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ABSTRACT

A moving point-target generates a non-circular image on a CCD photo-detector focal
plane. Using a two-dimensional Gaussian signal model, we have derived the Cramér-Rao
lower bounds for target location and velocity estimators, It is shown that, when the signal

and the noise are assumed to be Polsson processes, both the location and the velocity

bounds are inversely proportional to quadratic functions of SNR.
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1 INTRODUCTION

We consider the problem of estimating the location vector g and velocity vector v of a
remote target, as viewed through an optical system. The focal plane consists of a large array
of CCD photo-detectors. The amount of charge stored in a CCD cell, after an appropriate
exposure time, is the sum of two independent Poisson random variables: one due to the
target signal, the other due to noise. Therefore both the signal and the noise are “random”
quantities.

Many applications require knowledge of the inherent maximum estimation accuracy.
The classical Cramér-Rao lower bound (1,2] has been widely used for this purpose. Using
Poisson statistics, Winick in a recent paper [3) has derived the Cramér-Rao location bounds
for a stationary target on a two-dimensional CCD focal plane.! In this report we investigate
the bounds when the target is nonstationary during the time of exposure. As a result of the
target motion, the Image observed on the focal plane is elongated along the velocity vector.

In this section we discuss a Gaussian-shaped signal model, and in the next section we
will derive the Cramér-Rao location and velocity bounds based on this model. We use a
two-dimensional Dirac delta function 6(z ~ ut) to represent a rectilinearly moving point

source, with 2 and p denoting the position and the velocity of the target and ¢ denoting the

time. The image of the target is projected u; »n a CCD focal plane through an ordinary
. : telescope. Let smn(gZ,u) be the m-nth sample of the optical image, then the relationship
"’l‘w’ - between §(z,2t) and sma (2, 2) can be described by linear system as shown in Fig. 1.

o Several functions are involved in this system. They are the point-spread function p(z),

U 1A brief survey of previously published work can be found in Winick’s paper [3).
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the dimension function of the CCD cell gmn(z), and the frame integration function g(t).

For the point-spread function we use a Gaussian approximation [4]

1 z'z .
= 3 —_— 1
p(z) Vane, ewp[ ) 03] (1)

where o, i8 the standard deviation of the Gaussian function and the prime denotes the
transposition operation that converts the column vector into a row vector.

The CCD cells and the temporal integration usually have well defined boundaries.
Therefore they should be modeled by a rectangular function. Unfortunately bounds de-
rived from such functions contain integrals which do not have closed form representations.
Since a major goal of this work is to derive analytic Cramér-Rao bounds for a special case
that is not overly restrictive, so that we can infer some useful properties of the bounds, we

will approximate both gma(z) and g(t) by Gaussian functions. They are given by

dmn(2) = Wira.'—c exp [_ (g - ﬂnmz);(;- - ﬂmn)] (2)

and
o) = g exp |~ | 3
270y 20!
In (2) and (3), o, is the radius of a circular area used to approximate the square CCD cell
area, and oy is a tlme parameter used to approximate half the frame integration time.
The signal function smn(g,2), seen by the m-nth CCD cell may be obtained by mul-

tiplying the Fourjer transforms of the four functions and then taking the inverse Fourler

transform. The result is

Sma(Zyk) = Aexp [

_(@ = mn) (&~ Zmn) 1(2 = Zmn) 8@~ &mn) (@
207 P2 o1 + 'y ’
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with ¢? = ¢2+03. In (4) we have used ascaling factor A. If we require that ., Smn(2,2) =
1 then A is given by

d= -—————-1—--——— (3)

mfoilod + v'uof]

A typical signal image is shown in Fig. 2. Note that the signal has wide spread in the
direction of the velocity vector and relatively narrow spread in the perpendicular direction.
Generally Eq. (4) is not a separable function except when the target moves parallel to
one of the coordinate axes. Because this simplification allows us to gain some insight into
the Cramér-Rao bounds we will formulate the signal for this special case. Let g = [z}, 23],

Zmn = (T1m+ %)y & = [v1,v3). Letting v3 = 0 Eq. (4) reduces to a separable function
Smn(21,22,v1) = Pi(z) = 21my 1) P3(2q - 220) (6)

with P; and P; given by

1 21— i)
P21 = 21my01) = exp [-E%—EIT"‘ZQ—] (1)
;;21r(a'? + vfed) 2o + viof)
and
(23 = z3n) = exp [ (&2 — 9n)" = Zan)° ] : (8)
;2.”0.2 202

Eq. (6) will be used in the next section for the derivation of the analytical forms of the

Cramér-Rao bounds for the special case of »; = 0.

2 THE CRAMER-RAO BOUNDS

. In this section the Cramér-Rao bounds for the astimation of locatiou and velocity
L are derived. We model the electronic signal (the electron count) rmn(z,2) to be the sum

A of three independent Poisson processes — the photoelectrons produced by the target, the

3
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f:; photoelectrons produced because of the sky background noise, and the electrons produced

by CCD dark-current during frame integration time.? The rpn(z,2) itself is therefore a
o Poisson process® with the average number of electrons given by \,smn(2Z,2) + AN where A,
. is the average number of photoelectrons produced by a target of unit intensity, and Ay is
the average number of photoelectrons produced by the sum of the two noise processes. The
noise is agsumed to be spatially and temporally independent and stationary.

If rmn i8 the observed number of electrons, the likelihood ratio A can be written as

f‘" - (’\Oamﬂ + '\N)'"m exp[—(A‘sm" + AN)J ( ’\.amn ) " =Nidmn

, ' Taking logarithm of both sides, we get the log likelihood ratio

o \

k ' InA = 2 Tmn 10 (1 + ﬁmn) Z Asdmn (10)

If we assume the stressing case where the target intensity is much less than the noise, that

‘ isy, Ajdmn € AN, 4 then

'\chn) AsSmn
ln(1+ w ) © Syl (11)

Substituting (11) into (10) yields

. InA = rz Pmn = '\N)"mn . (12)

N 'mn

| Eq. (12) provides us with a formula for the matched filter detection of the target streak.

2 2The readout circuitry noise is assumed to be small, and not the limiting factor of performance.

3Due to the reproductive property of the Poisson distribution.
‘The bounds derived under this assumption will likely to be too pessimistic when the signal intensity is

high.
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The Cramér-Rao bounds are the diagonal elements of the inverse of the Fisher informa-

tion matrix

o F = [fi] (13)
R
.\n'::
ta where f;;, the i-jth element of F is defined as
" : _ OlnA 6lnA
) fi=E [ 08; 06; ] (14)

The #'s are defined as 6y = 1, 6 = 23, 63 = v;, and 04 = v3. Therefore, for example, the
. variance of the z, estimate, denoted by a‘,’,‘, satisfies the relationship a,’,, 21/ fi1.

Taking the derivative of (12) we obtain

o OlnA A = ) 2oma
iLI :% ao‘. - AN m"(rmﬂ APJ) aoi ' (15)
;;"’;‘T The fi; are then rewritten as

r.. a

. fij = 'i‘E [Z(rmn '\N) am,. Z (7pe = '\N

syt ma
i O3mn 9359 '

o = E{(*mn = AN)(Tpq = AN) (18)
o Xt; :‘? o9; 06; mn P -

. Letting ™mn = Smn + Nmn, Where Sy, and Np, are independent signal and noise
v‘;,'f: processes, then the corralation E[(rmn — An)(7pq = Ax)] can be evaluated as
i,.l:' E[("mn - '\N)(qu - '\N)] = E[(Smn + Nmn = '\N)(Spq + Npq - /\N)]

" = E[SmnSp) + E[SmnNpg] = ANE[Smn] + £[SpNmn]

’-;i ) +E([NmnNpg| = ANE[Nmn] = ANE[Spg] = ANE[Npg] + A
:" = '\Esmm’pq + (Asdmn + AN)S(Mm~p,n—¢q) . (17)
: Substituting (17) into (16) ylelds
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fij = N2, Z(asm"W*)E

N mn
A? O8mn O8mn
+:\72( 06; 89; ) ' (18)

mn

The Fisher information matrix, whose elements are given by (18), usually requires nu-
merical computation. However, considerable simplification is possible when the signal is
treated as a continuous signal (not sampled) and when its velocity is aligned with one of
the axes, owing to the fact that the signal becomes separable. For this special case the

Cramér-Rao bcands are found to be®

4SNR? S'V'R
Ugl > (O‘, +'l)1 t)/[ 9,\. } ' (19)
4SNR? SNR
o5, 2 03/["5’7'—%—2—] ) (20)

Q
<
V

Vs (ﬁt%ﬂ)n/[( +§7\">S\‘R2 SS?R]- (21)

The SNR is the signal-to-noise ratio defined as the ratio of the signal energy and the noise
variance. For the separable signal in (6) we have

’\2

SNR = . (22)
dro,Jod + viafin

After appropriate normalizations to render the bounds dimensionless we obtain

3 1
(%_L) > [1+ ; a. ]/[451\:11 SNR] | (23)
" ' .
o g’_l‘ 4SNR SNR
N (a ) 2 1/[ 0, =5 (24)
W .
" Oy ) > l(g_.) cn [ 2 , 3SNR
0 (-J- > (% 9’\. SNR + 22 @)
X
ﬁ:;‘,‘ $Derivation of the bounds is given in Appendix A.
: 6
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oy Letting 0, = 1 and o, = } (thus 0% = 1.25), and o¢ = &, and A, = 1 we plot the bounds of
' oz, and oy, for diiferent velocities and signal-to-noise ratios in Fig. 3. In Fig. 4 we plot the
0 bounds for different )\,, setting SNR = 10 dB.

We observe that
o 1. The bounds are functions of SNR as well as A, (or equivalently, An).

2. The bounds (of the variances) are inversely proportional to quadratic functions

. of SNR.

t 3. For fixed SNR the bounds increase monotonically as A, increases. This property
' can be explained by observing that if A\, increases linearly Ay must increase

Yl quadratically to keep SNR constant.
, 4. All bounds are independent of the target location.

In Fig. 5 we have plotted a few typical location and velocity bounds to illustrate the
relationship between the bounds and the target velocity. It can be verified that the location
bound increases monotonically between v; = 0 and v; = o0 and that the velocity bound has
a minimum somewhere in the interval [0.7072,/:,0.818¢0,/c,]. Thus, as a design criterion,
N a,/0: should be chosen in the vicinity of expected target velocity — the classic dwell-in-cell
criterion.

In appendix B we have included formulas for the numerical computation of thel Cramér-
Rao bounds. The computed Cramér-Rao bounds have similar behaviors as those discovered

for the special case of v3 = () discovered in the section.
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3 SUMMARY AND DISCUSSION

For a moving point target we have derived the Cramér-Rao bounds for the variance of
the location and velocity estim~tors. The major ditference between our resull and previously
published works is that during the CCD exposure time, the target streaks and the velocity
parameter must be estimated from the streak.

To compare our results with 3] let us set v; = 0 in (A8). The location bound can be

rewritten as s
o3, 723 (ag + 03)
o2 = (M/ANP(2+ 97(0d + 0)AN/A)oR

(26)

If we fix o, the size of the CCD cells, and vary o;, the size of the point-spread function, it
can be shown that (26) approaches infinity when o, approaches 9ither zero ot infinity, and
that (26) has a minimum when o./¢;, is in the vicinity of 1. Some typical curves of (26)
are plotted on the left hand side of Fig. 6. This is essentially what is shown in Fig. 2 of
(3]. However, we notice that as o, approaches zero both sides of of (26) approach Infinity
regardless of the value of o3. That is, the normalization by o3 masks the true behavior
of the bound when the point-spread function becomes inflnitesimal. A more interesting
asymptotic behavior, however, is obtained when we normalize (A8) differently, namely
o2, 7273 (03 + erg)2

Sz > .
o} +03 = (Ae/AN)3(2 + 97 (03 + e)An/A)

(27)
The right hand side of (27) approaches infinity as o, approaches infinity, but it approaches
a finite value when o, approaches zero. Some typical curves of (27) are plotted on the right
hand side of Fig. 6. Intuitively, if the point-spread function is much wider than the CCD

cell size system performance suffers because we must look at many noisy pixels in order

to collect most of the signal energy in the spot. On the other hand, if the point.spread

8
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function is much smaller thay the cell size, we lose subpixel resolution, and therefore the

bound asymptotically approaches a finite valne.
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APPENDICES

A THE FISHER INFORMATION MATRIX - v =0

To eva'uate the Fisher information matrix we must find the derivatives of the signal function.

In the special case that vy = 0 the signal is given by

3mn(21,22,11) = Pi(21 = Z1m, 1) Pa(23 — 23n) , (Al)
where .
Pi(21 ~ 21mym) = exp [— (21— 2y ] (A2) n
. 2r(03 + vicd) 207 + vio])
\, and ]

1 @ = an)?
Py(zg = 2n) = '\72-;:.;9"? [-STZ_L] . (A3)

The derivatives of Eq. (Al) are

Os o - 21
-5;"'1—"- = --Wﬂ(m = Tims 1) Pa(®2 = 225) ' (Ad)
Bomn o _BZIINp (41 — 2y, 1) Pa(2s = 220) , and (A8)
Oz T,
83mn vio}  [(21 = 21m)?
o = m TToior U P2y = 21my 1) Pa(32 = Z2n) . (AB)
In the following we assume that all summations can be replaced by corresponding in- 4

tegrals, this corresponds to the Umiting case of small detector cells and large focal plane.

Some useful summations are

30
8y’

ZP’UE%;, ZU’P’--{‘;’?, ZG‘P’-T
ZP’-W,.ZGQF-'W, ZO‘P‘-EUW;,
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where P, z, and o? are either Py(2; = T1m, %), 1 = Z1m, and ¢ + v3c? or Py(z3 ~ 224),
Tq = Tz, and o3,

The energy of the electronic signal is given by

E = '\3 Z P;’(zl - w’lm;”l)Pzz(zﬁ - Z3n)
mn
A

= . (A7)
41ro'.;;03 + vio? '

The SNR is defined to be the ratio of signal energy and noise variance, namely, E/An. A
justification of using this definition, based on hypothesis testing theory, is given in Appendix
C.

We now derive the elements of the Fisher information matrix, Because s;mn and O8mn/0Mm
are even functions in m and n and 8spmp /02, and Bemn/d2; are odd functions and all four
functions are separable, the first term in Eq. (18) Is equal to zero except when §; = 6, = vy,
the second and the third terms also are equal to zero except when &; = 6; = #; or when
8; = 6; = 23 or when 6; = §; = v;. Therefore all of the off diagonal terms of the Fisher in-
formation matrix are equal to zero and the diagonal terms are given by, after some alg;brﬂb
manipulation,

fu = mz(a'“) sn + 21 3 (G222’

mn

: AN
- :\t 36720 0'. + viof)? + 8ra,(od + viaf)¥?] '
Osmn A2 O8.nn 3
Jiz = 'xtz( ) mn+'\_l:;§(-5;;)
By A AN

- Xt [36«’0“(03 ¥ T 8xedy/od + "?d‘?] ,
o (B ) R () e R ()

mn

11

o mowem h ik m mea mane Bas - @ n ey e g s = mee mes n b B R Caie e see a8 oo dhee e s e e e




A2 [ 8), i (v109)?
= -_— 2 Y] ; *
,\, [-4 + 5 + 3ANTy /0 + vio] a,] T677(a? + 1307707 (A10)

After rewriting f11, f22, and f33 in terms of SNR we conclude that the Fisher information

matrix for the special case that v =0 is

F= 0 (SR 4 R) 2 0
0 0 (1 + o&) SNR? + 3SNR] (;,355’;;,)2

(A11)

r

B FORMULAS FOR THE COMPUTATION OF C-R BOUNDS

To compute the Cramér-Rao bounds numerically the following derivatives of (4) are needed:

&3mn 2L = %m _ [ni(e1 = Zim ) + va(®3 = @an)]v1 @
Bz, - T { o3 1 ol + (vf + vd)o} 3;} Smn (B'l)
Omn _ _|za=2am _ [wi(21 = 31m) + V3(#3 = Ban)]Va @ .
0z { 4 o3 + (vf + vd)of 35'} fmn s (B2)
Osmn _ _ { vio? _ [vi(®1 = 21m) + va(22 = @3n)] (21 = T1m) gg
o G ET o3 + (v + vi)of 4
11(21 = T1m) + va(@3 = 230)]* g .
+ [d‘, + (‘01 T o )6‘12 "&’} Smn (B3)
Osmn { vof _ [vi(21 = 21m) + va(22 ~ 22n)] (22 = 224) gg_
vy o +(v] +v3)0] o3 + (v} + vi)of o
[v1(21 = Z1m) + va(22 = 220)]* v3 0} '
- + [0? + (‘U? + vg)a ]2 "&} nm ' (B4)

We can rewrite (18) as an explicit function of SNR
- 2 Osmn a‘mn Oamn
= o (T T s TS /(50)
+SNR (Z a.,,.,. a.,..,.) / (Z .,,,) . (BS)

where 01 - 2y, 93 = 23, 03 = Y, and 04 = ¥%.

12
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C THE SNR AS A PERFORMANCE PARAMETER

In this appendix we relate our choice of SNR to a hypothesis testing performance parameter.

Using (9), and denoting the hypothesis of no signal present by Hg, it can be shown that

E[A|Ho]

1, : (C1)
HE [(1 + '\':;")”m] exp (~2As$mn)

e (z,\.a,,.,. + i',\-mn) XD (~2A48mn)

esp | ha) (c2)

We denote the distance between the means of the conditional densities p(A|Ho) and p(A|H})

E[A% Ho]

by d. The d ls commonly used to characterize the test performance and d? is given by (p.137,
(51,(6])
? = In{1 + VAR(A|Ho)} = In{E[A?| Ho} . (C8)
Substituting (C2) into (C3) ylelds
243
S LHE , (C4)

which g identical to our definition of SNR.
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