The 1987 Gordon Conference in Physical Metallurgy concerned the subject of "Intermetallic Compounds". The Conference was held at Tilton School, Tilton, N.H., 20-24 July 1987. The Conference consisted of papers presented by authors outstanding in the field and of extensive discussion. The Conference was attended by 130 scientists and engineers from the USA and from seven other countries.
AFOSR-TR. 87-1749

FINAL REPORT

AFOSR GRANT (AFOSR-87-0195) FOR THE SUPPORT OF THE 1987 GORDON CONFERENCE ON PHYSICAL METALLURGY

"INTERMETALLIC COMPOUNDS"

Submitted to

Air Force Office of Scientific Research
Division of Research Grants, Building 410
Bolling AFB, Washington, D.C. 20332

Attention: Dr. Alan H. Rosenstein

Submitted by

Dr. David P. Pope (Co-Chairman and P.I.)
Associate Dean, Undergraduate Education
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104-6391

Dr. Harry A. Lipsitt
Professor, Materials Science and Engineering
Department of Mechanical Systems Engineering
Wright State University
Dayton, Ohio 45435-0001

and

Dr. Alexander M. Cruickshank (Director)
Gordon Research Conferences
Pastore Chemical Laboratory
University of Rhode Island
Kingston, RI 02881

October, 1987
INTRODUCTION

The 1987 Gordon Research Conference on Physical Metallurgy was held 20-24 July 1987 at the Tilton School, Tilton, New Hampshire. The conference topic was "Intermetallic Compounds". U.S. Government Grants were made to the Gordon Research Conference to partially offset the travel and registration costs of many of the speakers and discussion leaders, a few attendees, and the co-chairmen. The grants totalled $18,000.00. Of this total, $6000.00 each was provided by AFSR and ONR (AFSR-87-0195), and DOE/ECUT (DEFG05-87CR90006). In addition, $3000.00 was received from industry for this same purpose. Of this total, $2000.00 was received from the Aluminum Company of America and $1000.00 was received from the General Electric Corporation. In this report we give a brief description of the Conference and describe some of the highlights of the meeting.

CONFERENCE DESCRIPTION

The primary purpose of the Conference was to bring together three rather disparate groups: scientists and engineers concerned with the mechanical properties of intermetallic compounds, theoreticians interested in the problems of alloy stability and the calculation and prediction of the effects of chemical composition on alloy stability, and engineers interested in developing and producing new alloys based on intermetallic compounds for elevated temperature service. It is important that the effectiveness and progress of this last group depends critically on the results of the efforts of the first two groups.

The Conference was organized to allow each group the opportunity to present the status of current work in their respective areas and to discuss their current needs. For example, on one day the theoreticians described their approach and the sort of results that were developed by that approach. On the next day, the alloy designers described how useful
alloys are really developed and indicated the type of information they believed the theoreticians should be producing so as to provide the maximum theoretical guidance to the alloy developers. The lengthy, animated discussions that followed indicated that much progress has been made to attune the theoreticians to the needs of the engineers and that considerable very useful information was emerging from the several existing collaborative areas. However, it continued to be clear that the most demanding needs of the engineers, i.e., predictive theories for the development of multiphase alloys, could not yet be met. It was equally clear that considerable dialogue had occurred between these groups and that the theoreticians were moving rapidly toward the goal of total group integration concerning these mutually challenging problems.

Following the tradition of previous Gordon Conferences, a relatively small number of speakers were invited to make presentations to the Conference. The primary purpose of these talks was to describe recent progress and to set the stage for thought and discussion. A copy of the program of speakers and discussion leaders is appended to this report.

A poster session was also held during the Conference so that some of the participants could present their research results. This was a well attended session that provided the basis for broad exposure of very new results and stimulated a great deal of excitement that continued past midnight. A list of the poster presentations is also appended to this report.

The Conference attracted participants from a wide variety of institutions and backgrounds. The list of attendees appended to this report shows that a total of 130 scientists and engineers participated in the Conference. Of these, only 32 were on the program as speakers and discussion leaders! The attendees included 109 from the United States and...
21 from foreign countries. Of these, 65 were from universities, 35 from government laboratories or offices, and 30 from industry. Finally, it is worth noting that the number of applicants for this Conference exceeded the number of places available.

PROGRAM HIGHLIGHTS

The major opportunity at a Gordon Conference is the opportunity to interact on an informal level with a large number of scientists interested and knowledgeable in a given subject. The facilities at the Tilton School catered to this aspect in a number of ways. The main lounge, the game/clubroom, pool area, and the grounds were outstanding sites for informal discussion. These facilities were in use throughout the day and night for many, many small group discussions which led to the development of new research ideas, to several future small group research interactions, and to the development of two research plans to be submitted for Government support. Thus, the informal aspect of this Gordon Conference was a rousing success.

In the more formal program, Lipsitt set the tone for the first two sessions with a critical review of the nature of the changes in mechanical properties accompanying ordering and by pointing out those areas where our understanding was weakest. Vitek described the complex structure of the dislocation core in intermetallics as well as the mechanisms by which core geometry affects deformation behavior. Yoo, building on the understanding generated by Vitek and others, introduced a totally new "mechanics" concept of the strengthening caused by dislocations in intermetallic compounds. This exciting concept provoked much thought and discussion. Later, Stoloff described recent results on fatigue, while Yamaguchi reviewed his recent experiments aimed at introducing ductility into one class of intermetallic alloys.
On the second day, Dimiduk showed that considerable understanding of ductile-brittle behavior could be gained by considering the presence or absence of a second phase in the grain boundaries, in antiphase domain boundaries, and perhaps even dispersed in the structure. This was a new concept for intermetallics with immediate effects on potential alloy development! The papers by Taub and by Izumi described a number of studies related to the atomic structure of grain boundaries and its effect on ductility. Taub's studies were very carefully done and the results cast doubt on a number of previous elementary explanations of the role of grain boundaries on deformation in intermetallics. The results presented by Williams and by Schulson were exciting because they showed how important microstructural manipulation could be as an effective way to alter mechanical behavior in these materials.

The third day belonged to the theoreticians. It was their opportunity to present the advantages and disadvantages of their individual approaches to intermetallic structures and properties. In this session, Freeman presented a particularly valuable paper showing how his ab initio ground state calculations could predict structural stability and alloying effects in intermetallics. Later, two very different (and heretical) approaches were presented by Vvedensky and by Pettifor. These two papers were the subject of the most intense discussion of the Conference. The theoretical presentations at this Conference created considerable excitement because they were given following the presentation of considerable background and because many in the audience were aware that theoretical guidance is sorely needed in the development of intermetallics for use as structural materials.

Next, several prominent engineers outlined their individual approaches to the determination of how intermetallics may best be selected for study
and modified for service. Finally, three groups that had actual experience developing intermetallic alloys described their approaches and results. The final paper of the Conference, presented by Blackburn, was the first public report on the approaches used for development of alloys based on the titanium aluminides. Since these alloys are soon to enter turbine engine service in military engines and are also prime candidates for the structure of the National Aerospace Plane, this was another paper that generated considerable interest. By actual count, 90 delegates were present to hear this final paper of the Conference.
1987 GORDON CONFERENCE ON PHYSICAL METALLURGY

July 20-24, 1987, Tilton School, Tilton, NH

TOPIC: INTERMETALLIC COMPOUNDS

H. Lipsitt and D. Pope, Co-chairs

Monday, July 20

Morning session

Session Chair:
G. Sauthoff
Max-Planck Institut fur Eisenforschung

8:45-9:00 WELCOME

9:00-9:40 OVERVIEW OF STRENGTH AND DUCTILITY OF INTERMETALLIC COMPOUNDS
H. Lipsitt
Wright State University

9:40-10:00 DISCUSSION

10:00-10:30 BREAK and PHOTO SESSION

10:30-11:10 DISLOCATION CORE STRUCTURE AND SLIP SYSTEMS IN INTERMETALLIC COMPOUNDS
V. Vitek
University of Pennsylvania

11:10-11:30 DISCUSSION

11:30-12:10 STRENGTHENING MECHANISMS IN INTERMETALLIC COMPOUNDS
M. Yoo
Oak Ridge National Laboratory

12:10-12:30 DISCUSSION

Monday, July 20

Evening session

Session Chair:
T. Suzuki
Tokyo Institute of Technology

(ANNOUNCEMENT OF NOMINATING COMMITTEE FOR CHAIR OF 1989 CONFERENCE)

7:30-8:10 CREEP AND FATIGUE OF INTERMETALLIC COMPOUNDS
N. S. Stoloff
Rensselaer Polytechnic Institute

8:10-8:30 DISCUSSION

8:30-9:10 DEFORMATION OF NON-CUBIC INTERMETALLIC COMPOUNDS
M. Yamaguchi
Kyoto University

9:10-9:30 DISCUSSION
Tuesday, July 21
Morning session

9:00-9:40
OVERVIEW OF BRITTLE-DUCTILE TRANSITION MECHANISMS
D. Dimiduk
Wright Patterson Air Force Base

9:40-10:00
DISCUSSION

10:00-10:15
BREAK

10:15-10:55
MECHANISMS OF DUCTILITY IMPROVEMENT IN Li$_2$ COMPOUNDS
O. Izumi
Tohoku University

10:55-11:15
DISCUSSION

11:15-11:55
EFFECTS OF COMPOSITION ON THE TENDENCY FOR INTERGRANULAR FRACTURE IN Li$_2$ COMPOUNDS
A. I. Taub and C. L. Bryant
General Electric Corporation

11:55-12:15
DISCUSSION

Tuesday, July 21
Evening session

7:30-8:05
MICROSTRUCTURAL EFFECTS ON THE DUCTILITY OF INTERMETALLIC COMPOUNDS
J. C. Williams
Carnegie Mellon University

8:05-8:20
DISCUSSION

8:20-8:55
GRAIN BOUNDARY ACCOMODATION OF SLIP
E. M. Schulson
Dartmouth College

8:55-9:10
DISCUSSION

9:10-9:45
GRAIN BOUNDARY MODELLING
D. Srolovitz and S.-P. Chen
Los Alamos National Laboratory

9:45-10:00
DISCUSSION
Wednesday, July 22
Morning session

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:45-9:25</td>
<td>LIMITATIONS AND APPROXIMATIONS OF ELECTRONIC STRUCTURE CALCULATIONS, A. Shere SRI International</td>
</tr>
<tr>
<td>9:25-9:45</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>9:45-10:00</td>
<td>BREAK</td>
</tr>
<tr>
<td>10:00-10:40</td>
<td>AB-INITIO GROUND STATE CALCULATIONS, A. J. Freeman Northwestern University</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>11:00-11:40</td>
<td>THE THERMODYNAMICS OF EXTENDED DEFECTS IN INTERMETALLIC COMPOUNDS, J. M. Sanchez Columbia University</td>
</tr>
<tr>
<td>11:40-12:00</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>ELECTION OF CHAIR OF 1989 GORDON CONFERENCE</td>
</tr>
</tbody>
</table>

Wednesday, July 22
Afternoon session

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:30-6:00</td>
<td>POSTER SESSION</td>
</tr>
</tbody>
</table>

Wednesday, July 22
Evening session

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30-8:10</td>
<td>QUANTUM MECHANICS AND FRACTURE, D. D. Vvedensky Imperial College</td>
</tr>
<tr>
<td>8:10-8:30</td>
<td>DISCUSSION</td>
</tr>
<tr>
<td>8:30-9:10</td>
<td>QUANTUM MECHANICS AND ALLOY DESIGN, D. Pettifor Imperial College</td>
</tr>
<tr>
<td>9:10-9:30</td>
<td>DISCUSSION</td>
</tr>
</tbody>
</table>
Thursday, July 23
Morning session

Session Chair:
J. Tien
Columbia University

9:00-9:40 ALLOY DESIGN: WHAT EXPERIMENTALISTS NEED FROM THEORETICIANS
S. K. Das
Allied Chemical Corporation

9:40-10:00 DISCUSSION

10:00-10:15 BREAK

10:15-10:55 SELECTION AND EVALUATION OF INTERMETALLIC ALLOYS
D. M. Shah
Pratt and Whitney Aircraft

10:55-11:15 DISCUSSION

11:15-11:55 THE SEARCH FOR HIGH STRENGTH AT HIGH TEMPERATURES
R. L. Fleischer
General Electric Corporation

11:55-12:15 DISCUSSION

Thursday, July 23
Evening session

Session Chair:
D. P. Pope
University of Pennsylvania

8:30-9:30 CORROSION AND ART
J. E. Harris
Berkeley Nuclear Laboratories

9:30-10:00 DISCUSSION
Friday, July 24

Morning session

8:45-9:25
DUCTILE Ni-ALUMINIDE ALLOYS
C. T. Liu
Oak Ridge National Laboratory

9:25-9:45
DISCUSSION

9:45-10:00
BREAK

10:00-10:40
B2-BASE MATERIALS AND COMPOSITES
K. Vedula
Case Western Reserve University

10:40-11:00
DISCUSSION

11:00-11:40
NiAl AND TiAl-BASE ALLOYS
M. J. Blackburn
Pratt and Whitney Aircraft

11:40-12:00
DISCUSSION

8. "Plastic Deformation and Ductility Improvement of Al3X Type Compounds of Al with the DO19 Structure", Y. Umakoshi, M. Yamaguchi, and T. Yamane, Tokyo.

<table>
<thead>
<tr>
<th>Name</th>
<th>Room</th>
<th>University/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen, Samuel</td>
<td>217</td>
<td>MIT, Room 13-5056, Cambridge, MA 02139</td>
</tr>
<tr>
<td>Angers, Lynette</td>
<td>337</td>
<td>Alcoa Technical Center, Alloy Technology Division, Alcoa Ctr., PA 15069</td>
</tr>
<tr>
<td>Antolovich, Stephen</td>
<td>228</td>
<td>Georgia Tech., School of Materials Eng. Fracture and Fatigue Res. Lab., Atlanta, GA 30332-0245</td>
</tr>
<tr>
<td>Arunachalan, V.S.</td>
<td>129</td>
<td>Scientific Advisor to the Minister, Ministry of Defence, South Block, P.O. New Delhi, India 11011</td>
</tr>
<tr>
<td>Banerjee, Dipankar</td>
<td>327</td>
<td>Defence Metallurgical Research Lab, Structural Metallurgy Group, Hyderabad, India 500258</td>
</tr>
<tr>
<td>Birnbaum, Howard</td>
<td>8</td>
<td>University of Illinois, Materials Res. Lab, 104 S. Goodwin Ave., Urbana, IL 61801</td>
</tr>
<tr>
<td>Boettinger, William</td>
<td>332</td>
<td>National Bureau of Standards, Metallurgy Division, Materials A153, Gaithersburg, MD 20899</td>
</tr>
<tr>
<td>Bonneville, Joel</td>
<td>126</td>
<td>Ecole Polytechnique Federale Lausanne, Inst. de Genie Atomique, 1015 Lausanne, Switzerland</td>
</tr>
<tr>
<td>Brenner, Sidney</td>
<td>31</td>
<td>University of Pittsburgh, Dept. of Materials Science & Engineering, 848 Benedum Hall, Pittsburgh, PA 15261</td>
</tr>
<tr>
<td>Broderick, Thomas</td>
<td>301</td>
<td>AFWAL/MLLS, Wpafb, Ohio 45433</td>
</tr>
<tr>
<td>Bryant, Daniel</td>
<td>325</td>
<td>Martin Marietta Labs, 1450 S. Rolling Road, Baltimore, MD 21227</td>
</tr>
<tr>
<td>Chang, Chen-Chung</td>
<td>247</td>
<td>Univ. of Pennsylvania, Dept. MSE, Room 234, Philadelphia, PA 19104</td>
</tr>
<tr>
<td>Chesnutt, James</td>
<td>302</td>
<td>General Electric, Neumann Way, M89, Cincinnati, OH 45215-6301</td>
</tr>
<tr>
<td>Chen, Shao-Ping</td>
<td></td>
<td>Los Alamos National Lab, T-11, MSB262, Los Alamos, NM 87545</td>
</tr>
<tr>
<td>Clapp, Philip</td>
<td>101</td>
<td>University of Connecticut, Dept. of Metallurgy, U-136, 97 N. Eagleville Road, Storrs, CT 06268</td>
</tr>
<tr>
<td>Darby, Joseph Jr.</td>
<td>25</td>
<td>US Dept. of Energy, Division of Materials Sciences, ER-13, G-236, GTN, Washington, DC 20545</td>
</tr>
<tr>
<td>Darolia, Ram</td>
<td>303</td>
<td>General Electric Co., 1 Neumann Way, M-89, Cincinnati, OH 45215</td>
</tr>
<tr>
<td>Das, Santosh</td>
<td>321</td>
<td>Allied-Signal Inc., Metals & Ceramics Lab, P.O. Box 1021 R, Morristown, NJ 07960</td>
</tr>
</tbody>
</table>
Dimiduk, Dennis
AFWAL Materials Lab
AFWAL/MLLM
Wright-Patterson, OH 45433-6533

Don, Jarlen
Southern Illinois University
Dept. of Mechanical Eng.
Carbondale, IL 62901

Dulmain, Bradford
Carpenter Technology Corp.
Research and Development
P.O. Box 14662
Reading, PA 19612-4662

Eberhardt, James
U.S. Dept. of Energy
Energy Conversion Tech. Prog.
1000 Independence Ave., S.W. CE-12
Washington, DC 20585

Eberhardt, Mark
Los Alamos National Lab.
MS-6730, Lami-MIT
Los Alamos, NM 87545

Farkas, Diana
VPI & SU, Dept. of Material Engr.
202 Holden Hall
Blacksburg, VA 24061

Field, Robert
General Electric Co.
Aircraft Engine Business Group
Mail Drop M87, 1 Neu mann Way
Cincinnati, OH 45215-6301

Fleischer, Robert
General Electric
R & D Center
Schenectady, NY 12301

Fraser, Hamish
University of Illinois-Urbana
Dept. of Metallurgy & Mining Engr.
1304 W. Green St.
Urbana, IL 61801

Freeman, Arthur
Northwestern University
Dept. of Physics & Astronomy
2145 No. Sheridan Road
Evanston, IL 60201

Gibala, Ronald
University of Michigan
Dept. of Materials Sci & Engr.
2300 Hayward Street
Ann Arbor, MI 48109

Gibeling, Jeffery
Dept. of Mechanical Engineering
University of California
Davis, CA 95616

Gunis, Antonios
Chemistry & Materials Science
Lawrence Livermore National Lab.
Livermore, CA 94550

Graves, Jeffrey
University of Wisconsin-Madison
Dept. of Mat & Min. Engineering
1509 University Ave.
Madison, WI 53706

Hack, John
Los Alamos National Lab.
MS-K765, Center for Materials Science
Los Alamos, NM 87545

Harris, John
Berkeley Nuclear Labs
CEGB
Berkeley, England GL13 9PB

Hartig, Christian
University of Hamburg-Harburg
Harburger Schlostrasse 20
D-2100 Hamburg 90, West Germany

Hartley, Craig
National Science Foundation
DMR/MRC/NET Room 410
1800 G. Street
Washington, DC 20550

Hay, Jeffrey
Los Alamos National Lab
T-12, MS J569
Los Alamos, NM 87545

Heckel, Richard
U.S. Dept. of Energy
ER-131, Div. of Materials Sciences
Washington, DC 20545
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemker, Kevin</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Dept. of Mat. Sciences, Bldg. 550</td>
</tr>
<tr>
<td></td>
<td>Stanford, CA 94305</td>
</tr>
<tr>
<td>Khantha, M.</td>
<td>University Wien, Inst. fur Festkorperphysik</td>
</tr>
<tr>
<td></td>
<td>Boltzmanngasse 5</td>
</tr>
<tr>
<td></td>
<td>Vienna, Austria A 7090</td>
</tr>
<tr>
<td>Kirchner, Helmut</td>
<td>North Carolina State University</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 7907</td>
</tr>
<tr>
<td></td>
<td>Materials Science & Engineering Dept.</td>
</tr>
<tr>
<td></td>
<td>Raleigh, NC 27695</td>
</tr>
<tr>
<td>Heredia, Fernando</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>309 S. 40th St.</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19104</td>
</tr>
<tr>
<td>Koch, Carl</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Inst. fur Festkorper Physik</td>
</tr>
<tr>
<td></td>
<td>Boltzmanngasse 5</td>
</tr>
<tr>
<td></td>
<td>Vienna, Austria A-1090</td>
</tr>
<tr>
<td>Hook, Rollin</td>
<td>ARMCO, Inc.</td>
</tr>
<tr>
<td></td>
<td>Research Center</td>
</tr>
<tr>
<td></td>
<td>703 Curtis St.</td>
</tr>
<tr>
<td></td>
<td>Middletown, OH 45043</td>
</tr>
<tr>
<td>Horton, Joe</td>
<td>Oak Ridge National Lab.</td>
</tr>
<tr>
<td></td>
<td>Bldg. 5500-All3</td>
</tr>
<tr>
<td></td>
<td>Metals & Ceramics Div.</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge, TN 37831-6376</td>
</tr>
<tr>
<td>Koss, Donald</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td></td>
<td>Dept. of Materials Science Engr.</td>
</tr>
<tr>
<td></td>
<td>University Park, PA 16802</td>
</tr>
<tr>
<td>Howell, James</td>
<td>E.I. Dupont de Nemours & Co.</td>
</tr>
<tr>
<td></td>
<td>Savannah River Lab.</td>
</tr>
<tr>
<td></td>
<td>Aiken, SC 29808</td>
</tr>
<tr>
<td>Li, Che-Yu</td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>Bard Hall, Dept. of Materials Sci & Engr.</td>
</tr>
<tr>
<td></td>
<td>Ithaca, NY 14850</td>
</tr>
<tr>
<td>Izumi, Osamu</td>
<td>Tohoku University</td>
</tr>
<tr>
<td></td>
<td>Kin-Ken</td>
</tr>
<tr>
<td></td>
<td>Sendai, Japan 980</td>
</tr>
<tr>
<td>Lin, Hui</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>3231 Walnut St., MSE, LRSM, Room 234</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19104</td>
</tr>
<tr>
<td>Jacobson, Loren</td>
<td>Los Alamos National Lab.</td>
</tr>
<tr>
<td></td>
<td>Mail Stop G770</td>
</tr>
<tr>
<td></td>
<td>Los Alamos, NM 87545</td>
</tr>
<tr>
<td>Lin, Yee-Chung</td>
<td>University of Tennessee</td>
</tr>
<tr>
<td></td>
<td>Materials Science & Engr.</td>
</tr>
<tr>
<td></td>
<td>Dougherty Engineering Building</td>
</tr>
<tr>
<td></td>
<td>Knoxville, TN 37996-2200</td>
</tr>
<tr>
<td>Johnson, Donald W.</td>
<td>ARMCO Inc.</td>
</tr>
<tr>
<td></td>
<td>Research and Technology</td>
</tr>
<tr>
<td></td>
<td>703 Curtis TS</td>
</tr>
<tr>
<td></td>
<td>Middletown, OH 45043</td>
</tr>
<tr>
<td>Lin, Yee-Chung</td>
<td>University of Tennessee</td>
</tr>
<tr>
<td></td>
<td>Materials Science & Engr.</td>
</tr>
<tr>
<td></td>
<td>Dougherty Engineering Building</td>
</tr>
<tr>
<td></td>
<td>Knoxville, TN 37996-2200</td>
</tr>
<tr>
<td>Lipsitt, Harry</td>
<td>Wright State University</td>
</tr>
<tr>
<td></td>
<td>Dept. of Mechanical Systems Engr.</td>
</tr>
<tr>
<td></td>
<td>Dayton, OH 45435</td>
</tr>
<tr>
<td>Kampe, Stephen</td>
<td>Martin Marietta Labs</td>
</tr>
<tr>
<td></td>
<td>1450 South Rolling Road</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21227</td>
</tr>
<tr>
<td>Kampe, Stephen</td>
<td>Martin Marietta Labs</td>
</tr>
<tr>
<td></td>
<td>1450 South Rolling Road</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21227</td>
</tr>
<tr>
<td>Kampe, Stephen</td>
<td>Martin Marietta Labs</td>
</tr>
<tr>
<td></td>
<td>1450 South Rolling Road</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21227</td>
</tr>
<tr>
<td>Kampe, Stephen</td>
<td>Martin Marietta Labs</td>
</tr>
<tr>
<td></td>
<td>1450 South Rolling Road</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21227</td>
</tr>
</tbody>
</table>

Additional entries are not visible due to the page size and resolution limitations.
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>London, Blair</td>
<td>McDonnell Douglas Res. Labs.</td>
<td>219 EK</td>
</tr>
<tr>
<td></td>
<td>Dept. 224, Bldg. 110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 516</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO 63166</td>
<td></td>
</tr>
<tr>
<td>MacKenize, Ross</td>
<td>Cornell University</td>
<td>111 EK</td>
</tr>
<tr>
<td></td>
<td>Materials Science & Engr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bard Hall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ithaca, NY 14853</td>
<td></td>
</tr>
<tr>
<td>Margolin, Harold</td>
<td>Polytechnic University</td>
<td>off campus</td>
</tr>
<tr>
<td></td>
<td>Metallurgy & Materials Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brooklyn, NY 11201</td>
<td></td>
</tr>
<tr>
<td>Martin, Patrick</td>
<td>Los Alamos National Lab</td>
<td>204 EK</td>
</tr>
<tr>
<td></td>
<td>Los Alamos, NM 87545</td>
<td></td>
</tr>
<tr>
<td>Maurer, R.</td>
<td>Max-Planck Inst. fur Metallforschung</td>
<td>off campus</td>
</tr>
<tr>
<td></td>
<td>Inst. F. Werkstoffwissenschaften</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seestraße 92, 7000 Stuttgart 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fed. Rep. Germany</td>
<td></td>
</tr>
<tr>
<td>McEvily, A. J.</td>
<td>University of Connecticut</td>
<td>113 EK</td>
</tr>
<tr>
<td></td>
<td>Metallurgy Dept., U-136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storrs, CT 06268</td>
<td></td>
</tr>
<tr>
<td>McMahon, C. J.</td>
<td>University of Pennsylvania</td>
<td>13 EK</td>
</tr>
<tr>
<td></td>
<td>Dept. of MSE, 3231 Walnut St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19104</td>
<td></td>
</tr>
<tr>
<td>Mendiratta, Madan</td>
<td>Universal Energy Systems, Inc.</td>
<td>115 EK</td>
</tr>
<tr>
<td></td>
<td>4401 Dayton-Xenia Rd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dayton, OH</td>
<td></td>
</tr>
<tr>
<td>Mills, Michael</td>
<td>Ecole Polytechnic Federale</td>
<td>126 WK</td>
</tr>
<tr>
<td></td>
<td>Institut de Genie Atomique</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1015 Ecublens</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
<td></td>
</tr>
<tr>
<td>Miracle, Daniel</td>
<td>Airforce Materials Lab</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>AFWAL/MLLM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WPAFB, Ohio 54533</td>
<td></td>
</tr>
<tr>
<td>Moxson, Vladimir</td>
<td>Texas Instruments Incorporated</td>
<td>232 EK</td>
</tr>
<tr>
<td></td>
<td>5093 Staubsbruy Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solon, Ohio 44139</td>
<td></td>
</tr>
<tr>
<td>Mukherjee, A. K.</td>
<td>University of California</td>
<td>7 M</td>
</tr>
<tr>
<td></td>
<td>Dept. of Mechanical Engr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Davis, CA 95616</td>
<td></td>
</tr>
<tr>
<td>Nathal, Michael</td>
<td>NASA Lewis Research Ctr.</td>
<td>233 EK</td>
</tr>
<tr>
<td></td>
<td>21000 Brookpark Rd., MS 49-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, OH 44135</td>
<td></td>
</tr>
<tr>
<td>Noebe, Ronald</td>
<td>NASA Lewis Res. Ctr.</td>
<td>233 EK</td>
</tr>
<tr>
<td></td>
<td>2100 Brookpark Rd.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.S. 49-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, OH 44135</td>
<td></td>
</tr>
<tr>
<td>Oliver, Ben</td>
<td>University of Tennessee</td>
<td>8 B</td>
</tr>
<tr>
<td></td>
<td>Dept. of Materials Scie. & Engr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Room 477, Dougherty Engr. Bldg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knoxville, TN 37996-2200</td>
<td></td>
</tr>
<tr>
<td>Oliver, Warren</td>
<td>P.O. Box X</td>
<td>3 Beau</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge National Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oak Ridge, TN 37932</td>
<td></td>
</tr>
<tr>
<td>Pank, Deborah</td>
<td>Penn State University</td>
<td>336 EK</td>
</tr>
<tr>
<td></td>
<td>MS 49-1, NASA Lewis Research Ctr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, OH 44135</td>
<td></td>
</tr>
<tr>
<td>Pathare, Viren</td>
<td>Case Western Reserve University</td>
<td>219 EK</td>
</tr>
<tr>
<td></td>
<td>Materials Science & Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10900 Euclid Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, OH 44106</td>
<td></td>
</tr>
<tr>
<td>Perepezko, John</td>
<td>University of Wisconsin-Madison</td>
<td>332 EK</td>
</tr>
<tr>
<td></td>
<td>Dept. of Met. & Min Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1509 University Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Madison, WI 53706</td>
<td></td>
</tr>
<tr>
<td>Pettifor, D. G.</td>
<td>Imperial College</td>
<td>230 EK</td>
</tr>
<tr>
<td></td>
<td>Dept. of Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>London, England SW7 2AZ</td>
<td></td>
</tr>
</tbody>
</table>
Polk, Donald 4 Beau
ONR-Materials Division
800 N. Quincy St., Code 1131
Arlington, VA 22217

Pollock, Tresa 338 WK
MIT, Room 1-007, 77 Mass. Ave.
Cambridge, MA 02139

Pope, David 2 Mansion
University of Pennsylvania
220 S. 33rd St.
Philadelphia, PA 19104-6391

Porter, Wallace 232 WK
Oak Ridge National Lab
Bldg. 4500-S, MS 140
P.O. Box X
Oak Ridge, TN 37831-6140

Raman, R. V. 7 Beau.
GTE Lab Inc.
40 Sylar Rd., Dep. 312
Waltham, MA 02554

Rawers, James 9 P
Bureau of Mines
P.O. Box 70, Materials Science
Albany, OR 97321

Reichman, Steven 6 Beau.
Wyman-Gordon Company
244 Worcester St.
Research & Development
No Grafton, MA 01536

Rosenstein, Alan 5 Beau.
Air Force Office of Scientific Res.
AFOSR/NE, Bldg. 410
Bolling AFB, DC 20332

Ruckle, Duane off campus
Garrett Turbine Engine Company
111 South 34th St., P.O. Box 5217
Materials Engr., MS 503-4AC
Phoenix, AZ 85010

Sargent, Gordon off campus
University of Dayton
School of Engineering
500 College Park Avenue
Dayton, OH 45469

Sauthoff, G. 18 Beau.
Max-Planck Institut fur Eisenforschung
Postfach 140-260

Schulson, Erland 205 EK
Dartmouth College
Hanover, NH 03755

Seastrom, Charles 9 Beau.
DuPont Company
Chambers Works
Deepwater, NJ 08023

Shah, Dilip 10 Beau
Pratt & Whitney
M/S 114-45
400 Main Street
East Hartford, CT 06108

Sher, Arden 319 EK
SRI International
333 Ravenswood Ave.
Bldg. 410-42
Menlo Park, CA 94303

Skewes, Steven 231 WK
Avco Lycoming Textron
550 S. Main St.
Dept LSM-1
Stratford, CT 06497-2452

Speephen, Frans 203 EK
Harvard University
29 Oxford St.
Cambridge, MA 02138

Srolovitz, David 11 Beau
Los Alamos National Lab
MS-B262/T-11
Los Alamos, NM 27545

Stoloff, Norman off campus
Rensselaer Polytechnic Inst.
Materials Engr. Dept.
Troy, NY 12180-3590

Sundararajan, G. 327 EK
Defense Metallurgical Res. Lab.
Mechanical Properties Group
Hyderabad, INDIA 500258
Sanchez, J.M. 198
Columbia University
School of Mines
918 Mudd
New York, NY 90027

Sun, Yongqian 220 WK
University of Oxford
Dept. of Metallurgy
Parks Road
Oxford, UNITED KINGDOM OX1 3PH

Suzuki, Tomoo 240 WK
Tokyo Inst. of Technology
Res. Lab of Precision Machinery
4259 Nagatsuta, Midori-Ku
Yokohama, JAPAN 227

Takasugi, Takayuki 127 WK
Tohoku University
Inst. for Materials Science
2-1-1 Katahira
Sendai, JAPAN 980

Takeda, Masao 318 EK
Oak Ridge National Lab
Martin Marietta-Energy Systems, Inc.
Metals and Ceramics Division
P.O. Box X
Oak Ridge, TN 37831-6117

Taub, Alan 128 WK
General Electric
Corp. Res. & Dev. Center
P.O. Box 8, K-1/265MB
Schenectady, NY 12301

Thoma, Dan 326 EK
University of Wisc. Madison
Dept. of Met. & Min. Engineering
1509 University Ave
Madison, WI 53706

Thompson, A.W. 341 WK
Carnegie Mellon University
Dept. of Mem.
Pittsburgh, PA 15213

Umakoshi, Yukichi 221 EK
Osaka University
Dept. of Materials Sci. & Eng.
Fac. Eng., 2-1 Yamada-Oka
Suita, Osaka JAPAN 565

Vedulla, Kirshna 324 EK
Case Western Reserve Univ.
6900 Euclid Ave
Metallurgy & Materials Sci.
Cleveland, OH 44106

Veyssiere, Patrick 202 EK
Lab. Metallurgie Physique
Fac. Sciences
40 Avenue, Pineau
Poitiers, FRANCE 86022

Vitek, V. 133 WK
University of Pennsylvania
Dept. of Materials Science & Eng.
Philadelphia, PA 19104

Vvedensktly, D.D. 317 EK
Imperial College
Dept. of Physics
London, ENGLAND SW7 2AZ

Ward, Charles 301 EK
Wright-Patterson AFB
AFWAL/MLLS
Dayton, Ohio 45433

Weiss, Isaac 134 WK
Wright State University
Dayton, Ohio 45415

Westbrook, J. J. 7 P
Sci-Tech Knowledge Systems
133 Saratoga Road
Scotia, NY 12302

Whang, Sund H. 13 Beau
Polytechnic University
333 Jay Street
Brooklyn, NY 11201

White, Calvin 319 EK
Michigan State University
Dept. of Metal Eng.
Houghton, MI 49931

Williams, James C. 302 EK
CIT, Dean’s Office
Carnegie Mellon University
Pittsburgh, PA 15213
Yamaguchi, Masaharu
Kyoto University
Dept. of Metal Sciences & Technology
Sakyo-Ku
Kyoto, JAPAN 606

Yaney, Deborah
Lockheed California Co.
D/70-13 B/USO P/2
P.O. Box 551
Burbank, CA 91520

Yoo, Man H.
Oak Ridge National Lab.
Oak Ridge, TN 37831

Zordan, Richard
Allison Gas Turbine Div. - GM
P.O. Box 420
M/S W-05
Indianapolis, IN 46206-0420

Anton, Donald
United Technologies Res. Ctr.
MS 22, Silver Lane
E. Hartford, CT 06108
GORDON RESEARCH CONFERENCES

PHYSICAL METALLURGY
Registration Addendum
July 23, 1987
Tilton School

Blackburn, Martin
Pratt & Whitney
Mil Stop 114-43
400 Main Street
East Hartford, CT 06108

Pratt & Whitney
Mil Stop 114-43
400 Main Street
East Hartford, CT 06108

Carpenter, Joseph
Oak Ridge National Lab
P.O. Box X, Bldg. 4515, MS 065
Oak Ridge, TN 37831

Pratt & Whitney
Mil Stop 114-43
400 Main Street
East Hartford, CT 06108

Carpenter, Joseph
Oak Ridge National Lab
P.O. Box X, Bldg. 4515, MS 065
Oak Ridge, TN 37831

Frost, Harold
Dartmouth College
Thayer School of Engineering
Hanover, NH 03755

Sanchez, J. M.
Columbia University
School of Mines
918 Mudd
New York, NY 10027

Sanchez, J. M.
Columbia University
School of Mines
918 Mudd
New York, NY 10027

Khantha, M.
University of Pennsylvania
c/o Dr. David Pope
Towne Bldg., 220 S., 33rd St.
Philadelphia, PA 19104-6391

Khantha, M.
University of Pennsylvania
c/o Dr. David Pope
Towne Bldg., 220 S., 33rd St.
Philadelphia, PA 19104-6391

Sanchez, J. M.
Columbia University
School of Mines
918 Mudd
New York, NY 10027

Sanchez, J. M.
Columbia University
School of Mines
918 Mudd
New York, NY 10027

Sikka, V.K.
Oak Ridge National Lab
P.O. Box X
Oak Ridge, TN 37831

Sikka, V.K.
Oak Ridge National Lab
P.O. Box X
Oak Ridge, TN 37831

Sanchez, J. M.
Columbia University
School of Mines
918 Mudd
New York, NY 10027

Sanchez, J. M.
Columbia University
School of Mines
918 Mudd
New York, NY 10027

Tien, John
Columbia University
Henry Krumb School of Mines
918 S.W. Mudd
New York, NY 10027

Tien, John
Columbia University
Henry Krumb School of Mines
918 S.W. Mudd
New York, NY 10027
END
DATE
FILMD
3-88
PTIC