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Preface

This experiment was developed and run in conjuction with the Flight

Dynamics Laboratory, Vibration and Acoustics Branch, Wright Patterson

AFB. Ohio, as a part of their in-house Large Space Structures Technology

Program. The experiment was conceived and constructed in Building 24C.

Area B, Wright Patterson AFB. Project Manager for the experiment is Mr.

Robert Gordon (AV785-5236), and the Lead Engineer is Mr. Wayne Yuen.

IThe purpose here is not only to document the work done to develop
e.

and test the system, but to provide those future researchers interested %
ii. conducting experiments with this aparatus with a working level

knowledge of the system, its development, and some of its

idiosvncracies. While the text may seem to get bogged down with

incredible detail on actuator development and structural modelling,

there are some issues raised about these subjects that even the reader

irterested only in Large Space Structure Control applications should

fi!rd useful. However, unless one is planning on using the experiment

fcr fu.ture investigations, studying Chapters 2 and 3 in great detail is

Tnecessarv for understanding the subsequent material.

F-,, liarization with the system configuration and problems encountered

iT' d'.-'lopinn it are probably the most important points to be gleaned

-mfr, those sections of this report.

Thi]f a number of people made significant contributions to this

pr jec-z, I would like to thank several individuals in particular for

thfir help, understanding, and sympathetic listening when things weren't

- working as planned. First, my advisor, Dr. Robert Calico for guiding me

through this often frustrating project. Bob Gordon and Wayne Yuen

provided me not only with sound technical advice, but did most of the

dirty work of procuring hardware and lining up technical services and

ii .



support. And of course, the people who really make an experiment work,

no matter how much credit the engineers may claim. Earl Rodgers and Mike .%-*

Banford, the lab technicians. Finally, a special thanks to my friend

Wendy Motlong, and the members of GA-87D, all of whom made this last

year and a half a bearable experience.

Thomas A. Cristler %
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Abstract

Many control methods have been proposed for dealing with the large

space structure vibration control problem. To experimentally evaluate

these various approaches in a way which will allow consistent comparison -

of results requires a baseline experiment in which all variables are

understood and controlled. From this baseline, the various aspects of

each control scheme can be implemented, and their relative merits

compared on a consistent basis. This experiment was implemented using a

verticallv suspended cantilever beam with rectangular cross section.

Proof mass actuators were developed to provide control force inputs to

the structure. Closed loop control was formulated using linear
r%z

quadratic regulator theory and results are compared with simulation and

eigenvalue predictions to establish baseline performance. Modal

suppression techniques were implemented to demonstrate control of

selected modes while maintaining overall system stability. Results

applicable to future testing and development in the large space

structure control area are identified.
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ACTIVE VIBRATION CONTROL OF A CANTILEVERED BEAM WITH THREE ELASTIC

COORDINATES

I. Introduction

As man's presence in space grows, so does the size of the vehicles

he deems necessary to put there. Programs such as the Space Defense

Initiative and NASA's space station are generating requirements for very

large vehicles which must point with arc-second accuracies, hold the

shape of optics surfaces to within a few tenths of the electromagnetic

wavelength being used, or maintain a vibration free environment for

experimentation while docking and cargo transfer occurs elsewhere on the

vehicle. While these operations are readily, and in some cases commonly

accomplished on earth, they present a challenging problem when attempted

in the space environment.

As platforms grow in size, economics dictate a reduction in weight.

The result is a large flexible structure which tends to have many

closely spaced, lightly damped vibration modes that are easily excited.

Mechanisms for inducing vibration in the structure range from the

attitude control system and active power generation, to cargo transfer,

or personnel moving about the vehicle. If the amplitude or duration of

the vibration will degrade the performance of the system, then some

means of controlling it must be introduced. Adding passive damping

(shock absorbers, visco-elastic materials, etc.) would most likely be

the first attempt at a solution. However, there are cases where passive

i I
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damping will still not achieve the desired performance and an active

means of control must be introduced.

Many approaches have been proposed for dealing with the active

vibration control problem, and there is considerable ongoing work in the

field. Two examples of current work include Lockheed's demonstration of

a high authority control/low authority control (HAC/LAC) scheme on a

suspended plate, and static and dynamic shape control of a fixed-free

beam, which was accomplished at the Jet Propulsion Laboratory using

Kalman and adaptive control techniques (1:3). Many of the experiments

conducted to date have used ground referenced sensors or actuators,

which is not representative of the problem. While this simplifies the

implementation of the experiment, it seems to be oriented more toward

control law evaluation than being a complete emulation of the large

space structure control problem.

To provide a more realistic test bed for research in this area, Air

Force Wright Aeronautical Laboratory, Wright-Patterson AFB, initiated an

in house program under its vibrations branch (AFWAL/FIBG) to investigate

large space structures technologies. An advanced beam experiment was

devised to demonstrate active vibration control of a cantilevered beam

in two orthogonal bending axes as well as torsion about its long axis.

This configuration has closely spaced and coupled modes and features

inertial sensors and actuators. The experiment was designed to emulated

as many large space structure problems as possible. AFIT was invited to

participate in the implementation and testing of this experiment, which

is depicted in Figure 1.1.

Two related methods of structural control which have received i. -

W attention in recent years are reduced order and decoupled controllers.

The importance of these controllers lies in the fact that a large space

structure will in general present many more modes than can reasonably be

p.°
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controlled by a single system. Weight and hardware capability become
'C,

serious issues when the modes to be controlled can number in the

hundreds. If the system can be subdivided and a subset of the modes to

be controlled assigned to separate controllers, the implementation of

the structural control can be greatly simplified. Indeed, not all of

the modes may require active control to meet the vehicle performance

requirements. In such cases, reducing the order of the control model

can greatly reduce the size and weight of the requisite control system.

The difficulty with implementing this reduced order model is that

the sensors may still contain information about the modes which have

been omitted from the model. Also, since the actuators operate on a

continuous structure they will excite, and potentially destabilize these

ignored modes. These effects have been classified as observation and

control spillover respectively (Ref 2). Work by Coradetti (Ref 3)

showed that spillover could be eliminated by finding a transformation

matrix which is applied to the feedback gains, thus "suppressing" the

omitted modes. Calico and Janiszewski (Ref 4) showed that eliminating

either observation or control spillover was sufficient to ensure -

stability of the suppressed modes and demonstrated a procedure for

calculating the appropriate transformation matrix. Wright (Ref 5)

implemented this modal suppression technique on a single bending axis of

a cantilevered beam. While being able to show increased stablility in

the second bending mode of the beam without destabilizing the first or

third modes, direct correlation between predicted and measured

". performance was not achieved.

The goals of the research presented here are to conduct the system

identification of the experiment, to include the actuators, sensors, and

structure, and demonstrate predictable closed loop control response

using state space control techniques. Once this has been accomplished,

--.
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implementation and demonstration of reduced order controllers will be 5

-W attempted, leading up to a demonstration of a decoupled control

algorithm.
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X II. Actuators
'.

Actuator System Description

The actuators chosen by AFWAL for use on this system are proof

mass linear motors which provide control force using momentum exchange

between the base and the moving mass. The specific actuators being used

in this experiment are based on a TRW design used in the AFWAL sponsored

VCOSS program. System drawings and descriptions were provided to AFWAL,

who purchased and fabricated the necessary components to assemble the

devices.

The actuators consist of a linear motor coil mounted on two support

brackets (see Figure 2.1). A cylindrical proof mass of 0.9 kg contains

the motor magnets and is driven by the motor coil. This mass travels on

linear bearings along a center shaft with a nominal travel of ±0.5

inches. The nominal motor parameters published by the manufacturer,

Kaiser Electroprecision, are listed in Appendix A. The actuator is

instrumented with a Linear Variable Differential Transformer (LVDT),

2" manufactured by Schaevitz Engineering, which provides feedback of

relative position between the proof mass and the motor base. The proof

mass itself is instrumented with an Endevco piezoresistive accelerometer

to provide feedback control of the proof mass acceleration. LVDT and

accelerometer specifications and calibrations are listed in Appendix A.

5 The motor coil is driven by a power amplifier circuit (see Appendix A)

which transforms a voltage command into a drive current. The power

amplifier has a current limiter to prevent burning out the motor coil

which has a steady state current limit is 2 amps. This limits the force

routput of the actuators to 4 lbf.

2 1
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Initial open loop testing of the actuators found them to have

several undesirable characteristics:

1) The low frequency output was very non-linear. The bearing

friction and hysteresis in the system caused the proof mass to wander

away from the center of travel when commanded at low frequencies. Since

the actuator stroke is limited, the amplitude of low frequency commands

must be kept small to prevent driving the proof mass into the support

brackets. However, when the input is kept low, friction can overcome

the proof mass motion and cause it to stick, or at least significantly

lag the sinusoidal input command. This leaves the proof mass off

center, and after a few cycles the mass is driven into the end stop.

2) The zero reference potentiometer in the power amplifer, which

provides centering adjustment for the proof mass, required continual

adjustment during the initial testing of the actuators. Changes in input

gain and changes in frequency would cause a shift in the zero reference

(the center point of the actuator travel). This problem was evident at

higher frequencies (greater than 3 Hz), and is a separate condition from

the "wander" previously described.

3) The actuator frequency response has a low frequency roll-off

and phase shift in the vicinity of the fundamental bending modes of the

structure.

To modify the frequency response of the actuators and maintain

proof mass centering, a feedback control system using classical analog-0

control techniques was implemented around each actuator.

Feedback Compensation Design Goals

The actuator control was developed around accomplishing the

following objectives:

%.P!

2-3



-

a 1) Actuator frequency response should be "flat" over the structure

control bandwidth, i.e. constant magnitude and zero phase. The control

bandwidth for this experiment has been limited to 0 to 50 Hz.

2) The actuator proof mass should maintain an inertial position

when the actuator is not being commanded, which prevents the actuator

proof masses from contributing to the structure inertia.

3) The proof mass should maintain its centering when commanded at

different frequencies and amplitudes.

4) The proof mass travel should be limited to the actuator stroke

of ±0.5 inches.

Open Loop Testing

Each actuator was tested ii. the original configuration to determine

its frequency response characteristics. These tests were performed by

driving the actuator power amplifier with a random input signal and

measuring the acceleration of the proof mass with the actuator base

fixed to a clamped plate. The frequency response was calculated using

Fast Fourier Transforms (FFTs) on the measured data and dividing the

output spectrum by the input spectrum to determine the transfer

function. The data collection, FFT and transfer function calculation

wc c all automatically performed by an Ono Sokki CF-910 Dual Channel FFT

Analyzer. The output signal measured was the voltagc 3ut of the proof

,'' mass accelerometer. This output, and consequently the transfer

function, can easily be transformed to force by adding 4.9 dB to the

magnitude response function (accelerometer scale factor time mass of the

proof mass).

2 4
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The transfer functions measured for each actuator are shown in

Figures 2.2 to 2.5. The response is consistent between the four

actuators, with the exception of the phase response of actuator #4. The

0
180 phase shift was found to be due to the motor coil leads being wired

#'.

opposite of the other three actuators. When corrected, the phase .

response of actuator #4 was consistent with actuators #1 through #3.

System Model

Initially the actuators were modelled using standard linear motor

equations of motion. This approach did not prove fruitful, primarily

because the power amplifier circuit was constructed so that it

significantly reduced the back-emf of the motor. Because of this the

basic model was developed by fitting the measured transfer function with

the circuit dynamics of the power amplifier plus any additional dynamics

necessary to match the response. From the power amplifier circuit

diagram in Appendix A, the power amplifier frequency domain dynamics are P.-.

found to be

I(s) 500 (1)

E(s) S + 2500

where I(s) is the current signal to the motor coil, and E(s) is the

voltage signal to the power amplifier.

The resulting analytic transfer function that gives the best fit

to the data is

2 5
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X(s) 500 S- (2)

E(s) (S + 35)(S + 2500)

Figures 2.6 and 2.7 show comparisons of the magnitude and phase response

of this transfer function with the frequency response measured for

actuator #1. The model matches the data very closely except in the very

low frequencies (below I Hz). The low frequency data is somewhat

suspect due to the short sample times and low input amplitude required

to complete a test on the uncompenstated actuator without driving the

proof mass into the end bracket. Figure 2.8 shows the coherence for the

actuator #1 frequency response, which is a measure of the correlation

between the input and output. A coherence of 1.0 indicates perfect

correlation between input and output, while 0.0 indicates no correlation

at all. The coherence measured for low frequencies is very poor,

indicating the data is suspect.

The model also does not include the dynamics which are obviously

present in the measured data around 150 Hz. This effect appears to be a

mechanical response in the actuator, however the frequency is much too

low to match either the first bending mode of the end bracket or the

first axial vibration mode of the motor shaft. To isolate the effect

the mounting bracket was instrumented with an accelerometer and the

response measured while driving the actuator with a random input signal.

Figure 2.10 shows the transfer function between the voltage command

input and the bracket acceleration. Comparing this response with the

actuator transfer function indicates the energy is indeed being

transfered to the mounting brackets and not the proof mass in the 150 Hz

range. Since this effect is outside the desired control bandwidth for

the structure, the command signals should not have any spectral content
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% in this frequency range. Ignoring it should not cause a problem other

than perhaps adding some noise in the acceleration feedback.

To further evaluate this model, and determine that the high

frequency response is not aggrevated by changing the system dynamics, a

position feedback loop was implemented using the LVDT output signal.

The LVDT is modelled as a double integrator of the proof mass

.3, acceleration and a gain. The gain is calculated by applying the nominal

motor parameters and the nominal LVDT scale factor (see Appendix A).

" The resulting closed loop model is represented by the block diagram in a"

.7. Figure 2.10.

E(s) + 500 S X(S)

(S + 35)(S + 2500)

" ~8425 •"'

Figure 2.10. Position Feedback Block Diagram

Figures 2,11 and 2.12 compare the transfer function derived from

this analvtic model and the transfer function measured for actuator L1. k

Agreement between the model and measured data is good and the high

frequency response has not been aggrevated.
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Control Design

The parameters accessible in this system are the current command

from the power amplifier to the motor coil, the proof mass acceleration,

and the relative position between the end bracket and proof mass as

measured by the LVDT. Evaluating the affect of these parameters as

feedback signals on a heuristic level, one notes that position feedback

has the same effect as adding a spring between the end bracket and proof

mass. This would help in accomplishing the design goals of maintaining

the centering of the proof mass, as well as helping to limit its travel.

Since proof mass acceleration varies from the force by only a constant,

it would have the effect of feeding back the desired output. This

should provide not only a more accurate response, but also an error

signal which will accomplish the goal of maintaining an inertial proof

mass position when the actuator is uncommanded. A current feedback loop

around the power amplifier may help improve the accuracy of the current

command, but since the power amplifier dynamics are already outside of

the control bandwidth, it should not be necessary to modify its

response.

To move the actuator dynamics outside the control bandwidth, a root

locus analysis was used to determine the effects of closing the feedback

loops discussed above. Closing the position feedback loop adds a low

order pole to the system, which with increasing gain combines with the

(S + 35) root and forms a complex pair. The break frequency for this

pair occurs at approximately 6.5 Hz. If the acceleration loop is closed
LN

around the position feedback, the order of the system remains the same

and the break frequency of the complex pole pair is lowered as the gain

is increased. To have all effects of these roots out of the control

bandwidth requires placing them below 0.2 Hz.

2 18
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Figure 2.13 shows a block diagram of this preliminary

configuration. While it is theoretically possible to move the complex

pole pair as close to the origin as desired, the gain required to move

the poles below 0.2 Hz is approximately 100. Since nominal gain for the

operational amplifiers intended to be used in this control circuit is VZ

10, this would require more than one amplification stage, and would most

likely saturate the amplifiers. An alternative to this is to boost the

acceleration gain as much as the circuit will handle, and then adjust

the overall response by prefiltering the input signal. Applying a gain

of 10 to the acceleration feedback would move the poles below 1 Hz.

Increasing the position feedback gain will drive the damping ratio down

and reduce the frequency range over which the phase contribution of

these poles acts. A predicted frequency response for this configuration

is shown in Figure 2.14. This configuration has a prefilter (lag

compensation), position feedback gain of 0.1, and an acceleration

feedback gain of 10. This provides not only a fairly flat response over

the bandwidth, but also the centering and inertial position control

desired.

Closed Loop Testing

Many technical problems were discovered while implementing the

control design. A discussion of each of the major problems encountered

and their resolution, if any, is in Appendix B. There were two

important problems which led to changing the control design. First, the _

acceleration gain could not be increased beyond a factor of 6 without

high frequency noise dominating the feedback signal. Figure 2.15 shows

the frequency response measured for the baseline configuration with the
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acceleration feedback gain at 5 and the position feedback gain at 0.05.

While the magnitude response is fairly flat, there is too much low .

frequency phase shift. The input prefilter can be adjusted to further

reduce the phase, but it then has the undesireable side effect of St

increasing the magnitude over the same range Since noise was the

limiting factor a low-pass filter with a break frequency of 100 Hz was

placed in the acceleration feedback loop.

The second problem was that the centering of the proof mass shifted

as the amplitude of the input signal was increased, even with the

position feedback loop. In an attempt to correct the centering problem,

a feedback loop was placed around the power amplifier. Initially, this

loop was also plagued by high frequency noise problems. By changing the

inverter in the feedback path to a low-pass filter with a break

frequency of 50 Hz, the noise problem was significantly reduced. This

modification did not help the centering problem, however it did reduce

the overall noise in the system and improve the "quality" of the

response data (measured transfer functions were much smoother and more

repeatable). The solution to the centering problem was later found to

be associated with unstable, very high frequency oscillations (kilohertz

range) in the power amplifier. Details of this problem are discussed in

Appendix B.

Making the modifications discussed above and several adjustments to

gains results in the configuration shown in Figure 2.16. Figure 2.17 is

the circuit implementation of this block diagram. Since the low-pass

filters in the feedback loops add zeros in the closed loop system, an

additional pole was added as a prefilter to reduce the phase. The

desired response for each actuator was set by adjusting the various

potentiometers in the circuit, which accounted for variations in gain

and sensitivity of the various elements in the system.
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The predicted frequency response of this configuration is shown in

Figure 2.18. The measured response of the four actuators is overlaid on

the prediction in Figures 2.19 and 2.20, and show excellent agreement

with the prediction. The frequency response was measured using a sine

%41
sweep rather than the random input tests. This test drives the actuator

at a single frequency, measures the response, and then increments to the

next frequency. The method gives more consistent results and is a much

better approximation to the actual commands the actuator will receive

when mounted on the structure.

Characterization of Final Actuator Configuration

To fully evaluate the actuator performance, a series of tests were

performed that simulated the operating environment an actuator will

experience when mounted on the beam. These tests measured the actuator

frequency response with the base free to move, the maximum force output

of the actuators at each modal frequency, the uncommanded actuator

response to base motion (how well the proof masses "float"), and the

variation of the transfer function while forces are applied orthogonal

to the direction of proof mass motion.

A better estimate of the actual performance the actuators will

deliver when fixed to a moving beam can be made by testing each actuator

on a slip table. The slip table is a plate which rides on bearings and

is free to move in a single direction. The test configuration is

depicted in Figure 2.21. The force output of the actuator was derived

by measuring the acceleration of the base plate and multiplying by the

combined mass of the plate and actuator base (all components except the

proof mass). Figures 2.22 to 2.25 show the transfer functions measured

2 26
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for each actuator. For most of the tests there was very little change

from the fixed base tests, mainly a phase shift of a few degrees.

However, for very low amplitude tests the response sometimes changed

noticably, especially in magnitude. This seemed to be due to the wires
-%-

attached to the actuator preventing free motion of the slip table. The

motor power lead is a relatively stiff cable, and even though it was

suspended vertically from the actuator, it often had more effect on slip

table motion than the actuator itself.

The maximum force output of a proof mass actuator is limited in the

low frequencies by the distance the mass can travel, and in the high

frequencies by the maximum current the motor coil can handle. The

maximum peak force for the actuator can be calculated using equation 3.

2
F M W d (3)

OUT nF

where mpF is the mass of the proof mass, w is the frequency of the

signal driving the proof mass, and d is the maximum proof mass

displacement.

Using the maximum displacement of ±0.42 inches (0.16 inches of the

nominal stroke is lost to the rubber grommets which buffer the proof

mas~s from the mounting brackets). This results in a maximum actuator

output of 0.15 lbf for the fundamental z-axis bending mode (1.33 Hz),

and 0.26 lbf for the fundamental y-axis bending mode (1.75 Hz). The

maximum output for the first torsion mode is 13.3 lbf, far beyond the

motor coil capability of 4.2 lbf. To verify this capability, the

actuator was driven near the modal frequency with the base fixed. The S

input amplitude was set so that the proof mass used the entire range of

travel without hitting the end brackets. Table 2.1 shows the maximum

force outputs and efficiency measured for each actuator.
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Table 2.1. Actuator Maximum Force Outputs

Actuator Frequency Measured
A (Hz) Maximum (lbf) Efficiency

1.25 0.114 85.7%

1.75 0.214 82.3%

1.25 0.110 82.7%
#2

1.75 0.224 85.2%

1.25 0.102 76.7%

#3
1.75 0.242 93.1%

1.25 0.108 81.2%
#4

1.75 0.212 81.5%

Applying the efficiency for actuators #2 and #4 to the z-axis

fundamental bending frequency and summing the maximum forces results in

a maximum control force of 0.246 lbf. Similarly, actuators #1 and #3

should provide 0.462 lbf for the fundamental y-axis bending frequency

To determine the ability of the control circuit to maintain the

inertial position of the proof mass when the actuator is uncommanded,

the the slip table was driven by a shaker while the compensation circuit

was operated without an input signal. This test configuration is shown

in Figure 2.26. The acceleration of the proof mass should be zero if it

is perfectly floating. If not, it will be applying a force to the beam,

the effect of whi2h is determined by the phase of the response. A 900

phase lead could drive the beam unstable if the force is large enough to

overcome the inherent damping in the beam. An out of phase signal would

act as a resonance, leaving the structure unaffected. A 900 phase lag

acts as a viscous damper, and an in phase response would effectively add

inertia to the system, as if the proof mass were fixed to the base.
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The base motion transfer functions measure the accleration response

of the proof mass to the force applied to the slip table by the shaker.A -A

force gauge was mounted between the slip table and shaker armature to

determine the force applied to the base and a sine sweep was used to

drive the shaker over the desired frequency range. The frequency

response functions measured for each actuator are shown in Figures 2.27

through 2.30. A force ratio can be derived from the magnitude response

by adding -6.1 dB. Note the phase of the response is approximately

-900, which indicates the uncommanded actuators should act essentially

as viscous dampers on the structure.

To estimate the damping the uncommanded actuators will impart to

the fundamental bending modes, the slip table was driven at the modal

frequency and the proof mass acceleration measured. Several different

force levels were applied to the slip table to determine the variation

of proof mass acceleration with base displacement and velocity. The

peak base velocities were calculated using equation 4, and peak V

displacements were derived by dividing the velocities by the natural

frequency.

F 386.4 in/sec2 1
Base Velocity IN * . (4)

B ig w

where F is the force driving the slip table base, W is the weight of
I N B

slip table base, and w is the modal frequency in rad/sec. Results of

these tests for the fundamental bending frequencies are in Tables 2.2

through 2.5.

The force out of the uncommanded actuators is not a constant with

respect to velocity, which would have represented a standard viscous

damper. However, a first order approximation can be made to the damping

by assuming an average value for each actuator, adding the averages for

2 38
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Table 2.2. Base Motion Actuator Response -Actuator #1

wn Base Weight F INV BD B F PMC

____ ___ ________ __ ( lbf(Hz) (lbf) (lbf) (in/sec) (in) (lbf) insc

0.0841 0.793 0.101 0.0204 0.0257

5.223 0.1413 1.331 0.169 0.0302 0.0227

0.2213 2.085 0.265 0.0427 0.0205
5: 1.25

0.2399 1.081 0.138 0.0255 0.0238

10.921 0.3589 1.616 0.206 0.0347 0.0215

0.3936 1.773 0.226 0.0368 0.0207

0.1035 0.696 0.063 0.0174 0.0250

5.223 0.2188 1.472 0.134 0.0277 0.0187

0.3458 2.387 0.217 0.0403 0.0169
1.75

0.3631 1.167 0.106 0.0237 0.0203

10.921 0.5188 1.669 0.152 0.0299 0.0179

0.5957 1.917 0.174 0.0332 0.0173

-. F -Peak force driving the base
IN

V -Peak base velocity0
Bma

D -Peak base displacement
B

F - Force applied by the proof mass to the base
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Table 2.3. Base Motion Actuator Response Actuator #2

wn Base Weight FIN VB DB FPM C

(lbf(Hz) (lbf) (lbf) (in/sec) (in) (lbf) 1..isec

0.0462 0.436 0.055 0.0153 0.0298

5.223 0.0708 0.667 0.085 0.0195 0.0248

0.1585 1.493 0.190 0.0324 0.01841.25 ,o-'-,

0.1622 0.731 0.093 0.0221 0.0257

10.921 0.2754 1.241 0.158 0.0292 0.0199

0.3350 1.509 0.192 0.0347 0.0195

0.0955 0.643 0.058 0.0197 0.0260

5.223 0.1429 0.961 0.087 0.0240 0.0212

0.2958 1.986 0.181 0.0347 0.0163
1.75

0.1641 0.528 0.048 0.0148 0.0238

10.921 0.3589 1.155 0.105 0.0257 0.0208

0.5129 1.650 0.150 0.0292 0.0165

F - Peak force driving the base
IN

V B Peak base velocity 0

D - Peak base displacement

Q F m Force applied by the proof mass to the base

.". "PM

"I:
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Table 2.4. Base Motion Actuator Response - Actuator #3

n Base Weight F INV D F PM C

(Hz) (ibf) (lbf) (in/sec) (in) (lbf) lbf

I in/secJ
0.0412 0.388 0.049 0.0114 0.0295

5.223 0.0989 0.931 0.119 0.0206 0.0221

0.1445 1.362 0.173 0.0281 0.0206
1.25

0.0617 0.278 0.035 0.0134 0.0484

10.921 0.1059 0.477 0.061 0.0149 0.0312

0.3467 1.562 0.199 0.0294 0.0188

0.0484 0.326 0.030 0.0103 0.0317

5.223 0.1365 0.918 0.083 0.0175 0.0191

0.2344 1.577 0.143 0.0256 0.0179
1.75

0.0794 0.256 0.023 0.0103 0.0404

10.921 0.3467 1.116 0.101 0.0197 0.0176

0.4955 1.594 0.145 0.0242 0.0152

F - Peak force driving the base

V - Peak base velocity

D - Peak base displacement

F - Force applied by the proof mass to the base

2 -M
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Table 2.5. Base Motion Actuator Response - Actuator #4

nO w Base Weight F V D F C

n IN B B PM.. ?,Ibf
(Hz) (lbf) (lbf) (in/sec) (in) (ibf) (in/sec)

0.0531 0.500 0.064 0.0149 0.0298

5.223 0.1161 1.094 0.139 0.0253 0.0231

0.1862 1.754 0.223 0.0365 0.0208
1.25

0.0933 0.420 0.054 0.0141 0.0334

10.921 0.1622 0.731 0.093 0.0208 0.0285

0.3020 1.360 0.173 0.0315 0.0231

0.0617 0.415 0.038 0.0136 0.0327

5.223 0.1718 1.156 0.105 0.0247 0.0214

0.2541 1.710 0.155 0.0322 0.0188
1.75

0.1334 0.429 0.039 0.0134 0.0313

10.921 0.2661 0.856 0.078 0.0205 0.0240

U 0.3631 1.168 0.106 0.0250 0.0214

0T

F - Peak force driving the base

V B Peak base velocity 6

D - Peak base displacement
B

F - Force applied by the proof mass to the base
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the actuator pair controlling the axis being analyzed, and applying Lhe

resulting coefficient as a damping element between the end node of the

structure and a fixed node. The element is oriented in the plane of the

axis being evaluated. This procedure was implemented using the finite

element model for the beam with floating proof masses configuration (see

Chapter 3, Table 3.4).

The finite element code forms the system of equations for the model

in the form of (6:2-26,2-27)

M x(f) + C (f) + K x(f) - F(f) (5)

where x(f) are the nodal displacements, F(f) is a periodic forcing

function applied at given nodes, and f is a discrete frequency value.

This system is assumed to be in a steady state condition at the given

frequency, thus the velocities and displacements are

x (f) - -(2,rf) 2 x
(6)

(f) - i(2,rf) x

where i (-I) / z  The system of equations now becomes

w (21f)2 M + i(2frf)C + K 3 X(f) " F(f) (7)

which is solved for each designated frequency to generate a frequency

response function. The damping can be estimated from the frequency

response data using the half power point method (7:96) which has the

form

2 47
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1 2 (8)
2 %

n -

where w and w are the frequencies at which the response is 3 dB below

the resonant peak, w

Actuators #2 and #4 have been designated to control the z-axis of

the beam, and #1 and #3 will control the y-axis (see Figure 5.3).

Averaging the damping coefficients measured from the base motion data

and summing the coefficients for the two actuators results in a z-axis

damping coefficient of 0.0495 lbf/in/sec, and a y-axis coefficient of

0.0431 lbf/in/sec. These coefficients were applied to the appropriate

finite element beam models and the structural frequency response

calculated for each axis. Results are shown in Figures 2.31 and 2.32

for the z and y axes respectively. The damping ratios predicted by this

model for the fundamental bending modes are in Table 2.6.

Table 2.6. Predicted Modal Damping Due to Actuators

Axis Predicted Damping Coefficient

z 0.0644 ± 0.0038

y 0.0410 ± 0.0014

While this is substantially more damping than would normally be

encountered in an uncontrolled structure, there will still be enough

margin between the residual damping and the maximum actuator capability S

to demonstrate the controller is affecting the structure.

Finally, since the actuators will operate in orthogonal pairs, they

will experience side force loading as the orthogonal axis vibrates. To
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ensure this loading does not adversely affect the actuator operation,

actuator transfer functions were measured while driving the slip table

with the actuator mounted perpendicular to the direction of slip table

motion. Tests were conducted by using the shaker to drive the slip

table at two different amplitudes for each of the first five modal

frequencies. A sine sweep was used to generate an actuator transfer
function over the control bandwidth while the slip table was in motion.

Variation of the actuator response with off axis force and frequency was

minimal and no trends were observed in the response variation. The

standard deviation from the nominal transfer function of all the tests

appears in Figure 2.33, and the variation seems to be mainly measurement

error. The stability of the response under these conditions indicates

that the actuators should not be affected by off-axis forces.

Comparison of Response with Design Goals

Table 2.7 lists the final transfer function for each actuator at

each modal frequency. The response still has some magnitude and phase

variation, however it was decided the magnitude variation could be

accounted for in the state space model and the phase variation would be

ignored. While ignoring 200 of phase at the fundamental bending

frequency may seem excessive, this was the maximum observed for all

input amplitude levels. A problem which remains unresolved is the phase

response variation with command signal amplitude. The phase was

observed to increase as much as 15 when the input amplitude was reduced

by half. The data presented in tL tible 2.7 is for an input amplitude

that gives the maximum force output from the actuator near the z-axis

fundamental bending frequency. Any reduction in force command will
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Table 2.7. Final Actuator Transfer Functions

Frequency (Hz)
Actuator

1.25 1.75 13.0 19.0 25.25

Mag 0.5828 0.4904 0.4126 0.4032 0.4032

Phase #  -19.3 -16.1 4.9 6.6 8.5

Mag 0.5893 0.4959 0.3939 0.3939 0.3984
#2

Phase -20.9 -16.2 4.2 7.3 10.5

Mag 0.5800 0.4880 0.4153 0.4106 0.4059
#3

Phase -18.7 -15.2 5.8 7.1 8.2

Mag 0.5858 0.4929 0.3961 0.3961 0.4007
#4

Phase -21.7 -17.2 4.6 8.3 10.9

* Magnitude in lbf/V # Phase in degrees

increase the phase response, thus moving it closer to zero. A

discussion and characterization of this problem is in Appendix B.

The actuators do add some damping to the structure, thus the proof

masses are not perfectly floating, however the level is low enough that

showing significance between residual and commanded damping levels

should not present a problem. The greater concern is the point at which

the proof masses come to rest and suddenly contribute to the system

inertia. While this amplitude level is small, and may be reduced even

more when the actuators are commanded, it makes testing with the modal

analyzer difficult, since the response appears as two separate modes

which are present and different times.

The proof masses do maintain a centered position when commanded,

though some change in center still was observed with input amplitude.

With the sensitivity to bias shifts that these actuators exhibit, 
the
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shift could easily be in the frequency generator of the Ono Sokki. A

3 mV bias shift in a 2 V signal is a very small percentage error and

would be difficult to detect.

No specific measures were taken to limit the proof mass travel.

The structural deflections will be limited to prevent the actuators from

saturating.

-p

Unresolved Problems, Conclusions, and Recommendations

The variation in the final actuator transfer function will induce

some errors if it is ignored in the overall system model. To minimize

this error, the response magnitude can be accounted for in the state

space model, however the error induced by the phase variation is

probably best ignored since it will vary with input amplitude and would

significantly increase the complexity of the model. Future work to

eliminate this problem is recommended to increase the accuaracy of the

actuator response and the overall experiment. Another problem which

remains unresolved is noise in the system, especially at 60 Hz.

* Filtering of noise this close to the control bandwidth is difficult

since the filter dynamics will affect the response of the system.

Filtering the power inputs to the compensation circuit may provide some

isolation and reduce the noise amplitude.

Several concerns about linear proof mass actuators as viable

control mechanisms for this experiment and for large space structures in

general have arisen from the development for this experiment. First is

the limited force output at very low frequencies. Since the force

output is derived from accelerating a mass, large low frequency' force

outputs require either a very long travel for the mass or a large mass.

2 - 54
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Both approaches have problems when considered for space structure

control. If the proof mass is given a long travel, linearity of the

motor output becomes a problem. Perhaps this nonlinearity could be ,'

modeled and accounted for, but the cost would be a significant increase

in the computational requirements on the control system. Large masses

present two disadvantages. First, unless the moving mass is designed to

consist at least partially of hardware that would normally be a part of

the vehicle the increased mass is merely dead weight which must be

boosted into orbit. Second, and -ore significant to the control

problem, is adding large masses to a light, flexible structure tends to

create nodal points at or very close to the actuators. The

significantly reduced modal amplitude at the control mechanism requires

th actuator to deliver more force to maintain the same level of

control. This problem is not as significant if the proof mass is

controlled such that it is not contributing to the structural mass (as

is the case for this experiment), but if the actuators are mounted on

the structure in colocated, orthogonal pairs, the orthogonal actuator

does create a node. Future experiments and actual structures which use - -

linear proof mass actuators should avoid colocating the actuators if -:

their mass is large in relation to the structure being controlled.

No
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rI
III. Structure

Description

%

The structure to be controlled in this experiment is a cantilevered

beam with rectangular cross section. A circular plate is mounted on the

free end of the beam to provide a surface to mount the actuators (see

Figure 3.1). The configuration and dimensions are shown in Figure 3.2

and Table 3.1 lists the physical charcteristic of the structure. This

configuration was selected by the Flight Dynamics Laboratory to exhibit

the large space structure charcteristics of low frequency, closely

spaced vibration modes. It also allowed for ungrounded sensing and

actuation which, with vertical suspension of the beam, provides an

approximation to the zero gravity free vibration environment of a large

space structure.

Modelling

There are many modelling methods available to find the natural

vibration frequencies and mode shapes for structures. The cantilevered

beam with a tip mass is a simple enough structure to permit analytical

solution of the free vibration equations of motion. Other techniques

which form approximations to this exact solution include, but are not

limited to, Rayliegh-Ritz, Assumed Modes, Collocation, Galerkin, and

Finite Element methods. Because the Finite Element Method is highly

automated and easily applied it was used as the primary modelling tool

for this structure. To verify the validity of the solution, the

30
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Figure 3.2. Structure Configuration
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Table 3.1. Structure Physical Properties

Property Description Value Units

Beam Length (L) 70.75 in

Y Cross-Section Width (a) 1.01 in

Z Gross-Section Width (b) 0.758 in

.2

Cross-Section Area (A) 0.7656 in

Young's Modulus (E) l0.8xl06  psi

Shear Modulus (G) 4.lx106  psi

Beam Density (p B) 2.591x10- lbf-sec 2 /in"

-2 2

Beam Mass (M ) .403x10 lbf-sec /in

Y Moment of Inertia (I )3,667xl10 2  in 4

Z Moment of Inertia (I ) .508xliu- in4
z

* 2 .4Torsional Moment of Inertia (K) 7.913xl0 in

-3 2
Polar Mass Moment of Inetia (I ) .865x10 lbf-sec /in

Plate Diameter (d) 12.0 in

Plate Thickness (t) 1.0 in

Plate Mass (M ) (measured) 2.847xl10- lbf-sec 2/in

X Mass Moment of Inertia (I1 0.5125 lbf-sec 2 .i
Dmx

Y-Z Mass Moment of InertiaI) 0.2562 lbf-sec 2n

*Adjusts for the rectangular cross-section

M - p AL I =M (a 2 + b2)1
B B Mx B )1

I -ab/3 12 1 =Md 2/8 p
y Dmx P

3 2
I- ba /12 1D M d/l6

K -ab
3 [16/3 -3.36(b/a)(l-b

4 /12a 4 )]/8 (8:290)

0
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equations of motion were solved for a cantilevered beam with tip mass

and compared with the finite element results. The finite element model

was implemented using the MSC.PAL software package availible at the

Flight Dynamics Laboratory. MSC.PAL is a finite element code which runs

4% on an IBM-PC or compatible micro-computer.

The structure was modelled in two steps. First, the finite element

and exact solutions were formulated and compared for the beam without

p

the actuators mounted. The finite element solution was modified by

adding elements to the model until the solution converged and matched

the solution to the equations of motion. Using this finite element

model the mass model for each actuator was added to determine the

natural frequencies and mode shapes for the controlled configuration.

Since an ideal actuator will have a floating proof mass, this mass will le

not contribute to the tip mass in the actuator control axis. Thus, the

final model is actually a composite of three different models, one for

the tip mass configuration of each bending direction and torsion.

The classical solution for bending vibration of beams can be found

in many textbooks. The equations of motion are formulated using

Hamilton's Principal, and after applying separation of variables, the

resulting boundary value problem can be solved for the natural

frequencies and mode shape of the structure (9:161) In general, shear

and rotatory inertia effects are ignored for beams with cross-sectional

areas that are small compared with the length, thus the equations of

motion for bending vibration of this structure are

a 2 2V(x,t).
aE(x)- m(x)O(xt) (9)

ax 2  ax2J

and the boundary conditions are represented by
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-(x,t)[ o 0 (lOa)

8 (x.t) -x (lOb) A

wax

a E 9 2 0( x, t)M a (x,t) (10c)- El~x 2 Mp P t,-ax ax J at -

2 I2a O(x, t) a a O(x, t)
EI(x) ax2  - a a 2  (ld)ax. ax at.%L

where E - Young's Modulus for the beam

I - Moment of inertia of the beam in the bending axis

- Displacement function of the beam

x - Distance along the beam

m m Mass per unit length of the beam

Separating variables and applying boundary conditions results in a

characteristic equation that is solved numerically for it roots, which

are the natural vibrations frequencies of the beam. Through a similar

. procedure the torsional equation of motion is formulated (9:156) and is

found to be

2a ao(x,t) a 9(x,t)
GJ (x) a)-tx (11)

ax ax at"'.

with the boundary conditions

0(x,t)l. - 0 (12a)

'V.o.
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GJ(x) - ID(12b) (12b)

x=L x=L

where GJ - Torsional rigidity of the beam

I - Polar mass moment of inertia of the beam

0 w Angular displacement of the beam

Again, separating variables and applying boundary conditions results in

a charcteristic equation which can be solved numerically for the natural

frequencies.

The Finite Element Method formulates the problem by breaking the

structure into discrete elements and assuming a form of the displacement

function over each element. The elements are connected at nodal

points and thus form a piecewise approximation to the structure (10:2).

Each element has a mass and stiffness matix associated with it, which is

defined by the beam properties and the specific displacement function

assumed for the element. Combining these elemental matrices results in - "

a system of equations of the form

Mx + K x - f (13)

where M - Mass matrix

K - Stiffness matrix

x - Nodal displacement vector

f - Vector of forces applied at the nodes

The homogeneous solution to this coupled system of equations represents

the free vibration of the structure from which the natural frequencies

and mode shapes are found by solving for the eigenvalues nd

3.-7



eigenvectors. The accuracy of this method when applied to a simple beam

depends primarily on the number of elements chosen to model the

structure. For this case, a 10 element model was found to match the

exact solution for the lower modes to reasonable accuracy. The higher

modes will show increasingly more error as the mode number approaches

the number of elements in the model. Table 3.2 compares the natural

frequencies for the structure that were derived from the two solutions.

Using the finite element model for the basic beam, the actuator

mass models were added to predict the natural frequencies and mode

shapes for the structure in the control configuration. The actuator

mass models were developed by breaking them into six components which

could be approximated by simple figures. The mass, center of gravity,

and mass moments of inertia for each of these figures were then used in

the finite element model. The MSC.PAL software supports adding a lumped

mass at some point on the structure and assigning the effects of that

mass to a specific node point. All actuator mass elements were assigned

to the end node of the beam (#11), along with the plate. The software

automatically uses the parallel axis therom to calculate the moments of

inertia for each mass element about the assigned node. The detailed

" model for each actuator can be found in Appendix C. To approximate a

floating proof mass, the mass elements representing the proof masses

were omitted for the actuators controlling the modelled axis. For

" torsion, all proof masses were omitted since for small displacements

they should not contribute to the structure mass properties. Natural

frequencies from the beam/actuator finite element model are shown in

Table 3.3. 0
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Table 3.2. Exact and Finite Element Modal Frequencies

Modal Frequencies (Hz) FEM
Mode Axis

Exact Finite Element error (%)

1 Z 1.611 1.608 0.19

2 Y 2.146 2.136 0.47

3 T 14.401 14.401 0.00

4 Z 20.968 20.749 1.04

5 Y 27.938 27.642 1.06

6 Z 56.974 57.115 0.25

7 Y 75.911 76.092 0.24

8 Z 103.382 104.656 1.23

9 Y 137.744 139.414 1.21

10 Z 180.088 181.375 0.71

Table 3.3. Beam/Actuator Modal Frequenciesm
Mode Axis Modal Frequency

1 z 1.325

2 Y 1.773

3 T 12.796

4 Z 19.431

5 Y 25.883

6 Z 47.896

7 Y 63.817

8 Z 86.451

3-9
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Modal Tests

The most accurate method for determining the frequencies and mode

shapes of a structure is almost always modal testing. While models give

insight into the phenomena being observed in a system, they are still

onli mathematical representations of reality. Unfortunately, modal

testing may be impractical for many large space structures. Due to

their size and flexibility, they may not even be able to be assembled

until they are on orbit. Even if they can be assembled, simulating a

zero gravity environment for a large structure may prove extremely

difficult. While actual space structures do present these problems,

maintaining the accuracy of the experiment is a paramount consideration

and the structure model for the control design will use modal test data

whenever possible.

Modal tests were conducted using the impact method which excites

the structure by tapping it with a force hammer. The hammer has a

piezoelectric crystal in the tip which registers a voltage signal when

stressed. The structural response to this force is measured using

accelerometers located at various points on the structure. The force

,V and accelerometer signals are recorded by a GenRad Modal Analyzer, which

Fast Fourier Transforms the time response data and generates a frequency

- response function for the structure. Natural modes of vibration for the

structure show up as peaks in this frequency response. Mode shapes can

he determined by measuring the response at several different points

along the beam. The amplitude and direction of the mode at each poin,

is defined by the amplitude and phase of the frequency respons, mea.surod

there.

I 

The first modal test was conducted on the basic beam configuration

without the actuators Results of this tes" and the difference betwer,

3 - 1C)
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the measured response and finite element model are shown in Table 3.4.

,hile the fundamental frequencies match fairly well with the model, the

p, errors grow unexpectedly large for the second bending modes and beyond.

The modelling of a cantilevered beam is a straight forward process and

should generate accurate predictions well beyond the second mode. To

evaluate this problem, Mr. Bob Gordon of AFWAL/FIBG developed a series

of models which varied both the beam parameters and the boundary

Table 3.4. Measured vs Finite Element Modal Frequencies - No Actuators

Modal Frequencies (Hz) FEM
Mode Axis

Measured Finite Element error (%)

1 Z 1.617 1.608 0.56

2 Y 2.129 2.136 0.33

3 T 14.436 14.401 0.24 %

4 Z 20.160 20.749 2.92

5 Y 26.847 27.642 2.96

6 Z 54.828 57.115 4.17

7 Y 72.985 76.092 4.26

8 Z 98.932 104.656 5.79

conditions of the model, Results of this effort were inconclusive.

Vile a more accurate prediction of the high frequency modes could be

achieved, it was always at the cost of adding error to the fundamental

modes. Neither changing beam parameters, nor changing the boundary

condition from a perfect cantilever to a pinned joint with a rotational

spring had the -ffect of maintaining the fundamental frequencies while

lowering the higher mode predicted frequencies. Mr. Gordon also found

that a model of the entire support frame and beam resulted in a very

3 11
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ill-conditioned system of equations which induced substantial numerical

errors into the solution. The ill-conditioning results from the support % %

plate to which the beam is attached (see Figure 3.1). This plate is the

most massive and stiffest element in the frame/beam structure, while the

least massive and stiff element is the attached beam. While the

difference between the model and modal test data probably lies in some

coupling between beam and support structure, it could not be

demonstrated in the model.

The model was considered acceptable for the first five modes,

consisting of the first two bending modes in each direction and the

first torsion mode, since the prediction of the fundamental modes is

fairly accurate and the errors in the second bending modes were less

than 3%. While the remaining modes exhibited larger errors, they are

outside the control bandwidth for the experiment and as such will not be

incorporated in the controller.

A second modal test was performed with the actuators mounted on the

beam. This test was performed prior to completion of the actuator

compensators; therefore, to simulate the ideal actuator, the proof

masses were removed from the actuators controlling the axis under test.

For torsion, all proof masses were removed. Results of this modal test

are in Table 3.5. The data shows the finite element model for this

configuration to have errors similar to the basic beam tests for the .

first five modes. Errors are more substantial in the higher modes.

Several problems were encountered in conducting the modal tests

which relate to low frequency testing of lightly damped structures.

First, the lighter the damping, the more difficult it is to accurately.

estimate a damping coefficient for the mode. The software in the GenRad

system estimates damping by fitting a complex exponential curve to the .- ,'

frequency response data. To accurately fit the data for a lightly ,41.

3 12 1
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damped structure requires very small frequency steps in the transformed

data. If the frequency step is too large, the true resonant peak will

,P be aliased out of the data. In addition, the peak that is captured may

be so sharp that a single frequency step may drop below the half power

Table 3.5. Measured vs Finite Element Modal Frequencies With Actuators

Modal Frequencies (Hz) FEM
Mode Axis

Measured Finite Element error (%)

1 Z 1.346 1.325 1.56

2 Y 1.761 1.773 0.68

3 T 12.963 12.796 1.29

4 Z 18.877 19.431 2.93

5 Y 25.141 25.883 2.95

6 Z 44.567 47.896 7.47

7 Y 59.861 63.817 6.81

8 Z 86.451 94.875 9.74

points. Without these data points, the accuracy of the damping estimate

becomes very suspect. This situation existed for both of the modal

tests. Even with the GenRad's smallest frequency step the true resonant

peaks and half power points were rarely captured. Damping ratio

estimates for most modes were below 0.0005 and were in actuality

probably less.

The second problem this caused was to make accurate measurement of

the mode shapes almost impossible. Missing the true resonant peak of

the mode corrupts the estimate of the modal amplitude. In addition, the

change in the phase of the response occurs so quickly that one frequency

step shifts the phase 1800, effectively missing the ± 900 phasing of the
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mode. This problem is illustrated in Figure 3.3. The resonant peak of

the second z-axis bending mode is seen at 18.9 Hz. The true resonant .

peak has been aliased on this mode. Note how the phase of the response

shifts so rapidly that instead of passing through the -900 phase point

it jumps in one frequency step all the way through -1800.

-180
PHASE

E+04

G/LB

E-01
0. FREQ (HZ) (LIN) 120.000"-

Figure 3.3. Z-Axis Frequency Response With Actuators

When fitting a mode shape to this response the software incorrectly

interprets the phase at this point to be +900. Since this effect occurs

at almost every node point tested, the estimated mode shapes have widely

varying amplitudes and often many more nodes than are possible (as an

example the first estimate of the second bending mode had three nodes

and bore no resemblance to the second bending mode expected for a beam).

As a result of these problems the modes shapes and damping estimates

for these two modal tests were not used for comparison with the models.

3 - 14 '-"
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The final modal test was accomplished with the structure and

actuators in the final configuration for control testing. All wiring

for sensors and actuators was attached to the beam and the compensated

actuators were mounted and operating without command inputs. Data

INcollection and analysis was again accomplished with the GenRad system,

with the exception of the fundamental bending modes. One of the

.W problems with the actuators was the tendancy of the proof masses to

stick when the amplitude of the oscillation in the fundamental modes

became small. The result is the structure effectively has two closely

spaced modes, one when the proof masses are floating and a second when

they become fixed. Because of this, the GenRad proved incapable of

providing good estimates of the fundamental bending modes. To test

these modes, a sine dwell was conducted by fixing small magnets to the

base plate in the axis to be tested and forcing the beam at a single

frequency using magnetic induction coils. A frequency response function

was generated by incrementally increasing the frequency of the forcing

function, allowing the motion to become steady state, and measuring the

magnitude and phase of the beam acceleration with respect to the forcing

signal. The resonant peak of this response function was used to define

the modal frequency and the modal damping was estimated using the half

power points of resonant peak (see equation 8). The mode shape was

estimated by forcing the structure at the resonant freqeuency and

measuring tne acceleration at several points along the beam. The

stations used for this test coincide with the node points of the finite

Element model, which allows for consistent comparison of results with

the finite element model. This data and the data for the higher modes

obtained using the GenRad can be found in Appendix D.

A summary of the natural frequencips is presented in Table 3. and

the mode shapes, normalized with respect to the mass matrix, are showTn

151
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Table 3.6. Modal Frequencies and Damping for Control Configuration

Modal Frequencies (Hz) FEMMode Axis FMDamping

Measured Finite Element error (%)

1 Z 1.33 1.329 0.08 0.0377

p
S3 T 12.580 12.655 0.60 0.0127

4 Z 18.094 19.394 7.21 0.0029

5 Y 23.897 25.839 8.11 0.0032 I V*

6 Z 43.454 47.734 9.86 0.0022

I 7 Y 57.624 63.608 10.39 0.0014

in Table 3.7. Since the generalized mass was not derived from the modal

test data the value calculated in the finite element model was used to

appropriately scale the measured mode shapes. The error induced should

bec small since the model closely matched the first five modes. The '

actuators have added enough damping to the structure to alleviate the

problem previously encountered with estimating damping and mode shapes.

The finite element modal was found to give a slightly better

approximation to the modal test data if the inertia of the proof masses

wai! included without their mass. The correction mainly affected the

fundamental modes and slightly improved the higher modes. -.

The normalized bending mode shapes measured for the first two

tcrding modes in each axis are compared with the finite element model

mode shapes in Figures 3.4 through 3.7. The mode shape for the

torsi-nal vibration mode was not measured in the modal test because the

beam was not instrumented to measure torsion at any location other tnan

the base plate Since the finite element fundamental bending modes

showed good agreement with the modal tests, and the torsion frequency
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'; i % [.'[,'. -'.,.-;..? -.,v --;. % ':.' 'F - '- -.,.-'.".. -;.-. .- S.. .'.--;.. .. .. ." . ., .-, ¢ ..-,,,-.,--.- ..-..-., -, -, ., -, ._. .,. -. .. ... .. . "-



matched very closely with finite element prediction, the finite element

model was used to define the torsion mode shape, which is shown in

Figure 3.8.

Table 3.7. Structure Modal Amplitudes

Z-1 Y-1 First Z-2 Y-2FEM Node
Bending Bending Torsion Bending Bending

1 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.05146 0.02259 - 0.75459 1.06325

3 0.11494 0.20693 2.92907 3.24512

4 0.30783 0.56328 5.64428 5.84183

5 0.62817 0.97277 8.23860 8.42785

6 1.11862 1.38610 10.2239 10.1976

7 1.78287 1.89519 10.8717 10.6843

8 2.15374 2.39399 8.67409 8.60025

9 3.26069 3.10030 8.33159 8.22494

10 3.98271 3.67899 - 4.78725 4.71435

11 4.90482 4.94348 1.24048 -0.5734 -0.6087 -

Generalized
ModalcMass 0.01663 0.01664 0.17525 0.00201 0.00201

21

(lbf/in/sec)

-A
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Figure 3.4. Z-Axis Fundamental Bending Mode
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Figure 3.5. Y-Axis Fundamental Bending Mode
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IV. Sensors

In keeping with the goal of constructing an experiment with as much

in common with large space structures as possible, the sensors selected

for use in controlling the beam were piezoelectric accelerometers.

Accelerometers provide an inertial sensing capability which is required

in space. The primary disadvantages of using accelerometers are that

the output must be integrated to generate a velocity measurement for the

control algorithm, and that most accelerometers of this type have not

been designed for an accurate response below 1 Hz. While integration

does tend to smooth some high frequency noise, it also aggrevates very

low frequency drift and bias signals. An example of the drift seen in

one accelerometer is shown in Figure 4.1.

The specific accelerometers selected for sensors on the beam were

manufactured by Kistler Instrument Corporation. Specifications for

these devices are listed in Appendix E. These instruments had the best

low frequency response characteristics and the least drift of the

accelerometers available at the Flight Dynamics Laboratory for this

experiment. Even so, the output was found to have so much low frequency

drift the actuators would not remain centered when a control loop was

closed. Because the complex pole pair in the actuator dynamics has been

'oved below I Hz, they are very responsive to these low freq U eoT.V

si r., 15s As was noted earlier, a 5 mrV drift in the input signal has

bern observed to drive the proof mass to the end of its stroke

F..
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Signal Conditioning

To remove this drift from the velocity measurements the

accelerometer output was passed through a signal conditioning circuit

prior to integration. Ideal signal conditioning for this experiment

would reject all signals below 1 Hz and not affect the rest of the

frequency spectrum. Unfortunately, filters which reduce the magnitude

of the signal affect the phase for a decade beyond the break frequency. aJ
PP

Therefore, to ensure that the phase of the signal is unaffected at the

fundamental bending frequency of the beam requires placing the break

frequency at or below 0.15 Hz. The problem again arises that noise in -

the system is so close in frequency to the control bandwidth that

filtering dynamics contaminate the measurement response in this

bandwidth.

The approach taken to filter some of the low frequency input was to

split the signal and on one side, low-pass filter it to remove

frequencies above 1 Hz, invert the filtered signal and then sum it with

the original, unfiltered signal. This should have the effect of

subtracting out the drift. The filter and integrator were implemented

using the circuit in Figure 4.2. The resulting transfer function from

acceleration to velocity is

X(s) 3.5081 (S ,2 + 7.814 ± I0.76j)(S ,4+ 20.46 6.628j)
____ 1.2(14)

Y(S) (S + 11.31)' (S + 0.6378)

The predicted frequency response for this circuit is in Figure 4.3.

This filtering has reduced the response magnitude of the 0.1 to 1 Hz

frequency range when compared with a simple integrator. The transfer

4 3
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function for an integrator has a 15 dB drop in magnitude from 0.2 Hz to

1.3 Hz. The peak magnitude for the filter occurs at 0.4 Hz and is only

7 dB above the 1.3 Hz response magnitude. While it would be desireable

to move the low frequency cutoff even higher, the phase response shows

that the phase has just settled at -900, so moving the filter higher

would begin to shift the phase of the output away from a velocity

signal. The frequency response of the actual circuit comes very close

to the prediction, as can be seen in Figures 4.4 through 4.7. As a

final step in the signal conditioning process the output from the

integrator was passed through an A/C coupled Intek Variable Gain

Amplifier to remove any bias that may still be present in the signal.

* The break frequency of this A/C coupling is at 0.16 Hz, which accounts ,

for the extra phase shift seen in the measured frequency response verses

prediction. '

U'

Sensor Calibration and Scale Factors

The accelerometers were calibrated using a I g peak shaker which

operates at 80 Hz. Ideally a frequency response function would have

been generated for each sensor over the control bandwidth.

Unfortunately, the only shakers available of high enough quality

response to be used as a calibration instrument had a low frequency

cutoff of 10 Hz. As a result, each sensor was calibrated at a single

frequency and the manufacturer specification of a flat response function

over the operating range of the sensor was relied upon. The calibration

measured for each accelerometer is listed in Table 4.1.

4 6
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Table 4.1. Sensor Calibration Data

Serial # Sensor # Sensitivity (V/g) t

C82629 1 0.881

C82753 2 0.881

C82736 3 0.891

C82702 4 0.871

To achieve the best accuracy possible for the sensor measurements

the response functions measured for the signal conditioning and

integrator (Figures 4.4 to 4.7) were adjusted to match the predicted

response magnitude at 1.3 Hz by adding or subtracting the required

gain. The nominal and adjusted gains for each sensor channel are listed

in Table 4.2. Combining these gains with the accelerometer

sensitivities results in the sensor scale factors shoan in Table 4.3.

.?

Table 4.2. Integration and Signal Conditioning Gain

Sensor Nominal Gain Measured Gain

1 3.369

2 3.408

3 3.255 %

4 3.331

4,

I,.%
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Table 4.3. Sensor Scale Factors

Sensor # mV/ft/sec mV/in/sec

92.19 7.68

2 93.26 7.77

3 90.10 7.51

4 90.10 7.51

-m



System Configuration and Gain Verification

Configuration

The hardware used in the experiment consists of the beam and four

IN: proof mass actuators, four accelerometers as sensors, several stages of

signal conditioning on inputs and outputs, and the PC-1000 Systolic

Array Processor and its host computer, a Compaq Portable Computer. Data

collection was accomplished using the Ono Sokki Freqeuncy Spectrum

Analyzer with an HP-7874 Plotter, and the GenRad Modal Analyzer (see

Figures 5.1 and 5.2).

The actuators were mounted on the base plate in orthogonal pairs

parallel to the y and z beam axes (see Figure 5.3). This configuration

provides symmetric forces from each pair for bending control and

asymmetric forces from all four for torsion control. The actuator

located along the minus z direction was arbitrarily selected as #1, and

remaining actuators were numbered from there in a counterclockwise -

directon. Positive force outputs act in the directions indicated in

", Figure 5.3. The accelerometers to be used as sensors were mounted

colocated with the actuators with the same numbering and output sign

"- (see Figure 5.3). Accelerometer measurements were input to the signal

conditioning and integration circuit to estimate beam velocity. This

velocity measurement was then filtered using an A/C coupled amplifier to

remove any bias in the integration circuit. Finally, the measurements

were input to the PC-1000, which is a high speed digital array processor

used for real-time data collection, estimation, and control

applications. Analog inputs are converted to 12-bit digital data and

internal calculations are performed using 32-bit floating point

5 i
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arithmetic. Calculated outputs are converted back to analog signals to V

command the actuators. The processor can be programmed for various

sample rates (in Hz), input and output signal ranges (in volts),and

input/output channel gains. Further information about the PC-b00, its

operation and capabilities, can be found in Reference 12. The PC-lO00

was programmed with the estimation and control algorithm to be tested,

and the control commands it generated were input to the actuators. In

operating the PC-lO00, a small bias was found on the input channels,

probably residing in the analog-to-digital (A/D) converter. This bias *.

would pass through the estimator/controller and saturate the actuators.

To remove it, the control commands were filtered using a set of A/C

coupled amplifiers identical to those used in filtering the sensor P,"

measurements. The conditioned control commands were then provided to

the actuators.

System Gain Verification

Prior to attempting to control the structure with the PC-1000 an

analog velocity feedback loop was implemented to verify the gains

through the system. Using the sensor scale factors calculated in

Chapter 4 and the actuator transfer functions from Chapter 2, Table 2.7,

a viscous damping coefficient in lbf/in/sec can be calculated. The

coefficient can be changed using the Intek amplifiers in the sensor

signal conditioning path, which could be adjusted in 10 dB increments.

Before closing the feedback loop, the open loop damping due to the

actuators was characterized by finding a damping coefficient which

would generate a structure frequency response that matched the damping

measured in the final modal test. This was done using the same method

%

5 5
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discussed in Chapter 2 for estimating the acutator residual damping (see

equation 5 - 7). This residual damping coefficient was then added to

the commanded feedback coefficient for each actuator controlling the

axis under test resulting in a total coefficient applied to the

structure. Two tests were conducted in each bending axis, one with the

nominal sensor gains calculated in Chapter 4, and a second with the

sensor scale factor increased by 10 dB. Table 5.1 summarizes the

damping coefficients calculated for the closed loop response for these

tests.

Table 5.1. Closed Loop Viscous Damping Coefficients (lbf/in/sec)

Commanded Residual Total
Coefficient Coefficient Coefficient

2 0.0046
1 0.0377

4 0.0041
Z 0.029

2 0.0145
2 -0.0565

4 0.0130

1 0.0037

3 0.0452
3 0.0036

Y 0.038 F-
1 0.011740.0611 "i

3 0.0114

These damping coefficients were used in the finite element model to

generate a frequency response for the structure. The damping ratio

predicted for the structure was estimated from the frequency response

using the half power method (equation 8). Tests were conducted on the

structure by displacing the base plate and recording the free decay time
" 

%

response of the beam on the Ono Sokki FFT Analyzer. Since the Ono Sokki

0.

.,

5 6
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records the data digitally, the peaks of the response could be listed

and the damping ratio estimated using the log decrement method (7:61)

,- n[ M(15)
In a'

where M - Magnitude of the first peak
F1

M P2 Magnitude of the next peak in the response

To obtain an accurate estimate, was calculated for each pair of peaks

in the response. The damping ratio and uncertainty is listed for each

test in terms of the mean and standard deviation of all damping ratios

calculated for a single free decay of the structure.

Table 5.2 summarizes the predicted and measured damping ratios for

the experiment. Figures 5.4 and 5.5 show the predicted frequency

response and the measured time response for the z axis tests, and

Figures 5.6 and 5.7 are the same data for the y axis tests. Agreement

between predicted and measured damping ratios is excellent for these

tests. The slight differences are most likely ,ue to the damping added

hv the sensor and actuator wiring, not accounted for in the model.

Table 5.2. Predicted vs Measured Damping Ratios

Test = Predicted f Measured

1 0.0590 0.059

2 0.0722 0.074 "

3 0.0424 0.044

4 0.0579 0.061

4.
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With the results of the analog closed loop tests indicating the

sensor and actuator scale factors are correct, the PC-1000 input gains

were calculated using the accelerometer scale factors. These gains are ,.

programmed into the PC-1000 and boost the sensor scale factors to unity

prior to the signal going to the estimator/controller. Gains for each

channel are listed in Table 5.3.

Table 5.3. PC-1000 Sensor Input Gains

Sensor Channel Gain (Ibf/ft/sec) Gain (lbf/in/sec)

1 10.847 130.208

2 10.723 128.700

3 11.099 133.156

4 11.099 133.156

'..
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VI. Closed Loop Digital Control

Theory and Implementation VV

in general, the equations of motions for a vibrating structure

which is being controlled can be written in the form

Mq + Cq + KS Du (16)

.".

". where S is an n-vector of generalized coordinates, M is an nxn symmetric

mass matrix, C is and nxn damping matrix, K is an nxn stiffness matrix,

u is an m-vector of control inputs to the structure, and D is a nxm.

"matrix of actuator coefficients (Ref 4). Equation 16 can be decoupled

';sing the modal coordinates 97 ard the modal matrix of right eigenvectors

1, to define a transformation such that

2.!_ - € , (li- (17)

U

wlhich, after substituting for S and its higher time derivatives, and

,remultiplving, by 4 transforms equation 16 to the form

17 + [2>Av7; + [U DulS

whcre 4 has been normalized to meet the criteria TM4 = I, an nxn

identity matrix, i2,. ' is an nxn diagonal damping matrix and [u] is an

S nxn diagonal matrix of the eigenvalues of equation 16. Equation 18 can

he formulated in the standard state space form of

NF 6 1

5,'-



-Ax + Bu (19) %

where x is defined as a 2n-vector composed of v and and A and B have

the form

A- [o o- I-

(20)

B- [0 -

In general, the states of a structure cannot be directly measured,

but are some linear combination of the generalized coordinates S which

can be measured, thus equation 19 is supplemented with the measurement

equat ion -

y - Cq (21)

where v is an s-vector, s being the number of sensors used in the

svs-Lem, and C is an sxn matrix which can be partitioned into

C - L c I cI (22)

where the partitions C and C are coefficients for position and
p V

velocity sensors respectively. Using the modal matrix to write equation

21 in terms of the states gives the form

- 4' > (23)
-ft..

6 2



The state space model for the system is represented by equations
d

19 and 23. For this experimental configuration, C will be a zero
P

matrix since only velocity is being derived from the acceleromete:

measurements. Closing the control loop using state space techniques

simply requires feeding back the states through a gain matrix G

(11:327). Thus the control input is defined by

u - -G x

Unfortunately, since the controlled states cannot be measured directly,

an estimator is required to generate the states to be used with the

control matrix. One method of constructing this observer is to use the

system model to estimate the states based on the sensor measurements.

For this formulation, the estimator has the form

x - Ax + Bu + K(y y) (25)

y - Cx (26)

where x is the estimated state and y is the estimated output. The

ohserver gain matrix K is chosen such that the error in the state

estimate, defined by

e - x - x (27)

is stable. Since control must be based on the estimated states, the

control input u must have the form

u - -Cx (28)

" 6 3 -.1
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Substituting for y and u in equation 25 and collecting like terms

results in

x- (A - BG - KC)x + Ky (29)

which with equation 28 defines the estimator/controller to be used it.

*he feedback loop.

There are many methods for selecting the K and G matrices to give

the plant the desired characteristics. The one that will be used for

this experiment is the optimal linear quadratic regulator. This method

determines G by minimizing the performance index

J (xTQX + uTR u) dt (3'

where Q and R are weighting matrices chosen such that the eigenvalues of

(A - BG), the controlled plant, exhibit the desired stablity. K is

similarlv determined by minimizing the performance index

\ Q + \'R v) dt 31

where Q and R are again weighting matrices selected such that the

cigenvalues of (A - KC) define an observer with the desired stablitwv

For this experiment, R and R were selected as identity matrices a,,d Q

an d Q were selected independently to give the desired es:ira:or an

cnntroller eigenvalues-
*0

To implement the estimator/controller on the P(-lO((, the so1,:io..

to equation 25 is discretized iinto time steps. Defining "'

6-4
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.%.

A A -ABG -KC (32) J
oc

the solution for a discrete time step 6t becomes (5:25)

" k+ exp(Aoot) xk + A -[exP(Act) IlK X
(33)

u - - x

where 6t is defined by the inverse of the sample rate used in the array

processor. The computational format of the PC-1O00 is (Ref 12)

~k - 12 (34 )

x F F22
k 1 21 22 k

'..

where the dimensions of the partitions are F 16x16 F12 16x32,

F :32x16, and F :32x32. Putting equations 33 into this form defines
2: 22

the partitions of the F matrix to be

F -0

F -G
12  (35)

F21  - A- 1[exp(A, o6 t) I] K

F - exp(A 6t)22 o c

The specific A, B, and C, matrices used to define the plant are

listed in Appendix F. Calculation of the estimator/controller gain

matrices and the system eigenvalues was accomplished using software

based on work previously accomplished by Aldridge (Ref 13) and operating

on one of the Vax 11/785 computers resident at AFIT. The gain and

6 5 %
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1%

system matrices were input to Matlab, a matrix manipulation software

package residing on the Vax, which was used to calculate the F and F
2.22

matrices.

%" %

Closed Loop Simulation

A closed loop simulation was implemented on the PC-1O00 to verify

the time response of the closed loop system is an accurate indicator of %

the predicted closed loop plant eigenvalues, and to evaluate the

processor's abliity to perform the estimator/controller function. The

estimator/controller configurations formed for the simulation

incorporated the first three natural modes for the structure. In

formulating the controller gain matrix the second and third modes were

deweighted in the cost function, thus control was applied only to the

first z-axis bending mode. Observer gains were weighted approximately

equally. Two controllers were generated with identical control gains

and different observer stablities to predict the effect of estimator

errors on the closed loop system. Slave processor =2 of the array

processor was loaded with the open loop plant model (x = Ax + Bu) while

slave processor =1 remained as the estimator/controller. An initial

condition of x - 0.01 was placed in the plant model which approximates

an initial displacement of the base plate in the z direction. The time

response of various parameters in the closed loop system was used to

estimate the actual damping expected in the first z axis bending mode

when control is applied to the beam. Data was recorded on the Ono Sokki

spectrum analyzer and damping was estimated using the log decrement

method (equation 15) on the time response data. Comparisons of the

actual and estimated states and the sensor output and actuator commands ""

6 -6

.1' 0
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are shown in Figures 6.1 through 6.6. A summary of the system damping

estimated from the various parameters in the system is presented in "

Table 6.1. Estimator damping and modal damping values are obtained from

the eigenvalues of (A - KC) and (A - BG) respectively.

Table 6.1. Simulation Damping Results for First Z Bending Mode

Estimator Nodal Plant States Sensor Estimated States

Damping Damping x s x x
1 2 i I

0.155 0.101 0.093 0.111 0.113 0.068 0.091

0.548 0.101 0.091 0.101 0.101 0.081 0.099

I r.

Comparing the plant damping with the predicted modal damping

indicates the less damped estimator should overcontrol the plant

v slightly. This is probably due to the error dynamics in the estimated .

states increasing the modal amplitude. As estimator damping increases,

", the error has less time to contribute to the estimated state and the

plant damping approaches the predicted modal damping. This is readily ".

seen in Figures 6.7 and 6.8 which show the estimator response to an

initial condition with the sensor input removed from the PC-00(Y.

Another observation is that the sensor data is a more accurate

measurement of the actual plant damping than the estimated states, even

for a highly damped estimator.

6-7

.. ,



LJIL

4-11

I 14

6 8.



u u'

Ld LLJ

'41a

(NJ 
IL

'a~~ 

9 
sJ



u u

0 0

4J

a.

I IA

Ii I ,

z < > <-

I 110



- V -~ ~. V WV WV T'J~'U '\P ~\P ~F ~ ~ J' - - VWV~ V V 1.~ V~ v~ ~.-v-" ~-. ~- ~ .. , - \ -

.4.

w. ____________

* *4a

___ ___ ___ ___ U ___ ___ ___ ___

jC'\.J Ic'.~4J 4%

I I I

4,*

____________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ I ________________________________________________________________ ________________________________________________________________

.4-. .4'

S
4

-'

I .

4-, I: -4'

____ ____ ____ ____ ____ ____ ____ ___ C --. 4.

I I a-

____I. E 4..

C,.
_ _ _ _ L.2

J

U..

I I .-

______ ______ ______ ______ -~

4 ~. -I I 44~

444. - 4..

___ ___ 7 a- I

_________ I _________ I _________ _________

-: I 4..

LU LU
5%

z -.
*544.
4.-.

-'4 S

6 - 11

.4 0

444 * * .. ~ *4**4*.*. 4. *I. *~.*'-'~ 444444 V~444 ~4* *~* -

.................................. 4/. .4...--- -.L.A. .t ~ S A.. - -



L0n

I I

0 .i

tc

6 12



U) U

POl 0

Jb~

op P___ ___

orI__ _ _ __ _ _

0n

2% InC

< > <___ >_______

w L-S.0

I 13



oq ,

I - -_ _ _ _ -

-~ e REAL
v

4SEC

5 - -6_- 11

.-. - _ - - - - - .

a. _. .. ..__ -t

"5--'- -- -4SEC .'

.Iii

"* 6 -- 14-

a. ~ ~ * ~ - ~ .* --- ~ ~ ~ a ~ * * * . *,".



e REAL -__

4SEC -

2--

e REAL % -

*- V

Figure 6.8. Estimator Error States ( .'8

6 15

NS



Optimal Time Invariant Linear Regulator Control

Closed loop testing used the integrated accelerometer measurements

from the beam as velocity inputs to the estimator and the control

V commands from the PC-1000 were input to the proof mass actuators. The

estimator was started with zero initial conditions and the beam

quiescent. Even so, transients proved to be a problem. The PC-lO00 was

found to have a small bias voltage on the input channels (approximately

60 mV), probably in the A/D converter. This bias was sufficient to

cause high gain controllers to produce transients large enough to -VP

saturate the actuator stroke. To prevent overdriving and possibv '

damaging the actuators, power was removed until all transier-s settled.

Controllers were designed for the fundamental bending mode in each

direction, and the first torsion mode. Estimator/controller states

included all three modes, however control weightings were used which

applied control to only one mode at a time and left the remaining modes

essentially unchanged. Structural response for the fundamental modes

• was measured by giving the beam an initial displacement or velocity in

the controlled axis and measuring the time response of sensors on that

a:x:is. Damping ratios were calculated for each test using the log

decrement method. Results from several estimator/controller

configurations are shown in Table 6.2.

The measured damping coefficients in Table 6.2 indicate a trend

opposite to that seen in the simulation. As the ratio between th-

estimator and controller decreases, the measured damping also decrease-'.,

The simulation predicted higher damping in the case where the estimator

damping closely approached the modal damping.

To determine if the log decrement data was accurate, the GenRad

modal analyzer was also used to measure the modal damping for the first

6 - 16
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Table 6.2. Closed Loop Modal Damping Coefficients .*t

Estimator Predicted Measured ErrorDamping Damping Ratio Damping (%) ,

0.3576 0.0716 4.994 0.080 ± 0.020 11.1

0.2798 0.0716 3.908 0.069 ± 0.018 4.2

0.2149 0.0716 3.001 0.070 ± 0.009 2.8
z _--".._

0.1214 0.0716 1.696 0.066 ± 0.013 8.3

0.1015 0.0716 1.418 0.066 ± 0.020 8.3

0.0793 0.0716 1.112 0.041 ± 0.016 43.1

0.1523 0.0715 2.130 0.059 ± 0.011 17.5

Y 0.1252 0.0715 1.751 0.058 ± 0.015 18.9

0.0980 0.0715 1.371 0.056 ± 0.007 21.7

T 0.0865 0.0324 2.670 0.030 ± 0.010 7.4

two bending modes. The beam was excited in the controlled axis using a

force hammer and damping estimates were obtained using a complex

exponential curve fit to the resulting frequency response function

measured by the GenRad. A comparison of these results to the log

decrement data is shown in Table 6.3. While the curve fit data appears

to be more accurate and shows the trend more clearly, the damping

estimate was highly dependent upon the frequency range the software was

allowed to fit. For the z-axis test with the estimator at 0.155,

damping estimates ranging from 0.088 to 0.056 were observed. The data

presented represents a "best fit" to the frequency response function

based on minimizing the resi.iuals between the measured and fit data.

Since the log decrement data is reasonably accurate, testing of the

fundamental bending and first torsion modes continued using this method.

6 17
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Table 6.3. Damping Estimation Method Comparison Log Decrement vs

Complex Exponential Curve Fit

A Estimator Modal Damping Modal Damping Modal DampingDamping (predicted) (log dec) (curve fit) %

z 0.1214 0.0716 0.066 0.077

z 0.1015 0.0716 0.066 0.063 |

z 0.0793 0.0716 0.041 0.043

v 0.1252 0.0715 0.058 0.059y 0 .

In an attempt to determine a cause of the lower than expected modal

damping several more tests were run with the simulation to measure gains

through the controller/estimator. Table 6.4 shows the gains between

• various system parameters.

Table 6.4. System Gains (dB)

Estimator X /X x /xx /s x /s u/S
__ _ _ _ _ _ a 11 2 1 2 2 2

0.155 -3.0 -2.8 -34.9 -16.5 -29. 2

0.548 -2.2 -0.8 -34.9 -14.7 -27.5

Predicted modal damping of 0.101 for both controllers
.- 1.

0
The simulation shows that the sensor to acutator command gain was

smaller for the less damped estimator. This result is consistent with

the trend in the experimental data of less modal damping for the less

damped estimators, and is also consistent with the fact that the higher

damped estimators have larger gains in the estimator gain matrix K. The

discrepancy which remains unresolved is that the simulation still

maintains the predicted level of modal damping even though it is

6 18
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providing less control input to the plant. Further investigation of the

simulation would be required to fully evaluate this difference.

A tabulation of additional single axis control tests conducted is

in Table 6.5. From this data, to have the actual modal damping be close .

to the predicted eigenvalue, the estimator damping should be at least

twice the modal damping for z-axis control, and three times the modal _

damping or higher for y-axis and torsion control.

While keeping the estimator damping high relative to the modal

damping is desirable, this was found to limit the modal damping level
4.

that could be used in the experiment. The estimators operating with a

damping coefficient greater than 0.2 were found to pass low frequency

signals through the controller. When the control gains are large, the

low frequency drift in the sensor signal caused the actuators to wander.

For some controllers the drift was so bad that the actuators would not

remain centered long enough to run even a single decay test. Figures

6.9 through 6.12 show the actuator command versus the sensor input for de-

different estimator damping ratios. A z-axis controller with an

estimator damping coefficient of 0.358 was the highest that could be

tested. Estimators operating with damping coefficients less than about

0.2 had very little problem with drift. While some was still present,

the magnitude was either below the actuator response threshold or slow

enough to allow adjustment of the actuator centering before a test.

%S
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Table 6.5. Additional Closed Loop Control Test Results

..-

Predicted Experimental

Axis Estimator Modal Ratio Measured % of
Damping Damping / Modal Damping Predicted

_____~~ ~ X __ _ _ _ _ _

z 0.1015 0.0716 1.4176 0.066 ± 0.020 0.922 ± 0.279

z 0.1268 0.0994 1.2757 0.085 ± 0.013 0.855 ± 0.131

z 0.1540 0.1245 1.2369 0.105 + 0.022 0.843 ± 0.177

z 0.1863 0.1507 1.2369 0.128 ± 0.031 0.849 ± 0.206

z 0.2149 0.1790 1.2006 0.154 ± 0.065 0.860 + 0.363

z 0.1268 0.0716 1.7709 0.065 ± 0.025 0.908 ± 0.349 F.,

z 0.1540 0.0994 1.5493 0.081 ± 0.013 0.815 ± 0.131

z 0.1863 0.1245 1.4964 0.115 ± 0.030 0.924 ± 0.241

z 0.2149 0.1507 1.4260 0.138 ± 0.043 0.916 ± 0.285

y 0.0980 0.0715 1.3706 0.056 ± 0.007 0.783 ± 0.098

V 0.1252 0.0965 1.2974 0.076 ± 0.017 0.786 ± 0.176

v 0.1523 0.1253 1.2155 0.099 ± 0.019 0.790 ± 0.152

v 0.1866 0.1492 1.2507 0.114 ± 0.004 0.764 ± 0.027

I ,, 0.2136 0.1782 1.1987 0.143 ± 0.004 0.802 ± 0.022

v 0.1252 0.0715 1.7510 0.058 ± 0.015 0.811 ± 0.208

y 0.1523 0.0965 1.5782 0.081 ± 0.015 0.839 ± 0.155

0.1866 0.1238 1.5073 0.102 + 0.010 0.824 ± 0.081

V 0.2136 0.1492 1.4316 0.125 ± 0.006 0,838 ! 0.040

0.2458 0.1782 1.3793 0.153 t 0.035 0,859 0.196

6'.0
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VII. Modal Suppression

Theory

Using a reduced order dynamic model reduces the order of the

Z controller, and thus the computational requirements can be significantly

reduced in a very large system. If the reduction iq accomplished b

just deleting modes, the uncontrolled modes can be driven unstable.

This occurs because the sensor outputs and control commands still

contain information about the deleted modes. These effects have beco!rc

commonly refered to as observation and control spillover. A method for

eliminating spillover and maintaining a stable system was developed b.

Calico and Janiszewski (Ref 4), and is used in this experiment to

construct the reduced order controllers.

To accomplish this, the modes of a system are classified as

controlled, suppressed, and residual. The state vector for the svste"

no, takes the form of

X (x , x S x (3)

where x is an n -vector of controlled states, x is an n -vector of

suppressed states, and x is an n -vector of residual states. The modes.

included in x are only those necessary to establish satisfactory sxste:r
-C

performance and do not necessarily include the lowest order modes.

Using this partitioning, the state space model can be written as

-A x - B u ( 7..
-c C -c c

x -Ax + B u (8-S $ -s S
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. x-A x + B u (39)

- x + C X + r X (40)

The control input is still defined by equation 24, but with x replaced

by x . The coupling of the control u into the suppressed and residual

equations could excite and destabilize these modes, and as such the

problem is known as control spillover.

A similar situation exits for the the observer. The estimator

still has the form of equations 25 and 26,

x - A x + B x + K(y - y)
C C C C C

y-Cx
C C

an! as such, v still includes information about the suppressed and

residu al states. This coupling can induce errors into the estimated

states and thus generate inappropriate control commands, possibly

driving the system unstable. This is the effect known a observation

spillover.

To maintain system stability, it is sufficient to eliminate either

type of spillover (Ref 4). For this experiment it was decided to

eliminate observation spillover, which can be accomplished by

constraining the estimator gain and output matrices such that

KC 0 (42a)
c

KC - 0 (42b)

For a reduced order controller the residual modes are ignored and the

solution to equation 42b can be found by singular value decomnosition of

00
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C If C is of full rank, a solution exists only if the number of

sensors is greater than the number of suppressed modes. This is

necessary because eliminating the observation requires constructing a

new measurement set w, which is a linear combination of sensor outputs

such that the suppressed mode has in effect been subtracted out of

the measurement, thus suppressed. This in effect "costs" a sensor for

a mode to be suppressed. The results of the singular value

decomposition of C are an orthogonal set of left singular vectors which

can be partitioned into a set associated with the non-zero singluar

values of C and a set associated with the zero singular values of C
S S °5

Defining the set associited with the zero singular values as r, equation

42b becomes

rC -0 (43)

Defining a new relation to represent the output after the suppressed

modes are removed

w- ry (44)

equation 40 becomes

w C x + rc x + rC x (45) .
-- C -c s S r -r

which, by ignoring residuals reduces to

w - cx (46)

0
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using this new measurement in the estimator equation results in

x - A x -B u - K(w - w)

C C C.

w - irc X (47)

u - -Gx

which, when put in terms of y, defines a state estimator of the form

x (A B G KPC )x + Krv (48)
C C C C C C

The time domain solution of equation 48 and its formulation for use in

the PC-1O00 is identical to equations 32 through 35, when the full state

matrices are replaced with their reduced order counterparts, and the

estimator gain matrix K is replaced with KF.

Results

Since the first two modes of the system are the first bending modes

in two orthogonal directions, they are already physically decoupled and

it is not necessary to apply modal suppression before eliminating the

orthogonal axis from the controller. Therefore, suppressed mode

controllers were designed and implemented for the z axis of the beam.

which dealt with the first and second z bending modes and torsion.

Initially, to determine the effect of spillover on the system, a two

mode controller using only torsion and second z bending was constructed,

with the first z bending included in the model as a residual mode to

predict its stability. The predicted eigenvalues for the estimator and

7 -4
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controller without incorporating the residual mode are listed in A

Table 7.1. The eigenvalues for the system with the residual mode

incorporated are shown in Table 7.2.

Table 7.1.Predicted System Eigenvalues Without Residual Modes

Estimator Controller
Mode

Tl 0.1029 79.8805 0.0126 79.0245

Z2 0.1055 114.974 0.0301 113.688

Table 7.2. Predicted System Eigenvalues With Residual Modes

Estimator Controller Residual
Mode

Tl 0.1029 79.8805 0.0126 79.0245

Z2 0.4701 65.6812 0.0048 114.387

Zl -1.0 21 .0709
-1.0 10.0318

Vhile the system appears well behaved when the residual mode is

ignored, the overall system is obviously unstable when the omitted mode

is accounted for. To verify this prediction, the estimator/controller

was implemented on the PC--I000. The resulting control response would

immediately saturate the actuators when initiated, and eventually drove

the z-axis unstable.

II
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The first problem encountered in attempting to suppress the first

z bending mode was maintaining observability of the second z bending

mode. The problem lies in the large difference in modal amplitudes

between the first and second bending modes at the base plate. Table 3.7

indicates the difference to be almost an order of magnitude. Thus,

when suppressing the first bending mode, the small amplitude of the

second mode was completely swamped. Tables 7.3 and 7.4 show the system

eigenvalues before and after suppression of the first z bending mode.
. w

This problem was also manifested in requiring very high control gains to

produce a significant increase in predicted damping. These high gains

-*" aggrevated the noise and low frequency drift problems already present ir-

the system and made the configuration very difficult to test.

TaLle 7.3. Predicted System Eigenvalues Before Suppression

S Estimator Controller
Mode

TI 0.1005 79.8412 0.0127 79.0425 "

Z2 0.1592 116.683 0.0100 113.688

Table 7.4. Predicted System Eigenvalues After Suppression

0
Estimator Control er 

Mode "

TI 0.1005 79.8412 0.0126 700245

Z2 0.0029 1 113.688 0.0100 113.688

O--p
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To overcome the loss of observability, the sensors on the y axis

were changed to stations 9 and 10 on the z axis. Modal amplitudes

listed in Table 3.7 indicate the response at these stations is the same

order of magnitude as the first bending mode Ft the base plate.

V Therefore, the second z bending signal should be substantial enough to

not be subtracted out when the first mode is suppressed.

The new sensor stations were already instrumented with PCB

Structural Accelerometers used in the modal tests. Rather than

reinstrument, the PCB accelerometers were used in place of the Kistlers.

The new accelerometer calibrations and scale factors after signal

conditioning are shown is Table 7.5.

Table -.5 PCB Accelerometer Calibrations and Scale Factors

Station Serial = Calibration (V/g) Scale Factor (mV/ft/sec)

9 1223 0.8902 93.10

lnIO 1216 0.9321 94.20

The results of the new sensor configuration are shown in Tables 7.6

and 7.- The observabilitv of the second mode returned and the

.s,-,T-ression of the first bending had minimal effect on the controlled

s'stem eigenvalues.

Table 7.6. Predicted System Eigenvalues Before Suppression - Adjusted .(_

Sensor Locations

Estimator Control ler
Mode "

TI 0.0876 79.6438 0.0127 79.0425

Z2 0.0827 114.473 0.0151 113.688

7
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Table 7.7. Predicted System Eigenvalues After Suppression - Adjusted

Sensor Locations

od Estimator Controller
Mode

TI 0.0876 79.8412 0.0126 79.0425

9" Z2 0.0824 114.467 0.0151 113.688

Implementation of this controller proved to be only partially

successful. The first z bending mode was not driven unstable, however

is was slightly destablized. Figure 7.1 shows the time response for the

first z bending. The damping ratio calculated for the test was 0.0267.

a reduction of 0.01 over the normal residual damping in the structure.

T•e damping on the second z bending was estimated using the impact

r: .od and the modal analyzer. The transfer function was then curve fi-

tr determine the damping, the result being shown in Figure 7.2. As is

readi ly apparent from the estimated roots, the damping has only been

rarginallv increased from its residual value of 0.00291 to 0.00..93.

a predicted controlled damping of 0.0151, this is by far the

*. lartes: deviation from prediction. The most likely explanation is the

lo-.- modal amplitude of the second mode at the base plate The sensor

input and actuator command for this controller are shown in Figure 73.

A problem which can be seen in Figure 7 3 was a lo.. frequency-

:raTmsient in the PCB response when the beam was excited. The controller

o,.utput followed this signal very closely and almost invariably saturated

th- actuator stroke unless the force input was kept. extremely small.

Finally, to determine how well the suppression of the first bending

mode is operating the frequency spectra of the sensor input and the

suppressed measurement w were measured 
while exciting the suppressed

°,c

mode (see Figure 7.4). The sensor input magnitude of -44.8 dBV shouldsu

7-8m_,p
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VIII. Conclusions and Recommendations

Conclusions

Several issues important to future design and testing in the area

of large space structure control have been raised in this experiment.

First, if linear proof mass actuators are to be used in controlling

lightweight, flexible structures, care should be taken to ensure that

not only are they not placed at or near nodes on the structure, but that

they don't create a node at the control point by their mere presence.

Colocation of these actuators should be avoided to the extent possible.

The second problem associated with the actuators is the placement of

their dynamics. To reduce the computational burden on the control

system, it is always desirable to have a flat response from the actuator

over the control bandwidth. To accomplish this, along with the

desirable characteristics of maintaining a free floating and centered

proof mass, dictates moving the low order poles of the system to very

low frequency. This has the undesirable effect of making the actuator

very responsive to drift and bias shift. Using the actuators in this

configuration requires highly accurate instrumentation and excellent

signal conditioning to filter out all signals outside the control

bandwidth.

This sensitivity obviously makes sensors an important issue.

Integrating accelerometer data to generate a velocity measurement will

continually generate problems with low frequency signals unless an

accelerometer capable of accurately sensing acceleration frequencies

below 1 Hz and amplitudes to less than a tenth percent of scale is used.

None of the piezoelectric accelerometers evaluated for use in this

8-1



experiment were truely adequate for the task. While the fundamental

frequency in this experiment was still above 1 Hz, a large structure on

orbit may have many modes at or below this frequency. The only V
.

accelerometers capable of adequately performing in this regime may be

the PIGA (Pendulous Integrating Gyroscopic Accelerometer) type widely 'S

used in inertial navigation platforms or others of similar capability.

Position sensors are also possibilities for use in the control design.

While no position sensors were used or evaluated for this experiment,

development of an accurate position sensor for use on a large space

structure control would expand the options available to the control

designer. Benefits of a particular sensor or sensor type would be
•°.

dependent on the specific experiment or vehicle to be controlled.

With the number of problems seen with noise in this experiment,

both high and low frequency, a deterministic observer may not be the

best algorithm with which to approach the problem. While some of the

difficulties could be reduced by better signal conditioning and more

accurate instrumentation, the less costly solution may be to implement

some form of a stochastic estimator in the controller.

Lastly, while the demonstration of reduced order controllers was

only partially successful, all indications from the experiment were that

it is a viable technique given adequate observability and controlability

of the modes in question.

Recommendations for Future Work

A number of improvements could be made to increase the accuracy of

the experiment and perhaps make it a better test bed for evaluating

control methodologies. Several improvements in the area of the

actuators could be readily made. The actuator shafts should be replaced

8 2
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with ones which have a much harder surface. Scoring of the current

shafts from the proof mass bearings was becoming significant even before

closed loop testing of the beam was started. Additionally, the lag

prefilter should be removed from the compensator circuit and the

actuator response verified. Model predictions indicate the phase and

magnitude deviations of the actuator transfer function at the low end of

the control bandwidth were due to this prefilter and not the actuator %

dynamics. As a third step, a thorough review of the compensator circuit
'p

for ways to increase the accuracy and reduce the noise in the system

would be profitable. Initially, isolation of the power inputs to the

operational amplifiers may be helpful.

In the area of sensing, substantially better low frequency signal '

conditioning will be required to be able to operate a deterministic

estimator with a damping ratio higher than about 0.25.

The bias observed in the input channels of the PC-1000 should be

isolated and removed. While the problem can be worked around, it

degrades the performance and dynamic range of the experiment. For some

of the higher gain controllers applied to the higher modes the output

bias was observed to be as much as 7 volts. With a maximum output of 10

volts, the dynamic range of the control signal has been significantly

reduced.

Enhancing the controlability of the higher bending modes is needed %

to adequately demonstrate modal suppression, but this may be difficult S

to accomplish for this structure. If the actuators controlling one axis

are removed, the finite element model predicts only a few percent

increase in the relative amplitude between the first and second bending

modes. A more viable approach to being able to demonstrate suppression

of coupled modes may be to place an asymmetric mass on the base plate

large enough to significantly couple the bending fundamental modes.

8-3
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Appendix A. Actuator Component Specifications and Configuration

DEFINITIONS (Continued)
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Table Al. Actuator Configurations

Actuator Component Serial # Calibration

Base Assembly1

Proof Mass 1wo

I Power Amplifier 1

Accelerometer RA40 23.18 mV/g

LVDT 5358 20. 750 V/in

Base Assembly 2

Proof Mass 2

2. Power Amplifier 2

Accelerometer RY95 17.59 mV/g

LVDT 5356 20.348 V/in

Base Assembly 3

Proof Mass 3

3 Power Amplifier 3

Accelerometer RB46 20.76mVg

LVDT 5359 20. 295 V/in

Base Assemblv 4

*Proof Mass 4

4 Power Amplifier 4

Accelerometer RF68 17.90 mV/F

LVDT 5364 20.216 V/in

0
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Appendix B: Actuator Development Problems

1) Pure integrators in the either the forward or feedback paths

exacerbated the low frequency problems to the point that the

configuration was impossible to test. The proof mass continually

wandered into the end brackets and would not maintian a stable

oscillation. This effectively eliminated the option of implementing an -

inverse plant model to cancel the low frequency dynamics of the system.
4,%

2) High frequency noise was a problem thoughout the development.

The high frequency dynamics in the open loop response proved to be a

problem when the acceleration feedback loop was added, especially when

the gain was turned up in that loop. High gain in the acceleration

feedback loop is desireable since it has the two benefits of moving the

actuator dynamics lower and increases the ability of the proof mass to

float freely when uncommanded. When the gain was turned up to a high

enough level to effect the system dynamics, high frequency noise would

feed back into the motor and drive the system unstable. The only

solution found to this problem was to low-pass filter the acceleration

signal in an attempt to reduce the magnitude of this noise. This was

successful to some degree, but adding enough filtering at a frequency

low enough to remove the 150 hz dynamics destroyed the phase of the

feedback signal in the operating bandwidth. Three low-pass filters with

break points at 80 hz provided sufficient reduction in the high

frequency components of the signal that the feedback gain could be

increased enough to significantly affect the dynamics. Unfortunately

this shifted the phase of the feedback signal 900 at the fundamental

bending modes, which is effectively velocity feedback (i.e. a viscous

damper). The compromise was to implement only one low-pass filter with

B-
B -



.IM rip 17 17- KFIK-1 - r-

a break point of 50 Hz in the acceleration feedback path. With this

configuration the feedback was still effectively an acceleration signal

while the magnitude of the high frequency noise was somewhat reduced.

3) Some high frequency oscillation is ocassionally still observed

in the system, especially when all the actuators are on the beam and

high frequency vibration of one will be measured by another. This is

not a consistent problem and usually doesn't affect the overall
,'

experiment. The origin seems to be the actuator 150 hz bracket dynamics

still feeding back through the compensator. The oscillation is not

strongly unstable, and usually is not noticable. Occasionally, the

response gets large enough that it is audible as a low hum coming from

the actuator. When this occurs it will usually stop by holding the

offending actuator on or around the LVDT mounting bracket. The signal %

can also become noticeable if the actuator proof masses are allowed to

rest against the stops when not commanding the system.

4) The actuator proof masses will tend to drift over on a long

term basis during operation due to a very low frequency drift in the

power amplifier. The power amplifer has been observed to oscillated

with a period of approximately 40 minutes and a peak voltage of 0.15 V

after turn on. This effect damps out with time, but the actuators have
0

still required centering adjustment even after several hours of

operation. The cause of this oscillation was not isolated since its was

of such a low frequency relative to the time required to run a test on

the beam. Possible causes lie ii -he power amplifier itself and

possibly in the power supply. This problem will cause the proof masses

to drift into the stops if left unattended for several minutes. Thus, %

proof mass centering be checked prior to running any tests on the beam.

B-2
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5) A configuration for the compensator was found that provided

acceptable freqeuncy response performance over the desired bandwidth.

However, the actuator exhibited a drift with input amplitude. As the

amplitude of the input command was increased, the zero reference of the %

power amplifier appeared to change. This caused the proof mass to shift

toward one end of the travel and oscillate about that point. The effect

was not noticable in low frequency response since the proof mass stroke %-%

was saturated before the amplitude was high enough to cause the problem.

However, the problem was noticable at the first torsion frequency of

the beam. A test run using a combined fundamental and torsion freqeunc"

command determine that the maximum output force that could be applied to

an,' two modes simultaneously was 0.1 lbf. This low level of force

output was not acceptable if the closed loop control result were

expected to increase the beam damping by more than a few percent.

Various approaches were tried to alleviate this problem such as AC

coupling the input signal to ensure it has no bias; AC coupling the

command from the compensator to the power amplifier; adding another

feedback loop around the power amplifier, which was found to have other

benefits, but had no affect on the drift problem; and substantially

increasing the position feedback gain, to the detriment of the frequency

response. The only change that had any affect on the problem was the

increase of the feedback gain. However, all it really did was to raise

the point at which the drift became noticable, and it completely

destroyed the flat frequency response in the low end of the bandwidth.

Since the problem appeared to be associated with the power

amplifier circut, Mr. Ken Taylor of TRW, who did the original design of

the power amplifier circuit, was consulted as to the problem. Mr.

Taylor's recommendation was to check the very high frequency output of
w,' -, ",,i

the power amplifier. He felt the amplifier may have unstable

I..O'
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oscillations in the kilohertz to megahertz frequency range due the high

impedance of the input, and the fact that the amplifier was driving a r

large inductive load (the motor) through very long cables (8 to 10 ft

for this experiment). He suggested adding an RC network across the

amplifier output if the high freqeuncy oscillations were observed.

Since the Ono Sokki Analyzer is limited to 40 KHz, the amplifier

output was checked on an oscilloscope. A ±15 V oscillation was observed

at approximately 66 KHz. Applying the fix that Mr. Taylor suggested was

successful in eliminating it. This modification did not change the

frequency response of the actuators, and did relieve the input amplitude .A

drift problem to some extent. The drift was still present at high input

amplitudes, but the high frequency output was increased to almost

2.5 lbf from the 0.1 lbf limit previously measured. While this is still

below the actuators theoretical capability, it is a much more acceptable

level for this experiment. Later testing revealed in fact that this

drift was not an actuator problem, but was due to a very slight shift in

the input bias from the Ono Sokki. The actuators were found to respond

to as little as 2 mV of bias, and 5 mV would run the proof mass to the - -

end of its travel. This sensitivity to bias and very low frequency

inputs continues to be a problem and requires very high quality input

signal to keep the actuators centered.
- ,

6) The phase response of the transfer function was observed to

change with input amplitude. Some variations with amplitude were also

observed, however they were much smaller than the phase shifts. The

initial thought would be that as the input amplitude is reduced, the

force applied by the motor to the proof mass is reduced. The expected

consequence would be that friction starts to become a significant

portion of the force on the proof mass, and accounts for the phase

B -4



change. Unfortunately, the shift in phase is opposite to the expected

effect of friction. One would expect friction to cause a lag in the ,

output as it holds the proof mass back slightly at the end of each

stroke. The observed behavior however, is that the phase increases as

the input magnitude is decreased. In an attempt to determine if the .4.

phase shift was related to friction non-linearities, the time response

was plotted to see if the output had any discontinuities. Figures B.1

through B.3 show the proof mass position as measured by the LVDT

compared with the input command. The data indicates that there is no

observable sticking of the proof mass, e-'en at very low input levels.

This problem was not resolved, but the phase shift from zero

degrees in the final configuration is within ±10 for the expected input

amplitude range. Isolation of this problem would be a topic to

investigate to improve the accuracy of the experiment. .

7) Bearing and shaft friction was found to cause a problem when

the actuators were mounted on the beam. The proof masses float to a

great extent as the beam vibrates but still add approximately 3.5%

damping to the fundamental bending modes. The displacement eventually

damps down to a small enough level that the acceleration feedback '

command cannot overcome the friction between the bearings and shaft. At

this point the proof masses stop floating and become part of the e

structural mass. The result is a nonlinear structure. In examining the 7-4

actuator shafts, scoring by the bearings was becoming significant. The

problem became acute enough in actuator #2 that the proof mass would

occassionally stick while being commanded and often required manually

moving the proof mass to restore free motion. At this time the problem

still exists. New actuator shafts with a much harder finish are under

manufacture. These should solve the scoring problem, and may help the

'.e5"'.,
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low amplitude sticking. Another modification that will further reduce

the amplitude at which the proof masses stop floating is to increase the

acceleration feedback gain. At this time the gain is as high as is

practical for this configuration. The limiting factor in the

acceleration feedback has been high frequency noise. The feedback

circuit currently has one low-pass filter on the accelerometer signal.

More signal conditioning will be required to keep high frequency

oscillations out of the actuator when the gain is increased. Increased

acceleration gain will also affect the actuator dynamics, moving the --

complex pole pair to even lower frequency. This may actually be -

Id%

beneficial if the resonance can be moved below the range of any low

frequency drift that might be in the command signal. If this

modification is made, the acceleration feedback amplifier output should

be checked to ensure the signal is not close to saturating either the

feedback amplifier or the subsequent summing junction.

B
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Appendix C: Actuator Mass Model
.

To develop an accurate actuator mass model the configuration was

divided into six components, each of which could be approximated by

simple figures (see Figure C.l). These components include all of the

major parts of the actuator system with significant mass. The mass of

4 -' . the remaining parts not represented directly by one of the components

was applied to the nearest representative figure. A description of each

component, its mass and dimensions is listed in Table Cl.

Table C.l. Actuator Mass Model Components

Pass Dimensions (in)

Description ibf-sec .
Partin Length Width Height Diameter

Rectangular 142.34E-6 1.1 0.3 1.7
Plate

0 2 CircularC 199.28E-6 4.5 0.25Cylinder

0: Rectangular,0.3 483 95E-6 1.1 0.3 1.7
Plate

4 Rectangular 199.28E-6 1.1 0.3 2.125
Plate

Circular
C 540.89E-6 5.5 0.75' Cylinder

Hollow Inside Diameter = 0.25
6 Circular 2.9324E-3 2.25 Outside Diameter 2.125

Cylinder

" The mass moments of inertia about the component's center of gravity

are calculated by assuming the center of gravity lies at the center of

figure then orienting parts in the global coordinate frame of thp

structure according to the orientation of the specific actuator. The

C
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resulting centers of gravity and mass moments of inertia for each

actuator are shown in Tables C.2 through C.

Table C.2. Actuator #1 Mass Model

Mass Moments of Inertia
Center of Gravity (in)2.

Part (lbf-sec 2*.in)

-~x y z I I I
_____~ __ _ _ _ _y z

1 69.90 -2.25 -4.00 15.42E-6 48.63E-6 35.35E-6

2 69.60 0.00 -4.00 337.06E-6 1.56E-6 337.06E-6

3 69.90 2.25 -4.00 52.43E-6 165.35E-6 120.18E-6

4 67.99 2.25 -4.00 21.59E-6 95.08E-6 76.48E-6

5 67.45 2.44 -4.00 1,3825E-3 38.03E-6 1.3825E-3

6 69.60 0.00 -4.00 3.6280E-3 2.9324E-3 3.6280E-3

Table C.3. Actuator #2 Mass Model

Center of Gravity (in) Mass Moments of Inertia

Pat(lbf-sec 2 . in)

x y z II10
__ xy

1 69.90 -4.00 2.25 15.42E-6 35.35E-6 48.63E-6

2 69.60 -4.00 0.00 337.06E-6 337.06E-6 1.56E-6

3 69.90 -4.00 -2.25 52.43E-6 120,18E-6 165.35E-6

4 67.99 -4.00 -2.2S 21.59E-6 76.48E-6 95.08E-6

5 67.45 -4.00 -2.44 1.3825E-3 1.3825E-3 38.03E-6

-6 69.60 -4.00 0.00 3.6280E-3 3.6280E-3 2.9324E-3

c 3



Table C.4, Actuator #3 Mass Model

-%

Cener f Gaviy (n)Mass Moments of Inertia

Part Cetro rvt i)(lbf-sec 2*in)

x y z 4

1 69.90 2.25 4.00 15.42E-6 48.63E-6 35.35E-6

2 69.60 0.00 4.00 337.06E-6 1.56E-6 337.06E-6

3 69.90 -2.25 4.00 52.43E-6 165.35E-6 120.18E-6

14 67.99 -2.25 4.00 21.59E-6 95.08E-6 76.48E-6

5 67 .45 -2.34 4.00 l.3825E-3 38.03E-6 1l.3825E-3 ,,

6 69.60 0.00 4.00 3.6280E-3 2.9324E-3 3.6280E-3

Table C.5. Actuator #4 Mass Model

Mass Moments of Inertia
Center of Gravitv (in)2

Part (lbf-sec -in)

x y z II

%41 69.90 4.00 -2.25 15..42E-6 35.35E-6 48.63E-6

2 69.90 4.00 0.00 337.06E-6 337.06E-6 1.56E-6

3 69.90 4.00 2.25 52.43E-6 120.18E-6 165.35E-6

14 67.99 4.00 2.25 21.59E-6 76.48E-6 95.08E-(,

5 67 .45 4.00 2=44 l.3825E-3 1.3825E-3 38.03E-6

__6 69.60 4.00 0.00 j3.6280E-3 3.6280E-3 2.9324E-3

C-4
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Appendix D: Final Modal Test Data

! P.
The modal test of the final experiment configuration was conducted 0.

in two phases. First, the fundmental bending modes in the z-axis and

v-axis were measured using a sine dwell technique. Magnets were mounted e

on either side of the base plate in the plane of the bending axis to be

testEd. Magnetic induction coils were used in conjunction with these

malgnets to apply a sinusoidal forcing function to the structure. The

frequency and damping of the modes were determined by generating a

frequency response function for the structure around the natural

frequencv. The beam was forced at a single frequency and the steady

"j. state acceleration of the base plate recorded. Measuring the response

at intervals throughout a frequency band around the being mode natural

frequency creates the response function. The peak response occurs at

the modal frequency and the damping can be determined using the

half-power point method (equation 8). To determine the mode shape, the

..s: cture was forced at the natural frequency and the acceleration of

each of the nodal points measured. For steady state motion, the

* displacement is proportional to acceleration and is therefore a direct S

mePaSurement of the mode shape. This mode shape can be normalized to a

!I i: vector for comparison with the finite element data. The frequency

rteponse functions are shown in Figures D.1 and D.2, and the measured

modl amplitudes are listed in Table D.l.

The second phase used the GenRad Modal Analyzer to measure the

first torsion and higher bending modes. The test was conducted using

th. impact method. The beam is tapped with a force hammer at a

,(ected node and the response at each node is recorded. The measured

time response is transformed to the frequency domain using Fast Fouric r

Transforms, and a frequency response function is generated for each nod(

D 1
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point. The frequency and damping of the mode are found from the curve

fit parameters for the response function, and the mode shapes are

determined by the magnitude and phase of the response at each node

point. Figure D.3 shows the node point geometry used internally in the

GenRad. Figure D.4 is the first torsion mode curve fit and mod "

parameters. Figures D.5 through D.8 show the higher bending mode modal

parameters and mode shapes.
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Table D.l. Z and Y Axes First Bending Modes

First Z Bending First Y Bending
Modal Amplitudes Modal Amplitudes

'Ile Node
Acceleration (g) Acceleration (g)

1 0.000000 0.000000

2 0.000113 0.000073

3 0.000252 0.000674

4 0.000677 0.001836

5 0.001382 0.003171

6 0.002461 0.004519

7 0.003922 0.006179

8 0.004738 0.007805

9 0.007174 0.010108

10 0.008762 0.011995

11 0.010791 0.016117

vp.
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Geomet rw
Loc x Y
I 140800@ 0.~0A A

3 218.908 9.9666413 B.eeeee
4 280.08a 0.86680 8.08066
5 358.80 8880 0.08008 808888
6 420.890 8.088888 8.80888
7 490.088 8.888888 8.000800
8 568.888 8.0888 8.88888
9 638.888 8.088888 8.888888

16 8.888888 8.088888 8.888888
14 718.888 8.0888 8.888888

-t

z 
z

Fiur D.3. Moa etNdPitGoer
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'S2.89-3. OOE-81 4 9?E+8:

Estimated Roots I 11+ 52+)
Root Fre-ueric~ Damping Amp f,tude Phase

1 43 454 8.A8217 1.56i3 1.571
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Mlode Shape, 3RD Z-BEtIDING
Loc X Coeff y Coe;; Z Coe;;0

1 3 OOPlE-81 8.898E-01 4.90ZE-al
2 0 OEI8E-01 9 98@E-@1 1.521E+@@
3 e egeE-e1 0 esOE-81 2.484E~e@
4 e.eeeE-01 0.806E-el 2.922E+803
5 8.eHE-81 0.00@E-01 2.597E+e@
6 9.08ef-01 8.098E-01 1.573E+99
7 6.668E-01 e.8eGE-el 2.239E-81
8 8.eeE-11 SSE-01 -8.664E-01

-9 8.00eE-01 8AGHS-SI -I 2t2E.SB
16 1.4089E-e2 8O88E-' -6 689E-83
14 S.SSOE-01 S.SSSE-01 -1.191E-01

Figure D.6. Third Z-Axis Bending Mode~
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Appendix E: Sensor Specifications

SPECIFICATIONS 8630A50 *8630A5 -

8692A50 8692A5

Acceleration range g ±50 ±5
Acceleration limit g ±80 ±
Sensitivity,±51 at 100 Hz, 3 g rms mV/g 100 1000
Threshold VV rms 50 100

ug rms 500 100
Shock (0.2ms pulse width), max. g 5000 5000
Amplitude Linearity, nom. % t1 ±1
Time Constant, nom. s 0.5 0.5
Resonant Frequency, mounted, nom. kHz 9 9
Frequency Response,±5% points Hz 1.. 2k 1. 2k
Phase Shift, 1.. .2k Hz " <5 <
Transverse Sensitivity <3 <3
Strain Sensitivity @ 250u in/in g/uin/in <.001 <.001
Temperature Range, operating OF +32... 150
Temperature Range, storage F -10... 200
Temperature Coefficient of Sensitivity %/F -.04 -.04
Supply Current mA 2.. .18 2... 18
Source Voltage VDC 20.. .30 20...30
Source Impedance ka 100 100
Output Bias, nominal VDC 11 Ii
Output Impedance 0 <100 <100
Output Current mA 2 2
Output Voltage, F.S., nominal Y. ±5 ±5
Ground Isolation Ml 10 10
Material

Housing and Base Aluminum Alloy "
Seal

Case and Connector Environmental Epoxy

MODEL 8628 MODEL 8630 MODEL 8692

rUJL.........~-

Weight gr 6.7 4.5 14.5
Mounting Torque in-lbf 8

Figure E.l. Kistler Accelerometer Specifications
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Appendix F: Advanced Beam State-Space Formulation

Using the final modal test data, the A matrix for the first five

modes of the structure is

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

o o 0 0 0 0 0 0 1 0

o 0 0 0 0 0 0 0 0 1
A -69.83 0 0 0 0 -0.630 0 0 0 0

0 -120.9 0 0 0 0 -0.770 0 0 0

0 0 -6247 0 0 0 0 -2,008 0 0

0 0 0 -12925 0 0 0 0 -0.660 0

0 0 0 0 -22545 0 0 0 0 -0.9610

TApplying the transfer function of the actuator, the (P B matrix

,-ies tile form

0 0 00

0 0 00

30 0 0 0

0 0 0 0

T 0 0 0 0

0 2 .747 0 -2. 747

-2.323 0 -2.323 0

0.484 0.484 0.496 0.471

0 -0,215 0 0.215

0.243 0 -0).243 0

Since the sensor scale factors have been adjusted to unity in the

input to the PC-lOGO, the C matrix partitions are just C =0, a 4x5

zero matrix and C has the form

F I



0 4i.943 1.240 0 -0.608

-4.905 0 1.240 0.573 0

The-;( matrices can he partitioned to form any subset of modes for

inclusion in the controller. Examples of two z-axis controllers are

homin Figuires F.l and F.2. These configurations include the first

three modes, but apply control gain only to the first z bending mode..

Estimnator and controller eigenvalues differ for the two formulations for

cnTp,-,IfiSOTl Of feedback gains.%
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Many control methods have been proposed for dealing with the
large space structure vibration control problem. To experimentally -

evaluate these various approaches in a way which will allow -

consistent comparison of results requires a baseline experiment in
which all variables are understood and controlled. From this base-
line, thevarious aspects of each control scheme can be implemented
and their relative merits conpared on a consistent basis. This .
experiment was implemented using a vertically suspended cantilever:
beam with rectangular cross section. Proof mass actuators were
developed to provide control force inputs to the structure. Closed -' .

loop control was formulated using linear quadratic regulator theory
and results are compared with simulation and eigenvalue predictions ,
to establish baseline performance. Modal suppression techniques ..

were implemented to demonstrate control of selected modes while main-
taining overall system stability. Results applicable to future
testing and development in the large space structure control area
are identified. ," "
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