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ABSTRACT

This report covers in detail the solid state research work of the Solid
State Division at Lincoin Laboratory for the period 1 February through
30 April 1987. The topics covered are Solid State Device Research,
Quantum Electronics, Materials Research, Microelectronics, and Analog
Device Technology. Funding is provided primarily by the Air Force,
with additional support provided by the Army, DARPA, Navy, SDIO,
NASA, and DOE.
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INTRODUCTION

1. SOLID STATE DEVICE RESEARCH

A model for the interdiffusion of lattice defects in Hgj gCd 5 Te has been used to derive an equation
for the junction depth obtained when a Te-rich sample is diffused under Hg-saturation conditions at low
temperatures. Calculations using the equation are found to agree with experimental data for junction
depth vs excess Te concentration, diffusion time, and temperature.

An enhanced-overpressure capless technique suitable for annealing ion-implanted InP at tempera-
tures of 900° C has been developed that utilizes a Sn coating to provide a high local partial pressure of P.
InP samples implanted with 140-keV 10!4-cm2 Si* and annealed at 900° C for 10 s exhibited better
electrical characteristics than samples annealed at 750° C for 5 min using conventional encapsulation
techniques.

Two-tone intermodulation distortion in interferometric optical waveguide modulators has been
measured. The experimental results closely follow the theoretical predictions.

2. QUANTUM ELECTRONICS

Single-frequency operation of a Ti:Al,O3 ring laser with an output power of 100 mW has been
obtained over an 80-nm wavelength range. A frequency jitter of 15 MHz caused by argon ion laser power
fluctuations limits the short-term stability; long-term frequency drift is caused by temperature variations
in the laser enclosure. Thermal lensing compensation has been engineered into the laser to allow for
high-power operation.

Radiation at the sodium D, resonance line has been generated with 8-percent efficiency by
sum-frequency mixing the output radiation of two simultaneously Q-switched Nd:YAG lasers, one
operatingat 1.064 um and the other at 1.319 um. By measuring the tuning curve of each Nd:YAG laser, it
was found that the resonance radiation could be generated by operating the lasers at or near the peak of
their gain curves.

Optical nonlinearities in coupled quantum well structures have been explored. The optical Kerr
effect was observed and interpreted as the result of optically induced changes in the dipole strength of the
coupled quantum well transition.

3. MATERIALS RESEARCH

Device-quality GaAs layers have been grown on silicon-on-sapphire substrates by molecular beam
epitaxy. Microwave MESFETs (gate length of 0.8 um) with g, = 140 mS/mm, f,, =20 GHz, and
fr = 8 GHz have been fabricated in these layers.

Optical absorption and photoluminescence due to Ti3* ions have been measured for Ti:ScBO4
crystals grown by the thermal gradient-freeze technique. The peak absorption occurs at 570 nm,
compared with 490 nm in Ti:Al,O5. The luminescence lifetime is about 0.1 us at 300 K and increases to
about | us at 77 K.
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4. MICROELECTRONICS

A monolithic CCD-addressed spatial light modulator (SLM) using electroabsorption effects in
InGaAs/GaAs multiple quantum wells has been successfully demonstrated. A contrast ratio of 1.33 has
been observed at 965 nm in a 16-stage CCD SLM.

The I-V characteristics of ion-implanted Si PBT devices with different impurity profiles have been
calculated by numerically solving the coupled, two-dimensional Poisson and current-continuity equa-
tions. Good agreement between experimental devices and the simulated results has been obtained.

A new technique has been developed to calculate the resonant tunneling transmission spectra and
bound state energies in quantum-well heterostructures. The technique is superior to the standard
transfer-matrix method in that it is much less susceptible to floating-point magnitude errors in relatively
large structures and it can be executed about twice as fast.

5. ANALOG DEVICE TECHNOLOGY

High-transition-temperature oxide superconductors have been prepared in bulk form using
ceramic processing techniques. Superconducting transition temperatures of 38 K for La; gsSrg ;5CuOy4
and 93 K for YBa,Cu;0, were achieved. Thin films have also been prepared; an onset of superconductiv-
ity was observed at 95 K in YBa,;Cu30; films.

A silicon integrated circuit which implements a dense array of synaptic coupling elements for an
analog, programmable, nonvolatile artificial neural network has been designed and fabricated using
CCD and metal-nitride-oxide-semiconductor technologies. The performance of this circuit has been
studied by operating it in a Hopfield iterative-feedback network.
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1. SOLID STATE DEVICE RESEARCH

1.1 ANALYSIS OF JUNCTION DEPTHS AND LATTICE POINT DEFECT
INTERDIFFUSION COEFFICIENTS IN Hg, 4Cd, ,Te

A model for the interdiffusion of lattice defects in Hgy gCd( ,Te is proposed and applied to
experimental results. It is assumed that the electrical properties of state-of-the-art nominally
undoped Hgj ¢Cd ,Te are determined by native defects. The model has been used to derive an
equation for the junction depth obtained when a Te-rich sample is diffused under Hg-saturation
conditions at low temperatures. Calculations using the equation agree with experimental data for
junction depth vs excess Te concentration, diffusion time, and temperature. The basic model,
which employs a two-valued interdiffusion coefficient, was successfully applied to the Pb-salt
defect diffusion problem.!:2 It is assumed that the electrically active native defects are a doubly
ionized acceptor (the Hg vacancy) and a singly ionized donor (probably the Hg interstitial). It is
also assumed that in n-type material the difference between the concentration of donor impurities
Np and acceptor impurities N, is negligible compared with the concentration of donor native
defects Iy, ie., INp - Nal <<Iyg. The model is applied to the diffusion of Hg into an initially
Te-saturated p-type crystal, which contains Te in excess of the stoichiometric composition. The
indiffusing Hg eliminates the excess Te, both by decreasing the concentration of Hg vacancies
and by removing any second-phase Te precipitates that may be present.3# As shown schemati-
cally in Figure 1-1, the diffusion process results in the formation of an n-type skin containing
excess Hg, with the n-p junction located where indiffusing donor lattice defects (probably Hg
interstitials) annihilate outdiffusing acceptor lattice defects (predominantly Hg vacancies).

The model has been used to derive the following equation for the junction depth Xj:

2
X] ™S D;lg(c?re-sat)

— E S (1-1)
DHg(CTe-sat) 2

0.78 C |+
2 810D 0.78 D%, (Cyga)

where t is the diffusion time and S is the Hg atom concentration in the solid (1.2 X 1022 ¢cm3).
Cxe is the total concentration of excess Te in the solid, i.e.,

o * ppt =
CXTt: =C Te-sat ¥ CTe (1-2)
in which C’}e-sat is the excess Te present in the HgygCd, ,Te phase relative to the stoichiometric

composition for Te-saturated conditions and C‘%‘;‘ is the excess Te present as second-phase Te pre-
. . * * * . . .
cipitates. DHg(CTe-sat) and DHg(CHg-sat) are the Te- and Hg-saturated Hg self-diffusion coeffi-

cients, respectively.

The variation of sz/ t with reciprocal absolute temperature for selected values of C-‘;-‘;‘ has
been calculated from Equation (1-1) using the fast-component Hg self-diffusion coefficients given
by Chen et al.,5 the partial Hg-vapor pressure curves of Tung et al.,% and the Te-saturated soli-
dus data of Schaake.”8 (The fast-component coefficients have been selected as the values of D*




because these coefficients were found by Chen to vary significantly with Hg partial pressure.) The
results are shown in Figure 1-2. The calculated curve for CEE' = 10!8 cm3 is in good agreement
with the data of Jones et al.® In addition, as shown in Flgure 1-3, the calculated variation of t/x
with Cyp. (= CB2') at 270°C agrees with the data of Schaake et al.10

2

The Te-saturated and high-temperature metal-saturated solidus data for Hgy gCdj ,Te are
shown in Figure 1-4. The Te-saturated data points are from References 7 and 8, while the
Hg-saturated data points are from References 7, 9, 11, and 12. The solid line in Figure 1-4 is the
low-temperature branch of the Hg-saturated solidus calculated from the proposed native defect
model.!3 For 200 to 270°C, the electron concentrations fall within the range of values measured
for most state-of-the-art samples that have been Hg saturated.

According to the present model, along the low-temperature branch of the Hg-saturated soli-
dus, the Hg concentration exceeds that at the stoichiometric composition, and the excess
increases with increasing temperature. The model does not predict an upper temperature limit for
this branch, i.e., a temperature above which the excess Hg concentration decreases. Obviously
there is such a limit, since the experimental data show that at sufficiently high temperatures the
solid phase is Te-rich along the Hg-saturated solidus. A more complete model will be required to
calculate the high-temperature branch of this solidus.
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Figure 1-1 Schematic of model showing Hg interstitial, Hg vacancy, n-p junction,
and part of a Te precipitate.
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Figure 1-2 Ratio of n-p junction depth squared xf to diffusion time t vs temperature.

The interdiffusion model also has been used to calculate the activation energies!3 for the
Hg-interstitial and Hg-vacancy interdiffusion coefficients, which are found to be 0.56 and 0.55 eV,
respectively. The small activation energies and large magnitudes (=106 cm2/s at 270°C) of these
coefficients are attributed to large atom jump frequencies due primarily to the weak Hg-Te
bond.!415

In conclusion, for the first time a theoretical model has been found which fits n-p junction
diffusion data for nominally undoped HgygCd,,Te over a range of temperatures and excess Te
concentrations. Furthermore, the model is consistent with most low-temperature Hg-saturation
annealing experiments.

T. C. Harman
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1.2 CAPLESS RAPID THERMAL ANNEALING OF Si*-IMPLANTED InP

Although good activation of most n- or p-type dopants implanted into InP can be achieved
by conventional annealing at 750°C for several minutes,!6 rapid thermal annealing (RTA) of InP,
utilizing either high-intensity lamps or low-mass graphite heater strips, is becoming an attractive
alternative. It has been reported!7-20 that several dopants exhibit minimal redistribution during
RTA and that carrier concentrations and mobilities as good or better than those obtained by
conventional methods can be achieved. For both conventional and RTA techniques, surface
decomposition due to preferential P evaporation must be prevented by the use of a suitable di-
electric encapsulant,!6.21 careful control of the environment,22 or utilization of a close-contact
proximity scheme.23.24 Although suitable encapsulant technologies have proven successful, a reli-
able capless annealing technique would simplify processing requirements and eliminate reproduci-

bility problems sometimes encountered with thin encapsulating layers at higher anneal tempera-
tures (>800° C).

In this report we present electrical activation results for 28Si*-implanted InP that has been
heat-treated in a flash-lamp RTA system using an enhanced-overpressure proximity (EOP) capless
annealing technique. This technique is similar to that used by Armiento and Prince25 for RTA of
GaAs. The EOP method for InP is based on the same principle as the In-Sn-P liquid-solution
method for eliminating surface degradation of InP substrates prior to epitaxy, proposed by
Antypas,26 and therefore should be superior to conventional proximity techniques because a sub-
stantially higher P partial pressure exists over the In-Sn-P solution than over InP (Reference 26).
The new method is also less prone to problems arising from surface irregularities or particulate
contamination than conventional proximity techniques.

For RTA applications, an Sn-coated InP source wafer is mounted ~0.4 mm from the face of
the implanted sample with the aid of a low-mass graphite support ring, as illustrated in Figure 1-5.
This configuration then is mounted on the Si support tray of the lamp annealing system with a
second Si cover wafer employed to prevent backside P evolution from blackening the quartz
annealing chamber. The temperature is recorded by a thermocouple bonded to a small piece of Si
mounted adjacent to the EOP fixture. Because of the optical absorption differences between the
Si monitor wafer and an InP sample, this temperature-measurement scheme can introduce a
small systematic temperature error which is both time and temperature dependent.

For these experiments, high-resistivity (o >107 Q-cm) Fe-doped InP crystals were cut into
(100)-oriented wafers that were lapped and polished using a 1 percent Br-methanol solution.
Samples cut from the wafers were free-etched in 0.5 percent Br-methanol prior to room-
temperature ion implantation of 140-keV 10!4-cm-2 28Si* ions. Preparation of the l-in-diam. InP
source wafer, prior to sample annealing, consisted of e-beam evaporation of a 1-um Sn layer, fol-
lowed by a 5-min 750°C preanneal employed to saturate the Sn layer with P. Isochronal anneals

were carried out in the flash-lamp RTA system, under flowing N,, for several temperatures up to
900°C.
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Figure 1-5 Schematic diagram of sample fixture used for EOP annealing technique.

Samples annealed by the EOP technique at 900°C for 10 s retained their mirror-like finish
and, as shown in the photomicrograph of Figure 1-6(a), appear to have negligible surface pitting
and are comparable to samples annealed with a PSG encapsulant at 750°C for 5 min [Fig-
ure 1-6(b)]. After approximately 15 annealing runs with the same source wafer, sample pitting
began to occur and the wafer was replaced.

Although it has been reported that high levels of Sn were detected on the surfaces of InP
substrates used for LPE growth while employing an In-Sn-P liquid solution preservation
method, 27 Auger electron spectroscopy (AES) measurements performed on EOP-annealed InP
wafers revealed that Sn surface contamination was undetectable within the measurement sensitiv-
ity of the apparatus. In order to investigate further the potential problem of Sn contamination
during annealing, electrical measurements were performed on unimplanted EOP-annealed InP
wafers (900°C for 10 s). These measurements showed that unimplanted InP wafers remained
semi-insulating, again indicating that Sn contamination is not a problem.

The sheet carrier concentration, electron mobility, and resistivity of the implanted samples
were determined by making Hall-effect measurements of the van der Pauw type.28 The data in
Figure 1-7 show that for a fixed anneal time, the sheet carrier concentration increases with
increasing anneal temperature, and that the increase is greater for shorter anneal times. The high-
est sheet carrier concentration obtained, 6.7 X 10!3 cm2, was on a sample annealed at 900°C for
10 s. This value is considerably higher than that achieved on samples conventionally annealed at
750°C for 5 min, as illustrated in Figure 1-7 or reported elsewhere in the literature.20 The mea-
sured sheet mobility of 1560 cm?2/V-s obtained on the sample annealed at 900°C for 10 s is also
an improvement over the mobility of conventionally annealed samples. A reduction of the 900°C
anneal time to 3 s results in a reduction of both sheet carrier concentration and mobility. The
general trend of increased sheet carrier concentration with increasing anneal time for all anneal
temperatures is in good agreement with the results of Vaidyanathan et al.20 for similarly

80837-5
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(a) (b)

Figure 1-6 Photomicrograph of heat-treated InP surfaces: (a) EOP anneal at 900° C for 10 s;
(b) conventional anneal using PSG encapsulant at 750° C for 5 min.

implanted samples. Our measurements, however, do not confirm their observation that a

750°C 20 s anneal produces a sheet carrier concentration comparable to that obtained with a
conventional 750°C heat treatment. On the other hand, lower-dose implants will probably anneal
by RTA at lower temperatures!? than these high-dose implants.

In all cases where a PSG encapsulant was employed, sheet carrier concentrations were
slightly higher than the EOP results for the same anneal temperature. Although PSG encapsula-
tion may prove superior for 750°C anneals, this film has not been able to withstand reproducibly
the higher temperatures (900° C) required for obtaining maximum electrical activation.

J.D. Woodhouse J.P. Donnelly
M.C. Gaidis C.A. Armiento!

1.3 MEASUREMENT OF INTERMODULATION DISTORTION
IN INTERFEROMETRIC MODULATORS

In a previous report, 29 it was shown that the dynamic range of analog optical-fiber communi-
cation links employing external optical modulators could be limited by modulator nonlinearities.
Specifically, two-tone intermodulation distortion in interferometric modulators was analyzed.

Here we present experimental results which verify these theoretical predictions.

t GTE Laboratories, Waltham, MA 02254
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The analog link we evaluated is shown in Figure 1-8 and consists of an optical source, an
interferometric modulator, a photodetector, and an amplifier. The optical power transmission of
the modulator varies sinusoidally with applied voltage. To analyze two-tone intermodulation dis-
tortion, it is assumed that the modulator drive voltage consists of two equal-amplitude sinusoidal
signals and is given as

Vin(t) = Vi(sin @t + sin w,t) (1-3)

It is assumed that the device is operated with a phase bias of 7/2 rad so that the transmitted
power is approximately linear in applied voltage. In the analysis presented earlier,?? it was shown
that the detector output voltage can be written in series form as

(==} (==} [==]
Voul = 3 Vo Gin ket +sin kapt) + 3 3 Vi [sin(ke; + L wp)t (1-4)
k=1 k=1 0=1

+sin(kw| - Law)t]
where the first and second summations correspond to harmonic and intermodulation frequencies,
respectively. The coefficients Vi,0 and V; 5 which correspond to the fundamental and dominant

intermodulation signals, respectively, are proportional to the modulator drive voltage and are
given by the expressions

7TV| TTVI
Vl 0 =2V Jl — ‘]0 —
s o v” VT,-
mV] mV]
' ’ Vo Vi
1= P()
souce < v
1=
MODULATOR

OPTICAL FIBER

Vourlt)

Figure 1-8 Analog optical-fiber communication link consisting of constant-power
optical source, interferometric modulator, optical fiber, detector, and amplifier.




where V,, is one-half the peak value of V,, and J, is the nth-order-Bessel function. V. is the
voltage variation required for maximum on-off modulation corresponding to a phase shift of
m rad between the two arms of the interferometer.

Intermodulation measurements were performed using an LiNbOj; interferometric modulator
designed for operation at an optical wavelength of 0.85 um. The device was tested using a GaAs
diode laser and a Si photodetector. Equal-amplitude sinusoidal drive signals at frequencies of 2.0
and 2.2 MHz were simultaneously applied to the device. The amplified photodetector output sig-
nal was observed on a spectrum analyzer and the sideband levels were measured as a function of
the drive-voltage amplitude. An example of a spectrum-analyzer trace is shown in Figure 1-9 for
the case where V{/V_ =0.16. The two dominant signals at w; = 2.0 MHz and w, = 2.2 MHz can
be seen with the two intermodulation signals at the frequencies 2w; - w, = 1.8 MHz and
2wy - w = 2.4 MHz. Intermodulation suppression is ~32 dB at this drive-voltage level. The com-
plete set of experimental data along with the results of the theoretical analysis is plotted in Fig-
ure 1-10. The experimental data follow theoretical predictions very closely. There is a slight devi-
ation from theory at the higher voltage levels and this likely is due to the fact that the induced
electro-optic phase shifts in the modulator are not exactly linear with applied voltage. These mea
surements verify the limitations on system dynamic range resulting from intermodulation distor-
tion. For example, to maintain >40-dB intermodulation suppression requires that the input-
voltage peak amplitude be <0.09 V.

L.M. Johnson

MR A-F18 weng
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Figure 1-9 Photograph of spectrum analyzer trace of amplified photodetector output
Sor case where V[V _=0.16. Both fundamental and dominant intermodulation signals
can be seen.
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Figure 1-10  Plot of fundamental and intermodulation product power levels
as a function of electrical drive power. Solid lines are theoretical predictions,
with extrapolations to intermodulation intercept shown dashed; CROSSES

are experimental results.
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2. QUANTUM ELECTRONICS

2.1 STABLE SINGLE-FREQUENCY Ti:Al,0; RING LASER

Output from a single-frequency Ti:Al,04 ring laser of at least 100 mW has been obtained
between 740 and 820 nm, as shown in Figure 2-1. At the peak of the tuning curve the output
was as high as 200 mW. The dip in the tuning curve near 800 nm was caused by the optics. The
tuning range was limited by the bandwidth of the output coupler and the available power. In this
experiment, the Ti:Al,03 rod was pumped using 7 W of 514.5-nm light from an Ar-ion laser;
only 3.5 W were incident on the crystal of which only 2 were absorbed.

Figure 2-2 shows the frequency stability of the ring laser over a 5-min period. These data
were obtained from the output of a confocal Fabry-Perot spectrum analyzer. The Fabry-Perot
scanned over the transmission peak in 100 us. The laser frequency was recorded every 3 s with
an accuracy of 4 MHz as shown in Figure 2-2. The rms frequency jitter obtained from this data
was 15 MHz. In addition, the stainless steel mounting board for the laser expanded with time
because of a slow temperature rise under pumping conditions, resulting in the observed long-term
frequency drift of 270 kHz/s.

200

POWER (mW)
8

0 ] l | A1 |
740 760 780 800 820 840 860

WAVELENGTH (nm)

Figure 2-1 Single-frequency power vs wavelength. Output power of 100 mW
can be obtained over 100-nm wavelength range with a maximum output power
of 200 mW. Dip in middle is caused by laser cavity optics.
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Figure 2-2 Frequency changes in 5 min. A least-squares linear fit of frequency is indicated.

Both the Ti:Al,O3 laser frequency jitter and the Ar-ion laser power showed fluctuations at a
frequency around 200 Hz, indicating that the two were correlated. The Ar-ion laser power affects
the temperature and refractive index of the Ti:Al,O5 crystal. A simple model predicts that a one-
percent Ar-ion laser-power fluctuation causes 0.5-K temperature fluctuation in the crystal, which
results in an optical path fluctuation in the laser cavity and a corresponding frequency fluctua-
tion of 40 MHz. We expect the model to be reliable only as an order of magnitude estimate. In
the model, the temperature rise in the pumped filament is assumed to be decoupled from the
temperature rise of the bulk crystal, which should be a reasonable approximation on the 5-ms
time scale of the pump fluctuations. Further evidence for this model is that frequency tuning of
the Ti:Al,O3 laser occurs when the Ar-ion laser power is changed.

Heating the laser crystal causes an aberrated thermal lens in addition to changing the optical
path of the laser cavity. Any lens placed in the laser cavity should affect the cavity mode; how-
ever, placing the lens at a beam waist minimizes the effect. Figure 2-3 shows the effect of the
Ti:AlyOj3 crystal position on the laser-power threshold. Data are taken by sweeping the Ar-ion
laser power at a modulation frequency of 30 Hz and determining the intercept for the output
laser power (the threshold). Moving the crystal is equivalent to moving the thermal lens along
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Figure 2-3 Ti:Al;03 laser threshold vs Ar-ion pump laser power
for four different positions of Ti:Al03 crystal.

the cavity. For changes in crystal position of 2 mm, there is a wide range of behaviors. For
position 1, a strong effect of average power on the threshold is observed. For position 3, very lit-
tle effect is observed, suggesting that at this position the Ti:Al,O5 crystal is centered on the beam
waist. For other positions of the crystal, the power of the lens affects the laser threshold. This
can be compensated for partially at any particular power, but not over a range of input power
levels. At higher average power the threshold always increases. We believe this can be understood
in terms of the Ar-ion laser mode structure, which tends toward a doughnut mode at high
power.

In conclusion, 100-mW single-frequency output from a Ti:Al,O3 laser over the range 740 to
820 nm has been achieved. Thermal effects have been investigated. Ar-ion laser power affects
Ti:Al;O3 crystal temperature, and thereby laser frequency. Jitter in the Ar-ion laser power causes
a frequency jitter of the Ti:Al,O3 laser. The Ti:Al,O3 crystal also acts as an aberrated thermal
lens, but this effect can be minimized by appropriately positioning the Ti:Al,O5 crystal.

P.A. Schulz
D.J. Sullivan
S. McClung
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2.2 Nd:YAG SUM-FREQUENCY GENERATION OF SODIUM
RESONANCE RADIATION

We previously reported! the generation of sodium resonance radiation by sum-frequency
mixing the output radiation of a 1.064- and a 1.319-um Nd:YAG laser. Recently we achieved a
much higher mixing efficiency with two simultaneously Q-switched Nd:YAG lasers. In addition,
we have measured the tuning range of both the 1.064- and 1.319-pum Nd:YAG lasers.
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