
-AISS 827 APPLICABILITY OF ADA (TRADEMARK) TASKING FOR AVIONICS 1/1
EXECUTIVES(U) AIR FORCE INST OF TECH biRIGHT-PATTERSON
AFB OH SCHOOL OF ENGINEERING R E KONTAK NOV 87

UNCLASSIFIED AFIT/GCS/NA/87D-4 F/ 12/5EECLASSIFIEDL
mhhEEElhEElhhE
EhElhlhhElhhEI
EhhhEEEEEEElhE
mhhEEEElhElhE

-- d~ ---- - -

II1.10~ 4

.111-25 1111. li16

oqi. 0- .1 -D 0 0 0 0 0 S 7W *.oW W

a1 R~E Gui

00

DTI

ELECTEPAI

FEB 09 1988

FOR AVIONICS EXECUTIVES D
THESIS

* Roger E. KontakE
Major, USAF e

- -~ AFIT/GCS/MA/ 87D-4

UITnIIrom sTAT~E
Approved for public! reeoe

Distributj0 n Unlimited

DEPARTMENT OF THE AIR FRCEP...

AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

98 4 069
.11kr

AFIT/GCS/MA/87D-4

APPLICABILITY OF ADA* TASKING

FOR AVIONICS EXECUTIVES

THESIS DTIC
Roger E. Kontak ELECTF-3:

Major, USAF

AFIT/GCS/MA/87D-4 4 O J

D

*Ada is a registered trademark of the United States

Government (Ada Joint Program Office)

Approved for public release; distribution unlimited

AFIT/GE/MA/87D-4

APPLICABILITY OF ADA* TASKING FOR AVIONICS EXECUTIVES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Information Systems

Accesiun For
~~NTIS CR A&I

DTIC TAU
~Ualanno, viced:

JLitf1C3tIL 1,

Roger E. Kontak, M.S. By

Major, USAFIDI D~st

November 19871

*Ada is a registered trademark of the United States C)Government (Ada Joint Program Office)6"E

Approved for public release; distribution unlimited

f "1 !- " ,"ft ", ''" um" wpm' U NA -AMA ' I *"I NA Mi" ' '

Acknowledgments

I wish to thank a number of people who helped me during

the preparation of this thesis. In particular, several

members of the Aeronautical Systems Division Systems

Engineering and Avionics Facility (SEAFAC) and the Air Force

Wright Aeronautical Laboratory (AFWAL) provided essential

assistance in the technical aspects of this thesis. Capt

David King of SEAFAC gave me many hours of discussion on the

design and implementation of avionics software and provided

d characteristic tasks to be performed by this software. He

and SSgt James Bennett modified a JOVIAL version of an

avionics scheduler which served as a baseline for my

experiment. This version was more difficult to implement

than initially envisioned and assistance was also obtained

from ILt Stephen Ross, a former member of SEAFAC.

ILt Ross also helped provide the inspiration for how to
-5

measure overhead in an avionics scheduler.

pc In addition to my sponsors at SEAFAC, several members of

AFWAL provided both resources and technical assistance.

wish to thank Mr. Phillip Hanselman for several hours of

discussion and allowing access to AFWAL owned computers and

compilers. I also wish to thank ILt Marc Pitarys for his

interest in my project and the time he spent helping debug

the many problems encountered.

Oii

My AFIT classmates also provided encouragement and

, *:assistance. In particular, Capt Daniel Joyce and Cpt John

Klemens (U.S. Army) helped during the many long hours and

weekends we spent working together in the laboratory.

- I also wish to thank my thesis committee. In

particular, my thesis advisor, Capt David Umphress, provided

encouragement and editing support throughout chis document.

The guidance and critical analysis obtained from my committee

helped obtain coherent support for my thesis conclusions.

Finally, I wish to thank my wife and children for their

patience, support, and understanding throughout this ordeal.

Roger E. Kontak

0'.4

a.'

ii

-4-- - , iIT T 111

Table of Contents

Page

Acknowlegements. i

List of Figures.......................vi

List of Tables......................vii

Abstract.........................viii

Introduction and Problem Definition. 1

Introduction...................1
The Problem....................3
Scope 3
Thesis Overview

II. Summary of Current Knowlege 6

High Order Languages 8
Ada Tasking 11
Overhead Determination.............16
Benchmarking..................18
Conclusion...................20

III. Experimental Design.................21

General Approach 21
Measures and Factors 23

Machine. 24
Mix 25
Workload..................25
Language..................26
Compilers 26
System Timing Method 26

Statistical Tests................27
Conclusion...................28

IV. Detailed Design...................29

DAIS Model 32
Ada Tasking Model 34

Ada with Delay Statements 35
Ada with Interrupts..............36

Overhead Measurement and Statistical Analysis 37
Overhead Measurement 37
Statistical Analysis 38

Conclusion...................40

iv

V. Experimental Results 41

Compiler Problems 41
Compiler A..................42
Compiler B...............
Compiler C......................43
Compiler D....................44

Test Results...........................44
Conclusion............................47

Vi. Conclusions.........................48

Recommendations...................50

Bibliography................................52

Vita .5

.4v

List-of Figures

Figure Page

1. Ada Tasking Advantages and Disadvantages 14

2. Experimental Factors.................24

3. Cumulative Drift...................27

4. Tasking Performance Factors..............28

5. DAIS Task States...................33

6. Ada Task States....................34

7. Ada Program Structure.................36

vi

List of Tables

Table Page

I. TAG Design Phase....................11

II. TAG Coding Phase.....................11

III. Tasking and Exception Handling Overhead 17

IV. Cyclical Tasks....................30

V.,V. Asynchronous Tasks.................31

VI. Corresponding States.................35

VII. Compiler Features.................2

VIII. Idle CPU Time for all Combinations of Factors 4

.vii

Mil
l0.'wn~ t 411N M

'p. Abstract

The purpose of this study was to evaluate Ada tasking

performance and its suitability for avionics schedulers known

as executives. This was done by comparing variations of Ada

executives written by the author with the existing Digital

Avionics Information System written in J-V:AL. The

comparisons were made by evaluating the system overhead of

each model while running a series of representative

application tasks.

The study found that Ada tasking had considerably more

overhead than its JOVIAL counterpart in order to maintain

precise cyclical timing. Another outcome was that several

Ada compilers were unable to produce code which could be run

on the MIL-STD-1750A computer. This points to the present

immaturity of Ada compilers targeted toward embedded aircraft

computers.

'I.- Given the immaturity of Ada compilers, Ada tasking is

not appropriate for avionics executives. Ada can still be

used, however, without tasking and the associated Run Time

System to develop executives.

This thesis adds support for the need to revise

standards and develop compilers as necessary to provide an

efficient Run Time System for Ada executives. K

. V.i- I
• vii i

APPLICABILITY OF ADA TASKING FOR AVIONICS EXECUTIVES

T. Introduction and Problem Definition

Introduction

The Ada programming language was developed for the

Department of Defense (DoD) in response to the perceived

software crisis in the 1970's. A large portion of software

costs related to this crisis are incurred for embedded

?Z- computer systems. "By definition, an embedded computer system

is one that forms a part of a larger system whose purpose is

not primarily computational, such as a weapons system or a

process controller" (Booch, 1983:13). For example, an

aircraft embedded computer system may perform functions such

as flight control, autopilot operation, weapons delivery

applications, and similar routines. Embedded systems have

particular programming requirements including:

-Parallel processing
-Real-time control
-Exception handling
-Unique input/output(I/0) control (Booch, 1983:13)

Ada was designed primarily to reduce embedded system

software development costs (ARINC, 1986:1). Although real-

time control is only one requirement for embedded systems,

these systems are often referred to as real-time systems. A

real-time system is one which must respond to externally

generated input stimuli within a specified period of time.

In other words, it has processing deadlines. "If a real-time

0

system performs the correct function, but delivers th- resu~

too late then it has failed to satisfy its requirements"

(Auernheimer and Kemmerer, 1986:879).

The scheduler for real-time avionics systems that 4s

* responsible for delivering results on time is known as the

executive. An executive which handles tasks at specific

intervals is known as a cyclical executive. The excu

provides an operating system for handling concurrent

,parallel) crocesses which run on the embedded avionics

.cmputer. For Air Force embedded avionics systems, this

executive has traditionally been written in the JOVIAL

programming language. A JOVIAL executive, which usually

contains assembly language subroutines, is created for each

embedded system. This method, however, leads to program code

segments that are not portable and may have software design

inefficiencies.

Ada has a special construct, known as tasking, for

writing executives. Tasks are entities that execute in

parallel. Each task is considered to be executed by a

logical processor of its own when run on a single processor

system (DoD, 1983:9-1).

These facilities are quite unlike the services provided
by a typical run-time executive or operating system.
Real-time systems will be designed as a set of cooper-

ating concurrent processes (Ada tasks) using the Ada
tasking model (Burger and Nielsen, 1987:49).

Executives written using Ada tasking promote the Ada goals of

reliability and maintainability (Booch, 1983:47).

2

The Problem

Tasking is an- important feature of Ada for real-tme

control of embedded systems. A programmer can use Ada

tasking instead of JOVIAL to write the executive for a real-

'time system. Unfortunately, little is known about Ada taskirg

Performance and its suitability for avionics executives.

Providing Ada tasking facilities creates execution.

overhead for the executive. This overhead must be bet ter

understood to determine if tasking offers a viable

alternative to JOVIAL for writing avionics executives.

To promote these goals, however, tasking must also

opeateeffcietlywihout excessive overhead.

Scope

This thesis was designed to quantify Ada tasking

performance in real-time avionics executives. The study was

was directed toward evaluating executives run on the MIL-STD-

1750A computer, a single processor embedded computer system

used in Air Force avionics systems. The benchmarks developed

for this computer should help programmers determine if Ada

tasking can be used in place of JOVIAL in the avionics

executive.

The intent of the thesis was to study tasking

performance efficiency. Tasking errors and compiler problems

discovered during the process have been identified, but

investigation into correct tasking operation was not

performed. For instance, no investigation was made into the

3

'A%

v I aid: iy of snared varIa 'es am:ng syn :r:rn:ze 3 3s

h This thsis compared Ada tasking Ce rrman e n 3

avionics executive jeveloced for ehls thesis -- on e:s

executive written wth jVAL. Since multiprocesscr

environments for Ada tasking are still under v';e-, T" n3

were not available for this study, only single zrocesscr

m.lementa:iorns were evaluated. Tn addition, sine s

would be identical for Ada and JOVIAL, 7/O operations e

not utilized in either executive. The evaluation was ma:n

a MIL-STD-1750A computer, the standard architecture for Air

-orce embedded applications, using program code 2ompiled by

Ada compilers targeted toward the 1750A. With this 4n mind,

tasking performance was not investigated on other comput-r

architectures. An attempt was made to evaluate whether

compiler version significantly affected Ada tasking

performance, but due to the immaturity of Ada compilers this

factor could not be tested.

Thesis Overview

Chapter Ii of this thesis portrays pertinent findings

from current literature. It begins with a look at high order

languages and narrows the focus to Ada with emphasis on Ada

tasking for avionics executives. The chapter also examines a
6
*JOVIAL executive used in this thesis. The chapter concludes

with discussions of overhead determination and benchmarking.

Chapter III outlines the general experimental approach

and requirements definition. It also describes the factors

4

'p

which could have affected executive overhead. Finally,

the methods of measuring overhead and evaluating this overhead

with statistical tests are described toward the end of this

-hapter.

Chapter :V goes into greater detail of the experimental

design by describing and comparing the Ada and JOVIAL

executives. The specific statistical tools are also

,described in the latter part of this chapter.

Chapter V provides details of the experimental results

and describes problems encountered with several Ada

compilers. The results are analyzed to show the

significance of each factor under consideration.

The results are then evaluated in Chapter VI.

WThe evaluation leads to a conclusion of the applicability of

Ada tasking for avionics executives.

J.

-S

I°

II. Summary of Current Knowledge

Software engineering for avionics applications is an

area of particular importance to the Air Force. "The real-

time avionics environment differs from other environments

that are supported by computer programs because of the

timeliness required in responding to requests and because of

the physical constraints of the hardware" (Witt, 1985:11).

The hardware is constrained by size and weight limitations

which require efficient utilization of available resources.

In avionics, the designer does not have the luxury to add

more memory when a means of operating with less memory is

available. In addition, the speed required for certain

avionics applications is very high. Although delay of a few

seconds may be permissible with automatic radio tuning,

delays of milliseconds in handling flight critical

applications, such as engine controls, may be unacceptable

(ARTEWG, 1986:17).

*. Ada is a standardized DoD programming language which is

intended to reduce software life cycle costs by encouraging

*proper software engineering methodologies. These

methodologies should result in:

-Increased understandability
-Increased reliability
-Increased modifiability

-Increased efficiency
-Increased reusability
-Reduced training needs
-Reduced schedule or technical risk (ARINC, 1986:2)

A recent DoD directive concerning the use of Ada was

6

- = a w -w r- r .. -- , - J- wr.,-wr.• r- --, nr- , r' - - - r- zrr- -

"nsttuted with these benefits in mind. DoD directive

3405.1, signed April 2, 1987, states:

The Ada programming language shall be the single,
common, computer programming language for Defense
computer resources used in intelligence systems,
for the command and control of military forces,
or as an integral part of a weapon system.

(DoD, 1987:1)

This directive, while mandating the use of Ada, does not

specifically require the use of tasking for weapon systems.

Tasking will be used only if it operates efficiently enough

,. for avionics systems.

To evaluate Ada tasking, this literature review first

investigates current material on tasking's applicability, and

then lays the basis for the experimental portion of this

thesis. It begins with a look at why High Order Languages

(HOL) are necessary for avionics executives. This viewpoint

substantiates the rationale for using the Ada programming

language and then expands in the next section to consider the

applicability of Ada tasking. Considerable controversy

exists concerning Ada tasking feasibility for avionics, so

pertinent issues are outlined in the third section. These

issues are not directly addressed in this thesis, but point

to some tasking problems which remain unsolved. The problem

addressed by this thesis concerns tasking performance

efficiency which is specifically addressed in the next

section on overhead determination. Finally, the last section

on benchmarking lays the groundwork for benchmarking

techniques which are used in this thesis.

7

eqR~i

High Order Languages

In order to study Ada tasking, the overall philosophy of

using HOL's for avionics executives must be examined. This

review is necessary because software written with a HOL can

be accomplished as efficiently or more efficiently with

assembly language (Rubey, 1978:947). Fisher (1930:1)

notes that some believe HOLs should not be used because:

-HOLs produce time inefficient machine code
-Resulting HOL-generated code uses too much memory
-HOLs lack the syntactic structures for real-time
programming

In spite of the assembly proponents such as Rubey and Fisher,

there is considerable debate concerning applying HOLs to

avionics executives and other real-time systems. The primary

argument for use of HOL's is that "software development and

maintenance costs will make the use of HOL cost-effective in

*" spite of some loss of memory and execution efficiency"

(Lindley, 1980:1).

Hardware and software trends are solidifying the

argument for using HOL's in embedded systems. The main

*factors supporting the use of HOL's include rising labor

costs, increasing software complexity, declining hardware

costs, and reductions in hardware size and weight for given

functions (Lindley, 1980:1). While avionics computer

hardware is becoming less expensive and more compact, the

corresponding software is becoming larger and more complex.

Software is becoming more difficult to develop, debug, and

maintain (Lindley, 1980:4). Simultaneously, hardware trends

8

, 1- - - - - , , - r -' -. .%74-

are causing a decrease in factors which favor assembly

~: language for extracting the greatest possible performnance out-

of a particular processor and memory space (Lindley, 1980:5).

The benefits of using an HOL become clear when

considering life cycle Costs. HOL programmer productivity is

at least doubled since each line of HOL code corresponds to

several lines of assembly language code (Lindley, 1980:22).

In addition, software management tools are more easily

-~ applied to HOL based projects (Lindley, 1980:23). Later in

the life cycle, software maintenance costs are lower because

changes can be made without adversely affecting the program's

overall unity. Similarly, maintenance is also easier because

HOL programs are inherently more readable (Lindley, 1980:14).

To take advantage of HOL life cycle efficiencies, the

Air Force has primarily used the JOVIAL HOL for avionics

executives. A study which compared the Digital Avionics

Information System (DAIS)1I written in JOVIAL to an assembly

language version supports the use of HOLs (Trainor, 1967).

Although an approximate ten percent degradation was

incurred for both memory and execution time in the JOVIAL

version, programmer productivity was more than double that of

the assembly version (Trainor, 1976:6,7). Furthermore, the

JOV: AL implementation was much easier to read and interpret,

1The DAIS is a standardized architecture for avionics
V systems designed to accommodate a wide variety of avionics

configurations. The DAIS architecture includes a software
executive and application software. The DAIS will be covered

V~ ~'in greater detail in chapter 3.

9

making it more reliable and maintainable than its assembly

"4" language counter.art.

Since Ada was specifically designed with embedded

systems in mind, it may further reduce software life cycle

costs. To exhibi- the benefits of Ada, a study was performed

in which the DAIS was recoded from JOVIAL into Ada

Scarpelli, 9:5-. Although the Ada version was not fully

implemented (no compiler was available at the ti;e), Ada

displayed several advantages over JOVIAL. First of all, Ada

promoted top-down structured programming. Additionally, the

Ada source code was self-documenting and easier to read.

Another advantage was that transporting programs from one

machine to another would be easier.

Finally, strong typing provided the advantage of

reducing subtle type errors and maintaining data integrity.

Several disadvantages were also expressed as a result of the

study. These include the necessity of assembly language to

perform certain functions as well as the amount of data

manipulation required to change data format. The biggest

concerns of using Ada are the amounts of memory and run-time

overhead (Scarpelli, 1980:31).

A similar study known as Tactical Ada Guidance (TAG),

*I performed by the Air Force Armament Laboratory at Eglin AFB,

highlights these concerns in an investigation of Ada's

applicability to operational flight software for the Medium

Range Air-to-Surface Missile (MRASM) (Schnelker et al., 1985).
P .

The original JOVIAL implementation for this missile was

10

ie

m'.%

redesigned, coded, and tested using Ada. As seen from Tables

and !I, the design and coding phases for each version took

approximately the same amount of time. The increased t1mes

for the Ada version were due largely to inexperience with Ada

(Schnelker et al., 1985:vi). More pronounced increases are

evident in the code expansion and CPU utilization of the Ada

version. Although Schnelker et al. (1985:vi) note that an

optimized compiler should bring these figures down to

acceptable levels, the memory consumption and run-time overhead

substantiate the concerns raised by Scarpelli (1980:31).

Table I. TAG Design Phase

TAG MRASM
: (Ada) (JOVIAL)

Design phase in man-months 12 10
Lines of PDL 1030 900
Amplifying comments 40 200
Number of tasks 16 8
Number of functions/procedures 32 30

Table II. TAG Coding Phase

' TAG MRASM
(Ada) (JOVIAL)

Coding phase in man-hours 720 500
Lines of code 3034 3212
Amplifying comments 173 172
Number of tasks 17 10
Number of functions/procedures 25 26
Code expansion (bytes-dec) 28860 9292
Duty cycle (% CPU utilization) 52% 13%

* (Schnelker et al., 1985:vi,vii)

Ada Tasking

While the Ada version of the DAIS did not use tasking,

the laboratory which performed the comparison believed the

executive could have been designed and coded more efficiently

116, ,

using the Ada tasking features (Scarpelli, 1980:31). Since

the time of the study, the Air Force Wright Aeronautical

i Laboratories have extended their research to include Ada

tasking. A current project, the Common Signal Processor,

evaluated Ada tasking for use in a distributed computer

system. Tests early in the program, however, found Ada

tasking to be too inefficient in terms of execution speed

(Hanselman, 1987). Similarly, Ada tasking was found to be

sufficient for the TAG project, but Schnelker et al.

\(1985:63) felt that Ada was not appropriate for time-critical

software which interacts with sensor devices due to the

simplicity of the Ada tasking model which requires more tasks

for an embedded multi-task system than a custom designed

operating system (Schnelker et al., 1985:viii).

Tasking also has memory inefficiencies, since additional

storage is required to keep track of a task's state, the

status of delays, and a list of tasks waiting on entry calls

.5, (Baker and Riccardi, 1985:36-38). Problems such as memory

inefficiencies have raised serious doubts whether Ada can be

dused effectively in embedded system applications. A project

1undertaken by the Computer Sciences Corporation yielded the

following conclusion:

*O We believe that the Ada language tasking model,

including the preemption/priority scheme and the
termination mechanism, may not be sufficient to
support a typical real-time tactical embedded
computer system. We are concerned too, [sic]
about the efficiency which the Ada language run-time
systems will support recoded executive functions
and about the portability of such systems.

(Friedman, 1987:176)

12

IN I I

ue to the doubts concerning Ada for avionics

* >7 applications, Ada programmers often resist incoroorating its

new features in software design methodology. It is possible,

for instance, to write an executive in Ada without using

tasking constructs (Phillips and Stevenson, 1984:103). This

method of programming defeats much of the purpose of using

Ada to promote program modularity and portability.

A great deal of the reluctance to use Ada or its tasking

construct is a result of the uncertainty about performance in

embedded avionics systems (Phillips and Stevenson, 19814:103).

4 The problems associated with tasking overhead are amplified

by Phillips and Stevenson (19814:103).

The Ada scheduler for a general system is designed
for asynchronous tasks unique to this machine and
compiler implementation, and may provide an

WJ unknown and potentially disastrous amount of
overhead for tasks that have strict time limits on

* the total amount of time they can take to execute.
As a result of this, real time systems would
probably tend to be written in such a way that
avoids invoking any scheduling actions. This
means that Ada's very nice asynchronous event
handling properties may not be taken advantage of
when the cyclical executive is implemented
directly by the user.

* Before evaluating tasking overhead in greater depth, the

* advantages and disadvantages associated with Ada tasking must

* be considered. A study of tasking by the Mitre %)rporation

* (Carrington, 1986) identified the advantages and

disadvantages shown in Figure 1.

High overhead occurs in several instances within Ada

tasking. During a rendezvous, which involves coordination

between two tasks, context switching from one task to another

13

Advantages:

" N. -Tasks provide a convenient means for designing
concurrent processes and mapping these processes
to the target architecture.

-Tasks provide a means of task communication
directly without communicating through databases.

-Priorities allow control over relative task
execution urgency.

-The delay statement allows control over task timing.

-The run-time environment handles the details
of task synchronization, communication, and
context switching.

-Ada is capable of handling interrupts (an essential
feature of event-driven, real-time applications).

-Leaving task activation and termination to the
run-time environment reduces the coding and
testing effort.

Disadvantages:

-Lack of a dynamic priority mechanism.

-No means to explicitly control task activation.

-No means to temporarily suspend a task.

-Due to a lack of centralized tasking control,
Ada requires a high level of coupling among
programmers.

-No explicit cyclical executive facility exists.

-Vendor interpretable definition of delay statement.

-High overhead associated with the rendezvous and
implementation dependencies.

,* -Difference in interrupt handling facilities from
one Ada implementation to another limit efforts

4to develop reuseable software.

-High overhead associated with elaboration of tasks
which must be activated in a particular order.

Figure 1. Ada Tasking Advantages and Disadvantages (Carrington, 1986)

14
6 t|

can be intolerably slow for embedded systems <Kamrad,

": 73 . Likewise, the unpredi ctable overnead in...rre ,

Sur:ng task creation and termination makes dynamic task

allocation inappropriate for avionics. Therefore, no tasks

should be created or terminated during normal program

oceration (ARINC, 1986:17).

Anoc ter feature of Ada tasking which complicates

executive programming is that the semantics of Ada are
innerently asynchronous "Adams, 1983:982). Thus, event-

driven asynchronous processing is easily accommodated, but

the traditional cyclical executive does not take advantage of

Ada's strengths (Softech, 1986:14-7). A pure cyclical

executive has the advantages of familiarity, simplicity of

runtime system, efficiency (low overhead), and predictability.

On the other hand, asynchronous processing has the advantages

of more natural partition of problem, flexibility, and e~se of

design (Softech, 1986:14-18). In typical real-time

applications, certain actions such as data sampling and

% control loops must be performed repetitively (Softech,

1986:14-1). This is best done by the cyclical executive to

prevent tasks from falling behind and ultimately causing

control loops to get out of phase with the rest of the system

(Softech, 1986:14-10).

Another problem associated with the asynchronous nature

of Ada tasking is that it does not guarantee fairness. Thus,

a task may be permanently blocked waiting for a rendezvous

(Mundie, 1986:24).

15

- e to ;nese problems, the popular approacn to

cyclical' execu - ve has been to bypass Ada task-n' cons ,

by using an interruot-driven executive (Phillips,

734Ka. 0,). A proposed method of implementing a cyclical

execu-;ive in Ada is to develop a pragma to supply informati:n

not accessible to the compiler (Phillips, 1984:4.C4,ll5).

4-f - c t of" th-e cragma is the same as assoc-:-'g. n

interrupt with a task entry at each desired frequency

(Ph~iips, 934:4.105)

While Ada is to be used in all future avionics systems,

certain amount of assembly language programming can be

expetcc in many systems. This is because certain functions

are more critical to the efficiency of the system since they

are execu2ted at a high frequency. Coding these critical

"'.. functions in assembly language will improve overall system

efficiency. In fact, coding approximately five to twenty

percent of a program in assembly language can produce a

program which executes nearly as efficiently as a program

written in assembly language (Lindley, 1980:16).

Overhead Determination

A recent study by Burger and Nielsen (1987:49) of Hughes

Aircraft Company measured task overhead in a similar manner

0 . specifically for DEC Ada (version 1.2) on a VAX 8600. A

summary of their findings, giving the amount of overhead in

microseconds and normalized relative to the cost of a

procedure call, is provided in Table III.

'.1

- .- , .- , --. , -'- . - - ,-, - . . .16 '

Table iII. Tasking and Exception Handling Overhead

Description Overhead

usec normalized

I Task activation and termin-
ation 1960 178

2. Task created via an allocator 150 14

3. Procedure call 11 1

4. Producer-Consumer (2 context
switches) 503 46

5. Producer-Buffer-Consumer 1220 111

6. Producer-Buffer-Transporter-
Consumer 1694 154

7. Producer-Transporter-Buffer-
Transporter-Consumer 2248 204

8. Relay 906 86

9. Conditional Entry
- no rendezvous 170 15
- with rendezvous 29 3

10. Timed Entry
- no rendezvous 254 23
- with rendezvous 33 3

11. Selective Wait with Terminate 127 12

12. Exception in a block 222 20

13. Exception in a procedure 217 20

14. Exception during a rendezvous 962 87

(Burger and Nielsen, 1987:56)

I

17

in the maincoeue '~e .n :rze r :as3Ks

wit-, ... *

* additional conclusicn is that --he overheai f-:r a r e n z v S

is indicate" by .rodu er-:- -ns n.re

This over'head is expected to occur every :ime t'wc :3sks 3re

in a rendezvous and does not include any execution f . .

statements within the body once a rendezvous occurred Burger

4and Nielsen, 1987:-7).

Conditional and timed entry call have higher overhead

when a rendezvous does not occur than when one does take

place. This overhead should be considered when polling is

used to establish synchronization between two tasks. An

additional consideration is to avoid placing a selective wait

with terminate option inside a loop since its overhead is

incurred each time the loop is executed (Burger and Nielsen,

Nl 1987:57). Burger and Nielsen emphasize that these findings

*are based upon tests with DEC Ada on the VAX 8600 and

projections cannot be made for execution of the same

benchmarks on other architectures or other compilers.

Benchmarking

Using benchmarks such as those created by Burger and

Nielsen involves a number of complex operations. These

include:

18

11110 111

-Isolating the feature to be measured;

-Achieving measurement accuracy and repeatability;

-Eliminating underlying operating-system

interference from time slicing, daemons,
and paging.

(Clapp et al., 1986:760)

Another problem found when comparing two versions of a

program, such as HOL versus assembly language version, is

that writing a complete baseline assembly language version

would more than double software development costs (Rubey,

1978:947).

To solve the problem of versions for comparison

purposes, only a few segments of a complete program are used

for comparison. This type of comparison raises the

additional question of whether the segments are

representative of the entire program. There is additional

uncertainty as to whether the baseline version could be made

smaller or faster by a better programmer. Usually, an

assumption must be made that the baseline version contains

representative segments that are the product of an average

programmer (Rubey, 1978:947).

The most commonly used technique for measuring the time

needed to perform an operation is to execute the operation a

large number of times and take time readings only at the

beginning and end. The desired time is then found by

averaging (Clapp et al., 1986:762). This technique still

leaves the previously identified complex operations to deal

with. To isolate a feature to be measured, the control and

19

N4 N. -' N III

the test segment must differ only by the feature being

.°measured. in spite of controlling differences in

corresponding tests, code optimization can distort benchmark

results and must be avoided (Clacp et a!., 1986:762,.

Measurement accuracy is achieved by statistically determining

the number of iterations needed to obtain a parameter

measurement within a given tolerance (Clapp et al., '36: -

763). Finally, eliminating the underlying operating system

is done by running the tests with no other user orooesses in..-.

concurrent execution and all daemon processes disabled. Even

with these precautions there are still timing anomalies that

must be measured and detected (Clapp et al., 1986:764).

Conclusion

Although the use of Ada has been mandated for use in all

-.' future weapon system development, this mandate does not imply

that tasking be used. Preliminary studies of tasking for

real-time systems have identified several shortcomings

primarily concerned with performance. These studies have

created uncertainty for the future of Ada tasking as it

-: presently stands. Further study of tasking efficiency is

needed to determine if tasking provides a viable method to

structure avionics executives. If so, tasking uncertainties

:..: must be exposed to promote using tasking in future systems.

02

S.1s

O4

S -- III. Experimental Design

General Approach

The main goal of this thesis was to investigate the

overhead associated with tasking for avionics executives.

This goal was pursued by cc.paring two executives: one using

Ada tasking and the other using task scheduling written with

JOVIAL J73/I.

The rationale for comparing different executive models

was twofold. First, empirical measurements of overhead for

individual Ada tasking features alone have already been made

in studies by Burger and Nielsen (1987) and Clapp et al.

(1986). Second, the suitability of Ada tasking for avionics

systems must be evaluated with respect to overall system

performance. Since JOVIAL J73/I is the previous standard for4.

Air Force avionics software, comparing an Ada version with a

JOVIAL implementation of the same system yields an analysis

of how well Ada tasking compares with the previous standard.

The first step of performing an experiment to compare

Ada and JOVIAL was to determine requirements for the

experimental design. Rather than attempting to formulate

these requirements, a search was made for existing

JOVIAL executives which could be rewritten using Ada

tasking. To be useful, the chosen JOVIAL executive had to be

representative of avionics systems. The only executive

found to be available for this study was a subset of the DAIS

21

executive. Fortunately, the DAIS is highly representative of

avionics executives and variations of the DAIS are a.tually in

use in many avionics, applications (King, 1987 ' . The DA:S is

an ideal executive to study since it continues the research

done by Scarpelli (1980) and also expands work done by SEAFAC

which used the DAIS for a KC-135 executive.

DAIS is a system architecture which can be config-
ured for various avionic [sic] applications and missions
using core elements or building blocks. The purpose
of the DAIS concept is to reduce the proliferation
and nonstandardization of aircraft avionics, and
permit the Air Force to assume initiative in the
specification of standard avionic [sic] systems and
interfaces for future Air Force system acquisitions.

(DAIS, 1977:5)

To provide flexibility for various avionics

configurations, the DAIS is driven by tables which contain

lists of all application tasks and specific task

requirements. The tables to run the DAIS were built using a

scaled down, yet representative, series of application tasks

for a typical avionics executive. The representative tasks

were provided by SEAFAC based upon their experience with

-. avionics executives. The task specifications included the

aO phase, frequency, and priority required for task execution.

For a more detailed explanation of these specifications and

the detailed design of the experiment; see Chapter IV. Since

the tests were designed to study the task scheduling overhead

of each model, the function of each application task was

immaterial to the experimental design. Thus, each

application task contained the same body. The task bodies

were designed to work within the Ada executive as well as the

22
-O

DAIS. Rather than use null task bodies the task bodies wer e

designed to prevent task elimination through Ada compiler

oc..mization by using global variables which are referenced

both inside and outside the task bodies.

After running the DAIS on a MIL-STD-1750A computer, an

Ada tasking executive was designed and written to schedule

identical application tasks. This executive was originally

debugged, run, and tested on a DEC VAX-11/782- . After program

errors were eliminated, the actual tests and comparisons of

both version were performed on the 1750A computer. Since the

4 1750A nas no operating system to assist with performance

measurement, running the executives on the 1750A presented

more difficulty in obtaining measurements. The measurements

obtained, however, were more accurate because there was no

interference from the operating system nor multiple users to

affect the experimental outcome.

Measures and Factors

The primary performance concern of an avionics executive

is run-time processing efficiency (Dewar, 1987). To measure

overall run-time efficiency, the run-time overhead must be

measured. Ideally, the run-time overhead should leave enough

CPU time available to give application tasks primary access

to the processor. To measure run-time overhead, idle

CPU time was recorded and compared for each model. Since

each model performed identical application tasks, the

-The DEC VAX-11/782 is an uncommon computer which uses two
VAX-11/780 processors.

23

difrne in idl T CJ e icotdte m o del's re -34-e

rur,-time eff fcency. Several tests were subsequently

'eve'o- ,ced to deter.ine whether The Ada tasking version

, significantly affected task execution.

To make this determination, all factors which could

affect task execution were considered and included in the

experi.men as necessary. The factors which could affect this

performance are illustrated in Figure 2.

-easre ,,Factors

MH 750 YCyclic.MA C H N ' E-" M X<

iOther Mixture

I Ine Jovial

WORKLOAD iLANGUAGE Delay
Low TASKINGz"

.METHOD < Interrupt
<Ad a <A

COMPILERB

D
Figure 2. Experimental Factors

Machine.

Although the hardware architecture and specific machine

features could have an effect on performance, this factor was

not investigated. The 1750A architecture alone was used

snce i is the standard architecture for embedded systems.

Using The '7 50A also minimized measurement errors since it is

a single user machine with no time sharing and no operating

system to influenc- results. To avoid hardware interaction,

w

.5

- 2 . '

all tests were performed on the same machine.

Mi x.

Avionics executives typically consist of a mix of

cyclical and asynchronous tasks. Cyclical tasks are

necessary for many avionics tasks that must be repeated at a

specific frequency such as control (feedback) loops or data

samping.King, 1987). In addition, cylca 'asks tend to

spread out processing demands to avoid having several tasks

waiting, to run simultaneously. Asynchronous tasks, on the

other hand, are triggered by events which are not

predetermined, and perform functions peripheral to cyclic

tasks. Ada tasking is geared more toward handling

asynchronous tasks. To study the effect of asynchronous

versus cyclical tasks, the experiment first looked at purely

cyclical scheduling and then determined, if adding

asynchronous tasks at random intervals affected performance

in either JOVIAL or Ada environments. Solely asynchronous

tasks were not evaluated since they would not represent a

typical avionics executive (King, 1987). Asynchronous tasks

* were instead combined with cyclical tasks to utilize both

methods of task scheduling and to increase the tasking

workload.

* Workload.

Another method used to study the effect of workload was to

shorten the major frame. The workload was studied in this

manner to analyze the effect of workload alone. A major

-" frame is the longest period of time specified for synchronous

25

action. In other words, it is the time interval of the least

frequently occurring cyclical task. By reducing the major

frame and thereby increasing the frequency of all cyclical

tasks by a corresponding amount, the workload was increased.

Although workload is a continuum, it was studied only at two

levels to facilitate statistical analysis as described in the

next chapter.

Language.

The JOVIAL J73/I versus MIL-STD-1815A Ada language

performance was the primary factor under investigation.

Since these languages are standardized language variations

were not considered.

Compilers.

Of In spite of language standardization, the compiler used

was expected to have a significant impact. Since JOVIAL is a

mature language, only the Air Force standard JOVIAL compiler

was used. Compiler version was expected to have a greater

affect on the Ada version, however, so the four 1750A Ada

compilers available for this thesis were tested with

identical code. Of the four compilers, three were unable to

compile and run the code successfully. The problems

encountered are discussed in Chapter V.

* System Timing Method.

In addition to the compiler effect, the method of

implementing Ada tasking for cyclical tasks was considered.

One method, that of using delay statements, uses pure Ada

" " tasking features to achieve cyclical scheduling. Since

26
6

delays are the minimum time period a task must wait, a task

sometimes resumes execution a short time after its delay

expires. As seen in Figure 3, the task gets out of phase

with the rest of the system, and ultimately operates at less

than the required frequency. This phenomenon is termed

cumulative drift (Softech, 1986:14-10).

Scheduled

Iterations

~Actual
~Iterations

Figure 3. Cumulative Drift
(Softech, 1986:14-7)

An alternative method which avoids cumulative drift by

associating task entry calls to timer interrupts was tested

and evaluated. Although other methods of dealing with

cumulative drift exist, this is the simplest method and

4 represents the least amount of overhead. Some perceive,

Phowever, that this method avoids proper tasking constructs

and does not take advantage of Ada's strengths (Softech,

1986: 14-7).

Statistical Tests

The factors under investigation were analyzed in

accordance with procedures for factorial designs at two

levels. These tests looked at two levels for each factor

"' under consideration. For instance, when considering the

27

r, o ad f3ctor, high workload and low workload comprised tne

two levels. All combinations of factors must be tested unless

a fractional factorial design is used. In this thesis, all

combinations were tested except those cases which would not

run due to compiler limitations. Further details of the

statistical tests are provided in Chapter IV, and test results

are found in Chapter V.

Conclusion

The measurement used to determine the applicability of

Ada tasking for avionics executives was the amount of idle

CPU time in a major frame. Greater CPU idle time indicated

less spent in tasking overhead. Since both versions performed

the same tasks, the comparison showed the difference in

44 overhead for each combination of factors. To determine which

factors affected tasking performance, the factors shown in

Figure 4 were considered.

Measure Factors

Cyclic

"
M 'Mixture

.'- Idle

T Ti m Jovial
S-WORKLOAD < Hig LANGUAGE Delay

i Low TASKI NG4§
< Ad ETHO DG-I nterrupt

a COMPILER-A

.0 Figure 4. Tasking Performance Factors

28

. *r.

IV Deta I ed es n

Although the Ada tasking executives and the JCVAL DAIS

executive were designed to handle tasks similarly, the Ada

models used the Ada Run Time System RTS to handle task

interaction while the DAIS contained its own task scheduling

functions. This chapter begins by explaining design details

which are common to all models and then studies each model

separately. A comparison of the models reveals a great

degree of conceptual similarity. The implementation

differences account for different amounts of overhead for

each model. The chapter ends with a description of the

statistical methods used in comparing executives and

analyzing results.

All models are based on a real-time system in which

tasks are coordinated with the passage of time. The minimum

time granularity in Yhich task activation can be specified to

occur is known as a minor cycle. A major frame, the longest

* period of time which may be specified for a synchronous

action to occur, was defined as 128 minor cycles for each

'.'- model. Initially, both versions were run with a four second

major frame duration yielding minor cycles of 1/32 of a

second. This time is typical of avionics executives and was

subsequently reduced in each model to study the effects of

increased workload.

All models were tested with the same series of

29

a..3.- L2'2-3 aks so s-at compar:ng executives woul' sncw

-::f esinover ead. The cyciical tasks used for t'ese

es re shown in 7ab- iV. These tasks were chosen to

realistically model the cyclical tasks found in a typical

avio.,ias exec tive (Kig 1987. The phase of a task, h

Sndicates the initial minor cycle for a given task, prevented

having too many tasks attempting to run in the same minor

cycle. The phase distributed the demand on processing

resources evenly over all minor cycles.

Table IV. Cyclical Tasks

Period Tasks Priority Phase
(1-low)

2 A2 2 1

4 A4 3 3

8 A8 4 7
B? 4 6

16 A!6 5 15

B16 5 14

32 A32 6 31

64 A64 7 63

* 128 A128 8 0

Asynchronous tasks were subsequently added to

each model by calling a linear congruential pseudo-random

number generator during each minor cycle. Random numbers were

used to represent random events which trigger asynchronous

tasks. Depending on the random number encountered, each

- .J. minor cycle would contain zero to nine asynchronous tasks.

30
04

-~ The correspondence of random numbers with a :Dart;,ular njmber

of asynchronous tasks was chosen to realistically model t'

asynchronous task workload in a typical avionics executive

AX King,1 1987). As shown by the figures displayed 4n Table 7

there is a high probability of few asynchronous -a~ n a

given minor cycle and a low probability of all nine

asynchronous tasks occurring in one minor cycle.

Table V. Asynchronous Task Activation

Random Number of
Number Asynchronous Tasks
Generated called

1 9
2 3 8
4 6 7

7. 10 6
1 1 17 5
18. 26 4
27. 37 3

38. 49 2

66 .. 100 0

Workload, the last factor common to all models, was

studied by changing the time between minor cycles. A shorter

* time between minor cycles represents a higher workload per

period of time. The remaining factors, Ada compiler selection

and system timing method, were compared only with each Ada

version since these factors do not apply to the DAIS model.

Having explained design details common to both models,

the DAIS and Ada models will now be described separately in

greater detail.

31

DAIS Model 3

The DAIS uses events for task scheduling purposes.

Events refer to occurrences such as the start of a new minor

cycle or actuation of a switch which could trigger task

activation. Random events such as actuation of a switch are

'- simulated by random numbers in this experiment. System

timing to establish the interval between minor cycles is

performed by the master executive which sets a hardware clock

to interrupt whenever one minor cycle has elapsed (ASD,

1980:47). The DAIS controls task states by referencing the

table of tasks and scheduling tasks with respect to events

and priority. The task states, along with the method of

transition from one state to another are shown in Figure 5.

_-(When the DAIS is started, all tasks are in the invoked

state. From this state, events occur (such as a new minor

cycle) to make a task active. The active task is then

performed according to processor availability.

• .++' .-+,,,.3The DAIS source code is available from SEAFAC (ASD/ENASF)
.WPAFB, OH.

S.32

8l.

-"'. States of a Task

.-.

Schedule
Uninvoked () Invoked

Cancel

/a Events
Inactive () Active

End or
Terminate

Event
Time

Waiting () DispatchableWait

J.

'Vi

Ieady Suspended Executingl

* According to Processor Availability
(Controlled by Priority)

Figure 5. DAIS Task States
0.. (ASD, 1980: 10)

. .-. 3

3 3

Ada Tasking Model

The Ada tasking model uses the Ada RTS to control task

state in a manner similar to the DAIS executive. The

possible states of an Ada task are shown in Figure 6.

Although the Ada task state diagram is simpler than the DAIS

diagram, a similarity appears in possible task states. The

similarity is shown in Table VI.

' ''2Elaborated
*4"

"1*

0

I Running, Ready Blocked

~Completed

Terminated

i " Figure 6. Ada Task States

V (Booch, 1986 -:282

Ae.
.4.4

Table VI. Corresponding States

Ada DAIS

Elaborated Invoked
Running Invoked-Active-Dispatchable-Executi ng
Ready Invoked-Active-Waiting
Blocked Invoked-Active-Dispatchable-Ready
Completed Invoked-Active-Waiting
Terminated Uninvoked

System timing in an Ada executive is not handled

automatically by the RTS but must instead be established by

the program designer. The delay construct can be used to

establish the desired interval between minor cycles. Another

alternative is to set a hardware clock, as in the DAIS, and

tie the clock interrupt to the start of a new minor cycle.

Both methods of system timing were evaluated in this

Wi experiment to determine the significance of tasking

methodology on system overhead as will be explained in the

next sections.

Ada with Delay Statements.4

Cyclical tasking is difficult to implement in Ada

without using interrupts because the RTS provides no

automatic means of system timing. Nevertheless, it can be

done with a minor cycle task calling a scheduler task at the

beginning of each minor cycle. The scheduler task in turn

calls each task to be run during the minor cycle. The

program structure is shown in Figure 7.

Tasking entry calls were used to synchronize between the

4 The Ada source code is available from AFIT/ENC WPAFB, OH.

35

Minor Cycle and Scheduler tasks and between the Scheduler and

,. -' application tasks. Asynchronous tasks were subsequen ly

added to this model by calling the random number :eneratzr

from within the Scheduler task. The workload was changed by
changing the minor cycle duration.

task Minor Cycle
loop 1 . * Number of Major Frames

loop 1.. 128
start Scheduler
delay Minor CycleDuration

end loop
end loop

end MinorCycle

task Scheduler
loop

accept start do

If proper period, phase and conditions then
start appropriate application task

end loop
end Scheduler

task cyclicaltask
loop

accept start do
counter := counter + 1
if counter > 5000 then

counter = 0
end loop

end A2

.-5- Figure 7. Ada Program Structure

Ada with Interrupts.

In an attempt to obtain more accurate system timing, a

similar tasking model was developed with minor cycle timing

handled by an interrupt tied to a hardware clock. The

interrupt was used to call the minor cycle task rather than

S.3

36

04

.4.

'Ine 2.. 1 :s Ce K 1 3 S 3

...r. gn A assemb-y _anguage progr3ms. Tnese rgr~ms 3re

Cmbined wi~h tne Aa programs an :a' ,d t r ., Ai 's

pragma inteface A separate assembly rcutine is neee :r

mieah minor cycle ,uration desired.

This model was also tested with -he same 2synch s

- tasks and by varying the workload. The results of all test

cibinations are found in Chapter V.

- verh-ead Measurement and Statistical Analysis

* 'Overrhead Measurement.

Determining how to measure executive overhead was tne

most pervasive problem of this thesis. Executive cverhead

could not be isolated for measurement with calls to a system

timer. The lack of operating system tools in the Ada RTS to

measure processor utilization also hindered timing

measurements. The only method found to measure overhead was

to measure idle CPU time.

Idle CPU time was tracked by a low priority task which

incremented a value whenever higher priority tasks were not

ready to run. The count was performed through an assembly

routine which incremented a register every time called.

Overflows were detected and saved in a second register. At

the end of each major frame, these registers were read and

reset back to zero. The CPU idle time was then analyzed by

comparing the number of increments.

37

-|Ac * ' *---' -

'-sn33e cfS< lc r -crity whicn executed in a- infinite

w.-. nc alow a task to run

:~nsecut~ve m4inor cyc'es, two separate low priority tasks

we ere e ta 1ihe. -'re task called the assembly routine

23-as zero and he oth-er called it in phase one. Eoth tasks

a -e rtcd of twc so 'hey would execute every other minor

-ta t stica l Anl..ysis.

-he first factors tested were those pertinent to the

Ada models alone. Unfortunately, only one compiler was able

t o successfully compile and run the programs, so the compiler

efect could not be evaluated. The effect of the system

timing method was analyzed, however, and used to determine

"he significance of this factor. Once this factor was

evaluated, all combinations of remaining factors were

compared between the DAIS, Ada with delay statements, and Ada

with interrupts.

The first step of the statistical analysis was to

* analyze the variability of results to determine how many

repititions of the experiment were necessary. Each run

consisted of measuring the idle time in one major frame. The

0,0 first major frame was excluded since all tasks were being

initialized. Subsequent major frames gave consistent results.

The number of major frame samples required was determined by

first taking five samples. The number five was chosen

* "arbitrarily. According to statistical procedures, the

38

number f sampes is un7mportant and only the judgment

3 "f the experimerner is used to derive this number. Four

samzles or nearly any other number of samples) would have

worked just as well, but for this thesis five were used.

These samples yielded an estimate of the variance encountered.

The variance was then applied in the central limit theorem

through the confidence limit approach in equation (1) to

derive the number of samples required.

n (a Za/2) (1)
2

d

where

n = number of samples required
= standard deviation

Z is the two-tailed standardized normal statistic
for probability of 0.95

V..' ad amount of difference allowed between the estimate

and the true parameter - 10% of the average found
in trial runs5

The combination of factors which created the greatest

variance dictated the number of runs for all subsequent

tests.

V.-

V.'.

5Ten percent was picked as a good amount for this study since
initial runs showed that ten percent would be sufficient to
distinguish significant differences in idle CPU time. One
percent or five percent could have been specified, but this
level of precision was not deemed necessary.

039

.
.4=........................

Many similarities were seen in the structure of tne
,.V:AL DAIS 3nd Ada executive software. Differences in the

tIwo stem from the run-time system in use. The overhead of

each run-time system was compared by measuring idle CPU time

in all combinations of factors under consideration. These

measurements were analyzed statistically. Results are

presented in the next chapter.

-N

-40

O,

*1

.14

N

". "-[V. Experimental Results

All factors were evaluated with the exception of the

comparison of the compiler effect on Ada executives. All

four of the Ada compilers tested had "bugs." As a result of

these problems, only one compiler successfully provided

executable code. This chapter will begin by describing the

problems encountered with each compiler and then proceed to

actual test results and statistical interpretation of these

results.

Compiler Problems

The compilers used will not be identified by name, but

- will instead be referred to as A, B, C, and D to avoid

mentioning proprietary information. Compiler A was able to

run all tests successfully. The other compilers were unable

to execute the tests for various reasons. Compiler B compiled

and linked successfully, but produced a tasking error during

run-time. Compiler C compiled successfully, but encountered

an internal linking error. Finally, Compiler D encountered

an internal compiler error and could not compile the Task

Scheduler package. All compiler problems were submitted to

the compiler vendors for debugging if the vendors had a

current contract with the Air Force for that compiler.

• -Even if all four compilers did work, only two would have

handled the interrupt version because not all Ada Language

• . .'-* Reference Manual chapter 13 features are implemented by each

compiler. The compiler specifications w:.n.

*["c Pertinent feature are shown in Table I.

Table VI. Compiler Fe3'ares

Used Pragma Address
Compiler Successfully Tnterface Clause

A Yes Yes Yes
B No No No
C No Yes No :
D No Yes Yes

Compiler A.

Although Compiler A produced useful code, s-.-.

peculiarities were discovered. The first prooem

was that of inputting items of type duration ine..

from the terminal keyboard. This technique worked in some

h - cases, but failed in others with no apparent reason for the

-,' failure. This would have provided a convenient means of

entering the minor cycle duration for each test, but an

alternate means of loading durations to be tested in an array

was used.

The most puzzling problem encountered was found with the

timing of the delay statement and assembly coded interrupt

procedure. To test the accuracy of the delay versus

interrupt minor cycle durations, a test was performed in

which the minor cycle duration was set to 0.0312 seconds.

This yields a four second major frame. Not surprisingly,

since delay is a minimum time period, the delay version took

5.01 seconds for one major frame. As expected, the interrupt

J- '. version was more precise with a major frame duration of 4.05

.42

f - - - = -- n m m m m m m

s2c2 ds.

A dis repancy c2curred, however, when the mincr V 2 e

rat on was increased to 0.5 seconis. With this duration,

..ne major rame should take t4 seconds. With the elay

version, nowever, one major frame took 60.07 seconds. The

.nterrupt version also displayed a similar discrepancy with

3 macr frame time of 60.06 seconds. These results were

recorte7 to the compiler vendor for investigation. As of

'ns time, the vendor has not replied with an explanation

-r mc:if4cation to correct the problem. Since the long

delays which caused the discrepancy were used to investigate

delay accuracy and were not used in the actual experiments,

h e experimental results remain sound

Compiler B.

Compiler B worked for simple tasking programs where

tasks executed sequentially without interleaving. When more

complex programs were run with code from this compiler, the

program was unable to progress through one major frame before

ending with a tasking error statement. Considerable time was

spent trying to modify the code to run from this compiler

since this was the first Ada to 1750A compiler used.

Unfortunately, no solution was found. The compiler vendor was

already aware of this problem and may fix it with a later

release.

Compiler C.

This compiler was not tested further once the initial

linking failure was discovered. Discussions with other users

43

......s ccmler indicated ~hat linking errors were common,

and extensive debugging of what the compiler could and could

no: handle would be futile. This compiler is not currently

supported by Air Force contract.

Compiler D.

The compiler error encountered did not give any

indication of what could be causing the problem. The Task

Scheduler which would not compile was the lowest level package

which contains task entry calls. The compiler error is most

likely associae with tsK synchronization and

communication. Tne problem was reported to the vendor, but

no solution was er

Test es -s5

.ne resl'lts are r oroc :r each combination of factors

Den aoi i . :qua :on was used to determine how many

samp'e runs were required. Due to the small amount of

variance between runs, the five initial runs were sufficient

to obtain an answer within 10% of the mean for all test

combinations. Therefore, no more runs were necessary.

The results indicate that the Ada model with interrupts

has fewer increments than the DAIS or the Ada model with

delays. From the overhead measurement section in Chapter IV

the number of increments is shown to correspond with idle CPU

time. A model which has more idle CPU time is thus more

efficient in terms of executive overhead than its

counterpart. The results can therefore be interpreted to

4 4

111 0 11 11 ' 1

-" show that the Ada model with interrupts was less efficient

'. -than the DAIS or the Ada model with delays. There is a

significant difference between the Ada version with delays

and the DAIS, but this difference is compounded by the

Table VIII. Idle CPU Time for all Combinations of Factors6

Run Ada with Ada with
Number Delays Interrupts

Cyclic Mixture Cyclic Mixture
Low High Low High Low High Low High

1 238603 138497 215931 112478 180606 76403 156754 52473
2 238634 138528 217247 114586 180597 76399 158223 54072
3 238700 138560 216593 113972 180597 76407 157481 53294

0 4 238815 138355 215496 113245 180598 76401 156736 52536
5 238915 138653 215989 113501 180602 76400 157222 53018

Mean 238733 138518 216251 113556 180600 76402 157283 53078
Std Dev 130 108 680 790 4 3 613 651

DAIS
Run
Number Cyclic Mixture

Low High Low High
1 248680 120550 242489 114328
2 248684 120560 242702 114530
3 248693 120545 242564 114428
4 248691 120546 242434 114297

- 5 248673 120550 242408 114291

y Mean 248684 120550 242519 114374
Std Dev 8 6 118 103

6 Test results given in number of increments per major frame.

Heading codes: Cyclic/Mixture indicates purely cyclic
tasks or mixture of cyclic and asynchronous
High/Low indicates high or low workload

45

'" interact~on of botn workload and task xture r

are sufficient to provide an e quation which an reL:;

CPU time, but do not indicate that da tasking witn .e1,'

better or worse than the DAIS in all cases.
a..

The results from Table V-II shows that the DAS

has more idle CPU time under low workload conditions than An

2-.[tasking with delays regardless of the application task

mixture. Ada tasking with delays, on the other hand, perf:rms

better than DAIS under high workload with cyclical tasking.

Neither version shows a significant advantage under high

workload conditions with a mixture of cyclical and

asynchronous tasks.

The interrupt driven model displays approximately '-c

oi 50 percent more processing overhead than the Ada model with

delays for all combinations of factors. For example, with

-.. cyclical tasks and low workload, Ada with interrupts has

180,600 increments per major frame and Ada with delays has

238,733. This shows the interrupt model having 24 percent

greater overhead than the delay model under these conditions.

The results were then analyzed with Analysis of Variance

-(ANOVA) procedures to determine which factors significantly

influenced executive overhead. The null hypothesis for each

test was that the factor was not a significant influence; the

alternate hypothesis was that the factor provided a

significant influence. Initially, the Ada with delay and Ada

with interrupt versions were compared with one another. Each

. .-] factor under consideration was found to have a significant

46

" nfence. Since the Ada version with delay statements

cf " r... ----:ter than the interrupt version, the DAIS was

crompared with the delay version. Once again, each factor

,nJ er ccnsideration was found to have a significant

influiene. To analyze the relative influence of each factor,

- a s.epwise regression analysis was then performed with SAS.

7he outcome of this analysis indicated which factors should

be included in the model and the relative influence of each

factor as shown in equation (2).

-4,767L - 14946M + 57399W + 16809 (2)

where
0 Variable Denotes Meaning

L Language - 1-Ada or O-JOVIAL DAIS
M Mixture - O-All cyclical or 1-mixture
W Workload - 2-High or 4-Low

Conclusion

The effect on idle CPU time was measured and recorded

for each factor under consideration except the Ada compiler

influence. The compiler influence could not be investigated

because only one of the four compilers used was able to

I* produce code which would execute on the 1750A.

All of the remaining factors contributed to the amount

of idle CPU time. However, much of the change in idle CPU

• time resulted from the change in workload through adding

asynchronous tasks or decreasing the minor cycle duration.

Conclusions will be drawn in the next chapter as to the

implications of executive overhead on the applicability of

pfq-. Ada tasking for avionics executives.1

44

VI. Conclusions

The Ada executive models developed and analyzed in this

thesis show that Ada tasking does not Posses inherently high

overhead when compared with the DAIS. On tne contrary,

executives can be developed, using Ada tasking with delay

statements, which have comparable overhead to the DAIS.

These executives, however, are prone to timing problems which

may negate Ada tasking utility.

The conclusions drawn in this chapter are limited in the

sense that they are based on a comparison of the DAIS and an

Ada tasking executive rather than absolute overhead

requirements for any avionics executive. Nevertheless, since

the DAIS is representative of avionics executives and the

application tasks were chosen to model typical avionics

systems, the applicability of Ada tasking for avionics

.1 executives can be inferred from the results herein. The

final analysis of Ada tasking can only be made by using

* tasking in a complete executive which is ultimately flown and

flight tested. The results in this thesis indicate there is

a significant amount of risk and problems that may be

'V encountered if Ada tasking is mandated for such a program.

Other limitations of this study include the fact that

'V various architectures including multiprocessor

implementations were not evaluated. In addition, several

, ~. other Ada compilers targeted toward the 17'50A exist, but were

148

not available for use. Likewise, various JOVIAL executives

exist, but were not available for experimentation due to

proprietary reasons. These limitations must be borne in min't

when considering the conclusions reached in this chapter.

The results indicate that Ada tasking with delays

has nearly the same overhead as the DAIS and is therefore

worthwhile for avionics applications. The probl6:z of

cumulative drift, however, confounds this conclusion. Ada

delay statements allow cumulative drift because delays are by

definition a minimum time interval. Ada is therefore able to

perform better under high workloads by postponing the delay

expiration.

Although unproven, it is doubtful that the Ada tasking

version with delays would be able to handle avionics tasks

effectively. Timing problems would most likely have to be

handled. Handling these problems implies creating more

system overhead as in the interrupt driven model.

While providing more accurate timing, the interrupt

driven model is likely to cause excessive demands on the

processor. Given the size and weight constraints of embedded

avionics systems, increasing processor capacity to

accommodate Ada tasking is not a viable alternative.

The DAIS also maintains precise timing by associating the

minor cycle duration directly with a system timer. This is

nearly analogous to the Ada executive with interrupts. The

DAIS therefore limits drift and associated timing problems.

~' Compiler development and enhancement should make Ada

49

tasking more efficient. Ada compilers targeted tcwr t.

1750A are relatively immature at this time. As a poInt Of

interest, the vendor for compiler A delivered two compiler

upgrades during the time this thesis was performed. One of

these upgrades made a significant impact since it allowed

address clauses to be associated with task entries. Until this

* upgrade was received, the Ada tasking with interrupt model

would not run.

Recommendations

Compiler evolution alone may not be sufficient to make

Ada tasking effective for avionics systems. Tasking itself

-" should be redesigned to efficiently handle cyclical tasks. A

software interrupt is necessary to provide precise timing for

cyclical tasks, but this interrupt need not be tied to a task

entry. Rendezvous with an interrupt, as seen in the results,

creates a high degree of system overhead.

A table driven approach, such as the DAIS, is one means

of providing efficient tasking. Another approach is to

develop a pragma "cyclical executive" as proposed by Phillips

and Stevenson (1984). This pragma would associate an

interrupt with a task entry for each desired frequency.

. Although this approach promises more accurate system timing,

the affect on system overhead could be detrimental as in the

Ada tasking with interrupt model developed in this thesis.

A combination of the above proposals shows great promise

for providing accurate timing while maintaining low overhead.

50

L'

..e .r, grma syc c executive" can be used tc D prc,4

"iming, and cyclical tasks can table driven as in the 3.

-n tr.s manner, the task scheduler need not rendezvous wi

eacn application task to be run. instead, the applicaticn

00 asK can b flagged to run without incurring the overhead of

V4
an add.tional rendezvous.

d ruture efforts should be made to provide precise

cyclical tasking without excessive overhead. Specifically,

the overllead associated with table driven cyclical tasks

should be investigated. The overhead measurement

techniques used in this thesis can be applied to measure

idle CPU time and thus compare system overhead of future

developments.

51

04'

""ibliography

Adams, Steven z• and 3rian Clausing. "Distributed Avionics
Processing Using Ada," IEEE National Aerospace
Electronics Zonference (NAECON), 2: 979-983 (1983).

Ada Run-Time Environment Working Group (ARTEWG). Catalogue of
Ada Runtime Implementation Dependencies. Association for
Computing Machinery, November 1986.

Aeronautical Systems Division (ASD): Systems Avionics
Division. Computer Program Design Specification for
DAIS Mission Software Executive. SA*10 1 22001. i

January 1980.

Aeronautical Radio Inc. (ARINC), Circulation of Draft 1 of

Project Paper 613, "Guidance for Using Ada in Avionic
Design." Airlines Electronic Engineering Committtee
Letter 86-165/SA1-289, 4 December 1986.

Auerheimer, Brent and Richard A. Kemmerer. "RT-ASLAN: A

Specification Language for Real-Time Systems," IEEE
Transactions on Software Engineering, SE-12(9): 879-
889, September 198.

Baker, T.P. and G.A. Riccardi. "Ada Tasking: From Semantics
to Efficient Implementation," IEEE Software, 2(2): 34-a~. 46 (March 1985).

Booch, Grady. Software Engineering with Ada. Menlo Park
California: The Benjamin/Cummings Publishing Company, 1983.

Booch, Grady. Software Engineering with Ada (Second Edition).
Menlo Park California: The Benjamin/Cummings Publishing

-, Company, 1987.

Burger, Thomas M. and Kjell W. Nielsen. "An Assessment of the
Overhead Associated with Tasking Facilities and Task

* Paradigms in Ada," Ada Letters, 7(l):
1-49-1-58(January, February 1987T.

Carrington, J.C. and others. Real-Time Application of Ada
Technical Report. Mitre Corp. Bedford, MA. August 1986

(AD-B105247L).

Clapp, Russel M. and others. "Toward Real-Time Performance
Benchmarks for Ada," Communications of the ACM 29:

760-778 (August 1986).

Dewar, Robert. New York University. Ada Tasking; Boon or
Bane. Address to Special Interest Group for Ada
(SIGAda) meeting. Dayton, OH, 15 July 1987.

52

a I Av-onics -nformation System (DAIS) Program Office.
System Specification for the Digital Avionics

..' Infzrmation System. SA 100 100A. 30 Juiy 1977.

Depart.en of Defense. Computer Programing Lan-guage Policy.
DoD Directive 3405.1. Washington: Government Printing
Office, 2 April 1987.

Department of Defense. Military Standard: Ada Programming
Language-ANS1/MIL-STD-1815A. Washington, D.C., January
1983.

Fisher, Robert. Higher Order Language (HOL) Evaluation in a
Tactical missile Environment. Tecnnical Report. Hughes
Aircraft Co. Canoga Park CA. January 1980.

Friedman, Frank L. and Paul A. T. Wolfgang. "Choosing Ada
Tasking Models for Real-time Systems," Defense
E ectronics. 168-176 (April 1987).

Hanselman, Phillip, Electronics Engineer. Personal Interview.
Air Force Wright Aeronautical Labs Data and Signal
Processing Group, Wright-Patterson AFB, OH, 15 April
1987.

Helmbold, David and David Lucknam. "Debugging Ada Tasking
Programs," IEEE Software, 2(2):47-57(March 1985).

"" Kamrad, Michael J. II. "Real Life Considerations of Ada
Runtime Organizations for Real-Time Applications,"
AIAA/IEEE Digital Avionics Systems Conference
Proceedings. 472-476 (1984).

King, Capt David. Software Group Lead, Personal Interviews.
Aeronautical Systems Division Systems Engineering
Avionics Facility, Wright-Patterson AFB OH, May 1987
through November 1987.

Leathrum, J. F. "Design of an Ada Run-time System," IEEE
0 1984 Ada Applications and Environments Conference,

4-13, 1984.

Lindley, Lawrence M. The Use of Higher Order Language for
Tactical Avionics Programming. Technical Report. Naval
Avionics Center, Indianapolis, IN, February 1980
(AD-B050116L).

Mundie, David A. and David A. Fisher. "Parallel Processing in
Ada," Computer, 19(8): 20-25 (August 1986).

Phillips, Steven P. and Peter R. Stevenson. "The Role of Ada
in Real Time Embedded Applications," Ada Letters, 3(4):

" ' <4.99-4.111(January, February 1984).

53

Rubey, Raymond J. "Higher Order Languages for Avionics
Software--a Survey, Summary, and Critique," IEEE National
Aerospace Electronics Conference (NAECON), 2: 945-95,

J" (I1978).•

Scarpelli, Alfred J. Ada Test and Evaluation. Technical

Report. Air Force Wright Aeronautical Labs, Wright-
-o Patterson AFB OH, May 1980 (AD-A087705).

Schnelker, James et a!. Tactical Aaa Guidance (TAG).
Air Force Armament Laboratory report number AFATL-TR-85-5a.
Contract F08635-83-C-0349. General Dynamics: Data

.-.. Systems Division, December 1985 (AD-B098625).

Softech Inc. Ada (trade name) Training Curriculum. Real-Time
Systems in Ada 1401 Teacher's Guide. Volume 2. Inc.,
Waltham MA, 1986 (AD-A166352).

Trainor, W. Lynn and others. Efficiency Comparison of JOVIAL-
73/I and AN/AYK-15 Assembly Language. Technical Report.
Air Force Wright Aeronautical Labs Wright-Patterson AFB
OH, January 1977 (AD-A038053).

Weicker, Reinhold P. "Drystone: A Synthetic Systems
Programming Benchmark," Communications of the ACM,
27:1013-1030 (July-December 1984).

.- Witt, Capt Donald J. Using Ada in the Real-Time Avionics
Environment: issues and Conclusions. MS thesis
GCS/MA/85D-6. School of Engineering, Air Force
Institute of Technology(AU). Wright-Patterson AFB OH,

" December 1985.

.4

04

Major Rogr E. Kon ak was born on 19 November 1-54 in

Toledo, Chio. He graduated frcm outnport High School in

Indianapolis, :ndiana, in 7972 and attended the United States

Air Force Academy, from whi-h he received the degree of

Bachelor of Science in Economics and Management and a

commission in the USAF in June 1976. He attended pilot

training and received his wings in August 1977. He then

served as a C-130 copilot and aircraft commander in the 61st

Tactical Airlift Squadron, Little Rock AFB, Arkansas until

June 1979. From there he was transferred to the 17th

Tactical Airlift Squadron, Elmendorf AFB, Alaska where he

served as an aircraft commander and instructor pilot.

Before leaving Alaska, Major Kontak served as the Chief of

Plans, Current Operations Division of the 616th Military

Airlift Group. From there he moved to the 21st Air Force

Operations Center, McGuire AFB, New Jersey in July 1983

and served as an officer controller for one year. He

remained at McGuire AFB and transferred to the 1701st

Mobility Support Squadron where he served as the Chief of

Plans, Southwest Asia Branch until entering the School of

Engineering, Air Force Institute of Technology, in May

*] 1986. Major Kontak is married and has 3 children.

Permanent address: c/o Rolland E. Kontak
2403 S. Emerson

'a Indianapolis, Indiana
~ h~' 46203

55

* " IiCLA lSS T FED
SECURITYr CLASS'FiCA7 ON OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

la REPORT SECuRiT (ASSI;-CATION 1b RESTRICTIVE MARKINGS

fI'"CLASS I FIED
;CURITY CLASSIFICAT ON AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

1b DECLASS!FICATi" O', ()NGRADING SCHEDULE Approved for public release;
distribution unlimited.

4 PERFORMING ORGANiZATiON REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

t'.TNAFITTNCCS___/______7_-4

6a NAME OF PERFORMFNG ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

I (if applicable)

Sc-hool of E~ngineering AFIT/ENC
6c ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

Ba NAME OF FUNDING/ SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATiON (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT

ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

APPLICABILITY OF ADA TASKING FOR AVIONICS EXECUTIVES (UNCLASSIFIED)

12 PERSONAL AUTHOR(S)
-onger E. Kontak, Maj, USAF

TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Vb Thesis FROM TO _ 1987 December 64
16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

_ FIELD GROUP SUB-GROUP A-

12 05 Ada, Tasking, Avionics Execut)' e ,,.-
12 08 1

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: David A. Umphress Captain, USAF V,,hI-I ..
Assistant Professor, Department of Aathematics and Computer Science.
(the purpose of this study was to evaluate Ada tasking performance and its suitability for

* O avionics sthedulers known as executives. This was done by comparing variations of Ada
executives written by the author with the existing Digital Avionics Information System

written in JOVIAL. The comparisons were made by evaluating the system overhead of each
model while running a series of representative application tasks.

The study found that Ada tasking had considerably more overhead than its JOVIAL
counterpart in order to maintain precise cyclical timing. Another outcome was that several
Ada compilers were unable to produce code which could be run on the MIL-STD-1750A computer.
This points to the present immaturity of Ada compilers targeted toward embedded aircraft

computers.
This thesis adds support for the need to revise standards and develop compilers as

necessary to provide an efficient Run Time System for Ada executives.
20 DISTRIBUTION /AVAILABILITY OF ABSTRACT)2!1. ABSTRACT SECURITY CLASSIFICATION

W-UNCLASSIFIED/UNLIMTED Cl SAME AS RPT. E DTIC USERS UNCLASSIFIED

N...iAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

livid A. Umphress (5131 255-3098 AFTT/.Nr
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

3.

A

1

0

/
0.

0 *- 0 0 0 0 ~ 0 0 0 0 6 U * S ~

