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1. Introduction a

This report is devoted to a theoretical analysis of inheritance in monotonic semantic

nets with positive and negative links, but without relations. To a logician, the context

will seem unusually simple (there are, for instance, no genuine propositional connectives);

but the texture of the resulting logic is surprisingly rich, given the impoverishment of the

background language.

We establish several basic results. After setting out the fundamental ideas behind

monotonic inheritance in Sections 2 and 3, we characterize the inheritance relation, in

Section 4, through a sequent calculus, or natural-deduction system, that is relatively nat-

ural and well-motivated.' It is often thought that the logic of monotonic semantic nets, at

least, is simply the classical predicate calculus. We show that this is not so. The logic we

present is noD-classical; and in Section 5, it is proved to be both sound and complete with

respect to monotonic inheritance. In Section 6, turning from proof-theory to semantics,

we show that the inheritance relation is equivalent also to a notion of validity arising from

interpretations over a certain four-valued matrix that has been thought before to have

some computational significance.

One traditional attraction of inheritance networks has always been their natural cor-

respondence with graphs, which makes them particularly appropriate as vehicles of knowl-

edge representation for concurrent computing architectures, where graph-searches can be

very fast. In Section 7, we present inference algorithms over monotonic semantic nets for

such a concurrent architecture, the Parallel Marker Propagation Machine defined by Scott

Fahlman. The algorithms are proved to be correct and complete.

2. Notation

Letters from the beginning of the alphabet (a, b, c) will represent objects, and letters

from the middle of the alphabet (p, q, r) will represent kinds of objects. Letters from the

end of the alphabet (u, v, w) z, y, z) will range over both objects and kinds.

An assertion will have the form z - y or z 74 y, where y is a kind. If z is an object,

'The logic we describe here is reminiscent in many ways of syllogistic, the dominant framework for formal

logic for over a milenium. See [91 for a historical overview: for more recent work on syllogistic, see, for

exampic. 114) or [4).



these assertions should be interpreted as ordinary atomic statements: a -- p and b -+ p,

for example, might represent the statements 'Jumbo is an elephant' and 'Tweety isn't an

elephant'. If x is a kind, the assertions should be interpreted as necessarily true generic

statements: p -+ q and r 71 q might represent the statements 'Elephants are mammals'

and 'Birds aren't mammals'. Of course, in general, generic statements can be true even

in the presence of exceptions. 'Birds fly' is a true generic, even though penguins don't;

'Mammals don't lay eggs' is true even though the platypus does. In this paper, however,

we will limit our attention to the special class of generic statements which, if true, are true

without exception, by necessity or definition.

Capital Greek letters (r, A, ii) will represents nets, where a net consists of a set I of

individuals and a set K of kinds, together with a set of positive links and a set of negative

links (both subsets of (I x K) U (K x K)). We can identify the positive and negative links

in a net with our positive and negative assertions. This analogy between assertions and

links in a net will be exploited throughout this report. It enters into our notation as well.

Since there is no difference in informal interpretation between a link a -- p and a singular

formula pa, we will use these notations interchangeably. Similarly for a 4 p and -pa.

A link is said to be monotonic if it represents the kind of generic statement that can

only be true if it is true without exception. In this report, then, we assume that all links

are monotonic. Likewise, we consider only monotonic nets, those containing none but

monotonic links.

3. Monotonic inheritance

The relation of inheritance holds between a net F and the individual links supported

by 1. Roughly, the idea is that an individual link is supported by a net F if it must be true

whenever all the links in F are true, or if it is true in the situation represented by F. Since

we are focusing on monotonic nets, it is reasonable to impose some conditions on inheri-

tance. In fact, let's define it. Where represents the inheritance relation, the set of links

supported by a nionotonic net F will be the smallest superset of F closed under the following

2
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conditions:
(31) r p -, p;

(3.2) r = x -x. q, F q -- r x r;

(3.3) r p 74q => r =q 7p;

(3.4) r x -- q, r q r7=4 r x - r;

(3.5) r p - q, r a q r a 74 p.

The following facts about monotonic inheritance will be useful for establishing results

later in this report, relating inheritance to more familiar logical ideas. They may also have

some independent interest.

Definition 1: A monotonic path is a pair of sequences (x0,... ,x,, ; Y ,.. ,y.), where

the first sequence (x0,... ,x,,) is nonempty and the second sequence (yr,... , may be

empty. A monotonic path is permitted by a net F if (1) for all i, 0 < i < n, x, -. x, e r

or z, is a kind and x, = zj,, (2) either x,, 74 y, c F or y -. x,, F, and (3) for all

i < i < m, yil - y E F or yj is a kind and y, = yi-1. A path is positive if its

second sequence is empty, and is negative otherwise. A positive path (x0 ,... , x,) enables

the positive link zo --* z,,, and a negative path (X0 ,.. , z, Y; I ,..., yM) enables the negative

link X0 7/-

Lemma 1: 1r A iff r permits a monotonic path that enables A.

Proof. It is easy to show by induction on the length of a monotonic path that if F

permits a path that enables A then r A. On the other hand, it is also straightforward

to check that the set of links enabled by monotonic paths permitted by F is closed under

Conditions (3.1) to (3.5). For example, Condition (3.3) follows from the fact that if F

permits the path (xo,... ,z, ; y1 ,...,y,), and z 0 is a kind, then F also permits the path

(y,,,,... ,yj ; x.,... Zo). Likewise, Condition (3.4) follows from the fact that: if F permits

both the paths (uo,. . . , u,) and (zo,.. . ,z,,; y,... ,yM), then if u, = Z0, I also permits the

path (u 0 ,... s. ;y,..,y,,). U

Most of the things we want to prove about the monotonic inheritance relation follow

from this fundamental Lemma, which allows us to reason about the links that a net

supports by reasoning about the paths it permits.

3 "
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Lemma 2: If F = A then F U A A. (In other words, monotonic nets have the mono-

tonicity property.)

Proof. By induction on the length of monotonic paths permitted by F. I

Lemma 3: If r = A, then F U {A} B iff r - B.

Proof. It follows from the previous Lemma that F U {A} B if F B. So suppose

that F = A, and that F U {A} [ B. There are four cases to consider: (i) both A and B

are positive assertions, (ii) A is positive and B is negative, (iii) B is positive while A is

negative, and (iv) both A and B axe negative. The idea in each case is that, if A occurs as

a basic link in the path permitted by F U {A} enabling B, it can be replaced by the path

enabling A itself, which contains only links from F. We illustrate only the cases (ii) and
(iii).

In case (ii), Lemma 1 tells us that F permits a positive path (xo,. , z,) enabling A, and

that ru{A} permits a negative path (uo,. . . , u1 ; vi,... v) enabling B. If A occurs as a basic

link in the path enabling B, then either (iia) Xo = Uk and z,, = Ukd, for some k, 0 < k < n,

or (iib) X0 = Vk, and z,, = vk, for some k, 1 < k < j. If (iia) then we can see from Defi-

nition 1 that F itself will permit the path (uo,... ,uki Xr.o,... 7 , Uk-2,... )u,;v1 ,.. .i),

which also enables B, so that F = B, by Lemma 1. Likewise, if (iib), then F permits the

path (u0,... ,ui;v,...vk-1,zn,...,X 0 ,vi 2 ,... ,vj), which enables B, so that F B. Of

course, if A does not occur as a basic link in the path enabling B (i.e., if neither (iia) nor

(iib)), then F already permits the path (U0,..., U; v 1,... vj) enabling B.

In case (iii), the link A cannot occur in the path permitted by F u {A) that enables B,

since a negative link cannot occur in a positive path; so the same path enabling B must

be permitted by F itself, and we are done. I

Lemma 4: Where A consists only of links having the form a -- p or a 74 p, F p -* q

ifFuA p- - q, and F p 74 q ifFuA p / q. (In other words, adding new
"particular" links to a net will not lead it to support new "generic" links.)

Proof. By induction on the length of monotonic paths permitted by F U A. I

Lemma 5: Let P be a net not containing the individual a. Then P a p -- q if u {a
p} a- q, and r p- q if Pu {a -- p} = a - q.

Proof. Suppose 7 {a - - p} a--* q. By Lemma 1, 1" {a p} permits a path

4 **0



(xo, xi,... x,,), with O(= a and z, (I. By Definition 1, we know, since z, is not a kind,

that xo -- x, F U {a -- p). Hence, by the restriction on F, x, = p. As we can see also

from Definition 1, since r, U {a -- p} permits the path (X0, X1, ... X,,), it must permit the

subpath (zr,...,x,) enabling the link p - q. By Lemma 1, then, fU {a -- p} , p - q;

so by Lemma 4, since a - p is a "particular" link and p -, q is "generic", we have

r p -q. The argument that F a- p -74 q if u{a - p} a 7 q is similar. I

4. A sequent calculus

We formulate a calculus for proving sequents r - A, where F is a set of formulas and A

a formula. Informally, this means that F has enough information to yield A, or something

like that.

Since we are considering only monotonic semantic nets, all of whose links represent

statements true without exception, it might seem natural to suppose that that we could

embed these nets in the classical predicate calculus by translating:

a - p as pa,

a 74 p as -pa,

p -, q as Vx[px -, qx], and

p 7-4 q as Vx[px -- -,qx].

However, this is wrong. Even though we are considering only monotonic links, we are

still forced to move to a nonclassical logic in order to capture the net interpretation of

formulas. For instance, we wouldn't want to be able to prove the classically valid sequent

a -4 p,a 74 p Ha -- q, since the net F = {a -- p,a 7 p,a 74 q}, shows us that

{a-p,a 7p} ) a-q.

Examples such as this seem to have been generally overlooked. In fact, it seems to be

a kind of "folk theorem" in artificial intelligence that the logic of semantic networks, and

even frame systems, is just the classical first-order predicate calculus; often, Pat Hayes's

[7] is cited in support of this claim. Though it is true that some simple theories formulable

in first-order logic-for instance, {Fa, VzxFx - Gx], Vx[Fz x- -Hx]}-can be coded

using semantic nets, it is hard to think of a natural general relation according to which

the two would be equivalent. Quantifiers and classical disjunction can't be expressed

5
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easily in nets, and of course there is no straightforward way to reproduce nonmonotonic

reasoning in classical first-order logic. What this example shows, though, is that even

without disjunction, quantifiers, or conjunction, and even though inheritance is construed

as monotonic, there is a clear sense in which logical consequence over nets diverges from

the consequence relation of classical logic.

Our sequent calculus contains two structural rules, as follows.

r a-pifa--.pEr

r a74pifa/-4pEF

These give us the axioms. In addition, we have logical rules, for introducing both -- and

-4, on the right and on the left of the turnstile.

aa-p a-_q

r L a--p r,a q -A F a74q P, a7-p f-A

r,p-,q -A ,p - q A

,a -p a a q

H74

r a--p r, a/7q -A L-a-q r,a p -A

74K 74K
r,p74q A ,p71q -A

In the rules H - and r -- , P0 is supposed to represent a collection of formulas not

containing a. We do need both the rules -- and -. -' to capture the meaning of -+

on the left of the turnstile; neither will do alone. Likewise, both 7 i- and 74 -' are

necessary.

6



To illustrate these rules, we provide here a sample proof, of the sequcnt p , q,q

a p a p a--q a---*q

a--p,p q a---q a 74 r a 4 r

p q, q -r, a -- p a 7- r

p -q, q 7
4 r p 7. r

Lemma 6: The following rule of weakening is admissible:

F A

r,A HA

Proof. By induction on length of proof in the sequent calculus. I

5. Soundness and completeness

Semantic nets play a dual conceptual role: we can think of them either as models

or as theories (i.e., structured sets of assumptions, together with procedures for inferring

conclusions from these assumptions). This may seem surprising to those who axe used to

the crisp division in traditional logic between semantic and proof-theoretic ideas. Semantic

nets, however, come from a different tradition, in which the distinction is not so clear: it

is harder to draw the line, in knowledge representation, between what is represented and

what is doing the representing.

The analogy between nets and theories should be obvious: the links contained in a

net are like hypotheses, or axioms; the links supported by a net are like the consequences

derivable from a set of hypotheses; and the paths permitted by a net are like proofs.

(The analogy between monotonic paths and proofs, in particular, will be exploited in the

Lemmas leading up to the proof of Theorem 2.) To understand their role as models, it

might be helpful to place semantic nets against the background of the epistemic tradition

7



in interpreting logics.2 This tradition is largely Bayesian, and quantitative: the core of

the enterprise consists in interpreting formalized languages by assigning probabilities to

formulas. (Probabilities also lead a double life, since they can also be thought of as

objective chances; but here we are thinking of the subjective interpretation of probability.)

Though, mathematically, semantic nets are very different from probability functions, they

are like these functions at least in providing something that can be claimed to depict

the structure of an agent's knowledge. As models, then, semantic nets can be regarded

as supplying a qualitative epistemic interpretation of a logical calculus, in which valid

inferences can be characterized in terms of what is known in arbitrary epistemic states.3

Thinking of nets, now, as interpretations, or models, we show in this Section that

the sequent calculus defined in Section 4 is both sound and complete with respect to the

inheritance relation defined in Section 3.

Soundness first.

Theorem 1: If r [- A is provable, then r A.

Proof. By induction on length of proof of r K A. Obviously, it is trivial if 1 7- A is

an axiom. The inductive cases axe all straightforward; we will illustrate only a couple.

Suppose the conclusion r K p 74 q comes by an application of the rule - 74, with

premise ra, a -- p K a -- q. By inductive hypothesis, we know that lra U {a ---* p} a 74 q.

Since a is a fresh individual, however, Lemma 5 tells us that r p 74 q.

Suppose the conclusion r K p -- q comes by an application of the rule -- K from

the premises r - a --- p and r, a - q -A. By inductive hypothesis, we know that

r = a - p and that Ir u {a - q} A. Lemma 1 then tells us that IF permits a positive

path (uo,... u,,), with uo = a and u,, = p; and also that r U {a - q} permits some path

enabling A, positive or negative depending on the character of A, which we will write

'See [16], [10], and [5].
3 One difficulty with the probabilistic approach to epistemic semantics is that probability functions are so

close to Boolean assignments that it is hard to see how to arrange things so that the epistemic style

of semantics is interestingly different from the classical one. Semantic nets do not have this problem.

This is especially true of nets with nonmonotonic inheritance, but-as we have seen-there are nontrivial

differences even in the monotonic case. Also, semantic nets begin to provide ways of thinking about matters

that are not available in familiar types of models, including probabilistic ones. For instance, a net provides

a setting in which a conclusion can have a limited number of possible reasons.

8



as (vt).... w1 ,... w,,, , with the square-bracketed part denoting an optional negative

segment. Now there are two cases to consider: either (i), v) = a and v, = q (i.e., the

path enabling A begins with the link a -. q), or (ii) v) -t a or v, - q. In case (ii), r also

supports the path ,,,... V,; wI,.. . so r = .4 by Lemma 1; so r - {p - q} = A,

by Lemma 2, and we are done. In case (i), we replace the direct link between a and

q with the permitted path from a to p and the direct link between p and q, to get the

path u,. .. ,, V . . . . v, ,..w, w,'. Inspection of Definition 1 tells us that r - {p -- q}

permits this new path. which also enables A; so r {p - q} .4 by Lemma 1, and we

are done. I

To prove that the sequent calculus is complete with respect to the inheritance relation,

we need to show that r - A is provable whenever r = .4. The idea behind our proof is

simple. If r : .4, we know that r permits some monotonic path that enables A. What

we provide here. roughly, is a recipe, defined by induction on the length of such a path,

for transforming it into a sequent calculus proof of P H A.

Definition 2: If a is a positive path 0, .... x,), the sequence of nets 1I(a) . (a)n

corresponding to the initial subpaths of a is given as follows:

n(o), = {IO -.

I H(a),, if X,. = z,;
] H(a)j U {X, - - 11} otherwise.

The net (a) is then defined to be 1(a),,.

It is easy to see that this definition gives us the minimum net permitting a positive

path.

Lemma 7: If a is a positive path, l(a) permits a; and for any net P permitting a,
r _ r.

Proof. By Definition I and induction on the length of a. I

Things are more complicated in the case of negative paths, since there is no minimum

net permitting such a path, but rather, two minimal nets.

Definition 3: Let r be the negative path (z,,... ,z,;yl .. y,,.), containing the path a as

its positive part. We define the two sequences of nets F'(r) 1 . , 1'(r),,, and 1"(r)1, . (. ,"()

as follows. First, let

1'( 1() H (o) x }y

9
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r="('0, = H(a) U {y,/-4x,,}.

Then, where Hr(r), is either Hl'(r), or 1"(r)i, let

WHrz(r11* i, if Yil I Yi;

', *(r), U {yi,- -i y,}, otherwise.

The net 1I'(r) is defined to be H'(r),, and 11"(r) is defined to be

Neither 11'(r) nor I"(r) can include the other, since one contains the link z: 7 yl

while the other contains yj 74+ x,. But they are otherwise alike, and they are the minimal

nets permitting r.

Lemma 8: If r is a negative path, then both IT(-r) and 11"(r) permit r; and for any F

permitting r, either F C II'(r) or F C rl"(r).

Proof. Again, by Definition 1 and induction on the length of r. 1

Lemma 9: Let a be the positive path (£0,..., z,X), with x0 an individual. Then [1(a) H-*o
x,, is provable.

Proof. We show by induction that for each i, 1 < i < n, there exists a proof Pi of the

sequent rl(a), - 10 - z.

First, take i = 1. Then rI(-), Oz0 -i z is £0 -x, £ Hzo -x xi, an axiom. Let this

axiom be P1.

Next, supposing P proves II(a), H-1o -x ,, we construct a proof P- 1 of the sequent

fl(a)j-1 H x0 -- x,-i. There are two cases to consider: (i) xj_ = xi, (ii) I,.i 5 xi. In

case (i), r(a),_j is identical with 1(u)1 , and the statement x0 - Ixi- is identical with the

statement £0 - z,; so we need oi 'y let P,, be Pi, and we are done. In case (ii), let Pij

be

11(u)ai H, £0-l x- X1u1  0 - H+10

This gives us what we want, since the right premise is an axiom, and the conclusion is the

sequent H(a)i-i H 10 -* 1i+i. I

Lemma 10: Let r be the negative path (£o,... I,; Y1,... Y,,), with £o an individual. Then

both fl'(r) 7 xO 7 y,,, and H"(r) H Io 74 y, are provable.

10
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Proof. Where o, = (0,... ,z,,) is the positive part of r, the previous Lemma gives us a
proof P of the sequent I(a) H zo - x,,. We show by induction that for each i, 1 < i < n,
P can be extended to a proof P' of the sequent rl'(r), H xo 74 y,, and also to a proof P" N

of the sequent l"(r)lM - zo 74 yi.

Take i = 1. Then fl'(r), -zo 74 y1 is [I(a),x,, 74 y,- xo 74 yj; so we let P[ be

This gives us a proof, since the right premise is an axiom. Likewise, when i = I,
H(r), H-zo 74 yi will be H(a),y 74 z, H- xo 74 y; so we can let P' be

P

n(O) X o -Xz n(6),z o7+ Y1 -o 74 yp

74H
11(0'),y x H.' Y O 74y Y1

Again, this gives us the proof we want, since the right premise is an axiom.

The inductive step of the proof can be handled uniformly. As before, we let HI*(r), H- o 74
y, be either fl'(r), Hzo 74 y, or f"(r), H- zo 74 y,; and we let P be either P' or Ft". Sup-

posing that P" proves H*(i), H-o 74-* y, then, we show how to construct a proof P- of

the sequent iv(r)iu Hzo 74 yo. Just as in the previous Lemma, there are two cases to

consider: (i) yi_ = y,, and (ii) y, $ yi. In case (i), H*(r),+l is identical with Hl*(r)i, and

the statement zo 74 y,- is identical with the statement zo 74 y,; so we can let P, j be P.

In case (ii), let P_ be

n-(T)i Xo 74yi l*(r)i,,o 74 - i+ Ho 74 ,+

11" (7)6 Hl - 0z0 74 y,+j

This gives us the desired proof, since the right premise is an axiom. I

Lemma 11: Let a be the positive path (zo,... z,,), with z0 a kind. Then fl(a) Hzo -- z,,

is provable.
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Proof. Let a' be the path (a, xo,... ,z ), with a an individual. Evidently H(ao) =

l(or) U {a -- xo}. By Lemma 9, since a is an individual, we have a proof P of the sequent

I(o*a) a -- Xn; that is, of the sequent 1(a), a -- z0 H a - z,. So we extend this proof

as follows
PP

H(a , o H a,-x,

11(0') F Xo -* X"

to get a proof of the desired conclusion. I

Lemma 12: Let r be the negative path (xo,..., X,; Y1,..., y,,), with x0 a kind. Then both

1'(r) H xo 74 y, and f1"(r) - xo /4 y are provable.

Proof. Similar to the proof of the previous Lemma. The proof is uniform, so again,

we let II*(r) represent either H'(r) or rI"(r). Let r a be the path (a, xo,.. . ;,,;y,...,y,),

with a an individual. Evidently, HI(ra) = l(r) U {a -* xo}. By Lemma 10, since a is

in individual, we have a proof P of the sequent 1-*(ra) Ha 4 ym; that is, of the sequent
rI*(r), a - xo H-a 74 y,. So we extend this proof as follows

P

-(r) a 4 y,

to get a proof of the desired conclusion. I

Theorem 2: If r A, then F H A is provable.

Proof. There are four cases: (i) A is a positive statement concerning an individual,

of the form a -* p; (ii) A is a negative statement concerning an individual, of the form

a 74 p; (iii) A is a positive statement concerning a kind, of the form p --+ q; (iv) A is a

negative statement concerning a kind, of the form p 74 q. We show in each of these four

cases that 17 H A is provable if r A.

Case (i). Since r - a -- p, we know by Lemma 1 that 1 permits a path a =

(x0,. .. ,x,,), with xo = a and x,, = p. Lemma 9 tells us that 11(a) - a -- p is provable.

But H(a) C P by Lemma 7; so by Lemma 6, r r- a -+ p must be provable as well. -F

12
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Case (ii). Since r a 74 p, we know by Lemma I that F permits a path r=

(Xo,.. .,; 1y,... , Yin), with xt) = a and y,, = p. Lemma 10 tells us that both TI'(r) - a 74

p and fl"(r) K a 74 p are provable. But we must have either 1-'(r) C F or FI"(r) C F, by .

Lemma 8: so in either case, Lemma 6 tells us that F - a 74 p must be provable as well.

Cases (iii) and (iv) are similar to cases (i) and (ii), using Lemmas 11 and 12, respec-

tively, instead of Lemma 9 and 10. 1

6. A four-valued interpretation

The language with which we have been dealing is so weak that it is incapable of

representing many of the principles that typically distinguish classical from nonclassical

logics. In particular, Excluded Middle can't be expressed, since disjunction is not available.

Still the invalidity in nets of inferences like

(,) a -p,a-4p a- -q,

which was mentioned in Section 4, where an invalidating net was provided, forced us

to resort to a nonclassical proof-theory. In this Section, looking at nets from a different

perspective, we supply a nonclassical semantic interpretation (model theory) to accompany

our proof-theory for monotonic inheritance.

Examples such as (*) suggest, not only that we will need to look for a nonclassical

interpretation of negation, but also that the models that have been developed in con-

nection with relevance logic4 should provide materials for an interpretation. Though the

original motivation for relevance logic was not computational, it did grow out of a belief

that "fallacies of relevance" such as (*) should not be regarded as logically valid. More

recently, several people have suggested that relevance logic may have applications in com-

puter science. Nuel Belnap has argued, in [21 and p31, that a certain four-valued matrix,

originally developed to characterize the valid inferences in a fragment of relevance logic,

might be useful also as a guide for reasoning about information stored in databases. And

a number of computer scientists have explored applications of relevance logic to knowledge

representation and nonmonotonic reasoning.5 As far as we know, however, no relation

See [I].
5See [13, [121, and [11].
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as direct as the one we will establish below has been established between concepts from

relevance logic and structures that arise naturally within artificial intelligence.

Along with Belnap, we take as our truth values the four members of the set T

{{T}, {F},0, {T, F}}; and we interpret these truth values likewise, to represent the four

information states of a system with respect to a proposition p, considered as data: (i)

the state of possessing evidence for p, and no evidence to the contrary; (ii) the state

of possessing evidence against p, and no evidence for p; (iii) the state of possessing no

evidence either for or against p; (iv) the state of possessing evidence for p, and evidence

against p as well. These explanations should suggest why it's useful to take the power set

of {T, F} as our set of truth values: if X is onie of the values from T, 'T E X' means that

there is evidence for any proposition bearing the truth valae X, and 'F E X' means that

there is evidence against such a proposition.

We imagine a set D of individuals, the domain. A valuation v on the language we have

described, relative to a domain D, assigns an individual v(a) in D to each individual term

a of the language, and a function v(p) from D to T to each generic term p. Where v is

a valuation, vd/a is the valuation like v for all terms other than a, but which assigns the

value d to a. The following rules extend v to the entire language.

(6.1) v(pa) =[v(p)] (v(a)).

(6.2) v(-pa) = Not(v(pa)), where Not({T}) = {F}, Not({F}) {T}, Not(0) = 0, and

Not({T,F}) = {T,F}.

(6.3) v(p - q) = IT) if for all d E D, we have T E vd/a(qa) if T C Vd/a(pa) and

F G v /a(pa) if F E v ,a(qa); and v(p -* q) = 0 otherwise.

(6.4) v(p 7" q) = {T} if for all d E D, we have F E vda(qa) if T vd,/a(pa) and

F c vd/a(pa) if T E v /a(qa); and v(p 74 q) = 0 otherwise.

Note that conditions (6.3) and (6.4) assign only the values {T} and 0 to generic statements

p -. q and p 74 q. Nothing more is required, since the language doesn't provide for

negations of these statements.

The separation of the truth conditions of positive statements from those of negative

statements makes it possible to characterize a number of operations that could be used

to interpret statements of the form p - q (and statements of the form p q also). This

proliferation of alternatives, which sonuetirnes makes it difficult to inotivate interpretations,

14



is one of the penalties of working with a many-valued logic. In this four-valued logic, we I
can define at least three conditional-like operations on functions P, Q from D to T.

9 f(P,Q) = {T} if for all d E D, T E Q(d) if T C P(d); and f(P,Q) 0 otherwise.

• g(P,Q) = {} if for all d e D, F c P(d) if F E Q(d); and g(P,Q) 0 otherwise.

* h(PQ) = {T} if for all d E D, T c Q(d) if T E P(d) and F E P(d) if F E Q(d);

and h(P, Q) = 0 otherwise.

These operations are not equivalent. For instance, if D = {d}, P(d) = 0, and Q(d) = {F},

then f(P,Q) = {T}, and g(P,Q) = 0. We choose to interpret statements like p -- q

through the operation h, which conjoins f and g. This is a strong inferential connection,

enabling more conceptual connections than the other two. It seems appropriate, since

both "positive" and "contrapositive" inferences are validated in the case of monotonic

inheritance. (If ostriches without exception are birds, then we can conclude both that

Tweety is a bird if we are told that he is an ostrich, and that he is not an ostrich if we are

told that he is not a bird.)

Given the four-valued interpretation, we define semantic implication in the usual way,

and also a relation of equivalence between nets and valuations.

Definition 4: IF implies A if for all valuations v, if T E v(B) for all B C r, then T E v(A).

Definition 5: A net r is equivalent to a valuation v if r A iff T E v(A).

To show that this implication relation coincides with the relation of monotonic inheritance,

we first establish some Lemmas about nets and their equivalent valuations.

Lemma 13: For every valuation v, there is an equivalent net I.

Proof. Where v is a valuation on a domain D, let F be defined by letting a p E r

iffT E v(pa), a -/- p E F iffF E v(pa), p- q CF iffT C v(p -, q), and p 74 q E r iff

T G v(p 74 q).

Since F has been defined so that x - y E F if T E v(x --+ y), it follows at once that

F z - y if T E v(z - y); and it is easy to see by considering conditions (3.1) to (3.5)

that T E v(z ---+ y) if F 1= z -- y. We will give two of the five cases: (3.3) and (3.4).

For (3.3), note the symmetric form of the valuation rule (6.4), for v(p 74 q); this ensures

that T ( v(q 74 p) if T C v(p 74 q). For (3.4), suppose that x = p, and that we have

T E v(p -, q) and T E v(q -/ r). Now if T - vd/a(pa), then by (6.3) T G v dia(qa), so by

(6.4) F E v d'a(ra). On the other hand, if T E vda(ra), then by (6.4) F v a(qa), so by

15
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(6.3) F E vd/a(pa). Therefore, by (6.4), we have T c v(p 74 r). The argument is similar

in case x = a. I

Lemma 14: For every net F, there is an equivalent valuation v. r

Proof. Where r is a net, let r' be the result of first adding new individual terms a

to the language of r, one new term for each generic term of the original language, and

then adding to r a link a,, - p for each generic term p. Clearly, 1' is a conservative

extension of r: if A involves no new terms, then IF' - A iff F A. Moreover, F' qap iff

F p - q and F' --qap iff r = p 74 q. Thus, ap is a witness for p in the sense that ap

has a property in the new net if and only if that property belongs through inheritance in

the net to any individual that has p. (Such a "generic witness" is something that could

not be constructed, of course, in the context of a classical logic.)

Now construct a valuation v on domain I', where I' is the set of individual terms of

the expanded language, by letting v(a) = a, T e [v(p)] (a) iff r' pa, and F E E[v(p)] (a)

iff r' ,= -'pa. We show v equivalent to F'; it follows that v is equivalent to r.

For A having the form pa, we have T E v(A) iff 1' r A by definition; for A having

the form -'pa, T E v(A) iff F E [v(p)] (a) iff r' -pa. In particular, we have T E v(qap)

iff 17' qap, and F E v(qap) iff r' -qap. For A having the form p -- q, the satisfaction

definition gives us T E v(A) iff

(I) for all a E I', T E v(qa) if T E v(pa), and F E v(pa) if F E v(qa).

Suppose that T -v(A); then T E v(qap), so r' = qa%,, so r' p - q. On the other hand,

suppose that r' p -- q; then for all a E I', if V7' - pa then r' qa, and if ' -qa

then r' - -pa. So (I) follows. For A having the form p 74 q, the satisfaction definition

gives us T e v(A) iff

(II) for all a E I', F E v(qa) if T e v(pa), and F E v(pa) if T E v(qa).

Suppose T E v(A). Then F E (qap), so r' -qap, so r' p -- q. On the other hand,

suppose that I' p 74 q. Then for all a E I', if F' pa then 17' -'qa, so that if

T E v(pa) then F C v(qa). But also then 1' = q 74- p, and so for all a c I', if r' qa then

r' -pa, so that if T E v(qa) then F E v(pa). (II) follows. I

These Lemmas allow us to show that implication in the four-valued logic characterizes

the inheritance relation.

16
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Theorem 3: F - A ifr F implies A.

Proof. Suppose r L A. By I ima 14, there is a valuation v equivalent to the net IF.

For all B E F, then, T E v(B), but T v(A); so F doesn't imply A. On the other hand,

suppose F doesn't imply A, so that there exists a valuation v such that T - v(B), for all

B E F, but T v(A). By Lemma 13, there is a net A equivalent to the valuation v: so

for all B E r, A B; and A : A. It follows by successive applications of Lemma 3 (as

many applications as there are members of F) that A F A; and from this it follows by

Lemma 2 that F A. I

7. Parallel marker propagation algorithms

Semantic inheritance networks are attractive as formalisms for knowledge representa-

tion in part because their natural correspondence with graphs allows certain important

kinds of inference to be carried out by simple graph-searching algorithms. One especially

elegant approach results when we view inference algorithms as a species of graph coloring

algorithms. The best known AI system in which inference is performed by graph coloring

is Scott FahIman's NETL [6], which introduced a novel computer architecture known as

a Parallel Marker Propagation Machine (PMPM); in this section, we define marker prop-

agation algorithms on this machine for performing inheritance reasoning over monotonic

nets.

A PMPM is an automaton composed of active elements that play the roles of nodes and

links in a graph. Each element has a small number of internal states (maker bits, which

can be on or off, representing the presence or absence of markers), and a limited ability

to communicate information to the elements with which it is connected. The nodes and

links in a PMPM are responsive to several marker propagation commands, each of which

directs the assignment of markers to particular nodes, often by "propagating" them from

one node to another through the intervening links. PMPM's are SIMD (Single Instruction

stream, Multiple Data stream) machines: marker propagation commands are broadcast

globally to all elements and executed in parallel by the elements to which they apply.

Parallel marker propagation algorithms can be described in terms of marker propagation

commands; the result of executing such an algorithm in a particular net is a coloring--a

static assignment of colors to nodes-that can be used to convey some information about
-.

17

-- -. .P---



the net.

We take as our only two markers the usual truth values, T and F. Now it is stan-

dard practice (see {15]) to let the markers themselves serve as colors, so that the marker

propagation commands can be seen also as propagating colors directly. In the present

context, however, it is more natural to take as colors the four members of the matrix

7 = {{T}, {F}, 0, {T, F}}, explored in Section 6. We define the color assigned to a node

by a marker propagation algorithm as the unique member of T containing just those

markers placed by the algorithm on that node; each algorithm will then result in a total

coloring of each net, with no more than one color assigned to any particular node.

The notation used here for specifying marker propagation commands is that of [15].

Commands may be either conditional or unconditional. Unconditional commands are

executed by all elements regardless of their current state. The unconditional command

clear[T], for instance, causes all elements to clear the marker bit representing T. Condi-

tional commands are more common. The command

link-type["-*"], on-tail[T], off-head[T] = set-head[T]

would be executed by any link element meeting the conditions on the left hand side of

the arrow: if an element represents a link of type "-", the node at its tail bears the

marker T, and the node at its head does not bear marker T, then the link will perform the

action specified on the right hand side of the arrow, marking the node at its head with T.

Using conditional commands, it is possible to address particular nodes by name; the node

named z would be selected by placing the restriction name[x] on the left hand side of the

conditional; only the element representing that node would then respond. This technique

is used to select and mark the initial node at the beginning of a rnm.rker propagation.

Looping is accomplished with a simple loop ... endloop construct, which repeats the

body of the loop until no conditional command contained in the loop can be executed.

To illustrate this notation, we provide a description of the parallel marker propagation

algorithm for computing the transitive closure of the "--" relation, starting from a node

x. The result of the algorithm, in a net r, is to assign the marker T to all nodes y such

that F supports x - y.

procedure transclose(x: node; T: marker) = begin

clear[TI;

name[x] set[T];

loop

18



link-type["-"], on-tail(T], off-head[T] = set-head(T]

endloop

end

Note that a command to propagate T across a link includes the condition that T is not

already on the link's head node; this makes it possible for the left hand side of the command

to fail, causing the loop to terminate. When none of the conditional commands in a loop

body can be performed by any element, the propagation described by the loop is complete.

The two most common and useful parallel marker propagation algorithms for per-

forming inferences over semantic nets are known as the upscan and downscan algorithms.

(Their names, due to Fahlman, reflect the primary direction in which markers flow through

the graph.) Given a net F and a node x, the upscan algorithm can be used to find all.,-

the statements z - y and x 74 y that are supported by F. It begins by assigning to x a

particular marker-here we use T-and ends when: (i) the marker T has propagated to

all those nodes y for which r supports x --, y, and (ii) a second marker, F, has propagated

to all the nodes z for which r supports x 74 z. (If x were the Jumbo node, for instance,

an upscan of x would find all the kinds of which Jumbo is an instance, such as elephant

and mammal, as well as the kinds of which Jumbo is definitely not an instance, such as

bird.) We present here a version of the upscan algorithm appropriate for monotonic se-

mantic nets. It differs from the nonmonotonic version given by Touretzky in [15], since

the absence of exceptions allows contrapositive forms of reasoning, affecting the flow of '"

markers through the network.

procedure upscan(x: node; T, F: marker) = begin

clear(T,F];

name[x] s set[T];

loop

link-type{"-"], on-tail[T], off-head[T] = set-head[T]; ,

link-type["-"], on-head[F], off-tail[F] == set-tail[F];

link-type["74"], on-tail[T], off-head[F] = set-head[F];
link- type[" l on-head[T], off-tail{F] = set-tail{F];".'

endloop

end "'.

This algorithm is both correct and complete, in the following sense.

Theorem 4: Let C E T be the color assigned to the node y as the result of an upscan of

the node z in F. Then T E C iffF - y, and FECiffF z4y. ?

19 :-
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Proof. The key is to see that upscan will propagate the marker T from z to y in r

just in case r permits a positive path from z to y, along which the marker is actually prop-

agated; and also that an execution of upscan will result in the propagation of the marker

F to y just in case r permits a negative path from x to y, along which the propagation

can take place.

For example, suppose T E C. Then there exists at least one sequence of nodes U0 ... u,

with z = u0 and y = u, such that on iteration i of the upscan loop a T was propagated

from node u,_I to node u,. Obviously, I contains the links u, .- I u,I n < n. Therefore

r permits the path (u,...,u,. 1 , soP r F X ' y.

Likewise, suppose r - z 7 y. We know, then, that r permits some negative path

a = (Uo,...,u,;v,... ,vm), with x = uo and y = V,; assume without loss of' generality

that a is a path of mininial length. It is easy to see that after n iterations of the upscan

loop, the upscan algorithm will propagate the marker T to the node u,,; after m more

iterations, the marker F will be placed on the node v. Thus, we will have F c C. The

other two cases are similar. I

The downscan algorithm is a kind of converse to upscan: it is used to determine

all the assertions z - y and z " y supported by a net. given y rather than x. (A

downscan of mammal, for example, would find all subtypes and instances of mammal,

including elephants and Jumbo, as well as all the kinds and individuals that are definitely

not mammals, such as birds and Tweety.) We present here the version appropriate for

monotonic nets; again, it is a bit different from the nonmonotonic version of r151.

procedure downscan(y: node; T, F: marker) = begin

clear[T,F];

namey] => set[T];
link-typel" -"], on-head[TI, off-tailIF ]  =>set-tail[F];

loop

link-type["-"], on-head[T], off-tail[Tj == set-tail[T];
link-type["-"], on-head[F], off-tail[F] := set-tail[F];

endloop

end

Note that the downscan loop contains only two propagation commands while the upscan

loop requires four. The reason for this is that a T on one end of a "-" link shouldn't

propagate an F to the other end during a downscan, except for "'. links whose head node
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is thc starting node of the downscan. For just these links, an F is put on thcir tail node

by the conditional command that immediately precedes the loop. The correctness and

completeness results contained in Theorem 4 can easily be duplicated for this downscan

algorithm.

Since all the link elements in a PMPM operate in parallel, and there is no contention

when a marker arrives at a node simultaneously from different links, these parallel marker

propagation algorithms have the desirable property that their running time depends only

on the depth of the graph to which they are applied, not on the total number of nodes or

links it contains or the degree (number of ingoing or outgoing links) of any node. In fact,

the maximum running times of the uspcan and downscan algorithms are linear in the depth

of the inheritance graph. Let k be the number of links in the longest shortest path between

any two nodes in the graph, (for negative paths, which are of form (z 0,.. . , z,; Yl,. .. ,M

k = n - rn); then the maximum running time for a downscan of any node is 2k -4- 5

commands, and for an upscan it is 4k - 6 commands. The downscan algorithm consists

of 3 initialization commands plus a loop containing 2 propagation commands. If there is

any path between nodes z and y in I there must be a path of length at most k, so that

after k times through the loop, all nodes that can be marked will have been marked via

at least one path. When the loop is repeated one more time, the left hand sides of both

conditional propagation commands fail becau'se there are no nodes left to mark, causing

termination. Thus, after 3 - 2(k - 1) = 2k + 5 commands, the algorithm terminates.

Since the upscan algorithm consists of 2 initialization commands plus a loop containing 4

propagation commands, its maximum running time is 2 - 4(k + 1) 4k - 6 commands.

0

Scans can be sped up by adding extra links to shorten the shortest paths between nodes. %

Let k be the maximum number of times the upscan or downscan algorithm executes the

body of its main loop given any node of F. This number can be reduced to any value from

I to k - 1 by the following method. To reduce the running time to at most 3 iterations,

1 < J < k, it suffices to put in direct links z -- y or z A y between all pairs of nodes x

and y such that an upscan of z in F marks y with T or F, respectively, after greater than

j iterations of the loop. A similar technique can be used to speed up downscans. This

simple technique is not optimal in the number of links added, however.
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8. Conclusion

We have established in this report a number of close connections between semantic

inheritance networks, on the one hand, and more traditional concepts from logic-both

proof-theoretic and model-theoretic-on the other. We do not claim that these results are

logically profound; but they do succeed, we believe, in showing that fruitful interactions

can arise between traditional model-theoretic and proof-theoretic ideas, and the structures

that have evolved within artificial intelligence.

Although, in this report, we have remained within a nonmonotonic context, and con-

sidered only a very restricted language, we are hopeful that this research will provide a

foundation for further work that will be valuable both for logic and artificial intelligence.

The extensions that we now envisage fall into two broad categories: developments in ex-

pressive power, and developments that provide for the ability to accommodate exceptions.

It is possible to enhance the expressive power of the language analyzed in this report

while remaining entirely within a monotonic framework, by adding relational predicates,

connectives, and even quantifiers. We believe that many of the results contained here can

be generalized in a straightforward way to semantic networks containing hierarchies of

n-ary relational predicates. Although such networks may not be realizable on a PMPM,

they appear to have efficient inference algorithms on more powerful architectures, such

as massively parallel message passing machines [8]. As far as connectives and quantifiers

are concerned, the obvious place to start is with the four-valued connectives defined in

[2,3]; but it seems that if we are interested in discovering the logical theories that arise

naturally from a consideration of semantic nets, we may be forced to adopt a logic with

certain constructive features not contained in the four-valued connectives.

The second way of extending this work is to shift to a nonmonotonic context. Here, of

course, the problems are much more difficult, though some of the sequent rules presented in

this report carry over unchanged to the nonmonotonic case. Still, the different approaches

we have mapped out-allowing us, really, to look at the same thing from three different

perspectives (semantic nets, model theory, and proof theory)-may provide new leverage

for understanding the nature of nonmonotonic inheritance. The possibility of applying

proof theory in this way is particularly intriguing, since it is one of the most well-developed

areas of logic, and as far as we know it has never been exploited as a technique for analyzing

nonmonotonic reasoning.
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