 - 7.0/7.0 -
56789 - 3-5/5.0 2.5/5-0 - 3.5/500 -
. 28318 - 5.0/5.0 1.0/5.0 - 5.0/5.0 -
01379 - u.O/S.O 5.0/5.0 - 5-0/5.0 -
2468 - 3.0/4.0 3.0/4.,0 - 3.0/4,0 - h
282828 - 6.0/6.0 5.0/6.0 - 6.0/6.0 - !
JONES: -
2555276 7.0/7.0 - 7-0/7.0 700/7-0 - - ¥
28318 4,5/5.0 - 4,0/5.0 5.0/5.0 - - 9
2377097 505/700 - 6.0/7.0 6.0/7.0 - -
8351561 7.0/700 - 7.0/700 7.0/7.0 - -
® SKIP:
1234 4,0/4.0 2.0/4.0 - - - 4,0/4,0 3
1549768203 10.0/10.0 7.0/10.0 - - - 10.0/10.0 :
2468 4,0/4,0 2.5/4.0 - - - 4,0/4.0
C)
Table 4.5 Overall Results |
LPC Spectrum, Formants, 3
Frication Frequency ,
]
L &
C 1
4-19
C)

I't,

-

Py 3%,

Wty (7 \ .,\.‘u

V. Conclusions and Recommendations

Introduction

The purpose of this chapter is to discuss conclusions that may be
drawn based on the performance of this system as well as to give
recommendations for further research in the area of speaker-independent

continuous~speech recognition.

Conclusions,

This thesis is successful in producing a rather robust system for
continuous-speech recognition. It is shown here that Ney's algorithm
for connected speech works quite well. The idea of using template sets
made up of multiple speech features is also shown to be advantageous.
Results reveal that using formant information can significantly improve
recognition accuracy, especially in the area of speaker-independent

applications.

Recommendations.

Environmental Stress. As described in chapter 3, this system was

tested with speech patterns virtually free of background noise. It
would be interesting to study its performance under such conditions as
background noise ie., cockpit noise. The Armstrong Aerospace Medical
Research Laboratory at Wright-Patterson AFB has excellent facilities for
recording speech under noise conditions.

Tailored Template Sets. From the results of this system it still

isn't clear whether completely redundant template sets are necessary.
They seem to be useful handling different pronunciations of certain

words such as "eight" with or without the "t" sound at the end.

5-1

N e tTRWRE® . N e

“'.‘1*_-{-‘.1-’\'..: Sl)

- g Ny

“ -

R 3!

LT U R S

P AL A A T R R AR AL A AP N N
A 2 - - n » Bt < * (MM

Unfortunately, redundant template sets pay a high price in terms of

computational intensity. A better approach may be to store a few

S v

carefully selected template sets with only certain words redundant and
let the user select the best one for him. This would greatly simplify

the training process.

Ao 2 Ne Na SN NN I¥ |

Additional Features. Although the system was able to discriminate

between different vowel sounds well, it was not able to discriminate
between similar fricative sounds. It would have trouble with something o
like "carp" versus "tarp". A logical extension would be to add ways to 7
discriminate such sounds.

Pd
Syntactic Rules. Even humans have trouble identifying spoken ,
-,

utterances without the aid of syntax. MNey (10) describes methods for
adapting the algorithm to include such constraints. Also, currently,
the algorithm will apply every bit of the test pattern to some
template. It has no way of handling words that are not part of the
vocabulary. Syntactic constraints described by Ney could possibly be ::

adapted to handle words not in the vocabulary.

Dedicated Hardware. Although Ney's algorithm is very efficient,

dedicated hardware would be preferred for its interactive use. Hardware

e
l‘.

to perform real time LPC analysis is commonly available. The DoD
standard is known as LPC-10. The next step would be to implement the
dynamic time warping algorithm in hardware as well. Such a system then

could conceivably by operated in real time.

Summary

In summary, this thesis shows that using additional speech features

(formants) can be successfully applied to the problem of

R

5-2

'
PRI A

LY
R T e R I e A e el e e e T TN e T e T T T e A T AT T A TR T T A
R A YA AT I S R Vo v S W G R A, A s Vit et ST A P A TV,

speaker-independent continuous speech recognition. Presumably, further
improvements could be made by carefully utilizing other features of

speech, Consequently, further research in this area could help to

ultimately solve the problem of speech recognition.

P XA A

g T

G W NN N Yy

XA

KN) :l "y Piw!

-

RS

-

FELR I CST

- '.-.' o":.“q

b

..
" NIRS

5 v v

el N

PRy

=l
- .
- o

[

PR -
N .
‘l ‘l 2 " ﬂ »

@ 5~

5

“lr' 'y

PRI

W,

-“W

» ‘{&'&:C."[« v

PO S
NV

L 2N
R

&
i)
LI
»
b H
Appendix A: Spire Default Values i
R
o’

5

mmmmmﬂmr‘nqunruu e F RIS R T T

;:: =*~ mode: lisp; package: spire; base: 10 -*-
HEH SPIRE -- Speech and Phonetics Interactive Research Environment

. HHH ATTRIBUTE-DEFAULTS

;1 (c) Copyright 1983, Massachusetts Institute of Technology, All Rights Reserved

(define-attribute "Zero Crossing Rate"” zero-crossing-rate-flavor
. (sampled-attribute-window) nil
iwaveform-attribute-name "Original Waveform”
analysis-rate 200.
ranalysis-window-size .020
:noise-threshold 40.)

(define-attribute "Vers Zero Crossing Rate” gero-crossing-rate-flavor
nil nil
. :waveform—attribute-name "Original Waveform"
ranslysis-rate 400.
sanslysis-window-size .020
:noise-threshold 40.)

(define-attribute "LPC Predictor Coefficients" lpc-flavor (indexed-attribute-window)
({"LPC Gain Term” (:gain) sampled-attribute-window))
:waveform—-attribute-name "Original waveform"
:filter-spec (:bandwidth 78.)
. :analysis-rate 200.)

(define-attribute "LPC Spectrum” lpc-spectral-flavor
nil nil

:predictor-attribute-name "LPC Predictor Coefficients"”

:number-of-points 256.)

(define-attribute "LPC Spectrum Slice"” spectrum-slice-flavor
‘. (spectral-slice-attribute-window} nil
:spectrum-name "LPC Spectrum”
icursor-name :cursor-time)

(define-attribute "LPC Spectrum Slice (marker)"” spectrum-slice-flavor
(spectral-slice-attribute-window) nil
:spectrum-name "LPC Spectrum”
cursor-name :marker~time)

. (define-attribute "Energy —-- 0 Hz to 5000 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil
:waveform-attribute-name "Original Waveform"
:analysis~rate 200. ; 383.
:filter—typs :hamming
:filter-spec (:bandwidth 78.0)
:number-of-points 256.
:preemphasis? :default
C :freq-lo-bound 0
:freq-hi-bound 5000.)

(define-atrribute "Vers Total Energy"” energy-from-waveform-flavor
nil nil

:wvaveform—attribute~name "Original Waveform"

ianalysis-rate 400.

:filter-type :hamming

® :filter-spec (:bandwidth 78.0)

:number-of-points 128.

:preemphasis? :default

:fregq-lo-bound nil

:freq-hi-bound nil)

(define-attribute "Total Energy" energy-from-waveform-flavor
{sampled-attribute~window) nil
twaveform-attribute-name "Original Waveform”

>
3
:
g

C canalysis—rate 200.
A=-2
C !
C S N PR P ._'.:."..'-_’-(-‘-
e AN M LN e e e e e N,

iy iea inath akiard ath ek atiabagac s g s v il tat ot bl b st ety Al Aty gre A aibid Al b Akl At AL S AL AR

:filter~type :hamming

{ :filter-spec (:bandwidth 78.0)
:number-of-points 128.
:preemphasis? :default
:freq-lo-bound nil
:freq-hi~bound nil)

(define-attribute "Energy —- 120 Hz to 440 Hz" energy-from-waveform-flavor
(sampled-attribute~window) nil
:waveform—attribute-name "Original Waveform”
tanalysis-rate 200.
:filter-type :hamming
:filter-spec (:bandwidth 78.0)
. :number-of-points 256.
:preemphasis? :default
:freq-lo~-bound 120.
:freq~-hi-bound 440.)

(define—-attribute "Vers Energy -- 125 Hz to 750 Hz" energy-from-waveform-flavor
nil nil
:waveform-attribute-name "Original Waveform"
) :analysis-rate 400.

:filter-type :hamming
:filter-spec (:bandwidth 78.0)
:number-of-points 128.
:preemphasis? :default
:freg-lo-bound 125.
:freq-hi-bound 750.)

. (define-attribute "Energy -- 125 Hz to 750 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil

:waveform-attribute-name "Original Waveform”

canalysis-rate 200.

:filter-type :hamming

:filter-spec (:bandwidth 78.0)

:number-of-points 128.

:preemphasis? :default

:freg-lo-bound 125.

‘ :freq-hi-bound 750.}

(define-attribute "Energy -~ 640 Hy to 2800 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil
:waveform-attribute-name "Original Waveform"
ranalysis-rate 200.
:filter~type :hamming
:filter-spec (:bandwidth 78.0)
. :number-of-points 256.
:preemphasis? :default
:freg-lo-bound 640.
:freq-hi-bound 2800.)

(define-attribute "Energy -- 3400 He to 5000 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil
:waveform-attribute-name "Original Waveform”
tanalysis-rate 200.
C :filter-type :hamming
:filter—-spec (:bandwidth 78.0)
:number-of-points 256.
:preemphasis? :default
:freg-lo-bound 3400.
:freq-hi-bound 5000.)

{define-attribute "Frication Fregquency” energy-percentile-flavor
(.] (sampled-attribute-window) nil
:spectral~-attribute-name "LPC Spectrum”

:energy~fraction .25)

(define~attribute "LPC Center of Gravity" energy-mean-flavor
(sampled-attribute-window) nil
:spectral-attribute~name "LPC Spectrum”)

e (define-attribute "Formants" spectral-peaks-flavor
| (indexed-attribute-window) nil

21 L

Rl

v ¥
pv D PN,

>
|
(W8
AN

C

e

P
P

. - e . ' PN Y
R N T LT TPE I TR I T TR T P R P R R P , . \ R o O\ > e
RPN ST T L AP AR SN AL ALY

o W

A e e RN R T Cd AR oot o s fa

:spectral-attribute-~name "LPC Spectrum”
:number-of-peaks 4)

(define-attribute "Narrow-Band Spectrum” fft-spectral-flavor
nil nil
:waveform—attribute-name "Original Waveform”
canalysis-rate 200.
:filter—type :hamming
:filter-spec (:bandwidth 78.0)
:number-of-points 256.)

(define-attribute "Narrow-Band Spectrum Slice" spectrum-slice-flavor
(spectral-slice-attribute-window) nil
:spectrum-name "Narrow-Band Spectrum”
rcursor-néme :cursor-time)

({define-attribute "Narrow-Band Spectrum Slice (marker)" spectrum-slice-flavor
(spectral-slice-attribute-window) nil
:spectrum~name "Narrow-Band Spectrum”
icursor-name :marker-time)

(define-attribute "Narrow-Band Spectral Slice" fft-spectral-slice-flavor
(spectral-slice-attribute-window) nil
:waveform-attribute-name "Original Waveform”
icursor-name :cursor-~time
:filter-type :hamming
:filter-spec (:bandwidth 78.0)
:number-of-points 256.)

(define-attribute "Narrow-Band Spectral Slice (marker)" fft-spectral-slice-flavor
(spectral-slice-attribute-window) nil
:waveform~attribute-name "Original Waveform"
icursor—-name :marker-~time
:filter~-type :hamming
:filter—spec (:bandwidth 78.0)
:number-of-points 256.)

{define-attribute "Wide-Band Spectrum™ fft-spectral-flavor
nil nil
:waveform-attribute-name "Original Waveform"
:analysis-rate 200.
:filter-type :hamming
:filter—-spec (:bandwidth 300.0)
:number-of-points 256.)

(define-attribute "Wide-Band Spectrum Slice” spectrum-slice-flavor
(spectral-slice-attribute-window) nil
:spectrum-name "Wide-Band Spectrum”
rcursor-name :cursor-time)

(define-attribute "Wide-Band Spectrum Slice (marker)" spectrum-slice-flavor
(spectral-slice-attribute-window) nil
:spectrum-name "Wide-Band Spectrum”
tcursor-name :marker-time)

(define-attribute "Wide-Band Spectral Slice" fft-spectral-slice-flavor
(spectral-slice-attribute-window) nil
:waveform~attribute-name "Original Waveform”
icursor-name :cursor-time
:filter-type :hamming
:filter-spec (:bandwidth 300.0)
:number-of-points 256.)

(define-attribute "Wide-Band Spectral Slice (marker)" fft-spectral-slice~-flavor
{spectral-slice-attribute~window) nil
:waveform~attribute-name "Original Waveform”
tcursor-name :marker-—time
:filter-type :hamming
:filter-spec (:bandwidth 300.0)
:number-of-points 256.)

(define-attribute "Narrow-Band Spectrogram” stretched-fft-spectrogram-flavor i
’

[

]

d

A-U ‘

d

|

§

|

\

. L Vea t. .. (-.‘ -, 'J':f"l (A R] ,'\“_‘(_‘. (’\J‘\."’\.-_.J‘%ﬂ'N.‘.

y WL T T e W WYY LTV LR

ST e e A A AT e N

Wmmmw [gt al at "ol at, ATg aU. a0, 2% ST, 4V, |

(spectrogram—sttribute-window) nil
‘ :waveform-attribute-name "Original Waveform”
ispectrogram-sise 320.
canalysis-rate 383.
. :filter~type :hamming
:filter-gpec (:bandwidth 76.0)
:number-of-points 256.
:white-value -96. ;=36
:black-value -80.) =20

(define-attribute "Wide-Band Spectrogram”™ stretched-fft-spectrogram-flavor
(spectrogram-attribute-window) nil
:waveform—attribute-name "Oriqginal Waveform”
. :spectrogram-size 320.
:analysis-rate 383.
:filter-type :hamming
:filter-spec (:bandwidth 300.0)
tnumber-of-points 256.
:white-value -96. ;=36
sblack-value -80.) :1-20

(define—attribute "Versatec Spectrogram” stretched-fft-spectrogram-flavor
{spectrogram-attribute-window) nil
:waveform-attribute-name "Original Waveform"
:spectrogram-size 840.
canalysis-rate 1000.
sfilter-type :hamming
:filter-spec (:bandwidth 400.0)
:number-of -points 128.
:white-value -100. =36
P :black-value -75.) :~20

(define-attribute "New Narrow-Band Spectrogram” stretched-fft-spectrogram-flavor
(spectrogram—attribute-window) nil
:waveform-attribute-name "Original Waveform"

:spectrogram-size 840. ;try 840
ranalysis-rate 1000. stry 1000
:filter-type :hamming

b :filter-spec (:bandwidth 76.0) stry 400
:number-of-points 128.
:white-value -100. =36 try -102

:black-value -75.)

(define-attribute "Phonetic Transcription" hand-transcription-flavor
(transcription-attribute-window!
(("New Phonetic Transcription"”
(:values) token-attribute-window :x-scale 383.0
:string-font fonts:ipal2))
runtranscribed-string "¢ ntrénskrYbd>"
:string-font fonts:ipal2)

(define-attribute "Orthographic Transcription" hand-transcription-flavor
{transcription-attribute-~window)
(("New Orthographic Transcription”
, (:values) token-attribute-window :x-scale 383.0))
:token-separator #\space
suntranscribed-string "<cuntranscribed>”
:string-font fonts:hll2b)

(define-attribute "First Fcrmant” formant-flavor
(sampled~attribute-window) nil
rindex 1
r :indexed-attribute-name "Formants")

(define-attribute "Second Formant"™ formant-flavor
(sampled-~attribute-window) nil
:index 2
:indexed-attribute~name "Formants")

(define-attribute "Third Formant" formant-flavor
(sampled-attribute-window) nil
:index 3

I R T W S O Y P Y O SO PO T e3P 3P O YO 3 WO PO O SO Y PO O PO~ PO PO =T T YR TR TR VR TR W T S Ty

:indexed~attribute-name "Formants”)

(define-attribute "Fourth Formant"™ formant-flavor
(sampled-attribute-window) nil
‘ tindex 4
:indexed~attribute-name "Pormants”)

4|
(define-attribute "Fundamental Frequency” pitch-flavor

nil (sampled-attribute-window)
tvoicing~attribute-name "Voicing")

(define-attribute "Voicing” voicing-flavor
o nil (sampled-attribute-window)
tanalysis-rate 100.
:waveform-attribute-name "Original Waveform")
|#

A-6

YR O Y, B AR R RR LAY GRS

Appendix B: Program Listing

B-1

AT

\-.‘me.‘xﬁ.':..m AN A N W RTRTAERGNE IO

"4 LW P I B N Y |

A"lr

oy

N s e

i ' T % Nl

E2

N XA

) ‘b‘_

A,

« ¢ v @
. g a

.

P

N

~*— Mode: LISP; Base: 10; Syntax: Zetalisp -*-

This file contains the necessary function to compute the dynamic
time warp array, given feature arrays from the template and the utterance.

This function receives a pair of arrays, determines there dimensionality
and calls TIMEWARP-1D or TIMEWARP-2d accordingly

efun timewarp (arrayM arrayN)
(cond ((= 1 (array-#-dims arrayM)) (timewarp-1d arrayM arrayN))
({= 2 (array-#-dims arrayM)) (timewarp-2d arrayM arrayN)}))

B N I N S B R R S S S S S S A S S S S S S B B

"TIMEWARP~2D"

; This function will compute the Dynamic Time Warp array given the arrays

; arrayM and arrayN. ArrayM is a x-by-M array, and arrayN is a x-by-N array.

;7 X must be the same for both arrayM and arrayN. This function is meant for

; those spire att's that return 2-D arrays such as the "Wide-Band Spectrum”" and
; and "Formants". The distance measure used is Minkowski 1 or 2:

distsnce = ((a0-b0]"2 + (al-bl)"2 + ... (aM-bN)“2]°(1,/2) or
distance = abs(a0-b0) + abs[al-bl)

; Input: arrayM, arrayN
; Output: A M-by-N DTW array

(defun timewarp-2d (arrayM arrayN)
(let* ((M (- (array~dimension-n 2 arrayM) 6))

(N (- (array-dimension-n 2 arrayN) 6))
(length (cond((= (array~-dimension-n 1 arrayM) 5)

2)
((= (array-dimension-n 1 arrayM) 16)
16)
({(= (array~dimension-n 1 arrayM) 19)
19)
(t
(princ "Timewarp ERROR. Hit Control-Abort")
(do ((x 0))
((= x 1))))))
(start (cond((= (array-dimension-n 1 arrayM) 5)
1)
((= (array-dimension-n 1 arrayM) 16)
0)
((= (array-dimension-n 1 srvayM) 19)
0})))

(distance 0)
(result-array (make-array (list M Nj)))
(loop for n~index from 0 below N do
(loop for m-index from 0 below M do
(setq Distance 0.0)
(loop for v-index from start below (+ start length) do
(setq distance (+ distance (abs (- (aref arrayM v-index m-index)
(aref arrayN v-index n-index))})))
(aset distance result-array m-index n-index}))
result-array))

'.rv:r:p:'-v:-arr:::':::4.n....y::vr-rrn:::::v,.':rc,:vp,:,::.:l,v:,::::;':......-.:.:.

::: "TIMEWARP-1D"

P

B-2

I TLPGPAE W AP B AP |

. %2 "a ‘s

This function computes a Dynamic Time Warp array given vectorM and vectorN. 1In
this case the distance = abs[a-b] for each a and b in vectorM and vectorN.

Input: vectorM, vectorN
output: a M-by-N DTW array

@ =+ ve me e s we

fun timewarp-l1d (vectorM vectorN)

(let* ((M (- (array-dimension-n 1 vectorM) 5))
(N (- (array-dimension-n 1 vectorN) 5))
(return-array (make-array (list M N)})))

{do* ((n-index 0 (1+ n-index)))
((= n-index N))
L. (do* ((m-index 0 (1+ m-index)))
((= m-index M))
(aset (abs (- (aref vectorM m-index) (aref vectorN n-index)})
return—-array m-index n-index)))
return-array})

"PRINT-DTW"

This function will show the Dynamic Time Warp array. This function is
really intended for testing/debugging purposes.
This function will print a section of a 2-D array beginning at (a,b).

~ me %0 s we

defun print-dtw (array a b)
(clearscreen)
(do ((i (+ a 40) (1- i)))
.' ((=m i (1- a)))
(do ((3 b (1+ 3)))
((= 3 (+ b 14)))
(princ (format nil "72,1,8,’ $" (aref array i jl))}))
(terpril))

HER R R ER R IR IR I I I I A A I I A A A I A I S SR A A A B R SR I A I IR S R I AR B IR A A A

(::: "DRAWBORDER"
;:: This function will draw a border on the selected window
{defun drawborder (xl1 yl x2 y2)
(send tv:selected-window :draw-line x1 y1 x2 yl)
(send tv:selected-window :draw-line x1 yl x1 y2)
(send tv:selected-window :draw-line xl y2 x2 y2)
(send tv:selected-window :draw-line x2 y2 x2 yl})

o
e Eiriiitiiiiiiiieiiiiiiiiiiiiiiiiiriiis

PR I A A I A A A A A A A A A A R A R I R A A R A A A R A A A A A A A A A A B A A A IR B A A A A A

::: "PLOT-COMPOSITE-DTW"
(defun plot-composite—dtw (array-list threshold zOPTIONAL search-list tempath uttpath title)
(let* ((radius 0)
(total-M (apply '+ (mapcar 'array-dimension-n (circular-list 1) array-list)))
(total-N (array-dimension-n 2 (car array-list)))
[& (x1 400)
{yl 45)
(y2 (+ yl (min 595 total-M)))
(yrange (- y2 yl))
(x2 (fix (+ x1 (* 2 (* total-N (// (float yrange) totsl-M)))}))
(xrange (- x2 x1)))
(clearscreen)
(drawborder x1 yl x2 y2)
.. (send tv:selected-window :draw-string title x2 (- y1 4) 0 (- yl 4) nil fonts:trl2b)
(do* ((a-list asrray-list (cdr a-list))
(k 0 {1+ k))
(array {(car a-list) (car a-list))
(bottom y2 (- bottom current-yrange))
(v-word (car *vocabulary*) (cond ((not (null a-list))
(nth k *vocabulary*})
(t nil)))
. (current-M (array-dimension-n 1 array) (cond ((not (null a-list})
(array-dimension-n 1 array))

(current-N (array-dimension-n 2 array) (cond ((not

(t 0)))

P -
z

[#

-

(null a-list))

(array-dimension-n 2 array))

(t 0}))

{(current-yrange (* yrange (// (float current-M) total-M))
(* yrange {(// (float current-M) total-M))))

(send tv:selected-window :draw-line (- x1 70)

(round bottom)

(display-waveform-rot

(round (-~ bottom current-yrange))
(round bottom)

(string-append tempath v-word ".utt"))

(send tv:selected-window :draw-string
(nth k *vo-list*)

(+ {round (- bottom (// current-yrange 2)))
(+ (round (- bottom (// current-yrange 2)))

fonts:bigfnt)
((m—index O
((= m-index current-M))
(do ((n-index 0 (1+ n-index)))
((= n-~index current-N))
(setg radius

(l1+ m-index)))

(cond ((= radius -1) nil)

(send tv:selected-window
(round (+ x1
(round (- bottom (* m-index

:draw-point
(// (float xrange) current-N))))
(// current-yrange current-Mj))})

{do ({n-index 0

((> n-index total-N))
(send tv:selected-window
(round (+ xl

{+ n-index 10)))

(float xrange)

{round (+ x1 (// (float xrange)

(do ((m=-index 0
{({> m-index total-M))

{send tv:selected-window

(+ m~index 10)))

(// (float yrange)

(// (float yrange)
({not search-list))
(loop for word in search-list do

(send tv:selected-window

6)

6)

(aref array m-index n-index) threshold) 0)

total-N)}))

total-N)}))

total-M))))

total-M)}))))

(// (float xrange)

(round (+ x1 {nth 1 word)

tv:selected-window :draw-string
(round (+ x1

(// (+ (nth 1 word)
(// (float xrange) total-N))))

(round (+ x1
(+ (nth 1 word)
(// (float xrange)

fonts:bigfnt))
(send tv:selected-window
(+ y2 70))))
(cond ((not uttpath))
(display-waveform xl

(// (float xrange) total-N)}))

(nth 2 word))
10)

(nth 2 word))
total-N;))) 10)

(+ y2 50) uttpath)))}))

(defun plot-dtw (array pathl path2 threshold

LIPS A L - -
Col oy oy AR o0

WA A A

5 N o "‘lﬁ-l-!-l:\‘.'

(+ 10 x2) (round bottom))

YT e AR Y A

PaR o P AP
A A A -

WX P Y WL NN S i
- - - AN

~

total-N))))

LIV S N L

IR | AP Rl

s
.

-
>
-
~
0
-
-
-
A]
A Y
»

al
(let* ((radius 0)
(M (array-dimension-n 1 array)) v
(N (array-dimension-n 2 array)) by
(x1 200)
(x2 900) &
(squish-factor (// (- x2 x1) (float Nj})) :
{yl 150) B
(y2 (fix (+ (* M squish-factor) yl))) ‘@
(note (prompt-and-read :string "Distance Array Name? "))) '
(clearscreen) :-
(display-waveform x1 (1+ y2) x2 (+ y2 100} path2) b
(display-waveform-rot (- x1 100) yl (1- x1) y2 pathl)
(distribution x1 (+ y2 120) x2 (+ y2 320) (list array) 50)
(drawborder x1 yl x2 y2)
(do ({(m—index 0 (1+ m—index))) ’
((= m—index M)) -
{(do ((n-index 0 (1+ n-index))) b’
({= n-index N))]
(setq radius (cond ((¢ (aref array m-index n-index) threshold) 2)]
((¢ (aref array m~index n-index) (* 1.5 threshold)) 1)
({< (sref array w-index n-—index) (* 1.75 threshold})) 0)
(t ~1)))
(cond ({(= radius -1) nil) s
{t (send tv:selected-window :draw-filled-in-circle 5
(fix (+ x1 (* n-index (// (- x2 x1) (float N)}))) -
(fix (- y2 (* m-index (// (- y2 yl) (float M)}}))) .
radius))})) R
(send tv:selected-window :draw-string note x2 (- yl 5) x1 (- yl 5) nil fonts:trl2b)
(send tv:selected~window :draw-string
"Test Pattern”
(- x2 10) (4 y2 25) 0 (+ y2 25) nil fonts:trl2b)
(send tv:selected-window :draw-string
"Template”
(- x1 15) (- yl S5) 0 (- yl S) nil fonts:trl2b) A
(do ((n-index 0 (+ n-index 10))) N,
({> n-index N)) -]
(send tv:selected-window :draw-line -
(fix (+ x1 (* n-index (// (- x2 xl1) (float N)))))
(- y2 5)
(fix {(+ x1 (* n-index {// (- x2 x1) (float N)}}})
(+ y2 6))) 5
(do ((m-index 0 (+ m-index 10}))
((> m-—index M)) 3
(send tv:selected-window :draw-line d
(- x1 6)
(fix (- y2 (* m-index (// (- y2 yl) (float M))))) ‘
(+ x1 5)
(fix (- y2 (* m—index (// (- y2 yl) (float M))))}))))) o
HHH "COMBINE-DTW" -
:::; This function will weight and combine two or more dtw-arrays. A
;:: Input: dtwlist =) a list of dtw’s to combine
HE weightlist => list of weight factors to apply to dtwlist 3
;:; Output: new dtw-array -
(defun combine-dtw (dtwlist weightlist)
(let* ((m-dimension (array-dimension-n 1 (car dtwlist)}))
(n-dimension (arrsy-dimension-n 2 (car dtwlist)})
(return-dtw (make-array (list m-dimension n-dimension))) W)
(sum 0)) d
(do ((m 0 (14 m)}} :
((= m m~dimension))
(do ((n 0 {1+ n))) »
((= n n-dimension}))
{setq sum 0.0) !
(? (do* ((dtw-index dtwlist (cdr dtw-index))
| (dtw-array {(car dtw-index) (car dtw-index)) Y
13
‘,
B-5 :
Ly
v
)

| . R NN N IR R R LI LI S S S A 2P aa s
. R rd " A N - fatn, f R
AR A LR N S S G N VR s P

."'rf,\'-' J'.-y’..:‘_.I‘.'-',_t:.\.(\f,‘!“v'_'f\f.'.Vf,.'-’
;M N N . L) -

e

hJ
.l

- - -
oady

Coateataala Ala ate alacala ake gl R R A A T T T T N Y NN Y W W WM UV UW N WUV UV T U TR UW VW LT VWAL AW AT W

(weight-index weightlist (cdr weight-index))
(weight-value (car weight-index) (car weight-index)))
((null dtw-index))
(setq sum (+ sum (* weight-index (aref dtw-array m n)))))
(aset sum return-dtw m n)})
return-dtw))

HEEHOR I A S I S I S S I S PR R R I S I S I SR I I I I S S I S-S S I S B PR S S S

"MAKE~-DTW"

::: This routine computes a Dynamic Time Warp Array give the pathnames of

;:: two utterances and a Spire attribute name (ex. "Formants”).

;:i: The order in which the pathnames are passed is significant, ie.,

;:: when plotted the first pathname will run along the vertical axis, and

;:: the second pathname will run across the horizontal axis. When matching
;::; individual word utterances against continous speech utterances, it is best
to pass the individual word pathname first.

11 1nput: pathnamel, pathname2, spire attribute
;;:; Example Call: (make-~dtw ">dawson>three>" ">dawson>phone-no"” "Wide-Band Spectrum")
::: Returns: a two dimensional array. The number of columns (width) is

;:; proportional to the length of pathname2. The number of rows (height) is
;::; proprtional to the length of pathnamel.
(defun make-dtw (pathl path2 att)
{let* ((a (cond ({equal att "wWide-Band Spectrum") (column-normalize-array
(frequency-compress-1fe
(compute-att pathl att)}))
{(equal att "LPC Spectrum") (column-normalize-array
{frequency-compress—-life
(compute-att pathl att))))
({equal att "Nsrrow-Band Spectrum”) (column-normalize-array
(frequency-compress—1fe
(compute-att pathl att)}))
((equal att "Formants") (regionize
(median-filter
(compute-att pathl att))))
((equal att "rero crossing rate”") (vector-energy-normalize
(compute-att pathl att)))
(t
(compute-att pathl att))))
(b (cond ((equal att "Wide-Band Spectrum”) {(column-normalize-array
(frequency-compress-1fe
(compute-att path2 att))))
({equal att "LPC Spectrum”) (column-normalize-array
(frequency-compress-l1fe
(compute-att path2 att))))
((equal att "Narrow-Band Spectrum”) (column-normalize-array
(frequency-compress-1fe
(compute-att path2 att})})
({(equal att "Formants”) (regionize
(median-filter
(compute-att path2 att))}))
((equal att "gero crossing rate”} (vector-energy-normalire
(compute-att path2 att)))
(t
(compute-att path2 att)))})
(return-array (timewarp & b)))
return-array))
::: T"NEW-READY-DTW-LPC-FORMANTS"
(defun new-ready-dtw-lpc-formants (template utterance)
(let* ((dtw-list (list (timewarp (car template) (car utterance))
(timewarp (cadr template) {(cadr utterance))))
(m-dimension (array-dimension-n 1 (car dtw-list)))
(n~-dimension (array-dimension-n 2 (car dtw-list)})
(return-dtw (make-array (array-dimensions (car dtw-list})) :type ‘art-16b))}
{loop for m from 0 below m-dimension do
(loop for n from 0 below n-dimension do

B-6

o]

VAT PN PN T el e Y Lt fxf e ey J{t;f;JC({:;

- (W AT W o
p
U e T LA, Lt n A AN AOS O Y LY T, n N/ A

(let ((frfrt (aref (caddr template) m))
(frfru (aref (caddr utterance) n)}
(t-region (aref (cadr template) m})
(u-region (aref (cadr utterance) n})

(distance (* 1000 (car *weight-list*) (aref (car dtw-list) m n))))
{cond ({or (> frfrt 1500)

(> frfru 1500)
(= t-region 0)
(not (= t-region u-region)})

(aset (fix distance) return-dtw m n))

(t (aset (fix (* 0.4 distance)) return-dtw m n))))))

return—-dtw))

"READY-DTW-LPC-FORMANTS~FF"

(defun ready-dtw-lpc-formants-ff (template utterance)
(let* ((dtw-list (list (timewarp (car template) (car utterance))
(timewarp (cadr template) (cadr utterance))))
(m~dimension (array-dimension-n 1 (car dtw-list})})
(n-dimension (array-dimension-n 2 (car dtw-list)))
(return-dtw (make-array (array-dimensions (car dtw-list)) :type ‘art-~16b))
(sum 0.0))
(do ((m 0 (1+ m)))
({= m m-dimension))
(do ((n O (1+ n)}))
({= n n-dimension))
{setq sum 0.0)
{cond((and
(¢ (aref (caddr template) m; 1700)
(¢ (aref (caddr utterance) n) 1700)
(< (aref (cadr template) 1 m) 750)
(¢ (aref (cadr utterance) 1 n) 750)
(¢ (aref (cadr template) 2 m) 2200)
(¢ {aref (cadr utterance) 2 n) 2200))
(setq sum (* 1000 (cadr *weight-list*) (aref (cadr dtw-list) m n))))
(t
(setq sum (* 1000 (car *weight-list*) (aref (car dtw-list) m n})})}
(cond ((< (fix sum) 65535)
(aset (fix sum) return-dtw m n))
(t (princ "Overflow")}}))
return-dtw))

::: "READY-DTW"

;i This function computes a combined dtw from a couple lists of feature arrays
;:: and return that combined dtw array. It receives as input two lists of feature
;s: arrays. It then calls TIMEWARP to do the Dynamic Time Warps and then calls
;:; COMBINE-DTW to average together the individual dtw’'s into one dtw. Remember
;;: the feature arrays have already been computed by PROCESS-UTTERANCE.
(defun ready-dtw (template utterance)
(let* ((dtw-list (mapcar 'timewarp template utterance})
(m-dimension (array-dimension-n 1 (car dtw-list}))
{n-dimension (array-dimension-n 2 (car dtw-list)))
(return-dtw (make-array (array-dimensions (car dtw-list)) :type 'art-16b))
(sum 0.0})
(do ((m 0 (1+ m)))
((= m m-dimension))
(do ((n 0 (1+ n)))
((= n n-dimension))
(setq sum 0.0)
(loop for dtw in dtw-list
for weight in *weight-list* do
(setq sum (+ sum (* 1000 weight (aref dtw m n)))))
(cond ((< (fix sum) 65535)
(aset (fix sum) return-dtw m n))
(t {princ "Overflow")))})
return-dtw})

. _

"COMPUTE-COMPOSITE-DTW"

This function computes a composite dtw array between a Ready-Template

and a Ready-Utterance. In other words dtw’'s (Dynamic Time Warps) are performed
between the utterance and each word of the vocabulary. The separate dtw arrays
put in a list to form one composite array.

Input: None, *t-set® and *ready-utterance* are used.
Output: composite dtw

efun compute-composite-dtw ()
(let ((result-list nil))
(princ "Count-Down: ")
(loop for template in *t-set*
for count from (length *t-set*) downto 0 do
{princ (format nil "“D-" count))
(setqg result-list (append result-list
({list {(new-ready-dtw-lpc-formants
template *ready-utterance*})}))
(terpri)
result-list))

.. se e

; "old" ==» (mapcar ‘ready-dtw *t-set* (circular-list *ready-utterance*)))

This function take a composite dtw array and computes the distribution
of its values. The second argument specifies the number of bars to
be drawn.

(defun distribution (x1 yl x2 y2 cdtw res)
(let* ((mean 0.0)
(min +le)
(max -le)
{sum 0.0)
(sum-s8q 0.0)
(vari 0.0)
(num 0)
(pdf (make-array res ’':type art-16b ’:initial-value 0))
(width (fix (// (- x2 x1) res)))
(space (fix (// width 3)))
(bar (- width space})
(pdf-max -le)
(title (prompt-~and-read :string "Title? ")))
(drawborder x1 yl x2 y2)
(send tv:selected-window :draw-string title x2 (- y1 5) 0 (- y1 5) nil fonts:trl2b)
(loop for dtw in cdtw do
(loop for i (fixnum) from 0 below (array-dimension-n 1 dtw) do
{loop for j (fixnum) from 0 below (array-dimension-n 2 dtw) do
(cond ((¢ (aref dtw i j) min)
(setq min (aref dtw i j)))
((> (aref dtw i j) max)
(setq max (aref dtw i j)}))
{setq sum (+ sum (aref dtw i j)))
(setq sum-s8q (+ sum-sqg (sqgr (aref atw i j))))
(setq num (14 num)))))
(setq mean (// sum num))
(setq vari (// (- (* num sum-sq) (sgr sum)) (* num (l- num)}))
(loop for dtw in cdtw do
(loop for i (fixaum) from 0 below (array-dimension-n 1 dtw) do
(loop for j (fixnum) from 0 below (array-dimension-n 2 dtw) do
(setq num (fix (* (- (aref dtw i j) min)
(// (1- (array-dimension-n 1 pdf)) (float (- max min)))}))
(aset (1+ (aref pdf num)) pdf num))))

{loop for i from 0 below {(array-dimension-n 1 pdf) do
(cond ((> (aref pdf i) pdf-max)
(setq pdf-max (aref pdf i)))))
(loop for i from O below (array-dimension-n 1 pdf) do

B-8

A5 A AR

AR BT

.=
(]
s

Ny L5

S5y) YN TR

N G

e

" “-..' .:' ./ .l. .n' ",

fi
-
»
g!
-

e

TS

7
aA_L

P

(send tv:selected-window :draw-rectangle o':.
bar ,

(fix (* (aref pdf i) (// (float (- y2 yl 20)) pdf-max))) *

(+ 1 x1 space {* i width)) K

(fix (- y2 (* (aref pdf i) (// (float (- y2 yl 20)) pdf-max))))))

{send tv:selected-window :draw-string R
(format nil "Mean = “D" mean) x1 (+ yl 15) x2 (+ yl 15) nil fonts:trl2b) :

(send tv:selected-window :draw-string |

(format nil "Min = "D" min) x1 (+ yl 30) x2 (+ yl 30) nil fonts:trl2b) F:i
(send tv:selected-window :draw-string Sy

(format nil "Max = “D" max) x1 (+ yl 45) x2 (+ yl 45) nil fonts:trl2b) o™
(send tv.selected-window :draw-string

4
(format nil "Var = "D" vari) x1 (+ yl 60) x2 (+ yl 60) nil fonts:trl2b) &)
})
HA »
:I A A) :.
::: "MAKE-DTW-LIST" -
HN This function makes repeated calls to "MAKE-DTW" and setq’s each ’ .
i: variable-list to the corresponding item in attribute-list.
(defun make-dtw-list (pathnamel pathname2 variable-list attribute-list) [v
(do* ((dtw-list variable-list (cdr dtw-list)) .
(dtw-name (car dtw-list) (car dtw-list)) K}
(att-list attribute-list (cdr att-list)) Yo
(att-name (car att-list) (car att-list))) S
{(null dtw-list))} ~
(set dtw-name (make-dtw pathnamel pathname2 att-name}))) ;:,
B }“
::: T"SCAN-DTW" -
;::; This function scans the composite Dynamic Time Warp Array and ';
;::; determines what words are contained in the test utterance. The algorythm ‘N
;:; used is the "One-Stage Dynamic Programming Algorythm for Connected Word a,
;:; Recognition” by Hermann Ney. See IEEE Transactions ASSP-32 No. 2 April 1984. (f
(defun scan~dtw (composite-dtw) N
(let* ((title (prompt-and-read :string "Title? ")) o~
(N (array-dimension-n 2 (car composite-dtw}}) N
(D-list (mapcar ’'make-array o
{(mapcar 'array-dimension-n (circular-list 1) composite-dtw))) -:
(B-list (mapcar 'make-array Y
(mapca array-dimension-n (circular-list 1) composite-dtw))) “
(from-template {(make-array N :type ‘art-8b))
(from—frame (make-array N :type ‘art-16b)) ;
(d-min) o
(save-b) "
(save-d) ‘s,
(save-temp) .
(a 1.0) p
(b 0.5) s

{return-list)
(dummy +le})

v:: STEP 1

(terpri) (princ "Computing Accumulated Distance Array")
(terpri) (princ "Begin Step 1 ... ")
(loop for current-dtw in composite-dtw

for current-ada in D-list

for current-B in B-l1st do ; each k
(loop for n from 0 below (array-dimension-n 1 current-dtw) ;no= 0L, 3-1
sum (aref current-dtw n 0) into local-sum ; Sum for i=0
do (aset local-sum current-ada n)
(aset 0 current-B n))) ; aset 1nitial values

(princ "Done.")
:;:STEP 2

(terpri) (princ "Begin Step 2 ... "}

B-9

.-, -
-

T A R R T R kg

(loop for i fixnum from 1 below N do
((setq dummy +le)
(loop for current-dtw in composite-dtw
for current-ada in D-list
for current-B in B-list
for k from 0 to (length composite-dtw) do
(setq d-min (min (aref current-ada 0)
(apply '‘min (mapcar ‘aref D-list
(mapcar ‘l- (mapcar ’'array-dimension-n
(circular-list 1)
D-list))))))

(cond ((not (= d-min (aref current-ada 0)))
(aset (+ i 1) current-B 0)))

(setq save-d (aref current-ada 0))

(setq save-b (aref current~B 0))

(aset (+ (aref current-dtw 0 i) d-min) current-ads 0)

(loop for j fixnum from 1 below (array-dimension-n 1 current-ada) do
(setq d-min (min (+ (* (1+ a) (aref current-dtw j i))

(aref current-ada j)) ;list of
(+ (aref current-dtw j i) save-d) ;possible
(+ (* b (aref current-dtw (1l- j) i))
(aref current-ada (1- 3j))))) ;predecessors
(setq save-temp (aref current-B j))
(cond ((= d-min (+ (aref current-dtw j i) save-d)) ;Update
(aset save-b current-B j)) ;Backpointer
((= d-min (+ (* b (aref current-dtw (1- j) i}))
(aref current-ada (1- 3j)))) ;Array
(aset (aref current-B (1~ j)) current-B j)))
. (setq save-d (aref current-ada j)) ;save diagonal
(setq save-b save-temp) ;predecessor and
(aset d-min current-ada j)) ;and Backpointer

;Update "From Template”
sArray T[i]
;and "From Frame"
(sArray Fli]
(cond ((< (aref current-ads (1- (array-dimension-n 1 current-ada))) dummy)
(setq dummy (aref current-ada (1~ (array-dimension-n 1 current-ada))))
(aset k from-template i)
(aset (aref current-B {(1- (array-dimension-n 1 current-B)))
from—frame i)))))
tterpri) (princ "Done.")

;:iSTEP 3

(terpri) (princ "Begin Step 3 ...")
(loop for i from (1- N) downto 0 do
{princ (format nil ""D" (aref from-template i))))
(terpri}
(setq return-list
(do* ((word-end (1- N) pred)
(word (aref from-template (1- N)) (aref from-template pred))
{pred (aref from-frame (l1- N)) (aref from-frame pred))
(answver (list word) (append (list word) answer))
(boundry-list (list (list word pred word-end))
(append (list (list word pred word-end)) boundry-list)))
((¢<= pred 1) boundry-list)))
(plot-composite-dtw composite-dtw
t* *thresh* (length *weight-list*))
return-list
tempath
. *uttpath®
title)))

A I I A I B A I S AR A A R S R B R I S S O A A A R I N A A A A A A A A A I A I A A A N AR AR A

:1:: “CREATE~COMPOSITE-DTW-FILE"
::: This function creates a Composite DTW File from *t-set* and *utterance*

.((defun create-composite-dtw-file ()

b

- ; . (v o oy oy . >, 5 R A AT A
' ".‘.1'. t“li L) "s“ - "A.‘ |‘| LS }.n" aha '\ v L W .- " \ " \"{\(" 0 -4\-" l" o '.."" ’\"{" \‘.‘J.-‘ \’.

DAl o o @ 1 A L e . o

L e

A4

ot
-

WA

Y .

Eis
2

L i A

A

L PR
.l‘.ll'

-y
s

.

E)
P N Y |

BTl

T T T D R O T T Y O O T NP TV r oo O O AR T R R AR T AN A R TV RV RV RVE VT A RURS N e e = e

]

l (let* ((write-path (string-append

| ("spl:>dawson>thesis>dtw>”

‘ (prompt-and-read :string

| "Please enter CDTW name to create: "}))}
(setq *cdtw* (compute-composite-dtw))
(dump-to-disk write-path (list *cdtw* *weight-list* *tempath* *uttpath*))
(word-searchl)})

This function prompts for a cdtw file name, loads it and setg’'s it to *cdtw*

defun load-composite-dtw-file ()

(load (string-append

"spl:>dawson>thesis>dtw>"

(prompt-and-read :string

"Please enter CDTW name to load: ")))

(setqg *cdtw* (car *data*))
(setq *weight-list* (nth 1 *data*))
(setq *tempath* (nth 2 *data*))
(setq *uttpath* (nth 3 *data*))
(word-search!))

({defun add-template (tempname2)
(load (string-append ">dawson>thesis>templates>” tempname2))
(setq *t-set* (append *t-set* (car *data*)))
(setq *tempath2* (string-append ">dawson>thesis>templates>” (cadr *data*)))
(sotq *yo-list* r(Non nim man n3n mgn ngm ngw ngn ngn ngn
"10" "11" "12" "13" "14" "15" "16" "17" "18" "19"))
(setq *vocabulary* (append *vocabulary* *vocabulary*)))

- Mode: LISP; Base: 10; Syntax: Zetalisp -*-

"UTILITIES"

’ This file contains various utilities used by WORD-SEARCH!

"COMPUTE-ATT"

This is a function to get the att values for a
given utterance stored on disk.

Calling Procedure:

{ compute-att utt-name att-name)

; Example Usage:

HH (setq result-array {compute-att "spl:>dawson>alpha.utt"” "LPC Gain Term"))

; Note: result-array now contains the result of the att computation.

’
i
.
H

H

(defun compute—att (pathname att-name)

(let {((return-array))
(terpri)
(princ "Computing ")
(princ att-name)
{princ "...")
(setg return-array (spire:att-val (send (spire:utterance pathname) :find-att att-name)))
{princ "Done.")
return-array))

L A

::7 Note : This leaves the utterance described by pathname loaded until whenever.
HH In order to kill an utterance (unload is a better term) the following
HER] statement will do the trick:

(send (spire:utterance pathname) :kill)

HES S AN S I S I I I S I P S P I PP I S SO S I S S I I I I I R S P I S I I S

;:: "PROCESS~UTTERANCE-LPC"

;:: Function to perform LPC computations on a single utterance.
;: This function makes repeated calls to "COMPUTE-ATT".

;: Input : Full pathname to utterance
;:: Output : List of arrays ie., computed features

{defun process-utterance-lpc (pathname)
(let ({(return-list (list (column-normalize-array
(frequency-compress—-1fe
(compute-att
P pathname
"LPC Spectrum”))))))
| (setq *weight-list* '(4.5))
| return-list))

| ;:: "PROCESS-UTTERANCE-NBS"

' ;i: Punction to perform NBS computations on a single utterance.
This function makes repeated calls to "COMPUTE-ATT".

Input : Pull pathname to utterance
; Output : List of arrays ie., computed features

(defun process-utterance-nbs {(pathname)
{let ((return-list (list (column-normalize-array
. (frequency~compress~lfe
{ (compute-att

- - L] -
\ .
"‘A et " KX ’

pathname
"Narrow-Band Spectrum"))})))

(setq *weight-list* ’(5.,0))
return-list))

; Function to perform LPC computations on a single utterance.
; This function makes repeated calls to "COMPUTE-ATT".

; Input : Full pathname to utterance
; Output : List of arrays ie., computed features
(defun process-utterance-wbs (pathname)
(let ((return-list (list (column-normalize-array
{frequency-compress-1fe
(compute-att
pathname
"Wide-Band Spectrum"})))))
(setq *weight-list* ’(4.5))
return-list))

:7:; "PROCESS-UTTERANCE-FORMANTS"

:; Function to perform Formant calculations on a single utterance.
(defun process~utterance—formants (pathname)
(let ((return-list (list (median-filter
(compute-att
pathname
"Formants")))))
(setqg *weight-list* ’(.0016))
return-list))

7:: "PROCESS-UTTERANCE-ZCR"
(defun process-utterance-zcr (pathname)
(let ((return-list nil))
(terpri)
(setq return-list (list (vector-mag-norm
(compute-att
pathname
"Zeroc Crossing Rate"})))
(setq *weight-list* ’(0.02))
return-list))

DRI I I I I R B A R A A S A S A B I S I I B S S S S I A B S S N

71 "PROCESS-UTTERANCE-LPC-FORMANTS"

;7: Function to perform family of computations on a single utterance.
;:: This function makes repeated calls to "COMPUTE-ATT".

;:: Input : Full pathname to uttetance
;i: Output : List of arrays ie., computed features

(defun process-utterance-lpc-formants (pathname)
(let ((returned-list nii))
(setq returned-list (list (column-normalize-array
(frequency-compress-1fe
{compute-att
pathname
"LPC Spectrum”)))})
(setq returned-list (append returned-list (list (median-filter
({compute-att
pathname

Qe o P W e, e S L WS A N
A A " A

N o A A PR, v Bpsal oMy

'.,-... \'- \‘-l‘\l‘ ~ *i(\-T\

o

"

Wt " LR
AR _\"\ > ’.

\'s

Lo

@l T

ALY

(‘.

G YL

ST

0,
w

o

m et e amm
N e

AN N

.‘J'I".". e '."5'\‘ﬁ';“g.‘\)
- 4 ey e

qlfl‘-'(l'(".

+T0 3"
RN

? P

J\{

"Formants")))))
(setq *weight-list* ’(2.44 0.0024))
returned-list))

-------- @ 8 8 8 2 3 b & 88 o s a s n m # s s B T 4 S e s e mow e e s s 2t e s s s e s L &S S A P as e v e S s s w4 s s au e s s a e e s e e
A I R A S A I B R A B B A R I A B A A A A A A A A R A B A A A A A A A A

"PROCESS-UTTERANCE-LPC-FORMANTS-FF"

; Processes utterances for LPC Spectrum, Formants, and Frication Frequency.
(defun process—utterance-lpc-formants-ff (pathname)
(let ((returned-list nil))
(setq returned-list (list (column-normalize-array
{frequency-compress-lfte
(compute-att
pathname
"LPC Spectrum”)))))
(setq returned-list (append returned-list (list (regionicze
(median-filter
(compute-att
pathname
"Formants")))})))
(setq returned-list (append returned-list (list {(compute-att
pathname
"Frication Frequency”))))}
(setq *weight-list* ’(4.5 2))
returned-list))

P A N v e e P R R R R R N R R R S R A R N R S
HE R A A A I I A I A B A B B B I I A B A A A A A A A A A A A A A RO B B A AR A

::: "PROCESS—-UTTERANCE-WBS-LPC"

; Function to perform family of computations on a single utterance.
:; This function makes repeated calls to "COMPUTE-ATT".

Input : Full pathname to utterance
::: Output : List of arrays ie., computed features
(defun process-utterance-wbs-lpc (pathname)
(let ((returned-list nil))
(setq returned-list (list (column-normalize-array
(frequency-compress-lfe
(compute-att
pathname
"Wide-Band Spectrum”)))))
(setq returned-list (append returned-list (list (column-normalize-array
(frequency-compress-lfe
(compute-att
pathname
"LPC Spectrum")}))))
(setq *weight-list* (3.6 5.0))
returned-list}}

;:: "PROCESS-UTTERANCE-NBS-LPC"

;:: Function to perform family of computations on a single utterance.
:::; This function makes repeated calls to "COMPUTE-ATT".

;:: Input @ Full pathname to utterance
Ooutput : List of arrays ie., computed features
(defun process-utterance-nbs-lpc (pathname)
(let ((returned-list nil))
{setq returned-list {(list (column-normalize-arrany
(frequency-compress-lfe
(compute-att
psthname
"Narrow~-Band Spectrum”})i})
(setq returned-list (append returned-list (list (column-normslize-srray
ffrequency-compress-lfe
(compute-att
pathname

B-14

.

et e
TN

Loy Vet T e et W e

= _a “-{- ..!: " -.'-..‘.-\-,1

| P22

O S AR

YN EN)

S

W i
CA:

LS T

.

FEEPRT

3
UL) s

.

eyt e)

« 8 s 0 o @
a

P AT Lo SN)

"LPC Spectrum”)}))))
(setq *weight-list* ’'(3.6 5.0))
returned-list))

defun column-normalize-array (array)
(let* ((height (array-dimension-n 1 array))
(length (array-dimension-n 2 array))
(total-energy 0)
(result-array (make-array (list height length) ‘:initial-value 0)})
(do ((column 0 (1+ column)))
((= column length)}
(setq total-energy 0)
(do ({row 0 (1+ row)))
((= row height))
(setq total-energy (+ total-energy (sqr (aref array row column}))))
(setq total-energy (sqrt total-energy))
(do ((row 0 (1+ row)))
({= row height))
(aset (// (aref array row column) {(cond ({(= total-energy 0) 1)
(t total-energy)))
result-array row columnj))
result-array))

; "REGIONIZE"
: This function takes as input Formants and assigns a region for

each point in time according to the first and second formants.
Each region represents a specifice vowel sound.

efun xor (alist)
(let ((count 0))
(loop for thing in alist do
(cond (thing
(setq count (l1+ count)))))
(oddp count)))

(defun intersect (segl seg2)
(let* ((x11l (nth 0 segl))

(yll (nth 1 segl))
(x12 (nth 2 segl))
{yl2 (nth 3 segl))}
(x21 (nth 0 seg2)}
(y2l (nth 1 seg2))
(x22 (nth 2 seg2})

{y22 (nth 3 segl))

(ml (// (float (-~ yl2 yll}) (- x12 x11)))

(m2 (// (float (-~ y22 y211) (- x22 x21})})}

(x (// (+ y22 (* =) x12) (- 0 yl12 (* m2 x22))) (- ml m2)})))
(¢l (// (- x x11l) (- x12 x11)})))

(t2 (/7 (- x x21) (- x22 x21)))

{result (cond ((and (= t]1 1.0}

(>e t1 0.0)
(¢m t2 1.0}
(>= ¢t2 0.0))
T)
(T mali)

result))

(defun regionisze (formants)
({let* ((f1 0)
(t2 0

_);m_mgx;QLs;x s;,'-LsLskzﬁgxfo\.\xxLfo

P A

4t

“n e Ca e v W

!

.(UKJ"'-'

!

A Yy

.Eﬁ‘

KT V%

Y AE A AP,

.

A A

- 4’.{.’_', "{P"--'--'.t'- DRI ¥ b3 TP

~

40,0, 00 4

i AN %S

. S

*‘.

®
(result (make-array (array-dimension-n 2 formants) :type 'art-8b)))
((loop for time fixnum from 0 below {array-dimension-n 2 formants) do
(setq f1 (aref formants 1 time))
(setq £2 (aref formants 2 time)) 50
‘ s(terpri) (princ f£1) (princ ",") (princ £2) (princ "-") =
(cond ((xor (list (intersect (list fl £2 1500 f£2) '(0 1750 250 3500))
(intersect (list f1 f£2 1500 £2) ' (250 1750 450 3500)))) 4
s(princ 1)
(aset 1 result time))
;{aset 300 formants 1 time))
;(aset 2750 formants 2 time)) '
((xor (list (intersect (list f1 £2 1500 £2) ' (250 1750 450 3500)) ‘g
(intersect (list f£1 £2 1500 £2) ’ (450 1750 700 3500))))
@ : (princ 2)

(aset 2 result time))

;(aset 420 formants 1 time)

;(aset 2300 formants 2 time))

((xor (list (intersect (list f1 £2 1500 £2) ‘(450 1750 700 3500))
(intersect (list f1 £2 1500 £2) ' (900 2500 901 3500))
(intersect (list f£1 £2 1500 £2) ' (600 1750 900 2500)))) -

5 8 _s_=

;(princ 3)

o (aset 3 result time))
;{aset 600 formants 1 time) j
;(aset 2200 formants 2 time))}

{({xor (list (intersect {(list f1 £2 1500 £2) '(600 1500 601 1750)) :
(intersect (list f1 £2 1500 £2) *(600 1750 900 2500))
(intersect (list f1 £2 1500 £2) ‘(750 1500 1200 2500))}))
;(princ 4))
(aset 4 result time)) |
. ;(aset 700 formants 1 time)
;(aset 1800 formants 2 time)) S
((xor (list (intersect (list f1 £2 1500 £2) *(750 1500 1200 2500)) fy:
(intersect (list £1 £2 1500 £2) '(600 1100 601 1500)) »
{intersect (list f1 £2 1500 £2) '(650 1100 1200 1750))
(intersect (list f1 f2 1500 £2) ’ (1200 1750 1201 2500))))
;{princ 5)
(aset 5 result time)) \
{ ;(aset 800 formants 1 time)
. ;{aset 1500 formants 2 time))
((xor {(list (intersect (list f1 £2 1500 £f2) ’(650 950 651 1100)) :
(intersect (list f£1 £2 1500 £2) ‘(650 1100 1200 1750)) -
(intersect (list f£1 £2 1500 £2) '(800 950 1200 1100)) -
(intersect (list f£1 f£2 1500 £2) (1200 1100 1201 1750))}) -
;(princ 6) -,
(aset 6 result time)) ™y
;(aset 900 formants 1 time)
. ;(aset 1100 formants 2 time))
((xor (list (intersect (list f1 £2 1500 £2) '(350 1300 351 1750)) ;
(intersect (list f1 £2 1500 £2) ’(600 1300 601 1750)))) !
;{princ 7) '

(aset 7 result time))
;{aset 500 formants 1 time)
;{aset 1500 formants 2 time)) «
((xor (list {intersect (list f1 £2 1500 £2) ' (400 950 401 1300))
(intersect (list f1 £2 1500 f2) '(600 950 601 1300)))) :
(;(princ 8) »
(aset 8 result time)) '
;(aset 500 formants 1 time)
;(aset 1000 formants 2 time))
({xor (list (intersect (list f1 £2 1500 £2) ’'(200 500 201 1300))
(intersect (list f1 £2 1500 £2) ‘(400 500 401 13C0))))

;(prainc 9))

(aset 9 result time)) [

@ ;(aset 300 formants 1 time) [
;(aset 900 formants 2 time)) -

((ror (list (intersect (list f£1 f£2 1500 f£2) '(400 500 401 950)) h

(intersect (list f1 £2 1500 £2} (600 950 601 1100}) .
(intersect (list f1 f£2 1500 £2) ‘(6%0 950 651 1100)) h

(intersect (list f1 f2 1500 £2) ‘(600 S00 800 950)}))) N

;{princ *0))

(aset 10 result time)) Y/

., ;(aset 60) formants 1 time) i
(;(aset 800 formants 2 time)) {
B-16 y

C »;
,

7,

v 4

e

NN N DN LW SN L YN e T S AL

(t ;(princ 0)
((aset 0 result time))))
;(aset 0 formants 1 time)
;(aset 0 formants 2 time))))
. result))

HE "MEDIAN-FILTER"
::: This function median filters the 5 by length formant array returned by SPIRE. This

is an effort to smooth the formants values to remove the gliches when the formant
tracker loses track. Note that the (0,i) row has all zeroce values.

(defun median-filter (array)
(let* ((rows (array-dimension-n 1 array))
(columns (array-dimension-n 2 array))
(return—-array (make-array (list rows columns)))
(window-vector (make-array 11)))
(copy-array-contents array return-array)
(do* ((row-index 1 (1l+ row-index)))
‘ ((= row-index rows))
(do* ((column-index 5 (l+ column-index)})
({(= column-index (- columns 5)))
(do* ((window-index (- column-index 5) (14 window-index))
(window-vector-index 0 (1+ window~vector-index)))
((= window-vector-index 11))
(aset (aref array row-index window-index) window-vector window-vector-index))
(aset (aref (sort window-vector ‘<) 4) return-array row-index column-index)))
. return-array))

7:: "GET-PATHNAME"

;:: Function to get a pathname from user
;:: providing prompt and default pathname.

. (defun get-pathname (default)
(fs:set-default-pathname default)
(prompt-and-read '(:pathname :visible-default ,fs:*default-pathname-defaults?)
"Enter pathname => "))

"SHOW-LIST"

(defun show-list (alist)
(loop for element in alist
do (prant element)))

;:: "DUMP-TO-DISK"

;:: Function to dump data to a disk file.

;:; Input : Full Path and Filename, thing to dump
;:; Output : Writes a compiled Lisp form to disk
HE such that when loaded (like any ordinary lisp form)
HEH the dats is setq’'d to, in this case, *date*.
(: (defun dump-to-disk (pathname data!

(sys:dump-fo:ms—-to-file pathname (list '(setq *data* ', ,data})})
;:;: Note: To resd this data, (load pathname).
H The global variable *data* will then contain the data.

n T A AT Y T RN T A Y T N N R R AT T T A T e e AT {‘.ﬂ' e,
l.v"l?‘l..a.lL".I‘l.‘!, 3% '* h 1% VS lu 'F' WALIRAIVW A ™y R L7 5 e N e D l.

Function to square a number

defun sqr (number) (* number number))

No arguments required.

:: Function to clear the screen.
]

fun clearscreen ()
(send tv:selected-window :clear-window})

HERE S S S I H M S S I I S R A I S B S R A

"SUBLIST"

; This function takes as input s list and returns a sublist of
; elements i thru j.

; Example: foo => (abcdef)

H (sublist foo 1 3) => (b c d)

efun sublist (alist i j)
(let ((return-list (list (nth i alist))))
(do* ((marker (1+ i) (14 marker))
(end (1+ j)))
((= marker end))
{setq return-list (sppend return-list (list (nth marker alist)))))
return-list))

" COLUMN-AVERAGE"
This function will average a& subcolumn from a column of a 2-D array.
It takes as input the array, the column number, indexes i and j. It averages

the array elements i thru i of the specified column number.

Input: 2-D arrar, column, i, j
Output: Average

QL e ~e o~ e

efun column-average (array column i j)
(let ((sum 0.0)
(end (1+ 3)))
{do ((count i (14 count)))
((= count end})
(setq sum (+ sum (aref array count column))))
(/7 sum (1+ (- 3 i)))))

LRI A A BN I A A I B A S A B A A A I A A I A A A A I A O B A A A A A A A A A R

"VECTOR-ENERGY-NORMALIZE"

Description:
The total energy of the array is calculated
by summing the squares of all the elements and
taking the square root of that sum.
The normalized array is formed by dividing
each elemen: of the input array by the total energy.

; TFunction to normalize a one dimensional array by energy

Input: one dimensional array
Returns: normalized version of input

fun vector-energy-normalize (vector)

(let ((return-array (make-array (array-length vector)))
(total-energy 0))

(do ((counter 0 (14 counter)})

(endmark (array-length vector))})

NG N
Lyt At

NS (LR ER AR N G SRS

= 5 %

R

‘ ;-"s..\.‘\.‘\‘?;:‘; l

“ 0y
&2,

Ay S
L 7 l._l‘

~c

L
e by Sy
» LI)

R o SRR ol i
A)

-t

2 % _B_& N
P RS
l‘l‘I'AA",Y<

i,
e -

F O
A

ELSA

T A

P |
Sality

g
[
s,
s

Iy

[N

d]

vy

oot

-~
4

YN,

[A
5

(]

7

L 4
o

-’x

P
5

»*

PRI Y
-

S

s e
&

.
Yl

ey
" " l'
%

LA
ALKy

.‘\
| N
t
o
-I
{(= counter endmark)) ey
(setq total-energy (+ total-energy (sgr (aref vector counter))))) 'y
(setq total-energy (// (sqrt total-energy) (array-length return-array})) N
(do ((counter 0 (l+ counter)) ,u:
(endmark (array-length vector)))
({(= counter endmark})
(aset (// (aref vector counter) total-energy) return-array counter)) Wy
return-array)) q:
S “
.. e
::ll'll'llllllllllllllllllllllllllll"lllltlll'lllllll'llllll"llllllll'lllllll'l'l \:
;:: "VECTOR~MAGNITUDE-NORMALIZE" h
HE o
’ ::: This function is similar to VECTOR-ENERGY-NORMALIZE except that the
3:; values from the input vector are simply mapped into a range of 0 to 1. .
;i In other words, the smallest value of the input array will be mapped to zero Oy
;:; and the largest value mapped to one:; all others will fall somewhere in NN
:::; between. This normalization technique is arises from the fact that the :f
7:; VECTOR-ENERGY-NORMALIZATION technique fails for vectors of unequal length. \:
17 Input: One dimensional array. <
' ;::; Returns: Normalized version of input.
{defun vector-mag-norm (vector) .?;
(let* ((result-array (make-array (array-length vector))) -{r
(vector-max -999999.0) ", \
(vector~min 999999.0) 5
{diff 0.0) 9
(scale 0.0) S
(mapmin 0.0) A
{mapmax 1.0) o
(length (array-dimension-n 1 vector))) RS
{do ((i 0 (1+ i)}))
({= i length)) s
(cond ((¢ (aref vector i) vector-min) (setq vector-min (aref vector i))} 1}'
((> (aref vector i) vector-max) !(setq vector-max (aref vector i))))} o
(setq diff (- mapmin vector-min}) :nf
(setq scale (// mapmax (+ vector-max diff))) .-

(do ((i 0 (1+ i)))

{((= i length)) NS
(aset (* (+ (aref vector i) diff) scale) result-array i)) o

result-array))

K
Dt "‘-‘ \J

N
PIvIvIGIirirIdIIIdNNIIGIGIINIGIIINIGIIIGRNIIGiGrcrGIvIdirdIvIGildldadiiiiiicavia: U
7:: "FREQUENCY-COMPRESS-LC" c’,:
;:; This function takes an array returned by (compute-att utt-name "Wide-Band Spectrum”) .
;:: which is a 256 by length array. 256 represents the frequency components Ta
;:: of the utterance and length is proprtional to time. This function reduces ok
;:; the frequency resolution from 256 to 16. This is a linear compression (LC). ;_t
;i 1lnput: Two dimensional array returned by (compute-att utt-name "Wide-Band Spectrum”) }{_
;:: Output: Compressed version of input A
. .. 7
{defun frequency-compress-lc (array)

(let* ((row-length (array-dimension-n 2 array}) i
(return-array (make-array (list 16 row-length))} ns
(block-sum 0)} ;

(do* ((current-column 0 (14 current-column))) o
{(= current-column row-length}) ,_

v

(do* ((current-block 0 (1+ current-block)})
((= current-block 161})
{setq block-sum 0)
(do* ((current-element (°* current-block 16) (1+ current-element)))

g

-
({s current-element (* {1+ current-block) 16))} AN
{setg block-sum (+ block-sum (aref array current-element current-colusmn)))) ;\;
(aset (// block-sum 16) return-array current-block current-column))) -,
return-array)) ::.
i iiiiiriiriiiaiiiiiiiiriii: N
i R R R P B B I I I S I HES RS HE HHH AR R

;1 "FREQUENCY-COMPRESS-LPE” J

:: This function takes the array returned by (compute-att utt-name "Wide-Band Spectrum"

; which is 256 by lenghth array. The 256 discrete frequency components will be

:; compressed down to 16. This compression is done with low frequency emphasise (LFE).
;: It is not a logrithmic compression. Rather, the lower 132 frequency components

; are are linearly compressed down to 12, and the higher 124 components are
; linearly compressed down to 4. This algorythm is written so as to make changing
; the emphasise easy if desired.

:; Input: Two dimensional array returned by (compute-att utt-name "Wide-Band Spectrum”
;: Output: Compressed version of input

(defun frequency-compress-1lfe {(array)

(let* ((length (array-dimension-n 2 array))
(return-array (make-array (list 16 length))))
(do ((count 0 (l+ count)))
({(= count length))
(aset (column~average array count 0 10) return-array 0 count)
(aset (column-average array count 11 21) return-array 1 count)
(aset (column-average arvay count 22 32) return-array 2 count)
(aset (column-average array count 33 43} return-array 3 count)
(aset (column-average array count 44 54) return-array 4 count)
(aset (column-average array count 55 65) return-array 5 count)
(aset (column-average array count 66 76) return-array 6 count)
(aset (column-average array count 77 87) return-array 7 count)
(aset (column-average array count 88 98) return-array 8 count)
(aset (column-average array count 99 109) return-array 9 count]
(aset (column-average array count 110 120) return-array 10 count)
(aset (column-average array count 121 131) return-array 11 count)
(aset (column-average array count 132 162) rveturn-array 12 count)
(aset (column-average array count 163 193) return-array 13 count)
(aset (column-average array count 194 224) return-array 14 count}
(aset (column-average array count 225 255) return-array 15 count))
return-array))

IR R RN I R A I A A I A A A A AR A A AR A A A AR AR AP EPEP P AR AP R S I AP PR PPN

;: "MENU-FEATURE-SET"

(defun menu-feature-set ()

{let* ((item-1list ’("Wide Band Spectrum”
"Narrow Band Spectrum”
"LPC Spectrum”
"Formants"”
"LPC, Formants, Fr. Freq."

nn

"n

nnyy
(menu (tv:make-window ’'tv:momentary-menu
‘:label "Word-Search!

Select Feature Set to Use..."})

v

{choice))
(send menu ’':set-item-list item-list)
(setq choice (send menu ’':choose))

choice)}
;: "CREATE-READY-TEMPLATE-FILE"
;; This is the function for creating a Ready-Template file

:; (see word-search!.doc). This is accomplished by
;: reading each word of the vocabulary (digits "zero"” thru "nine")

one by one. Various SPIRE computations are performed, and saved
to a disk file. The user is prompted for both input and

;; output pathnames.

1 Input: None (User is prompted for resd and write pathnames)
:; Output: Writes Resdy-Template File to Disk

i

{defun create-ready-template-~file ()

(let* ((read-directory (string-append

B-20

A A SR N O

)

)

ey

L LS

.

v e
et

P

P

s
e

D

A

a e - . v
A LA N AL A
PR

il .
NN AR

o, Q‘ [oy Ly o
MORIY, Y, ;.A&;ll‘dﬂx.x.xdq.x‘z.mhrmm

’
o 4
~
"spl:>dawson>thesis>templates>” N
L (prompt-and-read :string N
} "Please enter speaker name: ") *J
")) '
b (read-path) "_
(write-path (string-append K
"spl:>dawson>thesis>templates>” Ca
(prompt-and-read :string :'
"Please enter Ready-Template name: "))}) o
{choice nil)) ”
(setg *t-set*® nil} -
(setq *tempath® read-directory) M
(setq choice (menu-feature-set)) ﬁ
. (loop for v-word i1n *vocabuiary*® do 4
(setq resd-path (string-append read-directory v-word ".utt")) ;
(terpry} ;
tprinc "Processing ") .
(princ read-path) o
(pranc "...") I’
(setq *t-set® (append ‘t-set’ F;
(list K
% (cond ((equal choice "Wide Band Spectrum"”))
(process-utterance-wbs read-path)) ~ 1
({equal choice "Narrow Band Spectrum”) (Wt
(process-utterance-nbs read-path)) '\
((equal choice "LPC Spectrum”) “o
(process-utterance-lpc read-path)) *3
t{equal cheoice "Formants") ~d

v
k]

(process-utterance-formants read-path))
{{equal choice "LPC, Formants, Fr. Freq.")
(process-utterance-lpc-formants-ff read-path))))}))
tsend (spire:uttersance read-path} :kill)}
idump-to-disk write-path (list *t-set® *tempath®);)
{word-search!

- t'.- ==

”
&

"CREATE-READY-UTTERANCE-FILE"

o W

This 1s the function for cresting s Ready-Utterance file
(see word-search!.doc). This 1s accomplished by

reading a Digitized Continuous Utterance.

Verious SFIRE computations are performed, and saved

to & disk file. The user 1s prompted for both input and
output pathnames .

LR SR Y §
2

R

Input: None (User 1s prompted for read and write pathnames)
Output: Writes Ready-Template File to Disk

S

(defun creste-ready-utterance-file ()
"let* ttresd-path
(string-append
“"spl:>dawson>thesis>utterances>”
(prompt-and-read :string "Name of Digitized Continuous Utterance :")
TLuttt))
(write-path
{string-append =
"spl:>dawson>thesis>utterances>” i
{prompt-and-read :string "Name of Ready-Utterance : ")})) ..
(choice nil))
tsetq choice (menu-feature-set))
t{setq *ready-utterance*
(cond ((equal choice "Wide Band Spectrum”)
(process—utterance-wbs read-path))
((equal choice "Narrow Band Spectrum”)
(process-utterance-nbs read-path))
{(egqual choice "LPC Spectrum”)
(process—utterance-lpc read-path)}
({equal choice "Formants”)
(process-utterance-formants read-path!!
((equal choice "LPC, Formants, Fr. Freqg.
(process-utterance-lpc-formants-ff read-path':

'a.\‘ s - " 's:

PRI

i (setq *uttpath*® read-path)

B-21

88 834 SPIRE BASED SPEAKER-1 ”EPEUEIT CDITINDUS SPEECH 272
RECOMIT!M usnn NIXED (U) ﬂlR FORCE IIST N TECH
GHT-PRTTERSON AF
UNCLASSIFIED DEC 8? #IT/GEIWO

.

IR R R Al

a.

ey

S aat,

b EE
ddaz

.h,_r—n-.—._u.::“

2l =

-
———
—
——
—
———

i
I
I

Vanas
..-... A gzb.

<l
=

|

I

125

Tt
TR

7

MICROCOPY RESOLUTION TEST (CHART

AN Ak LH

“+

NATWONAL HLW) A

’
s

D

Lo A
AR L

-~ - - -

‘. -’

!

oA

Y
-F\J‘

o)
~ M

\-

U
2.2
-
-I
A

*\
&

»,

*
e

I

H {send (spire:utterance read-path) :kill)
{dump-to-disk write-path (list *ready-utterance® *weight-list* ‘uttpath*)))
(word-seazch!))

! "LOAD~READY-TEMPLATE-FILE"
This function losds a Resdy-Template-File and set’'s it to *t-set*

Input : None, user 1s prompted for Ready-Template Name
Output : The qlobal °*t-set’® 31s set to Resdy-Template Name

(defun load-ready-template-file ()
{let* ((resd-path (string-append
“"spl:>dawson>thesis>templates>”
(prompt-and-resd :string "Name of Ready-Template : "})})
{load read-path)
(setq *t-set*® (car *data*))
(setq *tempath® (cadr *data®)))
(word-search!)}

"LOAD-READY-UTTERANCE-FILE"
This function loads a Ready-Utterance-File and setq’'s it to °*ready-utterance*

Input : None, the user is prompted for Ready-Utterance Name
Output : The global ‘*ready-uttenance® 1is setq’'d to Ready Utterance Name

(defun load-ready-utterance-file ()}
(let* ((read~path (string-append
"spl:>dawson>thesis>utterances)”
(prompt-and-read :string "Name of Ready-Utterance : "))))
{load read-~path)
(setq °*ready-utterance® (car *data‘))
(setq *weight-list*® (cadr *data®))
(setq *uttpath® (ceddr *data*)))
(word-search!))

"DISPLAY-WAVEFORM"

tdefun display-waveform (xl yl x2 y2 pathname)
(let* ((display-array (spire:att-val (send (spire:utterance pathname)
:find-att "original waveform”)))
(length (array-length display-array})
(width (- x2 x1))
(height (- y2 yl)}))
(declare (sys:array-register display-array))
(drawborder x1 yl x2 y2) t
(loop for indexl fixnum from 0 to (- length 2) ;
for index2 fixnum from 1 to (1- length) do
(send tv:selected-window :draw-line
(+ x1 (tix (* indexl (// width (float length))}))
(+ yl (fix (* (+ (aref display-array indexl) 32767.0)
(// height 65535.0))))
(+ x1 (fix (* index2 (// width (float length))})}
(¢« yl (fix (* (+ (aref display-array index2) 32767.0)
(// height 65535.0))))))))

R A I A A A A A A A A A A A A A A A I A A A A A A A R A A A A A A A A)
‘

::: "DISPLAY-WAVEFORM-ROT"

(do!un display-waveform-rot (x1 yl x2 y2 pathname)
({let* ((display-array (spire:att-val (send (spire:utterance pathname)
:find-att "original waveform™)))
{length (array-length display-array))
(width (- x2 x1))
(height (- y2 y11}})

B-22
'n'd.q. .'.-". ‘.\-'."-' ._". [[N LTS -'--‘-' Attt -
‘MI‘MIX:LXN s.fn.mkf wlfa-.‘ m’@m@m’ . AL&A{A N %"~ .:.'LxL;.{_sLL{:f SO 'f:’.

(declare (sys:array-register display-array))
(drawborder x1 yl x2 y2)
(loop for indexl fixnum from 0 to (- length 2)
: for index2 fixnum from 1 to (1- length) do
; (send tv:selected-window :draw-line
’ {+ x1 (fix (* (+ (aref display-array indexl) 32767.0)
(/7 width 65535.0))))
(- y2 (fix (* indexl (// height (float length)}))))
(+ x1 (fix (* (+ (aref displey-array index2) 32767.0)
(// width 65535.0))))
(- y2 (fix (* index2 (// height (float length)}))})})}}}

4

SR PLs

o e

s

-~

1, 8 5 5%

Appendix C: Sample Results

L Z

S e wheow

y]

LI A)
T

AT

a
]
—
s
-

e

Py

-

IEESl FUWEL A4 0 ¢ 2 0 QAR
LABARAl ARBELBR AR N bha sl
9

.
F sy

NPT OV

{ PSS

FEE N CRRAY

o -
a
1

.".‘

-(..‘_.

] :‘ (e C 1”'.—
2| e U LT

RARr

-

¢ 1313 |1

o

O s R R e S N S R A A M N

..........

h e Ta Tt T TN
LA

".?"'?.f‘_‘ vy

- - -
S S N e o

A RARA

i
o
-
o
e
-

e

-

ASAS Yrrrr

v,

RGD -- "28318" -- Wide Band Spectrum

' CH ! !
b 9 ' P o : h ‘t
a ..'.""7\!', f " 4 T T

|

oY

R

: ", N ":;5
7 E, gy -

: ’ﬁ?‘ 4t

e &8 L7 LY

)
J-“-
Ay oy

s

Mg

! : > -
i A
. u 4
- »

5 g
-)
1) G
L (]
’l
by -
=)
>~
st -~
& -
- *,
-' Y
~3
.-
L
L]

LS
R

.‘.A,\

3
Ly

A U T R R A S R R N LA S AL PO NPT L,
B L O A R R, C R L R AN CE TR AT L Tt

g

¢

......

RGD -- "28318" Narrow Band Spectrum

) L A
9 . (
. KT
8 I
.-, 'l L w B
7 n
N _
s . ‘, i Ai
S ! ' ;
+s. i
‘i |
LI ™ .
3 v -k .
2 ': ' l -
F |
‘.'
'] L XN
9 |3 [1 Is

C-4

'y S T YR Y

“»

38 %55

228

-

" a®%aSm"
at o

4

ST
FF W

¢l' W x AW Y Y 3 -, (g ¥ >y, ...,.-. . . Pl K 1-.- A |
5 .\“Dfu 4 n\.-&-%\lw\ - ...-.-.-F.’.(.r\b.\f... [N h *)\-f-k-\.(hn A A A .-ﬁ...a-r.l-hw.f‘h . RPN -\.r A

]
.................. LR N £ Pl el A R

TN

PN

", e m, €,
N A

.
')

LERr SRS L
VY P

"
AT N

X
-

J
FIRE

i.’

al J

-
-

RGD =-- "28318" -- Formants

b
1
2
AP 'f\'d' Tt PV '.f.“'.- “u

r 9

RGD -- “28318"

PC Spectrum

- -
-

--. -'.I_.-
M N

e >) .

€, Tt Ta?
r

Wi
E;lc ® e ' «
8 I
HuE

e M Tt A
ST, Y R

L T e

AP

........

bt % O B P A g =
T oo L ~ " i g |-
S s i) N I R
- - —— - — J.lmm 3
NRIR 1 " Niglo

oy

1
)

?‘Prh_. LLLLEE LY
L8 LA BRI

)

-

o™,

-

RGD - *28318" - LPC Spectrum, Formants, Fr. Freq.
’.

. Y Caat S fa fat Bat nal da gat g 4 § 8 and i
J et iat ik tal Vel €0 Vol g xoa 082y aTh a'd ail . il ath ath avh gto gil ath aul ath gVA gt Y v P 9§

(SKIP/JONES - “2377097" LPC Spectrum J
W- LY

IR “

8 ' - .'z{ ;

LUBEANRERES

ded

ddod b b a2y
TrTnry TTTTT VT Trrr

&H

" ¥

M N N T

(N

c-8

N R o e T PP Y T e T T O S o gTeleleee

i A% Y . AU TAY
N M A o X) 1‘&\ AN K Y

S A A

Wmmwmmmmmmmm

SKIP/JONES - *2377097" LPC Spectrum, Fprmants, F.F.

4
9]

- -

ko
(.

] 3 -J
4 S ¢
. g '
b - : B
: L‘) o
3 3 '
{ 2 T) : 9

le (3] 7 7 | 8 o] 7

c-9

e AN ol o A M A T S A T e Y e A e e T e
A2 A AN L n WO L Cn oty L IOYATALES A AR AL T W S G YV S W Sy

dedddmbndad
TTTPTITTY

L
+
+ .
+ 31
+ .
+
I n
n -
¥
4
+
+
4
4o
-+
+
4
+
-
[
-

$

SKIP/JONES - “2888276" LPC

€ b

o

_ab ot

Sgectrum

FRES

XN

-

b ¢

\.:_..-._.-_'..-\.'-__.r’.-‘.-\.\.-. O L P
n .

R

Ne

YN ANS
4'311/22'

r..- "-:'a "- \l .

[¢

IR

[

lf\l'l""{! . Y)Y BT

L)

‘ SKIP/JONES - “25858276" LPC Spectrum, Fprmants, F.F. 'j.
-+ ‘ l-.
+° 9 - . .’

g ¥ l‘ hl ‘ : gt

’]E ; ‘] - - . . : (;

h vhe ’ 4_ :-.
8 ¥ . I f::-
‘o
—] = C
. Al l v :
‘ 7 L] . | ' :

|
s

o
.
e
Y

b 13
-
gy

g
™
{
P
]

IR SRARRR ‘BEERE]
h 4
: [
T - .
} t
. -

-~
) dut .

lk-‘

#;‘. a&*

|

1. &ﬁ.".(‘r 4~'\- .

-rd
Lonl 54 Pl |
)

,,
-
CuRey

S U SRS E WY
()

s s

Tt
L

—

v
-

.

& 5

- .-
e
" [-~
1 ~
4 &
N
-,
N
pa— &
>
! a | . oL
8 | 4 1§ .

|
=

T*

s

L7

21 s | s s 1217 | s

'h{\’]
.

“w
-

., 8 _.’ "’{‘rﬁf

A AN

BT
*y % ':".

O
f
—

.

4
e
N

RGD/JONES - *28318" LPC Spectrum N
r -] e A
i

Add liy
AL BARARI

TTrerrprery

-
-
*-3
LK . —x

Aid i i aataag d ok gy

e X

&
e
{’-‘i

&

w
¥ 4
L 4
ANV

N
iy,
na——"

N0

W% A -F'. . ."

9

LR SN i

"-‘.-.

RGD/JONES - "28318" LPC Spectrum, Formants, F.F.

4 W '
t- %
T
-!f'
d
I
b
|
i
i

\'

3

.
R TR

1 I8 2]

-

- " L
AR5 VY

S e €

= TR L

(RGp/JONES - "?.377097" LPC S ect'rum
o o |fR: 177';1 BEE b
E‘ ;‘ r [oy ': 1' ¥ P Bt
8 E po

o 7 E ' J Jdy,
| {5 "M -
AL H :
X ey :
n) = :

an

11 ~
=
- cnsfyn N
ek &

@
|
148 .
4)
— pos
4
c 4P =
- |
| -~
= el
-
i
“»

LA

e

| 3 | 7 7 | s |7)

‘‘‘‘ + U) 3 » AR TOU R » V W vy 1 U ‘
» r
N
4
N
*
‘ RGD/JONES - "2377097* LPC Spectrum, Formants, F.F. 3
Sp Ll , 11

’ N - :
n N

| g | B >

| 8

6 . Y.

n
At ol AN

> . ol B

-
2
ﬁ
X %, S

w
-

-
h T

P P
g R Ay A a .{
& S

I3 17 172 Te lolz

AR | AR

- Y
« »

o ;
8 - =4 |
| g Jdi ;
e 3 (]

i : e

7] '
F .

¥)

:: ’.

o’

6 N :

F Vi -]

4
S A el el

ls l2 18 | 8 | 8

SKIP/RGD - "282828" LPC Spectrum, Formants, F.F.

LA BRRE)

£
Al il

™Y
*F
ouns?
-

bl it 10 1

LIS

1 3 U U W) _.\
.
JONES & RGD/SKIP - "1234" LPC Spectrum *i
19 I B ¥
15l E w1 %
[, H K .

17 Ly :
—d — ..,l

16 P . -

K "

15 B :

14 ,):.
1 a 3

-2 =S z %

lg_ .E 4 i} R

11 ' v ¥
il . L K

-

1?_ ™t | &5
9 N
8] T Y
7]) SRR &
6 .xo"!;—q:\ - J_ N ;::
5 4 ad' [} 4 :'-:'_
. T AT “
3| T, Al ;
] = A =7 ".(
2 e E.:
1] N B EXI B :;,:
—_— b d }oue S

J "ﬂi. ’
0 S I e 53
GARARRAARSI Radas Ly asa i
r 3
’P\
| 8 18 13|14 >

s

N
'l

& '{_',’.'/".'_'." .

(@]

1

[0+
Ao o

~

LY

r.
(l.\.

A A R T I T TR T T T I T T e T T N S A S L S YA %
mm&t\i\i&{hﬁhﬂh{&‘:&fsﬂuﬂ& ™ h’f&f\&‘_ AT s.\'x.ﬁ‘x';fl

JONES & RGD/SKIP - "1234" LPC Spectrum. Formants, F.F.

*

19 i HY . ’
; A

17 o L

16 a8 ¥
b 15 |
14 t _
13 o™
12 | Y

11 . MR 34 E'

:

| L\'l1 4

Trrrrrqyrrrreyrryr

[11] 1213 | 14

C-19

f - v ¢) v Pa% a N> O I PR Y A R T I I R T S TP TN
‘I'-.‘l‘.’\., h;l.l‘,_l‘hl p", M AU ‘\ls' LA Y V h¢ 'p \'- "y $‘."- ". ‘- Py .N\-' '_'- -‘u_.. - PR A R R A% _*.‘-

4
&
4

l\n"f*f-sn’.‘r‘:sn ' 7\. I..:..:.

l; l‘\‘
(l'.i [

N

13
12] %
b 11 =

o=@ @ =l

Cc-20

AN SN

. »
h e]

1.
L

» "‘.'i

LR N
P

e
4 e

v_.u¥

.t AT AT e N
T T N e e e e et -
Lo A e ¢ . N I R Ny S i Wy :
L P AT AT AT AT AT TR, A e o - -
Iy Pt -) y ‘.. \.\‘r\\ *\ ety ERP IR Y z\.—_-..

KauMa NN o ° *

b-
o 4

Y

RANNERS

_\ ’ --.-\. \cﬁ.\l

)
“. ¢

e

SR

[l PR
Sl P\F\.. SN

-n-u~

.‘
PN

‘ a-' o f.-

v @

ol

18113

-0

Trrrrrerrrerer o

12

JONES & RGD/SKIP - "1549768203" LPC Spectrum, Formants, F.F.

19

17

—~8

16

15
14

RN

{r

|

i)
|

T

14

eV TV RS WL R UTRTUIY raUL 1= 0
$ ¥

*

"18

—— -

-*L-'r

L okl

| 19

15 | 4

| 11

Z0oons

Ll B L
AP S

C=-21

.....

e

-y
W,

AT N, TR AN

JONES & SKIP/RGD - "36789" LPC Spectrum

19
° 18
17 |
16
15
o 14
13
12]
11 |
o 18

-« Wi od
{ = uY 4 = L
T
= - —— —
:,!;': i v - E‘-ﬁl: - -«-l
el -
A | 'Y 1
i - .. .;s,- v " } .
- w| ,"'_‘i-'l _,"__ u.
.'—- ‘ &
a——‘i‘ - - ‘:ﬂ:--—-‘
= - . -

l o

C~22

R I A s

P AN MNP . L ~
ﬁ("“f" E:'r..'!,;%.[‘_ﬂ'.l\" 2 "JA\:!.\J C“.’r

T
o .
JONES & SKIP/RGD - "§6789" LPC Spectrum, Formants, F.F. .
19 " :
® 18 -
17 ~ '
- —]
15 i !] ‘
¢ 14 x
-~ 34 = —
13 . .
— o]
12 - » -
11 ‘ Rt I ~
o 10 3 >4 '
9 | ‘e
8 : . :
7 Wy - : :
° 2, S
5 . ' . *-'
_ . ——— | oy g o oo K
ull o , '
' 3 ol A ‘o g
— S I '
2 ! ‘ : J
1_ ' = ':
] - -— P — R
Y) H# -
4] L N Ml .
?
) 1sl e 17 9)
©
J
¢
c-23 ;
C)
*;-lf\) ‘ - _‘ ‘ .’

R O N A N N R R A A AN,

<

10.

11,

12.

13.

.‘\.u-‘-\-'-\ L & aab Pvywy ALt el Bl Al o b ey

Bibliography

Abut, Huseyin and Robert M. Gray. "Vector Quantization of Speech
and Speech-Like Waveforms," IEEE Trans. Acoust., Speech, Signal
Processing. ASSP-25: 299-309 (August 1977).

Brusuelas, Capt Micheal A. Investigation of Speaker-Independent
Word Recognition Using Multiple Features, Decision Mechanisms, and
Template Sets. MS Thesis, AFIT/GCE/ENG/86D-5. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1986,

Burton, David K., John E. Shore and Joseph T. Buck., "Isolated-Word
Speech Recognition Using Multisection Vector Quantization
Codebooks," IEEE Trans. Acoust., Speech, Signal Processing.
ASSP-33: 837-849 (August 1985).

Doddington, George R. and Thomas B. Schalk. "Speech Recognition,
Turning Theory to Practice,"™ IEEE Spectrum. 18: 26-32 (September
1981).

Juang, Biing-Hwang and Lawrence R. Rabiner., "Mixture
Autoregressive Hidden Markov Models for Speech Signals," IEEE
Trans. Acoust., Speech, Signal Processing. ASSP-33: 1404-1413
(December 1985).

Kabrisky, Mathew, Professor. Personal Interview. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 3 February 1987.

Kassel, Robert H., A User's Guide to SPIRE. [correspnds to version
17.5] MIT Speech Recognition Group, Mar 1985,

Kauffman, David H. SPIRE 17 Release Notes. MIT Speech Group
[supported by DARPA contract N00039-85-C-0290 monitored through
Naval Electronic Systems Command], January 1986,

Ney, Hermann. "The Use of a One-Stage Dynamic Programming
Algorithm for Connected Word Recognition," IEEE Trans. Acoust.,
Speech, Signal Processing. ASSP-32: 263-271 (April 1984),

Potter, R. K., George Kopp, and Harriet Green. Visible Processing
of Speech Signals. New York: D. Van Nostrand Company, Inc., 1947,

Rabiner, Lawrence R. and Ronald Schafer. Digital Processing of
Speech Signals. New Jersey: Prentice Hall, Inc., 1978.

Rabiner, Lawrence R. and Jay G. Wilpon. "Speaker-Independent
Isolated Word Recognition for a Moderate Size (54 Word)
Vocabulary,™ IEEE Trans. Acoust., Speech, Signal Processing.
ASSP-27: 583-587 (December 1979).

Bib-1

W e Wy ‘-,-'-r ‘-.‘-\;-" T e N e '-'.\‘-r.‘_-‘-r;\-._-: ala \ﬂ\"\-‘ \-' -:‘,' T ..-}_'..,-:_‘_-:. BT

-

i T T T Fa N B)

Ay

"ty

VAR A Ny Te e VY
3
" At . .

L rtam r s e s n e
H PO

v

4.
k 5.
16.
17.

Rothfeder, Jeffery., "Hardware: A Few Words about Voice
Technology,™ PC Magazine. 5: 191-205 (30 September 1986).

SPIRE 17.2 Preliminary User's Guide. Speech Communications Group,

Research Laboratory of Electronics, Massachussetts Institute of
Technology, February 1986.

SPIRE 17.2 Reference Manual. Speech Communications Group,
Research Laboratory of Electronics, Massachussetts Institute of
Technology, February 1986.

Winston, Patrick H. and Berthold Horn. LISP., (Second Edition)
Massachussetts: Addison-Wesley Publishing Company, 1984,

-
L]

Lo

(YN Y Y O A

ffkf‘

Y

R

A

s

.‘I

X s "I:A:

"I ‘I"- - ,.? 1

)

7

v K‘ ". "-
N ;|

»
i

l’ Iy

z ¥
»

[

AN

VITA

Captain Robert G. Dawson was born 28 November 1960 at Burderop
Park, England. He graduated from Sylvan Hills High School, North Little
Rock, Arkansas in 1979, He received the degree Bacthelor of 3cience
Electrical EZngineering from the University of Arkansas in August 1983,
Upon graduation he received a commission in the USAF and was assigned to
the Electronic Systems Division (AFSC). Hanscom AFB, Massachusetts. In
May 1986, Captain Dawson entered the School of Enginzering, Air Force

Institute of Technology.

Permanent Address: 84 Shoshoni Drive

Sherwood, AR 72116

.

f

P)
P
PP

Py

,..
(’-’i’l"_f

.l..\'—:.‘.‘n'b’l"‘

.t
. _a

K
LAl

*
K
.

UNCLASSIFIED

URITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

1a REPORT SECURITY CLASSIFICATION
UNCLASSTFIED

1b. RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

L4

3. DISTRIBUTION/ AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

DISTRIBUTION UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
AFIT/GE/ENG/87D~14

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
School of Engineering

6b OFFICE SYMBOL
(if applicable)

AFIT/ENG

7a. NAME OF MONITORING ORGANIZATION

6c ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

7b. ADDRESS (City, State, and ZIP Code)

8a NAME OF FUNDING SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (Crty. State. and 21P Code)

10 SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

PROGRAM PROJECT
ELEMENT NO NO

TASK
NO

11 TITLE (Include Security Classificotion)

Mixed Feature Sets

SPIRE based Speak«r-Independent Continuous Speech Recognition Using

UNCLASSTIFIED

12 PERSONAL AUTHOR(S)
Dawson, Robert G. Captain USAF

13a TYPE OF REPORT 13b TIME COVERED

14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT

MS Thesis FROM 10 1987 December 125
16 SUPPLEMENTARY NOTATION
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Speech Recognition, SPIRE, Dynamic Programming
17 02 Mixed Feature Sets

19 ABSTRALT (Continue on reverse :f necessary and identify by block number)

Thesis Chairman: Matthew Kabriski, PhD

Professor of Electrical Engineering

i relang:

Zprond |al}p :
@'l:\wr‘v {24
Lén o1 p... .

FAW AFR 19g.

S ARy)

4

Rt Force fran. W o '\“"'cnmqv
Weiga: boter o, ., e il o

20 OISTRIBLTION AVAILABILTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

B onCassiseounemten (3 same As RpY [0 omic USERS UNCLASSTIFIED
22a NAME OF RESPONSIBLE 'NDIDUAL 22b TELEPHONE (Include Area Code) {22¢ OFFICE SYMBOL
Dr. Matthew Kabriski Professor, GS-15 (513) 255-5276 AFLI/ENG
DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

A e A N AT AN T T

R .

O e PO A A '.~,;<- e NN

.‘_‘l‘ e "

. “a d'a & s A" N . PEEFU T T W W
fa 2 haaad bAZA. 10 bk i 0l 3 b ath g6 pNE giatatat RVttt L Lp V U Latint Sabiasita gl

UNCLASSIFIED R

| Continued from block 19: Abstract i
A system was developed to investigate continuous speech

recognition. The system incorporates multiple features and dynamic M

programming to recognize continuous inputs of the spoken digits (zero

" through nine). The fundamental design concept extends from previous

p successful recognition research efforts involving both isolated and

continuous speech using multiple feature sets, multiple template sets,

and dynamic programming. Among the features used in the investigation

are wide band spectrogram, narrow band spectrogram, linera predictive =
coding (LPC) coefficients, LPC.spectrum, frication frequency, and
formant tracks. An advanced speech research tool called SPIRE provided
1 the computational functions needed to extract the raw features. The
system is implemented in LISP on a Symbolics 3600 series LISP machine.
-
b J
t
OF

[
\

UNCLASSIFIED

Y S 3

L% 0

A A e e AL) A RN e AP
\

