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Summary

_. The Sutton-Barto-Desmond (SBD) implementation of the Sutton-Barto model of
h ., connectionist learning describes many features of rabbit nictitating membrane response
(NMR) conditioning.; The rabbit NMR has been widely adopted as a model system
for theoretical and neurobiological investigations of mammalian learning. The present
report explores parametéf\sensitivity of the SBD model in the context of forward-delay
conditioning with a single conditioned stimulus (CS). Constraints on the model’s pa-
rameters are potentially useful*in elucidating neural ssubstrates of NMR conditioning:
Neural implementations suggested by the SBD model provide a framework for inves-
tigations of connectionist lea.rning\'lr\lechanisms at both the circuit and cellular level.
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,.'\ rf A fundamental assumption of the SBD model is that the input of a CS to the
K j’\ * learning element is shaped by as-yet-unspecified coding processes such that the el-
' .&-i’: - ement’s output conforms to the topogrgphy of response waveforms observed in the
, ;'; laboratory. Simulation experiments were conducted with various combinations of pa-
B rameters that shape the CS representation In addition to response topography, the
‘c;:ﬁ model’s performance was assessed in terms of rate and terminal levels of learning,
_‘ i - simulated interstimulus interval functions, and othg;_g_r@ Implications of these
b xﬁ ) experiments for possible brain mechanisms involved in processing and representing CS
":.- 3 \information are discussed. S T ueed T lvs
E = Simulation results indicate that the SBD model’s ability to capture(major features
:r , of NMR conditioning is highly constrained by parameters that shape thg‘(CS). aken
:: "~ s together with experimental evidence implicating the cerebellum in NMR conditioning,
5’_‘ - these and other constraints on the model’s parameters suggest various neural circuits
4,5" i for implementing the SBD learning rule. A class of circuit models favored by several

theorists assume that learning occurs at synapses where parallel fibers convey CS infor-
mation to cerebellar Purkinje cells. An alternative approach, elaborated in this report,

ZL
< )

,';':‘ assumes that learning occurs at synapses where mossy fibers convey CS information
fi' 2 to cerebellar granule cells. This hypothesis was suggested by the invariance of a key
¢ H..: parameter of the model: The time constant of the process governed by this param-
i eter matches that of Golgi cell inhibition of granule cells. A circuit model based on
@ this assumption can account for patterns of CR-related activity observed in single-unit
WA recording studies.
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Introduction

LR 2R

— Workers in the behavioral and neurosciences have developed a fruitful approach to
modeling brain function by combining mathematics with neurophysiology and anatomy
(Churchland, 1986). This approach, sometimes referred to as computational neuroscience,
provides a framework for integrating seemingly divergent areas of scientific inquiry. A
particular example is the extension of a general mathematical model of learning to a

s |

: specific instance of behavioral learning such as classical conditioning. Although most
% models represent the cumulative effects of conditioning without reference to motor output,
. . we have shown how a template of the classically conditioned nictitating membrane response

2, : (NMR) of the rabbit can be incorporated into the neurally inspired model of classical
S conditioning proposed by Sutton and Barto)(Barto and Sutton, 1982; Sutton and Barto,
:: I 1981). The original Sutton-Barto (SB) model was presented in the context of the extensive

g 2

behavioral literature on NMR conditioning {see_Gormezano, Kehoe, and-Marshall, 1983). :
In essence, the approach we used resulted in an implementation of the SB model that
not only describes cumulative effects of training but also response topography.)(Blazis,
Desmond, Moore, and Berthler, 1986 Moore, Desmond Berthier, Blazis, Sutton, and
Barto, 1986). Models of NMR topography based on other theoretical frameworks have
also recently been described (Desmond, Blazis, Moore, and Berthier, 1986; Desmond and
Moore, 1987; Schmajuk, 1986; Schmajuk and Moore, 1986).

P

,
>

S,

The rabbit NMR is a protective response resulting from retraction of the eyeball and
the passive sweeping of the NM over the eye (Berthier, 1984; Berthier and Moore, 1980).
The conditioned NMR is a graded, adaptive response. It has been employed for theoretical,
behavioral, physiological, and anatomical investigations of learning in several laboratories.
i Our strategy for modeling the NMR was to constrain the SB model to predict response

o topography in a simple conditioning situation. Constraints were derived partly from elec-
trophysiological experiments conducted in awake, behaving rabbits (Desmond, 1985). We
\ have shown that the physiologically constrained SB model retains the ability of the original

-
2
=
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: "' implementation to describe multiple-CS phenomqna such as blocking, conditioned inhibi-
-"i - tion, and higher-order conditioning. These more complex learning situations are predicted
3 o without further modification of the parameters of the model (Blazis et al, 1986; Moore et
o / al, 1986). We refer to this variant of the SB model as the Sutton-Barto-Desmond (SBD)
® model.
"‘ :j: The present report describes simulation experiments with the SBD model that explore
< its sensitivity to parameters that control CS representation in single-CS forward-delay
; . conditioning paradigms (Moore and Gormezano, 1977). We describe approaches to neu-
"N ral network implementations that integrate information about parameter sensitivity with
» Cal
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e anatomical evidence indicating that cerebellum is essential for the conditioned NMR.
‘;a; \[
%:
'-::.. The Model
e
)
‘s‘~‘ Y The SB adaptive element can be viewed as a neuron-like device capable of receiving
;2 ' input from many potential CSs. In Figure 1 these are designated as CS;, i=1, ..., n. Each
: ;S CS; gives rise to a representation that provides a synaptic input, designated z; to the
fft.‘ element, and has a variable synaptic weight or efficacy, designated V;. The unconditioned
stimulus (US) is signaled by a pathway of fixed efficacy, designated A. The output of the
:;n element, s, is the weighted sum of its inputs. Tesauro (1986) has criticized the SB model
':'.. on the grounds that it is only applicable in situations where inputs are represented locally.
V3l However, Sutton and Barto (1987) point out that the SB model is also applicable when
‘:gi_. inputs are given a distributed representation.
.,l Learning in the SBD model occurs according to a modified Hebbian rule (Sutton and
3} Barto, 1981). Hebbian rules typically assume that learning can be reduced to modification
&, _'_: of synaptic weights. They generally state that learning is a function of the product of
o synaptic activity evoked by a CS and the neuron’s activity or output. In forming a mental
o picture of how a neuron “becomes conditioned” one usually imagines that it is relatively
W inactive unless fired by the US. If this US-evoked firing coincides with excitation from the
:: CS input, the efficacy of this input pathway increases. This conceptualization of Hebbian
X > learning obscures an essential point, namely, that changes of the CS’s synaptic weight might
:‘.f, W occur at any moment before, during, and after the occurrence of the US, depending only
2 on the element’s activity during application of the CS. This activity might be spontaneous
;":::: or evoked by other synaptic inputs including those from other CSs. Real-time Hebbian
’t"'.: rules such as the SBD model are sensitive to this point because they allow for continual
:.' changes of synaptic weight.
RO
("‘" Input
'
:‘:53 Our approach to extending the SB model to CR topography is to treat the input of

i the i*" CS to the element, z;, as a continuous function of time. The original SB model
g specified z; as a rectangular pulse defined by the onset and offset of the CS. With no
further processing, such an input produces a square wave output and with 0 latency. In
Y contrast, a real conditioned NMR begins well after CS onset and rises gradually in a
‘35' ramped or S-shaped fashion within the CS-US or interstimulus interval (ISI). The CR
o attains a maximum at or near the temporal locus of the US, and then decays rapidly
wyt during the post-US period. This pattern of response topography is also reflected in the
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Figure 1. The Sutton and Barto neuron-like adaptive element. The unconditioned stim-
ulus (US) is signaled by a pathway of fixed efficacy, denoted as A. Inputs for each
conditioned stimulus (CS) are denoted as z,, i=1, ..., n, and vary in transmission
efficacy according to the strength of a learned connection for each CS, the synaptic
weight V. The output of the element, s, is computed as the weighted sum of all
inputs.

activity of some types of neurons that have been identified in single-unit recording studies
as being linked to the generation of CRs. For example, Desmond (1985; see also Desmond
and Moore, 1986) described the activity of brain stem neurons recorded during classical
conditioning of the rabbit NMR with a 350 ms tone CS (ISI of 350 ms). In a typical cell,
spikes began to be recruited about 70 ms after CS onset. About 150 ms after CS onset,
spike recruitment increased sharply and continued to increase throughout the remainder
of the ISI. The momentary rate of firing prior to the US rarely exceeded 200-Hz. After US
offset, firing initiated by the US declined toward a baseline rate of about 10-Hz.

The finding that the firing pattern of these brain stem neurons mirrored and preceded
the behavioral CR as observed at the periphery provides some justification for shaping
CR topography in the SB model by manipulating the input trace rather than imposing an
arbitrary transformation on the element’s output to achieve the desired CR topography. In

essence, the current implementation of the SB mddel provides the element with a template
of the CR.

We were able to fashion a suitable CR template by using an expression for CS input
to the learning element that allows for variation in the recruitment and amplitude of the
CR within the IS]. The input to the learning element at time ¢ is denoted z;(t). Each time
step t corresponds to 10 ms. At CS; onset, ¢t = 0. For time steps t = 1, ..., 7, z, = 0. For




t > 7 and until CS; offset, z; is defined as follows:
z;(t) = [arctan(mt - 5.5) + 90|/180 h. (1)

The parameter m, m > 0, controls the rate of rise of z;, and the parameter A, h > 0,
controls CR amplitude. The simulation experiments reported by Moore et al (1986) used
m = 0.35 and h = 1.0. These are the default values of the model.

Holding z; = O for the first 7 time steps precludes any changes in V; during this period
and aligns the model with reports indicating a minimal conditionable ISI of 70 ms for
rabbits (Salafia, Lambert, Host, Chiaia, and Ramirez, 1980). It also precludes detectable
CRs with latencies less than 70 ms.

A second function returns the CR generated by z; to its pretrial baseline. It is imple-
mented at CS, offset, decays geometrically, and is computed as follows:

it +1) = kzi(t), (2)
where 0 < k < 1. In Moore et al (1986) k = 0.85, its default value in the model.

With the default values of the parameters of Equations 1 and 2, the model simulates
features of the conditioned NMR: increasing amplitude and decreasing latency of the CR
over training, decreasing amplitude and increasing latency of the response during extinc-
tion, and attainment of peak CR amplitude at the temporal locus of the US. These features
are depicted in Figure 2. The variable s' on the ordinates of the panels of Figure 2 is a
sliding mean over three time steps (the current and two preceding) of the element’s out-
put, s (defined below in Equation 4). s' is bounded between 0.1 and 1.0 as in our previous
reports. The lower bound of 0.1 imposed on s' reflects a threshold due to recruitment
effects between the model’s output and the motoneurons which generate the peripherally
observed response.

Learning Rule

The equation dictating changes in synaptic weight (connection strength) is retained
from the original SB model. At time ¢, the the change in synaptic weight of CS;, denoted
as AV;, is computed as follows:

AVi(t) = els(t) - s(t)]z:(t), (3)

where ¢ is a learning rate parameter, 0 < ¢ < 1, s(t) is the element’s output at time step ¢,
and 3(t), defined below, is a function of s(t) from preceding time steps. Z;(t), the eligibility
of CS,;, is defined below.
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Figure 2. Simulated response topographies, s', obtained with a 250 ms ISI during ac-
quisition and extinction in a forward-delay paradigm. The US duration = 30 ms.
The data were generated with the following parameter values: m = 0.35, h = 1.0,
k = 0.85, A\, = 0.9; ¢ = 0.15, and # = 0.6. In this and subsequent figures depicting
response topography, s' is a sliding mean of the element’s output, s, over three time
steps, the current one and the two preceding, bounded between 0.1 and 1.0.
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Output

The output of the learning clement at time t, denoted s(t), is defined as:

n

s(t) = 2_Vilt)z(t) + X(1). (4)
i=1

A'(t) is defined below. While s can take on any real value in the SB model, in the SBD model
it is confined to the closed unit interval and is linear within that range. This limitation
on permissible values of s is imposed because of physiological constraints of the NMR:
Negative values of s are inappropriate in modeling NMR topography because they imply
NM retraction and exopthalmus, CR-opposing responses which are not typically observed
in the rabbit. The upper bound of 1.0 reflects the fact that, although the amplitude of
the NMR is directly related to the intensity of the eliciting stimulus, there are limits on
the number of involved motoneurons and their rate of firing (Berthier and Moore, 1980;
Moore and Desmond, 1982).

Variable A'(t) in Equation 4 equals O prior to the occurrence of the US. During US
presentation A’ is calculated as the difference between A, the weight of the US, and the
largest positive starting weight among all CSs present on a given trial. (Starting weight
refers to the weight of a given CS at t = 0.) Thus, if V; is the largest starting weight among
the CSs present on the trial, while the US is present

I»\—K fO<V, <\
M=<0 if Vi > A (5)
lA if V; <0.

At US offset, X' decreases as follows:

Mt +1) =0.9X(¢t). (6)

Although A in the model is a constant directly related to US intensity, A’ functions as
a heuristic that implements the idea that US effectiveness can diminish progressively with
training (e.g., Donegan and Wagner, 1987; Mackintosh, 1983). Thus, in the SBD model
the effectiveness of a US on a given triai is the difference between the amount of learning
that can be supported in the limit by the US and the amount of learning accumulated up
to that point in training. Because V; generally increases during training, A' progressively
decreases, and this can induce a corresponding decrease in response amplitude at the time
the US is presented. Figure 2 illustrates a progressive diminution of the unconditioned
response (UR) over acquisition trials due to the progressively smaller contribution of X'(t)

T T T T —
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N to s(t) in Equation 4. (In this report, the UR is defined as the response profile during time
. steps containing the US).
bl
. o Were A'(t) to be replaced in Equation 4 by ), post-US computations would cancel
increments in V; during time steps preceding US offset, and as a result there would be no net
+ x learning (see Moore et al, 1986). In addition, response topography would be compromised.
¢ Predicted Output
G
b :}ﬁ The trace of s, denoted §, is computed by:
ol 5(t +1) = B3(t) + (1~ B)s(¢), (7)
il where 0 < # < 1. The parameter J determines the rate of decay of 5. 5 can be interpreted
RN as the element’s prediction or expectation of its output during the current time step.
‘ \"'
[ B Learning Eligibility
o
,f .' Variable Z;(t) in Equation 3 is a duration-dependent stimulus trace that defines the
i period and extent to which the ¢*" synapse or connection is eligible for modification. For
. a given time step ¢, this eligibility trace is defined as follows:
i)
2 K zi(t) = z(t — 4), (8)
Voo
& "ﬁ during time steps ¢ that the CS; is on. Z; begins its decline four time steps after CS; offset:
Y
b Z,(t + 1) = 6%,(t), (9)
e l where 6§ = ¢34 d = max{25, CS; duration in units of 10-ms}. The computations shown
r. define a period of eligibility which begins some time after CS; onset and persists beyond
b CS, offset. In earlier descriptions of the model (e.g., Moore et al, 1986), the lag between

' : z and Z was erroneously stated to be 3 time steps, or 30 ms. However, the computer code
[ generating the SBD simulator computes Z(t) as specified above in Equation 8, effectively

! 5 producing a lag of 4 time steps or 40 ms. The simulation experiments presented in this
o report utilize a lag of 4 time steps as in Moore et al (1986).

o

[ Purpose and General Method

Ny .

“ :‘:',

P, Because our simulation experiments in this report are limited to single-CS forward-delay

- paradigms, we henceforth suppress subscripts designating different CSs for the variables
é Vi, z;, and %;.
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We cxamined the sensitivity of the model to parameters of the input trace as specified
in Equations I and 2. The values of other parameters of the model were the same as in
previous reports (e.g., Moore et al, 1986). The learning rate parameter, ¢ in Equation 3,
was 0.15. The weight of the US, A in Equation 5, was 0.9 in all experiments, and 3, the
output rate parameter in Equation 7, equaled 0.6. In all experiments, simulated training
was in a forward-delay paradigm in which US onset occurred simultaneously with CS offset.
The duration of the US was 30 ms. All simulations of training assumed that V = 0 prior
to training.

In Experiment 1 we varied z-shaping parameters m, h, and k one at a time while
holding the others constant at their default values. In Experiment 2 we investigated
cotnbinations of z-shaping parameter values. One of our goals was to determine the region
of the parameter space in which the SBD model successfuily simulates response topography
as well as other aspects of NMR conditioning. A second goal was to determine whether
some combination of z-shaping parameters might mitigate some of the shortcomings of
the SBD model noted in our previous reports. For example, CR latency predicted by the
model is too short to be realistic in protocols involving long ISIs (Smith, Coleman, and
Gormezano, 1969). Also, the model predicts a negatively-accelerated learning curve instead
of the S-shaped learning curve typically observed in the laboratory. In trace conditioning,
the model also fails to appropriately place CRs within the trace interval (i.e., the interval
between CS offset and US onset). It was recognized at the outset that no combination
of z-shaping parameters would alleviate all problems with the model, but we hoped to
uncover approaches to their solution.

We also examined the model’s sensitivity to parameters of the learning rule (Equation
5) with reference to descriptions of learning curves, ISI effects, and response topography.
These considerations provided a basis for discussion of a neural circuit implementation
of components of the model. Several laboratories have demonstrated that learning and
generation of conditioned NMRs involves the cerebellum, particularly hemispheral lobule
VI (HVI) (Berthier and Moore, 1986; Yeo, Hardiman, and Glickstein, 1984, 1985a-c, 1986).
In the Discussion, we consider various schemes by which the cerebellar circuits might be
aligned with modification of synaptic weight as specified by the SBD model.

Experiment 1: Variation of z-shaping Parameters

Experiment 1 investigated parameter sensitivity of the model. In Experiment 1, one
parameter of £ was varied at a time while other parameters were held constant at their
default values. We looked for evidence that certain parameter values might mitigate prob-
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lems in the behavior of the SBD model mentioned previously: failure to predict longer CR
latency in long-ISI forward-delay paradigms and the failure to predict S-shaped learning
o curves. We assessed the effects of each parameter value on acquisition and CR topography
;{,; for ISIs of 100, 250, 350, 500, and 700 ms. We examined six values of m (0.1, 0.2, G.35,
* 0.6, 0.8, and 1.0), five values of & (0.25, 0.5, 0.75, 1.0, and 2.0}, and seven values of £ (0.0,

{

ot ' 0.1, 0.25, 0.45, 0.65, 0.85, and 1.0). Notice that with kK = 1.0, z can not return to pretrial
::' a baseline (Equation 2). k = 1.0 is included to provide a contrast with permissible values of
,.. o k.

_& 13

7, Learning Curves: Shape and Rate of Acquisition

Z‘: B Manipulation of m
R

o Figure 3 shows the acquisition of V generated over 25 training trials under variation

of m. This and subsequent figures in which V is the dependent variable refer to values

N \3' of V as they exist during static periods, i.e., during intertrial epochs when z and % are
b essentially 0. V is dynamic during CS presentations and for a period thereafter, tending to
'.: . rise from its intertrial level as the output of the learning element, s, increases and falling
~ n back to some extent as s declines. This occurs because V can change only when % exceeds
! 0: I increases during the ISI, up to and including the time of US occurrence, and declines
:1 > during post-US epochs.

A .

Figure 3 shows that when m = 0.35, V grows in a negatively-accelerated fashion to
a value of 0.59 in about 15 trials. Values of m greater than 0.35 (i.e., 0.6, 0.8) do not
! appreciably alter rate of acquisition or maximum value of V. Low values of m (e.g., 0.1

-

L and 0.2) yield slow acquisition. With m = 0.1, the model requires 700 trials to attain a
:: . stable value of 0.88. This is considerably higher than the terminal weight of 0.59 attained
> much more quickly with m = 0.35.

(]

¥ Acquisition with m = 0.1-0.2 is slow because the value of z is low throughout the ISI.
;“1' - As implied by Equation 4, the element’s output is directly influenced by the magnitude
v of z. The slow rise of z during the ISI results in a low value of s(t) — 3/t) in Equation
'-(',; >, 3. Furthermore, Z, which defines the time and extent to which V can be modified, is also
.q small during this period. Thus, V grows in minute increments over acquisition trials.
K. - )
"~ ~ Figure 4A shows values of V obtained after 50 trials as a functica of m. This figure
) ’ indicates that V increases as m increases from 0.1 to 0.35 and decreases for m > 0.35.
' 2 -~ V is smaller when m = 0.6-1.0 than when m = 0.35 because the value of z is nearly 1
h" in the eighth time step after CS onset. (Recall that according to the assumption of a
v
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: Figure 3. Acquisition of V with a 250 ms CS paired with a 30 ms US at an ISI of 250
:;: ms with various values of m.
e
% minimum conditionable ISI, z = 0.0 during the first 7 time steps). Since z is practically

: at its maximum before Z exceeds 0, s — 3 is on the order of 0.01 on the eighth time step.
k.- Given such a value of s — 3, increases in V are negligible.
L~
L Manipulation of A
y Figure 5 shows acquisition of V under variation of h. When h = 1, the default value,
': the learning curve is negatively-accelerated and stabilizes in about 15 trials. The most
{ rapid acquisition occurs when A is low, e.g., h = 0.25, and the slowest rate of acquisition
a is obtained when h = 2.0. Figure 4B plots terminal values of V as a function of h. The
_ figure shows that V is a minimum in the neighborhood of A = 1, the default value; the
‘;' maximum is at A = 0.25. Within a range of values from 0.5 to 1.0, rates of acquisition
;an are about the same (Figure 5), and V values after 50 trials (Figure 4B) are approximately
::' equal.

[§
4 Taken together, Figures 4B and 5 indicate that a low value of h such as 0.25 results
B in rapid learning and a high terminal weight. This result follows from Equations 1 and
,,: 5: When A < 1.0, the value of z is uniformly greater than the value of z obtained with
;::. h > 1.0. In addition to the larger value of z, with A < 1.0, s — § is large early in the ISI,
D)
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)
A-.;,. giving larger-than-average increments in V. This accounts for the observation that rate of
2' acquisition and terminal value of V increase as h decreases below 1.0.
N Although h = 2.0 produces much slower arquisition than h = 1.0 (Figure 5), the
. . . . . .
")‘ terminal value of V is slightly greater with A = 2.0 than with A = 1.0 (Figure 4B). The
e slow rate of acquisition with A = 2.0 is due to the fact that z and T are low throughout
,\' the ISI, resulting in a low value of s — 5§ during this period. However, at US onset, s — §
/ _~ is large enough to compensate for low values of z and Z, and eventually terminal values of
B V exceed those obtained with the default value.
LaFR
. Manipulation of &
»
'.
,::* Figure 6 shows that all values of kK < 1.0 vield negatively-accelerated learning curves.
:.l:' Both the rate of acquisition and terminal weight are directly related to this parameter.
As shown in Figure 4C, V after 50 trials is an increasing function of k, increasing slowly
e through the range 0 < k < 0.65 and increasing rapidly up to k = 1.0. When k = 1, = does
%, . .
oy not decay at CS offset and consequently V accumulated during the ISI and presentation of
" the US does not undergo the post-trial reduction that would otherwise result from negative
::: values of s~ § during the period of declining eligibility. Moreover, extinction does not occur
T
7
Y
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when k - 1.0.

Response Topography

As mentioned in the Introduction, NMR topography has the following features. The
CR rises gradually in a ramped or S-shaped fashion after CS onset to a peak amplitude at
or near the time of the US. The response decays rapidly after US offset. Response profiles
generated by the model under variations in the values of h, m, and k were assessed against
these criteria. Thus, simulated responses that are square-shaped or that do not maintain
a smooth, continuous rate of increase over the ISI are not realistic. There are exceptions
to this characterization, of course, but it is generally applicable to forward-delay and trace
paradigms with [SIs less than 1 sec.

Manipulation of m

With m = 0.35, the default value, the model produces the realistic responses depicted
in Figure 2. No other value of m examined here works as well. Figure 7 shows two
simulated responses; one generated with m = 0.1 (Figure 7A) and the other with m = 0.6
(Figure 7B). Because m affects rate of learning, and since we wish to contrast response
topographies with V held constant, Figures 7A is based on a greater number of trials (100)
than Figure 7B (25). Figure 7A shows that with m = 0.1 and an ISI of 250 ms, a detectable
CR does not appear within 100 trials. This is the case with any value of m < 0.2. The
failure to develop a CR arises from the very low amplitude of z; for example. with m —
0.1 the peak value of £ computed with an ISI of 250 ms is less than 0.04.

Low values of m not only tend to preclude detectable CRs. they exaggerate the decline
of UR amplitude over training trials implied by Equations 4 and 5. Given enough training,
the UR disappears altogether with m < 0.2. For example, with m = 0.1, s after 700 trials
is only 0.15 at the time of US onset. This value of s(t) follows from Equation 4 because
even though V = 0.88 at US onset, z = 0.03. Thus, s barely surpasses the predefined
threshold of 0.1 for s’. This loss of UR amplitude emphasizes an interesting feature of the
model: Given enough training, V can attain a high value, but this does not necessarily
imply the occurrence of detectable CRs.

Since m influences the rate at which z increases, higher values of m yield CRs that
rise rapidly early in the ISI. The CR obtained with m = 0.6 in Figure 7B not only rises
quickly, it abruptly changes slope midway through the ISI. The latter portion of the CR
is relatively flat until US onset. The inappropriately short CR latency and abrupt change
of slope are not typical of real conditioned NMRs. Only values of m in the neighborhood
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i paradigm after 100 trials in A and 25 trials in B. The hash marks on the abscis-
" - sae designate stimulus onset. In A, m - 0.1 and V -: 0.48 at the start of the trial.
f'l: 5 In B, m = 0.6 and V = 0.48 at the start of the trial.
»
; ": of 0.35 maintain a smooth, continuous topography and appropriate rates of acquisition.
> 2
s . Figure 7 illustrates that the value of m not only affects CR amplitude, but also UR
S amplitude. The difference in UR amplitude is not a consequence of different values of
- n A', because V is equal for the two response profiles depicted in Figure 7. Instead, the
Ky difference in UR amplitude reflects different values of £ during US time steps. Although
K ;\: the simulation assumed that the US occurred at CS offset, £ nevertheless contributes
:: < heavily to s’ during US epochs. In Figure 7A, r is quite low at US offset; in Figure 7B, z
* at the time of US onset is nearly ten times higher than in 7A, resulting in a greater UR
’ a amplitude.
o
" " Manipulation of h
JY IS
“,: - The effects of h on NMR topography are illustrated in Figure 8. The response simulated
¢ with A — 1.0, the default value, is shown in Figure 8C. Figure 8A shows that the CR
" s produced with h = 0.25 rises quickly within the ISI and is soon clipped by the imposed
:: ' ceiling of 1.0 on s'. These inappropriately clipped CRs occur with any values of h < 0.5.
N Simulated CRs with A > 0.5 generally appeared realistic, most notably in a decreased
e disparity between peak amplitude of the CR and the amplitude of UR. Figures 8B and

@ R(C indicate that blending of the CR into the UR is somewhat better with A = 0.75 than
';'. o with A - 1.0. The improved blending of CR into UR occurs because z attains a greater
" ’d amplitude when A - 0.75 than when A 1.0. With the 250 ms ISI used in Figure 8, r is
:: nearly 1.0 at US onset when h - 0.75 and 0.95 when h  1.0. Figure 8D shows that UR
'

E amplitude with h - 2.0 is lower than with other values of h. This reduction occurs for the
A
A v,
X
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o ! same reasons as we noted in connection with Figure 7. In Figure 8D z is one-half as large
’ at the time of the US as in 8C in which A = 1.0.

i .

Iy Manipulation of k

5 Figure 9 shows that parameter k affects the profile of the post-CS response. The figure
:: R depicts response profiles on trials in which V's were about the same, i.e., after 10 reinforced
.- trials in Figure 9A, 5 reinforced trials in Figure 9B. Figures 9A and 9B, in which £ = 0.25
;:a % and 0.85 (the default value), respectively, show the effect of £ on UR amplitude. Figure 9A
ol shows that the lower value of k results in a lower UR amplitude. This lower UR amplitude
. . in 9A is due to rapid decay of z at CS offset: With £k = 0.25, z in the time step after CS
Y :: offset is 0.22; with k£ = 0.85, z in this time step is 0.86.
1 * -
N The response profiles in Figures 9C and 9D are obtained after one extinction trial.

Figures 9C and 9D, in which k& = 0.25 and 0.85 respectively, illustrate the point that the
decline of r decreases as k increases. The sharp drop in CR amplitude at CS offset with &
= 0.25 in Figure 9C is not realistic. This effect of £ is obscured in Figures 9A and 9B by
the decay of ' (Equation 6).
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Interstimulus Interval Effects

X Interstimulus interval (ISI) functions typically plot some measure of conditioning strength
I after an arbitrary number of trials as a function of the ISI used during training. ISI
= functions are typically concave downward. The rabbit NMR literature describes the ISI
a &_ function as an inverted U that rises sharply from the minimal ISI that can support con-
] ditioning, approximately 100 ms, to a peak at the optimal ISI of 250 ms. The function
Y declines gradually as ISI increases beyond the optimal range such that little or no learning
NS occurs at ISIs greater than 2000 ms (Gormezano et al, 1983).
’ gl The default values of the SBD model produce an ISI function generally consistent with
v the literature, with the exception of negative weights predicted for CSs of 100 ms duration

(the shortest considered) with a 40 ms lag between z and Z. In the context of the SBD
model, negative values of V are interpreted as inhibitory, and there is no evidence to
‘ support this in the experimental literature.

L

: f,: Figure 10 shows ISI functions for each set of parameter values. With the exception
e of negative weights at ISI -~ 100 ms, Figure 10 shows that most values of m and k, and
' all values of h, yield realistic 1S] functions. However, with m - 1.0 (Figure 10A), the IS]
" 2 function is inappropriate because V increases uniformly as ISI increases. With m - 0.1,
'
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W Figure 9. Simulated veiponse topographies with a 250 ms ISI in the forward-delay
g paradigm; V = 0.44 at the start of each depicted trial. In A, there were 10 prior
:: -‘ training trials, the CS is followed by the US, and k = 0.25. In B, there were 5 prior
'f:fi? training trials, the CS is followed by the US, and & = 0.85. In C, there were 10 prior
(J training trials, the CS is not followed by the US, and k = 0.25. In D, there were 5
prior training trials, the CS is not followed by the US, and k = 0.85.
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[SIs greater than the optimum promote greater terminal values of V because low values
P A of m allow z, and therefore s - §, to be positive throughout the 1S1. Longer ISIs provide
;:j:: more opportunities for V to increase. In Figure 10C, k = 1.0 yields an inappropriate
-_s;: IS1 function: V == 3.5 (plotted as 1.0 because of compression of the ordinate) for all ISls
Y greater than 100 ms. The ISI function predicted for £k = 1.0 is flat for most ISIs and is
. therefore inconsistent with the literature.
k)
3
E:, Experiment 2: Combinations of z-shaping Parameters
l"_

Experiment 2 investigated combinations of z-shaping parameter values, m, &, and k.
::: We selected values of each parameter that appeared on the basis of Experiment 1 to
:'.:: have a noticeable effect on the model’s behavior. For comparison purposes, all simulations
0 included the default set. In Experiment 2, four values of h (0.25, 0.75, 1.0, 2.0), three values

of k (0.25, 0.65, 0.85), and three values of m (0.1, 0.35, 0.7) were covaried orthogonally.

We assessed the effects of covariations of parameters on rates of learning and response

:'.,3‘5 topography for ISIs of 250 and 600 ms.
&
L

Learning Curves: Shape and Rate of Acquisition

Figures 11 and 12 plot V as a function of trials for the various combinations of m and
h with k& = 0.85. Figure 11 was generat~d with an ISI of 250 ms; Figure 12 was generated
with a 600 ms ISI. Most learning curves are similar to that produced with the default
combination in that V is a negatively-accelerated function of trials. Rate of acquisition is
uniformly low with m = 0.1, as might be expected from Figure 3, and in fact most of the
data plotted in Figures 11 and 12 might have be inferred from Experiment 1.

e

Figures 11 and 12 show that no parameter combination yields an S-shaped learning
curve. As presently formulated, the SBD model assumes that the form of the input trace
T is invariant over trials, an assumption which may reflect neurobiological reality. It is
possible that an S-shaped learning curve might be obtained from the model by using more
than one parameter combination to shape the input trace over training. We discuss the
implications of varying the form of z in later sections.

«
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Figure 13 plots V after 50 trials for ISIs of 250 and 600 ms for the combinations of m
and h plotted in Figures 11 and 12. Thus, Figure 13 is a plot of the terminal values of V
shown in these two figures. As might be inferred from those figures, with combinations of m

20
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of parameters m and h are covaried and k = 0.85. In A, h = 0.25. In B, h = 0.75.
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Figure 12. Acquisition of V' with an ISI of 600 ms in a forward-delay paradigm; values
Ay of parameters m and h are covaried and k£ = 0.85. In A, h = 0.25. In B, A = 0.75.
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and h excepting those with m = 0.1, V with a 250 ms [SI (Figure 13A) is higher than with
a 600 ms ISI (Figure 13B). Although not shown, this pattern also holds with & = 0.25 and
k - 0.65. {As might be inferred from Figure 4C, V is directly related to & for all parameter
combinations.) Thus, ISI effects on V appear to be relatively insensitive to combinations
of r-shaping parameters that depart from the default set, exceptions being those noted in
connection with Experiment 1, low values of m and k& = 1.0. However, although all other
combinations tested yield appropriate ISI effec.s, they are not all suitable with respect to
other criteria.

One noteworthy feature of Figure 13 is the low values of V obtained with the combi-
nation m = 0.7 and h = 0.25. Learning curves (Figures 11 and 12) indicate that these low
values of V stabilize well before 50 trials. Low terminal values of V with this combination
appear somewhat paradoxical because m = 0.7 leads to a reasonably high V when h = 1.0
(Figure 4A), as does h = 0.25 when m = 0.35 (Figure 4B). There is no paradox because
a combination of high m and low h produces a rapid rise in z during the ISI. After a
few trials, this drives s to the imposed ceiling of 1.0 (see Figure 8A) before % exceeds 0.
Because of this ceiling, by the time Z becomes significantly positive, s — § goes to 0, and
consequently no further changes in V are possible.

Response Topography

Figure 14 illustrates response profiles with selectcd combinations of z-shaping param-
eter values with [SIs of 250 and 600 ms. The combination m = 0.7, h = 0.25, and k =
0.25 was used to generate Figures 14A and 14B. 'I'he combination m = 0.7, h = 2.0, and
k — 0.85 was used to generate Figures 14C and Figure 14D. Response profiles in Figures
14A and 14C can be contrasted with that gencrated by the default set, m = 0.35, h =
1.0, and k = 0.85 (Figure 8C). The results depicted in Figure 14 suggest that response
characteristics generated by a given parameter combination with the 250 ms ISI (Figures
14A and 14C) also hold for the longer IS (Figures 14B and 14D). Combinations with
m - 0.7 result in a response that rises rapidly but which then increase slowly over time
steps leading up to the US. As noted in Fxperiment 1, h = 0.25 results in larger response
amplitudes than those produced by the default set. These are, in turn, larger than those
generated with A = 2.0. The influence of k£ on response profiles is obscured in Figure 14 by
the contribution of A’ to responses shown in Figures 14C and 14D, but as noted previously
k simply determines the decay of the response after CS offset. Although values of k used
in Experiment 2 do not affect acquisition or ISI functions in any dramatic fashion, we
know from Experiment 1 that low values of k yield undesirably low UR amplitudes and
durations.
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Figure 13. V obtained with ISIs of 250 and 600 ms in a forward-delay paradigm after 50
trials; values of m and h are covaried and & = 0.85. In Panel A, the ISI is 250 ms.
In Panel B, the ISI is 600 ms.
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Figure 15. Simulated response topographies for a 600 ms ISl in a forward-delay
paradigm after 50 trials. For the upper wavelorm, m — 0.35, h - 1.0, k - 0.85,
and V' - 0.59 at the start of the trial. The CR appears earlier in the ISI than is
observed in the laboratory. For the lower waveform, m - 0.1, h = 0.25, k = 0.85, and
V = 0.66 at the start of the trial. CR latency is appropriately longer, but response
amplitude is attenuated.

Figure 15 addresses the issue of inhibition of delay with a long ISI. It contrasts response
profiles generated after 50 trials with the default set with those generated with m = 0.1,
h = 0.25; k = 0.85. With the default set the CR begins to rise early in the ISI and
consequently does not show inhibition of delay. This is because s' with m = 0.35 and
h = 1.0 surpasses the threshold of 0.1 450 ms before the US. However, with m = 0.1 and
h = 0.25 ¢’ does not exceed 0.1 until 260 ms before the US. (Therefore, there would be no
detectable CR with an ISI of 250 ms.) The latency of the CR better reflects that observed
in the laboratory. Moreover, the form of the CR in this case does not have the large
amplitude and S-shaped form that are obtained with the default set.

Figure 15 shows that the UR obtained with the default set is substantially larger than
that obtained with mm = 0.1 and h = 0.25. With the default values, z = 0.98 and V is
0.70 at US onset, and A’ is 0.31. Therefore during the US s' is approximately 0.9. With
m = 0.l and h = 0.25, £ = 0.27 and V = 0.67 at US onset, and X' = 0.24. Therefore s' is
approximately 0.4.

In summary, Experiment 2 shows that the parameter combination m = 0.35, k = 0.85,
and h = 0.75-1.0 optimizes performance of the model with respect to acquisition, response
topography at near-optimal ISIs, and appropriate ISI functions. With the 600 ms ISI,
no combination appears to produce a CR with both the desired long latency and high
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v ! amplitude at US onset. Nor does any combination yield an S-shaped learning curve.
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P Discussion
O e . . \ .

A Fxperiment 1 showed that when m - 0.1 the CR fails to develop and the UR eventually
: disappears as training progresses. Values of m greater than the default value of 0.35 tend
4 : :_':: to vield CR topographies that abruptly change slope. Experiment 1 also showed that m
D! is the only parameter of r that markedly affects IS] functions. When m - 0.1, the SBD
- model predicts that terminal weights are an increasing function of ISI. Values of m larger
::.:.' E‘_: than this vield an appropriate decline in 1" as ISI increases beyond an optimal of 250 ms.
:: Parameter h (h - 0) affects CR amplitude and rate of learning. CR amplitude is inversely
W related to h. When h - 0.75, the model produces a behaviorally realistic blending of the
2l & CR into the UR. Values of h ranging from 0.5 to 1.0 yield faster rates of acquisition than the
- more extreme values, h - 0.25 or 2.0. Parameter k shapes response topography following
S CS offset, but beyond this has little affect on other aspects of the model’s behavior except
::::: - in the case where k& = I in which CRs never return to pretrial baseline.

b-'.J
Rpn = cxperiment 2 investigated combinations of parameter values of z. One goal of Exper-
o ‘ ment 2 was to uncover a combination of parameter values that might produce inhibition

:J-_:: of delay, i.e., increasing CR latency as ISI increases. The combination of A :: 0.25 and
o m 0.1 produces the desired increases in CR latency, but only at the cost of yielding an
J‘.;: - inappropriate ISI function in which V is an increasing function of ISL.

i &
Z" i Sensitivity of the SBD Model to Other Parameters
>
"CR
", 0y With the exception of parameter h, kixperiments 1 and 2 generally justified the choice
Lt of parameter values for z used in previously reported simulations with the SBD model: m
¥ g;‘ 0.35, h - 1.0 and k - 0.85. As noted above, response topography is somewhat more
W ” realistic with A = 0.75 than with A == 1.0. Nevertheless, the model describes forward-delay
' " NMR conditioning as well or better with the default combination of z-shaping parameter
::l.. }‘E values as any other. In particular, the default set yields the best jotnt descriptions of
®. acquisition with various ISls and response topography. However, the model’s performance
E -, in this regard depends not only on z-shaping parameters but on other parameters as well:
‘:. " c in Fquation 3, 3 in Equation 7, and the parameters of r, the lag between z and 7 in
;\ Fiquation 8 and 6 in Fquation 9.

¢
i E The value of the rate constant ¢ in Kquation 3 alfects both response topography and
s>
b7 X
}c: e
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o~ trial-wise learning rate. As shown by Figure 2 of Moore et al (1986), a high value of ¢,
:}: say ¢ 0.4, yiclds a response topography typical of that observed in well trained rabbits.
W However, the rate of CR acquisition over trials when ¢ 0.4 is much too fast to be realistic.
:_ Values of ¢ low encugh to yield appropriate trial-wise increases in weight, e.g., ¢ - 0.04,
‘' 5 . . o, . . .
y ) vield an undesirable abrupt transition of response topography from CR to UR at the point
'~ 4 of US onset. The value ¢ - 0.15 used in the present study represents a compromise between
: reasonable rates of learning over trials and the realistic response topography. However, it is
::: worth noting that if training consists of one trial per day. robust conditioned NMRs appear
"GUR within 15 trials (Kehoe and Gormezano, 1971). This rate of conditioning is reasonably

in accordance with our simulations of acquisition with ¢ 0.15 and the default values
for r-shaping parameters in the model. Kehoe and Gormezano (1974) showed that trial-
wise rate of NMR conditioning is directly related to intertrial interval. Unlike some other
real-time models (e.g.. Moore and Stickney, 1985). the SBD model is not sensitive to this
important variable (Moore and Gormezano, 1977).

.,,-_— The value of 3 in Equation 7 is considered a constant of the SBD model. This parameter
’:f.'_t determines the rate of decay of the element’s output memory, 5. Ideally, it should range
‘f from 0.5-0.6. If 3 is greater than 0.6, the ability of the model to reach stable weights
.\": is disrupted and a “blow up” in weights occurs. The large weights result in unrealistic

: rectangular-shaped response profiles. Values of 3 less than 0.5 result in low amplitude
e CRs that do not blend with URs and inappropriate negative weights at short ISls even
*E:: with a lag between 7 and z in Equation 8 of 30 ms.

.:-j The specification of z in Equations 8 and 9 is important for yielding ISIs functions
R consistent with the literature (Smith et al, 1969). Equation 9 specifies that the rate of the
.“,,? decay of r varies inversely with CS duration. In forward-delay paradigms, this permits V

to decline enough during post-US time steps from its on-trial peak to yield an appropriate

,. ':} ISI function when ISI exceeds the optimum of 250 ms. Equation 8, which specifies the time
i' q lag between r and £, is also important for ISI functions. In this and previous reports, &
'("' lagged = by 40 ms (4 time steps), thereby compensating for large increments of V for CSs
of less than 250 ms duration. As noted previously, the lag yields inappropriate negative
;::: weights with an ISI of 100 ms (see Moore et al, 1986). We have subsequently discovered
::{t that with the default parameter set, a lag of 30 ms (3 time steps) yields small positive
-»',; rather than negative V with ISIs of 100 ms, and an otherwise appropriate ISI function,
On provided that # in Equation 7 is 0.5-0.6.
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The Input r as a €S Representation and a CR Template

"o

The variable r in the SBD model serves as both a representation of the CS and

i}

template for the CR. As a U8 representation, the parameters that govern the rise and
decline of r determine such things as rate of increase of V' over trials, the shape of learning
curves, and IST functions. As a template, r determines the topography of the CR. This

..: g is evident from the fact that with suflicient training CR topography and the shape of
;“- ::} r are virtually indistinguishable from cach other. Qur simulation studies indicate that
Ron o can function in both capacities and capture important features of NMR conditioning
- Furthermore, it can do so with the same restricted set of parameter values: specifically.
‘_':‘_-: ::: those approximately equal to the default set specified in this report.
-_ . The current specification of r is not adequate for all aspects of NMR conditioning.
-':_- - however.  As noted. no combination of parameter values investigated to date yields an
’ J - S-shaped learning curve such as those observed in the laboratory. In addition, because r
-'::\ - is specified in terms of the onset and offset of the CS, the model cannot yield appropri-
SN ate CR topographies in either trace conditioning (Moore et al, 1986) or in forward-delay
":::. conditioning with a long ISI. As mentioned previously, in the case of long ISls, for ex-
SR ample, CR topographies in the laboratory show inhibition of delay (Pavlov, 1927). That
e i} . 1s. CHs begin fate in the IST and increase gradually (ramped rise) so that the maximum
;'4: amplitude occurs just prior to or concurrent with the US. llence the CR is efficient as well
NI as adaptive. It is adaptive in that the response is timed so that vision is not obstructed
:::: unnecessarily before the US. It is efficient in that metabolic energy is not being used to
3 unnecessarily to retract the eyeball during early phases of the ISI. This sort of efficiency
J _[ is a product of training and is not encompassed by the model. With the default values, r
:: N attains 95% of its asymptotic value 300 ms after CS onset, and remains asymptotic until
:::{ " CS termination. However, the results of Schneiderman (1966) indicate that the onset of
SN the conditioned NMR across a wide variety of ISIs occurs roughly halfway through the ISL.
L
._v b Although our simulation studies indicate that no combination of z-shaping parameters
:j - mitigates these limitations of the model, they do suggest approaches to solutions. One
:j approach would be to allow values of parameters m, h, and k to change during training,
1SIEN thereby allowing for production of maximal CR amiplitude at the time of the US. Inhibition
Y of delay might be implemented by first using the default z to allow sufficient learning to
, .J; ) occur and then implementing an input trace with low values for m and h, like those used in
o s the simulation depicted in Figure 15, to shape the proper topography. Varying the shape
::: o of r could also yield S-shaped learning curves. The initial slow rise of the empirically
! ,':: observed learning curve might be achieved by allowing m and h to be low initially. Then,
A4 L; as the number of trials increases, m and h could be increased to their current default
R
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values, thereby allowing the model to deseribe a negatively accelerated learntng curve in

later stages of conditioning.

As for trace conditioning. CRs can not oceur in the trace interval as long as the rise
and fall ol r are specified according to the onset and offset of the €N, There are two
wavs to alleviate this problem. The trivial <olution would be to specify that ris defined
according to the IS and not €S duration. However, although such an approach could
vield a CR over the trace interval, CR onset might still occur shortly after €S onset, even
if the input trace is allowed to change over training as described above. Another way to
generate CRs in the trace interval would be to allow 'S offset to imtiate an input trace
to the element at CS offset. This approach is supported by the work of Liu and Moore
(1969) which demonstrating that rabbits can be conditioned to respond to stimulus offsets
in a forward-delay paradigm. In fact, a model proposed by Desmond and his associates
specifies both CS onset and offset processes that are distributed over many mput elements
(Desmond and Moore, 1987; Desmond et al, 19%6).

Problems with the model discussed in this section might be resolved by taking into
account interactions between forebrain structures, particularly the hippocampus, and brain
stem structures linked to the cerebellum that are important for the conditioned NMR. This
possibility will be discussed later.

Neural Iimplementation of the SBD Model

Several laboratories have demonstrated that the cerebellum plays an essential role in
the acquisition and generation of conditioned NMRs (Thompson, Donegan, Clark, Lavond,
Lincoln, Madden, Manounas, Mauk, and McCormick, 1987; Yeo et al, 1985a-c; 1986). In
this section we discuss two frameworks for implementing the SBD model in cerebellar
cortex. We begin by briefly discussing the hypothesis that changes of V occur through
modification of parallel fiber (PF)/Purkinje cell (PC) synapses. Although this viewpoint
has its detractors (e.g., Llinas, 1985) as well as proponents (e.g., Ito, 1984; Thompson,
1986), there can be no denying the striking similarities between the SB adaptive element
as depicted in Figure 1 and the morphology and synaptic organization of cerebellar PCs.
Like the SB adaptive element, a cerebellar PC can in principle receive many inputs from
parallel fibers arising from many different CSs. The climbing fiber input seems a natural
means for providing input from the US, and the cell has basically a single output channel
with only limited axon collateralization. Furthermore, cerebellar PCs have been shown to
respond to CSs in a CR-related manner (e.g., Berthier and Moore, 1986). We next discuss
the possibility that changes of V occur at mossy fiber (MF)/granule cell synapses. This
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’, hy pothesis represents a novel approach to cerebellar involvement in classical eonditioning.

. one that may prove to be more consistent with the experimental literature on neural
::: J substrates of NMR conditioning than the PF "'PC scheme.

- Like the SB model, the SBI) model also assumes that learning occurs by a modified
. F Hebbian rule: OS weights change proportionally to the extent that the learning element’s
: < current output, s, differs from a trace of previous output, s. These changes occur in the
rs . domain of milliseconds. Hence, they are continually altered according to the magnitude
N '_\:‘ and sign of s s. If current output is greater than previous output, weights are increased; if
7 current output is less than previous output, weights are decreased. The locus of synaptic
™ . modification for a particular €S is presumably some morphologically restricted region
2 '-::‘ wherein synaptic terminals carrying information about the CS can interact with s s, In
i-: ' principle, there are a number of ways this interaction might occur.

N r" In the SBD model the relationship between s and § is controlled by the parameter
. in Fquation 7. As noted previously, the model performs best with 8 in the range 0.5-0.6.
S Given the 10-ms time step assumed by the model, this narrow range of acceptable 3 values
. implies that the relationship between s and s can be described in continuous time by an
- exponential function with a time constant on the order of 30 ms. Hence, for any change in
- s on agiven time step, s closes to within one percent of s within the ensuing 10 time steps,
P n or 100 ms. This reiationship imposes a constraint on circuit models that would describe
.:‘ . where s s is computed and how this term interacts with CS input, z, at sites of synaptic
}» ,".'.: modification.

™ Any neural circuit capable of implementing the SBD model must specify not only where

_. weight changes occur but also how feedback about NMR topography in the form of the

Lo expression s s enters into their computation. Sutton and Barto (1981) suggested that
:: axon collaterals carrying information about s - § might feed back onto z input terminals
: jf-: in the form of axoaxonal configurations. The locus of learning in this case would not be
4 within the output neuron but within the terminals or presynaptic entities that carry CS
e o information to the cell. A presynaptic locus of learning would suggest cellular mechanisms
R such as those invoked in connection with heterosynaptic facilitation of sensitization in
- Aplysia (Hawkins and Kandel, 1984; Walters and Byrne, 1983). However, we know of
:-: no evidence for presynaptic mechanisms in cerebellar cortex. Furthermore, Stent (1973)
; = has pointed out that presynaptic implementation of learning is unlikely in vertebrates for
reasons we need not pursue here, and he therefore supported the postsynaptic viewpoint. |
\ Alkon (1984) has suggested that the critical postsynaptic events for learning could |
Y- ocenr within the restricted volume of a dendritic process that shares synapses of terminals

carrying CS information with an adjacent terminal carrying US information. For example,

- - - o .
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in one nenral network implementation of the SBD model discussed below, that in which
learning occurs at PF.PC synapses, Alkon’s view could be interpreted such that these two
inputs would arise from parallel fibers impinging on adjacent spines in the distal arbors of
the dendritic apparatus. In terms of the SBD model Alkon's approach would state that
the convergence of CS information and feedback information (in the form of s - §) on a
shared dendritic process constitutes the critical learning event. Recall that in the SBD
model the US is important for learning only insofar as it contributes to s and hence to the
term s -- s. The weight of the US’s contribution to s decreases progressively with training:
It is implemented by a heuristic (A') which takes account of the upper limit of s imposed
by physiological constraints on the NMR.

In the adaptive element shown in Figure 1, modifiable synapses that would implement
the SBD learning rule must be capable of both increases and decreases in efficacy. That is,
they are bidirectional in the sense that the same synapse must be capable of mediating both
EPSPs and IPSPs depending on circumstances of training. For example, the phenomenon
of conditioned inhibition (discussed more fully in a subsequent section) is encompassed
in the model by having V' take on negative value. In contrast to conditioned inhibition,
the phenomenon of extinction comes about through unlearning, i.e., by having V lose
previously acquired positive value over the course of presentations of the CS without the
Us.

There is currently little hard evidence for bidirectionality of synaptic weight changes
related to learning. Kelso, Ganong, and Brown (1986) report facilitation of associative
long term potentiation (LTP) in Hebb-like synapses in hippocampal slices. This facili-
tation was induced by pairing synaptic activation with injections of depolarizing current
into CA1 pyramidal cells. This observation is consistent with Hebbian increases in synap-
tic efficacy. They also report the prevention of associative LTP induced by injection of
hyperpolarizing current. Although the latter observation seems consistent with Hebbian
decreases in synaptic efficacy. it does not constitute the establishment of an inhibitory
synaptic relationship in the sense of the SBD model.

Cerebellum

Figures 16 and 17 lay the groundwork for discussing schemes for implementing the
SBD model and NMR conditioning in the cerebellum. In Figure 16, the numbers 1-3 along
the top and letters A-D along the left-hand edge provide a set of coordinates that will
facilitate discussion. Figure 16 omits some of details included in most textbook renderings
of the cerebellum. For example, climbing fiber synapses onto PCs are not shown. The
figure includes only those features needed later for integrating physiological evidence into
a plausible circuit diagram for NMR conditioning under the constraints of the SBD model.
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Figure 16. Summary of cerebellar neural circuitry. A-D represent beams of parallel fibers

! 33.‘ (PF) in the molecular layer. These synapse onto Purkinje cells (PC) and basket cells (Ba),
Y vy v one of which is indicated on the C beam. Basket cells inhibit off-beam PCs, as exemplified by
w the basket cell on the C beam and the PC on the D beam. The latter is shown as inhibiting a
fy ﬂ projection neuron in cerebellar nucleus interpositus (IP) which, in turn, excites a projection
L) neuron in contralateral red nucleus (RN) leading to some here-unspecified response. Mossy
f’ Yy fiber (MF) terminals and granule cells (GGr) occupy the granular layer. Three granule cells are
s g shown, and two receive inhibitory input from Golgi cells (Go). Both Golgi cells are excited
::'0 by PF beams. The Golgi cell under 2 is shown receiving two inhibitory inputs, one via a
\,A, g climbing fiber (CF) and another via a PC axon collateral.
s
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. Figure 17. Summary of cerebellar and brain stem circuitry and information flow me- R
K diating NMRs. Solid lines indicate strong projections; dashed lines are used to indicate i
K- projections that are comparatively weak or not universally agreed upon. The vertical dashed
line represents the medial axis of the brain stem. CS information (represented bilaterally)
2 gains access to hemispheral lobule VI (HVI) via mossy fibers arising from pontine nuclei
: (PN). This information, as well as information about the US, also goes to supratrigeminal ’
5 reticular formation {SR) which is represented bilaterally. SR has been implicated in NMR '
; conditioning as an independent parallel system that appears to be essential for expression
P of CRs (see Desmond and Moore, 1982; 1986). US information gains access to both SR and :
HVI via sensory trigeminal neurons. Spinal trigeminal nucleus pars oralis (SpoV) provides i
synaptic drive to motoneurons in the accessory abducens nucleus (AAN). SpoV also projects
to HVL There is a direct mossy fiber projection and an indirect climbing fiber projection via
i the dorsal accessory olivary nucleus (DAQO). Both sets of projections are bilateral. The output
‘ of HVI is relayed to cerebellar nucleus interpositus (IP) and from there to contralateral red .
. nucleus (RN). RN )rojection neurons terminate in AAN and SpoV to complete the circuit :
: and initiate a conditioned NMR.
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- ! Figure 17 summarizes cerebellar and brain stemn structures and pathways involved in
-~ NMR conditioning (see, e.g., Berthier, Desmond, and Moore, 1987; Thompson, 1986). As
‘-E: nn noted above, it has been suggested that learning and generation of conditioned NMRs in-
::: - volves cerebellar PCs located in hemispheral lobule VI (HVI). HVI receives acoustic. visual.
_ and somesthetic inputs via the pontine nuclei (see Buchtel, losif, Marchesi, Provini, and
N - Strata, 1972; Sholer and Navhi, 1969; Thach, 1967). Lesions of HVI have been reported
to dramatically attenuate NMRs (Yeo et al, 1985b), and single-unit recording studies re-
‘::" ) port CR-related patterns of activity by HVI PCs that are consistent with a causal role
Y ‘-._':' in this behavior (Berthier and Moore, 1986). Figure 17 shows that the route taken by
v neural commands initiated in HV] for generation of a conditioned NMR includes several
.. A synaptic links. The output of PCs in HVI goes to cerebellar nucleus interpositus (1I'); it

is then transmitted to contralateral red nucleus (RN). Efferent commands from RN are
" carried in the rubrobulbar tract as it crosses the midline ventral to the decussation of the
e brachium conjunctivum. Recent fiber-tracing studies (Robinson, Houk, and Gibson, 1987;
; = Rosenfield, Dovydaitis, and Moore, 1985) suggest that the pathway from RN bifurcates
o at the level of the seventh nerve. One branch terminates near the accessory abducens
- nucleus (AAN), where motoneurons chiefly responsible for the NMR are located (Grant
p and Horcholle-Bossavit, 1986); the other terminates within caudal portions of the prin-
N cipal sensory trigeminal nucleus and spinal trigeminal nucleus pars oralis (SpoV). This
(‘ second branch from RN participates in the generation of NMRs because SpoV neurons
synapse onto AAN motoneurons (Durand, Gogan, Gueritaud, Horcholle-Bossavit, and
Tyc-Dumont, 1983). In addition to relaying efferent commands to motoneurons, these
neurons could convey feedback about the incipient NMR back to cerebellar cortex via
mossy fibers (Ikeda, 1979; Yeo et al, 1985c¢).

> The circuit models discussed below argue for the possibility that the output of cerebellar

A
',.‘ PCs, s in the model, is fed back to cerebellar cortex for implementation of the learning rule.
:‘.j RS Based on the information flow described in Figure 16, a likely source for this feedback is
'R brain stem nucleus SpoV. This hypothesis raises questions of timing. Specifically, does CR-
® , related PC activity that initiates the conditioned NMR occur with a sufficiently long lead
T time so that feedback from SpoV is 1.0t obscured by other events such as the occurrence
of the US? Berthier and Moore (1986) observed CR-related firing patterns by PCs in HVI
: that preceded CRs by as much as 200 ms. This is ample time in which to initiate a CR
. (Moore and Desmond, 1982). Figures 16 and 17 show that there are at least five synapses
between PC output and any feedback carried by parallel fibers, and the total conduction 1
- distance in the loop could exceed 50 mm. Even allowing 1 ms for cach synaptic relay and a !
-:_‘ relatively slow conduction velocity for myelinated fibers of 20 m/s, circuit time for feedback
':“ ) would require no more than 10 ms, or one time step in the model. As a cautionary note,
o L the conjecture that PCs receive feedback about their output assumes that this information
o
N
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is transmitted with high fidelity through each link of the chain. That is, the output of
neurons in [P, RN, AAN, and SpoV involved in the NMR must match or mirror the output
of the PCs. Although evidence is sparse, recording studies indicate that this is probably
the case {e.g., Thompson et al, 1987).

Site of Plasticity: Purkinje Cells

Assuming that changes in V' in the SBD model occur at PF/PC synapses, where is
s — & computed and how does this information reach an involved PC? One option is that
s — & is computed within the PC itself and is therefore readily available to modify eligible
synapses. Another possibility that s — 5 is computed outside the PC and fed back by other
circuit elements. This could occur in a number of ways (Figure 18). For example, the
PC might send an axon collateral to local circuit elements that provide information for
computing s — 5. PC axon collaterals have been reported as terminating on Golgi cells,
basket cells, granule cells, and other PCs. Were we to rule out feedback from PC axon
collaterals, the two remaining sources of feedback are climbing fibers and mossy fibers.
For example, feedback information could arise as efference from collateral output from
SpoV in the course of driving AAN motoneurons: As Figure 17 indicates, in addition to
its role as the locus of interneurons mediating unconditioned reflexive extension of the NM
to direct stimulation of the eye, SpoV projects to HVI of cerebellar cortex. The projection
is either a direct one via mossy fibers, or indirect via climbing fibers originating in the
dorsal accessory olive (DAO), the source of climbing fibers to HVI. Both projections could
be involved in computing s - s.

Having designated SpoV as a likely source of feedback used to compute s -- §, consider
the various ways this information might reach a PC for modification of PF/PC synapses.
These are summarized in Figure 18. Figure 18A indicates several alternative means by
which s — § might attain access to the PC, including the possibility noted above that it is
computed within the cell. The extracellular routes include parallel fibers (PF), the climbing
fiber (CF), or an indirect route via a basket cell (Ba). Yet another set of possibilities, shown
in Figure 18B, is that one of the variables, either s or —3, is generated within the PC and
the other term is contributed extracellularly. All of the schemes illustrated in Figure 18
require that computation of s — 5 does not compromise the PC’s assumed role in generating

CRs.
Site of Plasticity: Granule Cells

Because of doubts expressed by a number of investigators about learning mediated
by modification of PF/PC synapses (e.g., Bloedel and Ebner, 1985; Lisberger, Morris,
and Tychsen, 1987; Llinas, 1985), we considered the possibility that learning occurs at
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- g MF /granule cell synapses. We propose that granule cells compute changes in V via con-
o vergence of s - & from Golgi cells and = conveyed by mossy fibers. This convergence of
2 }f: s -~ & and r implements the bidirectional Hebbian mechanism assumed by the model.
Y
.' Golgi cells appear to be particularly suitable for computing s ~ § for several reasons:
‘f -“ 1. They receive input from a variety of sources, the principal ones being parallel
:: fibers and mossy fibers. They also receive collateral inputs from PCs and climbing fibers.
' ‘»:: Hence, in principle they could provide sites of convergence of information about s and 3
N for computation of s — 3.
P o 2. The output of Golgi cells varies smoothly as a function of input. Their tonic rate of
:: o discharge is regular with little noment-to-moment fluctuation in interspike intervals that
- . could degrade information flow through the granular layer. Hence, they are capable of
“; ';& modulating their output to reflect their input with little noise or signal distortion (Miles,
= Fuller, Braitman, and Dow, 1980; Schulman and Bloom, 1981). This is a desirable feature
- .- of any circuit element that would transfer feedback about NMR topography with high
" :;:'_ fidelity.
o - 3. In addition to Golgi cell/granule cell interactions within the granular layer, rabbits
{ n possess an extra, mid-molecular sheet of “cctopic” Golgi cells and associated glomeruli that
J may coordinate interactions among mossy fibers and granule cells (Spacek, Parizek, and
i Lieberman, 1973). The synaptic organization among elements in this mid-molecular sheet
‘< ; appears to be no different from that of the granular layer. Though purely speculative, this
.3 extra sheet of Golgi cells may enhance information processing related to learning.
).!_ 4. According to a study by Eccles, Sasaki, and Strata (1967), the temporal course
- of Golgi cell inhibition of information flow through the granular layer resembles the re-
- lationship between § and s in the SBD model. We suggest that Golgi cells compute §
" v by acting on granule cells that receive s information simultaneously from mossy fibers.
¢, Possible circuits by which s and § converge onto other Golgi cells for computation of s — 5
-l will be considered later. First, a digression describing the Eccles et al (1967) experiment
S is indicated.
: Using anesthetized cats as subjects, Eccles et al (1967) analyzed field potentials in
.' = cerebellar cortex (vermis and lobus simplex, which in cat corresponds to HVI in rabbit)
S evoked by stimulation of mossy fibers. Stimulation of parallel fibers inhibited the responsc
A ;‘: evoked by mossy fiber stimulation. This inhibition was mediated either by Golgi cells or
3 by basket cells. Golgi cell inhibition could be discriminated from basket cell inhibition by a
. number of criteria. Golgi cell inhibition required on-beam stimulation, reached a maximum

37

&
-

[} %
)
>

N T Y LY T R R Pty T 1 00,0y, 0. ¥ ANRICRICNOOUM UK RN OO AR
DS NEREC D2 2t DNl RO ) ORISR I M M DR ORISR DAL 00

i, 3




s—§)? s or §7
o (2) v

\
'

&

o .

‘0:3:“ —— excitatory

[ —— inhibitory

Figure 18. Summary of possible sites of convergence of SBD model variables z and s--§
\ for weight changes mediated by parallel fiber/PC interactions. Diagrams A and B
WS represent PCs with two parallel fiber (PF) inputs, a climbing fiber (CF) input, and
d a basket cell (Ba) input. In Figure 18A s — 5 might be transmitted to the PC by any
st route or it might be computed intracellularly. In Figure 18B the two components of
':' s — § are dissociated from each other so as to illustrate the possibility that each is
k) contributed from a different source.
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within 10 s, and decayed exponentially with a time constant of approximately 30 ms so
that inhibition was essentially complete after 100 ms. By contrast, basket cell inhibition
could be evoked by off-beam stinulation, peaked within 35 s, and persisted for up to 400
ms. Although Golgi cell inhibition in the protocol used by Kccles et al may hold only when
background activity is low, e.g., as in the case of an anesthetized preparation (Bloedel and
Roberts, 1969), its temporal course nevertheless coincides with the relationship between <
and & in the SBD model in the temporal domain with g - 0.5-0.6. This coincidence of the

A time course of Golgi cell inhibition and the temporal relationship between s and s in the
- :, SBD model suggests that Golgi cells participate in computation of §. These Golgi cells, and

the granule cells they impinge upon, are different from the ones indicated at the beginning
2y of this section that compute s — s and implement the learning rule at MI'/granule cell
o synapses.
1 -:_:’ . Figure 19 summarizes how Golgi cells compute s in the way suggested by the Eccles et
Ly :,"_- al (1967) study: s information carried by mossy fibers is converted to 3 by the action of
Sl Golgi cells. The model assumnes that Golgi cells that convert s to § are activated by parallel
:_: fibers. A group of granule cells {Gr), represented in the lower left hand portion of the figure,
:'_:::' o receives mossy fiber input carrying s information as feedback from SpoV (coordinate C1).
:::_;: The output of these granule cells passes s information through the granular layer with no

03

gt

distortion to form parallel fiber beain B. Beam B excites Golgi cells (Go) that impinge
on members of a second class of granule cells that also reccive s via mossy fibers from
SpoV. We emphasize that these Golgi cells and the second class of granule cells receive s

1 90 ]
PR SR )
a
2
.

;, {:Ej ';_- simultaneously, i.e.; within the same 10 ms time step. The action of the Golgi cells on the

| :}: second group of granule cells converts s to s. The output of the second group of granule
‘)‘ L cells forms the parallel fiber beam labeled A which transmits § to other circuit clements.

.7 Y . . . .

NN There is some evidence for the existence of two classes of granule cells with response
"E: ;‘:f characteristics similar to those envisioned by our circuit model. Recording from presume.d

'-:'. " granule cells (granular layer input elements or GLIES) in monkey flocculus during saccadic

{ & eye movements, Miles et al (1980) observed units that burst during a saccade and other
0N "~ units that respond with a slower rate of firing which decays with time constants in the
’..-j:: * range 10-50 ms (see Miles et al, 1980, Fig. 2, p 1446). The former are analogous to the first
::';.j . class of granule cells in the model, in which s passes through the granular layer without
;"{: ‘E_. modulation; the latter are analogous to the second class of granule cells in the model, in
@ which s is converted to § by Golgi cell inhibition.

' -

b :f,.: The circuit model assumes that learning occurs at synapses of granule cells that receive
;..»: ‘ mossy fiber input labeled r (coordinate C3). Mechanisms that implement the eligibility
e o of these synapses for modification, r, presumably reside within these granule cells. The
o C
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Z: Figure 19. Implementation of SBD model at mossy fiber/granule cell synapses. A-C
-;: are parallel fiber beams as in Figure 17. From right to left: the variable s is fed back to
\ N cerebellar cortex by mossy fibers arising in brain stem spinal trigemninal nucleus pars oralis
! (SpoV in Figure 17) in two streams. One stream gives rise to parallel fibers that drive PCs
" with a firing pattern that lags the CR. This beam (B) excites Golgi cells (Go) that impinge
?: on granule cells (Gr) excited by the other stream carrying s and thereby convert it into
" :: a beam of parallel fibers (A) carrying § information. This beam drives PCs with a firing
.;‘ pattern that lags the CR and is damped relative to the firing patterns of PCs on beams B
and C. Beam A contributes § to Golgi cells that compute s — §. The other term for this
:‘. computation, s, is provided cither by axon collaterals from lag PCs on the B beam or by
> : climbing fibers. These Golgi cells pass s — § to granule cells that receive CS information, r,
».J-: and thereby mediate weight changes at these mossy fiber/granule cell synapses to the extent
s that they are eligible for modification. These granule cells give rise to a beam of PFs (C)
.' that drive PCs proportionally to Vr and with a firing pattern that leads the CR.
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.‘ . u actor s s is contributed by Golgi cells that function as differential amplifiers. These

:_'::‘ ' Golgi celis receive s as excitatory input from Beam A (coordinate A2), as described above.

e :::-f . In Figure 19, they receive s as an inhibitory input (direct or indirect) from climbing fibers

SRS (coordinate ('2). Later on, we suggest that this climbing fiber input for the variable s might

VO be replaced by input from a PC axon collateral such as the one indicated at coordinate 33,

N = The climbing fiber input is omitted in a subsequent, more complete version of the model
: " described later on. Notice that the Golgi cell under 2 in the figure is actually computing
\_ i s 5. We have referred to the computation as being s - s in interests of clarity. Because
oo ::\' Golgi cells are inhibitory, the computation is effectively one of s - § with respect to the
a granule cells receiving r.

; 2 ::' Because Golgi cells are inhibitory interneurons, when s- s is positive the tonic output of
:,;' the Golgi cells is modulated downward, thereby disinhibiting granule cells that receive r on
:‘::: which they impinge. This disinhibition causes an increase in the weight of MI¥/granule cell
o F synapses to the extent that they are cligible for change. Similarly, when s — & is negative
the tonic output of these Golgi cells is modulated upward. This increases granule cell
IR inhibition and decreases the weight of eligible MF /granule cell synapses. The feasibility of
-l e bidirectionality of weight changes is suggested by the work of Kelso et al (1986), mentioned

\ above, and theoretical analyses of calcium dynamics in dendritic spines by Gamble and
N

Koch (1987).

P IS
h

228 In order to provide a continuum of possible values of s — s, Golgi cells must be able to
." - . . v 3 . B

. vary their output over a reasonably wide range of firing frequencies. Schulman and Bloom

s (1981) report average Golgi cell firing rates of about 20 Hz in rat and Guinea pigs. This

‘

rate is roughly comparable to that of presumed Golgi cells observed in monkey flocculus
by Miles et al (1980). Miles et al noted a wide range of firing rates (10-80 Hz) and smooth

l.'L
:‘ﬁ

& variation between these frequencies during pursuit eye movement..

:‘_3.- ::, Finally, the circuit model specifies two active roles for Golgi cells: One is computation
_-‘;. - of & as outlined above, and the other is computation of s — s. Palay and Chan-Palay
:' - (1974) note that the distribution of Golgi cell circumferences is bimodal, with the first
;:: o peak occurring in the range of 9 to 16 ums (“large” Golgi cells) and the second in the
_.-: range of 6 to 11 pms (“small” Golgi cells). The existence of two categories of Golgi cells
A . . . .
o -;\, may imply a difference in the types of computation each performs.

' .

W
+@; CR-Related PC Activity: Lead, Lag, and Damped Lag
:::'. ::f.' The circuit model in Figure 19 (and subsequently Figure 20) implies the existence
‘O of various types of CR-related fliring patterns by ’Cs. For example, the PC on the s
::-: o beamn (A) is labeled “damped lag”™ because its firing pattern during a CS presentation
-'.'_~ [
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- would lag behind a CR and would also reflect the slow rise and decay of spike recruitment
imphied by the relationship between s and s in the model. The PPC on the s beam (13)
. 1s labeled “lag” because its firing rate during a €S presentation would mirror response
o topography but with a lag by virtue ol the fact that s represents efference from the brain
- stem. CR-related “lead™ PCs such as the one on the r beam (C) are also implied by the
! circuit. Berthier and Moore (1986) observed both lead and lag CR-related PCs in V]
-~ . v e . rn . . s
during NMR conditiening. They also observed PCs that decreased their firing before the
SRS occurrence of CRs. These CR-related “off-cells™ of the lead type will be discussed below.
-I':' . . . .
: I'he existence of both lead and lag cells suggest that cerebellar cortex might be doing
more than simply computing weight changes that give rise to CRs. Many elements in the
25 circuit model shown in Figures 19 and 20 have been invoked to explain a variety of timing
o functions. e.g.. lead-lag compensation (for an overview see Llinas. 1970: see also Hassul
S and Dantels, 1977 Marr, 1969). Our considerations about how cerebellar cortex might
» "

implement the SBD model for NMR conditioning are not intended as arguments against

.
¥
L

any of these timing functions.

oy

i Role of Climbing Fibers

:::: Some investigators have expressed strong reservations regarding climbing fiber partici-
':" pation in classical conditioning (see, c.g.. Llinas, 1985). Particularly contentious has been
$ . the idea that climbing fibers carry US information that reinforces learning in cerebellar
.-::', cortex (e.g.. Thompson, 1986). In the circuit implementation of the SBD model shown
:i: in Figure 19, climbing fibers contribute to learning only insofar as they might provide
::::: feedback about s to Golgi cells that compute s s. A way this might be achieved without
)

climbing fibers is also illustrated in Figure 19. Instead of using climbing fibers, s might

X L

be transmitted to the Golgi cells by axon collaterals from lag PCs on the parallel fiber

beam labeled B (coordinates B3). A circuit based on PC collaterals circumvents the com-
putational difliculties implied by the low frequency of climbing fiber firing while at the

same time retaining the desirable inhibitory effect on the Golgi cells. Figure 19 shows
these collaterals arising from lag PPCs instead of lead PCs on beam C which might serve

as well from a computational standpoint. This is because PC collaterals are not generally

g xs\s"'\',,'-

EE T AN

oriented along the longitudinal axis of a parallel fiber beam, as would be the case if they

'
PR
e

arose from PCs on the C beam. Instead, PC collaterals are oriented perpendicularly to the

Y Q8
«
Vel

- longitudinal axis (Ito, 1984), as would be the case if they came from PCs on an adjacent

bearn of parallel fibers such as B.

e

gc

The idea that climbing fibers might convey s to Golgi cells was suggested by the Schul-

L

tman and Bloom (1981) report of Golgi cell inhibition in response to stimulation of climb-

h 4

P

ing fibers and by morphological cvidence that climbing fibers contribute to mossy fiber
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o Figure 20. Summary of cerebellar neural circuitry summarizing how basket cells (Ba)
added to the parallel fiber beam (C) of Figure 19 can account for off-type lead CRs
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T observed by Berthicr and Moore (1986). CS onset excites beamn C parallel fibers and
- thereby driving basket cells that inhibit tonic firing of PCs on the D beam. These
. off PCs of the lead type disinhibit IP neurons and thereby initiate the sequence of
S u motor commands that result in a CR.
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en Marron synapses onto Golgi cells (Tto, 1984). Schulinan and Bloom suggested that the

inhibition they observed was likelv not direct but mediated by basket cells. However 1o
our knowledge direct basket cell projections to Golgi cells have not been reported in the

anatomical literature.

Another difficulty with climbing fibers is that their firing rates may be too low (tonically
1-2 Hz) to faithfully carry information about s with a temporal resolution adequate for
computation of s & in the millisecond domain. Although Berthier and Moore (1986)
observed a few instances of climbing fiber volleys (complex spikes) related to CRs, these
climbing liber volleyvs consistently led CRs, thus making it unlikely that they were carrying
feedback information. The highest observed momentary rate of CR-related complex spiking
was on the order of 10 Hz. By contrast. our implementation of neuronal firing by the SBD
elerment assumes firing rates up to 200 Hz. and rates of simple spike firing in cerebellar
PCs as high as 400 Hz have been reported. The low frequency of CR-related climbing
fiber activity may not preclude an alternative computational model incorporating climbing
fibers.

What role if any might we assign to climbing fibers if they do not contribute to com-
putation of s s?7 Experimental evidence on the contribution of climbing fibers in NMR
conditioning is controversial and open to interpretation. Thompson (1986) cites evidence
that stimulation of DAQ, the source of climbing fibers to HVI, reinforces conditioning.
Consistent with this idea, he also reports that lesions of this structure cause a gradual
extinction of the CR following training with an air pufl US. The stimulation results might
reflect unintended antidromic activation of SpoV neurons and concommitant invasion of
collaterals of mossy fibers that project to HVI (sce Figure [7). As for the lesion data, Yeo
et al (1986) report that DAO lesions cause an immediate disruption of NMR conditioning,
not a gradual loss of CRs that would be expected if climbing fibers carry information that
reinforces conditioning. A sudden and persistent loss of CRs such as that reported by Yeo
et al (1986) would be expected if climbing fibers perform some trophic function such as
regulating PC excitability, as has been suggested by numerons investigators (e.g., Bloedel
and Ebner, 1985; Strata, 1985).

Berthier and Moore (1986) found little support for the idea that climbing fibers carry
US information related to reinforcing learning. They observed only a few cases of complex
spikes elicited by the US employed in their study. However. these data were obtained
after sufficient training to ensure that CRs occurred on a high proportion of trials. The
likelihood of observing climbing fiber responses to the US might be greater during earlier
stages of CR acquisition, i.c., when s s at US onset would be consistently large.
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o ; CR-Related PC Activity: On and Off
Vi
S As noted. Berthier and Moore (1986) observed PCs that increased their simple spike
NN firing above pre-trial rates on trials with CRs. These cells were designated “on cells™.
o ’ -, . - . . .. .

. However. CR-related “off-cells™, PCs that decreased their firing rate below pre-trial rates.
- " were also observed. Although oft-PCs might arise from long term depression. of PFPC
L svnapses (Ito, 1984: Thompson, 1986), the circuit model shown in Figure 20 provides an
AN alternative explanation of off-PCs. These PCs are associated with the beam of parallel
e fibers labeled D. They become off-cells of the lead type when a CS is presented because

’ of increased inhibition from basket cells (Ba) on the C beam (coordinate D3). (Like ¢
- axon collaterals, basket cell axons tend to project perpendicularly to the longitudinal axis
Cud e . . . .
NI of the parallel fiber beam by which they are activated).
-y
- . ' . e . TR . s
. A CR is initiated when basket cell inhibition of PCs on beam ) becomes sufficiently
AR . . . . Py . . .
~, great to disinhibit 1P neurons to which they project. These P cells project in turn to RN
- proj proj
e neurons that excite the reflex pathways mediating the CR (Figure 17). Because mossy
- fibers from pontine nuclei do not send collaterals to deep cerebellar nuclei (Brodal, Diet-
richs, and Walberg, 1986), the model does not assume that CSs activate 1P neurons. They
S are assumed to be tonically activated by neural traflic unrelated to a particular stimulus,

y ' but this activation is normally suppressed by inhibition imposed by PCs. Hence, a CS
- releases this inhibition and the level of activation of I[P neurons increases sufliciently to
.{;' drive the RN neurons in the next stage of the efferent pathway of the CR.

...'P- "_‘

:':-: In order for CRs to be generated by on-PCs instead of ofl-PCs, there would have to be

oy a signal inversion somewhere downstream in the efferent circuit, e.g., at the level of RN
! (see Figure 17). On-PCs would inhibit [P neurons that project to RN, and this would lead

o . \ . . o .
S to off-type CR-related responses by RN units. Although CR-related on-units in RN are
.o commonly observed during NMR conditioning. off-units are rare (J.E. Desmond, personal
‘-_, o communication).

g _
® - Since ofFPCs are attractive candidates for generating CRs, is it possible that they

LIS . . . T .

L arise through some other means? Besides the possibility of long term depression noted

I .‘. . . . .

7, above, one way to generate CRs without the posited intermediary basket cell would be to
"-.I . .y . . . ’ . . .
A a invert the variable r before it is transmitted to cerebellar cortex. Such an inversion would

LAY . . . . . . . . o - .
2PN manifest itself as an inhibitory action of mossy fibers carrying CS information on granule
." cells. However. CSs such as acoustic stimuli are known to excite cells in the granular layer
SO (Snider and Stowell, 1941) and therefore signal inversion on the input side is an untenable
- means of evoking off-type responses in PCOs.

SR , : - , :
Cur In order to mediate the generation of CRs, basket cells on the € beam must begin to
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inhibit PCs on the D beam sulliciently soon after N onset 1o ensure CR initiation within
the temporal window defined by the CS-US jnterval. As noted above, Eecles et al (1967)
found that basket cell inhibition evoked by off-beam parallel fiber stimulation peaks with
a latency of 35 ms and persists for up to a few hundred ms. These characteristics of haskel
cell inhibition might explain why behavioral CRs rarely have latencies less than 100 ms
and are seldom sustained for more than a few hundred ms. It seems plausible that basket
cells participate in the adaptive shaping of CR topography thought to underly inhibition of
delay, i.e., the acquired tendency for peak CR amplitude to occur just before the expected
time of occurrence of the US,

Assuming of[-PCs mediate CRs, how are we to interpret on-PCs that lead the behavior?
Clearly their existence implies inhibition of decp nuclear cells in 1P to which they project.
and such off-units have been observed in our laboratory in recording from [P during NMR
conditioning. 1t is likely that on-PCs that lead CRs reflect parallel learning associated with
processes such as stimulus coding, response shaping. or concommitant behaviors normally
inhibited during a CR.

Figure 21 summarizes the four types of firing patterns discussed in connection with
Figure 20. As in the Berthier and Moore (1986) study, the interval between CS onset and
US onset represents 350 ms. The CR in the ligure begins 200 ms after the CS. Renderings
of PC simple-spike firing were hand-crafted to resemble typical CR-related PC responses;
they all assume baseline firing rates of 100 Hz, which is typical of that observed in our
recording experiments. The firing patterns are labeled to correspond with the types of
PCs indicated in the circuit model shown in Figure 20. Hence, the increase in firing rate
of the Lag On-PC begins within a few ms after CR initiation. The increase in firing of
the Damped Lag On-PC begins slightly later and persists slightly longer. The increase in
firing rate of the Lead On-PC precedes the CR by more than 100 ms, and the Lead Off-PC
begins to cease firing at this time, both profiles being typical of CR-elicited firing patterns
observed by Berthier and Moore (1986).

Of the approximately 40 CR-related PCs reported by Berthier and Moore (1986), on-
cells exceeded off-cells by 3:1, and lead and lag cells were equally distributed (ratio of 1:1).
Although possibly a coincidence, it is nevertheless interesting that these ratios are implied
by the circuit model, provided of course that parallel fiber beams A-C are comparable
in terms of number of fibers and levels of activation evoked by the variables 3, s, and r,
respectively. The correspondence between the model’s predictions regarding the statistical
distribution of CR-related PC types encourages further experimnental tests of the model.
Such experiments might provide: (a) reliable separation of damped-lag PCs from the lag
PCs: (b) evidence of Golgi cell activity related to the variables s or s, i.e., the implied but
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as-vet-unsubstantiated CR-related firing of the lag and damped-lag variety among Golgi
cells: {¢) evidence of CR-related neural traflic among parallel fibers (beams A-D in Figure
20).

Cerebellar Implementation of Multiple-C'S Phenomena

In this section we discuss the implications of a cerebellar circuit implementation of
the SBD model for multiple-CS phenomena. Our effort to implement the SBD model in
cerebellar cortex was guided by experimental evidence suggesting that this region of the
brain is not only essential for robust CRs, but may be a site of learning as well. We have
argued that a circuit implementation along the lines of Figure 20 is a promising candidate
for inplementing the model. but our discussion has been limited to conditioning with a
single CS. How adequate is this implementation for conditioning protocols involving more
than one CS? If the implementation is problematic from the viewpoint of relevant data
the difficulty might lie with the model. with the circuit, or with its assigned locus within

the brain.

The principal multiple-C'S phenomena of interest are higher-order conditioning, block-
ing, and conditioned inhibition. Like virtually all contemporary learning theories, includ-
ing the original SB model (Barto and Sutton, 19582}, the SBD) model predicts appropriate
outcomes in simulations of these multiple-CS protocols (Blazis et al, 1986; Moore et al,
1986). The model predicts higher-order conditioning because it is basically an S-R conti-
guity theory of learning, albeit one with an informational structure: A second-order 'R
can be established provided the temporal relationship between the primary and secondary
(!Ss is appropriate and provided the primary, initially trained CS is capable of evoking a
CR. Should the primary CS lose its capacity to evoke a CR, e.g.. through extinction, the
secondary CS would eventually follow suit. The model predicts blocking because of its
perceptron-like architecture as depicted in Figure | and the fact that the learning rule in
F.quation 3 is basically a variant of the Widrow-Holfl rule (see Sutton and Barto, 1981).
Conditioned inhibition also follows from Equation 3 because the synaptic weight. V', of a
CS that is never reinforced can take on negative value when it is presented in combination
with another CS that possesses a consistently positive weight. Hence, conditioned inhibi-
tion depends on the bidirectionality of the Hebbian mechanism for synaptic modification

LA NN

| @

F-S'x‘r‘. %

4

LA

discussed previously.

The circuit model in Figures 19 and 20 could readily be extended to encompass higher-
order conditioning and blocking. All that would be required is a global broadcast of the
variables s and s over a sufficiently large region of HVI to encompass inputs from many
potential CSs. This would permit local computation of s - § by Golgi cells. In the case
of higher-order conditioning, synaptic weights at granule cells that receive input from the
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._ i second-order OS5 would increase to the extent that they remain eligible for change at the

" '\:f: time their associated Golgi cells compute the large negative value of § s that results from

= evocation of a CR by the primary Cs. Should the primary CS lose weight, the weight of
N the secondary CS would decline as well. In blocking. the €S combined with the originally

R ‘.‘ a trained C'S would not accumulate weight gains over reinforced trials as long as the original
i S retained the capacity to evoke a CR: a CR sufficiently robust to preclude large values
- - of s & at the time of US onset. However, extending the circuit model in the manner
t'_:'_: .. suggested here would not be appropriate because of experimental evidence indicating that
-‘..':'- o blocking., higher-order conditioning, and certain other complex conditioning phenomena
) involve the participation of other brain regions besides the cerebellum, particularly the
;‘_. - hippocampal formation.

‘:::‘ The idea of global broadcasting of s and § would also allow for the creation of negative
D weights in granule cells that receive input from a CS assigned the role of conditioned
= i mhibitor. However, in addition to being resistant to subsequent acquisition procedures. a
conditioned inhibitor must be capable of opposing the evocation of a CR by a conditioncd
. :'_:: exciter when the two stimuli are presented together. It is not obvious how this would
S be accomplished in the cerebellar circuit model. It may be inappropriate to alter the
\:'..- .. present circuit model so as to produce such CR suppression, in any case, because there
| i is no evidence that the cerebellum is involved in conditioned inhibition of the NMR. For
o example, Berthier and Moore (1986) used a differential conditioning procedure in order to
.;::',' assess the CR-relatedness of cerebellar units. Differential conditioning is closely related to
:'_':: ' conditioned inhibition in that both procedures include reinforced and nonreinforced trials.

o Although CRs were suppressed on a high proportion of trials to the nonreinforced CS, there

' were no instances of unit activity related to CR suppression. [Furthermore, lesion studies

‘O by Mis (1977) and others suggest that conditioned inhibition involves the participation

_:::-_ . of brain regions outside the cerebellum (see Yeo, Hardiman, Moore, and Steele-Russell,
-:::: . 1983). If conditioned inhibition involves processes extrinsic to the cerebellum, as scems
F:':- ) likely, there may be no need to assume a bidirectional Hebbian mechanism in the model.
L Learning theorists have long recognized that bidirectional modifiability is not necessary to
' account for conditioned inhibition (e.g., Moore and Stickney, 1985).

R In sum. the SBD model is a mathematical description of a device capable of simulating
.'.' - an impressive array of facts about NMR conditioning at the behavioral and neurophysi-
ad ological levels. Despite its potential ability to encompass multiple-CS effects within the

Y;: :;: framework of either a single neuron resembling Figure 1 (e.g., Figure 18) or a somewhat

RN more elaborate circuit (e.g., Figures 19 and 20), an implementation of the model confined

! to the cerebellum is not entirely appropriate for multiple-CS phenomena. This caveat
i aside, our investigations of the SBD model have nevertheless suggested a novel theory
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about the locus of synaptic changes for a real instance of conditioning and in a real ner-
vous system. Further theoretical work should move toward a systems level of analysis that
might point the way toward to a neural network architecture that not only accounts o
phenomenology, but does so in a neurobiologically realistic manner. Further research on
the circuit model could be conducted on a time scale compatible with the modeling of
neural events such as action potentials, that is, in the domain of microseconds.

Neurobiological Correlates of r: Pons and Hippocampus

Implementing the SBD model in the cerebellar cortex raises questions as to how €S
input is shaped so as to yield appropriate response topography, that is, what are the mech-
anisms that provide the preprocessing of CS inputs to learning elements? In this section we
discuss the possibility suggested by several investigators that such preprocessing involves
interactions among the cerebellum, hippocampus, and pontine nuclei (seec Berger, Weikart,
Bassett, and Orr, 1986; Schmajuk, 1986). Basically, the idea is that CR templates are con-
structed in parallel and at multiple levels. At the level of pontine nuclei, stimuli are coded
with respect to onsets and offsets. Although this would suffice for adaptive CR topogra-
phies in forward-delay paradigms with ncar-optimal ISIs, more elaborate coding schemes
involving the hippocampus and cerebellum are engaged in more complex paradigms such
as trace and long-IS] paradigms.

Berger et al (1986) have described a circuit involving hippocampus, subiculum, ret-
rosplenial cortex, and pontine nuclei that could provide for hippocampal modulation of
CS information conveyed over mossy fibers to putative learning elements in cerebellar cor-
tex. Port, Mikhail, and Patterson (1985) cite evidence supporting the notion that the
hippocampus provides a neural template of the CR that develops over training. Its influ-
ence on response topography depends on the complexity of the paradigm. Without the
neural template, response timing and amplitude are compromised in paradigms with non-
optimal I5ls. Solomon, Vander Schaaf, Norbe, Weisz, and Thompson (1986) reported that
hippocampectomized rabbits display short-latency CRs during trace conditioning, relative
to sham-operated controls; these CRs bear a striking resemblance to those predicted by
the SBD model under trace conditioning protocols. However, other workers have found
longer-than-normal CR latency during trace conditioning of hippocampectomized rabbits
(Port, Romano, Steinmetz, Mikhail, and Patterson, 1986).

Recording studies provide further evidence for hippocampal involvement in the shaping
of response topography. Conditioning-related neuronal activity occurs in the hippocampus
during forward-delay training and such activity models the behaviorally observed response
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e “ (Berger, Laham, and Thompson, 1980). Hochler and Thompson (1980) recorded behav-
j:'f.::i ioral CRs and hippocampal unit activity in rabbits that were first trained to respond to a
"'_‘.- 250 s CS and which were then presented with 500 ms CSs. Both the behavioral CR and
the hippocampal unit response were shown to peak near the time of US onset, with the
‘ . hippocampal peak occurring 30 to 60 ms prior to the peak of the behavioral CR. However,
NS NERA when the rabbits were switched to presentations of a 500 ms CS, both the hippocampal
:::5:: activity and the behavicral CR shifted, but the shift in the hippocampal response occurred
S-‘;__ 5 SOONer.
N We have suggested that the preprocessor needed by the SBD model should be capable
e of altering parameters that shape r, thereby providing the necessary modulation of the
: N amplitude and time course of a response. We have noted that the proper combination of
":_..;:: m and h can vield longer-latency CRs. However, changing the shape of z is not sufficient
NS for appropriate topography in the trace conditioning paradigm, since = begins to decay
T g at CS offset. The pre-processor (hippocampus) might override this problem by shifting =
-:.__w so that the rising phase of the CR begins after CS offset. Implementing a mechanism for
. ::"’_:'. changing the shape of, or shifting z could be based on feedback about the adaptability of the
-{:‘_h' template presumably provided by the hippocampus under conditions of non-optimal ISls
::j: or trace conditioning. There is evidence that the contribution of the hippocampus to NMR

conditioning might be partially mediated by feedback via projections from cercbellum, as
suggested by loss of CR-related hippocampal neuronal firing following lesions of cerebellum
(Clark, McCormick, Lavond, and Thompson, 1984).

The present report has examined our effort to model CR topography by shaping CS
input to a learning element in such a way as to provide a template for the response to be
- learned. The critical questions concern how and where the CS is represented within the

L

: \{'; - brain. At this time, the most promising brain region may be the pontine nuclei, structures
:::j ”, which form points of convergence of sensory inputs and possibly response modulating
: ::? T inputs from the hippocampus. Simultaneous recordings from pons and hippocampus, as
."“' well as hippocampus and cerebellum, may further elucidate the information processing
L, . e .
R underlying NMR conditioning.
S
. "._
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