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ABSTRACT

A moving point-target generates a non-circular Image on a COD photo-detector focal

plane. Using a two-dimensional Gaussian signal model, we have derived the Craznir-Rao

lower bounds for target location and velocity estimators. It Is shown that, when the signal

and the noise are ausumned to be Poisson processes, both the location and the velocity

bounds are Inversely proportional to quadratic functions of SNE.
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1 INTRODUCTION

We consider the problem of estimating the location vector x_ and velocity vector v of a

remote target, as viewed through an optical system. The focal plalne consists of a large array

of CCD photo-detectors. The amount of charge stored in a CCD cell, after an appropriate

exposure time, Is the sum of two independent Poisson random variables: one due to the

target signal, the other due to noise. Therefore both the signal and the noise are "random"

quantities.

Many applications require knowledge of the inherent maximum estimation accuracy.

The classical Cramdr-Rao lower bound [1,2] has been widely used for this purpose. Using

Poisson statistics, Winick in a recent paper (3] has derived the Cram4r-Rao location bounds

for a stationary target on a two-dimensional CCD focal plane.' In this report we Investigate

the bounds when the target Is nonstatlonary during the time of exposure. As a result of the

target motion, the Image observed on the focal plane Is elongated Llong the velocity vector.

In this section we discuss a Gaussian-shaped signal model, and In the next section we

will derive the Cramir-Rao location and velocity bounds based on this model. We use a

two-dimensional Dirac delta function 6(1 - ut) to represent a rectilinearly moving point

source, with I and V. denoting the position and the velocity of the target and t denoting the

time. The image of the target Is projected ul ,n a CCD focal plane through an ordinary

telescope. Let , be the m-nth sanmple of the optical Image, then the relationship

between 6(1, 11t) and .mn(., I) can be described by linear system u shown in Fig. 1.

Several functions are involved In this system. They are the point-spread function p(&),

'A brief survey of previously published work can be found in Winick's paper t3].



the dimension function of the CCD cell q,,(•), and the frame integration function g(t).

For the point-spread function we use a Gaussian approximation [4]

1 [ 1'x
P( exp t (1)

where ap Is the standard deviation of the Gaussian function and the prime denotes the

transposition operation that converts the column vector into a row vector.

The CCD cells and the temporal integration usually have well defined boundaries.

Therefore they should be modeled by a rectangular function. Unfortunately bounds de-

rived from such functions contain integrals which do not have closed form representations.

Since a major goal of thin work Is to derive analytic Cram6r-Rao bounds for a special case

that Is not overly restrictive, so that we can Infer some useful properties of the bounds, we

will approximate both q,,•,(,.) and q(t) by Gaussian functions. They are given by

1 r (a- a.,)'(a• )
qMn(1) = exp 2( - (2)

and

g(t) = 7 ,• exp [- ] (3)

In (2) and (3), oa, Is the radius of a circular area used to approximate the square CCD cell

area, and at Is a time parameter used to approximate half the frame Integration time.

The signal function ,,n(.,L), seen by the m-nth CCD cell may be obtained by mul-

tiplying the Fourier transforms of the four functions and then taking the Inverse Fourier

transform. The result is

wm(ZL Aexp[ Im.in)1-&aan.) exp [I(a - +~)W -aw

(4)
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with oj = a•PoA, In (4) we have used a scaling factor A. If we require that £mn Smn(-,Q) -

I then A is given by

A = 1 (T)

A typical signal image is shown in Fig. 2. Note that the signal has wide spread in the

direction of the velocity vector and relatively narrow spread in the perpendicular direction.

Generally Eq. (4) is not a separable function except when the target moves parallel to

one of the coordinate axes. Because this simplification allows us to gain some insight into

the Cram~r-Rao bounds we will formulate the signal for this special case. Let ' = [z1 , X2],

Amn = (Zlm, Z2r.], 9 = -[v, v2]. Letting v2 = 0 Eq. (4) reduces to a separable function

8m?.(-1, M7,V1) = PI(zX - Xlm, V0) P2(X2 - X-2) (6)

with P1 and P2 given by

A ( - MIm, VI) exp (7)
+ ) 2(a + ?)

and

- 1 r z2a,' 1IV/2'rc. L 2o.• j()

Eq. (6) will be used in the next section for the derivation of the analytical forms of the

Cramdr-Rao bounds for the special case of v- = 0.

2 THE CRAMtR-RAO BOUNDS

In this section the Cram~r-Rao bounds for the estimation of locatiou and velocity

are derived. We model the electronic signal (the electron count) r,,(j, £) to be the sum

of three Independent Poismon processes - the photoelectrons produced by the target, the

3



photoelectrons produced because of the sky background noise, and the electrons produced

by CCD dark-current during frame integration time. 2 The rm,(., ) itself is therefore a

Poisson process 3 with the average number of electrons given by Aas,,m(1, 2) + AN where A,

is the average number of photoelectrons produced by a target of unit intensity, and AN is

the average number of photoelectrons produced by the sum of the two noise processes. The

noise is assumed to be spatially and temporally independent and stationary.

If rtm is the observed number of electrons, the likelihood ratio A can be written as

A = , + AN)f-n exp[-(A.aie + AIN)] + Aaimn erm,,mn

A" exp(-AN] A (9)

Taking logarithm of both sides, we get the log Ukelihood ratio

In A =Ea~ "I 1 + ýJ - E sm (10)n AN) N

If we assume the stressing cue where the target Intensity Is much less than the noise, that

is, Asamn < AN, 4 then

In I + A N (11)
AN) ANs,

Substituting (11) into (10) yields

InA 1A (r. AN)Imnn (12)

Eq. (12) provides us with a formula for the matched filter detection of the target streak.

'The readout circuitry noise is usuumed to be um"l, and not the limiting factor of performance,

'Due to the reproductive property of the Poisson distribution.
'The bound@ derived under this useumption will likely to be too pessimistic when the signal intensity is

high.

4



The Cram~r-Rao bounds are the diagonal elements of the inverse of the Fisher informa-

tion matrix

-1, =Ifol(13)

where fij, the i-j th element of Y is defined as

f = E E lnA OlnA 114

The 9's are defined as 01 = xj, 01 = X2, 03 = vj, and 904 v2. Therefore, for example, the

*variance of the -- estimate, denoted by a,,, satisfies the relationship a!, > 1/fii.

Taking the derivative of (1.2) we obtain

OlnA A~ .m
-= aE'm N) (15)A0 AN' mn 09

The fij are then rewritten as

1fj= j [1:(Imn - AN)ý-~T~ A )~
A 0

= ftt 1:1 n 'P EE(tmn - \N)(rpq - AN)] . 16
Mn pq A e

Letting rTmn, = Sm..n + Nm..n, where Smft and Nmn, are Independent signal and noise

processes, then the correlation E[(r",n - AN)(rpq - AN)] can be evaluated as

El((~mn - \N)(rpq - AN)] = E[(Smn + Nmn - ANy)(Spq + Npq - AA)

= E(SmnSpq] + E[SmftNpq] - ANE[SmnJ + E[SpqNmt]

+E(NmnNpq] - ANE(Nmn] - ANE(SpqJ - ANE(Npq] + Aý

= A#2SMfdPq + (Aedmn + AN)6(m -p, n - q) .(17)

Substituting (17) Into (16) yields



f4 SP( 9,9nn ) (0pq + Z( 0 ,m9.mn~

2N inn ' Pq " 'P) NrInn ~
" • (gin e smn (1.s)

Amn CU 6/

The Fisher Information matrix, whose elements are given by (18), usually requires nu-

merical computation. However, considerable simplification is possible when the signal is

treated as a continuous signal (not sampled) and when its velocity is allgned with one of

the axes, owing to the fact that the signal becomes separable. For this special case the

Cram&r.Rao b( ands are found to beW

2. ( a ,3 + /rC,2) _I t + E lN R ]1 9

a 2 >C'2 > /S2 / 4SA + 2 (20)

a > 1a 9\ N (21.)

The SNR is the signal-to-nolse ratio defined as the ratio of the signal energy and the noise

variance. For the separable signal In (6) we have

SNR :""""",-'(22)

After appropriate normalizations to render the bounds dimensionless we obtain

1 + V 1 4SNL- + SNR (23)

> 9A+•
"(,. Ž 'j[±SR + ¶] 2 (24)

,,... (i;,) !., 1@
W1~L [1 + V2 _ 2 ]1~ / [(1 + -. "SNR 2 + -L R (25)
(COat v I a,Jk d J1 4 9A* 4

$Derivation of the bounds is given In Appendix A.
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Letting ap = I and a. = I (thus oa. = 1.25), and at = ½, and A. = 1 we plot the bounds of

a,, and a,, for different velocities and signal-to-noise ratios in Fig. 3. In Fig. 4 we plot the

bounds for different A., setting SNR = 10 dB.

We observe that

1. The bounds are functions of SNR as well as A, (or equivalently, AN).

2. The bounds (of the variances) are inversely proportional to quadratic functions

of SNR.

3. For fixed SNR the bounds increase monotonically as A, increases. This property

can be explained by observing that if A, increases linearly AN must increase

quadratically to keep SNR constant.

4. All bounds are independent of the target location.

In Fig. 5 we have plotted a few typical location and velocity bounds to Illustrate the

relationship between the bounds and the target velocity. It can be verified that the location

bound increases monotonically between v, = 0 and v,- = oo and that the velocity bound has

a minimum somewhere in the interval [0.707o,/at,O.816./1at]. Thus, as a design criterion,

a,/at should be chosen in the vicinity of expected target velocity - the classic dwell-in-cell

criterion.

In appendix B we have included formulas for the numerical computation of the Cramir.

Rao bounds. The computed Cram&r-Rao bounds have similar behaviors as those discovered

for the special case of v2 = 0 discovered in the section.

T



3 SUMMARY AND DISCUSSION

For a moving point target we have derived the Cram&r-Rao bounds for the variance of

the location and velocity estim-.tors. The major difference between our resulL and previously

published works is that during the CCD exposure time, thc target streaks and the velocity

parameter must be estimated from the streak.

To compare our results with [3] let us set v, = 0 in (AS). The location bound can be

rewritten as
. > 72r2 (0. + o+g)

!LA ;ý.- ( 0)(26)
a2-(A./AN,)2(2 + 9ir(a2 + 0.2)A\NIA,]a

If we fix a,, the size of the CCD cells, and vary ap, the size of the point-spread function, It

can be shown that (26) appro'aches infinity when ap approaches either zero or infinity,, and

that (26) has a minimum when ac/ap is in the vicinity of 1. Some typical curves of (26)

are plotted on the left hand side of Fig. 6. This Is essentially what Is shown in Fig. 2 of

(3]. However, we notice that as &;, approaches zero both sides of of (26) approach Infinity

regardless of the value of a2. That Is, the normalization by a2 masks the true behavior

of the bound when the point-spread function becomes infinitesimal. A more interesting

asymptotic behavior, however, is obtained when we normalize (AS) differently, namely

2r 2  + 02) 27)

C2 + Cr 2 (A,/A\Ij) 2 [2 + 9~( + ) /2 (7

The right hand side of (27) approaches infinity as a. approaches Infinity, but It approaches

a finite value when ap approaches zero. Some typical curves of (27) are plotted on the right

hand side of Fig. 6. Intuitively, if the point-spread function Is much wider than the CCD

cell size system performance suffers because we must look at many noisy pixels In order

to collect most of the signal energy in the spot. On the other hand, If the pointvpread
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function is much smaller thazy the cell size, we lose subpixel resolution, and therefore the

bound asymptotically approaches a finite valne.
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APPENDICES

A THE FISHER INFORMATION MATRIX - v2 = 0

To evasuate the Fisher information matrix we must find the derivatives of the signal function.

In the special cue that v2 = 0 the signal is given by

9Mn(Zi, 02, 1 V) = PI(XI- 2 1m, VI) P2(w2 - W-.), (Al)

where

P1 (W[IX ) = 2w (21 _ xp 2,,] (A2)

and

21r4. 2 a222 27(A3)

The derivatives of Eq. (Al) are

S= . + V2,1 'PI-(X1 - Zlm, V)P2(X2 - 2n2), (A4)

8n'-T 2 - T oP (z- - 2 lm, VI)P 2 (X2 - X*,) , and (A5)

L8 3mn V1 a2  r (-1 - 1n2
S= O* + ,, 1O•,:, [ ,) + ,,(f -1 P1(z - X1m,,,,,)P 2(2- V22) . (A6)

In the following we uasume that all summations can be replaced by corresponding In-

tegrals, .this corresponds to the limiting cue of small detector celi and large focal plane.

Some useful summations are

1 . 1 1 43 a

10



where P, x, and a2 are either P1(x1 - zim, vi), xi - xlm, and &. + vcrd or P2(x 2 - X2,

X2 - X2., and cr.

The energy of the electronic signal is given by

A~o (A7)2•.& + V12rt

The SNR Is defined to be the ratio of signal energy and noise variance, namely, E/AN. A

justification of using this definition, based on hypothesis testing theory, Is given In Appendix

C.

We now derive the elements of the Fisher Information matrix. Because e,,n and Oj,, /OVI

are even functions In m and n and 8Snn,/O8 and 09,,,/002 are odd functions and all four

functions are separable, the first term In Eq. (18) Is equal to zero, except when 01 = Oj = Vt,

the second and the third terms also are equal to zero except when 91 -- j = x, or when

91 = -j = X2 or when 6i =Uj n vj. Therefore all of the off diagonal terms of the Fisher In-

formation matrix are equal to zero and the diagonal terms are given by, after some algebraiC

manipulation,

A32 A 2L/22 = •E• °-+•Eo,
t F' 3[ ")X AN ax I

" A ", + +,ui) + A" (A8)

11a A2 s + A (A9
36W5Cp,4(V,1 +.... 4,



- ,x• L 4 + L + 3 ,N ,-r@ / + v7;?u o., 16 .f . + ,f <,)3 l Al~ 2(,2+ la)3, (A1.O)

After rewriting hI1, f22, and f33 in terms of SNR we conclude that the Fisher information

matrix for the special case that v2 = 0 is

0 + oSN
0 0 [ + JL,) sNR + JsNR] V 02

(All)

B FORMULAS FOR THE COMPUTATION OF C-R BOUNDS

To compute the Crarn4r-Rao bounds numerically the following derivatives of (4) are needed:

eamn. -ý - - -I (2)1(XI - Xmi) + V2(02 - X2nj V1 a
8XI a2 -4 mn t(Bi1)

X2 - Xwn ('1X(1 - Win) + V2)(0 - 2201.) • , (BV)
003 1%n

o,7 . _ f V- ' l(, ) +,)2(02 - 02n"] (XI - Xim) 4oO--2 + (-V +' -D4 a'' + ( ,V? + Vt101 ape" (3"

o(2)(" -÷ 1t ) + . )• (0' - o2v)]2 I q,

(aI+ (v?+t4)a?] 4j..n,, (B3)

aamn~ V2 (7 [IT- - Olin) + Vý2 X20(02 n-1
+2 (.,+(v+ )o, -+ (V( + 03"1 V )o2 , o),

+ [2,I(X, - O,,n) + VI(X2 - 2:,)] 2 V,241 s . (b4)[a.1 + (VI + Vj)oti]2 -, 4 .,(4

We can rewrite (18) a, an explicit function of SNR

AjaSNR' (r, -am"~ 1:& + -,Zo-AmR) /(n a)

+SRm % (BS)

where 01 o, 02 0 x2, 03 a vi, and 94 a v2.

12



C THE SNR AS A PERFORMANCE PARAMETER

In this appendix we relate our choice of SNR to a hypothesis testing performance parameter.

Using (9), and denoting the hypothesis of no signal present by Ho, it can be shown that

E(AIHo] 1, (Cl)

E[AIlHo] = 'I E L1  mn exp(-2Aam)

= ."exP 2A,.,+ A SxpQ2Aa )

S .expS _,= j . (C2)

We denote the distance between the means of the conditional densities p(AIHo) and p(AIHI)

by d. The d Is commonly used to characterize the test performance and d2 Is given by (p.137,

d2 1 In{l + VAR(AIHo)} = In{E[A2 IHo]} . (C3)

Substituting (02) into (03) yields

A2 .
d2 ( C4)

which Is Identical to our definition of SNR.
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