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u Summary

The Sutton-Barto-Desmond (SBD) implementation of the Sutton-Barto model of

connectionist learning describes many features of rabbit nictitating membrane response
(NMR) conditioning> The rabbit NMR has been widely adopted as a model system
for theoretical and neurobiological investigations of mammalian learning. The present
report explores parametersensitivity of the SBD model in the context of forward-delay
conditioning with a single c~Oditioned stimulus (CS). Constraints on the model's pa-
rameters are potentially useful'n elucidating neural ssubstrates of NMR conditioning:
Neural implementations suggested by the SBD model provide a framework for inves-
tigations of connectionist learning mechanisms at both the circuit and cellular level.

A fundamental assumption of tlhie SBD model is that the input of a CS to the

'U learning element is shaped by as-yet-unspecified coding processes such that the el-
_, ement's output conforms to the topography of response waveforms observed in the

laboratory. Simulation experiments were conducted with various combinations of pa-
rameters that shape the CS representation In addition to response topography, the
model's performance was assessed in terms of rate and terminal levels of learning,
simulated interstimulus interval functions, and other criteria. Implications of these
experiments for possible-brain mechanisms involved in processing and representing CS
information are discussed. ,- -

Simulation results indicate that the SBD model's ability to capture major features
of NMR conditioning is highly constrained by parameters that shape the.IS jaken
together with experimental evidence implicating the cerebellum in NMR conditioning,
these and other constraints on the model's parameters suggest various neural circuits
for implementing the SBD learning rule. A class of circuit models favored by several
theorists assume that learning occurs at synapses where parallel fibers convey CS infor-
mation to cerebellar Purkinje cells. An alternative approach, elaborated in this report,
assumes that learning occurs at synapses where mossy fibers convey CS information
to cerebellar granule cells. This hypothesis was suggested by the invariance of a key
parameter of the model: The time constant of the process governed by this param-
eter matches that of Golgi cell inhibition of granule cells. A circuit model based on
this assumption can account for patterns of CR-related activity observed in single-unit
recording studies.
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Introduction

--- Workers in the behavioral and neurosciences have developed a fruitful approach to
modeling brain function by combining mathematics with neurophysiology and anatomy
(Churchland, 1986). This approach, sometimes referred to as computational neuroscience,
provides a framework for integrating seemingly divergent areas of scientific inquiry. A

" particular example is the extension of a general mathematical model of learning to a
specific instance of behavioral learning such as classical conditioning. Although most
models represent the cumulative effects of conditioning without reference to motor output,
we have shown how a template of the classically conditioned nictitating membrane response
(NMR) of the rabbit, can be incorporated into the neurally inspired model of classical
conditioning proposed by Sutton and Barto)(Barto and Sutton, 1982; Sutton and Barto,
1981). The original Sutton-Barto (SB) model was presented in the context of the extensive
behavioral literature on NMR conditioning (seeGormezano, Kehoe, and.-MaxrhaH, 1983).
In essence, the approach we used resulted in an implementation of the SB model that
not only describes cumulative effects of training but also response topography.)(Blazis,
Desmond, Moore, and Berthier, 1986; Moore, Desmond, Berthier, Blazis, Sutton, and
Barto, 1986). Models of NMR topography based on other theoretical frameworks have

* " also recently been described (Desmond, Blazis, Moore, and Berthier, 1986; Desmond and
Moore, 1987; Schmajuk, 1986; Schmajuk and Moore, 1986).

., The rabbit NMR is a protective response resulting from retraction of the eyeball and
the passive sweeping of the NM over the eye (Berthier, 1984; Berthier and Moore, 1980).
'rhe conditioned NMR is a graded, adaptive response. It has been employed for theoretical,
behavioral, physiological, and anatomical investigations of learning in several laboratories.
Our strategy for modeling the NMR was to constrain the SB model to predict response
topography in a simple conditioning situation. Constraints were derived partly from elec-
trophysiological experiments conducted in awake, behaving rabbits (Desmond, 1985). We
have shown that the physiologically constrained SB model retains the ability of the original
implementation to describe multiple-CS phenomena such as blocking, conditioned inhibi-
tion, and higher-order conditioning. These more complex learning situations are predicted
without further modification of the parameters of the model (Blazis et al, 1986; Moore et
al, 1986). We refer to this variant of the SB model as the Sutton-Barto-Desmond (SBD)
model.

The present report describes simulation experiments with the SBD model that explore
its sensitivity to parameters that control CS representation in single-CS forward-delay
conditioning paradigms (Moore and Gormezano, 1977). We describe approaches to neu-
ral network implementations that integrate information about parameter sensitivity with

L' '
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anatomical evidence indicating that cerebellum is essential for the conditioned NMR.

The Model

The SB adaptive element can be viewed as a neuron-like device capable of receiving
* input from many potential CSs. In Figure 1 these are designated as CS,, i=1, ..., n. Each

CS, gives rise to a representation that provides a synaptic input, designated x, to the
element, and has a variable synaptic weight or efficacy, designated V,. The unconditioned
stimulus (US) is signaled by a pathway of fixed efficacy, designated A. The output of the
element, s, is the weighted sum of its inputs. Tesauro (1986) has criticized the SB model
on the grounds that it is only applicable in situations where inputs are represented locally.
However, Sutton and Barto (1987) point out that the SB model is also applicable when
inputs are given a distributed representation.

Learning in the SBD model occurs according to a modified Hebbian rule (Sutton and
Barto, 1981). Hebbian rules typically assume that learning can be reduced to modification
of synaptic weights. They generally state that learning is a function of the product of
synaptic activity evoked by a CS and the neuron's activity or output. In forming a mental
picture of how a neuron "becomes conditioned" one usually imagines that it is relatively
inactive unless fired by the US. If this US-evoked firing coincides with excitation from the
CS input, the efficacy of this input pathway increases. This conceptualization of Hebbian
learning obscures an essential point, namely, that changes of the CS's synaptic weight might
occur at any moment before, during, and after the occurrence of the US, depending only
on the element's activity during application of the CS. This activity might be spontaneous
or evoked by other synaptic inputs including those from other CSs. Real-time Hebbian
rules such as the SBD model are sensitive to this point because they allow for continual
changes of synaptic weight.

Input

Our approach to extending the SB model to CR topography is to treat the input of
the Oh CS to the element, x,, as a continuous function of time. The original SB model
specified xi as a rectangular pulse defined by the onset and offset of the CS. With no
further processing, such an input produces a square wave output and with 0 latency. In
contrast, a real conditioned NMR begins well after CS onset and rises gradually in a
ramped or S-shaped fashion within the CS-US or interstimulus interval (ISI). The CR
attains a maximum at or near the temporal locus of the US, and then decays rapidly
during the post-US period. This pattern of response topography is also reflected in the
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Figure 1. The Sutton and Barto neuron-like adaptive element. The unconditioned stim-
ulus (US) is signaled by a pathway of fixed efficacy, denoted as A. Inputs for each
conditioned stimulus (CS) are denoted as xi, i=1, ..., n, and vary in transmission
efficacy according to the strength of a learned connection for each CS, the synaptic
weight V. The output of the element, s, is computed as the weighted sum of all

* ! inputs.

activity of some types of neurons that have been identified in single-unit recording studies
as being linked to the generation of CRs. For example, Desmond (1985; see also Desmond
and Moore, 1986) described the activity of brain stem neurons recorded during classical
conditioning of the rabbit NMR with a 350 ms tone CS (ISI of 350 ms). In a typical cell,

al spikes began to be recruited about 70 ms after CS onset. About 150 ms after CS onset,
spike recruitment increased sharply and continued to increase throughout the remainder

of the ISI. The momentary rate of firing prior to the US rarely exceeded 200-Hz. After US
offset, firing initiated by the US declined toward a baseline rate of about 10-Hz.

%The finding that the firing pattern of these brain stem neurons mirrored and preceded
the behavioral CR as observed at the periphery provides some justification for shaping

-CR topography in the SB model by manipulating the input trace rather than imposing an
arbitrary transformation on the element's output to achieve the desired CR topography. In
essence, the current implementation of the SB mddel provides the element with a template

NS of the CR.

We were able to fashion a suitable CR template by using an expression for CS input
to the learning element that allows for variation in the recruitment and amplitude of the
CH within the ISI. The input to the learning element at time t is denoted xi(t). Each time
step t corresponds to [0 ms. At CS, onset, t = 0. For time steps t = I, ..., 7, xi = 0. For
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t > 7 and until CS, offset, xi is defined as follows:

x,(t) = [arctan(mt - 5.5) + 901/180h. (1)

The parameter m, m > 0, controls the rate of rise of xi, and the parameter h, h > 0,
controls CR amplitude. The simulation experiments reported by Moore et al (1986) used

* m = 0.35 and h = 1.0. These are the default values of the model.

Holding xi = 0 for the first 7 time steps precludes any changes in V, during this period

and aligns the model with reports indicating a minimal conditionable ISI of 70 ms for
rabbits (Salafia, Lambert, Host, Chiaia, and Ramirez, 1980). It also precludes detectable
CRs with latencies less than 70 ms.

A second function returns the CR generated by x, to its pretrial baseline. It is imple-

mented at CS, offset, decays geometrically, and is computed as follows:

z,(t + 1) :z(t), (2)

where 0 < k < 1. In Moore et al (1986) k = 0.85, its default value in the model.

With the default values of the parameters of Equations 1 and 2, the model simulates
features of the conditioned NMR: increasing amplitude and decreasing latency of the CR
over training, decreasing amplitude and increasing latency of the response during extinc-
tion, and attainment of peak CR amplitude at the temporal locus of the US. These features
are depicted in Figure 2. The variable s' on the ordinates of the panels of Figure 2 is a
sliding mean over three time steps (the current and two preceding) of the element's out-
put, s (defined below in Equation 4). s' is bounded between 0.1 and 1.0 as in our previous
reports. The lower bound of 0.1 imposed on s' reflects a threshold due to recruitment
effects between the model's output and the motoneurons which generate the peripherally
observed response.

Learning Rule

The equation dictating changes in synaptic weight (connection strength) is retained
from the original SB model. At time t, the the change in synaptic weight of CS,, denoted

as AV,, is computed as follows:

Pon AV,(t) = C1s(t ) - (t)].i(t), (3)

where c is a learning rate parameter, 0 < c < 1, s(t) is the element's output at time step t,

., and s(t), defined below, is a function of s(t) from preceding time steps. t,(t), the eligibility
of CS,, is defined below.

4"
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rACQUISITION EXTINCTION

qTrial 1 Trial 1

/ 1

Trial 2 ~( ~Trial 2

- -J

Trial 5 Trial 10

*Trial 25 Trial 25

C S U S CS CS
On On On Off

Figure 2. Simulated response topographies, s', obtained with a 250 mns IST during ac-
quisition and extinction in a forward-delay paradigm. The US duration =30 ins.

The data were generated with the following parameter values: m = 0.35, h =1.0,
~k =. 0.85, A, =0.9; c =0.15, and /3=0.6. In this and subsequent figures depicting
response topography, s' is a sliding mean of the element's output, as, over three time
steps, the current one and the two preceding, bounded between 0.1 and 1.0.
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Output

The output of the learning element at time t, denoted s(t), is defined as:

ns -() Z V (t) x,(t) + A'(t). (4)

A'(t) is defined below. While s can take on any real value in the SB model, in the SBD model
it is confined to the closed unit interval and is linear within that range. This limitation
on permissible values of s is imposed because of physiological constraints of the NMR:
Negative values of s are inappropriate in modeling NMR topography because they imply
NM retraction and exopthalmus, CR-opposing responses which are not typically observed
in the rabbit. The upper bound of 1.0 reflects the fact that, although the amplitude of
the NMR is directly related to the intensity of the eliciting stimulus, there are limits on
the number of involved motoneurons and their rate of firing (Berthier and Moore, 1980;
Moore and Desmond, 1982).

Variable A'(t) in Equation 4 equals 0 prior to the occurrence of the US. During US
presentation A' is calculated as the difference between A, the weight of the US, and the
largest positive starting weight among all CSs present on a given trial. (Starting weight
refers to the weight of a given CS at t = 0.) Thus, if Vi is the largest starting weight among
the CSs present on the trial, while the US is present

(A-V, if 0 < V, < A;
A fO i f V > A; (5)

IA if <0.

At US offset, A' decreases as follows:

A'(t 4 1) 0.9A'(t). (6)

Although A in the model is a constant directly related to US intensity, A' functions as
a heuristic that implements the idea that US effectiveness can diminish progressively with
training (e.g., Donegan and Wagner, 1987; Mackintosh, 1983). Thus, in the SBD model
the effectiveness of a US on a given trial is the difference between the amount of learning
that can be supported in the limit by the US and the amount of learning accumulated up
to that point in training. Because V, generally increases during training, A' progressively
decreases, and this can induce a corresponding decrease in response amplitude at the time
the US is presented. Figure 2 illustrates a progressive diminution of the unconditioned
response (UR) over acquisition trials due to the progressively smaller contribution of A'(t)

6
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p to s(t) in Equation 4. (In this report, the UR is defined as the response profile during time
steps containing the US).

Were A'(t) to be replaced in Equation 4 by A, post-US computations would cancel
increments in Vj during time steps preceding US offset, and as a result there would be no net

Slearning (see Moore et al, 1986). In addition, response topography would be compromised.

Predicted Output

The trace of s, denoted 9, is computed by:

(t + 1) (t) + (1 - 3)(t), (7)

where 0 < < 1. The parameter /3 determines the rate of decay of .9. 9 can be interpreted

.. as the element's prediction or expectation of its output during the current time step.

Learning Eligibility

Variable ±,(t) in Equation 3 is a duration-dependent stimulus trace that defines the
period and extent to which the ith synapse or connection is eligible for modification. For
a given time step t, this eligibility trace is defined as follows:

ti (t) = x,(t - 4), (8)

during time steps t that the CS, is on. ±j begins its decline four time steps after CS, offset:

±,(t + 1)= 6,(t), (9)

where 6 = e- 3/d , d = max{25, CS, duration in units of 10-ms}. The computations shown
define a period of eligibility which begins some time after CS, onset and persists beyond
CS, offset. In earlier descriptions of the model (e.g., Moore et al, 1986), the lag between
x and t was erroneously stated to be 3 time steps, or 30 ms. However, the computer code
generating the SBD simulator computes t(t) as specified above in Equation 8, effectively
producing a lag of 4 time steps or 40 ms. The simulation experiments presented in this
report utilize a lag of 4 time steps as in Moore et al (1986).

Purpose and General Method

Because our simulation experiments in this report are limited to single-CS forward-delay
paradigms, we henceforth suppress subscripts designating different CSs for the variables
V,, x,, and ti.

7



We examined the sensitivity of the model to parameters of the input trace as specified
in Equations I and 2. The values of other parameters of the model were the saie as iii
previous reports (e.g., Moore et al, 1986). The learning rate parameter, c in Equation 3,
was 0.15. The weight of the US, A in Equation 5, was 0.9 in all experiments, and /3, the
output rate parameter in Equation 7, equaled 0.6. In all experiments, simulated training
was in a forward-delay paradigm in which US onset occurred simultaneously with CS offset.
The duration of the US was 30 ms. All simulations of training assumed that V = 0 prior
to training.

In Experiment I we varied x-shaping parameters m, h, and k one at a time while
holding the others constant at their default values. In Experiment 2 we investigated
combinations of x-shaping parameter values. One of our goals was to determine the region
of the parameter space in which the SBD model successfully simulates response topography
as well as other aspects of NMR conditioning. A second goal was to determine whether
some combination of x-shaping parameters might mitigate some of the shortcomings of
the SBD model noted in our previous reports. For example, CR latency predicted by the
model is too short to be realistic in protocols involving long ISIs (Smith, Coleman, and
Gormezano, 1969). Also, the model predicts a negatively-accelerated learning curve instead
of the S-shaped learning curve typically observed in the laboratory. In trace conditioning,
the model also fails to appropriately place CRs within the trace interval (i.e., the interval
between CS offset and US onset). It was recognized at the outset that no combination
of x-shaping parameters would alleviate all problems with the model, but we hoped to
uncover approaches to their solution.

We also examined the model's sensitivity to parameters of the learning rule (Equation
5) with reference to descriptions of learning curves, ISI effects, and response topography.
These considerations provided a basis for discussion of a neural circuit implementation
of components of the model. Several laboratories have demonstrated that learning and
generation of conditioned NMRs involves the cerebellum, particularly hemispheral lobule
VI (HVI) (Berthier and Moore, 1986; Yeo, Hardiman, and Glickstein, 1984, 1985a-c, 1986).

* In the Discussion, we consider various schemes by which the cerebellar circuits might be
aligned with modification of synaptic weight as specified by the SBD model.

Experiment 1: Variation of x-shaping Parameters

v4,.

Experiment 1 investigated parameter sensitivity of the model. In Experiment 1, one
parameter of x was varied at a time while other parameters were held constant at their
default values. We looked for evidence that certain parameter values might mitigate prob-

* 8
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lems in the behavior of the SBD model mentioned previously: failure to predict longer CR
latency in long-ISI forward-delay paradigms and the failure to predict S-shaped learning
curves. We assessed the effects of each parameter value on acquisition and CR topography
for ISIs of 100, 250, 350, 500, and 700 ms. We examined six values of m (0.1, 0.2, 0.35,
0.6, 0.8, and 1.0), five values of h (0.25, 0.5, 0.75, 1.0, and 2.0), and seven values of k (0.0.

U 0.1, 0.25, 0.45, 0.65, 0.85, and 1.0). Notice that with k = 1.0, x can not return to pretrial

baseline (Equation 2). k = 1.0 is included to provide a contrast with permissible values of
k.

Learning Curves: Shape and Rate of Acquisition

Manipulation of m

Figure 3 shows the acquisition of V generated over 25 training trials under variation

of m. This and subsequent figures in which V is the dependent variable refer to values
of V as they exist during static periods, i.e., during intertrial epochs when x and ± are

.essentially 0. V is dynamic during CS presentations and for a period thereafter, tending to
rise from its intertrial level as the output of the learning element, s, increases and falling
back to some extent as s declines. This occurs because V can change only when t exceeds
0: t increases during the ISI, up to and including the time of US occurrence, and declines
during post-US epochs.

Figure 3 shows that when m = 0.35, V grows in a negatively-accelerated fashion to
* a value of 0.59 in about 15 trials. Values of m greater than 0.35 (i.e., 0.6, 0.8) do not

appreciably alter rate of acquisition or maximum value of V. Low values of m (e.g., 0.1
b

! .. and 0.2) yield slow acquisition. With m =- 0.1, the model requires 700 trials to attain a

.- stable value of 0.88. This is considerably higher than the terminal weight of 0.59 attained
much more quickly with m = 0.35.

Acquisition with m = 0.1-0.2 is slow because the value of x is low throughout the IS1.

As implied by Equation 4, the element's output is directly influenced by the magnitude
of x. The slow rise of x during the ISI results in a low value of s(t) - 9(t) in Equation
3. Furthermore, ±, which defines the time and extent to which V can be modified, is also

* small during this period. Thus, V grows in minute increments over acquisition trials.

S.
:  Figure 4A shows values of V obtained after 50 trials as a function of m. This figure

indicates that V increases as m increases from 0.1 to 0.35 and decreases for m > 0.35.
V is smaller when m = 0.6-1.0 than when m = 0.35 because the value of x is nearly I
in the eighth time step after CS onset. (Recall that according to the assumption of a

. '
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1.0

M= 0.35

~ 0.6, 0.8

0 25
Trial

Figure 3. Acquisition of V with a 250 ms CS paired with a 30 ms US at an ISI of 250
ms with various values of m.

minimum conditionable ISI, x = 0.0 during the first 7 time steps). Since x is practically
at its maximum before t exceeds 0, s - 9 is on the order of 0.01 on the eighth time step.
Given such a value of s - 9, increases in V are negligible.

Manipulation of h

teFigure 5 shows acquisition of V under variation of h. When h = 1, the default value,
telearning curve is negative ly- accelerated and stabilizes in about 15 trials. The most

rapid acquisition occurs when h is low, e.g., h =0.25, and the slowest rate of acquisition
is obtained when h =2.0. Figure 4B plots terminal values of V as a function of h. The
figure shows that V is a minimum in the neighborhood of h = 1, the default value; the
maximum is at h = 0.25. Within a range of values from 0.5 to 1.0, rates of acquisition
are about the same (Figure 5), and V values after 50 trials (Figure 4B3) are approximately
equal.

Taken together, Figures 4B and 5 indicate that a low value of h such as 0.25 results
in rapid learning and a high terminal weight. This result follows from Equations 1 and
5: When h < 1.0, the value of x is uniformly greater than the value of x obtained with
h > 1.0. In addition to the larger value of x, with h < 1.0, s - .9 is large early in the ISI,

t0



1.0- A 0:2 0.

V._

h

0.1 0.2 ,.55 0 6 0.8 1.0
1.0-B

V

h

1 .00.25 0.5 0.75 1.0 21.0

~k
0.0o-_____________

0.0 0.1 0.2 0.45 0.65 0.85 1.0

Parameter Value
Figure 4. V obtained with a simulated 250 ms ISI in a forward-delay paradigm after 50

trials. Panel A shows the value of V obtained with various values of m. Panel B
shows the value of V obtained as h is varied. Panel C depicts the value of V obtained

£with various values of k.

4I



1.0*

-~ 0.25

-----------------------------
v "-- ~ryK=j 0.75

/h ''h 1.0

\h=.. 2.0

0.> 25
Trial

Figure 5. Acquisition of V with a 250 ms CS paired with a 30 ms US at an 151 of 250
ms with various values of h.

giving larger-than-average increments in V. This accounts for the observation that rate of
acquisition and terminal value of V increase as h decreases below 1.0.

4Although h =2.0 produces much slower arquisition than h =1.0 (Figure 5), the
terminal value of V is slightly greater with h = 2.0 than with h =1.0 (Figure 4B). The
slow rate of acquisition with h =2.0 is due to the fact that x and t are low throughout
the IS1, resulting in a low value of s - s during this period. However, at US onset, s - A

is large enough to compensate for low values of x and -+, and eventually terminal values of
V exceed those obtained with the default value.

Manipulation of k

Figure 6 shows that all values of k < 1.0 yield negatively-accelerated learning curves.
Both the rate of acquisition and terminal weight are directly related to this parameter.
As shown in Figure 4C, V after 50 trials is an increasing function of k, increasing slowly
through the range 0 < k < 0.65 and increasing rapidly up to k =1.0. When k =1, x does
not decay at CS offset and consequently V accumulated during the ISI and presentation of
the US does not undergo the post-trial reduction that would otherwise result from negative
values of s - A during the period of declining eligibility. Moreover, extinction does not occur

12
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' 1 0 . .. .. . . ........... -- - -- - ----------1.\k= 1.0

/k= 0.85
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0 25
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Figure 6. Acquisition of V with a 250 nis CS paired with a 30 ms US at an ISI of 250 nms
with various values of k. When k 1.0, V exceeds 1.0 within 10 trials and reaches
3.5 within 25 trials.
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when k -- 1.0.

-Response Topography

As mentioned in the Introduction, NMR topography has the following features. The
CR rises gradually in a ramped or S-shaped fashion after CS onset to a peak amplitude at
or near the time of the US. The response decays rapidly after US offset. Response profiles
generated by the model under variations in the values of h, rn, and k were assessed against
these criteria. Thus, simulated responses that are square-shaped or that do not maintain
a smooth, continuous rate of increase over the ISI are not realistic. There are exceptions
to this characterization, of course, but it is generally applicable to forward-delay and trace
paradigms with ISIs less than 1 sec.

Manipulation of m

With m = 0.35, the default value, the model produces the realistic responses depicted
in Figure 2. No other value of m examined here works as well. Figure 7 shows two
simulated responses; one generated with m = 0.1 (Figure 7A) and the other with m = 0.6
(Figure 7B). Because m affects rate of learning, and since we wish to contrast response
topographies with V held constant, Figures 7A is based on a greater number of trials (100)
than Figure 7B (25). Figure 7A shows that with m = 0.1 and an ISI of 250 is, a detectable
CR does not appear within 100 trials. This is the case with any value of m < 0.2. The
failure to develop a CR arises from the very low amplitude of x; for example. with m -

0.1 the peak value of x computed with an ISI of 250 ms is less than 0.04.

Low values of m not only tend to preclude detectable CRs. they exaggerate the decline
of UR amplitude over training trials implied by Equations 4 and 5. Given enough training,
the UR disappears altogether with m < 0.2. For example, with m = 0.1, s after 700 trials
is only 0.15 at the time of US onset. This value of s(t) follows from Equation 4 because
even though V - 0.88 at US onset, x = 0.03. Thus, s barely surpasses the predefined
threshold of 0.1 for s'. This loss of UR amplitude emphasizes an interesting feature of the
model: Given enough training, V can attain a high value, but this does not necessarily
imply the occurrence of detectable CRs.

0, Since m influences the rate at which x increases, higher values of m yield CRs that
rise rapidly early in the ISI. The CR obtained with m - 0.6 in Figure 7B not only rises
quickly, it abruptly changes slope midway through the ISI. The latter portion of the CR
is relatively flat until US onset. The inappropriately short CR latency and abrupt change
of slope are not typical of real conditioned NMRs. Only values of m in the neighborhood
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Figure 7. Simulated response topographies with a 250 ms ISI in a forward-delay
paradigm after 100 trials in A and 25 trials in B. The hash marks on the abscis-
sae designate stimulus onset. In A, m -- 0.1 and V -- 0.48 at the start of the trial.
In B, m = 0.6 and V = 0.48 at the start of the trial.

of 0.35 maintain a smooth, continuous topography and appropriate rates of acquisition.

Figure 7 illustrates that the value of m not only affects CR amplitude, but also UR
amplitude. The difference in UR amplitude is not a consequence of different values of
A', because V is equal for the two response profiles depicted in Figure 7. Instead, the
difference in UR amplitude reflects different values of x during US time steps. Although
the simulation assumed that the US occurred at CS offset, x nevertheless contributes
heavily to s' during US epochs. In Figure 7A, x is quite low at US offset; in Figure 7B, x
al the time of US onset is nearly ten times higher than in 7A, resulting in a greater UR

famplitude.

PManipulation of h

The effects of h on NMR topography are illustrated in Figure 8. The response simulated
*with h - 1.0, the default value, is shown in Figure 8C. Figure 8A shows that the CR

produced with h 0.25 rises quickly within the ISI and is soon clipped by the imposed
ceiling of 1.0 on .. These inappropriately clipped CRs occur with any values of h < 0.5.
Simulated CRs with h > 0.5 generally appeared realistic, most notably in a decreased
disparity between peak amplitude of the CR and the amplitude of UR. Figures 8B and
9C indicate that blending of the CR into the UR is somewhat better with h = 0.75 than
with h 1.0. The improved blending of CR into UR occurs because x attains a greater
amplitude when h 0.75 than when h 1.0. With the 250 ms ISI used in Figure 8, x is
nearly 1.0 at US onset when h -- 0.75 and 0.95 when h 1.0. Figure 8D shows that UR
ii ,plitutde with h 2.0 is lower than with other values of h. This reduction occurs for the
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Figure 8. Simulated response topographies obtained with a 250 ms ISI in a forward-delay
paradigm after 25 trials. In A, h = 0.25. In B, h = 0.75. In C, h = 1.0 (the default
value for h in the current implementation). In D, h = 2.0.
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same reasons as we noted in connection with Figure 7. In Figure 8D x is one-half as large
at the time of the US as in 8C in which h - 1.0.

Manipulation of k

Figure 9 shows that parameter k affects the profile of the post-CS response. The figure
* "." depicts response profiles on trials in which Vs were about the same, i.e., after 10 reinforced

* trials in Figure 9A, 5 reinforced trials in Figure 9B. Figures 9A and 9B, in which k = 0.25
and 0.85 (the default value), respectively, show the effect of k on UR amplitude. Figure 9A
shows that the lower value of k results in a lower UR amplitude. This lower UR amplitude
in 9A is due to rapid decay of x at CS offset: With k = 0.25, x in the time step after CS
offset is 0.22: with k = 0.85, x in this time step is 0.86.

The response profiles in Figures 9C and 9D are obtained after one extinction trial.
Figures 9C and 9D, in which k : 0.25 and 0.85 respectively, illustrate the point that the
idecline of x decreases as k increases. The sharp drop in CR amplitude at CS offset with k
= 0.25 in Figure 9C is not realistic. This effect of k is obscured in Figures 9A and 9B by
the decay of A' (Equation 6).

Interstimnulus Interval Effects

Interstimulus interval ([SI) functions typically plot some measure of conditioning strength
after an arbitrary number of trials as a function of the ISI used during training. IS[
functions are typically concave downward. The rabbit NMR literature describes the IS[
function as an inverted U that rises sharply from the minimal ISI that can support con-
ditioning, approximately 100 ms, to a peak at the optimal ISI of 250 ms. The function
declines gradually as ISI increases beyond the optimal range such that little or no learning
occurs at ISIs greater than 2000 ms (Gormezano et al, 1983).

1% The default values of the SBD model produce an ISI function generally consistent with

the literature, with the exception of negative weights predicted for CSs of 100 ms duration

(the shortest considered) with a 40 ms lag between x and t. In the context of the SBD

-. i model, negative values of V are interpreted as inhibitory, and there is no evidence to
S"support this in the experimental literature.

Figure 10 shows ISI functions for each set of parameter values. With the exception
of negative weights at IS 100 ms, Figure 10 shows that most values of m and k, and
all valies of h, yield realistic ISI functions. lowever, with m - 1.0 (Figure 10A), the ISI
hiricto, is inapprojriale because V increases uniformly as 15 increases. With z 0.1,
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~Figure 9. Simulated ,:e~ponse topographies with a 250 ms ISI in the forward-delay

paradigm; V = 0.44 at the start of each depicted trial. In A, there were 10 prior
training trials, the CS is followed by the US, and k =0.25. In B, there were 5 prior

__ training trials, the CS is followed by the US, and k 0.85. In C, there were 10 prior
training trials, the CS is not followed by the US, and k = 0.25. In D, there were5

prior training trials, the CS is not followed by the US, and k = 0.85.
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Figure 10. Synaptic weight V after 100 trials as a function of interstimulus interval (ISI)

in the forward-delay paradigm. In A, ISI functions with m ranging from 0.1 to

1.0. The asterisk (*) marks the function with m = 0.1. In B, ISI functions with h

ranging from 0.25 to 2.0. In C, ISI functions with k ranging from 0 to 1.0. See text

for discussion of k 1.0.
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ISIs greater than the optimum promote greater terminal values of V because low values

Aof in allow x, and therefore s -- ,4, to be positive throughout the ISI. Longer ISIs provide
more opportunities for V to increase. In Figure 10C, k = 1.0 yields an inappropriate

Nip ISI function: V 17 3.5 (plotted as 1.0 because of compression of the ordinate) for all ISis
greater than 100 ms. The ISI function predicted for k = 1.0 is flat for most ISIs and is
therefore inconsistent with the literature.

*Experiment 2: Combinations of x-shaping Parameters

Experiment 2 investigated combinations of x-shaping parameter values, m, h, and k.
We selected values of each parameter that appeared on the basis of Experiment 1 to
have a noticeable effect on the model's behavior. For comparison purposes, all simulations
included the default set. In Experiment 2, four values of h (0.25, 0.75, 1.0, 2.0), three values
of k (0.25, 0.65, 0.85), and three values of m (0.1, 0.35, 0.7) were covaried orthogonally.
We assessed the effects of covariations of parameters on rates of learning and response

topography for ISIs of 250 and 600 ms.
's.

Learning Curves: Shape and Rate of Acquisition

Figures 11 and 12 plot V as a function of trials for the various combinations of m and

h with k -- 0.85. Figure 11 was generatd with an ISI of 250 ms; Figure 12 was generated
with a 600 ms ISI. Most learning curves are similar to that produced with the default
combination in that V is a negatively-accelerated function of trials. Rate of acquisition is
uniformly low with m = 0.1, as might be expected from Figure 3, and in fact most of the

data plotted in Figures 11 and 12 might have be inferred from Experiment 1.

Figures 11 and 12 show that no parameter combination yields an S-shaped learning
curve. As presently formulated, the SBD model assumes that the form of the input trace
x is invariant over trials, an assumption which may reflect neurobiological reality. It is

possible that an S-shaped learning curve might be obtained from the model by using more
than one parameter combination to shape the input trace over training. We discuss the
implications of varying the form of x in later sections.

Figure 13 plots V after 50 trials for ISIs of 250 and 600 ms for the combinations of m
and h plotted in Figures 11 and 12. Thus, Figure 13 is a plot of the terminal values of V
shown in these two figures. As might be inferred from those figures, with combinations of m
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Figure 11. Acquisition of V with an ISI of 250 ms in a forward-delay paradigm; values
of parameters m and h are covaried and k 0.85. In A, h 0.25. In B, h 0.75.
In C, h 1.0. In D, h 2.0.
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Figure 12. Acquisition of V wit~h an ISI of 600 ms in a forward-delay paradigm; values
of parameters mn and h are covaried and kIc 0.85. In A, h =0.25. In B, h =0.75.
In C, h =1.0. In D, h = 2.0.
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and h excepting those with rn 0.1, V with a 250 ins ISI (Figure 13A) is higher than with
a 600 ins IS (Figure 13B). Although not shown, this pattern also holds with k = 0.25 and
k 0.65. (As might be inferred from Figure 4C, V is directly related to k for all parameter

' ,:. combinations.) Thus, ISI effects on V appear to be relatively insensitive t,, combinations
of x-shaping parameters that depart from the default set, exceptions being those noted in
connection with Experiment 1, low values of m and k - 1.0. However, although all other
combinations tested yield appropriate ISI effects, they are not all suitable with respect to
other criteria.

One noteworthy feature of Figure 13 is the low values of V obtained with the combi-
nation m = 0.7 and h = 0.25. Learning curves (Figures 11 and 12) indicate that these low

r-" values of V stabilize well before 50 trials. Low terminal values of V with this combination

appear somewhat paradoxical because m = 0.7 leads to a reasonably high V when h = 1.0
(Figure 4A), as does h -- 0.25 when m - 0.35 (Figure 4B). There is no paradox because
a combination of high m and low h produces a rapid rise in x during the ISI. After a
few trials, this drives s to the imposed ceiling of 1.0 (see Figure 8A) before x exceeds 0.
Because of this ceiling, by the time ± becomes significantly positive, s - 9 goes to 0, and
consequently no further changes in V are possible.

Response Topography

Figure 14 illustrates response profiles with selected combinations of x-shaping param-
eter values with ISIs of 250 and 600 ms. The combination m = 0.7, h = 0.25, and k =
0.25 was used to generate Figures 14A and 14B. 'l'he combination m = 0.7, h - 2.0, and
k -- 0.85 was used to generate Figures 14C and Figure 14D. Response profiles in Figures
14A and 14C can be contrasted with that generated by the default set, m = 0.35, h =
1.0, and k = 0.85 (Figure 8C). The results depicted in Figure 14 suggest that response
characteristics generated by a given parameter combination with the 250 ins ISI (Figures

A;, 14A and 14C) also hold for the longer ISI (Figures 14B and 14D). Combinations with
rn -- 0.7 result in a response that rises rapidly but which then increase slowly over time
steps leading up to the US. As noted in Experiment 1, h = 0.25 results in larger response

*, amplitudes than those produced by the lefault set. These are, in turn, larger than those
generated with h = 2.0. The influence of k on response profiles is obscured in Figure 14 by
the contribution of A' to responses shown in Figures 14C and 14D, but as noted previously
k simply determines the decay of the response after CS offset. Although values of k used
in l';xperient, 2 do not affect acquisition or ISI functions in any dramatic fashion, we
know from Experiment I that low values of k yield undesirably low UR amplitudes and
dIrat ions.

N2
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Figure 13. V obtained with ISIs of 250 and 600 ms in a forward-delay paradigm after 50
trials; values of m and ht are covaried and k =0.85. In Panel A, the ISI is 250 ins.
In Panel B, the ISI is 600 ins.
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Figure 14. Simulated response topographies with ISIs of 250 and 600 ms in a forward-
delay paradigm after 25 trials. In A, h =0.25, m =0.35, andk = 0.25; the lSf is
250 ms. In B, the parameter combination of A is shown for a 600 ms ISI. In C, h =
2.0, m = 0.7, and k = 0.85; the ISI is 250 ms. In D, a 600 ms ISI is shown with the
parameter combination used in C.
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Figure 15. Simulated response topographies for a 600 mis ISI in a forward-delay
paradigm after 50 trials. For the upper waveform, n - 0.35, h - 1.0, k - 0.85,
and V - 0.59 at the start of the trial. The CR appears earlier in the IS! than is
observed in the laboratory. For the lower waveform, m - 0.1, h - 0.25, k s 0.85, and
V = 0.66 at the start of the trial. CR latency is appropriately longer, but response
amplitude is attenuated.

Figure 15 addresses the issue of inhibition of delay with a long ISI. It contrasts response
profiles generated after 50 trials with the default set with those generated with m = 0.1,
h 7- 0.25; k = 0.85. With the default set the CR begins to rise early in the ISI and
consequently does not show inhibition of delay. This is because s' with m = 0.35 and
h = 1.0 surpasses the threshold of 0.1 450 ms before the US. However, with m = 0.1 and
h - 0.25 s' does not exceed 0.1 until 260 ms before the US. (Therefore, there would be no
detectable CR with an ISI of 250 ms.) The latency of the CR better reflects that observed
in the laboratory. Moreover, the form of the CR in this case does not have the large
amplitude and S-shaped form that are obtained with the default set.

Figure 15 shows that the UR obtained with the default set is substantially larger than
that obtained with ? - 0.1 and h = 0.25. With the default values, x = 0.98 and V is

-0.70 at US onset, and A' is 0.31. Therefore during the US s' is approximately 0.9. With
m - 0.1 and h - 0.25, x = 0.27 and V = 0.67 at US onset, and A' -- 0.24. Therefore s' is
approximately 0.4.

In summary, Experiment 2 shows that the parameter combination m = 0.35, k = 0.85,
and h = 0.75-1.0 optimizes performance of the model with respect to acquisition, response

P_' topography at near-optimal ISIs, and appropriate ISI functions. With the 600 ms ISI,
no combination appears to produce a CR with both the desired long latency and high
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amplitude at 1US onset. Nor does any combination yield an S-shaped learning curve.

Discussion

Experiment I showed that when mn 0. 1 the Cit fails to develop and the U R eventually

disappears as training progresses. Values of rn greater than the default, valu(, of 0.35 tend
to yield CR topographies that abruptly change slope. Experiment 1 also showed that m

is the only parameter of x that markedly affects IS functions. When rn -- 0.1, the SI)
model predicts that terminal weights are an increasing function of IS1. Values of m larger
than this yield an appropriate decline in V as IS1 increases beyond an optimal of 250 ins.

P Parameter h (hi -0) affects CR amplitude and rate of learning. CR amplitude is inversely
• related to h. When h 0.75, the model produces a behaviorally realistic blending of the

CR into the [JR. Values of h ranging from 0.5 to 1.0 yield faster rates of acquisition than the
more extreme values, h -- 0.25 or 2.0. Parameter k shapes response topography following

, CS offset, but beyond this has little affect on other aspects of tile model's behavior except
*'" in the case where k I in which CRs never return to pretrial baseline.

Experiment 2 investigated combinations of parameter values of x. One goal of Exper-
innent 2 was to uncover a combination of parameter values that might produce inhibition
of delay, i.e., increasing CR latency as ISI increases. The combination of h :- 0.25 and
M 0.1 produces the desired increases in CR latency, but only at the cost of yielding an
inappropriate ISI function in which V is an increasing function of ISI.

Sensitivity of the SBD Model to Other Parameters

With the exception of parameter h, Experiments 1 and 2 generally justified the choice

of parameter values for x used in previously reported simulations with the SBD model: m

OT 0.35, h - 1.0 and k -: 0.85. As noted above, response topography is somewhat more
realistic with h = 0.75 than with h - 1.0. Nevertheless, the model describes forward-delay
NMII conditioning as well or better with the default combination of x-shaping parameter

%values as any other. In particular, the default set yields the best Joint descriptions of
acquisition with various ISIs and response topography. However, the model's performance

in this regard depends not only on x-shaping parameters but on other parameters as well:
' ".C inl Equation 3, 1 in Equation 7, and the parameters of x, the lag between x and x in

- i"quation 9 and 6 in IEquation 9.

The value of the rate constant c in INAquation 3 affects both response topography and
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trial-wise learning rate. As shown by I igtirv 2 of Moore et al (1986), a ihigh value of c,
s. C ..A, .yilds a response topography typical of that olserved in well trained rabbits.
"lowever, the rate of ('1 acquisition over trials when c 0.A is much too fast to be realist ic.

Values of c low enough to yield appropriate trial-wise increases in weight, e.g., c 0.01.
yield an undesirable abrupt transition of response Iopograph v from CR to ITR at, the point
of I IS onset. The value c 0.15 used in the present study represents a compromise between
reasonable rates of learning over trials and the realistic response topography. However, it is
worth ioting that if training consists of one trial per day, robust conditioned NMRs appear

' with in I5 trials (Kehoe and (Cormezano, 97.1). This rate of conditioning is reasonably
in accordance with our sinmulations of acquisition with c 0.15 and the default values

for .r-shaping parameters in the model. Kehoe and (orniczano (1971) showed that trial-
wise rate of NMR conditioning is directly related to intertrial interval. Unlike some other
real-time models (e.g., Moore and Stickney, 1985). the SBD model is not sensitive to this
illortant variable (Moore and (ormezano, 1977).

The value of f in Equation 7 is considered a constant of the SBD model. This parameter
determines the rate of decay of the element's output memory, s. Ideally, it should range

from 0.5-0.6. If J3 is greater than 0.6, the ability of the model to reach stable weights
is disrupted and a "blow up" in weights occurs. The large weights result in unrealistic
rectangular-shaped response profiles. Values of /I less than 0.5 result in low amplitude
CRs that, do not blend with URs and inappropriate negative weights at short ISIs even
with a lag between x and x in Equation 8 of 30 nis.

The specification of x in Equations 8 and 9 is important for yielding ISIs functions
consistent with the literature (Smith et al, 1969). Equation 9 specifies that the rate of the
decay of x varies inversely with CS duration. In forward-delay paradigms, this permits V
to decline enough during post-US time steps from its on-trial peak to yield an appropriate
ISI function when ISI exceeds the optimum of 250 ms. Equation 8, which specifies the time
lag between x and x, is also important for ISI functions. In this and previous reports, x
lagged x by 40 ms (4 time steps), thereby compensating for large increments of V for CSs
of less than 250 mis duration. As noted previously, the lag yields inappropriate negative
weights with an ISI of 100 is (see Moore et al, 1986). We have subsequently discovered
that with the default parameter set, a lag of 30 ms (3 time steps) yields small positive
rather than negative V with ISIs of 100 ms, and an otherwise appropriate ISI function,
provided that fl in Equation 7 is 0.5-0.6.
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The 1I,1ut .Y as a (S Representation and a ('R Tenilate

The varialh, .r iii Ili( , ill) tiodel serves as both a representat toll of the (S anl I
;-, a iTiplate for the (CR .\s a (S representation, the paraineters that govern th "eil, awl

Sdhc line of .- determine sUtch things as rate of increase of V" over trials, the shape of learn Iig

cii rv e, and ISI functions. As a template, ,r determines the topography of the (,I?. "lhis
is evident from lhe fact that with sufficient training (I topography and the shapw of

* ' .r are virtually indistinguishable from ( .ch other. Our simulation studies indicate that
% a X fu n tion in both capacities and capture important features of NMR conditioning
litrtlhrmore. it can (10 so with the same restricted set of parameter values; specifically.
lhose approxiinaely equal to the default set, specified in this report.

'The current specification of x is not adequate for all aspects of NMR conditionitig.
- .: - however. As noted, no combination of parameter values investigated to (late yields art

S-shaped learning curve such as those observed in the laboratory. In addition, because r
-2, ?.. is specified in ternis of the onset and offset. of the CS, the model cannot yield appropri-

ate Cl? topographies in either trace conditioning (Moore et al, 1986) or in forward-delay
conditioning with a long ISI. As mentioned previously, in the case of long ISIs, for ex-

aplTle, Cl? topographies in the laboratory show inhibition of delay (Pavlov, 1927). That
is,. ('Is begin late in the ISI and increase gradually (ramped rise) so that the maxirmum

'2' amplitude occurs just prior to or concurrent with the US. Hlence the CR is efliclent as well
ias adaptive. It is adaptive in that the response is timed so that vision is not obstructed
unnecessarily before the US. It is efficient in that metabolic energy is not being used t.o

2' unnecessarily to retract the eyeball during early phases of the ISI. This sort of efficiency
, .is a product of training and is not encompassed by the model. With the default values, x

attains 95% of its asymptotic value 300 ms after CS onset, and remains asymptotic until
.- CS termination. However, the results of Schneiderman (1966) indicate that the onset of
- %the conditioned NMR across a wide variety of ISIs occurs roughly halfway through the ISI.

• Although our simulation studies indicate that no combination of x-shaping parameters
mitigates these limitations of the model, they do suggest approaches to solutions. One
approach would be to allow values of parameters m, h, and k to change during training,
thereby allowing for production of maximal CR amplitude at, the time of the US. Inhibition

i of delay might be implemented by first, using the default x to allow sufficient learning to
occur and then implementing an input trace with low values for m and h, like those used in
the simulation depicted in Figure 15, to shape the proper topography. Varying the shape

of' x could also yield S-shaped learning curves. The initial slow rise of the empirically
I - observed learning curve might be achieved by allowing m and h to be low initially. Then,

as the number of trials increases, rn and h could be increased to their current default
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\a~llies. I Iielt-l)V alloin~ig tI~ l lill to (Ies ['ib I IIIgl a\(l (( vIclait(( learnIing (iir~v ini

Ili Ilr ;tages of c I' flolif iIrIg.

.s for t race coniit oling. ( Us call no( t occur iII t he I race interval as long as thle rise
arid fall of .r are -specified a~cording to t he oil atiil ,fldtt of the (S. There are two

',', to alleviate this probler . The trivial soliitjlior woulid b(e to pec'ify that r is defined

according to the ISI and not ('S duration. llowcvcr, although such an approach could

yield a ('11 over the trace interval, (H onset mriiglIt still occur shortIv after (CS onset, even

if tle irl ini trace is allo%%ed to change over trainiing as de.sribed abhove. Another way to

generate (Tls in the trace interval wonld(i be to ail( W ('S offset to inititlate an input trace

to the element at (S offset. This approach is sulp ported by the work of liu and Moore

(1969) which denrionstrating t hat rabbits carn be conditioied to respond to stinulus offsets

iii a forward-delay paradigrll. lit fact, a model proposed by )esmond and iis associates
specifies both CS onset an( offset processes that are distributed over many Itputnu elenIeints

()esrnontd and Moore, 1987; Desmond et al. 198).

Problems with the model discussed in this section might. be resolved by taking into

account interactions between forebrain structures, p)articularly the hippocarnpus, and brain
,%

stei, structures linked to the cerebellurn that are Important for the (-ond itioned NMR. This

possibility will be discussed later.

Neural hnl)h enietatioi of tit, SBD Model

Several laboratories have demonstrated that the cerebellum plays an essential role in
the acquisition and generation of conditioned NM ]ls (Thompson, Donegan, Clark, Lavond,

*Lincoln, Madden, Manounas, Mauk, and McCormick, 1987; Yeo et al, 1985a-c; 1986). It

this section we discuss two frameworks for implementing the SBD model in cerebellar
cortex. We begin by briefly discussing the hypothesis that changes of V occur through

modification of parallel fiber (PF)/t'urkinje cell (PC) synapses. Although this viewpoint

has its detractors (e.g., Llina.s, 1985) as well as proponents (e.g., Ito, 1984; Thompson,

1986), there can be no denying the striking similarities between the SB adaptive element

as depicted in Figure 1 and the morphology and synaptic organization of cerebellar PCs.

Like the Sl1 adaptive element, a cerebellar PC can in principle receive many inputs front

parallel fibers arising from many different C.Ss. The climbing fiber input seems a natural

Srmeans for providing input from the IS, and the cell has basically a single output channel
with only limited axon collateralizat ion. Furthermore, cerebellar PCs have been shown to

respond to CSs in a CR-related manner (e.g., lBerthier and Moore, 1986). We next discuss
the possibility that changes of V occur at mossy fiber (MF)/granule cell synapses. This
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P ~ [t hveis , reipresents ai novel approach to cerebellar involvemient i n classical condl t ition i g
o"it, that may prove to be more consistent with the experimental literature on rieural

*, iiit,)st rttes of NNII? (onditioning than the PF 'PC scheme.

Like the St nio(hel, the Slit) riodel also assumes that learning occurs by a modified

Iebbian rule: ('S weights change proportionally to the extent that the learning elements
urrent output, s. difflers from a trace of previous output, s. These changes occur in the

oinlain of 11 ill ise(ods. lence, they are continually altered according to the magnitude

aid sign of s .s. If current output is greater than previous output, weights are increased; if
tirrent output is less than previous output, weights are decreased. The locus of synaptic

mi . icaticalion for a particular (CS is presu rably some morphologically restricted region

', herein synaptic terminals carrying information about the CS can interact with s .I. In
principle, there are a number of ways this interaction might occur.

In the SIll) model the relationship between s and s is controlled by the parameter I
ii Iuation 7. As noted previously, the model performs best with f0 in the range 0.5-0.6.

I.-.I;]t lthe I0-ms Ime step assumed by the model, this narrow range of acceptable f0 values
" implies that the relationship between s and s can be described in continuous time by an

-Xlpoient ial funct ion wit h a time constant on the order of 30 ms. Ilnce, for any change in

4 of a given tile step, s; closes to within one percent of s within the ensuing 10 time steps,

or I00 n1s. This relationship imposes a constraint on circuit models that would describe
where ., s is computed and how this term interacts with CS input, x, at sites of synaptic

* II11mifi(atnon.

% Anv neural circuit capable of implementing the SBD model must specify not only where

weight changes occur but also how feedback about NMR topography in the form of the
expression s .s enters into their computation. Sutton and Barto (1981) suggested that

axon collaterals carrying information about s - s might feed back onto x input terminals
*, "-. in the form of axoaxonal configurations. The locus of learning in this case would not be

within the output neuron but within the terminals or presynaptic entities that carry CS

infformation to the cell. A presynaptic locus of learning would suggest cellular mechanism,s
t such as those invoked in connection with heterosynaptic facilitation of sensitization in

'.)llply a (Hawkins and Kandel, 1984,; Walters and Byrne, 1983). However, we know of
no evidence for presynaptic mechanisms in cerebellar cortex. Furthermore, Stent (1973)

- has pointed otit that presynaptic implementation of learning is unlikely in vertebrates for

reasons we needri not pursue here, and he therefore supported the postsynaptic viewpoint.

Alkon (1984) has suggested that the critical postsynaptic events for learning could
m ( iir within the restricted volume of a dendritic process that shares synapses of terminals

carrying ('S information with an adjacent terminal carrying IUS information. For example,
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%x learrningoccurs at N,"1' I' snapses, Alkon'sview could he(intrpircted siih that these to
inpuits would arise from paralh If ibers impinging on adjacent spines in the distal arbors: of'

the dendritic apparatus. In ternis of the SBD iodel Alkon's approach would state that
the convergence of CS information and feedback information (in the form of s - ) on a
shared dendritic process constitutes the critical learning event. Recall that in the Si)
model the US is important for learning only insofar as it contributes to s and hence to the
term s -- s. The weight of the US's contribution to s decreases progressively with training:
It is implemented by a heuristic (A') which takes account of the upper limit of s imposed
by physiological constraints on the NMR.

-2 In the adaptive element shown in Figure 1, modifiable synapses that would implement
the SBI) learning rule must be capable of both increases and decreases in efficacy. That is,
they are bidirectional in the sense that the same synapse must be capable of mediating both
EIPSI's and IPSPs depending on circumstances of training. For example, the phenomenon
of conditioned inhibition (discussed more fully in a subsequent section) is encompassed
in the model by having V take on negative value. In contrast to conditioned inhibition,
the phenomenon of extinction comes about through unlearning, i.e., by having V lose
previously acquired positive value over the course of presentations of the CS without the

ITS

There is currently little hard evidence for bidirectionality of synaptic weight changes

related to learning. Kelso, Ganong, and Brown (1986) report facilitation of associative
long term potentiation (LTP) in Hebb-like synapses in hippocampal slices. This facili-

tation was induced by pairing synaptic activation with injections of depolarizing current
into CAl pyramidal cells. This observation is consistent with Hebbian increases in synap-
tic efficacy. They also report the prevention of associative LTP induced by injection of
hyperpolarizing current. Although the latter observation seems consistent with tlebbian
decreases in synaptic efficacy. it does not constitute the establishment of an inhibitory
synaptic relationship in the sense of the SBD model.

Cerebellum

Figures 16 and 17 lay the groundwork for discussing schemes for implementing the
SBI) model and NMR conditioning in the cerebellum. In Figure 16, the numbers 1-3 along
the top and letters A-D along the left-hand edge provide a set of coordinates that will
facilitate discussion. Figure 16 omits some of details included in most textbook renderings
of the cerebellum. For example, climbing fiber synapses onto PCs are not shown. The
figure includes only those features needed later for integrating physiological evidence into
a plausible circuit diagram for NMR conditioning under the constraints of the SBD model.
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q" Figure 16. Summary of cerebellar neural circuitry. A-D represent beams of parallel fibers
(PF) in the molecular layer. These synapse onto Purkinje cells (PC) and basket cells (Ba),

one of which is indicated on the C beam. Basket cells inhibit off-beam PCs, as exemplified by
the basket cell on the C beam and the PC on the D beam. The latter is shown as inhibiting a

projection neuron in cerebellar nucleus interpositus (IP) which, in turn, excites a projection

@, neuron in contralateral red nucleus (RN) leading to some here-unspecified response. Mossy
fiber (MF) terminals and granule cells (;r) occupy the granular layer. Three granule cells are

shown, and two receive inhibitory input from Golgi cells (Go). Both Golgi cells are excited

by l'F beams. The Golgi cell under 2 is shown receiving two inhibitory inputs, one via a

climbing fiber (CF) and another via a PC axon collateral.
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Figure 17. Summary of cerebellar and brain stein circuitry and information flow me-
diating NMRs. Solid lines indicate strong projections; dashed lines are used to indicate
projections that are comparatively weak or not universally agreed upon. The vertical dashed
line represents the medial axis of the brain stem. CS information (represented bilaterally)

, gains access to hemispheral lobule VI (HtVI) via mossy fibers arising from pontine nuclei

(PN). This information, as well as information about the US, also goes to supratrigeminal
* reticular formation (SR) which is represented bilaterally. SR has been implicated in NMR
*conditioning as an independent parallel system that appears to be essential for expression

of CRs (see Desmond and Moore, 1982; 1986). US information gains access to both SR and
" IVI via sensory trigeminal neurons. Spinal trigeminal nucleus pars oralis (SpoV) provides
synaptic drive to motoneurons in the accessory abducens nucleus (AAN). SpoV also projects

to FIVI. There is a direct mossy fiber projection and an indirect climbing fiber projection via
the dorsal accessory olivary nucleus (DAO). Both sets of projections are bilateral. The output

of IIVI is relayed to cerebellar nucleus interpositus (IP) and from there to contralateral red
nucleus (RN). RN ,rojection neurons terminate in AAN and SpoV to complete the circuit

and initiate a conditioned NMR.
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S Figure 1_7 summarizes cerebellar and brain stein structures and pathways involved inl
N. I , conditioning (see, e.g.. Ierthier, Desm--ond, and Moore, 1987; Thompson, 1986). As
noted above, it has been suggested that learning and generation of conditioned NMRs In-
volves cerebellar PCs located in hernispheral lobule VI (HVI). HVI receives acoustic. visual,
and somiesthetic inputs via the pontine nuclei (see Buchtel, losif, Marchesi, Provini, and

* Strata, 1972: Shofer and Navhi, 1969; Thach, 1967). Lesions of HVI have been reporled
to dramatically attenuate NMRs (Yeo et al, 1985b), and single-unit recording studies re-

port CR-related patterns of activity by HVI PCs that are consistent with a causal role

in this behavior (Berthier and Moore, 1986). Figure 17 shows that the route taken by
neural commands initiated in LtVI for generation of a conditioned NMR includes several
synaptic links. The output of PCs in HVI goes to cerebellar nucleus interpositus (It'); it
is then transmitted to contralateral red nucleus (RN). Efferent commands from RN are
carried in the rubrobulbar tract as it crosses the midline ventral to the decussation of the
brachium con junctivum. Recent fiber-tracing studies (Robinson, Houk, and Gibson, 1987;

th Rosenfield, Dovydaitis, and Moore, 1985) suggest that the pathway from RN bifurcates
at the level of the seventh nerve. One branch terminates near the accessory abducens
nucleus (AAN), where motoneurons chiefly responsible for the NMR are located (Grant
and Horcholle-Bossavit, 1986); the other terminates within caudal portions of the prin-
cipal sensory trigeminal nucleus and spinal trigeminal nucleus pars oralis (SpoV). This
second branch from RN participates in the generation of NMRs because SpoV neurons
synapse onto AAN iotoneurons (Durand, Gogan, Gueritaud, Horcholle-Bossavit, and
Tyc-Dumont, 1983). In addition to relaying efferent commands to motoneurons, these
neurons could convey feedback about the incipient NMR back to cerebellar cortex via
mossy fibers (Ikeda, 1979; Yeo et al, 1985c).

The circuit models discussed below argue for the possibility that the output of cerebellar
P(;s, s in the model, is fed back to cerebellar cortex for implementation of the learning rule.
Based on the information flow described in Figure 16, a likely source for this feedback is
brain stem nucleus SpoV. This hypothesis raises questions of timing. Specifically, does CR-

0 related PC activity that initiates the conditioned NMR occur with a sufficiently long lead
time so that feedback from SpoV is i.it obscured by other events such as the occurrence
of the US? Berthier and Moore (1986) observed CR-related firing patterns by PCs in HVI
that preceded CRs by as much as 200 ms. This is ample time in which to initiate a CR
(Moore and Desrrond, 1982). Figures 16 and 17 show that there are at least five synapses
between PC output and any feedback carried by parallel fibers, and the total conduction
d istace in the loop could exceed 50 nun. Even allowing 1 is for each synaptic relay and a

"* relatively slow conduction velocily for myelinated fibers of 20 in/s, circuit time for feedback
would require no more than 10 ms, or one time step in the model. As a cautionary note,
.he conjecture that lCs receive feedback about their output assumes that this information
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is transmitted with high fidelity through each link of the chain. That is, the output of
neuirons In 1lP, RN, AAN, and SpoV involved in the NM Rt must match or mirror the output
of the PCs. Although evidence is sparse, recording studies indicate that this is probably
the case (e.g., Thompson et al, 1987).

Site of Plasticity: Purkinje Cells

Assuming that changes in V in the SBD model occur at lPF/PC synapses, where is
s - s computed and how does this information reach an involved PC? One option is that
s - is computed within the PC itself and is therefore readily available to modify eligible
synapses. Another possibility that s - 9 is computed outside the PC and fed back by other
circuit elements. This could occur in a number of ways (Figure 18). For example, the
PC might send an axon collateral to local circuit elements that provide information for
computing s - 9. PC axon collaterals have been reported as terminating on Golgi cells,
basket cells, granule cells, and other PCs. Were we to rule out feedback from PC axon
collaterals, the two remaining sources of feedback are climbing fibers and mossy fibers.
For example, feedback information could arise as efference from collateral output from

SpoV in the course of driving AAN motoneurons: As Figure 17 indicates, in addition to
its role as the locus of interneurons mediating unconditioned reflexive extension of the NM
to direct stimulation of the eye, SpoV projects to 1IVI of cerebellar cortex. The projection
is either a direct one via mossy fibers, or indirect via climbing fibers originating in the
dorsal accessory olive (DAO), the source of climbing fibers to HVI. Both projections could
be involved in computing s - s.

. tHaving designated SpoV as a likely source of feedback used to compute s - g, consider
the various ways this information might reach a PC for modification of PF/PC synapses.

These are summarized in Figure 18. Figure 18A indicates several alternative means by
which s - , might attain access to the PC, including the possibility noted above that it is
computed within the cell. The extracellular routes include parallel fibers (PF), the climbing
fiber (CF), or an indirect route via a basket cell (Ba). Yet another set of possibilities, shown
in Figure 18B, is that one of the variables, either s or -s-, is generated within the PC and
the other term is contributed extracellularly. All of the schemes illustrated in Figure 18
require that computation of s --, does riot compromise the PC's assumed role in generating

CRs.

Site of Plasticity: Granule Cells

Because of doubts expressed by a number of investigators about learning mediated
by modification of PF/PC synapses (e.g., Bloedel and Ebner, 1985; Lisberger, Morris,
and Tychsen, 1987; Llinas, 1985), we considered the possibility that learning occurs at
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MV/granule cell synapses. We propose that granule cells compute changes in V via con-

vergence of s - g from Golgi cells and x conveyed by mossy fibers. This convergence of
S"s and x implements the bidirectional Hebbian mechanism assumed by the model.

Golgi cells appear to be particularly suitable for computing s -- s for several reasons:

1. They receive input from a variety of sources, the principal ones being parallel

fibers and mossy fibers. They also receive collateral inputs from PCs and climbing fibers.

Hence, in principle they could provide sites of convergence of information about s and .9

for computation of s -.

*, *Z:- 2. The output of Golgi cells varies smoothly as a function of input. Their tonic rate of
• -• discharge is regular with little moment-to-moment fluctuation in interspike intervals that

could degrade information flow through the granular layer. Hence, they are capable of

modulating their output to reflect their input with little noise or signal distortion (Miles,

4f Fuller, Braitman, and Dow, 1980; Schulman and Bloom, 1981). This is a desirable feature
of any circuit element that would transfer feedback about NMR topography with high

fidelity.

3. In addition to Golgi cell/granule cell interactions within the granular layer, rabbits

possess an extra, mid-molecular sheet of "ectopic" Golgi cells and associated glomeruli that

may coordinate interactions among mossy fibers and granule cells (Spacek, Parizek, and

Lieberman, 1973). The synaptic organization among elements in this mid-molecular sheet
appears to be no different from that of the granular layer. Though purely speculative, this

d extra sheet of Golgi cells may enhance information processing related to learning.

4. According to a study by Eccles, Sasaki, and Strata (1967), the temporal course

of Golgi cell inhibition of information flow through the granular layer resembles the re-

"- lationship between A and s in the SBD model. We suggest that Golgi cells compute 9

by acting on granule cells that receive s information simultaneously from mossy fibers.

SPossible circuits by which s and A converge onto other Golgi cells for computation of S - A

will be considered later. First, a digression describing the Eccles et al (1967) experiment

is indicated.

Using anesthetized cats as subjects, Eccles et al (1967) analyzed field potentials in

cerebellar cortex (vermis and lobus simplex, which in cat corresponds to HVI in rabbit)
evoked by stimulation of mossy fibers. Stimulation of parallel fibers inhibited the response

evoked by mossy fiber stimulation. This inhibition was me(iated either by Golgi cells or

by basket cells. Golgi cell inhibition could be discriminated from basket cell inhibition by a

i1,numTber of criteria. Golgi cell inhibition required on-hearn stimulation, reached a maximum
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- excitatory

-H inhibitory

Figure 18. Summary of possible sites of convergence of SBD model variables x and s- ,
for weight changes mediated by parallel fiber/PC interactions. Diagrams A and B
represent PCs with two parallel fiber (PF) inputs, a climbing fiber (CF) input, and
a basket cell (Ba) input. In Figure 18A s - ,s might be transmitted to the PC by any
route or it might be computed intracellularly. In Figure 18B the two components of
s - § are dissociated from each other so as to illustrate the possibility that each is
contributed from a different source.
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within 10 ms, and decayed exponentially with a time constant of approximately 30 inN so
that inhibition was essentially complete after 100 ms. By contrast, basket cell inhibition

.-. - could be evoked by off-beam stimulation, peaked within 35 ins, and persisted for up to ,100
nis. Although G(olgi cell inhibition in the protocol used by Eccles et al may hold only whin
background activity is low, e.g., as in the case of an anesthetized preparation (Bloedel and

.I-lIt.- Ioberts, 1969), its temporal course nevertheless coincides with the relationship between
' "and s in the SBI) model in the temporal domain with /3 -0.5-0.6. This coincidence of the

".. time course of Golgi cell inhibition and the temporal relationship between s and .s in the
Sill) model suggests that Golgi cells participate in computation of s. These Golgi cells, and
the granule cells they impinge upon, are different from the ones indicated al the beginiil g
of this section that compute s - s and implement the learning rule at MiF/granuh I( ell
synapses.

Figure 19 summarizes how Golgi cells compute s in the way suggested by the Eccles et
al (1967) study: .s information carried by mossy fibers is converted to 3 by the action of
Golgi cells. The model assumes that Golgi cells that convert s to .A are activated by parallel
fibers. A group of granule cells (Gr), represented in the lower left hand portion of the figure,
receives mossy fiber input carrying s information as feedback from SpoV (coordinate (A1).
The output. of these granule cells passes s information through the granular layer with no
distortion to form parallel fiber beam B. Beam B excites Golgi cells (Go) that impinge
on members of a second class of granule cells that also receive s via mossy fibers from
SpoV. We emphasize that these Golgi cells and the second class of granule cells receive s

i": :
,  simrultaneously, i.e., within the same 10 ins time step. The action of the Golgi cells on the

second group of granule cells converts s to q. The output of the second group of granule,.'I, cells forms the parallel fiber beam labeled A which transmits s to other circuit. elements.

V 'There is some evidence for the existence of two classes of granule cells with response
Z., characteristics similar to those envisioned by our circuit model. Recording from presumed

'e . granule cells (granular layer input elements or CUES) in monkey fiocculus during saccadic

eve movements, Miles et al (1980) observed units that burst during a saccade and other
units that respond with a slower rate of firing which decays with time constants in the
range 10-50 ms (see Miles et al, 1980, Fig. 2, p 1446). The former are analogous to the first,
class of granule cells in the model, in which s passes through the granular layer without.
modulation; the latter are analogous to the second class of granule cells in the model, in
which s is converted to ,s by Golgi cell inhibition.

, . The circuit model assumnes t hat learning occurs at synapses of granule cells that re'eive
imossy fiber input, labeled Y (coordinate C3). Mechanisms that implement the eligilbility
of these synapses for modification, r-, presumably reside within these granule cells. The
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,'-'Figure 19. Implementation of SBD model at mossy fiber/granule cell synapses. A-(C

a.,

*are parallel fiber beams as in Figure 17. From right to left: the variable S is fed back to
gcerebellar cortex by T o smy fibers arising in brain stem spinal trigeminal nucleus pars oralis

(SpoV in Figure 17) in two streams. One stream gives rise to parallel fibers that drive ICs
with a firing pattern that lags the CR. This beam (B) excites Golgi cells (Go) that impinge
on granule cells (Gr) excited by the other stream carrying s and thereby convert it into

a beam of parallel fibers (A) carrying s information. This beam drives PCs with a firing
pattern that lags the CR and is damped relative to the firing patterns of PCs on beams B

* and C. Beam A contributes 9 to Golgi cells that compute s - s. The other term for this
computation, s, is provided either by axon collaterals from lag PCs on the B beam or by

climbing fibers. These Golgi cells pass s - to granule cells that receive CS information, X,
and thereby mediate weight changes at these mossy fiber/granule cell synapses to the extenta,

a' that, they are eligible for modification. These granule cells give rise to a beam of PFs (C)
that drive PCs proportionally to V2 and with a firing pattern that leads the CR.
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factor. s . is contrihiitec by (Golgi Cells that function as dlifferenitial amiplifiers. These
( lg cellis receive ., ;is exc itatory input from Beamn A (coordinate A 2), as desc ri bed above.
lIn Figure 19, I t(,ey receive s~ as an inib )1tory n u (direct or indirect) from cl ibing fibers
(coordinate (2) 1 ,ater on. wve suggest t.hat t his chlrubing fiber iptfor thre variable ii; night
be replaced by in put fromt a PC axon collateral such as thle one indicated at coord1in ate I.

* 'I' ~he Climnb intg fiber iit is omiitted li a subsequent, more comp~lete version of' I hie rirodel
- (l~esc ri bed later onl Not. ice that thle Golgi cell under 2 lit t he figuire is act nall lI cornpri tinig

W~..\e have referred to the comnput at ion as being .s .s In interests of clarity. Becittuse
Golgi cells are inhibitory, the computation is effectiVely One Of .5 -- s~ with resp~ect to the
gTranule cells receiving -.

Because Golg cells are inhibitory iiterneltros, when s - s Is positive the tonic output of
te (;olgi cells is modulated downward, thereby disinhibiting granule cells that receive , On

which they impinge. rhis disinhibition causes an increase in the weight of MV/granule cell
sy-apses t.o the extent that they are eligible for change. Similarly, when rs - . is negative
tle tonic outp ut of these (olgi cells is modulated upward. Tihis increases granule cell
inhibition andl (ecreases the weight, of eligible MV/graniule c:ell synapses. The feasibility of
bid i rect ionality ofweight changes is suggested by the work of Kelso et al (1986), mentiond

above, aind theoretical analyses of calcium dynarnics in dendritic spines by Gamble andp Koch (1987).

-' lI order to provide a continuum of possible values of s -s, Golgi cells must be able to
%"vary their output over a reasonably wide range of firing frequencies. Schulmari ard Bloor

(1981) report average Golgi cell firing rates of about 20 1z in rat anid Guiea pigs. This
rate is roughly comparable to that of presumed Golgi cells observed in monkey flocculus
.y Miles et al (1980). Miles et al noted a wide range of firing rates (10-80 Hz) arid smooth
variation between these frequencies (luring pursuit eye movement.

Finally, the circuit model specifies two active roles for Golgi cells: One is computation

of A. as outlined above, and the other is computation of s -- s. Palay and Chan-Palay
S(1974) note that the distribution of Golgi cell circumferences is bimodal, with the first

• ".peak occurring in the range of 9 to 16 ims ("large" Golgi cells) and the second in the
range of 6 to I Iprins ("small" Golgi cells). The existence of two categories of Golgi cells
mnay irply a difference in the types of computation each performs.

6; CR-Related PC Activity: Lead, Lag, and Damped Lag

'** _ raThe ci rculit nolel in Figure 19 (a d subsequently Figure 20) implies the existence
- of various types of ( -related firing patterns by P's. For example, the an on the s

beam (A) is labeled "damped iag" because It firing pattern (luring a CS presentation

, .
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would lag behind a (Cl and would also reflect thlie sl.o rise and d,cay of spike recruitment
implielV the relationship i)etween *, and .s in the hiodel. The PC on the,; baln (H)
is labeled "lag" because its firing ratc during a (CS prcseilt al ion would mirror response
o)ogratphy bimt wit I a lag by virtue of the fact Ii ht represents elference from the )rain

stei. C -relate1 "lead" PCs such as tle one on the r bear (C) are also implied by tlhe
circuit. Beri ier and Moore (1986) observed both lead and lag C(R-related P'Cs in IVI
during NNIR condition ing. They also observed I'(s that dlecreased their firing before the
occurrence of CAts. These C11-related "off-cells" of the lead type will be discussed below.

The existence of both lead and lag Cells suggest that cerebellar cortex might be doing
more than simply computing weight, chailges that give rise to (lts. Many elements inl the
circuit model shown in Figures 19 and 20 have been invoked to ex)laini a variety of timirig
functions, e.g., lead-lag compensation (for ali overview see llia,';, 1970: see also 11assul
an I )aniels, 1977: Marr, 1969). Our consideratilons about how cerelbellar cortex might

€- rnimplement the SIM model for NMNI I conditioning are not Intenledl as arguments against

any of these timing functions.

Role of Cliimbiiig Fibers

Some investigators hav, expressed strong reservations regarding climbing fiber partici-

pation in classical conditioning (see, e.g., Llinas, 1985). Particularly contentious has been
the idea tIhat climbing fibers (arry US informatrion that reinforces learning in cerebellar
cortex (e.g.. Thonpson, 1986). In the circuit implenentation of the SlBD model shown
in Figure 19, climbing fibers contribute to learning only iisofar as they might provide

. feedback about. s to (;olgi cells that comipute s .s. A wa% this might be achieved without
climbing fibers is also illustrated in Figure 19. Instead of using climbing fibers, s might
be transmitted to the Golgi cells by axon collaterals froi lag P(.s o<n the parallel fiber
l)eanl labeled B (coordinates 133). A circuit based omi PC collaterals circumvents the corn-

ptutational difficulties implied by the low frequenc y of climbing fiber firing while at the
same time retaining the desirable inhibitory effect on the (;olgi cells. Figure 19 shows
these collaterals arising from lag I'(s iistead of lead i'(s on beani C which might, serve
as well from a computational standpoint,. This is because P( collaterals are not generally

" oriented along the longitudinal axis of a parallel fiber beari, as would be the case if they
arose from P(s oil the ( beam. Instead, P oollaterals ar' oriented perpendicularly to the

- !<ongit udinal axis (Ito, 1981), as would be the ca.e if they c amue from 'Cs on an adjacent
beam of parallel fibers stich as B..

Th+' idea that climbing fibers inight convey .s to Golgi cells was suggested by the Schul-
man and Bloorn (1981) report of (;olgi cell inhibition in response to stimulation of climb-
ing fibers and by morphological evidence that. climbing fibers contribute to mossy fiber
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Figure 20. Summary of cerebellar neural circuitry summarizing how basket cells (Ba)
added to the parallel fiber beam (C) of Figure 19 can account for off-type lead CRs
observed by Berthier and Moore (1986). CS onset excites beam C parallel fibers and

thereby driving basket cells that inhibit tonic firing of PCs on the D beam. These

* off PCs of the lead type disinhibit IP neurons and thereby initiate the sequence of
motor commands that result in a CR.
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cr, .PIrr,n sYviapses onto ( olgi cells (Ito, I9Sf (,1). mail , ll d itli suggest,',d thai th,
.-. ': itnhiblton the' ob~scr,.cd was llkc'l., not dirc~t bult mcI,,. aled 1-. hw ket (elk1. lira',,",,'. 1,,

"ur knjoriedge direct basket (('II proJe'tions to (;olgli celis lla(' not l'ecli rtluorle'l in li'

ianatomlical literat ir.

Another diflicult\ with climlingf fibers is that their firing rates Itay l too low (tonically

1-2 liz) to faithfully carry infor iation about .,, with a temporal resolution adequate for

coniputation of s s iI the nillisecond domain. Although Berthier and Moore (196)

observed a few instances of climbing fiber vol leys (cornpex spikes) related to CHs, these

clim)ing fiber volleYs consistentiv led I.s. thus making it urnlikel.N that they were carrying

fecdback informat ion. The highest observed tmonint ary rate of ('.R-relat ed( comrp lex sliking

was oi the order of 10 lIz. iy contrast, our implementation of neuronal firing by the Si1l)

elrnetii assumes firing rates up to 200 Itz. and rates of simple spike firing in cerebellar

.14 PCs as high as 400 liz have been reported. The low frequency of (.R-related climbing
fiber activity siav not preclude an alternative conputational miodel incorporating cliibing

fibers.

What role if any might we assign to climbing fibers if they do not, contribute to corm-
pu tat ion of .,; . '? l xpriential evidence on the (-ntribution of climbing fibers in NMR

conditioning is controversial and open to interpretation. Thonpson (1986) cites evidence
that stimulation of DAO, the sonrce of cliunbiiig fibers to tIVI, reinforces conditioning.
Consist(ent with this idea, he' also reports that lesions of this structure caus(, a gradual

-. extinction oft (he ('R following training with an air puff US. The stimulation results might

reflect unintended antlidroniic activation of SpoV neurons and concommitant. invasion of
,ollaterals of mossy fibers that project to IfVI (sce Figure 17). As for the lesion data, Yvo

et al (1986) report that I)AO lesions cause an immediate disruption of' NMR conditioning,

not a gradual loss of CRs that would be expected if climbing fibers carry information that
reinforces conditioning. A sudden and persistentt loss of CRs such as that reported by Yeo

et al (1986) would be cxpected if climbing fibers perform some trophic function such as

regulating PC excitability, as has been suggested by numerous investigators (e.g., Bloedel

and Ebner, 1985; Strata, 1985).

lerthier and Moore (1986) found little support For the idea that climbing fibers carry

U S information related to reinforcing learning. They observed only a few cases of complex
spikes elicited by the IfS employed in their study. lowever. these (data were obtained

,O after sufficient training to ensure that Cls occurred on a high proportion of trials. The

likelihood of observing climbing fiber responses to the US might be greater during earlier
stages of CT acquisition, i.e., when s -s at UTS onset would be consistently large.

444'I ,
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I ('11-Related PC Activity: 011 mnd Off

.\S noted. Berthier arid .l(oore (1986 ) observed P(s that ircr(as'd their si iilI, pi

tiring abve pre-trial rates on trials with CIs. These cells were designated "on cell."

tlhovver. CR-related "off-c(ils", P(s that dlecreased t heir firing rate below pre,-t tial rit e,

0!wre also observed. Although ofF-lP( s mright arise 'froni long terri depressioi. of PF 1)(:

'*"- - vnl)ses (Ito. 198-1: Thompi)son, 19X6). the circulit model s hown in Figure 20 provih' ai

tlternative (explarat oar ol" off-l)Cs. The'me )('s ar associalted witi the beala) of p)arilli

",'Ii rs labeled ). Iv, ibecoire off-cells of' the lead type , h .a CS is ,reusi,,,('(1 bee a r, (

(f increisel Inhibition fron basket cells (lBa) on the C beamr (coordinate 1)3). (Like IC

&.,m)1 collaterals, basket cell axons tend( to priject perpeindicularY to the longitrdinal a':is

of ' e parallel fiber beam b which tlre are activated).

( i? is Initiate(d when basket cell inhibition of P(Cs on bear l) becornes sufficicn(Iv

great to ,) siiihbit I1' neurons to which they project. Tihse IP cells project iII turn to RN

ii e(' rons that excite tire reflex pathways nr( iating the CR (Figure 17). B ecause m. os

lii erir from r)oitm l re niuclei (1o riot send collaterals to deep cerebellar iirlaei (lBrodal, I)iet -

ri( hr. and \\alberg. 19(86), l( model does rot assume that CSs activate II' neruron.s. Th'ev

are aiisur(d to be toni(ally activated by neural traffic unrelated to a particlar stimulus,

hlil this activatioan is norraallv suppressed by inhibition imp)sed by l( s. Hen'ce, a CS
rlt'lt, , t1iris iihitilon arid tIre level of activation of I) neurons increases sufficientlv to

drIis hei IN neurroi. air ir ('xt stage ofl the efferent pathway of the CR.

li order for (ClHs to lie generated by on- ){(s inst ead of off-I)(,Cs, there would h ave o le

;i <,gral inversion .orniewher, (ownstreamri ira tire efrereit circuit, e.g., at the level of RN
i(s c Fig ure 17). ()n-P('s would irhilbit II' neurons that. project to RN, and this would lead

S. "" t) off-tvpv p(R-related responses fl. IN units. Although (CR-related on-units in RN are

Srii)rr ron 1 x ofwserved during NMII? cord itioning. off-units are rare (.J.E. )esmond, personal

("Ill . Un i at ior).

PIT. .>irce ofr-i1 ( s art, attractive candidates for generating CRs, is it possible that they

1ri' thr(uugh soni( othlier mrieans'! l.i ,sides the possibility of long term depression noted
ilmvu,. onme way to generat (Rs with(ut the posited internediary basket cell would be to

Si, 'rt tir( variable r before it is transmraitted to cerebellar cortex. Such an inversion would

)_. :,. ranir ifest it self as a iri iiior% action of nrossy fitbers carrying CS information on granule
.il. llo(,ver,( CSs such as a(-oustic stimuli are known to excite cells in the granular layer

I - (Ivnir ;r aId Stowll. 191I). ari t I(ref'orec signal inversion on the input. side is aa untenable

-' nr',))IC -of evoking off-type respones il PC(,,.

In rirder ti I),,rlritt, fi, ' ,'r 'nat ion of (I s, basket cell, on the C hbeam imust begin to

•, ,, -j
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IrI[ulI it lP(S oil thle I) beamil stillietl501 fe( Scse to ens5i1( (I Iiitaii I x I hI I

It e temporal xVjIildo%% (elilled 1).x t he (""-I'S 111 1%itlVl. AsV iioteol aio% c, Fccles et al ( 19G67)
[oi dI Ii t at lI)asketI cell ini Ii)ItI loll evoked i 1) ff-I; cjil II d pa r I leI 1 11her ,;I I1mu1Iit lollp t ks wi I II
a I tencex of' 35 iri and persists fhu- ili) to aI few hundioredl Ils. Thes'e characteristics, of' baske't

- ~~cell In hibIi tion miight exp)lain wlvbehi ax'oral ( Rs rarely Ili lVO latenc ies less t han iiOt Ill"
and are( seldloml sustained for uliore than a Few find Ired is. It seem [s plausiblle that b)asket

- ~ ~~ cells participate [i the adaptive shaping of' (C? topographY thoiught I) lInl(erlX' ifiiiibit ioll of'
(IcfeaN, i.. tithe acqu iredI ten deiic for peak (CH amp ~litudne to occur jlist before titlie xpiected((
nine1 of occuiirrence of Hie U s.

Assilmling off-I)C's niediate' CRs. how are wve to interpret oii-I)(N thfat lead thle Ilehiai~or?!
Clearly their existence iiiplies itiihjbitjloi of deep niuc lear cells in 11 1,to whiiich they projectI
anld SuIch off-un ilts have beeni observed ti otir lalbora tory iii rclordling fromn if' during N NI I?
conditioning. It, is li kely t hat 011-PICs that leadhCI reflect parallel learnI ing assoc'i at ed will Ii
processes such as stimu his c'odi1ng, response shiapin1g, or coilcollimit ant behaviors iiormal ly

* inibited dluring a CR.

Figuire 21 summiiarizes the four types of firing pat terls dliscuissed ill conniect ion w'ith

Figiure 20. As in the Bert 11ier anid Moore (1986) sitn dy, Ihle iIterx'al I Ietweenl CS onset. and

I'S onlset represents 350 Ins. 'The( Cl? in the figure begins 200 mis after the CS. R endlerinigs,,

of PC sirrple-spike firing were hand-crafted to reJrnil yp)ICal CH?-relted P~C responses;
t hey all assume ba-sehine firing rates of 100 liz, which is tylical of thiat observed *ii our

recordhing experiments. TIhe firing patte(rns; are labeled to correspondf withl the types of
* I'Cs indicated in the circuit. model shown in Figure 20. 1flence, the Inicrease in fi ring rate

of' the Lag On-PC begins within a few Inis after CR initiation. The increase in firing of
the D)amped Lag On-PC begins slightly later anid persists slightly longer. The increase in
firing rate of the Lead On-PC precedes thie CR by more than 100 nis, anid the Lead Off-PC
b~egins to cease firing at, this time, both profiles being typical of CR-elicited firing patterns-

I. observed byv Jerthier anid Moore (1986)

* Of the( approximately 40 CI?-related PCs reported by IBert~hier an(l Moore (1986), on-
(v'1k exceeded off-cells by 3::J, anid lead and lag cells were equally distributed (ratio of 1: 1).
Although possibly a coincidence, it is nievertheless interesting that these ratios are impliedf
bY the( circuit rnodel, providled of course tha. parallel fiber beamis A-C are comp~arable
tin terms of number of fibers and] levels of activation evoked by the variables s~, s, and r,

* respectively. TIhe correspondence between the model's Ipredictions1 regarding the statistical
(list ribution of CR-related PC types encourages further experimental tests of the model.
Stich experiments might, provide: (a) reliable separation of (lamrped-lag PCs from the lag

N s; (b)) wi Idelce of Golgi cell activity related to the variables ,; or ,;, i.e., the implied buIt,
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Lead On-P("

"'" i,- Lead O)f-PC

Lag On-PC

Dape I !IIII IIIIIIIIIIIIIII.IIuuI.IIa
', Damped

Lag On-PC

NM Response

CS+ Trial

Cs us

Figure 21. Renderings of CR-related simple spike firing patterns predicted by the circuit
model in Figure 20. The baseline firing frequency for all four types of P's is 100 liz,

": 2. and the CS-US interval on reinforced trials (CS+) is 350 ms.
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as-', t-iitli ils) tiait at'(l ( 'l?-r lated firing of lhi, lag anid Ilam;iped-lag va'iety alliong (;ol;i

cells ()c) ,viduence of'( Cl-related neural t raflh aionrng parallel fibers (beamis A-L) in Figure

20).

('erebellar hintlleiletation of Multiple-( CS Pliernonielna

lII this -ecth wO'e diSCLs tile illiphcati l ls of a ((re)ljJar circulilt ilrpl(.ni tatil of'

Ile SIII) irrodel for imlitiple-CS pheini eria. 0IIr e1ort to irllpleffIerIt tle SIll) Inodel in

cerebellar cortex was guidIed by experimental eviderice suggesting that this region of the

brain is niot onl essential for robust (Is, but niav he a site of learning as well. We have

argued tha lit a iiTciit iTripletneritat lo along the lines of Figure 20 is a ;Ipromising candidate

" for implementing the model. but our discussion has been limited to conditioning with i a

"" Single (S. How adequate is this implementation for conditioning protocols involving more

*-t tair oTIe (S". If the implementation is problematic from tHie viewpoint of relevainit data

the difficulI might lie with the model. with the circuit, or with its assigned locus withfin

ite trailr.

Tihe principal rinuI pI- CS phenomena of in terest are iigher-order conditioning, block-

iig, aild ioniditioned inhibition. Like virtually all conleniporary learning theories, includ-

ing the original '-,'B nrodel (13arto and tittonr, 19,S2), the SlID model predicIs appropriate

oultconies III sinulations of these muIlliple-CS protocols (Illazis el al, 1986; Moore et, al.

1986). The model predicts higher-order conditioning because it is basicallNy an S-l{ conti-

" gurity t hveory ol learning, albeit one witi ain informational structure: A second-order ('H

*."" can be established provided the temporal relationshitp between the primary and secon(arv

".P ( Ss is appropriate and provided the primary, initially trained CS is capable of evoking a

(R!. Should the priinary CS lose its capacity to evoke a CR, e.g., through extinction, the

secondary CS would eventally follow suit. The model predicts blocking because of its

_A: perceptron-like architecture as depicted in Figure 1 and the fact that, the learning rule in

Equation :3 is basically a variant of the Widrow-HofF rule (see Sutton and Barto, 1981).
Conditioned inhibition also follows from Equation 3 because the synaptic weight. V, of a

CS lhat is never reinforced can take on negative value when it, is presented in combination

wit I anot her (CS that possesses a consistently positive weight. Hence, conditioned inhibi-

lion lepends on the bidirectionality of tile Ilebbian mechanism for syna ptic modification

(discussed previously.

The circuit model in Figures 19 and 20 could readily be extended to encompass higher-
order conditioning and blocking. All that would be required is a global broadcast of the

variables s and s over a. sufficiently large region of IIVI to encompass inputs from many

potential CSs. This would permit local computation of s -, by Golgi cells. In the Case

S, (f higher-order conditioning, synaptic weights at granile cells that receive input from the
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seeorOld-order (w\ouIld incr(La ,t to) Ihe etent I lid! tlifey remin eligible foi- (liarig al ilie

rime their associatedl ( olgi (elks corripult ilie large riet ye% value of *s s that results from

ev\war ion of'a it CH 1 ilie primary CS. Shouild the primary CS lose weight, the weigh t of

i lie seconldar CS woul del1 11s el.ui lockig, the CS conilbiricd withI the originlally

I raiiied (S would riol accuniiulate weilght galis over reinflorced trials as long asi the oiri('i~id
("S ret ai ned lhe a pac itv to ev-oke a CH it aCHI su fficienitly robust to preclude la rge vales

o f s~ s at the t imre of U S onset. Hlowever. exteninrg thle ci re iit model inl the nii e

m lgges ted here would niot be appropriate beca use of experi menital evidence i rid icat H ig t hat

bltock inrg. Iiigher-order conii on ing, a rid( certain ot her comnplex cond(irtironring p heu oTTm
irivilve t lie participat ion of ot her b~rairn regions lbesiils the cerebelluml, particulakrl i-

liippocariipal forIliat iori.

The idea of global broadc ast, i rig of .s arid A woirld( also alIlow for thre c reat ion of' negative(
weilghts inr graii ile cellIs that receive inp ut from a CS assigried the role of' (condit ionied

inlili dior. H owever, inr addition to being res istarit to s ubsequienit acq(u isition procedures. a
con dit ion ed in hibhitor mnust be capable of opposing the evocation of a CR by a cond(itio ned

exciter w hen t lie, two stimnulIi arc presen~ited together. 1It is riot ob~vious how thIiis would

1)e accoriplishied inr the cerebe! ar c ircunit. miodel. It may be inriappropriate to alter the

preserit ci r(:uit mrodel so as to produce such CRI suppression, in any case, because there

is n)o v id(errCt Ii at. tire cerebellIurn is involved in conditioned in hibition of the NM .I? or

exariple, lierthier and( Moore (1986) used a differential conditioning procedure in order to

assess the CR-relatedness of cerebellar units. Differential conditioning is closely relatedI t~o

conditioned inhibition in that both procedures include reinforced and nonreinforced trials.

AItlihorigli CTs were suppressed oi1 it high proportion of trials to the nonreinforced CS, there
were-( rio rist anes of' unit activity related to CR suppression. Furthermore, lesion studies

by. Mis (1977) arid ot hers suggest, that condlitioned inhibition involves the participatioin

of brain regions outside the cerebellumr (see Yeo, Hlardimian, Moore, and Steele-]? ussell,
)()83). If conditioned inhibition involves processes extrinsic to the cerebellum, as seems,

likely, there may be no nieed to assume a bidirectional ilebbian mechanism in the model.
0 learning thieorists have, long recognized] that b~idirectional modifiability is not necessary to

accoiurnt for cond it ionred inrihi bition (e.g., Moore anl( Stick hey, 1985)

In sum. the SB31 rmodl is a mathematical description of a device capable of simulating

* .ant irrpressive array of facts about. NMR. conditioning at the behavioral arid nerirophys-i-

ological levels. Despite its potential ability to encompass miultiple-CS effects within the

framnework of either a single neuron resembling Figure I (e.g., Figure 18) or a somewhat,

ii ore elaborate ci rcuiit (e.g., Vigni rs 19 anid 20), an im plerrenitation of the mrodel confIined

o thre cerebellum is riot. entirely appropriate for mnUltiple-CS Iphenornena. Th is caveat

,i;ie u netgtin fteS11 oe have nevert heless suggested a novel theory

a 1d. ou inestiatios o theSBD '19V



about the locus of synaptic changes for a real iistaice of conditioning and in i real i w -
,. vous system. Furfi~er theoretical work should mnove toward it sy, elsev falasI' hl

I. might point the way toward to a neural network architecture that not only accourit: 1,r

,phenomenology, but does so iii a neurobiologicly realistic manner. Further researc F oi
the circuit model could be conducted on a time scale compatible with the mnodelig (dt

neural events such as action potentials, that is, in the domain of microseconds.

- Neurobiological Correlates of x: Poiis and Hippocanipus

rImplementing the SBIl) model in the cerebellar cortex raises questions as to how (CS

input is shaped so as to yield appropriate response topography, that is, what are the ruech-
anisnis that provide the preprocessing of CS inputs to learning elements? In this sectioii we

discuss the possibility suggested by several investigators that such preprocessing involves
interactions among the cerebellum, hippocampus, and pontine nuclei (see Berger, Weikart,
Bassett, and Orr, 1986; Schmajuk, 1986). Basically, the idea is that CR templates are con-
structed in parallel and at multiple levels. At the level of pontine nuclei, stimuli are coded

with respect to onsets and offsets. Although this would suffice for adaptive CR topogra-
" tphies in forward-delay paradigms with near-optimal ISIs, more elaborate coding schemes

involving the hippocampus and cerebellum are engaged in more complex paradigms such
as trace and Iong-ISI paradigms.

Berger et al (1986) have described a circuit involving hippocampus, subiculum, ret-
rosplenial cortex, and pontine nuclei that could provide for hippocampal modulation of

%CS information conveyed over mossy fibers to putative learning elements in cerebellar cor-
tex. Port, Mikhail, and Patterson (1985) cite evidence supporting the notion that the
hippocampus provides a neural template of the CR that develops over training. Its influ-
ence on response topography depends on the complexity of the paradigm. Without the
neural template, response timing and amplitude are compromised in paradigms with non-
optimal Us. Solomon, Vander Schaaf, Norbe, Weisz, and Thompson (1986) reported that

hippocampectomized rabbits display short-latency CRs during trace conditioning, relative
to sham-operated controls; these CRs bear a striking resemblance to those predicted by
the SBD model under trace conditioning protocols. However, other workers have found
longer-than-normal CR latency during trace conditioning of hippocarripectomized rabbits

4 (Port, Romano, Steinmetz, Mikhail, and Patterson, 1986).

Recording studies provide further evidence for hippocampal involvement in the shaping

of response topography. Conditioning-related neuronal activity occurs in the hippocampus
during forward-delay training and such activity models the behaviorally observed response

50

IW
I:



; - - -- , . *- . , .- : - . i :c 7w - , - , -: *- ¥ . ! ,"'rvnrrrr-r ,

S (lBerger, Lahain, and Thompson, 1980). tloehler and Thompson (1980) recorded behav-
ioral CRs and hippocanipal unit activity in rabbits that were first trained to respond to a
2.7() ni., CS and which were then presented with 500 iis CSs. Both the behavioral CR aid
the hippocanipal unit response were shown to peak near the time of US onset, with the
1ippocampal peak occurring 30 to 60 nis prior to the peak of the behavioral CR. However,
when the rabbits were switched to presentations of a 500 Ins CS, both the hippocainpal
act ivitv and the behavic'al CR shifted, but the shift in the hippocarpal response occurrd

s,,,oner.

We have suggested that the preprocessor needed by the SBD model should be capable

of altering parameters that shape x, thereby providing the necessary modulation of the

aimplitude and time course of a response. We have noted that the proper combination of
m and h can vield longer-latency CRs. However, changing the shape of x is not sufficient
for appropriate topography in the trace conditioning paradigm, since x begins to decay
at CS offset. The pre-processor (hippocampus) might override this problem by shifting x
so that the rising phase of the CR begins after CS offset. Implementing a mechanism for
changing the shape of, or shifting x could be based on feedback about the adaptability of the
template presumably provided by the hippocampus under conditions of non-optimal ISis
or trace conditioning. There is evidence that the contribution of the hippocampus to NMR

conditioning might be partially mediated by feedback via projections from cerebellum, as
suggested by loss of CR-related hippocampal neuronal firing following lesions of cerebellum

(Clark, McCormick, Lavond, and Thompson, 1984).

The present report has examined our effort to model CR topography by shaping CS
input to a learning element in such a way as to provide a template for the response to be

- learned. The critical questions concern how and where the CS is represented within the
brain. At this time, the most promising brain region may be the pontine nuclei, structures
which form points of convergence of sensory inputs and possibly response modulating

& '. inputs from the hippocampus. Simultaneous recordings from pons and hippocampus, as
well as hippocampus and cerebellum, may further elucidate the information processing

underlying NMR conditioning.
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