-A188 827 APPLICABILITY OF ADA (TRADENARK) TASKING FOR AVIONICS

EXECUTIVESCU) RIR FORCE INST TECH WRIGHT-PATTERSON
AFB _OH SCHOOL OF ENGINEERING R E KONTAK NOV 87

UNCLRSSIFIED AFIT/GCS/MA/87D-4 . F/G 12/5

]

o Abe Ate Ale At Ao Al. ace oo A o] “"—1

o4 Ay,

o

2 i 1.0 S

|I"

n

5 I
-

s e

I

-
' N

- w

Salee

- ?.

-

- e
! -

-

Py

s O ® » ® . "' e e o ©® 9 ~' R I SR AR .

R N T ot ‘)."w.'u\'“a-q.’,‘n.'qa“"!"'.},.. O A S '

! ..!‘,;I h' .i:h’a\ o ‘n'\'u‘n"\.ﬂ“" A\‘uﬂ,n 3 SRS R R o .“ ‘ ‘t‘,i ‘”» X
||“"‘ 30";1,&;‘ Ceh by

¥) T

o LD UTION STATEMENT a

CACILIVHADLLLLL WD AvaT LAavwndivg

FOR AVIONICS EXECUTIVES

——— .

THESIS

Roger E. Kontak
Major, USAF

AFIT/GCS/MA/87D-4

Appt?vo_d for public releasey
Distribution Unlimited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

8¢ 2 4 089

¢ /
5
o AFIT/GCS/MA/87D-4

E i
\

I
)

l

4
.
ig
I
1
(

s
:

N o

4
g ‘Bﬂ APPLICABILITY OF ADA* TASKING
b FOR AVIONICS EXECUTIVES
: e DTIC
Roger E. Kontak -

Z Major, USAF ELECTE'(‘.,
: S¥EBOQ 1988 :
. AFIT/GCS/MA/87D-4 .

!‘ Ln&

. D

g *Ada is a registered trademark of the United States
N Government (Ada Joint Program Office)

Approved for public release; distribution unlimited i

PR
&

- .-
-

e

PR . IR LKA

v IFACRNEN AR SO
DL Tl ; - ! .
l:"-!.,!', AT Tty e

—

' ooey AFIT/GE/MA/87D-4
BN SEH
:?
oN
'b; APPLICABILITY OF ADA* TASKING FOR AVIONICS EXECUTIVES
e

Y

b’ !
R)3

)'.‘

) THESIS

\
2
B Presented to the Faculty of the School of Engineering

-,

} -

. of the Air Force Institute of Technology

{; Air University
- In Partial Fulfillment of the

%21 Requirements for the Degree of

§$ Master of Science in Information Systems

>

'?

%

4 Accesivn For F
N NTIS CRA& v
R DTIC TAB 0
.., Unannounced 0
K, Justitieatienr
K — .
r Roger E. Kontak, M.S. By

- LY S S .1

Stk tion

Ma jor, USAF Oi-tiib tion |
k' . . o
R/ A‘/-ﬂ'?i-l:l.‘iiy [e 1
’ TR T e T
tg Bist \:",u.n:';n '
® , -
o November 1987 {
2 A-ll |

WV,

4

' *Ada is a registered trademark of the United States
gy 6&% Government (Ada Joint Program Office)
!
$ Approved for public release; distribution unlimited
A

Acknowledgments

I wish to thank a number of people who helped me during
the preparation of this thesis. 1In particular, several
members of the Aeronautical Systems Division Systems
Engineering and Avionics Facility (SEAFAC) and the Air Force
Aright Aeronautical Laboratory (AFWAL) provided essential
assistance in the technical aspects of this thesis. Capt
David King of SEAFAC gave me many hours of discussion on the
design and implementation of avionics software and provided
characteristic tasks to be performed by this software. He
and SSgt James Bennett modified a JOVIAL version of an
avionics scheduler which served as a baseline for 'my
experiment. This version was more difficult to implement
than initially envisioned and assistance was also obtained
from 1Lt Stephen Ross, a former member of SEAFAC.
1Lt Ross also helped provide the inspiration for how to
measure overhead in an avionics scheduler.

In addition to my sponsors at SEAFAC, several members of
AFWAL provided both resources and technical assistance. I
wish to thank Mr. Phillip Hanselman for several hours of
discussion and allowing access to AFWAL owned computers and
compilers. I also wish to thank 1Lt Marc Pitarys for his
interest in my project and the time he spent helping debug

the many problems encountered.

’ h o'y | A Bk ¥
.N?A’. L3S oY, l'."!‘.“\l!. l‘n .p,& v,f"g’t‘r l.;,l 3 ’ -45"’7,‘ g.l'g. 'p.'l.‘"-,f(""r AN N NS
R I A N R N T 3 R A A S R S

My AFIT classmates also provided encouragement and
assistance. In particular, Capt Daniel Joyce and Cpt John
Xlemens (U.S. Army) helped during the many long hours and
weekends we spent working together in the laboratory.

I also wish to thank my thesis committee. 1In
particular, my thesis advisor, Capt David Umphress, provided
encouragement and editing support throughout chis document.
The guidance and critical analysis obtained from my committee
helped obtain coherent support for my thesis conclusions.

Finally, I wish to thank my wife and cnildren for their
patience, support, and understanding throughout this ordeal.

Roger E. Kontak

TNTTTTYT VTR I TE LT ITE LU LW LW SRV ERLTELTA TR T TR TR TR e oR oy oROROS

§. WW G NE W ITYTFVNIVNIITTIN T UTIN N SWINS Y‘IT
N Table of Contents
. ~{‘/
M Page
f Acknowlegements . . . ¢ ¢ v v e e 4 e e e e e e e e e ii
' .
) List of Figures . . . « « v ¢ v v v v v o v & o o« o o vi
r LisSt Of TableS + « v « v 4 o 4 4 v e e e e e e e e .. vid
X AbStract . . v v v e e e e e e e e e e e e e .oovidid
f Introduction and Problem Definition 1
- Introduction ¢ « + . . 1
The Problem . . .+ « + + ¢ ¢« v « + . 3
Scope . . . 3 |
Thesis Overv1ew 4 1
! II. Summary of Current Knowlege. « + + . . 6
High Order Languages . + « « « « « + « « 8 |
Ada Tasking . . e e e e e e e e e e e e 11 1
) Overhead Deterwlnatlon e e e e e e e e 16 |
‘bﬁ Benchmarking . . ¢« « ¢« v « v + 4 ¢« e 4 . 18 :
o Conclusion . o o v « v v ¢« o ¢ o ¢ o o o @ 20
ITI. Experimental Design ¢« « « « « ¢« o . . 21
A General Approach . . . v v ¢« « o « « o o« o 21 !
Measures and Factors + « « « « « & 23 1
. Machine . . . « « ¢ ¢ v v v o ¢ 4 e e 24
§ o 25
3 Workload . ¢ ¢« v v &« v 4 s s v e e e e 25
x Language . + v ¢« v o ¢« 4 s e o 4 e e 26
Compilers « « v v v o o o« o o o o & o 26
i System Timing Method 26
Statistical Tests . . . + ¢« « &+ « « o« « .+ 27
! Conclusion e e e e e e e e e e e e e e 28
. Iv. Detailed DeSIign v v v v « v v & v v v e e e 29
v DAIS Model . . C e e e e e e e e e e e 32
: Ada Tasking Model e e e e e e e e e e 34
N Ada with Delay Statements e e e e e e 35
Ada with Interrupts ¢« ¢« .« « . . 36
Overhead Measurement and Statistical Analysis 37
k Overhead Measurement . . . « « « « + « . 37
Statistical Analysis . . . « « ¢« « « « 38
TR Conclusion e e e e e e e e e e e e e e 40
! iv

DEONOAGHOS (A q ‘.‘ f BAOSGRCACBAILU WS
N IRPURE TR | T P LITIE

.‘y‘il.\

Compiler Problems

Compiler
Compiler
Compiler
Compiler
Test Results
Conclusion .

VI. Conclusions . .

Recommendations

Bibliograpny

Vita e e e e e e

Zxperimental Results

o Ow>

41
42
4z
43
4y
4y

47
48
50
52

55

%§§ List of Figures
" Figure Page
1. Ada Tasking Advantages and Disadvantages 14
2. Experimental Factors ¢ « « ¢ ¢ ¢ « o o . 24
3. Cumulative Drift . . . « « ¢ ¢ « o o o o o v . 27
4. Tasking Performance Factors « v « « +« . 28
5. DAIS Task States . . ¢ v ¢« v ¢ v ¢ v v v 0 e W o 33
6. Ada Tasx States . . . v ¢ v 4 e e e e e e e e e 34
7. Ada Program Structure . . . « v « « o « o o o« o 36

T

o
i

vi

‘r_. BAOBON)

' -
A 6,;).2’! A

\u ?ﬁ§ List of Tables
Table Page

TAG Design Phase . . . ¢ « ¢« « « « ¢ o o o . 1

S PP
2l e aox]
—
.

v.¥w:g?fl

II. TAG Coding Phase . . « + « v « o v o v o v « . 11

P
-

)

III. Tasking and Exception Handling Overhead 17

v
-
L)

PRy
- 'y
»
s

IV. Cyclical Tasks . .« v v v ¢ v ¢ o o o« o o o« o 30

e
M

PSS
<3

Asynchronous Tasks + + ¢ ¢ ¢ « o « & & « o « o 31

i

VI. Corresponding States + . « « « « « . . 35

.,
Tote

M s ey

VII. Compiler Features . . .« « « o « « « o o o o« o o b2

L Tt

VIII. Idle CPU Time for all Combinations of Factors . 45

o
[l
hY

-
Y l‘
L}

! ;."‘-N > n“'

C——
» o bt LA
e

a2 a

(e B '}
P R P
[
P

)
LAY
.

1G

TTs
ST

.-

L4

‘A

1 5
‘ -.’. n":" 3 .
P

(4

A

.' .l
.

AANNG:
AP P K':".

-
i .'\.

» 8 [

MO HAOG OGCSOL000 OO R OO S S RN ACNCEOE
Lt 1‘!'a‘?’o...‘a‘f.l"‘l....l‘.'l..' ‘t‘.'h'..'i!.’l.. s '?q 'b‘.'.l,q.iti l.«"n".c",l".!",,!',‘.é?:“‘»\,‘A.‘ t

-

A.J'.“.‘-
v PLIN .'..

£y

ROAARLE
LT B R R

>

72218

&

»

e - e~ P
Nl 1 ORI <
i "J p‘:.'.‘.;._.._‘«." Y

a4
)

RN
(R R Y

e

Ve

Abstract

The purpose of this study was “o evaluate Ada tas<ing
performance and its suitability for avionics scnhedulers kncwn
as executives. This was done by comparing variations of Ada
executives written by the author with the existing Digital
Avionics Information System written in JOVIAL. Tne
comparisons were made by evaluating the system overnesd of
each model while running a series of representative
application tasks.

The study found that Ada tasking had considerably more
overhead than its JOVIAL counterpart in order to maintain
precise cyclical timing. Another outcome was that several
Ada compilers were unable to produce code which could be run
on the MIL-STD-1750A computer. This points to the present
immaturity of Ada compilers targeted toward embedded aircraft
computers.

Given the immaturity of Ada compilers, Ada tasking is
not appropriate for avionics executives. Ada can still be
used, however, without tasking and the associated Run Time
System to develop executives.

This thnesis adds support for the need to revise
standards and develop compilers as necessary to provide an

efficient Run Time System for Ada executives. Lo

viii

APPLICABILITY OF ADA TASKXING FOR AVIONICS EXECUTIVES

I, Introduction and Problem Definition

Introduction

The Ada programming language was developed for the
Department of Defense (DoD) in response to the perceived
software crisis in the 1970's. A large portion of software
costs related to this crisis are incurred for embedded
computer systems. "By definition, an embedded computer system
is one tnat forms a part of a larger system whose purpose 1is
not primarily computational, such as a weapons system or a
process controller" (Booch, 1983:13). For example, an
alrcraft embedded computer system may perform functions such
as flight control, autopilot operation, weapons delivery
applications, and similar routines. Embedded systems have
particular programming requirements inzluding:

-Parallel processing

-Real-time control

-Exception handling

-Unique input/output(I/0) control (Booch, 1983:13)

Ada was designed primarily to reduce embedded system
software development costs (ARINC, 1986:1). Although real-
time control is only one requirement for embedded systems,
these systems are often referred to as real-time systems. A

real-time system is cone which must respond to externally

generated input stimuli within a specified period of time.

In other words, it has processing deadlines. "If a real-time

system performs the correct function, but delivers <n=

3
W
wn

[
b
ot

too late then it has failed to satisfy its requirements”

(Auernneimer and Xemmerer, 1986:873).

n

(SN

The scheduler for real-time avionics systems that

or
e}
M

responsible for delivering results on time is known as

executive. An executive which handles tasxs at specifli

O

intervals is known as a cyclical executive. 7The executive
provides an operating system for handling concurrent

tparallsl) processes which run on the embedded avionics

ccmputer. rfor Air Force embedded avionics systems, tnis

D

xecutive has traditionally been written in the JOVIAL
programming language. A JOVIAL executive, which usually
contains assembly language subroutines, is created for each
embedded system. This method, however, leads to program code
segments that are not portable and may have software desizn
inefficiencies.

Ada has a special construct, known as tasking, for
Wwriting executives. Tasks are entities that execute in
parallel. Each task is considered to be executed by a
logical processor of its own when run on a single processor
system (DoD, 1983:9-1),.

These facilities are quite unlike the services provided
by a typical run-time executive or operating system.
Real-time systems will be designed as a set of cooper-
ating concurrent processes (Ada tasks) using the Ada
tasxing model (Burger and Nielsen, 1987:49).

Executives written using Ada tasking promote the Ada goals of

reliability and maintainability (Booch, 1983:47).

k]

U
‘;E'y‘.&'

LA

o4

X
LS

>

-t -
230 - ﬂ)

.,-.-.,
v,

s /l". :

L's

o

el

13

[v R S

PN R W A
SRS E PP

. e
.

b

-
-

EX 22 % L R L @RS O A @

) X
<A BT

The Problem

Tasking is an important feature of Ada for real-%ims

control of embedded systems. A programmer can use Ada

b -

tasking instead of JOVIAL to write the executive for a r

3]
W)

time system. Unfortunately, little is known about Ada tasKing

performance and its suitability for avionics executives.
Providing Ada tasking facilities creates execution

overhead for the executive. This overhead must be better

understood to determine if tasking offers a viable

alternative to JOVIAL for writing avionics executives.

To promote these goals, however, tasking must also

operate efficiently without excessive overhead.

Scope

This thesis was designed to quantify Ada tasking
performance in real-time avionics executives. The study was
was directed toward evaluating executives run on the MIL-STD-
1750A computer, a single processor embedded computer system
used in Air Force avionics systems. The benchmarks developed
for this computer should help programmers determine if Ada
tasking can be used in place of JOVIAL in the avionics
executive.

The intent of the thesis was to study tasking
performance efficiency. Taskirg errors and compiler problems
discovered during the process have been identified, but
investigation into correct tasking operation was not

performed. For instance, no investigation was made into the

.4 3) At J I TN NS A IR O ANN,
j"‘q!':.!‘,l{‘,g?‘:.":.":'!': ﬂt;'\fg‘!’.‘K’;’("‘lﬂ' .JL 't_,h‘:.-"o,.' 2. ‘AGJLI(J RELE

by

!

: i validity of shared variables among synanronized nas<s.
; &ﬁx Thals thnesis compared Ada %asking cerfcsrmanc2 i in
[~ avionics =2xecutive develoged for tnis <nesis <3 an =2xis~ing
EE executive written with JOVIAL. Since multiprosesscr
b -7 .

) environments for Ada tasking are still under Zzvelogment and
.

B Wwere not availiable for this study, only single crocesscr

2; imglementations were evaluated. In addition, sincs zus [°
% would be identical for Ada and JOVIAL, I/0 opera%<ians wers
;: not utilized in either executive. The evaluation was mais -n
? a MIL-3TD-1750A computer, the standard architeczures for Air
; Force embedded applications, using program code zompiled By
- Ada compilers targeted toward the 175CA. With this in mind,
'g tasking performance was not investigated on otner computer
;ﬁ ‘i; architectures. An attempt was made to evaluate whether

'5 compiler version significantly affected Ada tasking

E performance, but due to the immaturity of Ada compilers this

factor could not be tested.

Thesis Overview

-

= "'.‘-v‘."':'|~nl .l ’L % %':

Chapter II of this thesis portrays pertinent findings
from current literature. It begins with a look at high order
languages and narrows the focus to Ada with emphasis on Ada

tasking for avionics executives. The chapter also examines a

o .
3!
-

JOVIAL executive used in this thesis. The chapter concludes

. -

x
R Y Y

with discussions of overhead determination and benchmarking.

.-

Chapter III outlines the general experimental approach

! and requirements definition. It also describes the factors
o

X
_r,

- -
- - ™

e ‘i
=

GO Y

-

0 A Wy V9 1% T 0 e 1 B e * 3y OB DN BOOCOUOCOUOU A OUOUDL/ DM DMUMU A
o ’n'_ '!).;:b..'r?lq“‘(. €y .-‘..’"(. AN Ly .ilc"‘l.h..". n ,Q.l.l.'. WA L RIL AN t‘,.t'. ARG INCHONAONC A IO AROUPUIGIRD

S

A

e
1
» whizh could have affected executive overhnead. Finally,
L4 \
w S,
' NS <he metnods of measuring overhead and evaluating this overhead
with statistical tests are described toward the end of this

I\
% cnapter.
" Chapter IV goes into greater detail of the experimental
. design by describing and comparing the Ada and JOVIAL
- executives. The specific statistical tools are also
- described in the latter part of this chapter.
N Chapter V provides details of the experimental results
- and describes problems encountered with several Ada
15
LN .
& compilers. The results are analyzed to show the
& significance of each factor under consideration.
. The results are then evaluated in Chapter VI.

ih% The evaluation leads to a conclusion of the applicability of
o, Ada tasking for avionics executives.
-
o
o
»
N
q
¥
[
l.

".-:::-,

P S WO

8,
8,

oo
[}

1 b . DO (W2 Ol OO ’ DOCAONOGHMEO0 OOEOGO0CINOGE

BAABCAGH
IR N

Bal i il L8 0okl Sl Auh o)

™
W hﬁ ITI. Summary of Current Knowledge

Software engineering for avionics applications is an
area of particular importance to the Air Force. "The real-
h time avionics environment differs from other environments
j that are supported by computer programs because of the

& timeliness required in responding to requests and because of

o
-
'

the physical constraints of the hardware" (Witt, 1985:11).
The hardware is constrained by size and weight limitations
which require efficient utilization of available resources.

In avionics, the designer does not have the luxury to add

A Y . 200,

more memory wWhen a means of operating with less memory is
available. In addition, the speed required for certain

3 iﬁ% avionics applications is very high. Although delay of a few

a”

seconds may be permissible with automatic radio tuning,

delays of milliseconds in handling flight critical

i irarded

applications, such as engine controls, may be unacceptable

£

(ARTEWG, 1986:17).

Ada is a standardized DoD programming language which is

e Tl

{ intended to reduce software life cycle costs by encouraging

proper software engineering methodologies. These
methodologies should result in:

-Increased understandability

~-Increased reliability

3 ~Increased modifiability

-Increased efficiency

~-Increased reusability

~Reduced training needs

-Reduced schedule or technical risk (ARINC, 1986:2)

- L

v a

‘,
o
i

A recent DoD directive concerning the use of Ada was

i P = i o

Do ... J 5,54 A 88 T N VT b (B VWK 4 » A INEDMBM I TR SN M W IR
l.!’."_....l' f’.T"Q"l,".'g"|¢’.’t“..j’.,."T"i"‘l‘.'l‘."l!‘e‘,-‘—""‘t;.'-a“.-_‘,h“C,‘.é ":‘"o.". “!'r A'i“._",'-'u‘.‘ , “4" ‘Q‘Ic‘a ATt

1 & T A
S

5

TP

P
A
LA

- s a e

.

-

T, ._'.)
Pl Al
] '

6,{:.;
®

instituted with these benefits in mind. DoD directive

—

3405.1, signed April 2, 1987, states:

The Ada programming language shall be the single,

common, computer programming language for Defense

computer resources used in intelligence systems,

for the command and control of military forces,

or as an integral part of a weapon system.

(DoD, 1987:1)
This directive, while mandating the use of Ada, does not
Specifically require the use of tasking for weapon systems.
Tasking will be used only if it operates efficiently enough
for avionics systems.

To evaluate Ada tasking, this literature review first
investigates current material on tasking's applicability, and
then lays the basis for the experimental portion of this
thesis. It begins with a look at why High Order Languages
(HOL) are necessary for avionics executives. This viewpoint
substantiates the rationale for using tﬁe Ada programming
language and then expands in the next section to consider the
applicability of Ada tasking. Considerable controversy
exists concerning Ada tasking feasibility for avionies, so
pertinent issues are outlined in the third section. These
issues are not directly addressed in this thesis, but point
to some tasking problems which remain unsolved. The problem
addressed by this thesis concerns tasking performance
efficiency which is specifically addressed in the next

Section on overhead determination. Finally, the last section

on benchmarking lays the groundwork for benchmarking

techniques which are used in this thesis.

o
S
&
th . High Order Languages
}V' ti5 In order to study Ada tasking, the overall philosopny of
3 using HOL's for avionics executives must be examined. This
Egg review 1s necessary because software written with a HCL can
?f be accomplished as efficiently or more efficiently with
;%? assembly language (Rubey, 1978:947). Fisher (1980:1)
.;§ notes that some believe HOLs should not be used because:
s -HOLs produce time inefficient machine code
B -Resulting HOL-generated code uses too much memory
: -, -HOLs lacg the syntactic structures for real-time
- programming
Vi In spite of the assembly proponents such as Rubey and Fisher,
L} there is considerable debate concerning applying HOLs to
ifs avionics executives and other real-time systems. The primary
.'" 6‘%‘ argument for use of HOL's is that "software development and
fﬁ maintenance costs will make the use of HOL cost-effective in
sa spite of some loss of memory and execution efficiency"
t; (Lindley, 1980:1).
::j Hardware and software trends are solidifying the
o
.:j argument for using HOL's in embedded systems. The main
;f factors supporting the use of HOL's include rising labor
:g costs, increasing software complexity, declining hardware
Qé costs, and reductions in hardware size and weight for given
b.: functions (Lindley, 1980:1). While avionics computer
f% hardware is becoming less expensive and more compact, the
; corresponding software is becoming larger and more complex.
. . Software is becoming more difficult to develop, debug, and
kﬁ :ﬁ?‘ maintain (Lindley, 1980:4). Simultaneously, hardware trends
-

ACLAAGNSRNUAUNILUA A

¥, - e o L aad aaa Jia - ad o aa- der Bea aae del Mok Bb Slad dal-Adciuo hig bdam o4 Sk Sae flan Sav de-oid ok ase sad aie ‘A el il i an inad ik der Al Sas i LA A ha fhe S~
a0 7
k:
1!;'4
ﬁj are causing a decrease in factors which favor assenmbly
ol v language for extracting the greatest possible performance out
{+ of a particular processor and memory space (Lindley, 1380:5!.
.:{;
2 The benefits of using an HOL become clear when
ﬂ; considering life cycle costs. HOL programmer productivity is
{
f:; at least doubled since each line of HOL code corresponds to
.f_.-‘
jﬁﬁ several lines of assembly language code (Lindley, 1G80:22).
Cd
o
= In addition, software management tools are more easily
';: applied to HOL based projects (Lindley, 1980:23). Later in
l‘.ll
Q:? the life cycle, software maintenance costs are lower because
S
?63 changes can be made without adversely affecting the program's
xfi overall unity. Similarly, maintenance is also easier because
SN
lﬁ HOL programs are inherently more readable (Lindley, 1980:14).
Y ‘\
fat f%" To take advantage of HOL life cycle efficiencies, the
g Air Force has primarily used the JOVIAL HOL for avionics
-V..
o
Ko executives. A study which compared the Digital Avionics
L)
™ Information System (DAIS)1 written in JOVIAL to an assecmbly
(W%)
Y language version supports the use of HOLs (Trainor, 1967).
e
N
NG Although an approximate ten percent degradation was
o incurred for both memory and execution time in the JOVIAL
v .
$$ version, programmer productivity was more than double that of
-F\.
i:g the assembly version (Trainor, 1976:6,7). Furthermore, the
A
'} JOVIAL implementation was much easier to read and interpret,
s
N
&
2%
t\j IThe DAIS is a standardized architecture for avionics
W systems designed to accommodate a wide variety of avionics
configurations. The DAIS architecture includes a software
| Qb executive and application software. The DAIS will be covered
S in greater detail in chapter 3.
g
Kr 9

SO .
':‘u’a 1‘.”«"' o

A,
8,)
R LIN

g - .l B - o Al “Aha Aha he Ate dfn SS. Ahe St MM MGl
]
R =
i
b
‘. .
? maxking 1t more reliable and maintainable than its assembly
¢ -'N:'.
NI language counterpart.
n Since Ada was specifically designed with embedded
XS systems in mind, 1% may further reduce software life cycle
~
Y
A 2csts. To exhitit the benefits of Ada, a study was performed
)
- in which the DAIS was recoded from JOVIAL into Ada
N
A {Scarpelli, 168C:5). Altnhough the Ada version was not fully
o
* implemented {(no compiler was available at the time), Ada
"3 displayed several advantages over JOVIAL. First of all, Ada
o
! promoted top-down structured programming. Additionally, the
- Ada source code was self-documenting and easier to read.
‘ Another advantage was that transporting programs from one
- machine to another would be easier.
« SN
a ‘&5 Finally, strong typing provided the advantage of
i reducing subtle type errors and maintaining data integrity.
! Several disadvantages were also expressed as a result of the
<
study. These include the necessity of assembly language to
‘ perform certain functions as well as the amount of data
i
)]
;J manipulation required to change data format. The biggest
’!, .
C concerns of using Ada are the amounts of memory and run-time
if overhead (Scarpelli, 1980:31).
[\~
2: A similar study known as Tactical Ada Guidance (TAG),
| performed by the Air Force Armament Laboratory at Eglin AFB,
)
g highlights these concerns in an investigation of Ada's
N applicability to operational flight software for the Medium
Range Air-to-Surface Missile (MRASM) (Schnelker et al., 1985).
. - = S
[;}~I.
: o The original JOVIAL implementation for this missile was
~l
#
n 10
4
3
v
[v

»

PR T e e a0
R N W 0 po A T IR

- redesignad, coded, and tested using Ada. As seen from Tables

by -~
o
N I and II, tne design and coding phases for each varsion toox
approximately the same amount of time. The increased %t:mes
for the Ada version were due largely to inexperience witn Ada
(Scnnelker et al., 1985:vi). More pronounced increases are
!
evident in the code expansion and CPU utilization of the Ada
version. Although Schnelker et al. (1985:vi) note that an
optimized compiler should bring these figures down to
|
acceptable levels, the memory consumption and run-time overhead
substantiate the concerns raised by Scarpelli (1980:31).
: Table I. TAG Design Phase
k) J 1
& TAG MRASM
N (Ada) (JOVIAL)
]
o if; Design phase in man-months 12 10
o Lines of PDL 1030 900
g Amplifying comments 40 200
o Number of tasks 16 8
- Number of functions/procedures 32 30
Table II. TAG Coding Phase
& TAG MRASM
v (Ada) (JOVIAL)
4
M Coding phase in man-hours 720 500
] Lines of code 3034 3212
) Amplifying comments 173 172
., Number of tasks 17 10
- Number of functions/procedures 25 26
N Code expansion (bytes-dec) 28860 9292
- Duty cycle (% CPU utilization) 52% 13%
- @ (Schnelker et al., 1985:vi,vii)
- Ada Tasking
f
*
b While the Ada version of the DAIS did not use tasking,
the laboratory which performed the comparison believed the
e
\: e executive could have been designed and coded more efficiently
¢
]
'y
hY 11
4
s

_ . - " u - LR ANA y AN
s 0 OO ASRIACALSOSCACAODNA0ARN Lt) AN AT
.‘!,'_l 0 6% "'C‘p U AU LS Py L8 o L ".'.'.'.’o‘ 10, I.n“.,u"‘.‘.'.n"‘b.‘i.!“.#"‘""' I A N I A M AT SN,

using the Ada tasxing features (Scarpelli, 1980:21). Since
tne time of the study, t“ne Air Force Wright Aeronautical
Labcratori=s havs extended their research to include Ada
tasxing. A current project, the Common Signal Processor,
evaiuated Ada tasking for use in a distributed computer
system. Tests early in the program, however, found Ada
tasking to be too inefficient in terms of execution speed
(Hanselman, 1987). Similarly, Ada tasking was found to be
sufficient for tne TAG project, but Schnelker et al.
(1985:63) felt that Ada was not appropriate for time-critical
software which interacts with sensor devices due to the
simplicity of the Ada tasking model which requires more tasks
for an -embedded multi-task system than a custom designed
operating system (Schnelker et al., 1985:viii).

Tasking also has memory inefficiencies, since additional
storage is required to keep track of a task's state, the
status of delays, and a list of tasks waiting on entry calls
(Baker and Riccardi, 1985:36-38). Problems such as memory
inefficiencies have raised serious doubts whether Ada can be
used effectively in embedded system applications. A project
undertaken by the Computer Sciences Corporation yielded the

following conclusion:

We believe that the Ada language tasking model,
including the preemption/priority scheme and the
termination mechanism, may not be sufficient to

[N

[~
A
"

-

£y, support a typical real-time tactical embedded

} computer system. We are concerned too, [sic]

ﬁ' about the efficiency which the Ada language run-time
systems will support recoded executive functions

'% ,j& and about the portability of such systems.

}: e (Friedman, 1987:176)

28

b

‘o' 12

'@

e

o

- . v e o r
""‘l‘-ﬁ‘- l"" XIOCHIOUICR B MmN !ﬂ‘, halea et W,

+ O OO O I O O OMIOR G A AR TR
DORCOCALAUALACNBASAL ANCAONN ASAT, el ShRRAY RN,

JRIWE A TLILIK

>"a2 2>

b o

L Due to the doubts concerning Ada for avionics

Y T applications, Ada programmers often resist incorporating its
new features in software design methodology. It is possible,
for instance, to write an executive in Ada without using

taskxing constructs (Phillips and Stevenson, 1984:103). This

method of programming defeats much of the purpose of using

-".\ .

Ada to promote program modularity and portability.

‘ A great deal of the reluctance to use Ada or its tasking
construct is a result of the uncertainty about performance in
embedded avionics systems (Phillips and Stevenson, 1984:103).

The problems associated with tasking overhead are amplified

a3 PPN ST i

by Phillips and Stevenson (1984:103).

.

.. The Ada scheduler for a general system is designed

N . for asynchronous tasks unique to this machine and

- iﬁﬂ compiler implementation, znd may provide an
unknown and potentially disastrous amount of

X overhead for tasks that have strict time limits on

o the total amount of time they can take to execute.

N As a result of this, real time systems would

‘ probably tend to be written in such a way that
avoids invoking any scheduling actions. This

. means that Ada's very nice asynchronous event

) handling properties may not be taken advantage of

when the cyclical executive is implemented

: directly by the user.

[Before evaluating tasking overhead in greater depth, the
G advantages and disadvantages associated with Ada tasking must
ﬁ be considered. A study of tasking by the Mitre " rporation
1] (Carrington, 1986) identified the advantages and

?

J

\ disadvantages shown in Figure 1.
High overhead occurs in several instances within Ada

tasking. During a rendezvous, which involves coordination

L

between two tasks, context switching from one task to another

13

(8

q >) 95,0y Ty IS,
3® l'.‘!',':‘ W) ‘."1_"1!.' "':"’g.l ,’r'-:’s’" DAL

Advantages:

-Tasks provide a convenient means for designing
_ concurrent processes and mapping these processes
-2 to the target arcnitecture.

-Tasks provide a means of tasx communication
directly without communicating through databases.

. -Priorities allow control over relative task
[execution urgency.

-The delay statement allows control over task %“iming.

f ol aF RV OF By &

-

-The run-time environment nandles the details
of task synchronization, communication, and
context switching.

-Ada 1is capable of handling interrupts (an essential
feature of event-driven, real-time applications).

Llar Sl a0 A A}

d

-Leaving task activation and termination to the
run-time environment reduces the coding and
testing effort.

LAY

Disadvantages:

-Lack of a dynamic priority mechanism.

-No means to explicitly control task activation.

L N

-No means to temporarily suspend a task.

v -Due to a lack of centralized tasking control,
Ada requires a high level of coupling among
programmers.,

K -No explicit cyclical executive facility exists.

-Vendor interpretable definition of delay statement.

Choh Al e

oot

-High overhead associated with the rendezvous and
implementation dependencies.

ar® ¥°

»

-Difference in interrupt handling facilities from
one Ada implementation to another limit efforts
to develop reuseable software.

-
s s arxll

-High overhead associated with elaboration of tasks
which must be activated in a particular order.

- Figure 1, Ada Tasking Advantages and Disadvantages (Carrington, 1986)

el
“»
o
&

” 14

AR A el Sal bl Ik ind ang Batc At VA At h got el aan aad - et Mt aitaa i olias b oiad ghav et dat iags ek Mhals didh A Rl A Ao A-h dra it dhe Ahe & heddiac e .".“'?“:'f

1L

can e intolerably slow for embedded systems (Xamra

’

334:473), Likewise, the unprediztabls overns

)
Q.
ba
3
(@]
I
3
3
1)
(L

during task creation and termination maxes dynamic tasx
allocation inappropriate for avionizs. Therefore, no tasxs
sShculd be creat=d or terminated during normal progranm

oceration

-~
N
0
k-
o=
(@]
—a

986:17).
ancotner feature of Ada tasking wnich complicates

executive prcgramming is that the semantics of Ada ar=s

innerently asynchronous (Adams, 1983:982). Thus, event-

t

driven asynchrconous processing is easily accommecdated, btu

tne traditional cyclical executive does not take advantage of

i Ada's strengths {(Softech, 1986:14-7). A pure cyclical

%E executive has tne advantages of familiarity, simplicity of

{; ‘f} runtime system, efficiency (low overhead), and predictability.

55 Cn tne other hand, asynchronous processing has the advantages
és cf more natural partition of problem, flexibility, and ease of
: design (Softech, 1986:14-18). 1In typical real-time

i; applications, certain actions such as data sampling and

§ control loops must be performed repetitively (Softech,

1986:14-1). This is best done by the cyclical executive to
prevent tasks from falling behind and ultimately causing

control loops to get out of phase with the rest of the system

ERRA L RN) AOPUAALL] |

(Softech, 1986:14-10).

Another problem associated with the asynchronous nature
of Ada tasking is that it does not guarantee fairness. Thus,
a task may be permanently blocked waiting for a rendezvous

] -,
e (Mundie, 1986:2u).
\1

15

G

0 H " Al C e L #) . 3 . P) M
DOONEAU AL LR AR T LR ’1't DG S ARG AGE SN N GO RO

L

ARG Ak 404 Sh Bt Ao an Au-rad ama axa atd i e h AR S g Al and e iade et bane sl i LavAba e AaCENA AMAA-EA Sl i 2Rt A Jinf et Jiut S Rt aiC o a A r,‘"v'rv'"vv-v*—".r".-'wva'v-T
»

7

%j _ Zue -0 tTnese problems, tae popular apgroacn Lo Loz
‘-é Q¥j cyclical =xecutive nas been to bypass Ada tas<King CoOnsSIrults
‘f‘ by using an interrupt-driven executive (Phillips,

Ny

‘:E 1334:4.103). A proposed method of implementing a cycliczl
N

- executive in Ada 1s to develop a pragma to supply information
\

Ef no% accessible to the compiler {(Phillips, 1984:4.104,05).
G& Trna2 2f7ect of the pragma 1s tne same as assoclating an

?; interrupt with a tasx entry at each desired frequency

\ﬁ (Pnillips, 1934:4,105).

NS
‘Ef wnils Ada is to be used in all future avionics systems,
23 3 certain amount of assembly language programming can be

‘gi eXxpecta2d in many systems. This is because certain functions
Fi are more critical to tne efficiency of the system since they
N
i.‘ ‘i% are exzcuted at a nigh frequency. Coding these critical

E: functions in assembly language will improve overall system
?3 efficiency. In fact, coding approximately five to twenty

:3 percent of a program in assembly language can produce a

%i; program wWhich executes nearly as efficiently as a program

i written in assembly language (Lindley, 1980:16).

7

[

o Overnead Determination

':E A recent study by Burger and Nielsen (1987:49) of Hughes
:: Aircraft Company measured task overhead in a similar manner
2 specifically for DEC Ada (version 1.2) on a VAX 8600. A

.

k: summary of their findings, giving the amount of overhead in
i)

wq microseconds and normalized relative to the cost of a

;& e procedure call, is provided in Table III.

SN

=

!.": 16

<

v

T A S A e
L0y 10 WK T8 e A% 4%] X) A . o,

T IO 00 Y 00
g ". ':‘l .-‘l.'r‘l.:‘l..q (AN 0'. g'.‘qt

...) -

1) g -“n:"

e Table III. Tasking and Exception Handling Overhead

38 Description Overhead
- usec normalized
E 1. Task activation and termin-

b ation 1960 178
' 2. Task created via an allocator 150 14
j 3. Procedure call 11 1
‘ 4, Producer~Consumer (2 context

switches) 503 L6

‘E: 5. Producer~Buffer-Consumer 1220 111

fi 6. Producer-Buffer-Transporter-

2 Consumer 1694 154

W 7. Producer~Transporter-Buffer-

ﬁ Transporter-Consumer 2248 204

, 8. Relay 906 86

. / 9. Conditional Entry

[~ - no rendezvous 170 15

o - with rendezvous 29 3

- 10. Timed Entry
i - no rendezvous 254 23

s - with rendezvous 33 3

‘: 11. Selective Wait with Terminate 127 12

i 12. Exception in a block 222 20
A 13. Exception in a procedure 217 20

'€ 14. Exception during a rendezvous 962 87

Q; (Burger and Nielsen, 1987:56)

<

NI

!

‘

N

1)

Q ‘v-*i'

¢ 17

WROCKE) 'lv » ‘Q. ’_:‘“ ..‘ "‘ _‘
S

'! Sl bl ek el At ekt gk ande Sed i el Ak Sad Sl A Sedi i A A A i e e e e Aas Ahe Sde bl Ake Sl Ske Afe his e -She A hohiehbindds ol

>

d

B

3

: Zurger 3nd Nizlsen 2onoluze, Tromotoe al: 22zt Tor

‘: ‘:.:':: - - ~ " = -

. - activation and T2rminzatiln 27 T3SA3E, Toiac . . . w3545 Tor
- Cime-crizical madulas 3024l T2 3%202721 WlToln [32Aages Ir
- in the main groc=adure, ra3tner Tnan Lo CrItelursl v T23A3
b

~ Withnin tne rsystem”" [Burger znd Nislsan, "237:57 An

i

L. additicnal con2iusicn 1s tnat tTne overaneal for 3 rend2zvous
.... . .

o 1s 1ndicated by <ne produlter-2onsumer ralzsicn 523 uzen’,
>

Y - - -
R Tnis overn=ad 1s expected to occur =svery "ime %W2 T3aSK3 are
- in a rendezvous and does not include any exscution tim= for
- statements within the body once a rend2zvous occurr=2d [Burgsr
" and Nielsen, 1987:57).

N Conditional and timed entry call have nigher overnead
. when a rendezvous does not occur than when one does take

Linlararao™ss *" " e

e ,.
AL LSS

- PR L

- -
RV ey)

5

s
5
r g

[4

PR S
s
L3

>
A CN 1

W AT A A"
""-"d"'l‘!‘o"wa.‘l',

place, This overhead should be considered when polling is
used to establish synchronization between two tasks. An
additional consideration is to avoid placing a selective wait
with terminate option inside a loop since its overhead 1is
incurred each time the loop is executed (Burger and Nielsen,
1987:57). Burger and Nielsen emphasize that these findings
are based upon tests with DEC Ada on the VAX 8600 and

projections cannot be made for execution of the same

benchmarks on other architectures or other compilers.

Benchmarking

Using benchmarks such as those created by Burger and
Nielsen involves a number of complex operations. These

include:

18

EROMUOOOOTOELM) R KNAOALIANCACHGRALE
R RO RO AL SO N

"L.‘- ""-.‘-"u' .

N
Eﬁ -Isolating the feature to be measured;

twn :: -Achieving measurement accuracy and repeatability;
<N -Eliminating underlying operating-system

- interference from time slicing, daemons,

Y and paging.

N (Clapp et al., 1986:760)

Yo

:} Another problem found when comparing two versions of a

k; program, such as HOL versus assembly language version, is

2 tnat writing a compiete baseline assembly language version
. would more than double software development costs (Rubey,
1978:947).

%: To solve the problem of versions for comparison

: purposes, only a few segments of a complete program are used
E: for comparison. This type of comparison raises the
:" if; additional gquestion of whether the segments are

;é representative of the entire program. There is additional

v

J uncertainty as to whether the baseline version could be made
M smaller or faster by a better programmer. Usually, an
l: assumption must be made that the baseline version contains
Lé representative segments that are the product of an average
.; programmer {(Rubey, 1978:947).

!k The most commonly used technique for measuring the time
?t needed to perform an operation is to execute the operation a
:; large number of times and take time readings only at the

i? beginning and end. The desired time is then found by

-

g averaging (Clapp et al., 1986:762). This technique still

’ . leaves the previously identified complex operations to deal
Eé - witn. To isolate a feature to be measured, the control and
2

28 19
i
e

"' AT s A N L Sl S L T el L T R M O M AN S

)

Y

S

s

k]

-: *

N

R . i

Ni* the test segment must differ only by the feature being
.-' e

LY 2w

AN N measured. In spite of controlling differences in

Y corresponding tests, code optimization can distort bencnamarx
S

R .

S results and must be avolded (Clarp et al., 1398¢:782,.
. >, - - -7

o,

Adeasurement accuracy 1is achieved by statistically determining

g

>
L)
-

the number of iterations needed to obtain a parameter

ﬁ{ measurement Wwithin a given tolerance (Clapp =% al., '338:762-
B ', ——— e
o 763). Finall eliminating the underlying operating systen
’ g g

?3 is done by running the tests with no other user processss in
) '-:'.1
’?{ concurrent execution and all daemon processes disabled. Even

N

~l
] «

: with these precautions there are still timing anomalies that
FWT
must be measured and detected (Clapp et al., 1986:754).

y , Conclusion
. (o .
\ Although the use of Ada has been mandated for use in all
0
e , _ _
3:3 future weapon system development, this mandate does not imply
I:--
(?3 that tasking be used. Preliminary studies of tasking for
ER real-time systems have identified several shortcomings

",
L) “-
‘ﬂg primarily concerned with performance. These studies have

-~

N

o . . .
vy created uncertainty for the future of Ada tasking as it

®

3 presently stands. Further study of tasking efficiency is

-

.-i‘l. o

S needed to determine if tasking provides a viable method to
AN

A
‘Qﬁ structure avionics executives., If so, tasking uncertainties
.'1 a . .
o must be exposed to promote using tasking in future systems.
R~ e
(NS
[.'a"‘
..o
-
W

N
AN

», “N

)- I,

l‘-

o

2o
"y
¥4 20

04

()
wy
Yy

¢ 7 oy y Igves \ g TR AAHNOGHEE ON0NREE
FALEAEOHOY c“,: Tt e e Lyt 'a'ﬂ’:ft':.i':fh,",e"?o,*‘.a.‘,"‘?“ NRUOUIOUL AN NI WD R DR AR AXARBRRKIOCUMONLRN

A 4

-
[3 a

(RS

WA

KN
.l (' l{.‘l \'c l'n |’, Gl ,‘ Q’q "r £) Q.Q X I" i.al 'l L I y

III. Experimental Design

General Approach

The main goal of this thesis was to investigate the
overhead associated with tasking for avionics executives.
This goal was pursued by ccmparing two executives: one using
Ada tasking and the other using task scheduling written with
JOVIAL J73/1.

The rationale for comparing different executive models
was twofold. First, empirical measurements of overhead for
individual Ada tasking features alone have already been made
in studies by Burger and Nielsen (1987) and Clapp et al.
(1986). Second, the suitability of Ada tasking for avionics
systems must be evaluated with respect to overall system
performance. Since JOVIAL J73/I is the previous standard for
Air Force avionics software, comparing an Ada version with a
JOVIAL implementation of the same system yields an analysis
of how well Ada tasking compares with the previous standard.

The first step of performing an experiment to compare
Ada and JOVIAL was to determine requirements for the
experimental design. Rather than attempting to formulate
these requirements, a searcn was made for existing
JOVIAL executives which could be rewritten using Ada
tasking. To be useful, the chosen JOVIAL executive had to be
representative of avionics systems. The only executive

found to be available for this study was a subset of the DAIS

21

ORI
4 Hi’r leh.t AN .,A,:,qf. Ve

' i
PR e R Y

2xecutive., Fortunately, the DAIS 1is highly repres=ntative of

4 s
1

\ ‘.ﬂ-ﬂ""-." "1 °L "

y ”i' avionics exscutives and variations of the DAIS are azxtually in
-~ use in many avionizs applications (King, 1657). Tne DAIS is
:j: an ideal executive to study since 1t continues the research
N
b done by Scarpelli (1980) and also expands wWorxk done by SZAFAC
)
o which used the DAIS for a XC-135 executive,
R |
i: DAIS is a system architecture whicn can be config-
= ured for various avionic [sic] applications and missions
. using core elements or building blocks. The purpose
. of the DAIS concept 1is to reduce the proliferation
- and nonstandardization of aircraft avionics, and
N permit the Air Force to assume initiative in the
{: specification of standard avionic [sic)] systems and
R interfaces for future Air Force system acquisitions.
(DAIS, 1977:5)
;fj To provide flexibility for various avionics
*..‘:
‘tr configurations, the DAIS is driven by tables which contain
Y
e if% lists of all application tasks and specific task
O
j; requirements. The tables to run the DAIS were built using a
.? scaled down, yet representative, series of application tasks
‘) for a typical avionics executive. The representative tasks
{1 were provided by SEAFAC based upon their experience with
NN
"
SR avionics executives. The task specifications included the
| ~:; .
® pnase, frequency, and priority required for task execution.
LS 7
b« For a more detailed explanation of these specifications and
':: the detailed design of the experiment; see Chapter IV. Since
i
@, the tests were designed to study the task scheduling overhead
§ of each model, the function of each application task was
I"
,5 immaterial to the experimental design. Tvus, each
N'
o application task contained the same body. The task bodies
o, “le
R~ RN were designed to work within the Ada executive as well as the

22

L AAAR

S

Dot A'—.‘!Lgﬁ!"Q.\I?':yfﬂ‘l.!fﬂi"!’ht}‘!“,.’ . ! LGN _‘l.‘_f’”'t,'ﬂl‘ bﬂ.!r!.*l‘,’l.w‘k'.;')“n"‘ﬂ..’;'. ﬂ.“y" ¥ *’9!‘ ’s‘.’},g"f‘;“".."."’

. o4 ¥, %y) THEE ¢ F ¥
“‘o;l', . ’-!.E,’.ﬂ\.’g‘;"-” qp-"..\ RERULI

.\ Lokt add - olhh okl Wr"'ﬂ'w'~'“v—“'v'w~yv—-ryv-;---rv—.—v'-;vv_vv—r-vvg-y-r-.‘
.
- 2AIZ3. Ratner than use null task bodies, the task bodies wers
o kS
A e designed to prevent taskx elimination through Ada compiler

b -~

- ogtiimization by using global variables which are referenced

.. both inside and ocutside the task bodies.

Y After running the DAIS on a MIL-STD-1750A computer, an

{

Y o . .
.- Ada tasxking executive was designed and written to schedule

N identical application tasks. 7This ex=scutive was originally
‘. , o -
debugged, run, and tested on a DEC VAX-11/782-. After prcgram

‘: 2rrors were eliminated, the actual tests and comparisons of

-
- . . - .

“ both version were performed on the 17508 computer. Since the
!

" — - . . o,

P 1750A nas no operating system to assist witnh performance

. measurament, running the executives on the 1750A presented

o mere difficulty in obtaining measurements. The measurements
! iﬁ% obtained, however, were more accurate because there was no

" interference from the coperating system nor multiple users to
b affect the experimental outcome.

'l

> Measures and Factors

- The primar erformance concern of an avionics executive

p

o is run-time processing efficiency (Dewar, 1987). To measure
q

& overall run-time efficiency, the run-time overhead must be

J .

) measured. Ideally, the run-time coverhead should leave enough

CPU time available to give application tasks primary access

-4

" to the processor. To measure run-time overhead, idle

..

- CPU time was recorded and compared for each model. Since

Q)

4] . : . .

" each model performed identical application tasks, the .
» s 2 . .

v -g_ “The DEC VAX-11/782 is an uncommon computer which uses two
VI VAX-11/780 processors.

g

) 23

|

-

Y

o] . -~

> > e 0 NARN OU 3 OGS OUOIOUTN) 0 3 », 0% (O Y NI, ™ N N 2 Pl
D%, ';,t’.faf.‘v‘».'a' ALt "‘-',,u'.,t’.’a YN d.'"":"‘e‘ QLN ':'.-'x"-’a'e P USEDOMAE RN R KMMOUDUUOCOE L < O AR AW MR R RO

» (o]

-

Bl

L

-~
PN
-",..'.'ﬂ

.

B
S

1
ANS

@y~

nLyy,

L 4
AP BF A A SR

N I

.I‘ '.' 'l ‘l.'l“‘l -‘

‘»

ALA

"l, "4 0 ".’l'\ [

differencs in idl2 CPU time indizated the model's relative
run-time efficiency. 3Several tests wWere subsequently

l2velopad <o determine whether tne Ada tasking version

affect task execution were considered and included in the

ne factors which could affect

ot
°y
'
w

o}
44
-3
"')
QO

3
=3
)
3
(@]
[¢)
o

b
@
bt
b
)
=
4]
o
3
'Y
ct
(1)
(o}
Fa
3
ry

rigure 2.

Megsure Factors
17590 Cyclic
MACHINE— MIX
Othner ixture
CPU
Time Jovial

—

igh
WORKLOAD<:::H LANGUAGE Deley
Low TASKING<:::
METHOD nterrupt
Ada<::
COMPILER

Figure 2. Experimental Factors

O OwW

Machine.

Although tne hardware architecture and specific machine
features could have an effect on performance, this factor was
not investigated. The 1750A architecture alone was used
since i%t is the standard arcnitecture for embedded systems.
Using tne 17573A also minimized measurement errors since it is
a single user machine with no time sharing and no operating

system to influenc2 results. To avoid hardware interaction,

24

N

LS

\.-

L)

M

i
o

-‘

o
- all tests were performed on the same machine.
Al .-' .-‘.
SN Mix.
- Avionics exacutives typically consist of a mix of
) -_l

- . \ .
K=" cyclical and asyncnronous tasks. Cyclical tasks are

>

4 : . ' P

necessary for many avionics tasks that must be repeated at s

i

x specific frequency such as control (feedback) loops or data
- sampling {(Xing, 1987). In addition, cyclical tasks tend to
Y spread out processing demands to avoid having several tasxs
s waiting to run simultaneously. Asynchronous tasks, on the
o otner hand, are triggered by events which are not

l.
b,
. predetermined, and perform functions peripheral to cyclic

- tasks. Ada tasking is geared more toward handling
[.~

- asyncnronous tasks. To study the effect of asynchronous
I.' qi; versus cyclical tasks, the experiment first looked at purely
- cyclical scheduling and then determined if adding

- asynchronous tasks at random intervals affected performance

in either JOVIAL or Ada environments. Solely asynchronous

A" . . v

1o tasks were not evaluated since they would not represent a

‘.

"

* : . . . s N

s typical avionics executive (Kin 1987). Asynchronous tasks
' H

N

)

4 : .

® were instead combined with cyclical tasks to utilize both

3 methods of task scheduling and to increase the tasking

- workload.

n o

e Wworkload.

v :

- Another method used to study the effect of workload was to
.

-, :) . . . _

> snorten the major frame. The workload was studied in this
- manner to analyze the effect of workload alone. A major
SN

) LR

. - frame is the longest period of time specified for synchronous
LY

"5

A

OO~

X%

N ~
-‘l

v
)

> e

v

SRS

P

.,
.
»

L T T |

LI]
A, Y

Cal AT

T
» 2 a

p

LA s

R 247, &

action. In otner words, it is the time intarval of the least
frequently occurring cyclical task. By reducing tne major
frame and thereby increasing the frequency of all cyclical
tasks by a corresponding amount, the workload was increased.
Although workload is a continuum, it was studied only at two
levels to facilitate statistical analysis as described in tne
nex. chapter.

Language.

The JOVIAL J73/1 versus MIL-STD-18154 Ada language
performance was the primary factor under investigation.
Since these languages are standardized language variations
were not considered.

Compilers.

In spite of language standardization, the compiler used
was expected to have a significant impact. Since JOVIAL is a
mature language, only the Air Force standard JOVIAL compiler
was used. Compiler version was expected to have a greater
affect on the Ada version, however, so the four 1750A Ada
compilers available for this thesis were tested with
identical code. Of the four compilers, three were unable to
compile and run the code successfully. The problems
encountered are discussed in Chapter V.

System Timing Metnod.

In addition to the compiler effect, the method of
implementing Ada tasking for cyclical tasks was considered.
One methnd, that of using delay statements, uses pure Ada

tasking features to achieve cyclical scheduling. Since

26

« w P
1 O AL) 0
.!".-‘l u".g Jighe e .'lA .l""l‘ Y ‘"!"""'-"..'0'.».‘.."'-".

»

‘ N0 { AN O
O C B O WO NG Mt RS

y

o T S

e

rr—

" -
o M0 a3 A 3

- .,
PN o

-

et

- > & g
LN AY) L APINIACY

Y ey
ool

[l N T S Ny g

* }<A').l")4

2. 2 Y =YY

¥] -.-‘*“" % ' N (W 8 2% gV "L W N
ot Lt WA N A o ot MY L i L W N R D N P A M N SN K

delays are tne minimum time period a task must wait, a task
sometimes resumes execution a short time after its delay
expires. As seen in Figure 3, the task gets out of phase
with the rest of the system, and ultimately operates at less

than the required frequency. This phenomenon is termed

cumulative drift (Softech, 1986:14-10).

Scheduled

Iterations
Actual

Iterations

Figure 3. Cumulative Drift
(Softech, 1386:14-7)

An alternative method which avoids cumulative drift by
associating task entry calls to timer interrupts was tested
and evaluated. Although other methods of dealing with
cumulative drift exist, this is the simplest method and
represents the least amount of overhead. Some perceive,
however, that this method avoids proper tasking constructs
and does not take advantage of Ada's strengths (Softech,

1986:14-7).

Statistical Tests

The factors under investigation were analyzed in
accordance with procedures for factorial designs at two
levels. These tests looked at two levels for each factor

under consideration. For instance, when considering the

27

L .
q.
o
J2

Y

N

...\ s -~]) 1 ' 3 i -
s wor<.oad factor, nigh workload and low worxkload comprised “ne
- .,

Y N “wo levels., All combinations of factors must be tested unless
~ a3 fractional factorial design is used. In this thesis, all
L

w combinations were tested except those cases which would not
.‘-.
Y run due to compililer limitations. Further details of the

)

- statistical tests are provided in Chapter 1V, and test results
h..'

I - : ,

v are found in Chapter V.

~

o
: Conclusion
:',!

q Tne measurement used to determine the applicability of
-

N

$ Ada tasking for avionics executives was the amount of idle

v s CPU time in a major frame. Greater CPU idle time indicated
oA less spent in tasking overhead. Since both versions performed
O . the same tasks, the comparison showed the difference in
o v ‘
B overhead for each combination of factors. To determine wnich
[\ .

o factors affected tasking performance, the factors shown in

3 Figure U were considered.

g

.‘ﬁ‘

W Measure Factors

n": ——————

64 Cyclic

9 MIX

- Mixture

- Idle

- CPU

DN Time Jovial

o High

) WORKLOAD< LANGUAGE elay
) Low TASKING

Wt ETHOD Interrupt
W)

W Ada

K OMPILER—A

[]

‘I.

> :$3 Figure U4, Tasking Performance Factors

L)

"

S 28

5. 1%]

"
a

o o DT AN OO OGNOORERNCORaS
X e SN SO IR DR R R DR DODRDROMIRO SRS

l'.‘ » 3 > T MW ¥
RS AANANA A KL AL A NO R S AN

Ead g

P
AL

Y
v

i e

-

WA

LA

l.l

) E)
AR 0

v

et 1!
[}
Padle I

UL I
.l .l lt "I ll_"V'.(

;

A
Bl WA WG Wi

KAw: O

.

ey
IR

Althougn tne Ada tasking ex=scutives and <ne JCVIAL DAIS
executive were designed to handle tasks similarly, the Ada
ncdels used tne Ada Run Time System (RTS) to handls task
interaction wnile the DAIS contained its own %as< scneduling
functions. This chapter begins by explaining design details
whicn are common tc all models and then studies each model
Separately. A comparison of the models reveals a grea:
degree of conceptual similarity. The implementation
differences account for different amounts of overhead for
each model. The chapter ends with a description of the
statistical methods used in comparing executives and
analyzing results.

All models are based on a real-time system in which
tasks are coordinated with the passage of time. The minimum
time granularity in which task activation can be specified to
occur 1s known as a minor cycle. A major frame, the longest
period of time which may be specified for a syncnronous
action to occur, was defined as 128 minor cycles for each
model. Initially, both versions were run with a four second
major frame duration yielding minor cycles of 1/32 of a
second. This time is typiral of avionics executives and was
subsequently reduced in each model to study the effects of
increasad workload.

All models were tested with the same series of

29

, .
BAARIME (AR AR LN OOt MR DI N

" : " . Laal ara - huedat i baroint Set i A it el e i et R MM A A i At o gl a4 :W_-*.;*
”
S
SRR
L
- 320112371205 T33KS 3¢ Taat comparing 2xecutives would Sncow
o “ iiffar2ances in overn=zd. The cycslical tasxks used for tness
>
e 225875 zre snown in Table IV, These tasxks wWere chossen o
N realiscically model the cyclical tasks found in a typical
b avionics executive (Xing, 1987). The phase of a tasx, which
4
O indicates -ne initial minor cycle for a given task, prevented
g
’ﬁﬂ naving <20 many tasks attempting to run in the same minor
"y cycle. The phase distributed the demand on processing
LI WY . .
e resources evenly over alil minor cycles.
o |
> Table IV. Cyclical Tasks
2. Period Tasks Priority Phase
oo (1-1low)
o 2 A2 2 1
s v 4 Al 3
W \e 3 3
- 8 A8 4 7
-t B2 4 6
16 A6 5 15
:)' B16 5 14
T 32 A32 6 31
p 64 AbY 7 63
o
LY
® 128 A128 8 0
s
e
. Asynchronous tasks were subsequently added to
-
— each model by calling a linear congruential pseudo-random
- @
B~ number generator during each minor cycle. Random numbers were
i N
::; used to represent random events which trigger asyncaronous
A
l.. 1 - 1
. tasks. Depending on the random number encountered, each
™
minor cycle would contain zero to nine asynchronous tasks.

N
o
h"
e Tne correspondence of random numbers with a par%tizcular numbder
ot o
Jh w of asyncnronous tasks was chosen to realistically model the
5, asyncaronous task workload in a typical avionics exezutive
\‘:

N (King, 1987). As shown by the figures displayed in Table 7,
S there is a high probability of few asyncaronous tasks in a
\
P given mincor cycle and a low probability of all nine

Lo,

:% asynchronous tasks occurring in one minor cycle.
i

i Table V. Asynchronous Task Activation
- Random Number of

rod Number Asynchronous Tasks
“‘ Generated called
- 1 9

o 2 .. 3 8

_3‘ y .. 6 7

o> . 7 .. 10 6
MR
&l Qe 1M .. 17 5
\, 18 .. 26 4

N 27 . 37 3

\j:‘ 38 . 49 2
o 50 .. 65 1
P 66 .. 100 0
J
'ii Workload, the last factor common to all models, was
'f‘

ﬂ studied by changing the time between minor cycles. A shorter
N >

] time between minor cycles represents a higher workload per
f? period of time. The remaining factors, Ada compiler selection
-

I and system timing method, were compared only with each Ada
]
@, version since these factors do not apply to the DAIS model.
N
.
;i: Having explained design details common to both models,
'O

Y
iﬁ: the DAIS and Ada models will now be described separately in
5) greater detail.
by
o

a

W

R

O T, T Wy > ¥ T
:’«f"'a.i‘r‘I‘u!_-',"«‘fﬂa.".n:‘?"lfo,".f":'t'»-l, AN 7

led S 0 ARl Il Sl Aol Ad Saulk Sed ek Ao Solklial
; w
0y

A

A

aly

Caln
A

nla

(@

L 2 A A A0 Aoh 2l daf Sob Ao doh £ob Aok Aok ek Sad A Bl Aed S Ao Aoi e St Aat b Bebdiat fat TE T WT RN TYTW TN . . -_--1

J
e
bt
(#7]
<
O

[
@

o)
joy
D

o
I

AIS us=2s svents for task schedulling purposes.

&3]

vents refer to occurrences such as the start of a new minor
cycle or actuation of a switch which could trigger tas<
activation. Random events such as actuation of a switch are
simulated by random numbers in this experiment. System
timing to establish the interval between minor cycles 1is
performed by the master exscutive which sets a hardware clock
to interrupt whenever one minor cycle has elapsed (ASD,
1980:47). The DAIS controls task states by referencing the
table of tasks and scheduling tasks with respect to events
and priority. The task states, along with the method of

transition from one state to another are shown in Figure 5.

When the DAIS is started, all tasks are in the invoked
state. From this state, events occur (such as a new minor
cycle) to make a task active. Tne active task is then

performed according to processor availability.

3The DAIS source code is available from SEAFAC (ASD/ENASF)
WPAFB, OH.

".l .l ‘;. ’

S, 2 A

L]
LAl

States of a Task

&

hd

LR

R’

'l.'
v'a ¥l

Schedule
Uninvoked ¢ Invoked
Cancel

'l’l 1]
."

e
(]
b, ",

Events
. Inactive ¢) Active
i End or
o Terminate

L
.

S9SN S

R4

Event
Time
Waiting ¢) Dispatchable
Wait

(Y

.

AL o

« l‘
Bl P

“e

|Ready Suspended Executing]

According to Processor Availability
(Controlled by Priority)

550 ;';’)'.-"a’;'. o

hl

Figure 5. DAIS Task States
b (ASD, 1980:10)

TN

33

VRI D MO O O ORI OO0 d ¢ I) OO
A t“?a(“"!".d"‘x".o.'.-".c"fv",p.‘.- “‘s"'il.'"‘.0’"n.“’"‘:.‘.d“!."! W \“‘!’“ﬂ'*‘. ‘!’.’.!h.s -\.-.l!q‘l!o i’ () !‘.‘ &0 !h o"\»!'l‘!h 1" hO !’l'?').'.

D
V0% W
o -"fv".b"‘l.“d" N c"‘c“?"'.i'l.

Ada Tasking Model

R
el
L S

The Ada tasking model uses the Ada RTS to control task
state in a manner similar to the DAIS executive. The
possible states of an Ada task are shown in Figure 6,
Although the Ada task state diagram is simpler than the DAIS
diagram, a similarity appears in possible taskx states. The

similarity is snown in Table VI.

Elaborated

Blocked

Figure 6. Ada Task States
(Booch, 1986:282)

RPN
y I % N

.
"

A - B

’

g 4 A _8_#
N

S LA

2.
Y

RN

kg

¢

- -
% 5y Oy 4y

ISR RRAPRS

A g

¥e

. »

- (WA
hiy (At

AP

o S A
‘

<@

SAASAL] rOTNN

\]

) 2

o e .
"ﬁ‘,.-"h‘,'u‘!‘! 0:

. RO RS e ' k! \ ADLAEIN
A%, v;,l?n!ﬁ'n. ,g), haln ’g.‘f '?J“ '“c’lf«t!é‘,nfk.‘* ‘G'a‘s', PN

Table VI. Corresponding States

Ada DAIS

Elaborated Invoked

Running Invoked-Active-Dispatchable-Executing
Ready Invoked-Active-Waiting

Blocked Invoked-Active-Dispatchable-Ready
Completed Invoked~Active-Waiting

Terminated Uninvoked

System timing in an Ada executive is not handled
automatically by the RTS but must instead be established by
the program designer. The delay construct can be used to
establisn the desired interval between minor cycles. Another
alternative is to set a hardware clock, as in the DAIS, and
tie the clock interrupt to the start of a new minor cycle.
Both methods of system timing were evaluated in this
experiment to determine the significance of tasking
methodology on system overhead as will be explained in the
next sections.

Ada with Delay Statements.%

Cyclical tasking is difficult to implement in Ada
without using interrupts because the RTS provides no
automatic means of system timing. Nevertheless, it can be
done with a minor cycle task calling a scheduler task at the
beginning of each minor cycle. The scheduler task in turn
calls each task to be run during the minor cycle. The
program structure 1s shown in Figure 7.

Tasking entry calls were used to synchronize between the

4The Ada source code is available from AFIT/ENC WPAFB, OH.

35

N)A'Igg\l; .6_‘;@“?1!‘"5{1

s

o 2 K'
R~

AY RN
S&: Minor Cycle and Scheduler tasxs and between the Schedulszr and
\:;\ u:: .,

Ry 0 application tasks. Asynchronous tasks were subseguently
(

4 added to tnis model by calling the random number generator
:f: from within the Scheduler task. The workload was changed by
e
Qs' changing tne minor cycle duration.

i
Ei task Minor Cycle
oy loop 1 .. Number of Major Frames
Sas loop 1..128

start Scheduler

- delay Minor Cycle Duration
i end loop
5ﬁ end loop
A end Minor Cycle
.!' L —

:iﬁ task Scheduler

grd loop

‘e accept start do
;”:

R f%ﬁ If proper period, phase and conditions then
o start appropriate application task
e end loop

N end Scheduler
i

Y.

RN task cyclical task

;)' loop
ead accept start do
'ﬁﬂ counter := counter + 1
N if counter > 5000 then
e counter = 0
o end loop

Y end A2
.

.. Figure 7. Ada Program Structure

:33:
oot Ada with Interrupts.
> @

o In an attempt to obtain more accurate system timing, a
"! "'}'

i:j similar tasking model was developed with minor cycle timing
l. '

‘2 handled by an interrupt tied to a hardware clock. The
‘:N) interrupt was used to call the minor cycle task rather than
y-)'.: S

Y

» . ares) Ll Amt et Sag Bl et Aed rew yv—-':'ﬂ

h\‘n
1 \i.
i 4
BN
.:v‘.
SO u3ing a d2l3y wo m3aintain system Timing.
X .. ﬁv The 2lo0K 13 32t 3nd tne interruct veltor 13 nEnilol
Iy -
- torsugn TT20A assembly language proagrams., These DrograIms ire
f: ccmbined witn tn2 Ada programs and 2all=sd tnrougn Ada's
"L pragma interfacse. A separate assemdly routins 1s needed for
\
A 23acn minor oycle duration desired.,
Can
S
<o This mcdel was 2150 tested wWwitn <ne same asynanrinsus
<, “28Xs and by varylng the worxklocad. The results of all t=2s-
P combinations are found in Chapter V.
I“‘t
oG
l\.l
Los Overnead Measurement and Statistical Analysis
0
o Cvernead Measurement,
ki .’“
N Determining how {0 measure executive overhead was :ine
xR
' \
S most pervasive problem of this thesis. Executive cverhead
b PR Y
: “‘ aould - i ¢ £ + i
- could not be 1isolated for measurement wWwith calls to a system
P . , . . <
L timer. The lack of operating system tools in the Ada RTS to
- measure processor utilization also hindered timing
J measurements. The only methcd found to measure overnead was
N
Dy, = . :
- to measure idle CPU time.
A.‘.-
Lt
- Idle CPU time was tracked by a low priority task which
o
v, incremented a value whenever higher priority tasks were not
™
- ¥
- ready to run. The count was performed through an assembly
i routine which incremented a register every time called.
I, Overflows were detected and saved in a second register. At
) “.
~y . . .
:, the end of each major frame, these registers were read and
O\
" .)
i, reset back to zero. The CPU idle time was then analyzed by
ragl P comparing the number of increments.
e N

P
A .-"
e e

a
T,

AN

«
=,
.' «

. a
. My
K

'@
* ry_ v

.

A

s

g

@

.

\ LAY
ghe v, 0 T
A < LU

FALNRRENENE.
SRR

i.
A @

]

N B

-

\)
[2 SOY A NI P AR Wi b s B

. " - .
4 L
2008 N !"'!" A .!:.,-'n‘.'n!.'

notn2 Ada mod=2ls, Tn2 assenbly routine was 2alled Ty o3
S5ingl2 a3k 22 LZW priority wWnlicn 2xecuted in oan Infinite
Loz, Since Tn2 ZAIS wWould nct allow a tas<k S0 run in Swo
ransecutive mincr 2y2l2s, LWO Separate low priority tas<s

Were 237aclisned., _n2 task called tne assembly routine in
cnase zero 3nd the otner called 1t in phase one. Eotftnh tasks
732 3 geriod of Tw2 32 tn2y would executs every ostner minor
cycle.

Statistical Analysis.

Tne first factors testad wera those pertinent ¢o tne
Ada models alone, Unfortunately, only one compiler was able

0 successfully compile and run the programs, so the compiler

effect could not be evaluated. The effect of the system

“iming method was analyzed, however, and used to determine

the significance of this factor. Once this factor was
evaluated, all combinations of remaining factors were

compared between and Ada

the DAIS, Ada with delay statements,
With interrupts.

The first step of the statistical analysis was to
analyze tne variability of results to determine how many
repititions of the experiment were necessary. Each run
consisted of measuring the idle time in one major frame. The
first major frame was excluded since all tasks were being
initialized. Subsequent major frames gave consistent results.
The number of major frame samples required was determined by
first taking five samples. The number five was chosen

arbitrarily. According to statistical procedures, the

38

au O A ¢ LU
8 I‘:"Ll t ;“'l‘r.l' l" Ao

A Calhacy - -4 - v RS e R R M S e -)

]
T

NN
-.":\ . . ~ 5 , . . .
Al iniilal numder Or sampl2s 1s unimportant and only the judgment
N
-.'- . Tt N . . 5 .) . —
‘xj* .e; cf tne experimenter is used to derive this number. Four
o
samples (or nearly any other number of samples) would have
worked just as well, but for tnis thesis five were used.
These samples yielded an estimate of the variance encountered.
The variance was then applied in the central limit theorem
through the confidence limit approach in =quation (1) to
derive the number of samples required.
n = (o Za/2) (1)
2
d
where
- n = number of samples required
S 0 = standard deviation
ﬁff Za/ois the two-tailed standardized normal statistic
o “for probability of 0.95
h ‘, d = amount of difference allowed between the estimate
e '. and the true parameter - 10% of the average found
o in trial runs
,;j: The combination of factors which created the greatest
variance dictated the number of runs for all subsequent
P
T tests.
-"'-.'
;J‘..'
a0l |
N |
<
. —_:;:,
v
L L
Ml 5m . . ‘
o ien percent was picked as a good amount for this study since
s initial runs showed that ten percent would be sufficient to
N distinguish significant differences in idle CPU time. One
‘ﬁt percent or five percent could have been specified, but this
=0 level of precision was not deemed necessary.
T »
"C-.‘j Y
) L
SN .
Lo |
Py ;
1M
B 39
o4
[)
\ «p oy -

e R AR O K OO Ot BTN OO T Tt
B AMOAT A RSO SN A G S A IS SN L B RS A S AR IS L OO

CAanal. AN
Loz iusieon

(6]

e Many similaritciss were seen in the structure of <he

. JOVIAL DAIS and Ada executive software. Differences in the
LWwo stem from the run-time system in use. Tne overnead of

- eacn run-time system was compared by measuring idle CPU time
- in all combinations of factors under consideration. These

. measurements were analyzed statistically. Results are

presented in the next chapter.

b o

£ %
o
T

‘l

4

o

.l'.r'l’n'.. A.'-’—M
W A O

b

R
.
e

-

»

-

‘.»xl.'&‘v"s

St 4
l.’l.ll.

<

A 2

%X,

-,..
o Ll

-

i 40

Pl

, o . . N
¥y) Y E “w - JOUNIOO)
OERAEN SO0 M LKA it t‘;-’t":ﬁ'n’4"1'o.‘,t.ifc"?o!l, G A RO CRERONG I

»
[
i
»

-

AN
b

L

2

=

N

> e .

e iik V. Experimental Results

S . .

ﬁ?: All factors were evaluated with the exception of the
J'\

:ﬂ comparison of the compiler effect on Ada executives. All
GO

: four of the Ada compilers tested had "bugs." As a result of
§j these problems, only one compiler successfully provided

;f: executable code. This chapter will begin by desecribing the

problems encountered with each compiler and then proceed to

T

o actual test results and statistical interpretation of these
;ﬁ results.

oa

- Compiler Problems

The compilers used will not be identified by name, but

. : will instead be referred to as A, B, C, and D to avoid

"% mentioning proprietary information. Compiler A was able to
E§ run all tests successfully. The other compilers were unable
‘)‘ to execute the tests for various reasons. Compiler B compiled
jg and linked successfully, but produced a tasking error during
;;g run-time. Compiler C compiled successfully, but encountered
iy an internal linking error. Finally, Compiler D encountered
~;§ an internal compiler error and could not compile the Task

E; Scheduler package. All compiler problems were submitted to
ﬁi; the compiler vendors for debugging if the vendors had a

:; current contract with the Air Force for that compiler.

EE Even if all four compilers did work, only two would have
:? handled the interrupt version because not all Ada Language

;S ﬁ?\ Reference Manual chapter 13 features are implemented by each
3 i

"

L]

v
!

2

o) SOSOAARCRARCACTE U UMAUA UG OLA R OO Oy OO O IO O DD OO
OO A R A O AT I Rt LN Wttt AN N LUV,

)
ERE N NN KN NSO I (R LT

AN - A9 7% A
Rt] EOOOOTOIOOIUAOH
e “C"‘v“ [f} LAY\ R “,‘l.r‘t'_‘- ‘.A.}l‘.’t.

1)
A“..'l.c W

< A M ol 4"l ol Al o) o

compiler., The compilar specifications w

(%))

Ay certinent feature are shown in Table VII.

Y
o Table VII. Compiler Feaztur=as
\',
o Used Pragma Address Azirez: Tl
B Compiler Successfully Interface Clause for Intere T2
i
> A Yes Yes Yes .
& B No No No N

- C No Yes No Nz

" D No Yes Yes bR
[

Lt .
:2 Compiler A,

, N .
HQ Although Compiler A produced useful czode, s:me :7mi.. -
D)

\

D) - s

° peculiarities were discovered. The first prodlzm =z=nzount=or=:
+ was that of inputting items of type duration interzotively
B~
:; from the terminal kKeybocard. This technigue worked in scme
by Cii cases, but failed in others with no apparent reason for <ne
L
N .)

5 failure. This would have provided a convenient means of

5

3 : . .

:: entering the minor cycle duration for each test, but an

\

alternate means of loading durations to be tested in an array

o was used.
A . .

ot The most puzzling problem encountered was found with the
o

W

e timing of the delay statement and assembly coded interrupt
'Y
b L)
J; ‘procedure. To test the accuracy of the delay versus

:3 interrupt minor cycle durations, a test was performed in

,i which the minor cycle duration was set to 0.0312 seconds.

f This yields a four second major frame. Not surprisingly,

As since delay is a minimum time period, the delay version took
L.
- 5.01 seconds for one major frame. As expected, the interrupt
73 -

yORERASG version was more precise with a major frame duration of 4.05
-

" 42

o

v

N

AT N R d - WM L7 OO ! M)
+ <+, 7 S R SRR N D T DL TR TN U TR N i st D S A DR R S

Aand ad sod and ack et ath eaduindh Sodsol Al aoh el snd ol Bl b R s K ol '-‘1

<.

) ,I

I

Ny
4

Ty
Y £y

A

' se2cnds.

o ~;: A discrepancy cccurred, now2ver, whsn She mincr 2y2l2

- Juration was increased to J.5 seconds. wWitn tnis duraticn,

" cne major frame snould taxke £4 seconds. With the delay
. versicon, nowever, one major frame took 60.07 seconds. The
i

N interrupt version also displayed a similar discrepancy with

(L.

N
= 3 majcer frame time of 60.06 seconds. These results were

.

T2portad to tne compiler vendor for investigation. As of
. tnis time, tne vendor has not replied with an explanation
- cromcdification to correct the problem. Since the long

v delays wnich caused the discrepancy were used to investigate
a .

- d2lay =z2ccuracy and were not used in the actual experiments,
- tne experimental results remain sound.

* - Compiler B

h mpile .

W e |
.. Compiler B worked for simple tasking programs where]
. |
- |
= tasks executed sequentially without interleaving. When more
N
% complex programs were run with code frem this compiler, the
o \ .

o program was unable to progress through one major frame before

..-“' |
ol . e) . : .

N ending with a %tasking error statement. Considerable time was |
&) 1
\

A, w
‘ spent trying to modify the code to run from this compiler
- since this was the first Ada to 1750A compiler used.

': Unfortunately, no solution was found. The compiler vendor was

@ already aware of this problem and may fix it with a later !

- release.

- c .

iy ompiler C.

yo!

ik This compiler was not tested further once the initial]
LY, L. :
DU linking failure was discovered. Discussions with other users

)y

A._' 43

>

AT

.
e,

.
’

n4 R

Jur
A
N

»

2 1y

rll
a"a s

-
s !, ‘l ll

.
YA
i st

a
3%

-"';";"J ®.

a8 8
..l‘l‘

-\

Rl
o
«

i .
a L s

-a s P

5

g a0 abey o sl etk sae ie sad mie- ke sl pEAcaAN-alScaa S ERc AR ety dia et A ie’ (et iat et s A at Rt el i e b diah et St gl A S _"\“W

Tl ; e
iy t.l'u,..\f.nfl'a OO WG

oI tnis compiler indicated that linking errors were 2cmmon,
and extensive debugging of what tne compiler could and 20uld
not nandle would be futile. This compiler is not currsntly

supported by Alr Force contract.

Compiler D.

The compiler error encountsred did not give any
indication of wnat could be causing the problem.

Scheduler whizh would not compile was tne lowest level packa

las

whicn contains %asxk entry calls. The compiler error 13 most

b
pa
N
1]
.

g
6Y)
w
w
O
2
b
)
ot
40
[
2
b
¢t

n T2sK syncaronization and

communicaticn, The prcblem was reported to the vendor, but

no so.uticon was cffared.,
Test Reszulsts

Ine ra23ults ars regoroed for eacn combination of factors
in Table VIII. Eguation (1. was used to determine how many
sample runs were reguired. Due to the small amount of

variance between runs, the five initial runs were sufficient
tc obtain an answer within 10% of the mean for all test
combinations. Therefore, no more runs were necessary.

The results indicate that the Ada model with interrupts
nas fewer increments than the DAIS or the Ada model with
delays. From the overhead measurement section in Chapter 1V
the number of increments is shown to correspond with idle CPU
time. A model which has more idle CPU time is thus more
efficient in terms of executive overhead than its

counterpart. The results can therefore be interpreted to

44

Ao

- o T O £ Rog by U 0 A
Y Yyl J?'.—'x‘.h‘,.’n_ﬂ AN v 4.’\’-:‘.'1"-"‘ IR AN

i ealha it s e ar it s ies ok ot Do? gt g el ek B D Ak Al & -0 ond o g ‘evvv\.‘.vu-r-ﬂ-r-s-vﬂ!nyvrsrv'v-v-1-11
\l

\l

.

¥

L
&
N snow that the Ada model with interrupts was less efficient

Ay ~
:‘: ‘éé- tnan the DAIS or the Ada model with delays. There is a

': significant difference between the Ada version with delays

% and the DAIS, but this difference is compounded by the

¥

i

. Table VIII. Idle CPU Time for all Combinations of Factors

" Run Ada with Ada with

B, Number Delays Interrupts

Cyclic Mixture Cyclic Mixture
. Low High Low High Low High Low Hign
. 1 238603 138497 215931 112478 180606 76403 156754 52473
> 2 238634 138528 217247 114586 180597 76399 158223 54072
3 238700 138560 216593 113972 180597 76407 157481 53294

@ 4 238815 138355 215496 113245 180598 76401 156736 52536
- 5 238915 138653 215989 113501 180602 76400 157222 53018
R Mean 238733 138518 216251 113556 180600 76402 157283 53078
x Std Dev 130 108 680 790 4 3 613 651
o 9

i{ DAIS

- Run

: Number Cyelic Mixture

B Low High Low High
T 1 248680 120550 242489 114328

- 2 248684 120560 242702 114530

- 3 248693 120545 2u42564 114428

o 4 248691 1205456 242434 114297

- 5 248673 120550 242408 114291

.)
Y Mean 248684 120550 242519 114374

= Std Dev 8 6 118 103

:

=@

',

> ;
3: 6 Test results given in number of increments per major frame.

A

4 Heading codes: Cyclic/Mixture indicates purely cyclic
SN tasks or mixture of cyclic and asynchronous

G High/Low indicates high or low workload

)

. .
A S TP AN

PR AT NS s

P A
Bl e g

d
=
PRPRI

S
Y YA
XN

5

o
.

I i i
F R I)

e

s
L]

~ <
.

g

s
80 0 Y 4
P

.l

Vo,
-‘."

el

:
a4

,
L}

DR S

N R R]

=

RS

LA AN

3
]

3

e Tt |
AL AL

£

. A‘:!)’oil',‘l.g.,l A

Interaction of botn worklocad and “3as< mixtur=2.

.
3¢
s

uf which

icient

]

a

»
H

D

s to provide an equation whicn czan

[l
ot

=l
IS

(e

tim bu

e

(@}

, t do not tnat da tasking

e
(¥}

better or worse than the DAIS in all cases.

The results from Table VIII snows

has more idle CPU time under low workload conditions than Alz
tasKing with delays regardless of the application tasx
mixture. Ada tasking with delays, on the other nand, gerforms

better than DAIS under high workload with cyclical %tasxing.

Neither version shows a significant advantage under

nign

workload conditions with a mixture of cyclical and

asynchronous tasks.

The

]
i

interrupt driven model displays approximately

50 percent more processing overhnead thnan the Ada model
delays for all combinations of factors. For exampl=,
cyclical tasks and low workload, Ada with interrupts has

180,600 increments per major frame and Ada with delays has
238,733. This shows the interrupt model having 24 percent
greater overhead than the delay model under these conditions.
The results were then analyzed with Analysis of Variance

(ANOVA) procedures to determine which factors significantly

influenced executive overhead. The null hypothesis for ea<ch

test was that the factor was not a significant influence; the

alternate hypothesis was that the factor provided a
significant influence.

Initially, the Ada with delay and Ada

with interrupt versions were compared with one another. Each

factor under consideration was found to have a significant

ue

OAD e
a

¥ o P VA Y DO C OOCUOUOUCLS) AAGACAGHOED
()) (] LAY
U TERRN A K N '.‘?'.‘.it‘lﬂ EAGAANGIKE ’e"".'!':‘f’c'.‘v .'-'." SOCK oL CR AN UL R N A

R

g

fﬁ influanc2. Since the Ada version with delay statements

".

A A 3;; z2rformad bDetter than the interrupt version, tnhe DAIS was
< sompar=22 witn the delay version. Once again, eacn factor
-

‘}3 under consideration was found to have a significant

~

Y influence. To analyze the relative influence of each factor,
{

SRS 2 stu2pWise regression analysis was then performed with SAS.
Qf Tne outcome of this analysis indicated which factors should
o be included in the model and the relative influence of eacn
o factor as snown in equation (2).

f{‘ -4,767L - 1T4946M + 57399W + 16809 (2)
-

;‘- wnere

~ Variable Denotes Meaning

< L Language - 1-Ada or 0-JOVIAL DAIS
o M Mixture - 0-A11 cyclical or 1l-mixture
N W Workload - 2-High or Hd-Low
Wl Oe

- Conclusion

L The effect on idle CPU time was measured and recorded
) for eacn factor under consideration except the Ada compiler
b »

N influence. The compiler influence could not be investigated
;ﬁ" because only one of the four compilers used was able to
b _

® produce code which would execute on the 1750A.

A

" All of the remaining factors contributed to the amount
\'.‘-

o) of idle CPU time. However, much of the change in idle CPU
o time resulted from the change in workload through adding
Sy

“ . »

~ asynchronous tasks or decreasing the minor cycle duration.
S
Y Conclusions will be drawn in the next chapter as to the
!

implications of executive overhead on the applicability of

-’\ -
‘o '

ﬁ :5' Ada tasking for avionics executives.1

N

DA

<&

L7

.
' ®

.......

e Dt 2 8
s "y Te
et
PRER I
wl. .) ¢

A8
£
) :‘-\
> _'--\
AN .
NN
AN
. =)
i VI. Conclusions
‘,,ﬂ
N The Ada executive models developed and analyzed in this
S
\ﬂ thesils show that Ada tasking does not posses inherently high
-
. overhead when compared with the DAIS. ©On the contrary,
[executives can be developed, using Ada tasking with delay
< L
= statements, whicn have comparable overhead to the DAIS.
i)
3 These executives, however, are prone to timing problems which
N
N may negate Ada tasking utility.
n“_'
' The conclusions drawn in this chapter are limited in tne
>
- sense that they are based on a comparison of the DAIS and an
.—'\-
S Ada tasking executive rather than absolute overhead
Y
b2 A
;: requirements for any avionics executive. Nevertheless, since

the DAIS is representative of avionics executives and the

1

|
2,
Pt

s

Ide
o
.

application tasks were chosen to model typical avionics

QE Systems, the applicability of Ada tasking for avionics

:é executives can be inferred from the results herein. The

TE; final analysis of Ada tasking can only be made by using

ii; tasking in a complete executive which is ultimately flown and
'3& flight tested. The results in this thesis indicate there is
f;t a significant amount of risk and problems that may be

:i encountered if Ada tasking is mandated for such a program.

'vj Other limitations of this study include the fact that
:SE various architectures including multiprocessor

;j implementations were not evaluated. In addition, several

.; .. other Ada compilers targeted toward the 1750A exist, but were

i r!:»iall [N Lt L LN

.:;f

iii not available for use. Likewise, various JOVIAL executives
:;; %ﬁl exist, but were not available for experimentation due to

E? proprietary reasons. These limitations must be borne in mindg
ﬁ% when considering tne conclusions reached in tnhis chapter.

f:i The results indicate that Ada tasking witn delays

{:i has nearly the same overhead as the DAIS and is therefore

:z wortnwhile for avionics applications. The problem of

= cumulative drift, however, confounds this conclusion. Ada

:i delay statements allow cumulative drift because delays are by
fg definition a minimum time interval. Ada is therefore able to
”;' perform better under high workloads by postponing the delay
Ef expiration.
isé Although unproven, it is doubtful that the Ada tasking
\" Qﬁi version with delays would be able to handle avionics tasks

;; ' effectively. Timing problems would most likely have to be

;} handled. Handling these problems implies creating more
by system overhead as in the interrupt driven model.
‘:? Wnile providing more accurate timing, the interrupt

.EE driven model is likely to cause excessive demands on the
5 processor. Given the size and weight constraints of embedded
.; avionics systems, increasing processor capacity to

iﬁ accommodate Ada tasking is not a viable alternative.

@, The DAIS also maintains precise timing by associating the
;;; minor cycle duration directly with a system timer. This is
:j nearly analogous to the Ada executive with interrupts. The
i? DAIS therefore limits drift and associated timing problems.
Eié :Eﬁ Compiler development and enhancement should make Ada
g
" 49

®

e

n‘

D)

A0
S

AT
SO

be DRI T T Bt OO AICTOE
‘l’u ‘l:g,‘tc‘l..,.fql S l’y .'_!, + X Q)‘a&ql:(‘b, v‘»,to"a i’a"lﬂa'lgsil’r b

| a3

ﬁ
,.

s 4 %&
PO

Lo
’

v
v

a4
.
.
P

- - . " .,
A A A L;'Xj J" S._ .

=

. P e}
r} Py |
ll atastal

1@

s

0

AR) AN

&

Py

tasking more efficient. Ada compilers target=d Soward <ne
175374 are relatively immature at this time. As a point of
interest, tnhe vendor for compiler A delivered two compiler
upgrades during tne time tnhnis thesis was performed. Cne of

these upgrades made a significant impact since it allowed

address clauses to be associated with task entries. Until tnis

upgrade was received, the Ada tasking with interrupt model

would not run.

Recommendations

Compiler evolution alone may not be sufficient to maxe
Ada tasking effective for avionics systems. Tasking itself
should be redesigned to efficiently handle cyclical tasks. A
software interrupt 1s necessary to provide precise ¢iming for
cyclical tasks, but this interrupt need not be tied to a task
entry. Rendezvous with an interrupt, as seen in the results,
creates a high degree of system overhead.

A table driven approach, such as the DAIS, is one means
of providing efficient tasking. Another approach is to
develop a pragma "cyclical executive" as proposed by Phillips
and Stevenson (1984). This pragma would associate an
interrupt with a task entry for each desired frequency.
Although this approach promises more accurate system timing,
the affect on system overhead could be detrimental as in the
Ada tasking with interrupt model developed in this thesis.

A combination of the above proposals shows great promise

for providing accurate timing while maintaining low overhead.

50

L Ans Aud Aad Sed Bl Jhed Aol g v-ﬁyﬁ-y—T

2xecutive" can be used T3 proviie s3ySTEm

s DA TA
N Lh2? AL

IR

7, and cyclical tas<s can tadble driven as
n tnis manner, the task scneduler need not rendezvous Wltn

2acn application task to be run. Instead, the appllcation

$Y)
(O

©as« can b2 flagged to run without incurring the overhe of
an addizional rendezvous.

Future =fforts should be made to provide precise
cyelical tasking without excessive overhead. Specifically,
-nhe ovarnead associatad with table driven cyclical tas<s

snould b2 investigated. The overhead measurement

deveiopments.

[
200

AN
Y

»

e
Lo Sibliograpny
W Adams, Steven E. and Brian Clausing. "Distributed Avionics
A7 Processing Using Acda," IEZEE National Aerospacse
oo Electronizs CZonfarence {NAZCON), 2: G7G-983 (1983).
20y Ada Run-Time Environmant Working Group (ARTEWG). Catalogue of
ﬁ} Ada Runtime Implementation Dependencies. Association for
v Ccmputing Machinery, Hovember 19388.
)
f. aeronautical Systems Division (ASD): Systems Avionics
. Division. Computer Program Design Specification for
A DAIS Mission Softwar= Executive. SA¥10122001. 1
;:5 January 19330.
Aeronautical Radio Inc. (ARINC), Circulation of Draft 1 of
g Project Paper 612, "Guidance for Using Ada in Avionic
e Design." Airlines Electronic Engineering Committtee
- Letter 86-165/SA7-289, 4 December 1986.
v

Auernheimer, Brent and Richard A. Kemmerer. "RT-ASLAN: A

. Specification Language for Real-Time Systems," IEEE
o Transactions on Scftware Engineering, SE-12(9): 879-
X 8589, September 1380,

o Baker, T.P. and G.A. Riccardi. "Ada Tasking: From Semantics
to Efficient Implementation," IEEE Software, 2(2): 34—

A 46 (Marcn 1985).
-N’ B
‘Y
;ﬂ Booch, Grady. Software Engineering with Ada. Menlo Park
::: California: The Benjamin/Cummings Publishing Company, 1983.
L)‘ Booch, Grady. Software Engineering with Ada (Second Edition).
1 Menlo Park California: The Benjamin/Cummings Publishing

) Company, 1987.
;f Burger, Thomas M. and Kjell W. Nielsen. "An Assessment of the :
g Overhead Associated with Tasking Facilities and Task

® Paradigms in Ada," Ada Letters, 7(1):

N 1-49-1-58(January, February 1987).

.
‘r: Carrington, J.C. and others. Real-Time Application of Ada
b Technical Report. Mitre Corp. Bedford, MA. August 1986
0y (AD-B105247L).

o ;
ey Clapp, Russel M. and others. "Toward Real-Time Performance

I: Benchmarks for Ada," Communications of the ACM 29:
,ﬁﬁ 760-778 (August 1986).
‘e

“»
-i\ Dewar, Robert. New York University. Ada Tasking; Boon or

Bane. Address to Special Interest Group for Ada
N (SIGAda) meeting. Dayton, OH, 15 July 1987.

n".l 52

g 1
L W A

By %, Ny

. 7t

AR

.
A
PR R AP
ln‘l},','.'.'-’

e

(]

P R N
“. .""‘n '{: "Jl :‘n ,"

]9

MO PN
.

G ae, s

A

e

e
N

e
-

al

«

. 5 ". ‘.‘ 9 .;‘r". .

P

av.

oigitval Avionizs Information System (DAIS) Program Cffize,
System Specification for the Digital Avionics
_nformation System, SA 100 100A. 30 July 1377.

cepartment of Defense. Computer Programing Lan-guage Policy.
DoD Directive 2405.7. Wasnington: Government Printing
Cffice, 2 April 1987.

Separtment of DPefense. Military Standard: Ada Programming
Language-ANSI/MIL-STD~1815A. Washington, D.C., January
1933.

isner, Robert. Higher Order Language (HOL) Evaluation in a
Tactical missile Environment. Tecnnical Report. Hugnes
Aircraft Co. Canoga Park CA. January 1980.

Friedman, Franx L. and Paul A. T. Wolfgang. "Choosing Ada
Tasxing Models for Real-time Systems," Defense
Electronics., 168-176 (April 1987).

Hanselman, Phillip, Electronics Engineer. Personal Interview.
Alr Force Wright Aeronautical Labs Data and Signal
Processing Group, Wright-Patterson AFB, OH, 15 April
1987.

Helmbold, David and David Lucknam. "Debugging Ada Tasking
Programs," IEEE Software, 2(2):47-57(March 1985).

Kamrad, Michael J. II. "Real Life Considerations of Ada
Runtime Organizations for Real-Time Applications,"
AIAA/IEEE Digital Avionics Systems Conference
Proceedings. d472-476 (1984),

King, Capt David. Software Group Lead, Personal Interviews.
Aeronautical Systems Division Systems Engineering
Avionics Facility, Wright-Patterson AFB OH, May 1987
through November 1987.

Leathrum, J. F. "Design of an Ada Run-time System," IEEE
1984 Ada Applications and Environments Conference,
4-13, 1984,

Lindley, Lawrence M. The Use of Higher Order Language for
Tactical Avionics Programming. Technical Report. Naval
Avionics Center, Indianapolis, IN, February 1980
(AD-B0O50116L).

Mundie, David A. and David A. Fisher. "Parallel Processing in
Ada,"™ Computer, 19(8): 20-25 (August 1986).

Phillips, Steven P. and Peter R. Stevenson. "The Role of Ada
in Real Time Embedded Applications," Ada Letters, 3(4):
4.,99-4,111(January, February 1984).

53

WRWHERE T T h T TR T MWW OONTNORE MR

Rubey, Raymond J. "Higher Order Languages for Avionics
-~ Software--a Survey, Summary, and Critique," IEEE National
tat Aerospace Electronics Conference (NAZCON), 2: 39452357
GA {1973 .

i
elli, Alfred J. Ada Test and Evaluation. Technicsal |
Report. Air Force Wrignt Aeronautical Labs, Wright- ‘
Pat i

terson AFB CH, May 1980 (AD-A087705).

Scnnelker, James et al. Tactical Aga Guidance (TAG).
Air Force Armament Laboratory report number AFATL-TR-§5-5&.
Contract F08635-83-C-0349. General Dynamics: Data
Systems Division, December 1985 (AD-B0G8625).

Softecn Inc., Ada (trade name) Training Curriculum. Real-Time !
Systems in Ada 1401 Teacner's Guide. Volume 2. Inc.,
Wwaltnam MA, 7980 (AD-A166352).

Trainor, W. Lynn and others. Efficiency Comparison of JOVIAL-
72/1 and AN/AYX-15 Assembly Language. Tecnnical Report.
Air Force Wrignt Aeronautical Labs Wright-Patterson AFB |
OH, January 1977 (AD-AQ038053).

Weicker, Reinhold P. "Drystone: A Synthetic Systems
Programming Benchmarx," Communications of the ACM,
27:1013-1030 (July-December 1384).

N

(’1 Witt, Capt Donald J. Using Ada in the Real-Time Avionics

I Environment: Issues and Conclusions. MS thesis
GCS/MA/85D-6. Scnool of Engineering, Air Force
Institute of Technology(AU). Wright-Patterson AFB OH,
December 1985.

q
™Y
L

Major Roger . Kontaxk w3s dorn on 19 November 13354 in

Toledo, Chio. He graduzted frcm Zoutnport High School in

2 and attended the United States

S
b
-3
T
o]
3
(@]
1%}
x>
@]
V9]
{1
[0l
]
tY
3
O
3
2
3
v
)
oy
3
@
3
1

>ceived the degree of
Bacnelor of Sciencs in Zconomics znd Management and a
commission in tne USAr in June 1976. He attended pilot
training and received nis wings in August 1977. He then
served as a C=130 copilot and aircraft commander in the 61st
Tactical Airlift Squadron, Little Rock AFB, Arkansas until
June 1979. From there he was transferred to the 17th
Tactical Airlift Squadron, Elmendorf AFB, Alaska where he
served as an aircraft commander and instructor pilot.
Before leaving Alaska, Major Kontak served as the Chief of
Plans, Current Operations Division of the 616th Military
Airlift Group. From there he moved to the 21st Air Force
Operations Center, McGuire AFB, New Jersey in July 1683
and served as an officer controller for one year. He
remained at McGuire AFB and transferred to the 1701st
Mobility Support Squadron where he served as the Chief of
Plans, Southwest Asia Branch until entering the School of
Engineering, Air Force Institute of Technology, in May
1986. Major Kontak is married and has 3 children.

Permanent address: c¢/o Rolland E. Kontak
2403 S. Emerson

Indianapolis, Indiana
46203

55

i

LA A

AR AT

KR LA

oL Y

P

702574 @
ey @

-
PSELCOIS

a
-~

e

IINCLASSIFLED

SECURITY CLASSFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB8 No. 0704-0188
ta REFORT SECURITY (_ASSIHICATION tb RESTRICTIVE MARKINGS
I™CLASSIFIED
: FCURITY CLASSIFICAT:ON AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited,

2b DECLASSIFICATION DOVWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/CCS/MA/87D-4
6a NAME OF PERFORMING ORGANIZATION &b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
Schogl of Epgincerling AFIT/ENC
6c ADDRESS {City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 454733-6583

8a NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN!ZATION (If applicable)
B¢c. ADDRESS (City, State, and ZiP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO

11 TITLE (Include Security Classification)
APPLICABILITY OF ADA TASKING FOR AVIONICS EXECUTIVES (UNCLASSIFIED)

12 PERSONAL AUTHOR(S)
r~ger E. Kontak, Maj, USAF

© TYPE OF REPORT 13b. TIME COVERED 14. DATE QF REPQRT (Year, Month, Day) |15. PAGE COUNT
Ms> Thesis FROM TO 1987 December 64

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP .
Ada, Tasking, Avionics Execut;ye-,-gﬂe Fhkiwmg 1aw £r3 120
12 05 W) 1 O
12 08 %W\L \k’h _ o
19 ABSTRACT (Continue on reverse if necessary and identify by block number) e 1) ik
Thesis Chairman: David A. Umphress, Captain, USAF Woght-Fatleises cio v st
Assistant Professor, Department of Mathematics and Computer Science.

The purpose of this study was to evaluate Ada tasking performance and its suitability for
avionics sthedulers known as executives. This was done by comparing variations of Ada
executives written by the author with the existing Digital Avionics Information System
written in JOVIAL. The comparisons were made by evaluating the system overhead of each
model while running a series of representative application tasks.,

The study found that Ada tasking had considerably more overhead than its JOVIAL
counterpart in order to maintain precise cyclical timing. Another outcome was that several
Ada compilers were unable to produce code which could be run on the MIL-STD-1750A computer.
This points to the present immaturity of Ada compilers targeted toward embedded aircraft
computers.

This thesis adds support for the need to revise standards and develop compilers as
necessary to provide an efficient Run Time System for Ada executives.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
(T2 UNCLASSIFIED/UNLIMITED [J same As RpT. [J o1ic UsERs | UNCLASSIFIED
.C:’;,"NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL J
vavid A. Umphress (013) 255-3098 AFIT/ENC
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

-~ AR

LA S L

LM) N TR)) -
I g~ ~ AL N, OoeS 33 000 W3O ™ WY vy IO A e N h \) W,) s M)
v“."ﬂ‘.. l.oll MJUMN l‘:‘!—-, Ok A n‘!?e’.,sﬁ..n’!’e‘! Sa et et ‘:.(v‘l%,u 'y l'o‘l‘y%*-‘i'-’l'-,l'“- S AL AL AL LGN A A B L LA AT n!l Ly ~ p«xﬂ'n. LR 50N,

-
'
'

)
Y .
PRI T

’.2

N
Y™~
=

L '-,.l,'

"..‘/.

- - ol n rrs
(IR, s.:‘ b -‘;.-\ - .. ':' '- .""l’ j‘l‘. LA . l'JSJ '}‘./‘ P4

o
]

o O o L o . o o o @ o @ . ' .. LR N ';"7--':

3' i' H
.ﬂ‘h

| FCRN) u.r-lr"\ 0’. l“ :l. 1..'q..-‘.. ‘.v“.v‘~.“‘.l' ’-.-.w.' ‘.q‘- t\". l‘ o ‘-'l. .|‘\~"
-*"-,o i,o ,0‘1‘0 . a! '..'n.'(".., " ."‘ i‘.'
!

X ,n,’ u. p. ‘» '.ﬂ

l'|‘.'.‘l "--" -'.--. -..,1,0 r‘,c" n..c-p. I'fl'. "y I'. l' l ‘ v , L

ittt
e .' W l‘c' .v",o o' ‘., 1
& b c,o‘.:o' c‘,'o',‘o‘ N o‘ g\

‘ I Y 5\.(‘
Q'Q ~k|;‘0

