
D-A166 634 SPIRE EASED SPEAKER-INDEPENDENT CONTINUOUS SPEECH 1/2
RECOGNITION USING MIXED..(U) AIR FORCE INST OF TECH

MRIGHT-PRTTERSON AF9 OH SCHOOL OF ENGI. R 0 DAMSON

UNCLASSIFIED DEC 97 AFIT/GE/ENGQ'67D-i4 F/a 12/9 NLE7hhhhh

11 2.2

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1961 A

S.

. R,.

Ll- M-I ml- lo

IMfC- FILE COPY

00

00
00

II

"1

oOF

) '

SPIRE BASED SPEAKER-INDEPENDENT
CONTINUOUS SPEECH RECOGNITION

USING MIXED FEATURE SETS

~~DEPARTMENT
OF THE AIR FORCE'

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

4E

•
WrightPatterson Air Force Base, Ohio

THSI

.
88 2 . 0

Roer G.. Daso, -p SA

FEB1 01--

m®

SPIRE BASED SPEAKER-INDEPENDENT
.'%CONTINUOUS SPEECH RECOGNITION" -]. ,

THESIS"Robert G. Dawson, Capt, USAFi

AFIT/GE/ENG/87 D- 4

Approved for public release; distribution unlimited

E" C - ..

USING MIEF A TR IE T

AFIT/GE/ENG/87D-1I 4

SPIRE BASED SPEAKER-INDEPENDENT

CONTINUOUS SPEECH RECOGNITION

USING MIXED FEATURE SETS N.

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

AoCesslon For

NTIS GRA&I
DTIC TAB
Unannounced] ?-.'<
Justification ..

Robert G. Dawson, Capt, USAF Distribution/-
Availability Codes

Dit Special

December 1987

%.'-

Approved for public release: distribution unlimited

%* _

% ' .

-- ~ T~ .- K'MI~ I F MI? mmI we ,vr WTJXP! r It -W "1 7 "1 T'11 "TI"'? , w V WVj'wNW

Acknowledgements

This work is dedicated to those I love; my parents, Lt Col and Mrs.

William R. Dawson, whose example made this work possible; and my wife,

Monica, whose love made it worthwhile.

Also, special thanks to my thesis advisor, Dr. Matthew Kabrisky,

whose special combination of inspiration, knowledge, and humor made this

work actually fun.

0 1.

* 4

Table of Contents

Page

Acknowledgements ii

List of Figures vi

List of Tables viii

Abstract . ix

I. Introduction . 1-1

Background 1-1
Definitions 1-3

Templates and Features 1-3
Dynamic Programming 1-6

Connected Speech 1-7
Speaker Independence 1-7,

Problem 1-8
Scope . 1-8_ j

Approach o 1-9

Sequence of Presentation- 9 .. .1.

II. Acoustic Processing Environment 2-1 ,.*I'

Introduction . 2-1
Lisp o. 2-1
SPI RE . 2-2

Overview 2-2

Interfacing SPIRE .. 2-8
Hardware 2-10

LISP Machine . o. 2-10

Array Processor o. 2-10
Speech Digitizer 2-11

Summary of Equipment 2-11

III. System Design . 0. 3-1

Introduction . . o o . o 3-1

Utterance Processing 3-1 "r
Feature Extraction 3-1.

Wide-Band and Narrow-Band Spectrum . . . 3-1
LPC Spectrum 3-2
Formants 3-2

Frication Frequency o.. 3-2
Additional Processing 3-5Clipping 3-5 .:"

Median Filtering 3-5
Frequency Compression 3-5
Energy Normalization . . . o . . o 3-6

iii "".

Ready-Utterance 3-6

Ready-Template 3-6

Dynamic Programming Algorithm 3-6
Introduction 3-6
Distance Arrays 3-7
One-Stage Algorithm for %0
Connected Word Recognition 3-9 e
Time Distortion Penalties * 3-10

Summary of Steps 3-11
Storage 3-14

IV Results and Discussion. 4-1

Introduction 4-1

Distance Array Contour 4-1
Wide-Band Spectrum 4-1
Narrow-Band Spectrum 4-2
LPC Coefficients 4-2
LPC Spectrum. 4-2
Formants. 4-2
Frication Frequency 4-3
Zero Crossing Rate 4-3

Recognition of Connect Speech 4-3

Speaker-Dependent Results 4-3 %5
Wide-Band Spectrum 4-11

Narrow-Band Spectrum 4-11
Formants 4-11
LPC Spectrum 4-11
LPC Spectrum, Formants, Frication Frequency 4-11

Speaker-Independent Results 4-13
Single-Speaker Template Sets 4-17

Multi-Speaker Template Sets 4-17
Overall Results Using LPC Spectrum 4-18
Overall Results Using LPC Spectrum,
Formants, and Frication Frequency 4-19

V. Conclusions and Recommendations 5-1

Introduction 5-1

Conclusions 5-1
Recommendations 5-1

Environmental Stress 5-1
Tailored Template Sets 5-1
Additional Features 5-2

Syntactic Rules 5-2
Dedicated Hardware 5-2

Summary 5-2

W5 %

iv
-,. .

iS~.,.~ ~ v ~ Z"Zx" "

Appendix A: SPIRE Attribute Defaults A-i

Appendix B: Program Listing B-i

Appendix C: Sample Results C-i

Bibliography Bib-i

Vita V-I

.

N4.

1
44 $

* -

" ,." u9t'J . '. 6.u, ''6 "],r.1 'J J -' ' " "'9 ' % "- %""""" " """ ' , .'.",."."'.,"w " " .- "-.'"". "2 " ,.j£'i .''.O

% .1%,

List of Figures

Page

2.1 Original Waveform 2-4

2.2 Overlaid Displays 2-5

2.3 Synchronized Displays 2-6

2.4 Standard SPIRE Displays 2-7

2.5 SPIRE Interface Functions 2-9

2.6 SPIRE Result Arrays 2-10

3.1 Spectral Slices 3-3

3.2 Formants Frication Frequency 3-4

3.3 Hypothetical Distance Array 3-8

3.4 Hypothetical Accumulated Distance Array 3-8

3.5 Time Distortion Penalties 3-11

3.6 Hypothetical Distance Array for Continuous Speech 3-12

3.7 Transition Rules 3-13

3.8 Backpointers From Three Preceding Grid Points 3-15

3.9 The Backtracking Proceedure 3-15

3.10 Schematic Diagram 3-16

4.1 Distance Array Contour, Wide-Band Spectrum 4-4

4.2 Distance Array Contour, Narrow-Band Spectrum 4-5

4.3 Distance Array Contour, LPC Coefficients 4-6

4.4 Distance Array Contour, LPC Spectrum 4-7

4.5 Distance Array Contour, Formants 4-8

4.6 Distance Array Contour, Frication Frequency 4-9

4.7 Distance Array Contour, Zero Crossing Rate 4-10

viI

* ~%

Page ,i

4.8 Frication Frequency vs. Zero Crossing Rate.............. 4-12 -.

4.9 First Formant vs. Second Formant 4-15

4.10 Formants Zones Used by Algorithm 4-16

-N.'

a°.

,a-.

A.-

.,

..
.'.,.

:
1 .

List of Tables

Page /

4.1 Speaker Dependent Feature Results 413F-

4I.2 Single Template Speaker Independent Results 417

41.3 Multi-Template Speaker Independent Results 4-17

4.4 Overall Results, LPC Spectrum 418

41.5 Overall Results, LPC Spectrum, Formants, Frication Frequency 4-~19

viii.

AFIT/GE/ENG/87D-1 4

Abstract

A system was developed to investigate continuous speech

recognition. The system incorporates multiple features and dynamic

programming to recognize centinuous inputs of the spoken digits (zero

through nine). The fundame tal design concept extends from previous

successful recognition research efforts involving both isolated and

continuous speech using multiple feature sets, multiple template sets,

and dynamic programming. Among the features used in the investigation

are wide band spectrogram, narrow band spectrogram, linear predictive

coding (LPC) coefficients, LPC spectrum, frication frequency, and

formant tracks. An advanced speech research tool called SPIRE provided

the computational functions needed to extract the raw features'-, The

system is implemented in LISP on a Symbolics 3600 series LISP machine.

/

ix '

'p S!

SPIRE BASED SPEAKER-INDEPENDENT

CONTINUOUS SPEECH RECOGNITION

USING MIXED FEATURE SETS

I. Introduction

The ability to communicate using language is considered one of the

hallmarks of the human race. As machines attempt to do more and more of

what humans do, it becomes necessary for them to also have the ability

to use language. And before this can be acheived, machines must be able

to accurately identify spoken words without the aid of syntax or

semantics. Even simple word recognition by computer would have many

potential applications, from voice controlled television sets to voice

activated displays in the cockpit of an F-16 fighter aircraft.

Ultimately, speech recognition is seen as essential to the total

automation of the human-machine interface, including automated

dictation, language translation, and artificial intelligence devices.

Although word recognition has improved steadily over the past decade,

general speech recognition devices still do not exist. Therefore, much

research will be necessary before such general speech recognition

devices can be perfected.

1-1

Background %

Speech recognition is a relatively new field of study made possible

only by recent advances in computer and digital signal processing

technology. Today, a variety of speech recognition systems are

commercially available ranging from expensive stand alone units to

plug-in boards for personal computers. However, many practical problems

still exist. There are many problems yet to be solved if speech

recognizing devices are to find their way into common use. Most current

research is focused upon finding better ways to represent speech, and

once represented, better ways of handling the variations of speech

patterns typical of a diverse population. Only if these problems areas

are solved will the more complex problems of connected speech be solved.

Although speech recognizers have improved steadily over the past

few years, they are still hampered by certain serious performance

problems. The most intractable of these is inaccuracy. There are many

systems available claiming as high as 95% accuracy, meaning the system

can correctly identify spoken words 95% of the time. However, in real

environments these claims are more hopeful than true. (14:200)

Current voice recognizers suffer from many operational deficiencies

resulting from inaccuracy. Almost all systems available today require

extensive user training. The user must train the system to recognize

his voice and, therefore, the system is speaker-dependent. There

always seems to be a certain percentage of the population for whom the

system performs very poorly. Some machines work better with male voices

than with female voices or vice versa. Current speech recognizers

perform poorly in the presence of background noise such as office or

1-2

factory noise. Further, most current speech recognizers can only

recognize purposely isolated words rather than more natural continuous

speech. Finally, current speech recognizers lack large enough

vocabularies to be useful for many applications. (14:200)

Specific problem areas in speech recognition include selection of

good feature sets and template sets, the problem of connected speech,

and the problem of speaker-independent speech recognition. These terms

will be discussed fully in the following paragraphs.

Definitions

Templates and Features. A template is a set of data that represents

each word of the given vocabulary. The fundamental task of speech

recognition is matching the spoken word, called an utterance, to a set

of stored templates and deciding which template the utterance

represents. There is typically a template for each word in the

vocabulary. Templates are created through a process known as "training"

in which the user repeats the vocabulary into the recognizer. Features

are then extracted and stored as templates (12:489). Herein lies the

basic challenge of speaker-independent speech recognition, that is

"creating a set of templates that can be used reliably with many

different speakers" (6).

A template set that can be used reliably with many different

speakers must contain those features that best represent each word of

the vocabulary. Exactly what features carry the essential information

that distinguishes a word from the rest is not completely clear.

Brusueles (2) investigated this problem by extracting 55 different

1-3

features, grouped in six general categories, for each word in a 13 word

vocabulary. The six general categories were:

(1) Wide-band Spectrogram. Graphic depiction of frequency

content.

(2) Zero Crossing Rate. A count of the number of times the

waveform passes through a region centered around zero.

(3) LPC gain and

(4) LPC coefficients. Coefficients and gain terms used in a

speech coding technique called Linear Predictive Coding (LPC) in which

the speech production process is modeled rather than the waveform

itself. This is done by an adaptive filtering process in which the

filter coefficients are calculated so as to simulate the vocal tract

which itself is a filter. These coefficients are commonly referred to

as linear predictive coding (LPC) coefficients. These LPC coefficients

can be used to reproduce a copy of the original speech waveform. Doing

so allows voice to be digitally transmitted at a very low bit rate and "

thus a very small bandwidth or storage capacity. Because of this data

reduction property, LPC coefficients are often used for speech

recognition (4:26).

(5) Formants. Resonant frequencies of the vocal tract.

(6) Time. Time over which utterance is spoken.

While certain of these 55 different features proved useful during

word-template matching, others were less so. Further, their usefulness

changed with different speakers and/or words. Brusueles suggests that

it may be possible to use some sort of statistical weighting of features

to improve the word-to-template matching algorithms (2:68-69).

1-

IL%

dr, -, r r

"Vector quantization" is a another coding technique used in speech

recognition. In this method, the different sounds that are produced by

the vocal tract are represented by individual numbered codes. Then

words are represented by vectors made up of these codes. For example,

the word "Bill" could be represented by the vector <4, 32, 32, 32, 32,

20, 20>, where 4, 32, and 20 represent the sounds "b", "i", and "1"

respectively. In their work Burton, Shore, and Buck applied "vector

quantization" and achieved a recognition accuracy of 98% for speaker-

independent recognition of isolated digits, "zero" through "nine"

(3:837). Vector quantization is a relatively new speech encoding

technique.

Speech can be also modeled as a Markov chain in which the current

signal state is somewhat dependent on the previous signal state. For

example, vowel sounds are more likely to follow consonant sounds.

Signal modeling based on "hidden Markov models" (HMM) may be viewed as

"a technique that extends conventional stationary spectral analysis

principles to the analysis of time varying signals." Juang and Rabiner

investigated two types of Markov models. One was based on finite

mixtures of Gaussian autoregressive densities (GAM), and the other was

based on nearest-neighbor partitioned finite mixtures of Gaussian

autoregressive densities (PGAM). Juang and Rabiner determined that GAM

and PGAM models have applicability to speaker independent digit

recognizers (5:1404,1412).

A fundamental goal in speaker-independent speech recognition is

that of creating a set of reference data or templates that can be used

reliably with many different speakers. One way that has been used is

that of template averaging. This method is accomplished by recording

1-5

IL -2

as many as 10 tokens (examples) of each word in the particular

vocabulary and averaging them into one template set (4:32). Brusueles

found that a template made by averaging two males and one female

performed better than a template made by averaging three males in a test

population of seven males and three females suggesting that a wide

variation of reference patterns may be more effective than a narrow

variation (2:28).

Multiple template sets have also been used to support speaker-

independent speech recognition (14:29). In this case the tokens are

stored individually and compared individually as though they were

separate words in the vocabulary. One technique involved "clustering"

100 repetitions of each word in a 39 word vocabulary. The vocabulary

consisted of the 26 letters of the alphabet, the 10 digits, and three

command words (STOP, ERROR, and REPEAT). Average recognition accuracies

of close to 97 percent were obtained on 38 of the 40 talkers (13:583).

This method has the advantage of being able to represent a wider range

of population, however an obvious disadvantage is the increased

computation required to perform necessarily more comparisons than for a

vocabulary represented by single templates. (10:263).

Dynamic Programming. Regardless of the method chosen to accomplish

C
word-to-template matching, it is usually necessary to establish optimum

time alignment between the input and reference speech data.

Originally, advanced research in speech recognition employed
relatively simple techniques to partition a speech signal into
separate units, then very complex methods to classify the
segments and recover from segmentation errors. It was soon
realized that signals could not be reliably segmented without
prior knowledge of the acoustic sound class. In the early
1970's a technique called "dynamic programming" was

C

1-6

,

introduced. Dynamic programming improves the segmentation
process by hypothesizing acoustic events and testing each
hypothesis at an acoustic level (4:26).

A one-stage dynamic programming algorithm for connected speech has been

proposed by Ney (10). This algorithm was actually proposed as far back

as 1971 by T. K. Vintsyuk. Ney states that,

An advantage is that the three operations of word boundary
detection, nonlinear time alignment, and recognition are
performed simultaneously: thus, recognition errors due to
errors in word boundary detection or to time alignment errors
are not possible.

Dynamic programming is considered one possible springboard for future

advances in speech recognition (4:26).

Connected Speech. Connected speech, as opposed to isolated speech,

presents additional unsolved problems. Although some speech recognizers

can, to a limited extent, recognize words without pauses between the

words, they are less accurate and more expensive. Connected speech is

difficult for a number of reasons. One problem is that of detecting

word boundaries. Although some techniques don't require word boundary

detection, these techniques pay a penalty in terms of much more intense

data comparison requirements. The real difficulty of connected speech

recognition stems from the fact that acoustic variation of words spoken

in connected speech is much greater than when the words are spoken in

isolation. This is due to the "coarticulation" of neighboring sounds.

The position of the tongue, jaw, and lips in one speech sound are

affected by their previous and future positions. Further, the time

variations of words is more severe for continuous speech than for

isolated speech (4:27).

1-7

.0

Speaker-Independence. It is obvious that humans can recognize the

speech of a variety of speakers without the need of any training

process. Somehow, the brain is able to extract the key features of

speech, determining what is being said even though different speakers

may say the same thing differently. Current word recognition systems

simply lack this "robustness" that is necessary for most applications.

One approach to improving "robustness" and thus accuracy lies in

developing systems that are speaker-independent (6).

Problem

The primary purpose of this thesis was to develop a system for

connected speech recognition and examine the usefulness of using

multiple templates, multiple features, and dynamic programming. The

system has been implemented on a Symbolics 3600 Series Lisp Machine

using an advanced speech analysis tool called SPIRE (Speech Processing

Interactive Research Environment).

Scope

The recognition system developed is based on recognition of

continuously spoken digits, zero through nine. The small vocabulary was

necessary due to limited time and disk space, however, recognition of

the digits provides a sufficient challenge for the purpose of this

research. This research has investigated what features are best suited

for speech recognition and how best combine them. The dynamic

programming algorithm used is identical to the one-stage dynamic

programming algorithm proposed by Ney (10). Other programming techniques

have not been directly addressed. For the most part, SPIRE is used as

1-8

U 'rq .. sHIMfl 9.* NWWWWW W M~~~rrW JW W -- 'I WV LrWV LMW W W I- n VWU M C *.vrLW vnniw

a library of functions called by the main LISP program, although SPIRE

can be used in an interactive mode as well.

Approach

The approach is outlined as follows. First, individual feature

performance will be observed by plotting "distance array contours".

Next, a continuous speech dynamic time warping algorithm will be used to

further study features. Finally, speaker-independent continuous speech

will be studied.

Sequence of Presentation

Chapter two presents the acoustic processing environment. In

particular, the chapter introduces SPIRE, a powerful speech analysis

research tool, as well as the Symbolics 3600 Series Lisp Machine.

Chapter three defines the system design including the basic

algorithms developed. A basic explanation of the dynamic time warping

algorythm is included here.

Chapter four presents the results. First, individual feature

performance is investigated to see which feature sets are best suited to

speech recognition and optimal ways of combining multiple feature sets

to increase performance. The best of these are then tested for

speaker-independent performance. Last, multiple template sets are used

in an effort to improve speaker-independent performance.

Chapter six provides conclusions and recommendations, and

appendices present additional results, program description, and

listings.

1-9

or e W, r'

II. Acoustic Processing Environment

Introduction

The purpose of this chapter is to introduce the software and

hardware components used to develop the recognition system. The chapter

is divided into three sections. The first section describes the Lisp

programming language. The next section describes SPIRE, an advanced

speech analysis tool that provides many of the computational functions

used for feature extraction and general speech processing. The last

section describes the hardware configuration that is used as well as

other optional hardware.

0

Lisp

Lisp is a high level programming that takes its name from List

Programming. Lisp, one of the oldest active programming languages, is

widely used in the field of artificial intelligence (11). Lisp is an

extremely powerful language for handling large amounts of data common in

artificial intelligence applications. In fact special purpose computers

called Lisp Machines are designed at the circuit level especially for

running Lisp. Together, these provide a powerful computing environment

with a large virtual address space that make it "particularly attractive

for speech and signal processing applications" (2:5).

There are many dialects of Lisp, however, one dialect called COMMON

Lisp seems to be emerging as a standard. Most Lisp machines now in

production have Common Lisp as a standard feature. Older machines may

use different dialects. The Symbolics 3600 Series Lisp Machine used for

this work uses a dialect called Z-ta Lisp.

2-1

SPIRE

Overview (2:6-12). SPIRE stands for Speech and Phonetics

Interactive Research Environment. [SPIRE is available by license

through the MIT Patent Office.] It is a software program that allows

the user to interactively examine and process speech and other audio

signals. The following paragraphs provide an overview of SPIRE's design

philosophy, graphical capabilities, implementation considerations, and

documentation.

SPIRE was designed to be easy enough to use for tha novice,

yet powerful enough for even the most advanced users. In the

interactive mode, SPIRE takes full advantage of the Lisp Machine's built

in graphical interface for quick and easy research. For the more

advanced user, SPIRE allows relatively painless customization and

modification. The interactive mode is very useful for learning about

the various attributes of speech. The next paragraph describes some of

SPIRE's more common capabilities. For more detailed information

concerning the use of SPIRE, the reader is referred to various SPIRE

documentation (7), (9), (15), and (16).

SPIRE takes full advantage of the graphical capabilities of

the Symbolics Lisp Machine, providing bit-mapped display which is either

C
1280 pixels wide by 760 pixels high or 1216 pixels wide by 773 pixels

high, depending on the model. The following figures illustrate a small

sample of these capabilities for the utterance, "This is the CBS Evening

News."

2-2

Of1

Figure 1.1 Figure 1.1 shows two repetitions of the

orthographic transcription and original waveform of the utterance. Note

that the scale of the two displays are different to allow closer

examination of waveform details.

Figure 1.2 The second figure shows four displays of the same

utterance; Orthographic Transcription, Wide-Band Spectrogram, Formants,

and Original Waveform. Two of the displays are overlaid--the Wide-Band

Spectrogram and the Formants. Such overlays can make it easier to track

similarities among various representations of the data.

Figure 1.3 The third figure illustrates another important

feature of SPIRE: its ability to synchronize displays. For example, in

the top display, there is a "cursor" located at 1.8251 seconds of the

Original Waveform. The curser is automatical place at the same point in

the next display, the Narrow-Band Spectrogrm. The next display shows

the Narrow-Band Spectral Slice at that cursor position.

Figure 1.4 The fourth figure identifies typical display types

available from SPIRE.

L

C

C

2-3

0.5115
Jk'ft

0.0000 NEWSCAST Orgai Transr on 2.6000

0.55115

0.65NEWSCAST Ortoraiga Wranserior n 2.600

0.5115

0.2615 NEWSCAST Orgnai Transcrpio 0.7615

0.5115

Figue 1. Orgina Wavfor

2-4

~w.-' ,wr ~. vv ~. rw rw j-vuwvu ~~r uwi~ K ~w v- ~ 1, ~u ~- Y'7 ~. F ' ".N W -9W 1P. UUU

f 10

.4

ThsIs The C B SEveningNo

M0000 NEWSCASTOrthographic Transcription 225

000NESATWide-Band Spectrogram 2.2559

0.00NEWSCAST OrIcInal Waveform2. 9

Figure 1.2 Overlaid Displays %4

2-5

le,

1.8251

This Is The C B S Evening No

0.0000 NEWSCAST Orthographic Transcription 2.2428

1.8251

0.00NWCS*arwBadSetorm225

LII~
0.00 NEWSCAST Narrow-Band Spectroamc 2.2454

C

C. Figure 1.3 Synchronized Displays

2-6

0 0V

List of SPIRE Displays

Energy, Total
Energy, 0 to 5000 Hz
Energy, 120 to 440 Hz
Energy, 3400 to 5000 Hz
Energy, 640 to 2800 Hz

Formants, All Four
Formant, First
Formant, Second

Formant, Third
Formant, Fourth
Frication Frequency

LPC Center of Gravity
LPC Gain Term
LPC Predictor Coefficients
LPC Spectrum Slice
Narrow-Band Spectrogram
Narrow-Band Spectral Slice

Narrow-Band Spectrum Slice

Original Waveform
Orthographic Transcription

Phonetic Transcription
Pitch Frequency

Waveform Envelope
Wide-Band Spectrogram
Wide-Band Spectral Slice

Wide-Band Spectrum Slice
Zero Crossing Rate

Figure 1.4 Standard SPIRE Displays

C

2-7

' <" '. ' '. '. - ' '. , .. " 4< << < '<< J '4,

Interfacing SPIRE from Lisp. Behind each SPIRE display are the

underlying computations required for computing that display, for example

a Fourier transform. These underlying processes are available through

Lisp as simple function calls. Figure 1.5 describes the primary

functions used to make SPIRE perform computations on an utterance.

The three functions of figure 1.5 can be combined into a single

Lisp expression. For example,

(SETQ
RESULT-ARRAY
(SPIRE:ATT-VAL (SEND (SPIRE:UTTERANCE PATHUAME)

:FIND-ATT ATT-NAME)))

where RESULT-ARRAY is the variable containing the result of the

computation defined by the variable ATT-NAME performed on the

utterance defined by the variable PATHNAME.

When no more computations are necessary on a particular utterance,

the utterance may be "killed" or "unloaded" as follows:

(SEND (SPIRE:UTTERANCE PATHNAME) :KILL)

where the variable PATHNAME describes the utterance to be killed.

Note that the method used here does not alter any of SPIRE's

default attributes. Appendix A shows a list of SPIRE's attribute

defaults.

When SPIRE is called to perform a computation on an utterance, the

0 result is returned in the form of an array, the dimensions of which

depend on the type of computation. Figure 1.6 lists the array types

returned for various SPIRE function calls.

C

2-8

'

SPIRE:UTTERANCE
Parameters: pathname (required)

Type: function
Returns: utterance-flavor

Description: The utterance in the file "pathname" becomes the current
utterance in SPIRE. If needed the utterance is loaded
into memory from disk. This function must be called
before any computation can take place.

:FIND-ATT
Parameters: att-name (required) '_

Type: message to utterance flavor
Returns: att

Description: att-name is a string that identifies what attribute the
user desires SPIRE to compute. For example, assume we
are to compute the Wide-Band Spectrum of an utterance
stored in the file ">DAWSON>UTTS>ZERO.UTT". First,
select the utterance:

(SETQ TEMP1

(SPIRE:UTTERANCE ">DAWSON>UTTS>ZERO.UTT'))

TEMPI stores the utterance flavor for the next step:

(SETQ TEMP2
(SEND TEMPI : FIND-ATT "WIDE-BAND SPECTRUM"))

TEMP2 now holds the att from which the actual values
may be extracted (see next function).

SPIRE: ATT-VAL
Parameters: att (required)

Type: function
Returns: array (results of computation)

Description: This function returns the computed value of the att we
are interested in. For example, if TEMP2 holds the
att (as discussed above), extract the values:

(SETQ TEMP3 (SPIRE:ATT-VAL TEMP2))

TEMP3 now holds the "Wide-Band Spectrum" values.
Similar procedures are followed for obtaining the values
of any of the standard SPIRE computations.

Figure 1.5 SPIRE Interface Functions

2-9

-v -uw wVKv~ r'6' rz KW.pV IFWV VrWV V VW. %rVV I u~

Attribute Name Result Array

Wide-Band Spectrum 2-D, 256 X N
Narrow-Band Spectrum 2-D, 256 X N
LPC Spectrum 2-D, 256 X N
LPC Coefficients 2-D, 19 X N
Formants (four) 2-D, 5 X N
LPC Gain Term 1-D, N
LPC Center of Gravity 1-D, N
Zero Crossing Rate 1-D, N
Frication Frequency 1-D, N
Total Energy 1-D, N

N = time * analysis rate

Figure 1.6 SPIRE Result Arrays

Hardware (13,15:16).

SPIRE is a software package that requires specific hardware to

run. A brief description of hardware options are discussed below.

Lisp Machine. (Required) SPIRE is designed to run on a Symbolics

3600 Series Lisp Machine. The Symbolics Lisp Machine is a powerful

computer specifically designed to efficiently run Lisp code. It

provides an extremely efficient user interface with extensive graphics

capabilities. Also available from Symbolics is a Floating Point

C Accelerator (FPA) card designed to speed up floating point operations by

about a factor of three. The FPA is an add-on card that is generally

invisible to the application software such as SPIRE.

1 Array Processor. Certain versions of SPIRE are designed to support

a Floating Point Systems FPS 100 (or FPS 200) array processor. An array

processor is a special purpose device designed to quickly handle

C computations on large arrays of data. The FPS 100 is connected to the

2-10

L

-~ - ... w ~ -.- .~N

IW" ? WIWNWW WVWUN JrVVM W% WVW'JV WVW NMNMNMWV WNWW WWWW WU Th4 WV VM W% WV 1EU WV~V WW NM NM W Jw1 - r V1 UWVMWJW %T- ' V

Symbolics Lisp machine through a UNIBUS interface. The array processor

can drastically reduce the computation time required for certain SPIRE

functions. An approximate comparison between a "bare" Symbolics Lisp

Machine, one with an FPA, and one with an FPS 100.

0 Configuration Ratio Example
FPS Array Processor 10 1.0 minutes
Floating Point Accelerator 3 3.0 minutes
Bare Lisp Machine 1 10.0 minutes

Speech digitizer. SPIRE is designed to operate with a Digital

Sound Corporation (DSC) analog-to-digital converter. The DSC is

connected to the Symbolics Lisp machine via the UNIBUS interface. The
0

DSC is used primarily to digitize speech and other audio signals. The

audio input can be direct or prerecorded and fed through line-in jacks.

The DSC can also be used for high quality playback of the digitized

signals.

Summary of Equipment

The Symbolics Lisp Machine actually used for this speech

recognition research was an older model Symbolics 3600 with one

mega-word of RAM operating under version 6.0 of the operating system.

The Lisp Machine was equipped with a Floating Point Accelerator to

reduce computation time. An FPS 100 array processor was not connected.

Speech samples were digitized on a using a noise reducing microphone fed

directly into a DSC A/D converter. Version 17.2 of SPIRE was used.

C'

2-11

2

III. System Design

Introduction

The purpose of this chapter is to describe the system design. This

chapter will provide details about the major processing functions and

how they are used. It will also describe generally how major groups of

data are handled. Finally, an description of the dynamic programming

algorithm used is given.

Utterance Processing

As mentioned earlier, the continuous speech recognition system is
0

designed around ZetaLisp and SPIRE. SPIRE is used as a function library

that is called by the main Lisp routines. A discussion of how this is

done is given in chapter two. Processing of an utterance consists of

specific computations done by SPIRE on the original digitized waveform,

plus any additional processing done by the main Lisp routines. Several

Lisp functions are defined for this purpose depending on the desired

0
features. (See Appendix B).

Feature Extraction. Feature extraction consists of calling SPIRE,

with the filename of the utterance and the name of the feature, to

perform the necessary computations and thus return the desired feature.

This is done by a function called COMPUTE-ATT. (See Appendix B). A

discussion of methods used by SPIRE to compute the desired features

follows.

Wide-Band and Narrow-Band Spectrum. Spectrum calculations are

returned by SPIRE as two dimensional arrays, 256 X N, where N is

C
proportional to the length of the utterance. In both cases, the

3-1

C

wide-band spectrum and the narrow-band spectrum, the original waveform

is pre-emphasized and then run through a 256 point Fast Fourier

Transform (FFT) routine incorporating a Hamming window. The wide-band

spectrum is calculated using a filter bandwidth of 300.0 Hz, while the

narrow-band spectrum uses a filter bandwidth of 78.0 Hz. Accordingly,

the narrow-band spectrum provides more frequency resolution than does

the wide-band spectrum. The results are returned in 256 discrete

frequency components representing 0 to 8000 Hz in log-magnitude form.

Figure 3.1 shows an example of wide-band and narrow-band spectral

slices.

LPC Spectrum. The LPC spectrum result is similar to wide-band

spectrum above, except the LPC coefficients are used to calculated the

spectrum. The LPC spectrum generally resembles a smoothed version of

the wide-band spectrum. Figure 3.1 shows an example of LPC spectrum

slice as well as wide-band and narrow-band spectral slices.

Formants. Formants are returned by SPIRE as a two dimensional

array, 5 X N, where N is proportional to the length of the utterance.

Rows one through four of this array represent the first four formant

frequencies, respectively. Row zero is not used. Formant values are

computed from the LPC Spectrum. The formant peaks are found by fitting

a polynomial to each LPC spectral slice. The polynomial is then

differentiated and solved for zeros. Formant tracts are somewhat

erratic. The formant tracking algorithm usually loses track during

fricative sounds. Figure 3.2 shows an example of formants along with

original waveform and frication frequency.

Frication Frequency. Frication frequency is returned as a one

C,
dimensional array of length N, where N is proportional to the length of

3-2

C

zil

0.3255

*0.0000 SEVEN Original Waveformi 0.6000

2716.

0.SEVEN Narrow-Band Spectral Slice 8000.

2716.

* 77.728

*0. SEVEN Wide-Band Spectral Slice 8000.
2716.

7.821

0. SEVEN LPC Spectrum Slice 8000.

Figure 3.1 Spectral Slices

C

3-.3

WN www wwwwwv lwwl r..rwVV 'V q" W rwwwaIwr "I.- T~w- N- w U - N N-

0l

0.7683

W01

0.0000 4331479 Original Waveform 2.4000

0.7683

00

0.0000 4331479 Formants 2.4000

0.7683

0.0000 4331479 Frlcation Frequency 2.4000

Figure 3.2 Formants, Frication Frequency

3-4C '''. """ -''""% """ " """''""' "".2' - "-.J' .2"" - '.J°f% . .

the utterance. It attempts to track the frequency of fricative sounds

in an utterance. During non-fricative sounds the value is below 500, I
and during fricative sounds the values are above 1000. Frication

frequency is fair indicator of whether a fricative or vowel sound is

occurring. Figure 3.2 shows an example of Frication Frequency.0
Additional Processing. It is necessary to perform additional

processing on SPIRE results. This additional processing is discussed

below.

Clipping. The last five time slices of all SPIRE results are

clipped or ignored. Due to the predictive nature of the LPC

coefficients computations, the last five time slices can't be calculated
0!

and are returned by SPIRE as zero values. As a result of this, any

feature which is built upon LPC coefficients, such as formants, also has

zero values in the last five time slices. To maintain uniformity, that

is, so that any feature extracted from an given utterance will have the

same meaningful length, the last five time slices are ignored for all

SPIRE results.

Median Filtering. Due to the erratic nature of the formant

tracks, these results are further processed through a median filter.

The median filter filters out unwanted spikes in the formant tracks.

(See Appendix B, for the Lisp function MEDIAN-FILTER).

Frequency Compression. To reduce computation requirements,

wide-band, narrow-band, and LPC spectrum results are compressed from 256

discrete frequency components down to 16. Further, this compression is

done so as to emphasize resolution in the lower frequencies and

de-emphasize resolution of the higher frequencies. Briefly, the lower

132 frequency components (0 to 4,125 Hz) are linearly compressed down

3-5

..

to 12 components, and the upper 124 components (4,125 to 8,000 Hz) are

linearly compressed down to 4 components. It should be noted here that

since the speech waveforms are pre-emphisized by SPIRE before performing

spectrum calculations, frequency components are averaged instead of

added. (See Appendix B, for Lisp function FREQUENCY-COMPRESS-LFE).

Energy Normalization. Energy normalization is performed on

each time slice of wide-band, narrow-band, and LPC spectrum. This is

done so that energy disparities won't effect the word recognition

process. (See Appendix B, for Lisp function ENERGY-NORMALIZE).

Ready-Utterance. A ready-utterance is simply a name used to

represent the set of data which is the result of all the processing done

on a given utterance. Once computed, a ready-utterances is stored to

disk so that it may be used over and over with out having to re-compute

all its features. A ready-utterance takes the Lisp form of a list of

arrays, where each array corresponds to a processed SPIRE result.

Ready-Template. A ready-template is simply a name used to

represent the processed version of the entire recognition vocabulary.

Each utterance of the recognition vocabulary is processed into

individual ready-utterances and combined into one large list of

ready-utterances. Again, this is so that re-computation is reduced.

Dynamic Time Warping Algorithm(10)

Introduction. Dynamic time warping or dynamic programming is a

method by which speech patterns are nonlinearly time aligned. This time

alignment is necessary due to the nonlinear time variations common in

speech. Dynamic time warping was invented by T. K. Vintsyuk. The

3-6

%% %

algorithm used for this system is one adapted for continuous speech. It

was originally presented by Vintsyuk and later translated by Hermann Ney

(10:263). (See Appendix B, for the Lisp function SCAN-DTW).

Distance Arrays. A distance array is basically a two dimensional

array, M by N, where M is proportional to the length of the template,

and N is proportional to the length of the utterance or test pattern.

(Preliminarily, assume isolated speech.) Both the template and

utterance are represented by a sequence of M and N vectors

respectively. Each vector represents the features of both the template

and the utterance extracted at each moment m and n respectively. Each

value of subscript (m, n) of the distance array then represents the

A

vector distance between the template at moment m and the utterance at

moment n.

Distance arrays are a key element in the word recognition process.

For isolated speech, a measure of utterance-template similarity is taken

by tracing the path from point (0, 0) to point (M, N) of the distance

array that results in the smallest accumulated distance of all the

points in that path.

Figure 3.3 shows a simplified example of a distance array using a

hypothetical feature set consisting of energy in three frequency bands.

For example, at any particular moment, the speech is represented by a

3-dimensional vector representing the energy in each of the three

frequency bands. For isolated speech, the correct word would be

identified by calculating a distance array between the test word and

each word in the recognition vocabulary and then choosing the the

template that results in the lowest accumulated distance. The distance

rule used is Minkowski 1 distance, also known as the taxi distance. For

3-7

(0.2,5) 1 13 7 1
LD

(0.2,5) 1 13 7 1

(0,0,0) 8 10 2 8

n (5,4,0) 11 1 9 13

(0,2.5) 1 13 7 1

-L (0,2,5) 1 13 7 1
E

(0,3,5) (5,5,0) (1,0,1) (0,2,6)

Test Pattern - S I X

Figure 3.3 Hypothetical Distance Array

x (0.2.5) 25 37 19 7
O'p

(0,2,5) 24 26 12 6

C- (2,0,0) 23 13 5 13a,

(5,4,0) 13 3 12 25

(0,2,5) 2 14 21 22

- (0,2,5) 1 14 21 22
E
F-

(0,3,5) (5,5,0) (0,0,1) (0,2,6)

Test Pattern - S I X

Figure 3.4 Hypothetical Accumulated Distance Array

3-8

-0.

example the distance between the vectors <0,2,5> and <5,5,0> would be 5

+ 3 + 5 = 13. In order to find the minimum path through the connected

speech distance array, a new "accumulated distance array" is

constructed, shown in figure 3.4. In this array the value of each point

represents an accumulated distance that is equal to the local distance

of that point plus the minimum of the accumulated distances of all

possible preceding points. Notice the problem for isolated speech is

simplified by the fact the begin and end points are known. Also notice

that certain constraints govern the route of the traced path. The path

must continue forward in time for both the template and the test

pattern. Therefore the path cannot go left or down in direction, and

points may not be skipped or hopped over.

One-Stage Algorithm for Connected Speech. What follows is a brief

summary of the algorithm given by Ney [10], which the reader should

consult for further details. The algorithm is summarized as follows. A

composite distance array of grid points (i,j,k) is computed as shown in

figure 3.6. Individual time slices of the test pattern are referenced

by index j. Individual time slices for each template k are referenced

by index i. In order to find the minimum path through the composite

array, a minimum accumulated distance D(i,j,k) is defined for each grid

point (i,j,k). Each point D(i,j,k) is the minimum sum of local

distances d(i,j,k) along some path to grid point (i,J,k). For any grid

point (i,j,k), D(i,j,k) is found by selecting the predecessor with the

minimum accumulated distance and adding that accumulated distance to the

local distance d(i,j,k). The transition rules consist of

within-template rules and between-template rules. Thus for the

3-9

V V

template interior, j > 1, the recursion rule is,

D(i,j,k) = d(i,j,k) + min[D(i-1,j,k),

D(i-l,j-l,k), DN i,J-l,k)] (I)

At template boundaries with j 1 1, the recursion rule is,

D(i,j,k) d(i,j,k) + min[D(i-1,J(k),k)] (2)

where k 1,...,K. Figure 3.7 depicts within-template and

between-template transition rules for connected speech distance arrays.

By keeping track of where the path crosses template boundaries, the

problem of boundary detection in the test pattern is handled

automatically.

Time Distortion Penalties. Ideally the total accumulated distance

through the distance array should be independent of the slope of the
;.4

path in order to allow all types of time axis distortion. Therefore,

the algorithm applies time distortion penalties using slope dependent

weights. Depending on the three directions, horizontal, diagonal, and

vertical, the local distance is multiplied by the weights (I + a), 1,

and b prior to evaluating the dynamic programming recursion:

D(i,j,k) min [(1 + a) • d(i,J,k) + D(i-l,j,k), *

d(i,j,k) + D(i-1,j-1,k),

b * d(i,J-1,k) + D(i,j-1k)].

(In the actual algorithm, this recursive formula is not actually

3-10

.

implemented recursively but forwardly as the accumulated distance array

is computed.) The number of local distances per input frame is thus 1 +

(a/2) for slope 1/2, 1 for slope 1, and 1 + b for slope 2. Figure 3.5

depicts the time distortion penalties. Weights of a I and b = 1/2 are

typically used

Summary of Steps. A summary of connected speech algorithm is given

as follows.
J

Step 1) Initialize D(1,j,k) = d(1,n,k).
n:1

Step 2)

a) For i = 2,..., N, do steps 2b-2e.
b) For k 1,..., K, do steps 2c-2e.

c) D(i,l,k) = d(i,l,k) + min[D(i-l,j(k),k)].
d) For j = 2,...,j(k), do step 2e.

e) D(i,j,k) = min [(1 + a) e d(i,j,k) + D(i-l,j,k),

d(i,j,k) + D(i-l,j-l,k),

b * d(i,j-l,k) + D(i,j-1,k)].

Step 3) Trace back the path from the grid point at a template
ending frame with the minimum total distance using array
D(i,j,k) of accumulated distances.

The unknown sequence is recovered in step 3) above by tracing back the

decisions taken by the "minimum" operator at each grid point. (10:265)

00

" 0 0 0 0 0 0 0 0 0
O2 0 C~ 0 0

0C7 / oob
T oJ 0 0 o/ ooooo oCo Yo

TIME FRAME I OF
INPUT PATTERN

Figure 3.5 Time Distortion Penalties

3-11

'p

W V31s WW UI VU WVrV VI WnwrUfl WW 7II VJM ' W.1 W WNIr P.W- 4 ' .V'VW

J(1O)

"nine" k1

3(9)
j "eight" k=9

J(8)

"seven" k=8

J(7)

sx " k=7

J(6)

j "five" k=6

1 _ _

J(5)
J "four" k=5

J(4) ---

* .) j"s" k7

(- }.._.. j "three" ii
I I k=4

J(3) I

"two" I k=3

J(2)
k=2one"k=

J(1)

"zero" k=1

I I I I I I

"four" I I I I I I
" "three" "three" "one"t "four" "seven" "nine"
I I I I I I

i N

Test Pattern

Figure 3.6 Hypothetical Distance Array

for Continuous Speech

3-12

LL.

0 _ J(k)
* 0000

0 10
'< '<(a)0 0.

(0000
LLJWL
I.I i i

~N

TIME FRAMES OF INPUT PATTERN

J(k)

U)

0" j 00(b)

J(k') O O
Li 0000

IiN

TIME FRAMES OF INPUT PATTERN

Figure 3.7 (a) Within Template Transition Rules

c(b) Between Template Transition Rules

3-13

C g '' + ; ,- ,-<+; g4:': -,: , ?' ., ,",<v .':-::;-';:. ..':; :' +-+". - . , -

IUW~w~wwwu~UWTW~iIW wwA1NwW' v-w W9 WV I WWW 'WWVWW. WV~V~ UJV VW _VK W1TV ' u WY ' 7r,- . r =7'P,

Storage. In reality, the whole accumulated array need not be

computed and stored at once. To perform the dynamic programming

recursions from a time frame i, only a small portion of the the complete

array D(i,j,k) of accumulated distances is needed. Thus using only one

column of storage, D(j,k), the recursions (1) and (3) are carried out by

proceeding along the time axis of the test pattern and updating the

storage column point by point. Using this method causes the details of

the path to be lost, and backtracking information (boundary crossings)

must be stored along the way. Two 1-dimensional arrays, length N, are

used for this purpose. The words and boundaries are finally found by

tracing back through the 1-dimensional arrays from end point to begin

point, etc., until the beginning of the test pattern is reached. Figure

3.8 depicts the idea of backpointers for individual grid points while

figure 3.9 depicts the traceback procedure. A flow diagram for the

One-Stage Dynamic Time Warping Algorithm for Connected Speech is shown

in figure 3.10. For more details refer to Ney [10) or Appendix B for

the Lisp function SCAN-DTW.

0

3-14.

J(k)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

00
... OVo/ II/ C

-- 0 0 0 0 0 0

-0

Si N

TIME FRAME i OF
INPUT PATTERN

Figure 3.8 Backpointers from three preceding grid
points (i,j,k) to their starting frames

I" BACKPOINTER I"

MINIMUM TEMPLATE 4 3 3 1 4 17

I i N

TIME FRAMES i OF INPUT PATTERN

Figure 3.9 The Backtracking Procedure

0

3-15

£ "0

INITIALIZE ARRAYS OF ACCUMULATED AND BACKPOINTERS.

* LOOP OVER TIME FRAMES OF THE INPUT PATTERN.

LOOP OVER TEMPLATES.

EVALUATE DYNAMIC PROGRAMMING RECURSION ACCORDING
TO BETWEENTEMPLATE RULES.

- UPDATE THE COLUMN ARRAY OF ACCUMULATED DISTANCES.

- UPDATE THE COLUMN ARRAY OF BACKPOINTERS.

LOOP OVER TIME FRAMES OF THE TEMPLATES. I

EVALUATE DYNAMIC PROGRAMMING RECURSION ACCORDING

TO WITHIN-TEMPLATE RULES.

- UPDATE THE COLUMN ARRAY OF ACCUM. DISTANCES

-UPDATE THE COLUMN ARRAY OF BACKPOINTERS.

LOOP CONTROL

* LOOP CONTROL

KEEP TRACK OF THE TEMPLATE WITH MINIMUM ACCUMULATED DISTANCE
AT ITS ENDING FRAME IN A "FROM TEMPLATE" ARRAY

KEEP TRACK OF BACKPOINTERS AT THE ENDING FRAME OF THE

CORRESPONDING TEMPLATE IN A FROM FRAME ARRAY.

LOOP CONTROL

RECOVER THE SEQUENCE OF TEMPLATES:

- START FROM THE THE TEMPLATE WITH THE MINIMUM ACCUMULATED
DISTANCE AT ITS ENDING FRAME.

- BACKTRACK THE SEQUENCE OF TEMPLATES USING THE "FROM FRAME"

AND "FROM TEMPLATE" ARRAYS UP TO THE BEGINNING FRAME OF

THE INPUT PATTERN.

Figure 3.10 Schematic Diagram
Source (3:268).

3-16

%

IV. Results and Discussion

Introduction

The purpose of this chapter is to present the results of an

investigation into the applicability of various feature sets to

connected-speech recognition. The chapter begins by examining features

one by one and observing their distance array contours. Distance

distributions for the distance arrays are given in the form of

histograms. Finally, individual features and combinations of features

are tested at connected-speech recognition using the one-stage dynamic

time warping algorithm for connected speech of chapter three.

The Distance Array Contour

The distance array contour is a useful way of observing a feature

set's applicability to speech recognition. The distance array contour

is made by calculating an array of distances between a single known

template word and a single known utterance. Distances calculated are

Minkowski 1 distances (taxi distance). Then the distance array is

plotted with distances below a certain threshold represented by black,

and distances above the threshold represented by white. The threshold

is determined by trial and error until about half the area is dark and

half is white. This threshold varies for different feature sets.

Figures 4.1 through 4.7 show distance array contours using the template

word "three" and the utterance "4-3-3-1-4-7-9", along with corresponding

distribution histograms.

Wide-Band Spectrum. Figure 4 .1 shows the distance array contour

using Wide-Band Spectrum as a feature set. Notice where the word

"three" appears in the test pattern, there are diagonal dark patterns

4-1

extending from bottom to top of the distance array contour. Those dark

diagonal patterns represent the occurrences of "three" in the test

pattern matching up with the template version of "three". Even though

the original waveforms of the two occurrences of "three" are markedly

different, this feature is able to show agreement with each and the

template.

Narrow-Band Spectrum. Figure 4.2 shows distance array contour

using narrow-band spectrum as a feature set. This contour looks very

similar to the one for wide-band spectrum except that the patterns are

more distinct. There is less "noise" in the narrow-band spectrum

representation.

LPC Coefficients. Figure 4.3 shows the distance array contour

using LPC Coefficients as a feature set. In this feature set, the

distances are calculated from the actual LPC filter coefficients. In

this case the patterns are not clear. Using this feature in this way

performs poorly in terms of showing agreement between the template and

the test pattern.

LPC Spectrum. Figure 4.4 shows the distance array contour using

LPC Spectrum as a feature set. In this feature set, the distance are

calculated from the spectral components derived from the LPC filter

coefficients. In this contour, the two occurrences of the word "three"

appear even more clearly than wide-band and narow-band spectrum.

Formants. Figure 4.5 shows the distance array contour using

Formants as a feature set. This feature set works well during vowels

sounds, but works erratically during fricatives when the formant tracker

loses track. This contour shows that formants can show agreement

between vowel sounds but not fricatives.

4-2

< ,,-4",' 4<' .:-'4-" -4 '4" 4 '-' <: (": -. : ,' "< - C '':- " '."." ..- S

Frication Frequency. Figure 4.6 shows the distance array contour

using Frication Frequency as a feature set. This contour fails to show

any agreement between the template and the input pattern.

Zero Crossing Rate. Figure 4.7 shows the distance array contour

using Zero Crossing Rate as a feature set. This contour also fails to

show any agreement between the template and the input pattern.

Recognition of Connected Speech.-

In order to fully observe the feature sets' applicability to

connected-speech recognition different features and combinations thereof

are tested using the one-stage dynamic time warping algorithm for

connected speech proposed by Ney (10). Appendix C contains sample

results of the recognition system using the various feature sets for

speaker-dependent continuous speech recognition. In these figures, the

template set is displayed vertically on the left and the test pattern

horizontally on the bottom. The composite distance array contour is

shown in the middle. The template word boundaries are marked by

horizontal lines. The vertical lines represent the word boundaries with

the test pattern as computed by the recognition system. Below the test

pattern waveform are the words as recognized by the system.

Speaker-Dependent Results. Feature sets are tested first for

speaker-dependent performance. In this case the template patterns and

the test patterns are made by the same speaker. The features tested

here are wide-band, narrow-band, and LPC spectrum, foruants, and a

combination of formants, LPC spectrum, and frication frequency. Table

4-1 shows results for each of these feature sets.

r,

4-3.

N IJ

Mi owlR mr ..l X w-r ILFIJ I1 Ll Wft.?'- -Jt'' YW'. - -. -. W'W Jww.w-yw.w - . 'ujw

z.

Ps5

CLt

co5

C6 IV

*W . - I
A *. pro

* 5 @is

V, I.~ Ur

JI!,

4CC
14 b2vi

go1 lo: W

4-4-5

N Ue

usel or-

04

It..

- ~--

4M

IV)I
u 1

- I .fa

so .

.. ap

4-6

.110

a4ji

CL,

A GJCL

0 -
--01

& Na

I- A -L- >

4-7

.A0~

m
U.

kv

'3 -
UE
m0kvm

--

0

4-8

7I W l~w' ~ r K PIM 1 tW1M 11 ow vW~ .W17W vu I.U "TV Yt' 1!U I' .,7- ~ '

C>-- -
00

-.
4

lu

0 04 C.

u

4U1

-V-

0

IdI
4-9

9uVYVVTVW vlwii

C Cb)

I-:

Ia)

U CUI ~ .c

4-o IJ

0 'U

4-r

C)

4occ

SO)

4-10

0

Wide-Band Spectrum. The feature set consisting of only

wide-band spectrum performs only fair, correctly recognizing 29 out of

S 38 digits, spoken in five to seven word utterances for the speaker

"RGD".

Narrow-Band Spectrum. This feature set performs about the

same as wide-band spectrum, also correctly recognizing 29 out of 38

digits, spoken in five to seven word utterances for the speaker "RGD".

Formants. The feature set consisting of only the first and

second formant frequencies performed surprisingly well, recognizing 31

out of 38 spoken in five to seven word utterances for the speaker

"ROD". The good performance of this feature, considering how the

formant tracts are lost during fricatives leads to the next feature set,

which is a combination of LPC Spectrum and Formants.

LPC Spectrum. The feature set consisting of only LPC

spectrum performs the best of the three spectrum features, correctly

recognizing 35 out of 38 spoken in five to seven word utterances for the

speaker "ROD".

LPC Spectrum, Formants, Frication Frequency. This feature set

consists of a combination of LPC spectrum and formants. Frication

frequency is used as a "gate" to determine whether vowels or fricatives

are present. Zero crossing rate could also be used as a gate between

vowel and fricative sounds, because a rate between about 300 and 900

usually indicates a vowel sound. However, zero crossing rate goes to

zero during very low energy periods as shown by figure 4.8.

4-11

0IM n10K TJW ~ 71 ~~~~ " W. I

0.5537

0A

0.0000 282828 Zero Crossing Rate 2.0000

0.5537

.5

0.0000 282828 Frication Frequency 2.0000

0.5537

0.0000 -282828 Original Waveform 2.0000

*0. 282828 Wide-Band Spectrum Slice 8000.

Figure 4.8 Frication Frequency vs. Zero Crossing Rate

4-12

Therefore, moments between silence and frication, as the zero crossing

rate rises from 0 above 900, would be mistaken for vowel sounds. Using %

frication frequency as a "gate" enables formant tracts to be used while

substituting LPC spectrum distances when the formant frequencies are not

valid. This feature set performed very well, correctly recognizing all

38 of the digits spoken by "RGD". Even the troublesome "two-eight-two-

eight-two-eight" combination was correctly recognized.

LPC Spectrum
Wide-Band Narrow-Band LPC Formants

Utterance Spectrum Spectrum Formants Spectrum Fric. Freq.
4331479 7.0/7.0 7.0/7.0 7.0/7.0 7.0/7.0 7.0/7.0
282828 0.0/6.0 0.0/6.0 4.0/6.0 5.0/6.0 6.0/6.0
2468 3.0/4.0 3.0/4.0 4.0/4.0 4.0/4.0 4.0/4.0
28318 3.0/5.0 3.0/5.0 2.0/5.0 3.0/5.0 5.0/5.0
012345 6.0/6.0 6.0/6.0 6.0/6.0 6.0/6.0 6.0/6.0
56789 5.0/5.0 5.0/5.0 5.0/5.0 5.0/5.0 5.0/5.0
01379 5.0/5.0 5.0/5.0 4.0/5.0 5.0/5.0 5.0/5.0

Total 29.0/38.0 29.0/38.0 32.0/38.0 35.0/38.0 38.0/38.0
Percent 63% 63% 84% 92% 100%

Table 4.1 Speaker Dependent Feature Results

Speaker-Independent Results. Two feature sets are used to examine

speaker-independent connected speech recognition. LPC spectrum, since

it is so commonly used in practice, is used as a baseline. A possibly

improved feature set, using LPC spectrum, formants, and frication

frequency is also used. Speaker-independent performance is examined by

simply trying the system out using various combinations of template sets

and test patterns, of course each by different speakers. Finally,

multiple speaker template sets are tested.

4-13

The improved feature set of LPC spectrum, frication frequency, and

formants, is implemented differently than for the speaker-dependent

case. Formant frequencies are rather consistent for given vowels sounds

for a given speaker. However, formant frequencies of different speakers

uttering vowels sounds that are perceived as being the same can be quite

different. Figure 4.9 shows a plot of the first formant frequency (Fl)

versus the second formant frequency (F2) for a population of speakers

uttering vowel sounds common to the English language. Those grouped

together were perceived as the same sound. It is clear from figure 4.9

that simple Minkowski 1 distances are insufficient since points from

separate groups can have Minkowsli 1 distances that are smaller than

points from within the same group. Therefore, it is necessary to alter

the way these individual features are combined for the speaker-dependent

case.

First, a distance array is computed using only LPC spectrum. As in

the speaker-dependent case, frication frequency is used to locate valid

formant frequencies. Then, each point in the LPC spectrum distance

array is multiplied by 0.4 and thereby emphasizing "agreement" if, (1)

that point results from a valid vowel sound according to frication

frequency in both the template and the test pattern, and (2) the first

and second formants from both the template and the test pattern fall

within the same group. Figure 4.10 shows the groupings used by the

algorithm for each vowel sound.

4-14

4000-

4000

IIE, E~ E E 1E

250

EE04

aod
(i. E w a

me ::a.

2000 = a -a

L-4.

>150 20 40 60 800 1000100 140
FREUE Y OF F a aN a

. 3 A.

AA A A

U V UWA, V VM' -. a.~.

I,'.

3500- -

beet
2500 _ _-

bit
bet

2000 /t

F2
F2 / bat

(1Hz) 1500 Bird ___but/
lOOO Boot hot- ""

1000 _____ _____ B o
foot
~~bought -

500 _000,_

0
-

200 400 600 800 1000 1200

F1 (Hz)

Figure 4.10 Formants Zones Used by Algorithm

4-16

Single-Speaker Template Sets. Table 4.2 shows results for

various template and speaker combinations. In many cases, the addition

of formant information improved recognition accuracy.

Template Speaker LPC Spectrum Plus Formants
JONES RGD 29.5/38.0 34.5/38.0
JONES SKIP 7.5/18.0 11.5/18.0
RGD SKIP 15.5/18.0 18.0/18.0
RGD JONES 26.0/33.0 31.0/33.0
SKIP RGD 26.5/38.0 28.0/38.0

SKIP JONES 25.0/33.0 31.0/33.0

TOTAL 130.0/178.0 154.0/178.0
PERCENT 73% 87%

Table 4.2 Single Template Speaker Independent Results

Multi-Speaker Template Sets. Table 4.3 shows results for

various multi-speaker template and speaker combinations. Using

multi-speaker templates further improved recognition accuracy.

Template Speaker LPC Spectrum Plus Formants
SKIP & ROD JONES 27.5/33.0 31.0/33.0
JONES & RGD SKIP 12.5/18.0 18.0/18.0
SKIP & JONES RGD 31.5/38.0 35.5/38.0

TOTAL 71.5/89.0 84.5/89.0

PERCENT 80% 95%

Table 4.3 Multi-Template Speaker Independent Results N

4-17

'NV

...- ... -. ,'.-- .,'. ..N -- -N --. - - --.

Overall Results Using LPC Spectrum. Table 4.4 shows the overall

results including both single and multi-templates using only LPC

spectrum as a feature set.

Template (LPC Spectrum)

SKIP JONES JONES
Utterance RGD JONES SKIP RGD SKIP ROD

RGD:
012345 - 5.0/6.0 6.0/6.0 - 6.0/6.0 -
4331479 - 7.0/7.0 5.0/7.0 - 7.0/7.0 -
56789 - 2.5/5.0 1.5/5.0 - 2.5/5.0 -
28318 - 2.0/5.0 3.0/5.0 - 2.0/5.0 -
01379 - 3.0/5.0 5.0/5.0 - 5.0/5.0 -
2468 - 4.0/4.0 3.0/4.0 - 3.0/4.0 -
282828 - 6.0/6.0 3.0/6.0 - 6.0/6.0 -

JONES:
4331479 6.0/7.0 - 7.0/7.0 7.0/7.0 - -
2555276 7.0/7.0 - 4.0/7.0 7.0/7.0 - -
28318 2.5/5.0 - 3.0/5.0 3.0/5.0 - -
2377097 3.5/7.0 - 4.0/7.0 3.5/7.0 - -
8351561 7.0/7.0 - 7.0/7.0 7.0/7.0 -

SKIP:
1234 4.0/4.0 1.0/4.0 - - - 2.0/4.0 ',

1549768203 9.0/10.0 4.0/10.0 - - - 8.0/10.0
2468 2.5/4.0 2.5/4.0 - - - 2.5/4.0

V.

Table 4.4 Overall Results
LPC Spectrum

.%."

4-18

'0

Overall Results Using LPC Spectrum, Formants, and Frication

Frequency. Table 41.5 shows the overall results including both single

and multi-templates using only LPC spectrum, formants, and frication

frequency combined as a feature set.

Template (LPC Spectrum + Formants)

SKIP JONES JONES
Utterance RGD JONES SKIP RGD SKIP HOD

ROD:
0123415 - 6.0/6.0 6.0/6.0 - 6.0/6.0 -

41331l479 - 7.0/7.0 5.5/7.0 - 7.0/7.0 -

56789 - 3.5/5.0 2.5/5.0 - 3.5/5.0 -

28318 - 5.0/5.0 1.0/5.0 - 5.0/5.0 -

01379 - 4-.0/5.0 5.0/5.0 - 5.0/5.0 -

24168 - 3.0/41.0 3.0/41.0 - 3.0/41.0 -

282828 - 6.0/6.0 5.0/6.0 - 6.0/6.0 -

JONES:
413314179 7.0/7.0 - 7.0/7.0 7.0/7.0 -

02555276 7.0/7.0 - 7.0/7.0 7.0/7.0 -

28318 11.5/5.0 - 11.0/5.0 5.0/5.0 -

2377097 5.5/7.0 - 6.0/7.0 6.0/7.0 -

8351561 7.0/7.0 - 7.0/7.0 7.0/7.0 -

* SKIP:
12311 4.0/41.0 2.0/41.0 - 4 1.0/41.0
15419768203 10.0/10.0 7.0/10.0 --- 10.0/10.0
21168 41.0/41.0 2-5/41.0 - 4 1.0/41.0

C

Table 11.5 Overall Pesults
LPC Spectrum, Formants,
Frication Frequency

41-19

%

V. Conclusions and Recommendations

Introduction

The purpose of this chapter is to discuss conclusions that may be

drawn based on the performance of this system as well as to give

recommendations for further research in the area of speaker-independent

continuous-speech recognition.

Conclusions.

This thesis is successful in producing a rather robust system for

continuous-speech recognition. It is shown here that Ney's algorithm

for connected speech works quite well. The idea of using template sets

made up of multiple speech features is also shown to be advantageous.

Results reveal that using formant information can significantly improve

recognition accuracy, especially in the area of speaker-independent

applications.

Recommendations.

Environmental Stress. As described in chapter 3, this system was

tested with speech patterns virtually free of background noise. It

would be interesting to study its performance under such conditions as

background noise ie., cockpit noise. The Armstrong Aerospace Medical

Research Laboratory at Wright-Patterson AFB has excellent facilities for

recording speech under noise conditions.

Tailored Template Sets. From the results of this system it still

isn't clear whether completely redundant template sets are necessary.

They seem to be useful handling different pronunciations of certain

words such as "eight" with or without the "t" sound at the end.

5-1

Unfortunately, redundant template sets pay a high price in terms of

computational intensity. A better approach may be to store a few

carefully selected template sets with only certain words redundant and

let the user select the best one for him. This would greatly simplify

the training process.

Additional Features. Although the system was able to discriminate

between different vowel sounds well, it was not able to discriminate

between similar fricative sounds. It would have trouble with something

like "carp" versus "tarp". A logical extension would be to add ways to

discriminate such sounds.

Syntactic Rules. Even humans have trouble identifying spoken

01
utterances without the aid of syntax. Ney (10) describes methods for

adapting the algorithm to include such constraints. Also, currently,

the algorithm will apply every bit of the test pattern to some

template. It has no way of handling words that are not part of the

vocabulary. Syntactic constraints described by Ney could possibly be

adapted to handle words not in the vocabulary.

Dedicated Hardware. Although Ney's algorithm is very efficient,

dedicated hardware would be preferred for its interactive use. Hardware

to perform real time LPC analysis is commonly available. The DoD

standard is known as LPC-I0. The next step would be to implement the

dynamic time warping algorithm in hardware as well. Such a system then

could conceivably by operated in real time.

Summary

In summary, this thesis shows that using additional speech features

(formants) can be successfully applied to the problem of

5-2

,2, ¢,' 22 jj :" " 2 "'.,2.°¢ 2'.' f '.'' .''.''2..- 2."g" "•
'°. - ' .

. -"" ," " -" " " '2'
"

" .

speaker-independent continuous speech recognition. Presumably, further %

improvements could be made by carefully utilizing other features of

speech. Consequently, further research in this area could help to

ultimately solve the problem of speech recognition.

'a

"

5-3
'

Appendix A: Spire Default Values

A1

Ai

A-1

11 WNWWW W WWW WV ~WWWWWV ' t w r VWVW W,,W - p KK Tfl Xl J' -

-- mode: lisp; package: spire; base: 10 -

* , .SPIRE -- Speech and Phonetics Interactive Research Environment

ATTRIBUTE-DEFAULTS

*..(c) Copyright 1983, Massachusetts Institute of Technology, All Rights Reserved

(define-attribute "Zero Crossing Rat*" zero-crossing-rate-flavor
(sampled-attribute-window) nil

* waveform-att ribute-name "Original Waveform"
analysis-rate 200.
.analysis-window-size .020
.noise-threahold 40.)

(define-attribute "Vora Zero Crossing Rate" zero-crossing-rate-flavor
nil nil

waveform-attribute-name "Original Waveform"
analysis-rate 400.
.analysis-window-size .020
.noise-threshold 40.)

(define-attribute "LPC Predictor Coefficients" lpc-flavor (indexed-attribute-window)
((LPC Gain Term" (:gain? sampled-attribute-window))

* waveform-attribute-name "Original Waveform"
.filter-spec (:bandwidth 78.)

* :analysis-rate 200.)

(define-attribute "LPc Spectrum" lpc-spectral-flavor
nil nil

:predictor-attribute-name "LPC Predictor Coefficients"
:number-of-pointa 256.)

(define-attribute "LPC Spectrum Slice" spectrum-slice-flavor
(spectral-slice-attribute-window) nil

0 :spectrum-name "LPC Spectrum"
cursor-name :cursor-time)

(deine-attribute "LPC Spectrum Slice (marker)" spectrum-slice-flavor
(spectral-slice-attribute-window) nil

.spectrum-name "LPC Spectrum"

.cursor-name :marker-time)

* (define-attribute "Energy -- 0 Hz to 5000 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil

waveform-attribute-name "Original Waveform"
analysis-rate 200. ; 383.
filter-type :hamming
.filter-spec (:bandwidth 78.0)
:number-of-points 256.
preemphasis? :default

C :freq-lo-bound 0

.freq-hi-bound 5000.)I
(define-attribute "Vera Total Energy" energy-from-waveform-flavor

nil nil
.waveform-attribute-name "Original Waveform'
analysis-rat. 400.
filter-type :hamming

* f-lter-spec (:bandwidth 78.0)
40 :number-of-pointa 128.

.preamphasis? :default

.freq-lo-bound nil
:freq-hi-bound nil)

(define-attribute "Total Energy" energy-from-waveform-flavor
(saapled-attribute-window) nil

w:aveform-attribute-name "Original Waveform"
C :analyais-rato 200.

A -2

%

Pr7sr'r '7rrf.' a, SUM 1CFv.x r.' WU %-WV -

.filter-type :hamming

.filter-apec (:bandwidth 78.0)

.number-ot-pointa 128.

.preemphosis? :default
* :f req-ic-bound nil

.f req-hi-bound nil)

define-attribute "Energy -- 120 Hz to 440 Hz", energy-from-waveform-flavor
(sampled-attribute-window) nil

* waveform-attribute-name "Original Waveform"
analysis-rate 200.
.filter-type :hamming
filter-spec (:bandwidth 78.0)

* :number-of-pointa 256.
.preeaphasis? :default
.freq-lo-bound 120.
.freq-hi-bound 440.)

(define-attribute "Vera Energy -- 125 Ht to 750 Hz" energy-from-waveform-flavor
nil nil

waveform-atribute-name "Original Waveform"
*:a nal1ysis-rato 400.

.filter-type :hamming
:filter-spec (:bandwidth 78.0)
.number-of-points 128.
preemphasis? :default
.freq-lo-bound 125.
:freq-hi-bound 750.)

* (define-attribute "Energy -- 125 Hz to 750 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil

:waveform-attribute-name "Original Waveform"
analysis-rate 200.
.filter-type :hamming
.filter-spec (:bandwidth 78.0)
.number-of-points 128.
:preemphasis? :default
:freq-lo-bound 125.

* :f req-hi-bound 750.)

(define-attribute "Energy -- 640 HL to 2800 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil

waveform-attribute-name "Original Waveform"
analysis-rate 200.
:filter-type :hamming
.filter-spec (:bandwidth 78.0)

* :number-of-points 256.
preemphasis? :default

:freq-lo-bound 640.
:freq-hi-bound 2800.)

(define-attribute "Energy -- 3400 Hz to 5000 Hz" energy-from-waveform-flavor
(sampled-attribute-window) nil

waveform-attribute-name "Original Waveform"
:analysis-rate 200.

C :filter-type :hamming
.filter-spec (:bandwidth 78.0)
:numbr-of-pointa 256.
preemphasis? :default
.freq-lo-bound 3400.
.freq-hi-bound 5000.)

(define-attribute "Frication Frequency" energy-percentile-flavor
* (sampled-attribute-window) nil

spectral-attribute-name "LPC Spectrum"
:energy-fraction .25)

(define-attribute "LPC Center of Gravity" energy-mean-flavor
(sampled-attribute-window) nil

.apectral-attribute-name "LPC Spectrum")

e (define-attribute "Formants" spectral-peaks-flavor
(indexed-attribute-window) nil

A -3 5

ILI

0 1WI _I-Wv eV Tv

.apectral-attribute-name "LPC Spectrum"
(.numbvr-of-peaka 4)

(define-attribute "Narrow-Band Spectrum" fft-spectral-tlavor
nil nil

* waveform-attribute-name "Original Waveform"
analysis-rate 200.
filter-type :hamming
filter-spec (:bandwidth 78.0)
.number-of-points 256.)

(define-attribute "Narrow-Band Spectrum Slice" spectrum-slice-flavor
* (spectral-slice-attribute-window) nil

* spectrum-name "Narrow-Band Spectrum"
.cursor-nAme :cursor-time)

(define-attribute "Narrow-Band Spectrum Slice (marker)' spectrum-slice-flavor
(spectral-slice-attribute-window) nil

spect rum-name "Narrow-Band Spectrum"
:cursor-name :marker-time)

(define-attribute "Narrow-Band Spectral Slice" fft-spectral-slice-flavor
(spectral-slice-attribute-window) nil

.waveform-attribute-name "Original Waveform"
:cursor-nam& :cursor-time
.filter-type :hamming
.filter-spec (:bandwidth 78.0)
.number-of-points 256.)

0 (define-attribute "Narrow-Band Spectral Slice (marker)" fft-spectral-slice-flavor
(spectral-slice-attribute-window) nil

waveform-attribute-name "Original Waveform"
.cursor-name :marker-time
.filter-type :hamming
.filter-spec (:bandwidth 78.0)
.number-of-points 256.)

* (tdefine-attribute "Wvide-Band Spectrum" fft-spectral-flavor
nil nil

:waveform-attribute-name "Original Waveform"
:analysis-rate 200.
:filter-type :hamming
:filter-spec (:bandwidth 300.0)
:number-of-points 256.)

* (define-attribute "Wide-Band Spectrum Slice" spectrum-slice-flavor
(spectral-slice-attribute-window(nil

spectrum-name "Wide-Band Spectrum"
:cursor-name :curaor-time)

(define-attribute "Wide-Band Spectrum Slice (marker)" spectrum-slice-flavor
(spectral-alice-attribute-window) nil

spectrum-name "Wide-Band Spectrum"

:cursor-name :marker-time)

(define-attribute "Wide-Band Spectral Slice" fft-spectral-slice-flavor
(apectral-slice-attribute-window) nil

:waveform-attribute-name "Original Waveform"
:cursor-name :cursor-time
:filter-type :hammning
:filter-spec (:bandwidth 300.0)
:number-of-points 256.)

(define-attribute "Wide-Band Spectral Slice (marker)" fft-spectral-slice-flavor
(spectral-alice-attribute-window) nilI

waveform-attribute-name "Original Waveform"
cursor-name :marker-time
:filter-type :hamming
:filter-spec (:bandwidth 300.0)
:number-of-points 256.)

C ~(define-attribute "Narrow-Band Spect rogram" at retched-fft-spect rogram-f lavo r

A-4

%*

(spectrogram-attribute-window) nil

waveform-attribute-name "Original Waveform"%
aspectrogram-sis* 320.
:analyaia-rat* 383.

* filter-type :hamming
filter-opec (tbandwidth 76.0)
:number-of-points 256.
white-value -96. ;-36
:black-value -80.) ;2

(dfie-ttibte"Wide-Band Spectrogram" stretched-fft-spectrogram-flavor10
(apectrogram-attribute-window) nil

:waveform-attribute-name "Original Waveform"
:apectrografl-size 320.
analysis-rate 383.
filter-type :hamming
filter-spec (:bandwidth 300.0)
:number-of-points 256.
white-value -96. ;-36
:black-value -S0.) ;-20

(define-attribute "Versatec Spectrogram' stretched-fft-spectrogram-flavor
(spectrogram-attribute-window) nil

waveform-attribute-name "Original Waveform"
:aptctrogram-uize 840.%
analysis-rate 1000.
filter-type :hamming
filter-spec (:bandwidth 400.0)
:number-of-points 128. 1

white-value -100. ;-36
black-value -75.) :-20

(define-attribute "Now Narrow-Band Spectrogram" stretched-fft-spectrogram-flavor
(apectrogram-attribute-window) nil

waveform-attribute-name "Original Waveform"
spectrogram-size 840. :try 840
analysis-rate 1000. ;try 1000
:filter-type :hamming
filter-spec (:bandwidth 76.0) ;try 401D
number-of-points 128.
white-value -100. ;-36 try -102
:black-value -75.)

define-attribute "Phonetic Transcription" hand-transcription-flavor d

transcription-attribute-window)
(("New Phonetic Transcription"

(:values) token-attribute-window :x-scale 383.0
string-font fonts:ipal2))

untranacribed-string "C'ntr@nskrYbd)"P
:string-font fontsipal2)

(define-attribute "Orthographic Transcription" hand-t ranscription-flavor
(transcription-attribute-window)
(("New Orthographic Transcription"

(:values) token-attribute-window :x-scale 383.0))
16 :token-separator #\space

untranscribed-string "<untranscribed>"
string-font fonts:hll2b)

(define-attribute "First Torment" formant-flavor
(sampled-attribute-window) nil

index 1
indexed-attribute-name "Formants")

(define-attribute "Second rormant" formant-flavor
(sampled-attribute-window) nil

index 2
:indexed-attribute-name "Pormants")

(define-attribute "Third rormant" formant-flavor A
(sampled-attribute-window) nil

:index 3 A-

A-5

- ~ .. - -- - run 45W1"EI w 4. fl%'% "tx WL rw -kx I% -. 01 -A. PL r% _j Y7.1W' RIPMJU- Iv Y-VW.

indexed-attribute-name "Formanta')

(define-attribute "Fourth Ferment" formant-flavor
(sampled-attribute-window) nil

:nldexd-attribute-name "Formanta")

#I
(define-attribute "Fundamental Frequency" pitch-flavor

nil laampled-attribute-window)
:voicing-attribut*-name "Voicing")

(define-attribute "Voicing" voicing-flavor
* nil (sampled-attribute-window)

:analysis-rate 100.
waveform-attribute-name "Original Waveform")

C

C,

Appendix B: Program Listing

0

J.

0

'I

5'.

Sb

0

.1~
*5

6;

'S

0

'S

0

9

B-i

- * *5*
.. &.~ ~ S Sb

-- Mode: LISP; Base: 10; Syntax: Zetalisp -*-

* This file contains the necessary function to compute the dynamic
time warp array, given feature arrays from the template and the utterance.

;;"TIMEWARP"

This function receives a pair of arrays, determines there dimensionality
and calls TIMEWARP-lD or TIMEWARP-2d accordingly

(defun timewarp (arrayM arrayN)
(cond ((I 1 (array-#-dims arrayM)) (timewarp-ld arrayM arrayN))

(C 2 (array-#-dims arrayM)) (timewarp-2d arrayM arryyN))))

"TIMEWARP-2D"

... This function will compute the Dynamic Time Warp array given the arrays
* arrayM and arrayN. ArrayM is a x-by-M array, and arrayN is a x-by-N array.
* x must be the same for both arrayM and arrayN. This function is meant for
* those spire art's that return 2-D arrays such as the "Wide-Band Spectrum" and
* and "Formants". The distance measure used is Minkowski I or 2:

distance - ((a0-b0j]2 + (al-bl)V2 + ... (aM-bN)'2]V(l/2) or

* . distance - abs(a0-b0J + abs[al-bl) ...

; Input: arrayM, arrayN
,., Output: A M-by-N DTW array

(defun timewarp-2d (arrayM arrayN)
(let* ((M- (array-dimension-n 2 arrayM) 6))

(N (- (array-dimension-n 2 arrayN) 6))
(length (cond((= (array-dimension-n 1 arrayM) 5)

2)
((- (array-dimension-n 1 arrayM) 16)
16)

*9 ((- (array-dimension-n 1 arrayM) 19)
19)
(t
(princ "Timewarp ERROR. Hit Control-Abort")
(do ((x 0))

((- x 1))))
(start (cond((- (array-dimension-n 1 arrayM) 5)

1)
((- (array-dimension-n 1 arrayM) 16)C 0)

((- (array-dimension-n 1 array)) 19)
0)))

(distance 0)
(result-array (make-array (list M N))))

(loop for n-index from 0 below N do
(loop for a-index from 0 below M do

(setq Distance 0.0)
(loop for v-index from start below (+ start length) do

(setq distance (+ distance (abs (- (sarf arrayM v-index i-index)
(arof arrayN v-index n-index)))))

(sset distance result-array m-index n-index)))
result-array))

C;;: "TIMEWARP-ID"

B-2

e2I

4**j<C .*. /4

* This function computes a Dynamic Time Warp array given vectorM and vectorN. In
this case the distance - abala-bi for each a and b in vectori and vectorN.

Input: vectorN, vectorN
Output: a N-by-N DTW array

(defun tirnevarp-ld (vectorM veetorN)
le~t* ((M C (array-dimension-n 1 vectorM) 5))

(N (-(array-dimension-n 1 vectorN) 5))
(return-array (make-array (list N N)

(do* ((n-index 0 (1+ n-index)))
((- n-index N)) '

(do* (Cm-index 0 (1+ in-index)))
((. in-index N))

(aset (abs (- Caret vectorN rn-index) Caref vectorN n-index)))
return-array an-index n-index)))

return-array)

"PRINT-DTW"

This function will show the Dynamic Time Warp array. This function is
really intended for testing/debugging purposes.
This function will print a section of a 2-D array beginning at (a,b).

(defun print-dtw (array a b)
(clearecreen)
(do M((+ a 40) Cl- i))

*(do (Cj b (1+ j)
(.j (+ b 14))

(princ (format nil "-2,1,8,' S (aref array i j)
(terpri?)

"DRAWBORDER"

This function will draw a border on the selected window

(defun drawborder Cxl yl x2 y2)
(send tv:selected-window :draw-line xl yl x2 yl)
(send tv:aelected-window :draw-line xl yl xl y2)
Csend tv:selected-window :draw-line xl y2 x2 y2)

(send tv:selected-window :draw-line x2 y2 x2 yl))

"PLOT-COMPOSITE-DTW"

(defun plot-composite-dtw (array-list threshold &OPTIONAL search-list teinpath uttpath title)
(let* ((radius 0)

(total-N (apply 1+ (mapcar 'array-dimension-n (circular-list 1) array-list)))
(total-N (array-dimension-n 2 (car array-list)))

IL (xl 400)
Cyl 45)
(y2 (+ yl (min 595 total-N)))
(yrange (- y2 yl))
(x2 (fix (+ xl C* 2 C* total-N (// (float yrange) total-N))))))
(xranqe C- x2 xlM)

clearecreen)
(drawborder xl yl x2 y2)

*(send tv:selected-window :draw-string title x2 (-yl 4) 0)-yl 4) nil fonts:trl2b(
(do* ((a-list array-list (cdr a-list))

(k 0 11+ W)
(array (car a-list) (car a-list))
(bottom y2 (- bottom current-yrange))
(v-word (car *vocabulary*) (cond ((not (null s-list))

(nth k *vocabulary*))
Ct nil)))

(current-N (array.-dimension-n 1 array) (cond ((not (null a-list)
(array-dimension-n 1 array))

B -3

SqN *p r#~ .P -r t

(t 0)
(current-N (array-dimension-n 2 array) (cond ((not (null a-list))P

(array-dimension-n 2 array))
(t O0))

(current-yrange (0 yrange * (float current-H) total-H))
(* yrange o (float current-H) total-H))))

((null a-list))
(send tv:selected-window :draw-line (- xl 70) (round bottom) (+ 10 x2) (round bottom))
(diaplay-waveform-rot (- xl 50) (round (- bottom current-yrange))

(1- xl) (round bottom)
(string-append tempath v-word ".utt"))

(send tv:selected-window :draw-string
(nth k *vo-list*)

* (- xl 60)
(+ (round (-bottom (/current-yrange 2)) 6)
0
(+ (round (-bottom)/current-yrsnge 2))) 6)
nil
fonts ~bigtnt)

(do ((in-index 0 (1+ in-index)))
((- in-index current-H)

* (do ((n-index 0 (1+ n-index)))
((- n-index current-N))

(setq radius (cond ((U (aref array in-index n-index) threshold) 0)
(t -1M)

(cond ((- radius -1) nil)
(t (send tv:selected-window :draw-point

(round (+ xl (* n-index (// (float xrange) current-N))))
(round (- bottom)* r-index (// current-yrange current-H))))

* (do ()n-index 0 (+ n-index 10))
((n-index total-N))

(send tv:selected-window :draw-line
(round (+ xl1 n-index)/(float xrange) total-N)
(- y2 4)
(round (+ xl n-index (1(float xrange) total-N)

(4 5 y2
M)

(do :((r-index 0 (+ rn-index 10))
* () m-index total-H)

(send tv:selected-window :draw-line
(- xl 5)
(round (- y2 (* rn-index /1(float yrange) total-H))))
(+ xl 5)
(round (- y2 (* rn-index (/(float yrange) total-H))))))

(cond ((not search-list))
(t (loop for word in search-list do

(send tv:selcted-window :draw-line
(round (+ xl (nth 1 word) //(float xrangt) tcotal-N))))
yl
(round (+ xl U(nth 1 word))/(float xrang*) total-N))))
(+ y2 70))

(send tv~selected-window :draw-string
(nth (car word) *vo-list*)

)(round (+ xl
('(/(+ (nth 1 word) (nth 2 word)) 2)

((1/(float xrang*) total-N)))) 10)
(+ 70 y2)

(round (+ xl
(4)/ + (nth 1 word) (nth 2 word)) 2)
(I(float xrang*) total-N)) 10) (

(+ 70 y2)
nil
fonts:bigfnt))

5 (send tv~aelected-window :draw-line
x2 y2 x2)+ y2 70M)))

(cond ((not uttpath))
(t (display-waveform xl (1+ y2) x2)+ y2 50) uttpath)))))

"PL0'r-DTW"

(defun plot-dtw (array pathl path? threshold

B-~4

(~V

(let* ((radius 0)
(M (array-dimension-n 1 array))
IN (array-dimension-n 2 array))
(xl 200)
(x2 900)

* (squish-factor (// I- x2 xl) (float NM)
(yl 150)
(y2 (fix 1+ 0' M squish-factor) ylH)
(note (prompt-and-read :string "Distance Array Name? "M)

(clearscreen)
(display-waveform xl (1+ y2) x2 (4 y2 100) path21
(display-waveform-rot I- xl 100) yl (1- xl) y2 pathi)
(distribution xl I+ y2 120) x2 I+ y2 320) (list array) 50)

*(drawborder xl yl x2y2
(do ((u-index 0 (1+ u-index)))

((- an-index M))
(do ((n-index 0 (1+ n-index)))

(I- n-index N))
(setq radius (cend ()(aref array rn-index n-index) threshold) 2)

(aref array rn-index n-index) 1 * 1.5 threshold)) 1)
)H(aref array rn-index n-index) 1* 1.75 threshold)) 0)

It -1M)
0 (cond ((- radius -1) nil)

It (Send tv:selectod-window :draw-filled-in-circle
(fix I+ xl (I n-index I// (- x2 xl) (float JIM)))
(fix I- y2 I* rn-index I// I- y2 yl) (float M)))))
radius))

(send tv:selected-window :draw-string note x2 I- yl 5) xl I- yl 5) nil fonts:trl2b)
(send tv:selocted-window :draw-string

" Test Pattern"
*)1- x2 10))+ y2 25) 0 1+ y2 25) nil fonts:trl2b)

(send tv:selected-window :draw-string
"Template"
Ixl 15) 1- yl 5) 0 1- yl 5) nil fonts:trl2b)

(do ((n-index 0 1+ n-index 10))
(M n-index N))

(send tv:selected-window :draw-line
(fix I+ xl 0' n-index I// I- x2 xl) (float N))

* I- y2 5)

(fix I+ xl 0' n-index I// I- x2 xl) (float N)))))
I+ y2 6)

(do ((u-index 0 1+ u-index 10M)
M> a-index M))

(send tv:selected-window :draw-line
I- xl 6)
(fix I- y2 0 rn-index I//I- y2 yl) (float H))

* (I+ xl 5)

(fix I- y2 I* u-index I// I- y2 yl) (float M)))))))))

.. "COMBINE-DTW"

* This function will weight and combine two or more dtw-airays.

C.. Input: dtwlist -) a list of dtw's to combine
* . woightlist -> list of weight factors to apply to dtwlist

.. Output: new dtw-array

(defun coukbine-dtw)dtwlist weightlist)
(let'* (i-dimension)array-dimension-n 1 (car dtwlist))

* (n-dimension)array-dimension-n 2 (car dtwlist)))
(return-dtw (make-array (list u-dimension n-dimension))
(SUm 0))

(do ((IN 0 (1. in)))
((- a i-dimension))

(do (In 0 (1+ n)))
((- n n-dimension))

(setq SUN 0.0)
(do' ((dtw-indox dtwlist)cdr dtw-index))

C (dtw-array (car dtw-index) (car dtw-index))

B -5

'. -F 4, I

(weight-index weightlit (cdr weight-index))
(weight-value (car weight-index) (car weight-index)))

((null dtw-index))
(aetq sum (+ sum (* weight-index Caret dtw-array m n)))

(auetwsum return-dtw m n)))reund

MPAKE-DTW"

.. This routine computes a Dynamic Time Warp Array give the pathnamos of
*.two utterances and a Spire attribute name (ex. "Formants").0 The order in which the pathnames are passed is significant, is.,
*,when plotted the firat pathname will run along the vertical axis, and

the second pathname will run across the horizontal axis. When matching
*.individual word utterances against continous speech utterances, it is best
*.to pass the individual word pathname first.

Input: pathnamel, pathname?, spire attribute
*,Example Call: (make-dtw ">dawsonthree)" "-dawsonphone-no" "Wide-Band Spectrum')

Returns: a two dimensional array. The number of columns (width) is
*.proportional to the length of pathname?. The number of rows (height) is
*,proprtional to the length of pathnamel.

(defun make-dtw (pathl path? att)
(let* ((a (cond ((equal att "Wide-Band Spectrum") (column-normalize-array

Cf requency-compress-lfe
(compute-att pathl att) ((C

((equal att "LPC Spectrum") (column-normalize-array
(frequency-compress-Ife

(compute-att pathl att))))
((equal att "Narrow-Band Spectrum") (column-normalize-array

(frequency-compress-lfe
Ccompute-att pathl att))))

((equal att "Formants") (regionize
(median-filter

(compute-att pathi atto))
((equal att "zero crossing rate") (vector-energy-normalize

Ccompute-att pathl att)))
(t
(compute-att pathl attM)

(b (cond ((equal att "Wide-Band Spectrum') (column-normalize-array
Cf requency-compress-lfe

Ccompute-att path? att)) C
((equal att "LPC Spectrum") (column-normalize-array

C frequency-compress-lfe
(comput*-att path? att)))(

C((equal att "Narrow-Band Spectrum") (column-normalize-array
(frequency-compress-lfe

((equal att "Formants") (regionize cmueat ah t))

(median-filter
(compute-att path? att) C C

((equal att "zero crossing rate") (vector-energy-normalize
)compute-att path? att C

Ccomput*-att path? atto))
Creturn-array Ctimewarp a b))

return-array)

"NEW-READY-DTW-LPC-FORMANTS"

(defun new-ready-dtw-lpc-formants (template utterance)
(let' ((dtw-list (list (timowarp (car template) (car utterance))

Ctimowarp (cadr template))cadr utterance))))
Cm-dimension (array-dimension-n 1 (car dtw-list) C
(n-dimension (array-dimension-n 2 (car dtw-list)C)
Creturn-dtw (make-array (array-dimensions (car dtw-list() :type 'art-16b)))

(loop for a from 0 below a-dimension do
C (loop for n from 0 below n-dimension do

B-6

T~i'JV~JVV~ W ;V W_11 - V 31-w- Wr.! T,-" 1. T 7-7

(lot ((trfrt (aref (caddr template) l))
(frfru (aref (caddr utterance) n))
(t-region (aref (cadr template) in))

(u-region (aref (cadr utterance) n))

(distance (1000 (car *weight-ljat*) (aref (car dtw-list) m n))
Icond ((or)frfrt 1500)

Ifrfru 1500)
(t-region 0)

(not (- t-region u-region)))
(aset (fix distance) return-dtw m n))

It (aset (fix (* 0.4 distance)) return-dtw m n)l)))))
return-dtw) I

"REALDY-DTW-LPC-FORMANTS-FF"

(defun ready-dtw-lpc-formants-ff (template utterance)
(lot* ((dtw-list (list (timewarp (car template) (car utterance))

(timewarp)cadr template) (cadr utterance))))
(r-dimension (array-dimension-n 1 (car dtw-list)))
(n-dimension (array-dimension-n 2 (car dtw-list)))
(return-dtw (make-array (array-dimensions (car dtw-list)) :type 'art-16b))
(sum 0.0))

(do ((am0 (1+ ml)))
((- m u-dimension))

(do ((n 0 (1+ no)
((- n n-dimension))

(setq sum 0.0)
(cond((and

() (aref (caddr template) m'i 1700)
(< (aref (caddr utterance) n) 1700)
(<)aref (cadr template) 1 ml 750)
)< aref (cadr utterance) 1 n) 750)
1(aref)cadr template) 2 m) 2200)
U(aref lcadr utterance) 2 n) 2200))

)setq sum)1000)cadr *wight..list*))aref)cadr dtw-list) m n)))
(t
f setq sum 11000 (car *weight-list*) (aref (car dtw-list) m n))

Icond ((< (fix sum) 65535)
(ast)fix sum) return-dtw m n))
(t (princ "Overflow"))

return-dtw) I

"READY- DTW"

This function computes a combined dtw from a couple lists of feature arrays

and return that combined dtw array. It receives as input two lists of feature
*... arrays. It then calls TIMEWARP to do the Dynamic Time Warps and then calls

COMBINE-DTW to average together the individual dtw's into one dtw. Remember
* the feature arrays have already been computed by PROCESS-UTTERANCE.

(defun ready-dtw (template utterance)
(let*))dtw-list)mapcar Itimewarp template utterance))

((i-dimension (array-dimension-n 1 (car dtw-list)))
(n-dimension (array-dimension-n 2 (car dtw-listl)))
)return-dtw (make-array (array-dimensions (car dtw-list)) :type 'art-16b) I
(sum 0.0,)

(do ((in 0 (1+ in)))

((- m r-dimension))
(do (In 0 (1+ no)

((- n n-dimension))
(setq sum 0.0)
(loop for dtw in dtw-list

for weight in *weight-list* do
(aetq sum (+ sum (* 1000 weight (aref dtw m n)))))

(cond (1< (fix sum) 65535)
(aset (fix sum) return-dtw m n)o

It (princ "Overflow")))))
return-dtv))

B -7

-~~~~~~~~~~~~~~~~~~ rwf ~ -. rr VV V ~ ."~j f-u'~~~ i"- VV"~--.~~~

"COMtPUTE-COMPOSITE-DTW"%

This function computes a composite dtw array between a Ready-Template
and a Ready-Utterance. In other words dtw's (Dynamic Time Warps) are performed
between the utterance and each word of the vocabulary. The separate dtw arrays

* put in a list to form one composite array.

*,Input: None, *t-set* and *ready..utterance* are used.
Output: composite dtw

(defun computo-composite-dtw H)
(lot ((result-list nil))

(princ "Count-Down: ")
(loop for template in *t-set*

for count from (length *t-set*) downto 0 do
tprinc (format nil "-D-" count))
(setq result-list (append result-list

(list (new-ready-dtw-lpc-formants
template *ready-.utterance*)))) -

(terpri)
result-list))

"old" --> (mapcar 'ready-dtw *t-set* (circular-list *ready-utterance*)()

"DISTRIBUTION"

*,This function take a composite dtw array and computes the distribution
*,of its values. The second argument specifies the number of bars to

be drawn.

(defun distribution (xl yl x2 y2 cdtw res)
(let* ((mean 0.0)

(min +l.)
(max -1e)al
(sum 0.0)
(sum-sq 0.0)
ivani 0.0)
(num 0)
(pdf (make-array res I:type art-16b ':initial-valuo 0))
(width (fix II(- x2 xl) res)(
(space (fix (Iwidth 3))
(bar (- width space))
(pdf-max -he)
(title (prompt-and-read :string "Title? "M

(drawborder xl yl x2 y2)
(send tv:selected-window :draw-string title x2 (- yl 5) 0 (- yl 5) nil fonts:trl2b)
(loop for dtw in cdtw do

(loop for i (fixnum) from 0 below (array-dimension-n 1 dtw) do
(loop for j (fixnum) from 0 below (array-dimension-n 2 dtw) do

(cond ((((aref dtw i j) min)
(setq min (aref dtw i j)))
M((aref dtw i j) max)
(setq max (aref dtw i j))))

Isetq sum (+ sum (aref dtw i j)))
(aetq sum-sq (+ sum-sq (sqr (aref dtw i j))))
(setq num (1+ num))

(sotq mean (/sum num))
(setq vani (/ ((tum sum-sq) (sqr sum)) (*t num (I- num))))
(loop for dtw in cdtw do

(loop for i (f.-xnum) from 0 below (array-dimension-n 1 dtw) do
(loop for j (fixnum) from 0 below (array-dimension-n 2 dtw) do

(uetq num (fix (f ~ (aref dtw i j) min)
(/(I- (array-dimension-n 1 pdf)) (float (-max mi)))))

least (1+ (aref pdf num)) pdf num)

(loop for £ from 0 below (array-dimension-n 1 pdf) do
(cond (() (aref pdf i) pdf-max)

(setq pdf-max (aref pdf i))

(loop for i from 0 below (array-dimension-n 1 pdf) do I"

B-8

%%-
A'ft%

(send tv:Belected-window :draw-rectangle .i

bar
(frix (* (aref pdf i) (// (float (- y2 yl 20)) pdf-max)
(+ 1 xl space (* i width))
(fix (- y2 (* (aref pdf i) (// (float (- y2 yl 20)) pdf-max))))

(send tv:selected-window :draw-string
(format nil "Mean -D" mean) xl (+ yl 15) x2 i+ yl 15) nil fonts:trl2b(

(send tv:selocted-window :draw-atring
(format nil "Min - -D" min) xl (+ yl 30) x2 (+ yl 30) nil fontsztrl~b)

(send tv:selected-window :draw-string
(format nil "Max - -D" max) xl (+ yl 45) x2 (+ yl 45) nil fonts:trl2b)

(send tv~sel~ctod-window :draw-string
(format nil "Var - -D" vani) xl (+ yl 60) x2 (+ yl 60) nil fonts:trl2b)

"MAKE-DTW-LIST" -

* This function makes repeated calls to "MAKE-DTW" and setq'a each
*.variable-list to the corresponding item in attribute-list.

(defun make-dtw-list (pathnamel pathnam*2 variable-list attribute-list) -

(do* ((dtw-list variable-list (cdr dtw-list))
(dtw-name (car dtw-list) (car dtw-list)(
(att-list attribute-list (cdr att-list))
(att-name (car att-list) (car att-list))) %a
((null dtw-list)) %a

(set dtw-name (make-dtw pathnamel pathname2 att-name)(

"SCAN-DTW"

This function scans the composite Dynamic Time Warp Array and
determines what words are contained in the teat utterance. The algorythm

* used is the "One-Stageo Dynamic Programming Algorythm for Connected Word
Recognition" by Hermann Ney. See IEEE Transactions ASSP-32 No. 2 April 1984.

(defun scan-dtw (composite-dtw)
(lot* ((title (prompt-and-read :string "Title?)

(N (array-dimension-n 2 (car composite-dtw))) '

(D-list (mapcar 'make-array '

(mapcar 'array-dimension-n (circular-list 1) composite-dtw)))C4
(B-list (mapcar 'make-array "

(mapcar 'array-dimension-n (circular-list 1) composite-dtw)()
(from-template (make-array N :type 'art-6b))
(from-frame (make-array N :type 'art-16b))
(d-min) '

(save-b)
(aave-d)
(save-temp)
(a 1.0)
(b 0.5)
(return-list)
(dummy +le))

STEP 1

(torpri) (princ "Computing Accumulated Distance Array")
(terpri) (princ "Begin Step 1
(loop for current-dtw in composxt*-dtw

for current-ada in D-list
for current-l in B-liat do each k

(loop for n from 0 below (array-dimension-n 1 current-dtw) n :- 0 3-1
Sum (arof current-dtw n 0) into local-Sum Sum for 1-0
do (east local-sum current-ada n)

(east 0 current-B n)o) aset initial values
(princ "Done.")

:;:STEP 2

Iterpri) (princ "Begin Step 2.. "

B -9

(loop for i fixnum from 1 below N do
(.etq dummy +1*) A
(loop for current-dtw in composite-dtw

for current-ada in 0-list%
for current-B in B-list
for k from 0 to (length composite-dtw) do

(setq d-min (min (aref current-ada 0)
(apply 'min (mapcar 'aref 0-list

(mapcar '1- (mapcar 'array-dimension-n W,
(circular-list 1) Ir

D-list))M

(cond ((not (- d-min (aref current-ada 0)M
(&set (+ i 1) current-B 0))

(sotq savo-d (aref current-ada 0))
(setq save-b (arof current-B 0))
(aset (+ (aref current-dtw 0 i) d-min) current-ada 0)
(loop for j fixnum from 1 below (array-dimension-n 1 current-ada) do

(sotq d-min (min (+ (1 (1+ a) Caref current-dtw j i))
(aref current-ada j)) ;list of

(+ (aref current-dtw j i) save-d) ;possible
(+ (I b (aref current-dtw (1- j) 0)

Caret current-ada Cl- j)))) ;predecessors
(setq save-temp (aref current-B j))
(cond ((- d-min (+ (aref current-dtw j i) save-d)) ;Update

(aset save-b current-B j)) ;Bockpointer
(-d-min (+ (I b Caref cur5rent-dtw (1- j) 0)

(aref cur rent-ada (1- j))) ~ Array
(aset (aret current-B (1- j)) current-B j)))

(setq save-d Caret current-ada J)) ;save diagonal
Csotq save-b save-tamp) ;predecessor and
Caset d-min current-ada j)) ;and Backpointer

;Update "From Template"
;Array T[i)
;and "From Frame" /

:Array F~i) iX
(cond MU (aref current-ada (I- (array-dimension-n 1 current-ada))) dummy)

(setq dummy Caret current-ada (1- (array-dimension-n 1 current-ada))))
(aset k from-template i)
Caaet Caref current-B (1- (array-dimension-n 1 current-B)))

from-frame i)())))
terpri) Cprinc "Done.")

:;;STEP 3

(torpri) Cprinc "Begin Step 3
(loop for i from (1- N) downto 0 do ®R,

(princ (format nil ""0" (aref from-template i)
(terpri)
(setq return-list

(do* ((word-end (1- N) prod)
(word (aref from-template (I- N)) Caref from-template prod))
(prod (aref from-frame (1- N)) (arof from-frame prod))
(answer (list word) (append (list word) answer))
(boundry-list (list (liat word prod word-end))

(append (list (list word prod word-end)) boundry-list))) ',%

) prod 1) boundry-list)))
)plot-composite-dtw composite-dtw '

(I *thrash* (length Iwexqht-list*))
return-list 1
Itempathl4
uttpath

.. This function creates a Composite DTW file from It-set* and *utterance*

((defun create-composite-dtw-file

B-10

I0

(let* ((write-path (string-append
spl:>)dawson~thesis)dtw)"
(prompt-and-read :string

"Please enter CDTW name to create:))
(sotq lcdtw* icomputes-compoaite-dtw))
(dump-to-disk write&-path (list 'cdtw* ve~ight-list* *tmpath* *uttpath*))
(word-search I

Thisfuntio proptsfora cdtw file name, loads it and setq's it to *cdtw*

)sl:dawson~thehis>dtw>"

(propt-nd-*&d:string
"Please enter CDTW name to load: "M)

(s~q *eigt-lst*(nt 1 data*))
(set *t~path (nt 2 data*))

(defun add-template (tempname2)
(load (string-append ")dawson~thesistsmplates)" tempnam*2))
(setq *t-set* (append *taeot* (car *data*)))
(setq *tempath2* (string-append ">dawson'thesis~templates>" (cadr 'data')))
(setq 'vo-list* '("0" "1" "2" "3" "4" "5" "6' "7- "8" "9"

(setq *vocabulary* (append *vocabulary* 'vocabulary'))) a

B-11

M... Mode: LISP; Base: 10; Syntax: Zetalisp _,_

"UTILITIES"

p;; This file contains various utilities used by WORD-SEARCH!

"COMPUTE-ATT"

; , This is a function to get the att values for a

given utterance stored on disk.

calling Procedure:

compute-att utt-nam* att-name

Example Usage:

(sotq result-array (computo-att "spl:>dawson>alpha.utt" "LPC Gain Term"))

Note: result-array now contains the result of the att computation.

(defun compute-att (pathname att-name)
(let ((return-array))

(terpri)
(princ "Computing ")
(princ att-name)
(prine ... ")
(setq return-array (spire:att-val (send (spire:utterance pathnamo) :find-att att-name)))
(princ "Done.")
return-array))

Note : This leaves the utterance described by pathname loaded until whenever. ",

;; , .In order to kill an utterance (unload is a better term) the following h

statement will do the trick:

; . .(send (spire:utterance pathname) :kill)

"PPOCESS-UTTERANCE-LPC"

Function to perform LPC computations on a single utterance.

This function makes repeated calls to "COMPUTE-ATT".

Input : Full pathname to utterance
Output : List of arrays ie., computed features 'f

(defun process-utterance-lpc (pathname)
(let ((return-list (list (column-normalize-array

(frequency-compress-Ife
(compute-att
pathname
"LPC Spectrum"))))))

(setq *weight-list* '(4.5))
return-list))

"PROCESS-UTTERANCE-NBS"

Function to perform NBS computations on a single utterance.
This function makes repeated calls to "COMPUTE-ATT".

Input : Full pathname to utterance
Output : List of arrays io., computed features

(defun process-utterance-nbs (pathnsme)
(lot ((return-list (list (column-normalize-array

(frequency-compress-Ife
(compute-att

B-12

'.0

pathname
"Narrow-Band Spectrum"))))

(setq *wejght-lijst* '(5.0))
return-list))

"PROCESS-UTTERANCE-WBS"

*,,Function to perform LPC computations on a single utterance.
* This function makes repeated calls to "COMPUTE-ATT".

Input Full pathname to utterance
*,.Output List of arrays ie., computed features

(defun process-utteranc*-wbs (pathname)
(let ((return-list (list (column-normalize-array

(frequency-compress-lf9 %"
(comput*-att K

pathname
"Wide-Band Spectrum")))))

(setq *weight-.list* 1(4.5))
return-list))

"PROCESS-ITTERMfCE-FoRMANTS"

Function to perform Formant calculations on a single utterance. K

(defun process-utterance-formants (pathname)
(let ((return-list (list (mdian-filter

compute-att
pathnam
"Formant7s"))

return-list))

"PROCESS-UTITERM4CE-ZCR"

(defun process-utterance-zcr)pathname)
(let ((return-list nil))

(terpri)
(setq return-list (list (vector-mag-nori

(compute-att
pathname
"Zero Crossing Rate"))))

(setq *weight-.list* '(0.02))
return-list))

"PROCESS-UTTERA.NCE-LPc-ORMANTS"

.. Function to perform family of computations on a single utterance.

.. This function makes repeated calls to "COMPUTE-ATT".

Input Full pothname to uttezance
.. Output List of arrays i*. , computed features

(defun process-utterance-lpc-formants (pathname)
(let J(returned-list nii))

(setq returned-list (list (column-normalize-array
(frequency-compress-lfe

(compute-Ott

pathname i
"LPC Spectrum"))

(setq returned-list (append returned-list (list (mdian-filter

B-3 pathname

B-1 3

"Formants")M))

(setq *weight-list* '(2.44 0.0024))
returned-list))

"PROCESS-UTrERANqCE-EPC-FORMANTS-FF"

Processes utterances for LPC Spectrum, Formants, and Frication Frequency.

(defun process-utterance-lpc-formants-ff (pathname)
(let ((returned-list nil))

(setq returned-list (list (column-normaliz*-array
(frequency-compress-lfe

(compute-att
pathname
"LPC Spectrum")))))e

(setq returned-list (append returned-list (list (regionize 4

(median-filter0
(compute-att
psthname
"Formants")())))

(setq returned-list (append returned-list (list (computo-att l
pathnam*
"rrication Frequency")

(setq *weight-list* '(4.5 2))
returned-list))

.. "PRtOCESS-UTTERAIICE-WBS-LPC"

Function to perform family of computations on a single utterance.
This function makes repeated calls to "COMPUTE-ATT".

* Input Full pathname to utterance
.. Output List of arrays je. , computed features

(defun process-utterance-wbs-lpc (pathname)
(let ((returned-list nil))

(setq returned-list (list (column-normalize-array
(frequency-compress-lfe

(compute-att
pathname
"Wide-Band Spectrum")M(

(setq returned-list (append returned-list (list)column-normalize-array
)f requency-compress-Ife

(compute-Stt
pathname

"LPC Spectrum"))H)
(setq 'weight-list* '(3.6 5.0))
returned-listl)

... PROCZSS-tITTERAZICE-NDS-LPC"

*..Function to perform family of computations on a single utterance.
.. This function makes repeated calls to 'COMPIJTE-ATT".

Input Full pathname to utterance
.. Output List of arrays ie. . computed features

(defun process-utterance-nbs-lpc)pothname(
IP (let ((returned-list nil))

isetq returned-list (list)columh-normaliz*-arroy
(frequency-compress -ife

(compute-att
pathname
"Narrow-Band Spectrum (m

(setq returned-list (append returned-list (list (column--normalize-array
ffrequency-compress-Ife
(compute-Ott
pat hname

B-1 4

"LPC Spectrum"))))))
(setq *weight-list* '(3.6 5.0))
returned-list))

"COLUN-NORNALIZE-ARRAY"

(defun column-noraalize-array (array)
(let* ((height (array-dimension-n I array))

(length (array-dimension-n 2 array))
(total-energy 0)
(result-array (make-array (list height length) ':initial-value 0)))

(do ((column 0 (1+ column)))
((- column length))

(setq total-energy 0)
(do ((row 0 (1+ row)))

((= row height))
(setq total-energy (+ total-energy (sqr (aref array row column)))))

(setq total-energy (sqrt total-energy))
(do ((row 0 (1+ row)))

((- row height))
(aset (// (aref array row column) (cond ((= total-energy 0) 1)

(t total-energy)))

result-array row column)))
result-array))

"REGIONIZE"

This function takes as input Formants and assigns a region for
* each point in time according to the first and second formants.

" , , Each region represents a specifics vowel sound.

(defun xor (alist)
(let ((count 0))

(loop for thing in mlist do
(cond (thing

(setq count (1+ count)))))
(oddp count)))

(defun intersect (segl seg2)
(let* ((xll (nth 0 seg1))

(yll (nth 1 segl))
(xl2 (nth 2 segl))
(y12 (nth 3 segl))
(x21 (nth 0 seg2))
(y21 (nth 1 seg2))
(x22 (nth 2 seg2))
(y22 (nth 3 sag2))
(ml (// (float (- y12 yll)) (- x12 xl1)))
(a? (/m (float (- y22 y2li) (- x22 x~l)))
(x (// (+ y22 ml x12) (- 0 y12 (* m2 x22)))- ml m2)))
tl (/ - x xll) (- x12 xll)))".

t? (2 (- x x21) (- x22 x2l)))
(result (cond ((and (- tl 1.0)

(I U 0.0)
U- t2 1.0)
0. t2 0.0))

T)
(T nil))))

result))

defun regionizle (formants)

(let" ((fl 0)
(f2 0)

B-15

A.

-iru v wirwwvw wvwwvwwvwuVKKrV V% v~r'Kvn ".Y'W-wRUwV

(result (make-array (array-dimension-n 2 tormants) :type 'art-Sb))
(loop for time fixnum from 0 below (array-dimension-n 2 tormants) do

(setq fl (aret formants 1 tine))
(setq f2 (sret torments 2 time))

*;(torpri) (princ fl) (princ ",") (princ f2) (princ
(cond ((xor (list (intersect (list fl f2 1500 f2) '(0 1750 250 3500))

(intersect (list fl f2 1500 f2) '(250 1750 450 3500))))
;(princ 1)
(soot 1 result time))
;last 300 torments 1 time)
;(east 2750 torments 2 time))
((xor (list (intersect (list fl f2 1500 f2) '(250 1750 450 3500))

;(pinc2)(intersect (list fl f2 1500 f2) '(450 1750 700 3500))))

(&et 2 result time))
(aset 420 torments 1 time)

:(east 2300 torments 2 time))
((xor (list (intersect (list fl f2 1500 f2) '(450 1750 700 3500))

(intersect (list fl f2 1500 f2) '(900 2500 901 3500))
(intersect (list fl f2 1500 f2) '(600 1750 900 2500))))

;(princ 3)
* (&set 3 result time))

(eset 600 torments 1 time)
(&set 2200 torments 2 time))

((xor (list (intersect (list fl f2 1500 f2) '(600 1500 601 1750))
(intersect (list fl f2 1500 f2) '(600 1750 900 2500))

(intersect (list fl f2 1500 f2) '(750 1500 1200 2500))))
;(princ 4)
(&set 4 result time))
(aset 700 torments 1 time)

* :(eset 1800 torments 2 time))
((xor (list (intersect (list fl f2 1500 f2) '(750 1500 1200 2500))

(intersect (list fl f2 1500 f2) '(600 1100 601 1500))
(intersect (list fl f2 1500 f2) '(650 1100 1200 1750))
(intersect (list fl f2 1500 f2) '(1200 1750 1201 2500))))

:(princ 5)
(&set 5 result time))
(e~set 800 torments 1 time)
(easet 1500 torments 2 time))

)(xor (list (intersect (list fl f2 1500 f2) '(650 950 651 1100))
(intersect (list fl f2 1500 f2) '(650 1100 1200 1750))
(intersect (list fl f2 1500 f2) '(B00 950 1200 1100))
(intersect (list fl f2 1500 f2) '(1200 1100 1201 1750))))

;(princ 6)
leaset 6 result time))
* (eset 900 torments 1 time)

40 (aset 1100 torments 2 time))
((xor (list (intersect (list fl f2 1500 f2) '(350 1300 351 1750))

(intersect (list fl f2 1500 f2) '(600 1300 601 1750)
;(princ 7)
(inset 7 result time))
* (eset 500 torments 1 time)
;facet 1500 torments 2 time))

((xor (list (intersect (list fl f2 1500 f2) '(400 950 401 1300))

;(pinc8)(intersect (list fl f2 1500 f2) '(600 950 601 1300)

(east 8 result time))
(aeet 500 torments 1 time)
(aeet 1000 torments 2 time))

(Ixor (list (intersect (list fl f2 1500 f2) '(200 500 201 1300))
(intersect (list fl f2 1500 f2) '(400 500 401 1300M)))

;(princ 9)
(iseat 9 result time))
; (&set 300 tormants 1 time)
(soot 900 torments 2 time))

((zor (list (inters-ct (list fl f2 1500 f2) '(400 500 401 950))
(intersect (list fl f2 1500 f2) '(600 950 601 1100))
(intersect (list fl f2 1500 f2) '(650 950 651 1100))
(intersect (list fl f2 1500 f2) '(600 500 800 950)

;(princ *0)
(soot 10 result time))
(&set 60) torments 1 time)
(seot SO0. formants 2 time))

B-16

%A

9~A PL A,~ J' *,'S~,(.%

(t ;(princ 0)
(aset 0 result time))))
(eset 0 formnts 1 time)

;(aset 0 formants 2 time))))
result))

"tMEDIAN-FILTER"

This function median filters the 5 by length formant array returned by SPIRE. This
* is an effort to smooth the formants values to remove the gliches when the formant
* tracker loses track. Note that the (0,i) row has all zero* values.

(defun median-filter (array)
(let* ((rows (array-dimension-n 1 array))

(columns (array-dimension-n 2 array))
(return-array (make-array (list rows columns)))
(window-vector (make-array 11)))

(copy-array-contents array return-array)
(do* ((row-index 1 (1+ row-index)))

((- row-index rows))
(do* ((column-index 5 (1+ column-index)))

((- column-index (- columns 5)))
(do* ((window-index (- column-index 5) (1+ window-index))

(window-vector-index 0 (1+ window-vector-index)))
((a window-vector-index 11))

(aset (aref array row-index window-index) window-vector window-vector-index))
(aset (aref (sort window-vector '<) 4) return-array row-index column-index)))

return-array))

"GET-PATHNAME"

Function to get a pathname from user
providing prompt and default pathname.

(defun gt-pathname (default)
(fs:set-default-pathname default)

(prompt-and-read '(:pathname :visible-default ,fs:*default-pathname-defaults')
"Enter pathname -) "))

"SHOW-LIST"

(defun show-list (alist)
(loop for element in alist

do (print element)))

.;. "DUMP-TO-DISK"

* Function to dump data to a disk file.

* Input : Full Path and Filename, thing to dump
... Output : Writes a compiled Lisp form to disk

such that when loaded (like any ordinary lisp form)
the data is setq'd to, in this case, "data*.

(defun dump-to--disk (pathname data)
(aym:dump--fo :ms-to-file pathname (list a(setq *data" ',data))

Note: To read this data, (load pathname).
The global variable "data" will then contain the data.

': SOP"

B-17

N

Function- to square a number

(defun sqr (number) (* number number)

"CLEARSCREEN" d

Function to clear the screen.
.. No arguments required.

(defun clearscreen (
(send tv:selected-window :clear-window))

"SUBLIST"

*,This function takes as input a list and returns a sublist of
elements i thru j.

Example: too -) (a b c d e f)
* ,(sublist too 1 3) -> (b c d)

(detun sublist (alist i j)
(let ((return-list (list (nth i &listf)))W

(do* ((marker (1+ i((1+ marker))
(end (1+ j))) -

((- marker end))
(sotq return-list (append return-list (list (nth marker &list)))))

return-list))

"COLUMN4-AVERAGE"

This function will average a subcolumn from a column of a 2-D array.%
*,It takes as input the array, the column number, indexes i and j. It averages

the array elements i thru j of the specified column number.

*,Input: 2-D error, column, i, j
Output: Average

(defun column-average (array column i j)
(let ((sum 0.0)

(end (1+ jf)
(do ((count i (1+ count)))

C(- count end))
(setq sum (+ sum (aref array count column))))
IIsum (1+ (j i)f)()

"VECTOR-ENERGY-NOR(ALI ZE"

Function to normalize a one dimensional array by energy

Description:
The total energy of the array is calculated
by summing the squares of all the elements and
taking the square root of that sum.
The normalized array is formed by dividing
each element of the input array by the total energy.

Input: one dimensional array
Returns: normalized version of input

(defun vector-energy-normalize (vector)
(let ((return-array (make-array (array-length vector)))

(total-energy 0))
(do ((counter 0 (1+ counter))

(endsork (array-length vector)))

B-18 .r

•o'

((= counter endsark))
(setq total-energy (+ total-energy (sqr (aref vector counter)))))

(setq total-energy (// (sqrt total-energy) (array-length return-array)))

(do ((counter 0 (1+ counter))
(enduark (array-length vector)))

((- counter endmark))

(aset (// (aref vector counter) total-energy) return-array counter))

return-array))
%

"VECTOR-MAGNITUDE-NORMALIZE"

... This function is similar to VECTOR-ENERGY-NORMALIZE except that the
* values from the input vector are simply mapped into a range of 0 to 1.

In other words, the smallest value of the input array will be mapped to zero
; and the largest value mapped to one; all others will fall somewhere in

* between. This normalization technique is arises from the fact that the
VECTOR-ENERGY-NORMALIZATION technique fails for vectors of unequal length.

* Input: One dimensional array.

Returns: Normalized version of input.

(defun vector-meg-norm (vector)
(let

*
((result-array (make-array (array-length vector)))

(vector-max -999999.0)
(vector-min 999999.0)

(diff 0.0)
(scale 0.0)

(mapmin 0.0)

(mapmax 1.0)
(length (array-dimension-n 1 vector)))

(do ((i 0 (1+ i)))

((- i length))
(cond ((< (aref vector i) vector-min) (setq vector-min (aref vector i)))

((> (aref vector i) vector-max))setq vector-max (aref vector i)))))
(setq diff (- mapmin vector-min))

(setq scale (// mapmax (+ vector-max diff)
(do ((i 0 (1+ i)))

(i length))
(aset (* (+ (aref vector i) diff) scale) result-array i))

result-array))

"FREQUENCY-COMPRESS-LC"

.. , This function takes an array returned by (compute-att utt-name "Wide-Band Spectrum")

;;, which is a 256 by length array. 256 represents the frequency components

of the utterance and length is proprtional to time. This function reduces

the frequency resolution from 256 to 16. This is a linear compression (LC).

Input: Two dimensional array returned by (compute-att utt-namo "Wide-Band Spectrum")

Output: Compressed version of input

(defun frequency-compress-Ic (array)

(let* ((row-length (array-dimension-n 2 array))
(return-array (make-array (list 16 row-length)))

(block-sum 0))
(do" ((current-column 0 (1+ current-column)))

((- current-column row-length))
(do" ((current-block 0 (1+ current-block))

((- current-block 16))
(aetq block-sum 0)

(dol ((current-element (* current-block 16) (1+ current-element)))
((. current-element (1 (1 current-block) 16)))

(setq block-sum (4 block-sum (aref array current-element current-column)))

(aset (// block-sum 16) return-array current-block current-column)))

return-array))

r "REQUENCY-COMPRESS-LFE"

B-19

,.%

4.

;.. This function takes the array returned by (compute-att utt-name "Wide-Band Spectrum")
; which is 256 by lenghth array. The 256 discrete frequency components will be

compressed down to 16. This compression is done with low frequency emphasis* (LFE).
It is not a logrithmic compression. Rather, the lower 132 frequency components

... are are linearly compressed down to 12, and the higher 124 components are
; linearly compressed down to 4. This algorythm is written so as to make changing

the emphasise easy if desired.

Input: Two dimensional array returned by (compute-att utt-name "Wide-Band Spectrum") %

Output: Compressed version of input

(defun frequency-compress-Ife (array)
(let* ((length (array-dimension-n 2 array))

(return-array (make-array (list 16 length))))
(do ((count 0 (1+ count)))

)(= count length))
(&set (column-average array count 0 10) return-array 0 count)
(aset (column-average array count 11 21) return-array I count)

(&set (column-average array count 22 32) return-array 2 count)
(&set (column-average array count 33 43) return-array 3 count)
(aset (column-average array count 44 54) return-array 4 count) A

(aset (column-average array count 55 65) return-array 5 count)
(aset (column-average array count 66 76) return-array 6 count)
(aset (column-average array count 77 87) return-array 7 count)
(&set (column-average array count 88 98) return-array 8 count)
(aset (column-average array count 99 109) return-array 9 count)
(aset (column-average array count 110 120) return-array 10 count)
(aset (column-average array count 121 131) return-array 11 count)
(aset (column-average array count 132 162) return-array 12 count) -
aset (column-average array count 163 193) return-array 13 count)
(aset (column-average array count 194 224) return-array 14 count)
(aset (column-average array count 225 255) return-array 15 count))

return-array))

"MENU-FEATURE-SET"

(defun menu-feature-set
(let" ((item-list '("Wide Band Spectrum"

"Narrow Band Spectrum"
"LPC Spectrum"
"Formants"
"LPC, formants, Fr. Freq."

(menu)tv:make-window 'tv:momentary-menu
I:label "Word-Search!

Select Feature Set to Use..."))
(choice))

(send menu ':sot-item-list item-list)
(setq choice (send menu ':choose))

choice))

"CREATE-READY-TEMPLATE-FILE"

* This is the function for creating a Ready-Template file
(see word-search!.doc). This is accomplished by
reading each word of the vocabulary (digits "zero" thru "nine")

;:; one by one. Various SPIRE computations are performed, and saved
;;. to a disk file. The user is prompted for both input and

output pothnames.

Input: None (User is prompted for read and write pathnames)
Output: Writes Ready-Tomplate File to Disk

(defun create-ready-template-file)
(let" ((read-directory (string-append

B--20

~ ~ '~ 4 4'\ * * * * * * "- * ' 4 . . ' .-

"spl:dwson>thssis>tomplstes>"
(prompt-and-read :string

"Please enter speaker name:

(reed-path)
(write-path (string-append

"spl:>dawsonthesisitemplatos>"

(prompt-and-read :string
"Please enter Ready-Template name: "M)

(choice nil))
(aetq *t-set, nil)
(5*tq 'tompoth- read-directory)
(setq choice (menu-feature-set))
(loop for v-word in *vocabuiary- do

(setq read-path (string-append read-directory v-word ".utt')
(terpri
1princ "Processing
(princ read-path)
(Princ- -

laetq *t-set" (append *t-set*
(list

(cond ((equal choice "Wide Band Spectrum")
(proceas-utterance-wbs read-path))

((equal choice "Narrow Band Spectrum")
(process-utterance-nbs read-path))

((equal choice "LPC Spectrum")
1process-utterenc*-lpc read-path))

((equal choice "Tormants")%
(process-utterance-formants read-path))

((equal choice "LPC. Pormants, fr. Treq."(
)process-utterance-lpc-formants-ff read-path))))))

send (apire:uttorance read-path) :kill))
dump-to-disk write-path (list *t-aet* *tempath4*);

word-search')

CREATL-READY-UTTEA4CE-ITILE"

This is the function for creating a Ready-Utterance file
see word-search!.doc). This is accomplished by

.,reading a Digitized Continuous Utterance.

..Various SPIRE computations are performed, and saved
to a disk file. The user is prompted for both input and
output pathnames.

Input: None (User is prompted for reed and write pathnamos(
Output, Writes Reedy-Template Tile to Disk

fdefun create-ready-utterance-tile
let" ,read-path

string-append
"spl:)dawsonthesis~utterances>"

(prompt-and-read :string "Name of Digitized Continuous Utterance
".utt"()

(write-path
(string-append
"spl: dawsontheszautterances>"

(prompt-and-read :string "Name of Ready-Utterance "
(choice nil))

(setq choice (menui-feature-set))
setq *ready-utterancel

(cond ((equal choice "Wide Band Spectrum")
(process-uttorance-wbs read-path))
((equal choice "Narrow Band Spectrum")

(procoss-utterance-nbs read-path) I
((equal choice "LPC Spectrum")
(process-utterance-lpc read-path) -
((equal choice "Tormants")
(process-utterance-formants read-path),
((equal choice "LPC, Torments. rr rreq.''
(process-utterance-lpc-formants-ff read-path-

(aetq luttpeth* read-path)

B-21I

e,

69 34 SPIRE BASED SPEMKER-IMKPEWENT CONTINUOS SPEECH 2/2
RECOGNMITION USING HUXED..(U) AIR FORCE INST OF TECH

WICLSSIFEP HIGHT-PATTERSON RFD ON SCHOOL OF ENGI. R 0 DAWSONEEEEEEEEED EEE U7RI/EEVD1 29M

ie,L 4
3%

1.2.0

11111 .0 1.8 2

N

1 .25 1. 1 1.

am

111 111 % % %11%1

feend (spit*:utterance read-path) :kill)
(dump-to-dish write-path (list *ready-utterance* 'wsght-list* luttpath*)))

(word-9sarchl I

* This function loads a Ready-Template-File and set's it to It-set*

* Input None, user ts prompted for Ready-Template Name
* Output The global *t-set* is set to Ready-Template Name

(defun load-ready-teinplate-fil*
list- ((reed-path (string-append

.sph')dowsonthesistmplatea)"
(prompt-and-read :string "Name of Ready-Template "M

load road-path)
(setq It-set (car 'data)
(**tq Itempathl (cadr 'date*)))

wotd-search!)

- LOAD-RRADY-UTTERA4CE-F ILE"

This function loads a Ready-Utterance-File and setq's it to *ready-utterance*

* Input None, the user is prompted for Ready-Utterance Name
Soutput The global *reedy-uttenancel is setq'd to Ready Utterance Name

defun load-ready-utterance-tile
(let' ((reed-path (string-append

.spl:>dasonthesisutterances)"

(prompt-and-read :string "Name of Ready-Utterance
(load reed-path?
(setq *ready-utterance* (car *data*)
(setq 'weight-list* (cadr *data*))
Isetq *uttpathl (caddr 'data*)

(word-searchM

*,: ISPLAY-WAVEFORN"

Idefun display-waveform (xl yl x2 y2 pathnam*)
Tlet* ((display-aray (spirt:att-val (send (apire:utterance pathname)

:find-att "original waveform")))
(length (array-length display-array))
(width (-x2 xl))
(height (-y2 yl))

(declare (sys:array-regiater display-array))
(drawborder x1 yl x2 y2)
(loop for indexl fixnum from 0 to (- length 2)

for index? fixnum from 1 to 41- length) do
(send tv:selected-window draw-line

(+ xl (fix (indoxl (// width (float length)))))
1yl (fix (((aref display-array indexl) 32767.0)

(// height 65535.0))))
(4. xl (fix (index? (// width (float length)?))))
(+ yl (fix ((4 (aref display-array index2) 32767.0)

1// height 65535.0)))))

"DI SPLAY-VAVEFORN-ROT"

(defun display-waveform-rot (xl yl x2 y2 pathnam*)
(let* ((display-array (spiro:att-val (send (spire:utterence pothnsme)

:find-att "original waveform"))
(length (array-length display-array))
(width (-x2 xl))

C (height (-y2 yl))

B-22

(declare (sys:array-register display-array))
(drawborder xl yl x2 y2)
(loop for indexi fixnum from 0 to (- length 2)

for index2 fixnum from 1 to (1- length) do
(send tv:selected-vindow :draw-line

J+ xl (fix (* (+ (aref display-array indxl) 32767.0)
(// width 65535.0))))

(-y2 (fix (* indexl (// height (float length)))))
(+ xl (fix ((+ (aref display-array index2) 32767.0)

(// width 65535.0))))
(-y2 (fix (index2 (// height (float length)))))))))

B-23

A.

p

4,.

.1*

4~*

Appendix C: Sample Results

4,.

Si.

.4'.

'4.

.4.

4'.

.4?

C-i

*0

I
2

- ~ S.

ROD u- 43314790- LPC Spectrum

IF,

I Mr I-

An? gco.'

.....

AkV

3 4 7 9

-2..

RGD -- 02318" -- Wide Band Spectrum

Fa

C-3.

lCD -- "28318" Narrow Band Spectrum

A V.

7'1

IWI

HHI

3 1 81

c-

S..

ROD *-29318" -- Formants

IL

8

C-

RGD -- "283180 - LPC SPectrum

8

wa A

7L

-1.,

c-
I 7 ,

6 . . I i '

4 i ";
, a., 2'.,.

,- - ,-,

Il II I I I I l I l III LII a
+

3i ; ' ' ' ' ' ' ' ',
.8 iraft,

I.
2-,

,+ + . . ,,o ,..,-.- .. ,-.. ' .'..'.'.. .. '.'.. .. '.'.'.,'.." +',.'%.' ,,. . , ',. ,. .,,.'% ',,

ROD - "28318" - LPCS ectrum, Formants, Fr. Freq.
9

q

18 1 3 1 1

7 ,-

S
J

"

4 I I'

1

-
2F

--,,, ,1: ,,
p.,,

-,,p.

1-

S

4 SKIP/JONES - 2377097" LPC Spectrum

0 9 . a 1*
-I--.

B I-I _

* 7 -

6 . '~NII'
-I

*
5

~4- 'TI
k

b

J.J.

* 2

1 *11 I
4-.

* 0

C

S

S

c -8

(i~ S

SKIP/JONES "2w37709?" LPC Spectrum, Fp mats, F.F.

9-

8 4*i

SKIP/JONES "2l55!276" LPC Spectrumn

100",

IFf

C.-10

SKIP/JONES " 2555276" LPC Spectrum, Fp mants, F.F.

I r.

J4P

AL.

Lie'

A ..

lip*.

VFW.

2 S S S

C-1 I

RGD/JONES - "28318" LPC Spectrum

9

8 +

'." ' 1 1
,C 12 ... j .,

,'-

J
°
.

2-91 "2"

I aoq _V .

ROD/JONES -293l8" LPC Spectrum, Formants, F.F.

7

6

0s

44

3-

RGD/JONES -"2377097" LPC Sp ectruni

7 7I

c- 4

?%x'prn FM N7-w n MXAVlrllrl WKI irwW Ir 6rll lr wvI. V

ROD/JONES 0 2377097' LPC Spectrum, Formants, F.F.

lip

3
4.

2 11 1.

A AP -

%t

-I&AL AL Ms

3 7 7 9 9 7]

lp

C-is5-

SKIP/ROD " 1282280 LPC S ectrum

Ia,

rF 8 8

C-16

SKIP/ROD " 2282SB" LPC S ertrum, Formants, F.F.

9p

ILV

VIP'

C-1 7

wwwwvvwv-vw-i V~tw

JONES & RGD/SKIP- "1234" LC Spectrum

19I

17

15

14

13

12

10

6

4

2

C-18

JONES & ROD/SKIP -"1234" LPC Spectrum. Formants, F.F.

19

17

16

15
142 "

=EMT

).)

C-19

V ~ * a'j-~ ~ c~: ~ ~~- X- '~ .*~.,. lo. ..b

prwwu ~ ~ II pr.w WU. Wv N WU wuW vWW- vw WV-6WVW wT rw I'!WITV Evwlf-- 4 - 7rw F- r W- IV , K:- IV W" I~* * 1* r "

JONES & RGD -"1549768203" LPC Sp~ectrumn.4

ig94 1 *

17

IL ff -. 4

,.1

.7 'p

7 2

6S

41.1'

JONES & RGD/SKIP -"1549"768203" LPC Spectrum, Formants, F.F.

19
18 - ___L

17

16

13
14

13

ILI.

-4.-

C -21

JONES & SKIP/RGD - "56789" LPC S ectrum

19

16
15 JAL__

14_________

01

11UA
1a

7 7W ________

3 Ak

C -22 a

-W0Ip - ~ % - r rw 1 RR w rNF

JONES & SKIP/ROD - 56789" LPC S ectruin, Formants, F.F.

19Mi

01

01

01

01

01

C --2

Bibliography

1. Abut, Huseyin and Robert M. Gray. "Vector Quantization of Speech

and Speech-Like Waveforms," IEEE Trans. Acoust., Speech, Signal
Processing. ASSP-25: 299-309 (August 1977).

2. Brusuelas, Capt Micheal A. Investigation of Speaker-Independent
Word Recognition Using Multiple Features, Decision Mechanisms, and

Template Sets. MS Thesis, AFIT/GCE/ENG/86D-5. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1986.

3. Burton, David K., John E. Shore and Joseph T. Buck. "Isolated-Word
Speech Recognition Using Multisection Vector Quantization

Codebooks," IEEE Trans. Acoust., Speech, Signal Processing.

ASSP-33: 837-849 (August 1985).

4. Doddington, George R. and Thomas B. Schalk. "Speech Recognition,
Turning Theory to Practice," IEEE Spectrum. 18: 26-32 (September
1981).

5. Juang, Biing-Hwang and Lawrence R. Rabiner. "Mixture

Autoregressive Hidden Markov Models for Speech Signals," IEEE
Trans. Acoust., Speech, Signal Processing. ASSP-33: 1404-1413

(December 1985).

6. Kabrisky, Mathew, Professor. Personal Interview. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 3 February 1987.

7. Kassel, Robert H. A User's Guide to SPIRE. [correspnds to version
17.51 MIT Speech Recognition Group, Mar 1985.

9. Kauffman, David H. SPIRE 17 Release Notes. MIT Speech Group
[supported by DARPA contract N00039-85-C-0290 monitored through
Naval Electronic Systems Command], January 1986.

10. Ney, Hermann. "The Use of a One-Stage Dynamic Programming
Algorithm for Connected Word Recognition," IEEE Trans. Acoust.,
Speech, Signal Processing. ASSP-32: 263-271 (April 1984).

11. Potter, R. K., George Kopp, and Harriet Green. Visible Processing
of Speech Signals. New York: D. Van Nostrand Company, Inc., 1947.

12. Rabiner, Lawrence R. and Ronald Schafer. Digital Processing of
Speech Signals. New Jersey: Prentice Hall, Inc., 1978.

13. Rabiner, Lawrence R. and Jay G. Wilpon. "Speaker-Independent

Isolated Word Recognition for a Moderate Size (54 Word)
Vocabulary," IEEE Trans. Acoust., Speech, Signal Processing.
ASSP-27: 583-587 (December 1979).

Bib-1

S

14. Rothfeder, Jeffery. "Hardware: A Few Words about Voice

Technology," PC Magazine. 5: 191-205 (30 September 1986). V

15. SPIRE 17.2 Preliminary User's Guide. Speech Communications Group,
Research Laboratory of Electronics, Massachussetts Institute of
Technology, February 1986.

16. SPIRE 17.2 Reference Manual. Speech Communications Group,
Research Laboratory of Electronics, Massachussetts Institute of
Technology, February 1986.

17. Winston, Patrick H. and Berthold Horn. LISP. (Second Edition)
Massachussetts: Addison-Wesley Publishing Company, 1984.

B.-

Bib-2

p.

'p

VITA

Captain Robert G. Dawson was born 28 November 1960 at Burderop
.

.A.

Park, England. He graduated from Sylvan Hills High School, North Little

Rock, Arkansas in 1979. He received the degree Ba helor of Science I

Electrical Engineering from the University of Arkansas in August 1983.

Upon graduation he received a commission in the USAF and was assigned to

the Electronic Systems Division (AFSC), Hanscom AFB, Massachusetts. In

May 1986, Captain Dawson entered the School of Enginering, Air Force

Institute of Technology.

Permanent Address: 84 Shoshoni Drive

Sherwood, AR 72116

'.

01V.1

'4

,.°d

V--i

* .•.°...

UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE

REOTDCMNAINPG Form Approved
REPOR DOCMENTAION AGE0MB ANo. 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASS I FIED / n Fr7

2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION i DOWNGRADING SCHEDULE DISTRIBUTION UNLhIMITED

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GE/ENG/87D-14

*i

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
School of Engineering (if applicable)

fAFIT/ENG ______________________

6c- ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

$a NAME OF FUNDING SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(if applicable)

Sc. ADDRESS (City. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT TASK IWORK UNIT
ELEMENT NO NO NO IACCESSION NO.

11 TITLE (include Security Clasjia.- on)
SPIRE based Speakkr-Independent Continuous Speech Recognition Using UNCLASSIFIED
Mixed Feature Sets

12 PERSONAL AUTHOR(S)
Dawson, Robert Gl. Captain USAF

13. TYPE OF REPORT 1I3b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115 PAGE COUNT
MS Thesis FROM ____TO 1987 December I 125

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP I SuB-GROuP Speech Recognition, SPIRE, Dynamic Programming

LD 02Mixed Feature Sets

19 ASTRACT (Continuep on reverse if necessary and identify by block number)

Thesis Chairman: Matthew Kabriski, PhD ~J

Professor of Electrical Engineering

20 0fSTRi8L,1iON AVA'LABtLTY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
13 JNCLASSIPIEDI"jNLIMI-ED 0 SAME AS RPT C DTIC USERS UNCLASSIFIED '

22a NAME OF RESPONSIBLE 'ND1.IDuAL 22b TELEPHONE (include A re a Code)r 2277c OFI CE S YMBO 0L
Dr. Matthew Kabriski Professor, ('S-15 (513) 255-5276 1 AFIT/ENC

DOFr 473, JUN U Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

Continued from block 19: Abstract
A system was developed to investigate continuous speech

recognition. The system incorporates multiple features and dynamic
programming to recognize continuous inputs of the spoken digits (zero
through nine). The fundamental design concept extends from previous
successful recognition research efforts involving both isolated and
continuous speech using multiple feature sets, multiple template sets,
and dynamic programming. Among the features used in the investigation
are wide band spectrogram, narrow band spectrogram, linera predictive

coding (LPC) coefficients, LPC.spectrum, frication frequency, and
formant tracks. An advanced speech research tool called SPIRE provided
the computational functions needed to extract the raw features. The
system is implemented in LISP on a Symbolics 3600 series LISP machine.

0

UNCLASSIFIED

VaP- %. t %

.9. i

ILMED

Vf f,/

