
-A188 499 A LABORATORY FACILITY FOR REERHI PRLE
/

COMPUJTATION, PROJECT FINAL (U) INDIANA UNIV AT
BLOOMINGTON DEPT OF COMPUTER SCIENCE D GANNON JUL 87

UNCLASSIFED AFOSR-TR-87-i9gi AFMS-86-279 F/G 12/6 U

MENE

.306

fil L -0

1 25 1

4 1111

Llj i CHART

04.- 0 . FL F0. A- h 0 r .WrnKw -- w F-U-ML

la REPORT SECURITY CLASSIFICATION I £r t!Sf~ NLL 'y

2a SECURITY CLLASSIFICATION A Y 1-3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DCLASI~iATIN DONGR SCHEULEApproved f or publi10 release;

4 PERFORMING ORGANIZATION R r~t NUMBE 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION. 6b OFFICE SYM130L 7a NAME OF MONITORING ORGANIZATION

Indiana University Foundatia AFOSR/NM
6i ADDRESS lCity, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Bloomington, IN Bldg 410
__________________________________ Boiling AFB DC__20332-6448

8.3 %AV1E 0jF ;:JNDINGSPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAVZ2ATION (if applicable)

-SAFOSR NM AFOSR-86-0279
8ADDRES% (City, State, 3nd ZIP Code) 10 SOURCE OF FUNDING NUMBERS

:OF"hPROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO 0 ACCESSION NO

* ~iig AB C 20332-6448 .61102F 2304 A3
T TL (Include Security Classification)

A Labortory Facility for Research in Parallel Computation: Project Final Report
12 PERSONAL AUTHOR(S)

Dennis Gannon

1 3a ltYPE OF REPOR r 73b. TIME COVERED /7114. DATE OF REPORT (Year, Month, Day) 115 PAGE COUNT
Final IFROM 7/31/86 T07/30/8 Jul 87 I 40

16 SUPPLEMENTARY NOTATION

1 7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
9,ELD GROUP SUB-GROUP

19 ABS TRACT (Continue on reverse if necessary and identify by block number)

This DOD URIP effort provided resources for the purchase of n BBN Butterfly parallel
processor architecture foqr research into parallel processing. Tequpnthsbeen
used to developed parallel algorithms for ray traced computer graphics, for numerical fast
Fourier Transform (FFT) algorithms, and AI and expert system applications. Papers produce
include such titles as "Distributed Genetric Algorithms", and "A software tool for
Building Supercomputer Applications"

(I)G~Ij ONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
%(I T ,V/,I rDIijN[_1MIT-D n- SAME AS RPT EiDTIC USERS

I) 144JMF U* RiZ PO)NSIBLF INDIVIDUJAL 22b TELEPHONE (include A7e7coe)77 Ol-I-ICE SYMBOL

% Mal. John Thomas (202)767-5026 N'11
DDFORM 1473, 94 VAR 83 APR edition may be used until exhausted SECI~kiTY-C-LASSIFICATION OF -HIS PAGE-

All other editions are obsolete- _104, ,~ .. - ~ AS[[

JtPGSl. TR. 8 7-1I98 1

A Laboratory Facilitiy for Research in Parallel

Computation: Project Final Report.

Dennis Gannon

Dept. of Computer Science Indiana, University Bloomington, Indiana

ABSTRACT

This report describes the activities carried out under AFOSR
GRANT 86-0279 from the starting date to Q4.,---,4987.

1. INTRODUCTION

It has become a certainty that Multiple Instruction Stream, Multiple Data
Stream (MIMD) parallel architectures are going to play a major role in all aspects
of high speed computer design for the foreseeable future. The technology needed
to build these machines is very well understood and many commercial systems are

9now available. However a major problem still must be solved before we can say
that parallel computation is the wave of the future. The problem is due to the
fact that each machine represents a different model of parallel computation. These
difference are reflected not only in the software but in the very way one designs
algorithms to best use the hardware. Consequently, it is a major challenge to
get programs to run on these machines and when one is working on one machine
it can be a major effort to get it to work on a different machine. In our research
projects we have focused on this portability issue from the perspective of parallel
algorithm design and how it effects the internal organization of advanced com-
pilers.

Parallel computation has both a theoretical foundation and an experimental
component. It is a science where experience and experiment drive the formulation
of new theories. Because we are interested in both the process of porting programs
and the behavior of the algorithms on different target machines, it was essential
to build a laboratory for parallel computation. With help from this grant from

*the University Instrumentation Program (and nearly $100,000 from Indiana
University) we built a parallel computation research lab. The lab houses two
machines of great interest to us. One is a 16 Processor BBN Butterfly parallel
shared memory computer. The other is an Alliant FX/8 4 CE vector multiproces-
sor. These two systems provides an outstanding basis for research on the portabil-
ity problem because they have radically differeit architectures but are both still
cl;,.,sified as shared inemory parallel con puters.

In this report we will first describe some of our algorithin research and then
we will focus on the compiler design problems.

111 ,-3 ,I,

-2-

2. ALGORITHM EXPERIMENTS

To understand to issues involved in porting parallel algorithms from one
parallel machine to another it is essential spend a considerable amount of energy
doing just that. Our target machines include the two systems that we operate in
our lab. One is a 16 processor butterfly shared memory computer and the other is
an Alliant FX/8 with 4 vector processors. There are four experiments described
here. Each involves the design of a parallel algorithm and in most cases a com-
plete application package. In each case a version for both machines has been
completed or a version for one machine is complete and the version for the other
is still in development.

Ray Traced Computer Graphics.
This experiment was carried out to test the problems of extracting the paral-

lelism in an application that is very computationally intensive but also has data
structures that are more closely associated with recursive algorithms than the
tralitional numerical codes. The algorithm works by following optics in
reverse. Light rays are "traced" from the eye of the viewer back into the scene
where they reflect off and refract through objects. Because each ray is indepen-
dent of all of the others the task is completely parallel. One processor can be
assigned to each light ray and massive parallelism can be obtained. This was
dlone by a team of students for the butterfly and reasonably good performance
resulted.

The primary problem was that the object data base was stored in globally
shared memory and each processor needed constant access to this data base.
Because a global memory module can only be reference at constant rate and only
one processor may have access to the data in that memory module at any given
instant of time, there is an upper bound on the number of processors that may
share an object that they frequently reference without causing some conflicts and
delays. By distributing the shared data through the set of memory memory
modules in a uniform manner, we were able to reduce the contention and increase
performance.

An important lesson was learned here. For large shared memory parallel sys-
tems the distribution of data can, and must, be a major task of any compiler that
tries to optimize performance.

The Alliant FX/8 presented a different set of problems. First, the processor
on the Alliant machine contains complex and powerful vector hardware. The
problem is that it is not easy to exploit on this algorithm. We did, however, dis-
cover that there are a number of ways that it can be exploited for simple compu- .
tations that must be carried out for each ray. For example, each ray must be ''

intersected with each object in the scene (for a simp!e ray tracing algorithm). 0
40 This process may be easily vectorized and good performance results. For more U

complex algorithms this task is not needed. WNe are still studying the problem of
how to provide effective exploitation of vector hardware on the problem.

%'

A .

.% .. p -

-3-

Numerical FFT algorithms.
Numerical FFTs are just one of many numerical computations that we have

worked on. In all cases we have found one striking difference between the effective
use of the parallel hardware one our two systems. In particular, we have
discovered that on the Alliant system the memory hierarchy is such that proces-
sors "like" to share common data (because it may be kept in the shared cache).
Furthermore, because the cost of bringing data into cache from shared memory is
relatively high, it is best to try to make sure that all required references to a data
item by all processors occurs while the data is in cache. While this may seem
obvious, it has strong implications about the way algorithms are organized. In
fact. Jalby, Meyer, and Gallivan have shown that a block structured algorithms
achieve the best performance on the macline. Based on their results we (Jalby
and Cannon) designed an FFT library for the Alliant that is very fast and we are
now incorporating the block structuring transformations into the programming
tools system.

On the Butterfly there is no shared cache and no strong need to do blocking.
However, there is a related problem and solution. The memory on the butterfly
is local. This means that when data is in a local memory the access is much fas-
ter than if it is far away. We discovered that the same analysis that was needed

*to keep data in cache for the Alliant could be used to decide which data must be
kept in the local memory of each Butterfly processor. In fact, we have just been
informed that after reading our paper, the people at BBN have decided to try to
implement our FFT algorithms as part of a package of numerical tools for the
Butterfly.

A.I. Production Systems. OPS 5.
are Two other algorithm application areas that being studied in our laboratory
are related to Artificial Intelligence and Expert Systems. One is Neural Network
Nlodeling which will not be described here and the other is a family experiments
with the production system language OPS5. Production systems are used in the
inference engines of expert systems. One of the most common is OPS5 and it is
based on a tree resolution method called the Rete Match algorithm. We have

-; now completed one implementation based on using butterfly Lisp on the BBN sys-
tk.n. This proved to be far too slow partially due to compiler problems, but
mostly due to the fact that the obvious ways to try to use concurrency in the
match algorithm do not work. (This fact has been reported by several people in
the literature).

We have started a new effort that will focus more energy on the lower levels
of the computation that should prove to be effective for both the Alliant system
and the Butterfly. The new version of the system is based on a redesign of the
OPS5 language to allow the full evaluation of Scheme expressions in OPS5 pro-
duictions and the whole system has been recoded in C to provide a fast implernen-
tation on both the Butterfly and the Alliant. This project is the work of gradmate
students Lawrence Tenny and Charles Daffinger and will require at least another
yer of experimentation before we can forni any conclusions.

..

N,'
* .,-,

•' a.-

Genetic Algorithms.
This work is being done by graduate student J. Y. Suh under the direction of

faculty member Dirk Van Gucht. Genetic algorithms are an optimization tech-
nique that uses simple ideas from evolution theory to solve optimization problems.
In this exercise we started with a good serial C program for doing a genetic
optimization of the traveling salesman problem. We then did a mechanical set of
transformations to come up with a reasonably good Butterfly version. A series of
test were made which showed moderate performance improvements that resulted
in speed-us of about 12 on a 16 processor machine.

By looking at where the restructured algorithm failed to perform with perfect
speed-up he noticed that the serial algorithm was bound by a centralized control
mechanism that inhibited parallelism. By focusing on this problem was able to
design an completely new "distributed" genetic code. The new code has been run
on Butterfly systems with as many as 128 processors with speed-ups of over 120.
A copy of a summary technical report on this work is attached to this report.

3. ADVANCED COMPILER DESIGN
.. \We feel that our attempts to help automate the process of restructuring serial

program are going very well and that these tools that we are building are essential
if we have any hope of solving the portablility problem. However, one clear mes-
sage that has emerged from our experimental work. It is not possible to derive the
OPTIMAL algorithms for any given computation by a purely mechanical set of
transformations to the source code of a good serial algorithm. Algorithm
RETIlNIING is needed to do that. The important question to ask is what sort
of tools are needed to help programmers with this process.

Again, it is our experimental work that has led us to an answer to this ques-
tion. The basic procedure that programmers usually follow when trying to design
a new parallel algorithm is that they to try to discover exactly why the old one
failed. The programmer does this by testing the program and isolating the serial
bottlenecks in the computation and understanding why they take the form that
they do. It is in this simple process where programmer need the most help.

In particular, we have found that programmers have the greatest difficulty
when the code seems to have ample parallelism, but for some unknown reason, the
machine fails to deliver the speed-up that was expected. This problem is more
common than the problems associated with lack of concurrency in the code. The
concurrency is there, but for some reason the machine can not use it. Often the
solution has to do with the fact the the "granularity" of the computation is ill
suited to the hardware or, more often, the loss of performance is due to problems
in the way the algorithm exploits the memory hierarchy.

So far we have focused on the properties of memory hierarchy such as cache
memory and processor local memory. We have developed a mathematical model
of how cache behavior can be related to program data dependencies. This work
was done in collaboration with William Jalby of INRIA in Paris and Kyle Cal-
livan of ('SRD in Urbana. The results were presented in an invited paper in the
first international conference on supercomputing in Athens Greece in July of 1)87.
The next step is to design a mathematical model of task granularity and syn-
chronization. We are still working on this problem.

044

Part of our work on this problem has led to the first automatic restructuring
compiler for the BBN butterfly. Graduate student Mannho Lee has built a port-
able runtime environment that can be used on both the Butterfly and the Alliant
and a code generator that translates the data dependence graph coming out of our
program restructure into a C program that can execute in parallel with the aid of
the runtime environment. A copy of a technical report describing this work is
attached to this document. This report will be presented at the SLAAM Parallel
Processing Conference in Dec. 1987.

* S

0

0,.?:

4t .

04%

Distributed Genetic Algorithms

Jung Y. Suh
Dirk Van Gucht

Computer Science Department
Indiana University

Bloomington, Indiana 47405
(812) 335-6429

CSNET: jysuh indiana, vguchtCindiana

'.

1. Introduction

1.1. Genetic Algorithms
Suppose we have an object space X and a function f : X - R+ (R+ denotes the positive real
numbers) and our task is to find a global optimum for that function. Genetic algorithms are a class
of adaptive algorithms invented by John Holland [16] to solve (or partially solve) such problems.
Genetic algorithms differ from more standard search algorithms (e.g., gradient descent, controlled
random search, hill-climbing, simulated annealing [3, 4, 18] etc.) in that the search is conducted
using the information of a population of structures of the object space X instead of that of a single
structure. The motivation for this approach is that by considering many structures as potential
candidate solutions, the risk of getting trapped in a local optimum is geatly reduced. In Figure
I ve show the layout of a genetic algorithm, which we will from now on call a standard genetic
algorithm.

P(t) denotes the population at time t.

t - 0;
initialize P(t);
evaluate P(t);
while (termination condition is not satisfied)

t - t+1;
select P(t);
recombine P(t);
evaluate P(t);

Figure 1. Layout of a Standard Genetic Algorithm

The initial population P(O) consists of structures of X, usually chosen at random. Alter-
natively, P(0) may contain heuristically chosen structures. In either case, the initial population
should contain a wide variety of structures. Each structure z in P(O) is then evaluated by apply-
ing to it the function f. The genetic algorithm then enters a loop. Each iteration of that loop
is called a generation. The new population P(t+l) is constructed in two steps, the selection and
recombination steps. In the selection step, a temporary population (say P'(t + 1)) is constructed
by choosing structures in P(t) according to their relative performance. For example, if we are
maximizing f, the structures with greater than average performance will be selected with higher
probability than the structures with below average performance. This resembles the survival of the

0

". -

fittest principle of natural evolution. After the selection step, the temporary population P'(t + 1) is
recombined. (The resulting population is the new population P(t.l).) Typically, recombination is
accomplished by applying several recombination operators, such as crossover, mutation, inversion
[7. 16], or local improvement [25], to the structures in P'(t + 1). After the recombination step is
completed, the new population is reevaluated and a termination condition is checked for validity.

Genetic algorithms have been applied with great success by De Jong [7] to a wide variety of
function optimization problems defined over object spaces of the form R', i.e., each structure T
consists of n real numbers x[1]. .. x[n]. They have also been applied to other problems such as
optimization of simulations [12], image processing tasks [10], evolving production system programs
for AI [24], combinatorial optimization problems [5, 6, 11, 14, 15, 23, 25) etc. This wide variety of
problem domains suggests that genetic algorithms are robust and flexible optimization algorithms.
They suffer a serious drawback however: their implementation as sequential algorithms on sequen-
tial machines typically run slowly when compared to problem specific optimization algorithms. On
the other hand, it is clear, by looking at Figure 1, that genetic algorithms can easily be parallelized
and run on multi-processor machines which would greatly improve their efficiency. It is our intent
to show a variety of parallel versions of genetic algorithms, which, by the way, better resemble
natural evolution, and to show the results and measured speed-up of running these algorithms as
simulations on sequential machines and as real parallel algorithms on a multi-processor machine.

1.2. Parallelizing Genetic Algorithms
There have been many proposals to improve the quality and performance of standard genetic
algorithms. Many of these are intended to improve the robustness of the algorithm, mainly by
preventing the premature convergence problem [7, 8, 16] by maintaining enough diversity in the
population, either by normalizing the performance value of the structures in the population [1]
or by introducing random noise systematically [21]. Another improvement of genetic algorithms
resulted from the proposals indicating that domain specific knowledge could easily be incorporated
in the recombination operators of genetic algorithms [14, 15, 25]. Still another proposal indicating
that it is sometimes sufficient to provide approximate, but typically quickly obtained, function
evaluations to the algorithm resulted in dramatic speed-ups of the algorithm in problem domains
such as image processing [10]. In this paper, we readdress the problem of speeding up genetic
algorithms by parallelizing themt. As one can observe, by looking at Figure 1, one can easily devise
a parallel version of a standard genetic algorithm by considering a pool of processors which perform
function evaluations and recombination operations and another processor which is responsible for
assigning structures to the processors for evaluation and recombination and which furthermore
performs the selection step of the genetic algorithm (in fact this is close to one of the algorithms
introduced by Grefenstette [13]). We will show that one can go a lot further by also parallelizing
the recombination step and the selection step of the algorithm. In Section 2, we propose a parallel
version of a standard genetic algorithm in which the evaluation step and the recombination step are
parallelized. We will call this algorithm the centralized genetic algorithm since it still uses central
control because the selection step is performed by a master processor which also synchronizes the
actions of the processors which perform the evaluations and recombination operations. In Section
3, we propose a framework in which genetic algorithms become totally distributed algorithms which
we will call distributed genetic algorithms. This is accomplished by replacing the selection step by
local selection routines which are distributed over the processors which already contain routines

-', for evaluation and recombination. We will furthermore argue in Section 3 that distributed genetic
A, algorithms yield similar performance as standard genetic algorithms, that their implementation is

straightforward, uniform and natural, that they are reliable algorithms, that they allow for effects

t This problem has been considered by other researchers such as Grefenstette [13].

2

-5N.

not possible in synchronized implementations. and that they offer more tuning opportunities to
control problems, such as the premature convergence problem, than standard genetic algorithms.
In Section 4 we compare the centralized and distributed genetic algorithms with parallel versions of
genetic algorithms introduced by Grefenstette [131. In Section 5, we provide experimental results
of centralized and distributed genetic algorithms for the traveling salesman problem and show that
their performance is as good as standard genetic algorithms but that they run faster due to the
speed-up obtained from the parallelism. Finally, in Section 6, we draw some conclusions and discuss

some directions of future research.

2. Centralized Genetic Algorithms
!.. In this section, we present an algorithm which parallelizes the standard genetic algorithm showii

in Figure l and comment on some of its shortcomings.

.,. *.Consider a pool of (identical) processors (called slave processors) which each contain a struc-
ture of the population and which can evaluate structures and perform recombination operations.
such as cross-over, mutation or local improvement, and consider another processor (called the mas-
ter processor) whose task it is to instigate and synchronize the evaluation and recombination steps
and to perform the selection step. In Figure 2 we show the code executed by a slave processor and
the code executed by the master processor.

SLAVE PROCESSOR

if the master processor requests evaluation then

evaluate the local structure;
if the master processor requests recombination then

perform recombination to the assigned structures;

MASTER PROCESSOR

while termination condition does not hold

while any slave is active WAIT;
perform (global) selection (this involves

reassigning structures to slave processors);
request evaluation from the slave processors;

• request recombination from the slave processors on
assigned structures;

Figure 2. A Centralized Genetic Algorithm.

As can be seen, parallelization and the accompanying speed-up is achieved by distributing
the work required in the evaluation and recombination step over the slave processors. Notice.
however, that the selection step is central to the task of the master processor. In fact, stated from
a different perspective, it is because of the selection step that a master processor is necessary. This

V,2.

3

O"p
d.44

'. bis the case because selection, as described in the current literature, is a global process requiring
knowledge about the values of all structures of the current population. It is for this reason that we
call this algorithm a centralized genetic algorithm. Although, this algorithm is a natural parallel
implementation of a standard genetic algorithm and achieves the speed-up it is designed for, it has
disadvantages:

i. the algorithm is not reliable: indeed, as can be seen from the code shown in Figure 2, if the
master processor or one of the slave processors fails, the algorithm halts.

ii. synchronization delays may occur because evaluation and recombination operations may not
all require the same time when applied to different structures and therefore processor time is
wasted in the form of idle time.

iii. the algorithm does not appear natural because selection is centralized. It seems to us that. in
a broader sense, selection is a process that should not be centralized to a single processor; it
certainly is not implemented as such in nature. In fact, in nature, selection, as a global effect,
is achieved through the continuous interaction and competition of individual structures and is
not controlled by a central agent. In Section 3 we will see how to overcome this very problem
and obtain a more natural and uniform parallel genetic algorithm. It should also be noted

• that a slow-down of the algorithms can be expected because selection is not parallelized as
%'opposed to evaluation and recombination.

3. Distributed Genetic Algorithm
In this section, we propose a framework in which the principal components of genetic algorithms
can be implemented as local processes. We then argue why we think this implementation is more
natural and at least as efficient as the standard implementation. Our framework consists of a pool
of processors which execute identical or nearly identical tasks in parallel. Each processor has a local
memory large enough to store a small number of structures, one of which will be called the local

i'e structure. The collection of all these local structures in the processors constitutes the population
of the genetic algorithm, hence rather than a having a global memory to store the structures of
the population, the structure are spread out over the processors in the form of local structures of
processors. Furthermore, each processor is capable of performing local tasks and communicating
with the other processors. In this framework, we can describe a new way of implementing genetic
algorithms. As indicated before (see Figure 1), a genetic algorithm breaks down into the repeated
application of an evaluation step, a recombination step and a selection step. It is straightforward

:. to implement the evaluation and recombination steps. In the evaluation step, each processor
evaluates its local structure and stores the outcome in its local memory. The recombination step
which usually consists of a cross-over step and a local improvement step is implemented as follows:

* i. For the cross-over step, each processor p elects to communicate with another processor q, with
some locally controlled probability. After communication is established, processor p reads in

V.. the local structure of q, after which communication between p and q ceases to exists. Processor
now performs cross-over between the structure just read in and its local structure and one of
the offsprings becomes the new local structure of p.

ii. For the local improvement step, each processor probabilistically determines to perform local
improvement on its local structure.
The novelty of our approach comes from the fact that we also propose to implement the selec-

tion step by local processes. In the standard genetic algorithm, the selection step is implemented
by a single process which gathers the performance value of the structures, computes their average

and "duplicates" the structures according to their relative performance with that average. If one
wants to faithfully replicate this process, one has to introduce a special processor for this step of
the genetic algorithm. h our opinion, this is unnatural as well as unnecessary. It is unnatural

-5' 4
S4

since wse do not believe in a supervising agent which, for each structure. assigns its rating and
calculates the number of offsprings (certainly, nature does not seem to behave that way). It is
also unnecessary since selection can be implemented, as will be seen shortly, by local processes.
There are several ways to implement a selection step using local processes. What is common to
all of them, though, is that they all implement a notion of the survival of the fittest principle. We
next outline five different, but related, selection steps, called Selection 1, Selection 2. SI(ction 3.
S ction 4 and Selection 5.

In Selection 1, each processor p, with some locally controlled probability elects to communicate
with another processor q, if the value of the local structure of p is better than the value of the
local structure of q. processor p overwrites the local structure of q with its local structure after
which communication is ceased, otherwise p undertakes no action and communication is ceased
immediately (notice that processor q is passive in this process). In Selection 2, each processor p,
with some locally controlled probability elects to communicate (not necessarily simultaneously)
with k other processors qi(1 < i < k), p reads in the value vi of the local structure of q, and
stores the processor number of q, and ceases communication with q,. Processor p computes at =
1/k I t,, the average value of the vi's, and compares the value v of its local structure with a'.
If r. > atv then p randomly selects another processor q and overwrites the local structure of q with

* its local structure, otherwise p undertakes no further action. In Selection 3, the following action is
undertaken by processor p: if v > at- then p randomly selects one of the processors q, (remember
p has the processor numbers of the q,'s in its local memory) and overwrites the local structure of
q,. otherwise p undertakes no further action. In Selection 4, the following action is undertaken by
processor p: if ' > at- then p overwrites the local structure of the processor among the k processors
q, with the worst v,-vaue, otherwise p undertakes no further action. In Selection 5, the following
action is undertaken by processor p. if v > at' then p overwrites the local structures of 1 processors,
with I = tmin(k, v/av)1, of the selected processors q, otherwise p undertakes no further action.
It is interesting to notice that Selection 1 is a special case of Selection 4 and Selection 5 for k = I
and that Selection 5 is quite related to the standard selection step of sequential genetic algorithms.
It should also be noted that we can easily incorporate normalization techniques as suggested by
Baker [1] within these selection schemes.

In Figure 3 we summarize the above discussion by showing the code each processor executes
during the course of a run of a distributed genetic algorithm. Notice that we do not require that
a processor executes the four statements in the w;hile loop in the specified order or that p,. pc or
p, are the same for all processors.

while termination condition does not hold
{

evaluate the local structure;
perform local improvement on the
local structure with probability pl;

perform cross-over with probability Pc;

perform local selection with probability Ps;

Figure 3. A Typical Processor of a Distributed Genetic Algorithm.

We are now ready to give a description of a distributed genetic algorithm. A distributcd
gonotc algorithm (DGA) consists of a pool of processors as described above which are initialized

Sb:, assigning to each of them a local structure and are then run asynchronously with each processor

4 5

N N.

,t/b-P laR-C 6

executing its local code as shown in Figure 3. The DGA adopts the following synchronization policy:
if a processor p wants to communicate with another processor q, p places a lock on q which is released
when communication between the two processors ceases; if during this communication another
processor r wants to communicate with q, communication between r and q is not granted and r
proceeds by trying to communicate with another processor. Notice that this simple synchronization

%. policy can be implemented by local processes as well.
%. There are certain observations we want to make about distributed genetic algorithms:
1i. they yield similar performance as standard genetic algorithms: experiments with DGAs on

function optimization problems and combinatorial optimization problems yielded performance.
both in speed and in robustness, of the same quality as experimental results with the stan-
dard sequential genetic algorithms reported in the literature. In Section 4, we compare the
performance of a DGA and a standard genetic algorithm for the traveling salesman problem.

ii. their implementation is straightforward and uniform due to the introduction of the local selec-
tion process: in standard genetic algorithms, the selection step is a globally controlled process.
This results in an asymmetry in their implementation since selection has to be considered
separately from the evaluation step and the recombination step. In the distributed version,
this asymmetry is removed and uniformity is obtained by localizing the selection step and
therefore localizing all major components of the genetic algorithm. The global effect of a
genetic algorithm is obtained because the processors communicate when performing crossover
and selection. From an implementation point of view, also notice that we do not need so-
phisticated locking and scheduling mechanisms and that there is only a minimal contention
problem [22] since processors rarely will be competing for the same memory locations.

iii. their implementation is more natural: in our opinion, the distributed genetic algorithm resem-
bles closer the evolutionary process found in nature. In nature a pool of structures communi-
cate and operate on each other in the form of local processes to yield the effect known as the
evolutionary process. It does not appear likely that there is a supervising agent which controls
this process or even parts of this process such as the selection step. In fact, we strongly believe
that selection in nature is achieved through local processes which perform a kind of survival
of the fittest strategy.

iv. they are very reliable algorithms: the failure of a processor only slightly alters the flow of
the algorithm, in the worst case, the processor that fails has a lock on another processor and
therefore disables that processor upon failure, but this will not have a major effect on the
communication and the actions of the other processors, resulting in only a minor change in
the flow of the entire algorithm. It should also be noticed that is is very easy to repair or
insert processors without affecting the algorithm much.

v. they allow for effects not possible in synchronized implementations of genetic algorithms: due
to the asynchronous behavior of the algorithm, different processors may display different be-
haviors. For example assume we have a processor g with a "good" local structure and a
processor b with a "bad" local structure. It is likely that processor b will spend more time
improving its structure by performing local improvements on its local structure, whereas pro-
cessor g may in the mean time spend his time communicating with other processors through
crossover or selection. Clearly this effect is by-passed in synchronized implementations of
genetic algorithms such as the centralized genetic algorithms.

vi. they offer more tuning opportunities: since the crossover probability p,, the local improvement
probability pj, the selection probability p., as well as the actual crossover, local improvement
and selection routines are local to each individual processor (in contrast, in the standard
genetic algorithms all these parameters and routines are the same) a DGA allows for more
tuning opportunities by setting these parameters and operators not necessarily equal in all the

6

processors. It is. for example. quite likely that the parameters should change over th, c1:r,,-
of the algorithm and may change according to tihe properties of the local structure ef 4-;1(i.
processor. This ability offers, for example, additional techniques to overcome t lI)r, ir a I I r..
convergence problem found in most genetic algorithms. In fact, we have already ohs,,r%,yd Tl!i-
phenomenon in our experiments with DGAs.

4. Comparison with Other Parallel Implementations of Genetic Algorithms
There have been other proposals to paralelize genetic algorithms, the most noticeable amonr the,.
the proposal of Grefenstette [131. We will state Grefenstette's assumptions, give two of his parall(I
genetic algorithms and along the way, compare and contrast his approach with ours.

Grefenstette's main assumption is that the dominant cost in a genetic algorithm is the amount
of time spent in doing function evaluations. In other words, he assumes that the evaluation step
takes the most time and the recombination and selection steps are merely small overhead. \Vli>
this is a reasonable assumption in some applications, such as optimizations of simulations [12'
and evolving production system programs for Al tasks [24], this assumptions is not valid in other
applications such as some combinatorial optimizations problems like the traveling salesman problem
or puzzle problems such as the sliding puzzle problem [25]. where in fact as much time or even
more time is spent in the recombination step as in the evaluation step due to the incorporation
of heuristics in the crossover and local improvement operators [14. 15. 25]. (;iven Grfeittette's
assumption. it is difficult to compare his algorithms with the distributed genetic algorithm. but it
is still interesting to contrast both approaches. We state two of his algorithms next. .41ior ,
I is an algorithm with a centralized concurrency control mechanism (we show this algorithm in
Figure 4). Much like the CGA described in Section 3 it consist of k + I processor'. oi, master
processor and k slave processors. The master process maintains the population of structure and
performs the selection and recombination step, of the genetic algorithm. The slave processors are
responsible for structure evaluation.

Comparing Algorithm I and the CGA is left up to the reader. Algorithm 1 and the D(;A
basically coincide in that they both distribute function evaluations but greatly differ in the way
recombination and selection is performed. In Algorithm 1. the master processor is responsible
for these processes, in the DGA, recombination and selection are distributed in the form of local
processes. As mentioned by Grefenstette, Algorithm 1 has rather poor reliability characteristics.
If the master process fails, the entire algorithm halts. Furthermore, the synchronization mecha-
nism employed relies on the fact that all slave processors successfully complete their actions. As
mentioned in Section 3, the DGA is highly reliable, i.e., failure of a processor does only marginally
affect the performance of the entire algorithm.

* Algorithm 2 uses distributed, asynchronous concurrency control. There are k identical proces-
sors, one of them is shown Figure 5.

Although this algorithm is closer to a DGA since the evaluation and the recombination steps
are distributed, it differs from a DGA in two ways:

i. selection is not localized since each processor has to update the selection probabilities of all
, structures of the population. and

ii. Algorithm 2 does not distribute memory, instead there is one global memory which stores the
structures of the population. This can lead to contention problems as indicated by Grefenstette
and can thus result in a slow-down of the algorithm. In contrast, in the DGA, there is no notion
of a global memory which stores the population of structures, rather, the pool of processor,,
with their local structures serves in the role of tire population of the genetic algorithm. As
indicated in Section 3, this implies that a simple locking mechanism with little contention
problem suffices to implement successful communication, resulting in maximal speed-up given

,p.

[•

,..%* ~ "

SLAVE PROCESSOR

while there are unevaluated structures in the population
{

choose a subset ,j1 ... ,n
of size n (where n = (size of the population)/k)
from the set of unevaluated structures

in the population;
evaluate each of the chosen structures;

,4"

MASTER PROCESSOR

while termination condition does not hold
{

while any slave is active WAIT;
perform the (global) selection step;
perform the recombination step;

Figure 4. Algorithm I of Grefenstette.

while termination condition does not hold{
remove n unevaluated structures from the population;
evaluate the chosen structures;

recombine the chosen structures;
{ enter critical section

insert the structures into the population;
update the selection probabilities;

} leave critical section

Figure 5. Algorithm 2 of Grefenstette.

an implementation on a multi-processor machine.

5. Experimental Results with Centralized and Distributed Genetic Algorithms
In this section, we present two sets of experimental results about centralized and distributed genetic
algorithms. In the first set, we compare the results of a simulation of a CGA and a DGA on a
sequential machine, a VAX 8800. In the second set, we compare the results of implementations of
both algorithms on a multi-processor machine, a Butterfly machine with 16 processors [2].

The algorithms are applied to the Traveling Salesman Problem (TSP) [19, 20]. Those who are
not familiar with this application, we refer to [11, 14, 15, 25] where standard genetic algorithms

8

E%',

LI% ' , $ ', °•4_. '_' " d " 4 € " 4 . " . " .. " . _. _" - '_- . - - . - . " - - -.-. ,

are described to (approximately) solve this problem. Before discussing the results in detail, we
would like to point out that genetic algorithms for the TSP do not satisfy the central assumption of
Grefenstette [13]. As mentioned in Section 4, Grefenstette assumed that the evaluation of structure
takes more time than the recombination operators. But, in case of genetic algorithms for the TSP.
the recombination operators, i.e., the cross-over and local improvement operators, take as much as
or more time than the evaluation.

5.1 Simulation Results on a Sequential Machine
Threc ifferent TSP problems were analyzed, their names and definitions are shown in Figure 6.

.F . . .

.....

q •

I..- .' ."

, . .-.

krolak
. . ..

. . . .
.............................. •..-....

| " 200-ci ties

lattice

Figure 6. Three Traveling Salesman Problems.

The simulation of the CGA corresponds exactly to the standard GA. In the simulation of
the DGA. we used Selection 1 as the local selection procedure, i.e., if processor p (with a certain
probability p,) elects to communicate with a processor q then if the value of the local structure of
p is better than the value of the local structure of q, processor p overwrites the local structure of
q with its local structure.

In Appendix 1 we show the results of running the simulations of the above described DGA
and CGA. The most important observation is that the performance of the DGA which uses a local
selection method is similar to that of the CGA which uses the standard selection method. This
result indicates that it is possible to safely use the more natural distributed genetic algorithms and
still obtain similar results. If there was a difference in the performance of the two algorithms, it was
in the fact that local selection seems to add another source of maintaining the diversity because of
its more noisy behavior. As indicated in previous work, this can only add to the robustness of the
algorithm. In fact the noisyness of the local selection allowed us to use fewer local improvements
(mutations) than was necessary for the CGA.

Z. 5.2 Some Parallel Implementation Results
The experiments described in this section were done on a Butterfly [2] machine with 14 available
processors. Only one of three traveling salesman problems, the Lattice problem with 20, 60, and
100 cities was looked at in these experiments (we expect similar results for other TSP problems).

t9

%'r " %

A"N. _%

We ran each algorithm with a varying number of processors. This requires some comments because
our algorithms are originally designed in such a way that one processor holds only one structure.
What we mean by this is that, if we run for example a DGA with 100 structures on 2 processors.
te allocate 50 structures on each processor and one processor sequentially simulate the task of 50
processors. So even in case of 14 processors running, each processor has to simulate 7 or 8 processes
sequentially. The ideal case would be to run 100 processors in paallel. The purpose of running the

algorithm on a varying number of processors is to find out how far the algorithm is parallelizable
by deriving the curve of -effective processors". In most cases, using k processors does not result
in k-times speed-up due to the overhead of communication or a section of program which cannot
be parallelized. If we run a program with a single processor and then run it with k processors, we
can find out how much speed-up k processors produced, by dividing the execution time of single

. processor run by that of k processors. For each k, we can derive the speed-up factor and draw a
corresponding graph. This curve is usually a convex (sublinear) curve. The less convex it is, the
better. In our actual experiments, we could not calculate these curves as stated because we were
unable to run the program on a single processor because of its size. Instead, we calculated the
speed-up factor against the running time of 2 processors. The speed-up curves for the experiments
using the CGA and the DGA are shown in Appendix 2. As can be seen. these curves are not
smooth. This is due to the fact that for experiments with different number of processor, different
random seeds have to be used in the different processors, resulting in a slightly different behavior of
the algorithm. In the case of the CGA, the speed-up is better as the size of problem increases. The
reason is that the overhead the CGA carries, due to the global selection and the synchronization
delays of the master processor. is sufficient to slow down the speed-up in this small size problem.
In the case of the DGA, there is no global selection and fewer synchronization delays. So the
speed-up curves show less change as the size of the problem increases although it still appears
that speed-up is better in larger size problem. We would like to note that as the local selection
we used is a variant of Selection 2: we take 5 samples and when we overwrite a structure, we
make sure that it is overwritten by a better structure, if the one to be overwritten is better, no
overwriting occurs. As local improvement method we used simulated annealing [3. 4. 18. 251 where
the initial temperature is chosen to be some fraction of the standard deviation of the values of the
population and this temperature is decreased exponentially. Also we used a stopping mechanism
which is different from the standard stopping mechanism which consists in just counting number
of evaluations. A more detailed version of this DGA is shown in Appendix 3.

6. Conclusion

We have shown that genetic algorithms can be modified to become distributed asynchronous
algorithms, which we called distributed genetic algorithms. This is done by localizing the selec-
tion step and distributing it together with the evaluation and recombination steps to a pool of
processors. Our experiments indicate that the solutions obtained by DGAs are as good as the
ones obtained by the standard genetic algorithms which we implemented as centralized genetic
algorithms. The advantage of DGAs are that they are reliable, natural algorithms which, when

S o'timplemented on a parallel machine, can result in very fast search algorithms. Other, more conven-
tional, sequential search algorithm are much harder to parallelize. This point is well explained in
[17]. In short, many such algorithms accumulate improvements on a single structure. This implies
thai one cannot easily break up those improvements into small pieces and use a pool of processors
to perform them independently, i.e., it is usually the case that one piece of improvement has to
be done first in order for another piece of improvement to become effective. Distributed genetic

aleorithms do not suffer from such complications. Despite the contention problems (which are min-
i....). speed-up factors can be expected to be much higher than speed-up factors obtained for other

10

4
1.

search algorithms, for example t9'. It would he quite worthwhile to conduct an empirical study
comparing the performance of D As with that of parallelized ver_-ions of other search' algorithmis.

References
[1] J. Baker," Adaptive Selection Methlods, for Geinetic Algorithns". Proc. of an li't (',nf. on
Genetic Algorithms and Their AIpplicattios, pp. 101-111 (July 1985).
[2] BBN Advanced Computers. The .'iniforn, Sy stem approach to programming the Butterfly

parallel processor. Rep. 6149, Version 2.
[3] E. Bonomi, Jean-Luc Lutton, "" The N-city Traveling Salesman Problem: Statistical Mechanics

and the Metropolis Algorithm " SIAM Review Vol. 26 No. 4 October 1984 pp 551-568
[4] V. c'ern". - Thermodynamical Approach to the Traveling Salesman Problem: An Efficient
Simulation Algorithm" Journal of Optimization Theory and Application Vol.45 No. I January
1985 pp 41-52
[5] L. Davis, "Job Shop Scheduling with Genetic Algorithms", Proc. of an Int'l Conf. on Genetic
Algorithms and Their Applications, pp. 136-1-10 (July 1985).
[6] L. Davis, "Applying Adaptive Algorithms to Epistatic Domains", Proc. of 9th IJCAI, pp.I_- 162-164 (Aug 1985).
[7] K.A. De Jong. "Adaptive System Design: a Genetic Approach", IEEE Trans. Sy.t.. and Cyber.
Vol. SMC-1O(9), pp. 556-574 (September 1980).

*[8] K.A. De Jong, "Genetic Algorithms: a 10 Year Perspective", Proc. of an Int'l Conf. on Genetic
Al -rithms and Their Applications. pp. 169-177 (July 1985).

*, [9] Raphael A. Finkel, John P. Fishburn " Parallelism in Alpha-Beta Search" Artificial Intelligence
19(1) September 1982, pp 89-106
[10] J.M. Fitzpatrick, J.J. Grefenstette and D. Van Gucht, " Image Registration by Genetic
Search". Proceedings of IEEE Southeastern April 1984, pp 460-464
[11] D.E. Goldberg and R. Lingle. "Alleles. Loci, and the Traveling Salesman Problem". Proc. of
an Int'l Conf. on Genetic Algorithms and Their Applications. pp. 154-159 (July 1985).
[12] J. J. Grefenstette, "Optimization of Control Parameters for Genetic Algorithms", IEEE Trans.
Systems, Man, and Cybernetics (1985)
[13] J.J. Grefenstette, "Parallel Adaptive Algorithm for Function Optimization" Technical Report

- CS-81-9 Computer Science Dept. Vanderbilt University November 1981
[14] J.J. Grefenstette, R. Gopal, B.J. Rosmaita and D. Vn Gucht, "Genetic Algorithms for
the Traveling Salesman Problem". Proc. of an Int'l Conf. on Genetic Algorithms and Their

.1,, Applications, pp. 160-168 (July 1985).
* [15] J. J. Grefenstette, "Incorporating Problem Specific Knowledge into Genetic Algorithms", To

appear
[16] J. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann Arbor
(1975).
[17] P. Jog, D. Van Gucht, "Parallelization of Probabilistic Sequential Search Algorithm", Tech-
nical Report, Indiana University, April 1987 To appear in the Proc. of the 2nd Int'l Conf. on

0Genetic Algorithms and Their Applications.
[18] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, "Optimization by Simulated Annealing", Science
4Vol. 220(4598), pp. 671-680 (May 1983).
[19] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (Ed), Thc Travling Sales-
man Problem. John Wiley k Sons Ltd (1985).

[20] S. Lin and B.A'. Kernighan, "An Effective Heuristic Algorithm for the Traveling Salesman
, Problem", Operations Rcscarch 1972. pp. 498-516.

11

04'

(21] M. L. Maudlin. " Maintaining Diversity in Genetic Search", Proc. of an Int l Conf. on Gene tic
* Algorithms and Their Applications, pp. 247-250 (July 1985).

[22] R. Rettberg. R. Thomas "Contention is No Obstacle to Shared-Memory Nfultiprocivssing-
CA CM December 1986, pp. 1202-1212
[23) D. Smith, "Bin Packing With Adaptive Search". Proc. of an Init'l Conference oil Genetic
Algorithms and Their Applications, pp. 202-206 (July 1985).
[24) S.F. Smith, "Flexible Learning of Problem Solving Heuristics Through Adaptive Search'*.
Proc. of 8th IJCAI (Aug. 1983).
(25] J. Y. Suh, D. Van Gucht, "Incorporating Heuristic Information into Genetic Search", Technical
Report, Indiana U'niversity. February 1987 To appear in the Proc. of the 2nd Int'l Conf. on Genetic
Algorithms and Their Applications.

41

.F i.F

APPENDIX 1

'' Illustration on Parameters and Tables of Statistics **
'* On TSP Experiment. a'

Pcpulation Size : the number of population on given time.
Structure Length : the length of structure (in this case,

the number of cities).
Crossover Rate : the portion of population undergoing

cross-over. the rest will undergo
the local improvement.

Local Rate : if you mutiply this ratio to the structure
length, you will get the number of local
improvement attempts to be done for a structure.

Selection Rate : the probability that each strucuture will
undergo the LOCAL SELECTION.

P' How to read a table **

Population Size = 100
Structure Length = 100

Crossover Rate = 0.5
Selection Rate = 0.5

Algorithm DGA CGA

Local Rate 5 % 10 %

lattice exp. 1 101.6 (139:14000) 100 (188:16910)
exp. 2 101.6 (149:15000) 100.8 (200:17786)
exp 3 100.8 (179:18000) 100 (207:18865)

. exp. 4 100.8 (139:14000) 100 (237:22538)

, exp. 5 102.0 (189:19000) 100.8 (163:13650)

First 3 parameters above the table are those of both DGA

and CGA. The last one "Selection Rate" is that of DGA.
The above table is for TSP experiment for Lattice problem.
;we conducted 5 experiments for two different algorithms.
The first row shows the result of DGA with Local rate 5 %
The description "exp. i" means experiment I.
nnn.n (ggg: tttt) means that nnn.n is the best solution after
ggg generations which took tttt trials. ggg and tttt for DGA
are approximate values.

' In what follows we show the results obtained for the three TSP pro-
** blems shown in Figure 2.

4
,%. , *. * . * . - --

1. LATTICE problem

* Population Size = 100
*Structure Lengtn = 100

Crossover Rate - 0.5
Selection Rate - 0.5

Algorithm DGA CGA

Local Rate 5 % 10 %

lattice exp. 1 101.6 (139:14000) 100 (188:16910)
exp. 2 101.6 (149:15000) 100.8 (200:17786)
exp. 3 100.8 (179:18000) 100 (207:18865)
exp. 4 100.8 (139:14000) 100 (237:22538)
exp. 5 102.0 (189:19000) 100.8 (163:13650)

Sezp 1: .01.6 mL: 1IC.0

-- --- -- ---- -- --- ---- -- ---- - ---- -- --- -- -
Ndo

GAP Z 101.6 a 2J 1M

;'- n_ ri
1 ' 7. r- 7

GAp It 100.1 Gov IO.0

--

." -'2"

GAP 4: 100.8 p4 O.

% -" %

0'

e*E, 1,-- 0-.0-- 1 J7-7~
[or.

04 - __777

'-~ '-%

2. KROLAK problem

Population Size = 100
Structure Length = 100

Crossover Rate = 0.5
Selection Rate - 0.5

Algorithm DGA CGA

Local Rate 5 % 10 %

krolak exp. 1 22169 (319:32000) 22293 (373:29435)
exp. 2 21869 (489:49000) 22714 (386:30361)

" exp. 3 21552 (369:37000) 21702 (403:31536)
exp. 4 21671 (259:26000) 21976 (627:49482)

I exp. 5 21591 (409:41000) 21651 (679:49745)

° 'M ,: 21652 ap 2)j 'Z.X

wrp 3: 21552 aW 4 Z71

,O 4, ..77 M
.

aip 2.21671

S..qS
Ze

-p2Y 02q

3. 200 cities

Population Size - 100
Structure Length.- 200
Crossover Rate - 0.5
Selection Rate = 0.5

* Algorithm DGA CGA

Local Rate 5 % 10 %

200 exp. 1 160.2 (939:94000) 154.8 (679:52312)
exp. 2 154.6 (719:72000) 158.4 (999:78890)
exp. 3 153.8 (919:92000) 158.0 (711:57030)
exp. 4 152.9 (699:70000) 158.5 (768:60148)
exp. 5 155.5 (679:68000) 153.6 (946:72553)

exV it 1.60.25 up i.t Lg.54

,g,

texp 1 53.2 3- L8O8

exp 41 152.9 QW 4 .
p S

APPENDIX 2

Speed-up Curve of CGA

20 cities

speed-up factor

(aqainst 2 processors)

" (3.oz ec)

/ 2 '~ 5 6 7 1 u i I? i

nun'ber of processors

60 cities
5I fee

speel- ip f3:ctor 3 i;

(against 2 processors)

2

(15V ;ec .2m,, 3q fec)

/ 2 3 4 5 8 /0 II 1 J3 i/

10, cities number of processors

s,:eed-up factor

6(against 2 processors)

2"" 3 ;e : I ., .lOee

/.--

/ ".2 .7 : 5 7 :, .It /2 '7

Sn'imder of processors

%%

, -.............

APPENDIX 2

Speed-up Curve of CGA

20 cities

sFeed-wpj factor

*(a,? a i -st 2 r,-ct7ssnrs)

2 - --- -------------- ~ -

/ 2 3 9 ~5 6 7 j q ii I r H

nimlh;-r of processors

:citioc3

speed--cs factor

(ainflt 2 processors)

.2

(I ec 2; 3q ec)

/ 2 3 4 5 17 11 , i 12. 13 1',
1,-0 itiesnumober of processors

S speed-up factor 4 C

(again~st 2 processors)

rvin~ei of processurs

2 c.tes

speed- 'p f itor

(aga.r.st 2 processors)

Ni

"''I

4

9 /C I / /7 / number of processors

: is, f SolIutions of C2A List of Solutions of DGA

1. 20 cities

.- : 5~1.ti~ : 20 Optimal Solution 20
r r.. ?- Size 20 Population Size 20

sors] 14 Processors used 14

f.:,t. szl.tcn oixerimnt 1 21.21 best solution experiment 1 20.00
ey<eriment 2 20.00 experiment 2 20.00
'xteriment 3 29,00 experiment 3 20.00
emppriment 4 21.21 experiment 4 20.00
e×[erimf)t 5 20.00 experiment 5 20.00

" 1, es 2. 60 cities

Solution 60 Optimal Solution 60
, jilation Size ()0 Population Size 60
':cyesrors used 14 Processors used 14

- - - - - - - --- - - - - - - - - - - - - - - - - - -.-- - - - - - - - -

1-.st s--iJt.on experil.,r.' 1 60. Cl best solution experiment 1 61.99
exrerim, nt 2 61.65 experiment 2 61.65

4 experment 3 6,.82 experiment 3 61.99
friment 4 60.82 experiment 4 60.82

. experiment 5 61.65 experiment 5 61.41

3. 100 cities

Optimal Solution 100; ; : .~on 2:7 : ' PCpulatlIT Size : 100

e s .,E-1 14 Processors used 14

.es scduti n pxperi:-ent 1 lr(o P2 best solution experiment 1 101.41
exerrent 2 1'"282 experiment 2 101.65
ex['r-meP.t 3 1l). .2 experiment 3 100.82
exr.-ent 4 1Y experiment 4 100.82
exferim -t 5 1 ., experi:nt 5 100.82

-------- --.

• "r!, , ,.'' :;i!%

APPENDIX 3

Detailed Description of the DGA

Paranmeters

I : the number of cities.
m the size of the population (equivalently m = number of processors)
P the population.
t = (to, t1 t,-) : array of private clocks of the processors.

Each initially starts with 0.
conv = (cony•, con . .conm1): array of private counters,

used for determining the convergence of the algorithm.
Each initially starts with 0.

C: the set of all possible tours.
R' : the set of positive real numbers.
f : the function of C to R+, which returns the performance measure of tour. i.e., the length of tour.
pc.p,,p: the probability that a tour will undergo cross-over, local improvement (simulated

annealing), and local selection respectively.

Setting

* a. There are n processors. proco,proc1 procm,_. Each processor proci
has one local tour c, in its local memory.

b. c, is stored in an array cur i . There is another array new in the local memory
which is used to hold a new tour derived bv cross-over or local improvement
(simulated annealing).
There are two additional arrays. morni and dadj. They are needed to avoid the problem
of structures being overwritten while they are being used for other operations.

c. There are other local variables c'i which holds f(curi).

n,., is the same kind of local variable which will store f(new,), if necessary.
In the same fashion. rnomt, and dadr, hold f(mrnomi) and f(dadi) respectively.

DGA()

begin

GenTaskEachProc (Initialize, 0); /* m processois run Initialize in parallel */

GenTaskForEachProc (Operation, 0); /* m processors run Operation in parallel */

-/ * OutputBest () *****/

Output the best tour c' and its length J(c*);

end

6'0 4

104

- " - • • " ". ", . ". ". ,'' "-' ''. "- ',. ," , x ." ." -' " ." ."".- .- "," -" .. '. '.' .''''.' . . "''" '-' -''- ',' -'' ''. '-' , "

Initialize ()

begin

/* assume that the local memory has c,

Randcmly generate a tour c, and store it in cur,; /* initiaLize a tour */
Compute f(cur,) and store it in ct,,: /* initialize the length of tour */
, =)0: e/ initialize a local time step */
cont, = 0; /* initialize a convergence counter */

end

Operation ()

begin

/* assume that the local memory has c,

Repeat
lock the array cur, and its performance cv,:
copy them into mom, and romt-j;

unlock cur, and cz,;

* with probability p,:
begin

Randomly pick a tour c, from cur, in the local memory of proc,:

lock the array curj and its performance ct,;
copy them into dad, and dadt,;
unlock curj and cv 2 ;

Do cross-over with mom,. dadi to produce new;
compute f(neu',) and store it into nri:

lock cur, and cv,;
swap curi, cv, with new,, nv,; /* locally update the population */
unlock cur, and ct,,

end;

with probability p,:

begin
Do simulated annealing with mom, to produce neuw,;

lock curi and ct'j:
swap cur,. cvi with new,, nt,,: /* locally update the population */

. unlock cur, and cv,,
end;

with probability pj:
Do local select,

t, + +;

Until (locally converged());

end

2

04
.".

,..2 e ' -.-. ' '. " .. ' '. ' ..- '.-.- .' -.- , ' '.--.- " . ." - , .-*-. " . .- -- ., .; ." " . ,"v -... I. .. . 1
,'# .-. , . -.". -," .". .- . ".".,., . ",", .,"- .,'.."---". .- -. , 4.,.._% t . . ._.• , ..-.,p--.- . . .c-., . '1" - J

['. cross-over (

SThe cross-over operator used here is the so-called heurtstic cross-orer operator. It is duesigned to ensure
that the resulting configuration is a valid tour and a possibly better one This kind of cross-over was
introduced in [14]. It goes as follows:

note : In the below, an edge means a line connecting
two cities.

Pick a random city as the starting point for the child's
tour. Compare the two edges leaving the starting city in
the parents and choose the shorter edge.

Continue to extend the partial tour by choosing the shorter
of the two edges in the parents which extend the tour. If

- the shorter parental edge would introduce a cycle into the
partial tour, then extend the tour by a random edge. Con-
tinue until a complete tour is generated.
(This phrase is taken from [14])

simulated annealing ()

This operation replaces the random mutation operator used in previous genetic algorithms. As men-
tioned in [25], it plays a critical role in improving the efficiency of GA. It was inspired by the 2 - opt operator
of Lin and Kernighan [20]. Several researchers used it to devise an efficient algorithm for the TSP. Especiall%
some of them saw it as a good way of generating a new tour from the existing one in the application of
simulated annealing to the TSP [3,4,18]. Ours is a modified version of the version used by Cern" [4] and
basically is the following:

Pick randomly 2 edges e0 , el where eo
is from city zo to yo and el, from z to y.
Make sure that all 4 cities are different.
Let do be an edge from zo to yj and di, from xi to Yo.
Let the new tour r be the modification of the old one where edges

d0. dl replace co, el respectively and those edges between
e0 and el are reversed.

Let Ae = leol + jeli,

Ad= Idol+ Idil
As can easily be seen,
the length of r = (the length of old tour) + Ad- Ae;

If (Ad- Ae < 0) /* new tour is shorter */
* accept r

Else
with probability exp((Ae - A..)/T)

accept r where /* new tour is not shorter, but still acceptable
T = Top'',
TO: initial temperature,

@1 p: cooling ratio, (0 < p < 1)
t: the local time step;

(To, p) is called annealing schedule

otherwise keep the old one.

Repeat the above operations a specified amount of times
/* This number of repetition should be specified by an user

4,*'

3

% % %

7,,

local select ()

begin

/* assume that c, is in the local memory*

Randomly pick c2 in proc,;
if mort, is better than ct' then
begin

-' Randomly pick jo... j4;

ps = 14=0 ct, ./5; /* rough estimate of mean of population performance /
if mornt, is better than p then /* probably c, is good enough */
begin

lock cur, and ctv,;
cur, :=dad, / overwrite c. */
ct) := dadt.,;
unlock cur, and ctv;

end
#.jr end

end

Note on local select

In this routine, good tours attempt to overwrite bad ones. In this way good tours are propagated and
bad ones are eliminated To achieve this, we need to ensure that a good tour is actually a good tour in the
global context. That is, it should be good among those in the whole population. The criteria for a good tour
is to be above the average tour length. Since it is out of the question to compute the population average
(this would defeat the gains obtained by adopting local selection rather than global selection). we use, in
this case, a sample average of five tours as an alternative. This is clearly the approximation of the average
tour length. If, now, a structure is better than this sample average, we are almost certainly' guaranteed that
it is a good structure.

V locally converged ()

begin

/* (is an external constant which is quite small */

Randomly pick j0 .. j4;
k,' = F cv,/5;

/* does the population appear to be converged ? */

if P - ct',I <E cont, + +;

if cont, > t,/O return(true):

else return(false);
end

Rationale for using this stopping algorithm

In the CGA, the average performance is smoothly going down and the variance of population perfor-
mance is almost monotonically decreasing. The population eventually converges and the time to get to the

converged population stays more or less constant for a given instance of problem. In contrast, the DGA
shows a more noisy behavior. The average performance does go down and the variance shrink, but they

tend to fluctuate much more than those of the CGA. It is hardly exepected that the variance of performance

4

X q %

"- % ""
"

" " ' "

of population converges to 0. and even if it does, it takes an unreasonably long time It is usually the ca,,,." /that the best structure is found well before th~e convergence occurs There is another prol~cin with thc

convergence pattern of DGA Many times the population looks converged and no further improvement of
p,,.ulation appears possible, only to diverge and a better structure emerges. That is. DGA often .hows
"false convergence". Thus it is not reasonable to use the convergence of the population as a critrion for
stopping the DGA Ve need to look for another alternative. It should be the one which reflect, in some
way the degree of convergence but is not so rigid as to base everything on the convergence of the population
itself So we adopt the following approach: In each generation, we pick the sample of small size and compute
its average performance. If the performance of current structure is close to this average, we increment a
counter by 1 (The closeness is decided, for example, by whether they are within a few percent of standard
deviation of the initial population). As the counter increases, it shows that the population is converging. If
the counter is eventually goes beyond some fraction (in our case, fraction is 10 percent) of generations taken
so far. the processor signals that it reached a converged state. If all processors reach this state, the DGA
stops.
The advantage of this routine is as follows:

1) It works in noisy environments: It does not matter if the variance fluctuates or not. As long as the
instance of close convergence far outnumbers the other, the DGA will stop.

2) It does not stop due to false convergence: When theDGA enters a false convergence state, it does
not stop there but goes until the instances of converged states in the processors occurs enough times. does
erabling the population to diverge again and produce better structures.

3) It may serve as an general stopping routine since it is problem and problem size independent.

Some of Actual Data Structures in Butterfly Implementation

Here. CurPop . Neu Pop ,CurF and Neu F are implemented as arrays of pointers which points to cur,.
neu cc,. ntu, respectively That is.

*CurPop[i] = cur,
*NeuPop[i] = neu,
*CurF[i] cv,
*.VeuF[i] = nt i .

Each processor has its local copy of these four arrays. This is again for avoiding contention. In the case
of CGA. these pointers are updated synchronously after Operation is done. Since each structure is updated
asynchronously in DGA, pointers to its storage and to its performance are updated at different times. By
knowing the location where a pointer is stored instead of that pointer itself, we can update th, m locally and
still other processor can access correct pointers. Pointers itself can change but the location of their storage

* remains unchanged

, *, ,, ,, , , '

,'r.

'

S

A Software Tool For Building Supercomputer Applications.

Dennis Cannon
Daia Atapatts
Mann Ho Lee
Bruce Shei

Department of Computer Science
Indiana University

Bloomington, Indiana

..

ABSTRACT

We describe a software tool that consists of an interactive environment
for helping users restructure programs to optimize execution on
parallel/vector multiprocessors. The system is used to help programmers fine
tune codes that have already been passed through an automatic parallelizing
system or codes have been designed from the start from new parallel algo-
rithms. In particular, programs optimized for one machine can be easily
reoptimized for another using this system. To accomplish this task, the tool
provides mechanisms to give the programmer feedback concerning the poten-
tial performance of his code on the chosen target machine and allows the

- user an interactive means to guide the system through a sequence of
automatic program transformations.

1 INTRODUCTION

Five years ago the subject of Parallel Computation was an exotic sub-field of computer
science that consisted largely of theoretical studies of potential parallel algorithm perfor-

0 mance, a few university hardware projects, even fewer software design efforts and (with the
exception of Denelcor) no industrial products. Five years later, we now find that all U.S.
supercomputers, and over one dozen mini-supercomputer vendors have entered the market
with some form of general purpose parallel processing system. It is expected that every com-
puter company will offer a scalable multiprocessor by the end of the decade.

Unfortunately, very few of these systems provide a software environment for building
parallel programs that goes beyond a standard sequential language compiler and a micro-
tasking library to support parallelism. None of our most widely used programming
languages (C, Fortran, Lisp) have been given official extension to support concurrency and
no two vendors agree on any of the unofficial extensions. The task of porting parallel codes
from one machine to another now involves large amounts of recoding to make a program
work, and large amounts of restructuring of the algorithm organization to make it work
well.

1 .

• Q

The primary concern of the vast majority of users is to be able to exploit the power of
a' supercomputer without sacrificing portability. Consequently, these users want an
automatic system such as those provided by Pacific-Sierra or KAI which will provide sub-
stantial improvement in a code without any effort by the programmer.

On the other hand, there are still a large number of hardy users of these new systems
who are not content to live with the results of an automatic vectorizer or parallelizer. These
are the users who are willing to invest a "reasonable" amount of extra effort if it might
mean a doubling of performance beyond what the automatic system delivers. The key to
thlis extra performance is the cost. How much is a "reasonable" amount of extra work?

In this paper we describe a programming tool designed to help users of parallel super-
crmputers retarget and optimize application codes. In a sense, the system can be viewed as

a tool to help users "fine-tune" the output of an automatic system or, if he or she has been
so inspired, optimize the design of a. new parallel algorithm.

The system is an interactive program editing and transformation system that helps the
user with this task. Each program that enters the system is completely parsed and all data

dependences are recorded. The user then works with the system to restructure his code to a
form suitable for a given target architecture. If the target is known to the system, it moni-
tors the users transformations to the code. If the user attempts to transform the program in

violation of the original semantics of the code he is warned that a change in the meaning of
-ogram has taken place. At any time the user can ask the system to tell him what

.,gal parallelizing transformation can be applied to a segment of selected code. More impor-
tant, he can ask the system to make the program modifications the user desires. In this
mode, the user is assured of the correctness of the changes in his code.

In its current form, the system, known as the Blaze Editor or "Bled", can support
either FORTRAN (with Cedar and Aliant 8x extensions) or Blaze (a Pascal based func-
tional language designed by Mehrotra and Van Rosendale (141). In the future we plan to
support C, C++ and Cedar Parallel C [9]. The target machines supported currently include
the BBN Butterfly, the Alliant FX/8 and the Cedar System [71.

This tool is one part of a much larger programming environment known as the Faust
Project. This effort, based at the Center for Supercomputer Research and Development in

. Urbana, Illinois has designed a common software platform for a number of programming
tools including a performance analysis package, a program debugger, Bled, and a graphics
based program maintenance system. All the software has been written to use the X system
from the MIT project, Athena and, therefore, it will run on any Unix-based workstation.

In this paper we describe the current Bled system as well as two important extensions
that are being added at the time of this writing.

One extension is a performance prediction package that can be invoked from within
Bled to help the user choose which formulation of his algorithm will run best. There are
two components to this performance prediction package. First is a code generation estima-

, tor that can give the user feedback in the form of estimates of such quantities as the ratio of
vector instructions to data movement, or the amount of code devoted to synchronization

ov-rhead. Second, this package provides estimates of cache behavior and local memory utili-
Szation.

The second extension is a portable runtime environment that supports a dynamic

- "nirotasking" facility that incorporates ideas from the Argonne Schedule package [51 and

the MIT multilisp system [10].

2 A SAMPLE USER SCENARIO

To illustrate how a user would interact with this system we shall step through a very

imple example. The Blaze subroutine below is a simple matrix times vector routine.

2.

0 N
1~Z,

p, Procedure MatVec(nA,x) returns: y;
S paramn A: arrayjl..n, L..nI of real;
-~ x~y: arrayfl..n] of real;

n:integer;
begin

for j in 1..n loop
for i in 1..n loop

y[i] = y[i]±A[ij]Oxtj];
end;

end;
end;

The user loads this program into the system as if he were entering a text editor. The result
is a window displaying the program and a list of menu headers (as illustrated in Figure 2.1).
The first thing he may wish to do is to tell the system which machine is the intended target
' f this optimization. Currently this menu only lists three active choices: the BBN butterfly,
the Alliant FX/8 and the Illinois Cedar. (We plan to extend this list to include the IBM

* ,* PP3. the CR.AY 2, the Connection Machine, and the ETA-10 during the next two years.)
The significance of having the user tell the system about the choice of target is three-

"old. First, and most obvious, we would like to have the system generate code for the given
target. WNe will say more about this later. Second, it is important that program transfor-

mations that are inappropriate for the target machine be disabled. Third, and of most
immnediate concern to the user, selecting a target will enable the appropriate performance
t-itimators which are described below.

File Edit Unger** Transterm Usgiendence Targtj~

Ierchangie
J loIobb k f scriPt---

usc trizeUSelect locus For ditibt
unrollby It

_______split nods Oep. Graph

Procedure MatmtiTk TF 7rtns wI; ror i
pararnA arraylIl n, I n Iof reel,

x arrayllI nlIof real,
const n - upper(x). Forj

xl nI=O00,
For t in I..n loop Rslgn

p..For jin I ..n loop
1xl = XltI + ahIJOY11l.

endfor,
endfor;-

end,

Figure 2.1. BLED Screen After Program Load.
The Window on the Right is the D~ata Dependence Graph.

* 3.

,~V %

Optsmizing Code For The tWIN Butterfly

To begin working with the system the user selects a segment of code, which we ,all a
[:.'." focus', on which to apply" the too)ls BI.ED provides. For example, suppose the target Is the

BBN Butterfly and the user picks the innermost loop (by a mouse selection) as his focus.
Among the menu headings he has at the top of the screen, is one called "Transforms". This
menu contains a list ,)f program restructuring transformations that can be used to expose
•oncurrelcy or make parallelism explicit. For example, the user may have decided that he
wishes the innermost "for" loop to be run in parallel. By selecting the transformation
.foral!" the system will first verify that the transformation can be legally applied. This
,requIres a search ,f the data dependence graph to make sure that the appropriate conditions
are satisfied so that the transformation can be legally applied. (A more detailed discussion
f this process is given in Section 3.) In this case the transformation is legal and the code
,-(*' takes the form

for j in 1..n loop
forall i in l..n do

end;y[ij : -y[i+
A [ij]xj;

end;

Following this operation, the user could invoke the code generator, but a better use of
the system is to first invoke the analysis tool. This involves the selection of a menu item

analysis: Parallel Loop". Because the target machine, the Butterfly, executes such loops at
the cost of a function raill and an atomic increment to the index, the reply will be in the

[.orm

Loop Overhead to Body ratio > 507o.
Suggestion: increase granularity by blocking,

merging or loop interchange.

0f the three suggestions, loop interchange is the easiest. After this operation the loop takes
the form

forall i in 1..n do
for j in 1..n loop

y[i] y[ij+A[i,j]x[j];

end;
end;

The "forall" loop body will now be large with respect to the loop overhead, but another
problem that may inhibit performance is memory contention for shared data. In this case a
second analysis tool called "analysis: Cache Management" can be invoked. As will be
described in more detail in section 4, this tool will report the following information when the
program focus is the "forall" loop.

Cache/Local memory analysis for iterate i:
Suggest local copies of: A[i,1..nl, x[l..n]
for n=100 hit ratios will be 0.99, O.99g9

This (too cryptic) message suggests that local copies of these variables be made in each pro-
,,-ssor. A major shortcoming of this form of the analysis is that the user is not informed of
th,.. penalty for failing to take this advise. In section 4 we discuss the future extensions of
this analysis that will provide expected improvements in multiprocessing efficiency :L,: a

4.

i~ r _ - % %

-- - - -- - -

. roesult)r this mernory management. The resulting program will take the formn

forall i in 1..n do
var: x-local, A-Jocal: array[1..n] of real;

' /-A-ocalfl..ni a~i,1..n];
xIocal[1..nI : x(1..nI;

6 N for j in 1..n loop
y[i] : yji]4.A.Jocal~j~xjocaIj];

end;
-4 end;

Cl1early zi-ocal need only be initialized once per processor but in B~laze we have no way to
expres.s this, so this task is left to the code generation step.

Optimzin Code For The A1tant FX/8.

* -. Suppose the target machine were chosen to be the Alliant FX/8. Each processor on this
mnachine has a vector instruction set and a vector register set that generalizesj and extends
the M68020 which forms the basis of the rest of the processor design. The execution of

parallel loops requires almost no overhead, but best performance is achieved only if the

To optimize the matrix-vector routine for the FX/8 we would begin by recognizing that
the vector instructions operate from registers of length 32. For this reason, the user may
wish to "block" the inner loop in vector segments of length 32. This requires two steps.
Firsc the user selects "block by 32" from the transformation menu as illustrated hy the
screen dumps in Figures 2.1 and 2.2. In the second step the inner loops are vectorized.

The result of these two operations is shown below.

'4~~=ouc Gap________ . Graph

Procedure Matmul(Ax) returns W, or.
param A arrayl I ml n Iof real.

x arrayl In I of real,.ml lmZ fr
0const n upper(x).

Fork in I n/32 loop Fr
tiplI .= (k- 1)*32+l
tmp2 := 32.
For i in tmnpI tmnp2 loop

For j in I. _n loop

end for,
end! or;

end! or;

Figure 2.2 . System State After Lo~op B~locking Transformation.

4'5.

% v. %

frfor kin O..n/32-1 loop

h.k1 32*k+l;
k2 320(k+ 1);
y[kl:k2l : y[kl:k2] + A[k1:k2,j]*xj;

end;
end;

At thi_ pI t a third component of the performance analyzer can be invoked. The Vector
Code Analyzer wAill make an estimate or the quality of the vector instruction utilization forI ; 1,--Ip. In this case it will report

Vector instructions Frequency
KLoad/Store 2*nn/32rMultply-Add 1*nn/32

.- rith. Efficiency = 33% (for n=100)

The vector efficiency term is computed based on the fact that for diadic vector instructions
-he2 irocessor is capable of two floating point operations every clock cycle. Vector loads and

.- rsdo niot contribute to the total number of arithmetic operations but they do consume
1.r amounts of time. If we look at the inner loop we notice that the indecies on the vector
-gm,,nts fo~r V do not depend upon j. In this case one simple "loop interchange" transfor-

::,.atior1 %ill bring the j loop inside and the processor need only load and store each V seg-
:: ,-ut once. The rest of the time it can remain in a vector register. Parallelizing the outer

;.gives the code below and the corresponding statistics.

forall k in O..n/32-1 do
k1. 32*k+l;
k2 320(k+ 1);
for j in 1..n loop

y[kl:k2l : y[kl:k21 + A[kl:k2,j~xj;
end;

end;

!'he ut put from the c-ode analyzer is now

Vector instructions Frequency
Load/Store 20n/32
Mfultiply-Add nn/32
Arith. Efficiency = 9g% (for n=00)

%K ti~e that this simple transformation has had the effect of a three fold improvement in vec-

r rit etT'iciencv. The resulting code is, in fact, the fastest matrix-vector form for this

3SYSTEM ORGAINIZATION AND THE TRANSFORMATION MODULES.

Th'le systemr isi organizedi as a set of four interacting modules: the pars.er/analyzer, the

~r~rmtiouimodule, the performiance estimator, the code generator, and the user intei-

Fi -. iianager. In this section we describe the P ar-ser/ anal yzer, the user interface and t ho
Igr%,in transformation moiltiles.

Pro/~~gram P'arser and A nalyzer

.% the timp a programn module is loaded into the system it Is comipletely parsed anid a
i nt r,) +edence- graph and symbol table is const ructed. The control dependence

4 U.

,~*-~*b% . % %~ .

% K, .1-2 %

70 F - ---------

graph is based on a statement level version of the PDG of Feranti and Ottenstein [6]. Each
program statement is represented by a graph node in the control dependence graph. An arc
goes rom one node to another if the latter is "control dependent" (in the sense of [6]) on the
former. In the case of structured programs this graph is always a tree as illustrated in Fig

The nodes of the control dependence graph, called BIF nodes, represent program state-
ments, declarations and control forms. Of course, this is not enough detail to describe a
program. Within each program statement there are one or more expressions describing the

. parameters of the statement. For example, a "for loop" in Blaze or FORTRAN takes the
* "form

For <var> from <lower-bound> to <upper-bound> by <increment>.

For i in I ..n loop
xi I :=1.5; For i in I..n
if(i > 3) then
els x lil:- 2 ; . i"-'" else

ylil :- 3:
end if:

endloop; xli]:- 2 ylii := 3
v"-l

Figure 3.1. Program Control Dependence Graph

Each such expression is represented by a low-level dataflow graph which is attached to the
BIF node which forms a template for the statement. While there is nothing new about this
type of representation, we have found that its simplicity provides for great generality in the
language it supports. Hence, the same graph can be used to represent several different pro-
gramming languages.

The basic program graph has been defined with a general imperative programming
language in mind. Using the same internal structure we currently represent either Blaze or
FORTRAN programs. The extensions to support C are not complete, but only require the
addition of a pointer type and the corresponding dereferencing operators. The way this
works is that common control constructs, i.e. "for" loops, if-then-else blocks, case state-
ments, variable assignments and function calls, form the core of the common semantics of
each of these languages. There is one node type for each of these fundamental forms. For

those features that exist in one language but not the others, we add extra node types. For

example. FORTRAN has a "goto" statement and Blaze does not; also Blaze and C have
record type variables and FORTRAN does not. The most important point is that, at the

@, O lvel of program semantics, and, especially in the area of control structures, there is very lit-
tie difference between these languages. This means that we can write general program
transformation modules that work at the level of common semantics.

We provide a special parser and "unparser" for each language. The unparser is the
devise for recovering the original source for display in the text window of the system. This
works by simply traversing the cmntrol dependence graph and, using the symbol table gen-
(,rated by the parse, reproducing the original source up to, but not including th
programmer's use of white space. (We do save comments and try our best to put them back

in the original positions. This can be difficult if the "original position' no longer exists after

04 7.

. ,, , _. ,. . ,.. : ,, . . . , . , . .. ,.

a transformation step.) By labeling each graph with the source language type we know how

to resolve any minor differences at the control structure level.

It is important to note that this syntactic independent internal representation of the
language does not give us the ability to parse a FORTRAN program and unparse it as a
Blaze program. Rather, it gives us the ability to design program transformation and
analysis tools that are relatively independent of the syntax of the original program. The
most important shortcoming of this program dependence graph is that it is limited to
representing simple imperative languages. Higher order constructs such as Object and Class
structures or first class functions and continuations have not been addressed.

The data dependence analyzer adds data flow information edges to the Control Depen-
dence Graph. These take the form of distance vectors representing flow, anti, output or
input dependences in the form described in [41 and [15]. In addition we have added special
information about the structure of uniformly generated dependences so that cache perfor-
mance modeling can be done. This is described in more detail in section 4.

The data dependence analyzer is invoked each time the program is modified by
transformation or special dependence information is needed by another unit of the system.
To keep this from creating excessive computational overhead the dependence analyzer works
in an incremental manner. In the case of structured programs where the control graph is a
tree, this works in a manner similar to the Cornell Program Synthesizer which uses an attri-
buted grammer to build an internal representation of a program.

The User Interface And Program Transformation Modules.

The style of user interaction is identical to that of most modern software tools. The
user is given a "work space" into which the program under study is loaded. By means of

menu selection, the user is also equipped with a large palette of tools that he can apply to
selected parts of his program. They take the form of program editing, transformation and
evaluation tools.

Because the system is built on top of a solid library of graphics, menu and text mani-
pulation routines provided by the FAUST environment, the user interface is the simplest
part of the system. It consists of a loop which responds to user generated events. Events
are interpreted as either a resetting of the program focus or as a call to invoke one of the
tools and apply it to the current focus.

The program transformation module is organized as a collection of routines that each
implement one of the transformation theorems. (These are given in various places in the
literature, see [19], [171, [1], [13], [11, [21, [4], [15], [18]). Each routine first verifies that all
.he conditions are satisfied to guarantee that the transformation is correct, then it carries
out the transformation, updates the dependence graph and redisplays the text on the screen.
For example, to interchange two nested loops in a program segment we must invoke the

* theorem

LOOP INTERCHANGE: Let L, and I+, be a perfectly nested pair of loops
with /.,, C Li. The two loops can be interchanged if and only if doing so will
not violate a data dependence constraint associated with any statement or
pair of statements nested within L,+1 .

The data dependence constraint translates into a simple mathematical condition on the
distance vectors associated with the dependence. (In particular, if interchanging the 1" and
(t+1) component of the distance vector causes the vector to have a negative leading non-

J: zero term, then the constraint will be violated.) The loop interchange module first checks to
see if the current focus is rooted by a loop and that the next level down is a loop perfectly
Snested within the first. The dependence test is then made. If the test is passed the opera-
tion is carried out. If the test fails, the user is notified as to why the transformation could
not be applied.

8.

%.., -

The user is free to override the system and to insist that the transformation be done.
There are two reason for allowing this. First, the data dependence analysis may not be able
to completely decide if a dependence is real. (For example, subscripts in arrays that involve
function calls). In ca-ss where it cannot decide if a dependence exists, the system takes a
conservative approach and assumes the dependence is there. The programmer may have
additional information that the parser and dependence analyzer does not have. For exam-
pie, knowing that the function call in the index expression is of a special form that would
rule out the existence of a dependence. In this case it may be safe to complete the transfor-
maton The second reason for overriding the system is that the user may, in fact, wish to

-hange the meaning of the program.

4 PERFORMANCE ESTIMATION
The performance module consists of two main components: The cache/local memory

modeling package and the vector code generation estimator. It is important to understand

that this is not a performance evaluation package that gives a detailed analysis of program
behavior based on actual execution statistics. Rather, it is a tool that makes a priori esti-
mates of potential program execution behavior. The objective is to provide the programmerI: some immediate feedback about the suitability of his algorithm constructs and potential

problems he may encounter during execution as the code is being designed. Once the code is
running on the target, the programmer will probably switch to a performance evaluation
package to do final fine tuning. For the most part, this component of the system is far from
complete and only a simple prototype is currently running.

The Cache/Local Memory Modeling Package

The Alliant FX/8 has a unique memory organization. All 8 CEs are connected by a
crossbar switch to a shared cache. The bus bandwidth between cache and main memory is
approximately one half of the total bandwidth between the cache and processors. While this
provides a simple solution to the cache coherency problem, it does have major implications
in the way parallel programs are organized. In particular, if one processor is using a large
amount of data that is not used by the other processors, it can cause the cache to be filled
at the expense of the performance of the other processors. Consequently, it is best to organ- ..
ize the code so that processors can share cached data if possible.

For the Butterfly machine a different problem dominates system performance. In this
machine every word of memory can be reached by every processor. However, the memory
that is local to a processor is significantly faster to access than that part of the address map
that is nonlocal. A related issue is that of memory "hotspot" contention. This refers to the

degradation problem caused by a large number of serial accesses to the same data item by a
large number of processors (see 1161). It has been shown that by careful use of local

memory, many of these problems can be avoided (see [3]).

Both the cache problems of the Alliant and the local memory problems associated with
the BBN Butterfly can be treated by using a new theory of memory management based on
dependence analysis that we have designed [8]. The key idea behind this work is that each
data dependence is described by a cache window, which is the set of data values which when
kept in cache after being referenced by the head of the dependence, will result in a cache hit, after the tail of the dependence. It is shown in [8) that an algebraic model can be given to
he structure of these cache windows. The model is powerful enough to allow us to give a
irst nrder estimate of both cache and local memory behavior and tell us how to optimize the

-.. program to improve memory hierarchy use.

Vector Instruction Efficiency Estimator

Like the multiprocessors from Cray and ETA, the Alliant makes extensive use of a vc-
tor instruction set. Our experience has shown that one of the first things a programmer
wants to know when he is optimizing code is how well his FORTRAN SX was translated

9.

% -'.-':

into vector and parallel code. In many cases he can decide to restructure a program if. fur

i--- *.$, example, he realizes that the current form does not permit the code generator to use any
diadic operations. On the Alliant, this type of reorganization can provide a 30%'o improve-

ment in performance.
. One of the estimation tools that we are adding to the system works by a pass over the

selected program focus and makes a simple estimate of scalar code and loop overhead, as
well aLs an estimate of how well the Alliant Code generator will be able to generate vector
oode.

This tool is related tc another tool that we are adding to the Faust Workbench. We
are building a code analysis package that will examine the output of the compiler and give
statistics about the density of vector operations and the frequency of use of parallel con-
structs. Of particular concern in both tools is the effective use of diadic operation and a
measure of how much time is spent moving data in and out of registers.

5 GENERATING TARGET SYSTEM CODE

Once a program has been optimized for a given architecture, a programmer will want to
have it run. This means that code will need to be generated for the target. Our approach
to this problem follows the tradition of other restructuring systems. Rather than generate
object code, we output source code that utilizes the language extensions and special function
calls that are specific to that machine. The advantage is that we can take advantage of the
native code generators and optimizers that exist for that machine.

In the case of FORTRAN, we generate Alliant vector-concurrent FORTRAN 8X for
that machine. For Blaze programs we generate C code for the Alliant. In the case of the
Butterfly we generate a C program that utilizes the BBN "uniform system" runtime
environment for both FORTRAN and Blaze.

The first problem that one confronts in mapping the computational model defined by a
parallel programming lpnguage like Cedar Fortran or Blaze to a target like the Alliant or
the Butterfly is the following:

How does one provide efficient parallel execution of a. language that is histor-
ically rooted in sequential stack based semantics?

The first instance of where this problem arises is in the execution of concurrent loops
where the body of the loop contains references to names defined outside the loop. We would
like to have a runtime stack which, at the point of a parallel loop invocation, can branch so
that each processor has a private stack branch, but they share the part of the stack before
the parallel execution call.

With the Alliant FX/8 the solution to this problem is built into the hardware. There
are special instructions to set up this type of "cactus stack" and have each processor start
execution at the appropriate place and time.

Unfortunately, the Butterfly presents a different computational model. Using the "uni-
form system" on that machine each processor gets a copy of the C program static data and
h's its own stack in private memory space. All shared data must be explicitly allocated in
global memory. Consequently, if one processor updates a static variable or pushes an item

on the stack it is invisible to all other processors. The solution to the problem for the
Butterfly is to make the code generator allocate a copy of the activation record in global
memory that is reachable by all processors. Any reference to data outside the scope of the
lo,)p is made through this record.

It would seem that the Alliant solution is by far superior, but there are other problems
when one tries to extend the semantics in directions suggested by Schedule [5J and other
portable concurrency packages. Dongarra and Sorenson have argued that parallel program-
nvri should have the ability to write code that permits tasks to be generated dynamically
and scheduled for execution when the appropriate data is available. It is important that

'

'.10.

<1-. * i &~. .x;w'- *.

. . - - * , - -'- -.,. . 'P ; -- ' 2 . -- :. - - - -

S these tasks be "light weight", i.e. unlike a Unix process, the creation and scheduling of :a
task should involve no more overhead that a typical function call.

The ability to do this was supported directly by the hardware or the Denelcor H1EP, but
is missing from most of the current designs. The logical extension of the light weight task
idea is the future used by Halstead in MultiLisp 1101. The principle concept is that any

function call

x Foo(a,b,cd)

can be replaced by

x = future(Foo, a,6,c,d)

The use of future causes a task to be created and start executing when the appropriate value

for the parameters are known. Meanwhile, the calling task continues to execute until the
value of x (or any other value computed by Foo and assigned by side effect) i3 needed. At
that time the caller must be suspended until Foo terminates.

The key problem is that suspending the caller cannot keep a processor tied up or a
deadlock situation will result. Consequently, the system must encapsulate a state for the
caller. Because we must assume that any processor is able to continue the execution of the
caller, we cannot keep this state on the private stack of any one processor. Consequently,
the task state must be saved in the global heap.

W"e are currently extending the code generator to support this future construct. Ther,
are a number of problems that we are trying to solve while completing this task.

1. How do we generate the synchronization mechanisms needed to schedule the futures?

2. How can we find an efficient implementation for our list of target machines?

3. How do we keep the implementation of futures consistent with the execution model
*" - for parallel loops?

4. Can we detect when a function is a good candidate for execution by futures rather
than a straight sequential call?
5. In what way can we use this execution model to help us implement object oriented
programming?

8 REFERENCES
I. J.R. Allen, 'Dependence Analysis for Subscripted Variables and Its Application to Pro-

gram Transformations," Ph.D. Thesis, Rice University, Houston, Texas, April 1983.

2. J. Allen, and K. Kennedy, "A Parallel Programming Environment," Technical Report.
Rice COMP TR84-3, July 1984.

3. W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, T. Blackadar, "Perfor-
mance Measurements on a 128-node Butterfly Parallel Processor," Proceedings of 1985
International Conference on Parallel Processing, pp. 531-540, 1985.

• '4. R. Cytron, "Compile-time Scheduling and Optimization for Asynchronous Machines, ''

_Ph.D. Thesis, University of Illinois, 'Urbana-Champaign, Aug., 1984.

5. J. Dongarra, D. Sorensen, "SCIIEDUtLE: Tools for Developing and Analyzing ParallMl
Fortran Programs," in Characteristics of Parallel Algorithrs, Jameson, (;annon,
[)ouglas, eds. MIT Press, 1 87, pp.363-394..

6- J. lF-rante, K. Ottenstein, J. Warren, "The Program Dependence Graph and Its I sos in
Optimization, IBM Technical Report RC 10208, Aug. 1983

041

D. Gajski, D. Kuck, D. Lawrie, A. Sameh, "Cedar- A large Scale Multiprocessor",
Proc. of the 1983 International Conference on Parallel Processing, IEEE, Aug. 1983.

S. D. Gannon, W. Jalby, "Strategies for Cache and Local Memory Management by Global
Program Transformation," Proc. of 1987 International Conference on Supercomputing,
Athens, Greece, June 1987, Springer-Verlag Lecture Notes in Computer Science.

9. V. Guarna, "\PC - A Proposal for a Vector Parallel C Programming Language," June
1987, Center for Supercomputer Research and Development, University of Illinois,
Urbana, Illinois. Technical Report No. 666.

10. R. Halstead, "Implementation of Multilisp: Lisp on a Multiprocessor," Proc. 198.1 ACM
Symposium on LISP and Functional Programming, pp.25-45, Aug. 1984.

Ii. K. Kennedy, "Automatic Translation of Fortran Programs to Vector Form," IRice
Technical Report 476-029-4, Rice University, October 1980.

12. J. Kowalik, Parallel MIND Computation: Hep Supercomputer and Its Applica-
tions, The MIT Press, 1985.

13. D. J. Kuck, R. H. Kuhn, B. Leasure, D. H. Padua and M. Wolfe, "Dependence Graphs
and Compiler Optimizations," Conference Record of Eighth Annual ACM Symposium
on Principles of Programming Languages, Williamsburg, VA., January 1981,

14. P. Mehrotra, J. R. Van Rosendale, "The BLAZE Language: A Parallel Language for
Scientific Programming," Report No. 85-29, ICASE, NASA Langley Research Center,
Hampton, Va. (May 1985). (to appear in Journal of Parallel Computing).

15. D. Padua and M. Wolfe, "Advanced Compiler Optimizations for Supercomputers,"
Communication of ACM, Vol. 29, No.12, Dec. 1986, pp. 1184-1201.

16. G. Phister, A. Norton, "Hot Spot Contention and Combining in Multistage Intercon-
nection Networks," Proceeding of the 1985 International Conference on Parallel Pro-
cessing, IEEE 1985, 790-797.

17. C. Polychronopoulos, "On Program Restructuring, Scheduling, and Communication for
Parallel Processor Systems," Ph.D. Thesis, University of Illinois Center for Supercom-
puter Research and Development. CSRD TR.595, Aug. 1986.

18. Wang, K.-Y., Gannon, D., "Applying Al Techniques to Program Optimization for
Parallel Computers," in Al Machines and Supercomputer Systems tlwang.
DeGroot, eds. McGraw Hill, NY, 1987.

19. M. Wolfe, "Optimizing Supercompilers for Supercomputers," Ph.D. Thesis, Dept. c,.'
Computer Science, University of Illinois, Urbana-Champaign, 1982.

12.

• .' " ". .-,. ---' ' ' .'. ' '. - ' '-..' '- .-. -.''. . .- . ., .- .'- . '- ,'' 3, : " .-, - ' ', ' ' , -.- ,' " , , -, . -- '

14

VY00

'aes

