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S ECT ION 1

INTRODUCTION

Pavlov (1927) and Hebb (1949) were among the first

investigators to extensively analyze possible relationships between

the behdviur of whole animals and the behavior of single neurons.

Building on Pavlov's experimental foundation, Hebb's theoretical

analyses leo him to a model of single neuron function that continues

to be relevant to the theoretical and experimental issues of

learning and memory. There had been earlier atterpts to develop

such neurorial models. Among them were the models of Freud (1895),

Rashevsky (1938) and McCulloch arid Pitts (1943) but, to this day,

the neuronal model proposed by Hebb has remained the most

influential among theorists. Current theorists who have utilizeo

variants of the Hebbian model include Anderson, Silverman, Ritz, and

Jones (1977), Kohonen (1977), Grossberg (1982), Levy and Desmorid

(1985), Hopfield and Tank (1986), and Rolls (1987).

In this report, I will suggest several muoifications to the

Hebbian neuronal model. The modifications yield a model which

will be shown to be more nearly in accuiro with animal learning

phenomena that are observed experimental ly. The niodel to be

proposed is an extension of the Sutton-Barto (1981) model.

After defining the neuronal model, first qual itatively and

then mathematically, I will show, by means of computer

simulations, that the neuronal model prediLts the bdSiC categories uf

N- 1('L.
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classical conditioning phenomena. Then, I will discuss the neuronal .

model in more general theoretical terms, with particular reference to the',,

'%

t.2

psychological notions of drives and reinforcers. My conclusion will be

thdt the model offers a way of defining drives aria reinforcers at a

nieurondl level such that a neurobiological basis is suggested for aninial

learning. In the theoretical context that the neuronal model provides, I

will suggest that drives, in their most general sense, are simply signal

levels in the nervous system and reinforcers, in their must yeneral

sense, are simply changes in sigrial levels. This seems too simple and,

indeea, it is - but. I hope to show that it is riot that much too simple.

I will atteempt to make a case for drives and reinforcers being viewed, in

their essence, as signal levels in the nervous system arid as changes in

signal levels, respectively. The result will be a theoretical framework

based or, what I propose to call a arive-reinforcement model of single

neuron function.

2.
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SECTION 2

THE NEURONAL MODEL

Qualitative description

I will begin by defining the drive-reinforcement neurundl

model in qualitative terms. It will be easiest to do this by

contrasting the model with the Hebbian model. Hebb (1949)

suggested that the efficacy of a plastic synapse increases

whenever the synapse is active in conjunction with activity of the

postsyriaptic neuron. Thus, lebb was proposing that learning (i.e.,

changes in the efficacy of synapses) is a function of correlations

between approximately simultaneous pre-- dna postsynaptic levels of

neurondl activity.

I wish to suggest three modifications to the Hebbiadi model:

(a) Instead of correlating pre- and postsynaptic levels of

activity, changes in presynaptic levels of activity

should be correlated with changes it) postsynaptic levels

of activity. In other words, instead of correlating

signal levels on the input and output sides of the

neuron, the first derivatives of the input and output

signal levels should be correlated.

(b) Instead of correlating approximately simultaneous

pre- arid postsynaptic signal levels, earlier presynaptic

signal levels should be correlated with later

postsyndptic signal levels. More precisely and

consistent with (a), earlier changes in presynaptic siyrial

3
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levels should be correlateG with later changes in pustsynaptic

signal levels. Thus, sequentiality replaces simultaneity in

the model. The interval between correlated changes in pre- and

postsynaptic signal levels is suggested to range up to that of

the maximum effective interstimulus interval in dWlay

conditioni ng.

(c) A change in the efficacy of a synapse should be

proportional to the current efficacy of the synapse,

accounting for the initial positive accelerdtion in the

s-shaped acquisition curves observed in animal

learning.

A refinement of the model will be noted now and discussed

more fully later. The ability of the neuronal model to predict

animal learning phenomena is improved if, instead of correlating

positive and negative changes in neuronal inputs with changes in

neuronal outputs, only positive changes in inputs are correlated

with changes in outputs. To clarify this, positive changes in

inputs refer to increases in the frequency of action potentials at

a synapse, whether the synapse is excitatory or inhibitory.

Negative changes in inputs refer to decreases in the frequency of

action potentials at a synapse, whether the synapse is excitatory

or inhibitory. Furthermore, the changes in frequencies of action

potentials I'm referring to will be relatively abrupt, occurring

within about a second or less. It is hypothesized that more
p,'J

gradual and long-term changes in the frequency of action

potentials at a synapse do not trigger the neuronal learring mechanism.

4 .-
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Atter the neuronal model has been defined precisely and the results

of computer simulations have been presented, it will be seen that this

model of neuronal function bears the following relationship to models of

whole animal behavior. Iti general, changes in presyraptic frequencies uf

firing will reflect the onsets and offsets of conditioned stimuli. In

general, changes in pustsyrldptic frequencies of firing will reflect .

increases or decreases in levels of drives (with orives being defined

more broadly than has been customary in the past). In the case of the --

neuronal model, changes in the levels of drives (which will usually

manifest as changes in postsynaptic frequencies of firing) will be

associated with reinforcement. With regard to the behavior ot whole

animals, the notion that changes in drive levels constitute reinforcement

has been a fuioamental part of animal learning theory since the time of

Hull (1943) and Mowrer (1960). here, I am taking the notion down to the

level of the single neuron. Changes in signal levels, which play a

fundamental role in the neuronal model being proposed, have long been

recognized to be of importance. For example, Berlyne (1973, p. 16) notes

that "many recent theorists have been led from differeut starting points

to the conclusion that hedonic value is dependent above all on changes in

level of stimulation or level of activity. They include McClelland,

Atkinson, Clark dnd Lowell (1953), Premack (1959), Helson (1964), an

Fowler (1971)."

Before concluding this introduction to the drive-reinforcement

neuronal model, it will be useful to briefly note how the model relates

to earlier models from which it derives. The derivation and evolution of

the model will be discussed more fully later. As has alreddy been

5
...-Q
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indicated, the drive-reinforcement model is an extension of the

Sutton-Barto (1981) model. The Sutton-Barto model, in turn, can be

vieweci as a temporally refined extension of the Rescorla-Wagner (1972)

model. I will show that the drive-reinforcement model eliminates some

shortcomings of the Rescorla-Wagner and Sutton-Barto models. Both of the

latter models predict strictly negatively accelerated acquisition or

learning curves. The Rescorla-Wagner model also predicts extinction of

coricitioied inhibition. Consistent with the experimental evidence, it

will be seen below that the drive-reinforcernent model predicts (a) an

acquisition curve that is initially positively accelerating ana

subsequently negatively accelerating and (b) conditioned inhibition that

does riot extinguish. In addition, the drive-reinforcement model solves

some problems with conditioned stimulus ouration effects that arise in ""

the case of the Suttun-Barto model.

Mathematical specification

The proposed neuronal model may be defined precisely as follows.
'a 4

The input-output relaticnship of a neuron will be modeled in a fashion

that is customary ariong neural network modelers. Namely, it will be

assumed that single neurons are forming weighted sums of their excitatory

and inhibitory inputs and then, if the sum equals or exceeds the thres-

hold, the neuror: fires. Such a model of d neuron's input-output

relationship can be based on the view that neuronal signals are binary

(either a neuron fires or it doesn't) or on the view that neuronal

signals are real-valued (reflecting some measure of the frequency of

-5-
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firing of neurons as a functiu of the amount by which the neuronal

threshold is exceeded). Here, the latter view will be adopted. Neuronal

input and output signals will be treated as frequencies. This approach

to modeling neuronal input-output relationships is consistent with

experimental evidence reviewed by Calvin (1975).

Mathematically, then, the neuronal input-output relatiurship may be

specified as follows:
n '

y(t)= _1 w x(0-0 ON

where y(t) is a measure of the postsy~dptic frequency of firing at

discrete time t; n, is the number of synapses impinging on the neuron;
.th ;t

wi(t) is the efficacy of the i synapse; xi(t) is a measure of the

.th
frequency of action potentlials at the I synapse and 9 is the neuronal

threshold. The synaptic efficacy, wi(t), can be positive or negative,

corresponding to excitatory or inhibitory synapses, respectively. Also,

y(t) is bounded such that y(t) is greater than or equdl to zero and less

than or equal to the maximal output frequency, y'(t), of the neuron.

Negative values of y(t) have no meaning as they would correspond to

negative frequencies of firing.

To complete the mathematical specification of the neuronal model,

the learning mechanism described earlier in qualitative terms reiiains to

be presented. The learning mechanism may be specified as follows:

Aw.(t)= Ay(t) Z c !w.(t-j)i AXi(t-j) (2)

1here1Aw J=1
where Aw.(t)=w.(t+I)-w.(t), Ay(t)=y(t)-y(t-1), and

Ax(t-j)=x (t-j)-x.(t-j-1). Awi(t) represents the change in the
I I 1 1

efficacy of the i synapse at time t, yielding the adjusted or

new efficacy of the synapse at time t+1. Ax (t-j) represents a1

46
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presynaptic change in signal level at time, t-j, and Ay(t) represents

the postsynaptic change in signal level at tinie . T is the longest

irterstimulus interval, measured in discrete time steps, over which delay

conditioning is effective and c. is an empirically estbblished learning

rate constant which is proportional to the etficacy of conditioning when

the interstinulus interval is j. The remaining symbols are defined as in

equation (1). A diagram of the neuron muaeled by equations (1) and (2)

is shown in Figure 1.

Generally, in interpreting &rd working with equation (2), I have

adopted the following assumptions, consistent with what is known of

lear ,ing involving the skeletal reflexes. I usually consider each

discrete time step, t, to be equal to one-half second. This is a

meaningful interval over which to obtoin measures of the pre- and

Postsynaptic frequencies of firing, x (t) and y(t). Also, it is probably
1

a reasonable interval of time with respect to the learning processes

underlying changes ii s)naptic efficacy. For example, the optimal

interstimulus interval for classically conditioning a skeletal reflex is

nominally one-half second [optimal interstiriulus intervals vary from

about 200 to 500 ms deptnding on the species atd the response system

within the species (see review by Woody, 1982)], ar very little or no

conditioning is observed with intervals approaching zero or exceeding

three seconds (Frey and Ross, 1968; McAllister, 1953; Russell, 1966;

Moore and Gornezano, 1977). Thus, in equation (2), indexing starts with

j eqoal to 1 because c is equal to zero, reflecting the tact that no
0

conditioring is observed with dn: interstinmulus intervl ot zero. c is

assigned the ueximal value retlecting the fact that one-half seuond is

8
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xjlt) < ..:,*.

x2(t) <-- .2,

x3(t) .<:-/..

x4(t) y ylt)

xnlt) .=li

Figure 1. A model of a single neuron with n synapses. Presyrnaptic

frequencies of firing are represented by x.(t), synaptic efficacies by

wi(t), and the postsynaptic frequency of firing by y(t). The

input-output (I/O) relationship is specified by equation (1) and the

learning mechanism (L.M.) is specifieG by equation (2) in the text.

9-.
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(approximately) the optimal irterstirmiulus interval. Then, c is less
j+1

than c. for the remair,ing c-values, reflectirng the decreasing efficacy of3

corditioning as the interstimulus interval increases beyond one-half

second. T is normally set equal to 5 because, when j equals 6

(corresponding to an interstimulus interval of three seconds), little or

no conditioning would occur so c6 would be approximately equal to zero.
6p

A lower bound is set on the absolute vlues of the synaptic weights,

wi(t). The bound is near but nut equal to zero because synaptic weights

appear as factors on the right side of equation (2). It can be seen that

the learning mechanism woulc Lease to yield changes in synaptic efficacy

for any synapse whose efficacy reached zero; i.e., Awi(t) would

henceforth always equal zero. A lower bound on the absolute values of

synaptic weights results ir; excitatory weights always remaining

excitatory (positive) and inhibitory weights always remaining inhibitory

(negative); i.e., synaptic weights do not cross zero. This is consistent

with the known physiology of synapses (Eccles, 1964). A nonzero lower

bound on the efficacy of syriapses is also consistent with evidence

suggesting that potential conditionea stimuli are weakly connected to

unconditioned responses prior to conditioning (Goula, 1986; Schwartz,

1978; Pavlov, 1927). Also, a nonzero 1ovwer bound on the efficacy (f

synapses models the notion that a synapse must have some effect on the

postsynaptic neuron in order fur the postsynaptic learning mechanism to

be triggered. That learning mechanisms are postsynaptic, at least in

phylogenEticall) advanced organisms, has been well argued by McNaughton,

Barnes, and Rao (1984). In the case of the mammalian central nervous

system, Thompson, MlcCormick, Lavond, Clark, Kettner, and Mauk (1983) note

10
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that what little evidence now exists is perhaps more consistent with the

hypothesis of postsynaptic rather than presynaptic learning mechanisms.

In general, it is expected that the efficacy of syiiapses, w.(t), is

variable and under the control of the neuronal learning mechaisni.

However, some synapses car be expected to have fixeu weights; i.e.,

weights that are innate and unchangeable. This may be true for many or

most syrizpses in the autonomic nervuus system. In the somatic nervous

system, it is likely that many more synapses and perhaps most are

variable or "plastic". In the case of the drive-reinforcement neuronal

model, it will be assumed that synapses mediating conuitioned stimuli

have variable weights and that synapses mediating unconditiunea stimuli

have fixec weights. The innately specified synaptic weights that are

assumed to mediate unconoitioned stiri-uli are expected to reflect the

evolutionary history uf the organism.
Let us now consider what is happening in equatiuor (2). As the

specificatiun of the learning mechavism for the drive-reinforcement

neuronal r{uocel, equation (2) suggests how the efficacy of a synapse

changes as a function of four factors: (1) learning rate constants, c.,
J a

that are assumed to be innate; (2) the absolute value, 1w (t-j) , of the
l

efficacy of the syndpse at time, t-j, when the change in presynaptic

level of activity occurred; (3) the change in presynaptic level of

activity, Ax(t-j); and (4) the change in pustsynaptic level cf

activity, Ay(t).

One way of visualizing either the Hebbion ur the drive-reinfurLelent

learing mechanism is in terns of o temporal window tht. slides alony the

i0
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time line as learning occurs, changiny the efficacy of synapses as it

moves ailung. In the case of the Hebblan model, the learning mechanism

employs d temporal window that is, in effect, only one time step wide.

The learning mechanism slides along the time line, modifying the efficacy

of synapses proportional to (1) o learning rate constaht, (2) the

presynaptic level of activity, and (3) the postsynaptic level of

dItivity. (The Hebbian model will be presented in mathematical form 4-

later.) In the case of the drive-reinforcement mudel, the learning

mechanism employs a temporal window that is t+l time steps wide. The
U.

learning mechanism slides along the time line modifying the efficacy of
".

synapses proportional to (1) learning rate constants, (2) the etficacy of

synapses, (3) changes in presynaptic levels of activity and (4) changes

in postsynaptic levels of activity. it can be seen that the Hebbidn

learning mechanism correlates approximately simultaneous signal levels

and the drive-reinforcement learning mechanisn correlates temporally

separated derivatives of signal levels. (In the case of the drive-

reinforcement model, I air not suggesting that a neuron would have to

compute anything as refined as a first derivative. A first-order

difference will suffice, as will be Gemonstrated later.) lhe differences

in the behdvior of the 1ebbian dnd the orive-reinforcerient learning

miichaiiisms will be exami rEd below when the results of computer

simulations of both mdels are presented.

Properties of the model

The drive-reinforcement neuronal model suggests that what neurons

are learning to do Is to anticipate or predict the onsets and offsets of

pulse trains. By pulse trdins, I mean sequences or clusters of action

12
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potentials in axons. The model neuron learns to predict the orsets and

offsets of pulse trains representing unconditioned stimuli, utilizing the

onsets of pulse trains representing conditioned stimuli. This will

become evident when the results of computer simulations dre presented.

It will be seen that the learning mechanism moves the onsets aria offsets
p

of pulse trains to earlier points in time. Fundamentally, the learning

mechanism is a shaper of pulse trains. The efficacy of a synapse changes

in a direction such that the neuron comes to anticipate the unconditioned

response; i.e., the conditioned stimulus comes to produce the conditioned

response prior to the occurrence of the unconditioned stimulus and the

unconcztionea response. The way the drive-reinforcement neuronal 2

learning mechanism shapes pulse trains is illustrated in Figure 2. Many ;..,
investigators, including Pavlov (1927), have pointed to the anticipatory

or predictive nature ot conditioning phenomena [e.g., see Kamin (1968,

1969), Rescorla and Wagner (1972), Dickinson ana Mackintosh (1978), ar

Sutton and Barto (1981)].

I

Refinement of the mooel

The drive-reinforcement neuronal le.rring mechanism, as defined by

equation (2), can be refineo in a way that improves the model's ability

to predict animal learning phenomena. The refinement, as briefly rioted

earlier, involves allowing only positive changes in presynaptic signal

levels to trigger the neuronal learning mechanism. In other words, V.

Axi(t-j) must be greater than zero. If Ax (t-j) is less than zero, it

is then set equal to zero for the purpose of calculating Awi(t) in %%

equation (2). .5

13
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(A) ONSETS (B) OFFSETS

'.,

CS

us

CR/UR: BEFORE
LEARNING

N

CR/UR: AFTER
LEARNING

Figure 2. Examples of how the arive-reinforcement learning mechanism
alters the onsets arid offsets of pulse trains for a single theoretical
neuron. Panels (a) ara (b) show the effects of unconditioned stimulus
onset and offset, respectively. In each example, the conditioned
stimulus (CS) is followec by an unconditioned stimulus (US), both of
which represent presynaptic signals. The two presynaptic signals are
assumed to be mediated by separate synapses, with the CS-mediating
synapse having a variable efficacy (weight) under the control of the
neuronal learning mechanism. The conditioned and unconditioned response
(CR and UR) before and after learning (i.e., before and after a number of
preseritations of the CS-US pdir) are shown below the wave forms for the
CS and US pulse trains. The conditioned and unconditioned response
(CR/UR) represents the postsynaptic frequency of firing of the neuron.
In panels (a) and (b), it is seen that the onset and offset of firing,
respectively, occurs earlier in time after learning. Thus, i,, each
case, the neuron has learned to anticipate the unconditioned response by
learning to start firing earlier (panel a) or stop firing earlier
(panel b).

14
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There is an intuitive basis for this refinement. A negative change

in presynaptic signal level means that the presynaptic sinal is falling

away; i.e., that it is headed toward zero. If such a negative change in

presynaptic signal level were to trigger the neuronal learning mechanism

and possibly cause a synaptic weight to change, then a synaptic weight

woula have changed for a synapse that just ceased to carry the signal

that caused the change. That is to say, the relevant part of the signal

on which the synaptic weight should operate woula no longer be present.

Some residual portion of The signal might still be present after the

negative change in presynaptic signal level. However, the residual

portiuon of the signal is not relevant because it might have been there

long before the negative change in pr,'synaptic signal level and might be

there long afterward. With the drive-reinforcement neuronal learning

rechanism, only the dynamic part of the signal is relevant, as will be

rore clearly seen after the computer simulations are presented. This is

not to suggest that a drive-reinforcement learning mechanism would

precluae learning about neyotlve changes in levels of stimuli. However,

if such changes are to trigger a drive-reinforcement learning mechanism, ,

it is suggested that they would have to be, in effect, inverted, such

that they would manifest in some part of the nervous system as positive

changes in signal levels.

Allowing only positive changes in presynaptic signal levels to

trigger the neuronal learning mecr,adnism is part of a strategy of not

changing a Sylaptlc weight unless tere is good reason to believe the

weight change will be useful. Such d strategy seems reasonable because,

in a neural network, there is always the possibility that a synaptic

15



weight change will interfere with or cot.b.titute overwriting of a previous

weight change. Thus, weight changes are to be minimizea.

The rationale offerea above for refining the learning rnechanism does

rot constitute a rigorous argument. However, it is hoped that the

rationale provides sone insight into why the refinement might make sense.

Later, a more rigorous approach will be taken. It v;ill be shown that the

basic categories of classical conditioning phenomena are predicted by the

reuronal model when only positive changes in presynaptic signal levels

are allowed to trigger the learning mechanism. Then, it will be shown

Low the model's predictions deviate from the experimental evidence wher,

both positive and negative changes in presynaptic signal levels can

trigger changes in synaptic weights.

Derivation and evolution of the drive-reinforcement mL-coel from erlier

models

Having defi,,ed the neuronal model in qualitative and mathematical

terms, I will now cescribe the model's aerivation and evolution from

earlier neuronal models. The neuronal learning mechanisms that have been

proposed, leading to the drive-reinforcement model, will be portrayed in

two ways: (1) by means of the sequence of critical events that have been

hypothesized to leao to learning and (2) by iittns uf the equation thit

claracterizes the learning mechanism. As it is customary to number

equations, I will also number the critical event sequences so tha I can

refer to them later. To distinguish them from the equcition numbers, an

"S" will be acded as a prefix to the critical event sequence numbers.

16



Hebb suggested that the sequence ul critical events for learning was

simple:

xi(t) y(t) -*Aw(t) (S-1)
1 1

In other words, presynaptic activity, xi(t), followed directly by

postsynaptic activity, y(t), was hyputhesized to result in a change,

Awi(t), irt the efficacy of the assuciated synapse. (The convention

adopted in this report is that when presynaptic activity, x., is a direct

11cause of pustsynaptic activity, y, then x.i and y will have the same time

step, t, assOciated with them.) The equation for the Hebbian learning

mechanism may be written as follows:

w1 (t)1cxi ty(t) 3

where c is a learning rate constant and the other symbols are as

defineo earlier.

Hebb's model is an example of a simple real-time learning mechanism.

Real-time learning mechanisms emphasize the temporal association of

signals: each critical event in the sequence leading to learning has a

time of occurrence associated with it and this time plays a fundamental

role in the computdtions that yield changes in the efficacy of synapses.

It should be noted that "real-time", in this context, does not meal,

(:ortinuous time as contrasted with discrete time rnor does it refer to a

learning system's ability to accomplish its conmputations at a sufficient

speed to keep pace with the environment within which it is embedded.

Rather, a real-time learning mechanism, as defined here, is one for which

the time of occurrence of each critical event iii the sequence leading to

learning is of fundamer.tal importance with respect to the computations

the learning mechanism is perfurming. Real-tire learning mechanisms may

J. F , a-.
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be contrasted wit h nonreal-time learning mechanisms such as the

perceptron (kcseriblatt, 1962), aaal iie (Widrow, 1962), or Lack

propagation (Werbos, 1974; Parker, 1982, 1985; Le Cun, 195; kumelhart,

Hinton, and Williams, 1985, 1966) learnr.ing mechanisms for which error

signals iollow system responses and only the order of the inputs,

outputs, arid error signals is important, riot the exact time cf occurrence

of each signal, relative to the others. For additional discussions of

real-time le~rniin 9 mechanism models, see Klopf (1972, 19?5, 1979, 1982,

1986), Moure and Stickney (1980), Sutton and Barto (1981, 1987), Wagner

(1981), Grossberg (1982, 1987), Schmajuk and Moore (1985), Gelperin,

HopfieIG, aria Tank (1985), Blazis, Desmond, Moore, and Lerthier (1986),

Tesauro (1986), dnd Donegan and Wagner (1987). Proposals fur real-time

models that give especially careful attention tu neurobiulogical

constraints are those of Hawkins arid Kandel (1984) and Gluck and

Thompson (1987j.

Klopf (1972, 1982) proposed an extension to Hebb's model that

introduced the notions of synaptic eligibility and reinforcement into

real-time learning mechanisms, resulting in a neuronal riodl that

emphasized sequential rather than simultaneous events. The following

sequence of critical events was hypothcsized to lead to learning:

x.(t-k) y(t-k) s(t) A w.(t) (S-2)
1 1

where s(t) is the sum of the weightec inputs to the neuron at tine t and

k is the nominal interval of time required for a neuronal output to feed

back and influence the neuronal input, the feedback occurring either

through the remdinder of the neural network or through the environment.

The variable s(t) represents the neuronal membrane potentidl. i, this
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model, presynaptic and postsynaptic activity, x (t-k) and y(t-k;, vhtl'

they occur in conjunction, render a sylapse eligible fLr 1hdlfiCdtIU11.

However, the efficacy of an eligible synapse does not chariye unless the

subsequent membrane potential, s(t), is rionzero, s(t) furictiorillu, (s a

reirnfurcer that follows the eligibility cUmputdtion. The equatiun for

the learning mechanisri is as follows:

AW.(t)=CX.(t-k)y (t-k)s(t) (4)
1 11

In the context of real-time learning nechaniss, the notiuris ct

synaptic eligibility ano reinforcement based on sequential rather than

simultaneous events yielded a neuronal riodtl that could mdke jreot.r

CUtdC, with the experimental evidence of classical dnd instruneental

conditioning (Klopf, 1972, 1982). A further step was taken in that

direction when Barto and Sutton (1981a) discovered that replacing s(t) In

sequence (5-2) above with As(t) permitted the neuronal rodel to make

much rore substantial contact with classical corioitiuning phenomena. The

resulting neuronal learning nechanism is described by the followiri.

critical event sequence:

x1(t-k) y(t-k) As(t) Awi(t )  (S-3)

where As(t) = s(t) - s(t-1). -"

The equation for the learning mechanism is:

Aw.(t)=cx (t-k)y(t-k) As(t) (5)1 1 "

This form of learning mechanism lea to a simplification. Barto and

Sutton (198i) found that the critical event sequence (S-3) could be

replaced with the following simpler sequence:

x.(t-k) -Ay(t) Aw.(t) (S-4) '.
1 1 ¢

Ay(t) in sequence (S-4) replaces .skt) in sequence (S-3). lhis

-K9
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can be seen to be plausible in that Ay(t) implies As(t). However,

proceeding from sequence (S-3) to sequence (S-4) involved the additional

discovery that y(t-k) in sequence (S-3) was not essential for predicting

.

classical conditioniing phenomena. The result Wds a neuronal model that

can be specifiec by the following equatiun:

,Awit)=cx.(t-k) Ay(t) (6)

Actually, the forif the model took in the computer simulations Sutton and

Barto (1981) reported was as follows:

-i

1 I

where

In equation (t), is a positive constdyt. It can be seen that equation ,

pois of a form similar to equation (6) except that x.(t-k) is replaced

by th. t (t) represents an exponentially decaying trace of x.

extending over a number of time steps.

.5,

It was at this point that neuronal imodeling intersected strongly

with the theoretical na experimental results of 6nimal learning

researchers such as Kmin (1968) and Rescorla and Wagner (1972). Sutton

ara brto (1981) demor strat that the model they prposed could be seen

.4

as a temporally refined extension of the Pescorla-Wagner (1972) "odel.

Like the Rescorla-Wagner model , the Sutton-Bdrto mol accounted for a

variety of classical conditioning phenomena including blocking,

uvershadowing, and conditioned inhibition. hre was what could be

interpreted as a neuroal model (although Sutton and Barto did not insist

on that interpretrtion) making predictirs similar to those of a whole

animial model! The Suttun-Barto model repruscnted a milestone in terins ot

asa emorll rfiedexenio o hePesora-!ane (97)2o0l

Lik th Recora-Wgt~r mdel th SutonBaro md~laccuntd fr0

vaity o casca oniinig phnmna icldn blocking,



the contact prospective neuronal models were making with the exputlmentdl

evidence of animal learning (Sutton and Barto, 1981; Bar t. cnd Sutton,

1982; Moore, )esmond, Berthier, Blazis, Sutton, and Barto, 196; blazis

and Moore, 1987).

However, the Sutton-Barto model still deviated from the expeririental

evidence in a number of significant respects. One problem was that the

sensitivity of the model to conditioned stimulus durations causcu the

model to yield inaccurate predictions for d variety of conditioned

stimulus-unconditiur,ed stirulus confiyurtions for which the cUGltioned

stimulus and unconditioned stimulus overlapped significantly. The model

also does not account for the initial positive acceleration in the

s-shaped acquisition curves observed in classical conditioning.

One approach to correcting the problems of the Sutton-Barto model

has been to utilize a varic.nt of the adaptive heuristic critic algorithi:

aeveloped by Sutton (1984), and this has led to the temporal difference

model proposed by Sutton and Bartu (1987). Temporal difference models,

as defined by Sutton ana Barto (1987), utilize differences between

temporally successive predictions as a basis for learning. Sutton (1987)

notes that the earliest and must well known use of a temporol ditference

(TD) method or model was that due to Samuel (1959) in his checker-playing

program. Other examples of TD methoas or models include those due to

Witten (1977), Sutton and Barto (1981), Booker (1982), Hampson

(1983/1984), Sutton (1984), Gelperin, Hopfield, and Tank (1985), ard

Holland (1986). The drive-reinforcement neuronal model proposed in this

report is an example of a temporal difference model.
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Variants of the adaptive heuristic criLic model (Bartu, Sutton, and

Anderson, 1983; Sutton, 1984) represent one approach to solving the

problems of the Sutton-Barto model. Seeking to address these same
,,-

problems, I have adopttc an alternative dppruach that has led to the

neuronal learning mechahIsm specified by equation (2). For this mudel,

the hypothesized sequence of critical events leddirng to learning is as

follows:
Lx i(t-j) -,v t) -AW(t) (S-5) -'

1

where j replaces k and all of the critical events involve derivatives

with respect to time. The variable, k, was the time rcquired for the

neuron to receive feedback regarding its earlier output, y(t-k); k

reflected an instrumental conditioning orientation. The variable, j, is

simply an interstimulus interval reflectifg a classical conditioning

orlntdtion. Barto dnd Sutton had also considereu using .x.(t) instead

11Uf x (t) in their learning wi;echanism but decide] 1it was unworkable. I

returned to this possibility of a differential learning mechdnisi,,, one

that correlates earlier derivatives of inputs with later derivatives of

outputs, and found a way to nmake it workable such thcit the problem with

conditioned stimulus duration effects was eliminatea. The class of

differential learning mechanisms was independently discovered by Klopf

(1986), coming fro the directions of neuronal modeling an( animial

learnirg, and by Kosko (1986), coming from philosophical and radthematicdl

di rectius.

Sequence (S-5) implies the following kind of learning mechdnism:

w .(t)--c Lx.(t-j) /Ay(t) (9) ON.

615 ~C. - '
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However, I have founa that the most workable tori.i of the learning

nwechdnisM involves adding multiple terms and nultiple learning rate

constants to the right side of equation (9), the terms and constants

corresponding to a range of interstiiulus intervals, j. Also, making

Aw.(t) proportional to the absolute value of w.(t-j) allows the model to1 1

account for the initial positive acceleration in the acquisition curves

of classical conditiuning. Ihese refinements led to the neuronal

learning mechanism specified by Equation (2) and repeated here:
T

Aw(t) Ay(t)z l w (t-j)J Ax.(t-j) (10)

where Ax.(t-j) must be greater than or equal to zero; otherwise,
1

Ax.(t-j) is set equal to zero for the purposes of equation, (10). The
1

resulting model predicts the basic cctegories of classicdl conditiuning

phenomena, as will be demonstrated in the next section.
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SECTION 3

CLASSICAL CONDI1IONING: PREDICTIONS OF

THE NEURONAL MODEL

Classical conditioning phenomena are basic to learning. I will show

in this section that the crive-reinforcement neuronal model predicts a

wide range of classical conditioning phenomena. This will be

demonstrated by means of computer simulations of the model.

The neuronal model that was simulated is shown in Figure 3. The

input-output (I/0) relationship assumed for the neuron was that of

equatior, (1). The neuronal learning mechanism (L.M.) was that of

equation (2) with the refinement noted earlier: whenever

Ax.(t-j) was less than zero, AX.(t-j) was set equal to zero for the
1 1

purpose of calculating Aw (t). In the computer simulations, a

conditioned stimulus (CS) or unconditioreo stimulus (US) that was

presented to the neuron had an amplitude that ranged between zero and one m..

and a duration that was specified in terms of the times of stimulus onset

and offset. In the figures showing results of the computer simulations,

edach CS-US configuration is graphed so the rUdoer may see the relative

amplItudes and durations of stimuli at a glance. (For exact values for,

any of the parameters for the computer simuldtiuns, the Appendix should

be consulted.)

Each stimulus was presented to the simulated neuron through both an

excitatory and an inhibitory syr~pse so that the neuronial learning

mechanism hdd, tor edch input, both on excitatory and an inhibitory

weight available for modification. The learning inechanism could then -
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4.

CS, - t(t)

x3 3 Wt
CS2 +-lw: Wt) 1/0

___wtt
W5 + (t) LMCS3  _S W ItW

(t)
X 7 Wj

Figure 3. The drive-reinforcement neuronal model employed in the

computer simulations. This is a specific example of the more general
model shown in Figure 1. The description that was given in Figure I

applies here. In addition, each CS and US is represented by an

excitatory (+) and an inhibitory (-) synapse. The efficacies of synapses

[i.e., the synapt i weights, w (t)] are variable (plastic) for synapses1.

mediating CSs and fixed (nonplastic) for synapses mediating USs.
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choose to moaify one or the other weight or both in each time step. In

the case of an actual (biological) neuron, if a CS is not represented by

both excitatury arid inhibitory synapses, the individual neuron will be

constrdaried in terms of what classical conditioning phenomena it can

manifest. It will be seen in the simulations below that, for a

arive-reinforcement neuron, some classical conditioning phenomerna require

only excitatory plastic synapses and sunie require only inhibitory plastic

synapses. Those classical conditioning phenomena requiring both

excitatory and inhibitory plastic synapses would have to emerge at a 4-

higher level if the individual neurons involved had their CSs represented

by only excitatory or only inhibitory plastic synapses.

In the discussion that follows, a conditioned or unconditioned

stimulus and the associated x (t) in Figure 3 are identical. For

example, x (t) aria x2 (t) are one and the ScMe as CS . The weights

associated with the synapses carrying the unconditioned stimulus were

fixed (nonplastic) and the remaining synaptic weights were variable

kplastic).

The conditioned stimulus or unconditioned stimulus that is described

should, perhaps, more properly be referred to cs a neuronal conditioned

stimulus or a neuronal unconditiunea stimulus because it is the stimulus

that is reaching the neuron, not the stimulus that is reaching the whole -.

animal. However, for the sake of simplicity in the discussion, I will U
refer to Lhese neuronal input Slgreals as conditioned ano unconditioned

stimuli or, simply, CSs and USs. Likewise, the output, y(t), uf the
.1'<

neuron would more properly be referreo to as the neurondl conditionea or

unconditioned response but I will USUally refer to th, reurotidl response

26
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as the conditioned response (CR) or unconditiuned response (UR). Built U
into these terminological conventions Is thL assumption that stimuli and

responses external to on Gimal's nervous systen do not differ

fundamentally iii form from the way stimuli and responses are represented

interrldl to the animal's nervous system. This assunption might not hold

up well at hiyher, cognitive levels of function but the assumption

appears reasonabie as a starting point for testing the ability of a

neuronal model to predict fundamental lednhing phenomena.

Just as the range of x.(t) in the simulations was fru, zero to one,

as was nutcU when the range of CS ar'c LS amplitudes was discussed, so the -'.'*

range uf y(t), the neuronal output was from zero to one. Such a range

serves to model d f inite range of freclutrcies for neuronal inputs and

outputs. Actual frequencies of biological neurons range up to several

hundred spikes per second in the case of nucortical neurons firin,9 tor

brief intervals (Lynch, MountcGstle, Talbot, and Yin, 1977). Therefore,

one could multiply the neuronal input arid output amplitudes used in the.P1%

simulaticns by, say, three hunored if one desires to see more realistic

numbers. However, for the purposes of the simulations to be repurted,

the relative nognitudes of the pancWieters are important, i:ut the absolute

magnitudes.

The number of synapseb impinging on the simulateo neuron is eight,

as is indicated ii Figure 3. This correspur,ds to three possible U.s and .

ore U's. The absolute values (f the plastic synaptic weights mediating

the CSs have a iuwer hound of 0.1 dnd, whet. the simulations began, these

excitctury Old inhibitory weights were set at plus ard inus 0.1,

respecti'ely. (For exceptions tG this statement, see the Appendix; in

2 7I



some simulations, inhibitory synaptic weights were set equal to zero

because they did not play a significant role and it simplified the

graphs.) The neuronal threshold was set at zero because, at higher

values of the neuronal threshold, the forry; ot the model's predictions did
a

not change. The only effect of higher thresholds was that more trials

were required for the synaptic weights to reach their asymptotic values.

For the learning mechanism, the learning rate constants, c1 through c5,

were set at values such that c> c1 . As noted earlier, this is

reasonable if one views each time step as being equivalent to one-half
second because then cI is maximal, corresponding to a nominal optimal

J.

interstimulus interval of one-half second. Successive c-values then

decrease as the interstimulus interval increases. As also noted earlier,

c and c6 were set equal to zero, corresponding to interstimulus

intervals of zero and three seconds, respectively. Thus, in the

simulations, j ranged from one to five; i.e., T was set equal to five.

What follows are the results of computer sirulations of the

drive-reinforcement neuronal model for a variety of CS-US configurations.

The predictions of the model are examined for delay and trace

conditioning, CS and US duration and amplitude effects, pdrtial

reinforcement effects, interstimulus interval effects including

simultaneous conditioning, second-order conditiuning, conditioned

inhibition, extinction, reacquisitiun effects, backward conditioning,

blocking, overshadowing, compound conditioning, and oiscriminative

stimulus effects.

During a simulation, the CS-US configuration was presented unicu ini

each trial. The values uf the synaptic weights at the end of each trial

%b
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were recorded and plotted as a function of the trial number. These

graphs of synaptic weights versus trials are shown in the figures

accompanying the discussion below. In addition, in each figure, the

CS-US configuration is graphed along with the response of the neuron

during the last trial. lhe neuronal response is labeled "Y," designating

a plot of y(t) for the last trial of the simulation. The definition of a

trial should be noted. The CS-US configuration, or what is referred to

in the figures as the "stiniulus configuration", defines a trial. Thus,

the graphed stimulus configurations in the figures are intended to show

riot only relative times of onset and offset along with amplitudes ut

stimuli but also the number of tires a stimulus was presented during a

trial. What will be seen in the figures is that the behavior of the

synaptic weights, as predicted by the drive-reinforcemert neuronal model,

mirrors the observed behavior of animals as they are learning during

classical conditioning experiments.

Before discussing the individual simulations, two remarks are in

order regarding the graphs of synaptic weights versus trials. Any

synoptic weight that played d significant role for the conditioning

phenomenon being discussed is shown in the accompanying graph. Any

synaptic weight that played no significant role (typically meaning that

the neuronal learning mechanism did not alter the weight at all during

the simulation) is not shown in order to simplify the graphs. Also, data

points for the synaptic weight values at the end of each trial are not

shown on the graphs because the resulting oensity of the data points

would be excessive and because the data points fall exactly on the

(theoretical) curves that have been drawn.

2.
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Delady Conditionitg

Delay conditioning is detinea such that CS onset precedes US onset

and CS offset occurs at the same time as or after US onset. An example

is the well known Pavlovian experiment in which a bell (the CS) is paired

with food (the US). The observed result in such experimenits is that

conditioned excitation develops. The bell becomes excitatory with

respect to the salivary gland. In addition, it is observed that the

dmount of salivation in response to the bell alone (measured with

occasional test probes) increases with increasing trials such that an

s-shaped or sigmoid curve results when the amount of salivation is

plotted versus the trial number. That is to say, th dmount of

salivation in response to the bell alone, as a function of trials,

positively accelerates initially ard then negatively accelerates as an

asymptotic level of conditioning is approached (Pavlov, 1927). Spence

(1956) has observed that the acquisition curves of classical conditioning

are always s-shaped, providing that the experiments are done carefully

enough to capture the initial positive acceleration and the later

negative acceleration. For example, Spence (1956, pp. 68-70) states that

dcquisition curves that "do not exhibit an initial, positively

accelerated phase do not do so either because they 6o not start at zero

level of conditioning or because the conditioning is so rapid that the

period ot initial acceleratiu is too brief to be revdled except by very

small groups or blocks of trials."

Figure 4 shows the predicted acquisition curves of three neuronal

* models for delay conditioning. In FigurL 4(a), the results ot a

simulation of the model proposed by Hebb (1949) dre shown. For the

3"-



(a) HEBBIAN MODEL STIMULUS

250 CONFIGURATION
AND RESPONSE:

o 200

Cs rl

~100 US

0
0 10 20 30 40 so

TRIAL

2 ~ib) SUTTON-BARTO MODEL -

2--
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z-
W, y

0
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TRIAL

WC DRIVE-REINFORCEMENT MODEL

CS ~
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Figure 4. Results of simulated delay conditioning experiments with (a)
Hebbian, (b) Sutton-Larto, and (c) drive-reinforcement neuronal mocdels.
The hebbian model yields 6ni essentially linear acquisition curve. The
Sutton-Barto model yields a negatively accelerated acquisition curve.
Consistent with the experimental evidence, the orive-reinforceiet
neuronal model yields an s-shaped acquisition curve. (See text ano
Appendix fur aetails.)
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Hebbian model, the input-output reldtonship is the same as fur the

drive-reinforcement modcl arid is, therefore, specitiea by equation (1).

The Hebbian learning mechanism has already been ruted ard is specified by

equation (3). It can be seen in Figure 4(a) that if a hebbian neuron

were driving the salivary gland, the diOUn1t of saliva produced in

response to the bell alone as a function of trials would exhibit an

essentially linear relationship becduse the excitatory syrdptic weight

associated with the CS varies in ar, essentially linear fashion with the

trial number. Also, it may be noted that the Hebbian learning mechanism

does not yield an asymptotic synaptic weight value but, rather, continues

to increase the synaptic weight indefinitely or, of course, urtil an

upper bourd would be reached.

In Figure 4(b), the results of a simulation of the Sutton-Barto

(19b1) model are shown. The Sutton-Barto learning mechanism was

specified earlier in equations (7) and (8). The model's input-output

relationship is that of equation (1). The iodel is seen to predict a

negatively accelerateu acquisition curve in that the excitatory Syndptic

weight dssociatea with the CS reydtively accelerates with increasing N

trials. It may be noted Chat the Rescorla-Wc~ner (i972) model also

predicts a negatively accelerated acquisitiuri curve, as have earlier

whole animal models [see, for example, a model due to Estes (1950)].

In Figure 4(c), the results of a simulation of the

driv-reinforcement model are shown. The model i s seen to predict

an s-shapeo acquisition curve: Cond i t i oned excitation devel ops,

first through a positively accelerating phase and ther through d

negatively accelerating hdse. The drive-reinturcement model is

,-.....N...-.;... ... ...... ..... .. ......... . ..... ........ -.......-...-...... . . .



thus seen to be consistent with this aspect of the experiiw:ental evidence

of delay conditioning.

Some reasons why the drive-reinforcement model yields an s-shapeo

acquisition curve may be noted. The initial positive acceleration is due

to the efficacy of the relevant synapse appearing as a factor ot, the

right side of equation (2). Thus, as the learning nechanisn, increases

the efficacy of the synapse, the future rate of change of the efficacy of

the synapse is also caused to increase. With continued conditioning,

another process comes to ouminate, yielding the eventual negative

acceleration in the acquisition curve. The negative acceleration is due

to Ay(t) decreasing with continued conditioning. In effect, y(t)

moves to an earlier point in time with conditioning, becoming Ay(t-j)

where j is the interstimulus interval. Thus, throughout the conditioning

process, increasing values of w (t-j) are competing with decreasing
1

values of Ay(t) in equation (2). Rapidly increasing values of wikt-j)

prevail initially and rapidly decreasing values of Ay(t) prevail later,

yielding the respective positive and negative accelerations it the

acquisition curve.

CS and US duration effects

A careful reaaer may note thdt, in Figure 4, the same CS-US

configuration is not used for the simulation of each of the models. Tne

hebbian model's CS offset coincides with the uffset of the US whereas the

Sutton-bdrto and drive-reintorcement model's CSs have thu offset occuring

at the time of US unset. I chose those particular CS-US configurations

because, otherwise, the Hebbid,, ad Sutton-Barto models would not have
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predicted the development of curditioned excitation. both of these

models are sensitive to CS durations in d Way that is not CONSiSLent with

the experimental evidence, the models predicting no conditioning or

conditioned inhibition for some CS-US configurations that,

experimentally, are known to yield conditioned excitation. The

effect of CS duration is examineo systematically in Figure 5 where

each model's predictions art shown for the same set ot three CS-US

configurations. I will specify how the three CS-US configurations

differ and then oiscuss each model's predictions for each of the

three configurations.

In Figure 5, CS offset occurs dt the time of US onset, CS offset
2

occurs at the time of US offset, and CS offset occurs one time step
3

after US offset. Experimentally, it is known that conditioned excitation

(corresponding in the neuronal models to the growth of positive synaptic

weights) is observed in dll three cases. In general, the efficacy of -

delay conditioning is a strong function of the time of CS onset arid

relatively independent of CS duration (Kamin, 1965).

In Figure 5(d), it is seen that the Hebbidn model predicts

conditioneo excitation for CS and CS but nut for CS In Figure 5(b),
2 3 1

it is seen that the Sutton-Barto model predicts conditioned excitdtion

for CS and strong conditioneo inhibition for CS arid CS3 . In Figure
1 2 3

5(c), it is seen that, consistent with the experimental evidence, the

drive-reinforcement model predicts conditioned excitation for all three

CSs and, in each case, predicts an s-shaped acquisition curve.

In Figure 5(c), more detailed aspects of the drive-reinforcement

model's predictions may be noted. For example, the model predicts a

34
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(a) HBSAN MODEL STIMULUS CONFIGURATION a
ANU RESPONSE:
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Figure 5. Results of simulated delay conditiuning experiments with (a)

Hebbidi, (b) Sutton-Barto, and (c) drive-reinforcement iurondl model>,.
The effect of CS duration is exanred. (See text dnd Appnrdix for

etaiIs. )--
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particular ranking of CSs in terms of initial rate of condiltlOrilnig dnd

asymptotic synaptic weight value as a function of CS duration. The

experimental literature does nut, at this point, permit the dccuracy of

these more oetailed predictions tu be assessed. Furthermore, whole

animal data May be insufficient to test these predictions, in that higher

level attention mechanisms may play a significant rule when LS

durations are extended beyonG the US (Ayres, Albert, and Bombace, 1987).

Experiments at the level of the single neuron may be required to test

these predictions.

kegarding the effects Of US duration, the drive-reinforcement model

predicts increasing rates of conditioning as the US duration increases

(see Figure 6) and this is consistent with the experimental evidence

(Ashton, Bitgood, and Moore, 1969; Gornezano, Kehoe, and Marshall, 19b3).

Thus far, the driv ,-reinforcement neuronal model's predictions have

been demonstrated to be accurate for three categories of classical

conditioning phenomena: (a) the form of the acquisition curve in delay

conditioning, (b) relative insensitivity to CS duration, and (c) US

duration effects. The predictions of the model for a variety of other

CS-US configuraticns will now be examined, these CS-US configuratiuns

corresponding to what appear to be the remaining bdSC categories of

classical conditiuning phenomena. While the predictions of the Hebbian

arid Sutton-Barto models for these CS-US configurations will not be shown,

it should be noteo that the Hebbian model's predictions frequently

deviate substantially from experimentally observed behavior, examples of

this having already been seen in Figures 4 and 5. (Of course, it remains

a theoretical possibility that biological neurons are Hebbian drid that

36 .
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STIMULUS CONFIGURATION AND RESPONSE:
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Figure 6. The drive-reinforcement model's predictions of the effects of

US duration. Consistent with the experimental evidence, as the US

duration increases, the excitatory synaptic weiyhts associated with the

reinforced CSs increase more rapidly and reach a higher asymptotic level.

(See text and Appendix for details.)
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classical curiditioning phenomena are emergent, resultiny frull the

interactiuns of perhaps large numbers of Hebbian neurons. Lxperimental

tests to be aiscussed later will be required to resolve this question.)

The predictlons of the Sutton-Birto model are similar to those of the

drve-reinforcement mocel, if one is careful, in the case of the

Sutton-Bartu niudvl, not to use substantially overlapping CSs ano USs and

accepting that the Sutton-Barto model's predicted acquisition curves are

n o t s -s h p d , 

l

CS and US aiplituode effects

It is known that faster conditiurin results as the intensity of the

CS increases (Pavlov, 1927; see review by Moore and Gurmezano, 1977). As

is seer) in Figure 7, the drive-reinforcement model predicts this

relati unship. Shown in Figure 7 are CSs of three ditTerent amplitudes,

each being reinforced by a US of the same amplituae. The predicted rate

of curditioning is seen to incredse as the amplituace or intensity of the

CS increases. Fur the three CSs, the rank ordering of the asymptoIC

values of the synaptic weilhts is the reverse oT the rank ordering of the

rates of acquisition because d low amplitude CS requires a larger

asymptotic synaptic weight to yield the same eventual CR ampl lUe as can

k- ubtained with a hiyh amplitude CS and a lower asyiptotic synaptic

weight.
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Figure 7. The drive-reinforcement model's predictions uf the effects of

CS dmplituae. Consistent with the experimental evioence, as the CS

amplitucie decreases, the rate of growth of the excitatory synaptic

weights a55ciated with the reinforced CSs decreases. Asymptotic

excitatory synaptic weight values vary inversely with CS amplitude

because a lower CS amplitude requires a hiyher excitatory asymptutic

synaptic weight value to yield a CR amplitude equal tu the UR amplitude.

(See tExt and Appendix for details.) ..
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Regardi rg US dmplitude effects, oore dri Gorrmezd (fit; , p. 115)

note that "Within l inits, the rdte of dCqUlSltiU I Id lvel of

performance of d CR dre increasing furnctiuns u the intensity of the CS."

This is predicted by the urive-reinforcement odel dS can be seen in

Figure 8 where three identical CSs are shown being reinforced by USs Of

decreasing amplituoe. it is seen that both the rate Of acQuisition dr~d

the asymptotic weight value aecrease as the US ornplitude decreases.

CS preexposure effccts

*jpreexposure refers to nunreinturcea presentdtiuls ut a CS prior

to reinforced presentations. The obsurved result is that CS preexposure

retards subsequent acquisition uf the cor(itioned respunse when

reinfurced presentations of the LS begin but the experiiir,tdl evidence

also suggests that the preexposed CS dues nut become inhibitory Lsee

review by Flaherty (1985) who ltes, e.g., Rescorla (1971), Reiss and

Wagner (1972) orio Sulomon, Brenndn d(id ruore (i9 4)J. As Flaherty (1985)

notes, uie possible expldndtilor, fur CS preexposure effects is that the

animal may, during the nonreinforced S presentations, learn not tu

attend to the stimulus. If this is the case, CS preexpusure effects

woula not be predicto by d neuronal model. Puther, such effects woulu

require network-level considerations for their pr'diction. The reldteo

subject of US preexposure effects will be ciscussed I ter when the

phenomenon of blucking is considerea.

Partial reinforcement effuct.

In the CaSe of partidl reinforceht'r,__, a CS is n;t dlwdys folluwed by

a US. This can be contrdstei wlth curitinuous reinturo(-wern't, in which

case the US always follows the CS. The obstrvej result of portidl

4 G.
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F 8 ure1. The drive-reinforcement model's predictions of the effects Of
US amplitude. Consistent with the experimnental evidence, as the US
ampl itude decreases, the rates of growth dnd asymptotic values of
EXCitdtory synaptic weights dssociated with the reinforced CSs decrease.

(See text and Appen~dix for details.)
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reinforcement is a reduced rate of cunditioning and sometiries a reduced.

asymptotic level of responding (Gormezano, Kehoe, and Marshall, 1983)

relative to the rates and asymptotic levels observed for continuous

reinforceient. The drive-reinforcement model's predictions are

consistent with this, as can be seen in Figure 9, where CS is reinforced
1

100 percent of the time, CS is reinforced 50 percent of the time, and

CS3 is reinforced 25 percent of the time. In Figure 9, it is seen that

rates of acquisition rian asymptotic weight values are predicted to

decrease as the percenit reinforcement decreases.

Trace conditioning

Trace conditioning is an experi [ental procedure in which CS offset

precedes US onset. The time between CS offset and US onset is termed the

trace intervl. In general, the longer the trace interval, the lower the

rate of acquisition and the lower the asymptotic level of conditioning

LSee Flaherty (1985) tor a review of the experimental evidence]. The

drive-reinforcement model predicts these relationships, as can be seen in

Figure 10, where three CS-US configurations are shown. It can be seen

that increasing trace intervals yielded both lower rates of acquisition

dno lower dsymptotic synaptic weight levels. In terms of the

drive-reinfurcement model's dynamics, some reasons that trace

conditiuoing is less effective than delay conditioning are thdt the tx

that occurs at CS onset is paired not only with the positive -y of US

onset but also with the negative A y of CS offset and, furthermore, the

interstimulus interval fur the negative Ay has a ldryer learning rate

constant associated with it than does the interstimulus interval for th':

positive Ay.
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STIMULUS CONFIGURATION

AND RESPONSE:
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i_ e 9. The drive-reinforcement model's predictions of the effects of ''
partial--reinforcement. Consistent with the experimentdl evidence, it is

seen that as the fraction of CSs that dre reinforced decreasEs, so does
the rate of growth of excitatory synaptic weights associdtedI with the .,
reinforced CSs. The drive-reiriforcement model also predicts lower..
asymptotic excitatory synaptic weight values as the percentage of 'N
reintorced CSs decreases, an etfect that is consistent with some partial '
reinforcement studies. (See text and Appendix for details.)
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STIMULUS CONFIGURATION
AND RESPONSE:
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Figure 10. The drive-reinforcement model's predictions of the effects of

trace conditioning. Consistent with the experimental evidence, as the

trace interval increases, the rates of growth and asymptotic values of

the excitatury synaptic weights associated with the reinforced CSs

decrease. (See text and Appendix for details.)
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Iterstimulus interval effects includinq simultaneous ccndltioiny

The predictions of the drive-reinforcement miudel for d variety of

interstimulus intervals in delay conditioning are shown in Figure )I.

The interstimulus interval is defined to be the time between CS and US

onsets. In the case of CSI in Figure 11, CS and US onsets are

simultaneous. This CS-US configuration is an example of what is referred A

to as simultdneous conditioning. Citing Pavlov (1927) cs well as Smith,

Colenir,, and Gormezano (1969), Flaherty (1985) notes that 'little or no

conditioning occurs with simultaneous CS and US onset." This is whdt the

drive-reinforcement model predicts. As can be seen in Figure 11, the

synaptic weight for CS remains unchanged during the sixty trials for
1

which the computer simulation was run. Flaherty (1985) goes on to note

that some conditioning has been reported for simultaneous CS and US

onsets in the .case of fear conditioning (Burkhardt and Ayres, 1978;

Mahoney and Ayres, 1976). Thus, the experimental results with regard to

simultaneous conditioning appear cuMplex dnd it can only be noted that

the prediction. of the drive-reinfurcement model appear to be consistent

with some of the experimental evidence.

For interstimulus intervals greater than zero, experimental results

suggest that a non;iriaI interval of 500 ms (one time step in the

simulations) is optimal when conditioning short latency skeletal

reactions. With lunger intervals, the efficacy of conditioning Oeclines

until, tor intervals exceedilg a few seconds, no conditioning is observed

(see review by Moore dnd Gormezano, 1977). lhis is consistent With the

predictions of the drive-reinforcement model. In Figure 11, it is seer,

that conditioning is must rapid for an interstiwulus interval of one time

0
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AND RESPONSE:
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Figure 11. The drive-reinforcement model's predictions of the effect of

the interstimulus interval. Consistent with the experimental evidence

and consistent with the assignment of values to the learning rate

constants, c., the model is seen to predict no conditioning fur

simutaneus S1 and US onsets and then decreased rates of conditioning

as the interstimulus interval increases beyond the optimal interstimulus

interval employed with CS,. Interstimulus inturvals were as follows:

zero time steps for CSI, orie time step for CS, th~ree time steps for CS3

five time steps for CS4 aria six time steps for CS6  (See text and :

V 6*

Appendix for details.)
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step in the case of CS2, progressively slower for intervals of three and

five time steps in the cases of CS3 arG CS4, respectively, with no

conditioning manifesting fur an interstimulus interval of six time steps

in the case of CS5.

An alternative way of viewing the simulatiun results shown in Figure

11 is to see them as contirming the expected consequences of assigning .4

'-

the learning rate constants, c., in the manner described earlier.
J "-,4

Namely, c0 and c6 were set equal to zero, c1 was assigned the highest

value arid c through c were assignea progressively lower values. Thus,
2 5 -

the simulation results in Figure 11 reflect the fact that the learning

rate constants were chosen consistent with the empirical evidence .,.4

regarding interstimulus interval eifects.

Second-order conditioning

Second-order conditiuning is an experimental procedure in which one

CS is reinforced by another CS, the latter CS having been previously

reinforced by a US. Pavlov (1927) reported that this procedure yielded

conditioning in the second stage, the second CS coming to elicit the

conditioned response oriy,[,dlly elicited only by the tirst CS. However,

in discussing second-order conditioning, Rescorla (1980, pp. 3-4)

corinents on "a historically nagging issue". Rescorla states that the

"issue concerns whether, in fact, second-order conditioning is a real ard

powerful phenomenon. Although Pavlov reported its occurrence, he

describeu it ds transient. Subsequent authors hove otteni been

less than enthusiastic about its reality." This is interesting

because the drive-reinforcement model predicts that second-urder

4/
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conditioning will not be as strong as first-order conditioning and that
.4

second-order conditioning will be transient. Simulation results that are

the basis of this preaiction are shown in Figure 12 where, in stage one

of conditioning, CS is reinforced by a US, achieving an asymptotic

synaptic weight value of just a little more than tour. After delay

conditioning in stage one (trials 1-60), secono-urder conditioning occurs

in stage two (trials 61-200). The drive-reinturcement model predicts

significantly weaker conditioning in stage two, the synaptic weight

associated with CS peaking at d value between une and two. Furthermore, --

the transient nature of second-order conditioning, as reported by Pavlov

(1927), is predicted by the model. In stage two of the simulatea

second-order conditiuni rg experiment, after the CS2 syndptic weight

peaks, the model predicts the subsequent oecline of the weight out to

whdt is essentially an extinction process. Had the simulation been

carriea out for further trials, the CS synaptic weight would have
2

declined to the lower bound of 0.1.

Conaitionea inhibition

Delay conditioning yields conditioned excitation; i.e., the CS coies

to excite the conditiorud response (CR). An alterrnative procedure

Ceveloped by Pavlov (1927) yields what he termed conditioned inhibition;

i.e., a CS would come to inhibit a CR that otherwise would have

mani fested.

One of Pavlov's procedures for demonstrating conditioned

inhibition was as follows. In the tirst stage of conditioning,

Pavlov wUlie utilize a delay conditioning procedure to reiaer CS1

excitatory with respect to a CR. Then, in 6 second stage of I
48
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STIMULUS CONFIGURATION AND R&ZSPONSE:
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Figure I?. The drive-reinforcement model's predictions of the effects of

second-order conditioning. Consistent with the experimental evidence,

after delay conditioning in stage I (trials 1-60), the excitatory

synaptic weight associated with CS1 extinguishes in stage 2 (tialds

1A.

61-200) during second-order conditioning. Also consistent with the

experimental evidence, the excitatory synaptic weight associated with CS2  ..

increases initially during stage 2 and then decreases. (See text and .,,

Appendix for details.)',
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conditioning, he would continue to reinforce CS with the US but he would1

also present an ur,reinforced CS -CS pair to the anlhial. During the
1 2

second stage of conditioning, the animal's response to CS unpaired would

decrease initially anG then return to its original level. The animal's

response to the CS.-CS pair would decrease to zeru. Furthermore, Pavlov

was able to demonstrate that CS became a conditionea inhibitor in that,

after stage-two cornitioning, if CS. was pilred with another CS, soy CS3 ,

that was known, by itself, to be a conditioned exciter, the CR associated

with CS ws, in general, reduceo or eliminated.
3

The drive-reinforceient model predicts this behavior, as cdi, be seen

in Figure 13. In stage one (trials 1-70) of the simulateG conditioning,

CS is reinforced by a US such that conditioned excitation develops, with

the progress of the excitatory weight, w (E), exhibiting the usual
1

s-shaped acquisition curve. Then, in stage two (trials 71-200), CS

unpaired is reinforced by the US once in each trial while the CS .-CS
1 -

pair is also presented once during each trial and the pair i s

unreinfurced. The model predicts that the excitatory weight associated

with CS will decrease initially and thco return to its previous level,

mirroring the behavior Pavlov observed with his anini]ds. Also, the model

predicts that the inhibitory weight, w2 (1), associated with CS2 , will

grow strongey as stage two conditiori ;g proceeds, consistent with

Pavlov's observation that CS becomes d conoitioned inhibitor.
2

(Regarding tht notation employed here, an "L" or an "I" in parentheses 6

following "w signifies dn excitatory or inhibi tory weight,

respectively. This rotdtion involves d degre , ut redunoancy in that

excitatory weights will alwdys be positive and inhibitory weights will

5e
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always be negative so, in the graphs, excitatory and inhibitory weights

ior a particular CS coula be distinguished on that basis.)

Because the decrease in the excitatory weight associated with CSI

during the second stage of conditioning and then its subsequent return to

the asymptotic level achieved in the first stage of conditioning may seem

surprising, a few words of explandtion may be in order. The initial

decrease is due to the occurrence of the urreinforced CS -CS pair ir,

that the onset of the CS I-CS 2 pair yields a positive AxI that is followed

by a negative Ay at the time of termination of CS and CS,. The negative

Ay occurs because, with an unreinforced pair, nuo US onset occurs at the

time of CS -CS offset and thus there is nothing to cause the neuronal
1 2

response to be sustained. The drive-reinforcerient learning mechanism

yielas negative Aw's whenever a positive Ax is followed within Ttinme
i %

steps by a negative Ay. Thus, the excitatory weight associated with CS1

decreases initially in stage two of conditioning. Similarly, the

inhibitory weight associated with CS is decreasing (i.e., becoming more
2

negative or becoming stronger in terms of its absolute value) because CS
2

onset yields a positive Ax2 that is followed by a negative Ay ot the

time of CS -CS2 offset. The excitatory weight associated with CS ceases
1 2

to decreasc and starts increasing when the conditioned inhibition becomes

sufficient, such that the positive Ay following the onset of CS1 unpdired

with CS is larger than the negative A) following the onset of CS -CS2 1 2
paired. The inhibitory weight associated with CS, continues to decrease

£

(become more strongly inhibitory) because its onset, yielding a positive

Ax2 , continues to be followed by d negative Ay until the conditioned

inhibition of CS, becomes sUffIclent to cancel the coniltioned excitatioll2
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of CSI, at which point the CS,, inhibitory weight, w, (I), approaches its
L

asymptotic level. At the same time, the CS excitatory weight, w (E),

approaches its asymptotic level, equal to its prior asymptotic level,

because when the CS conoitioned inhibition cancels the CS conditiorco
21

excitation, the reinforcement of CS1 unpaired is the only event in each

trial that yields a nonzero Ay following a positive Ax. Thus, toward

the end of stage two conditioning, the situation in terms of positivc

Ax's followed by nonzero Ay's is similar to that which occurred in stage

one.

Extinction and reacquisition effects

When conditioned excitation develops in conjunction with a CS, as

was the case for CS at the conclusion of stage one (trials 1-70) and

stage two (trials 71-200) of conditioning in Figure 13, if the CS

continues to be presented in a third stage of conditioning, this time

without reinforcement, then Pavlov (1927) observed that the CR

extinguishes; i.e., the CR decreases in magnitude, reaching zero with a

sufficient number of unreinforced presentations of the CS. In additiur,

Pavlov inferred that conditioned inhibition Oeveloped during the

extinction process because he observed "spontaneous recovery" of the CR

with time and he also observed more rapid reacquisition of the Ck if

reinforced presentations of the CS were resumed. The predictions of the

arive-reinforcement model are consistent with Pavlov's observations and

inferences. Note that in stage three (trials L01-300) of conditioning in

Figure 13, where CS is presented without reinforcement, the CS
11

excitatory weight, w (E), declines and the CS inhibitory weight, wil',

53 ,1 % %
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grows stronger, until they cancel one another, at which time the CR will

no longer appear.

Perhaps a few words are in order regdroing the phenomenon of

spontaneous recovery following extinction. Spontaneous recovery refers

to the tendency of an extinguished conditioned response to return efter

the CS is not presented for some period of time. It seems that

spuntaneous recovery could be due to the state of the nervous system

changing sufficiently with time so that the conditioned inhibition that

may develop during the process uf extinction becomes less effective. [As

noted above, Pavlov (1927) believed that conditioned inhibition developed

Guring the process of extincticn. However, Rescorla (1969, p.87) has

stated that "There is only meager evidence bearing on this question".]

It the hypothesized conditioned inhibition were to become less effective

because a change in the state of the nervous system resulted in fewer of

the conditioned inhibitory synapses being active, then it would becoie

easier for the conditioned response to manifest again. If this

explanation of spontaneous recovery is correct, a reuronal model would

riot be expected to predict the phenomenon. A network model would be

required to generate the prediction.

In the thiro stage of conditioning in Figure 13, the

drive-reinforcement model makes one further prediction that has not yet

beet; olscussed. In this simulation, not only was CS1  presented

unreinfurced in stage three but the CS I-CS 2 pair was also presented

unreirnforctd. Pavlov (1927) observed that under these circunmstances, the

conditiunco excitation associiteo with CS extinguished but the

I
conditioned inhibition assuciated with CS did rot. lhis is predicted by

2
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the drive-reinturcerrent mudel. In the thiro stage uf cuolitiorling in

Figure 13, notice that the inhibitory weight, w2(I), remraris unchanged

during the unreinforced prEsentotions of the CS -GS pai r. This

predlction of the drive-reinforcement model di fters frow that of the

Rescorla-Wagner iuodel of classical coniLloning. As Rescorlo oro Wagner

(1972) point out, their model is inconsistent with t he experimental

evidence of conditioned inhibition studies in that the model preoicts the

extinction of conditioned inhibition. The drive-reirforceient iiwodel does

not make this prediction because the positive Ax occurring at the time

of CS onset is not followed by a positive Ay.

Pavlov (1927) reported that after extinction of d CR, if reinforced

presentations of the CS were resumed, then the Ck would be reacquired

more rapidly than during the first series of reinforced trials. The

orive-reinforcement model predicts this redcquisitiun effect, as can be

,een in Figure 14 where aely conditiuning occurs in stage one (triels

1-70), extinction ol the CR occurs in stage two (trials 71-140), dno

redcqulsition of the CR occurs in stage three (trials 141-200). When

measured to dil accuracy of three significant figures, the CS excltatory

weight reached its asymptotlC level in 61 trials it, stage one but only

required 4? trials to reac' the same luvel in stage two. This elfect

occurs becduse, during reacquitition, the CS excitatory weiyht bugins at •-

a higher level than during the initial acquisition process. it iday be

noted thut this prediction of thc orive-reinforcement o.ude] differs from -

that of the Rescorid-Wagner (1972) arid Suttut.-Borto (1981) nodels ii, tbot

the ldtter two models do ritL predict the mure ropic dLyU1'Si iU1) uf

cunditioned respursts.
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STIMULUS CONFIGURATION AND RESPONSE:

TRIALS 1-70: TRIALS 71-140: TRIALS 141-200:

u s _ - _ _.:

CONDITIONED
EXCITATION EXTINCTION REACQUISITION

3 -

w(E)

2

w(I

z
,- -1

.2

.3 ,
0 50 100 150 200
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Figure 14. Results of d simuldtcu three-stage classical conditioning
experiment in which the drive-reinforcement model's predictea rate of
reacquisition of a CR in stage 3 (trials 141-200) after extinction in
stage 2 (trials 71-140) is comparea with the predicted rate of initial
acquisition in stage 1 (trials 1-70). Consistent with experimental .3.
evidence demonstrating that redcquisition occurs more rapidly, the
drive-reinforcement model predicts that acquisition in stage I will
require 61 trials as compared with 47 trials for reacquisition in stage
3. (See text ano Appendix for details.)
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Backwaro conditioning

In backward cunditloning, the onset of the US preceds the onset of

the CS. Ihere have been confl ictiiqr reports regarding whther backwara

conditiuning leads to conditioned excitation or conditiunrio inhibition

(e.g., see review by Gormezdno, Kehoe, arnd Marshall, 1983). ,,cihoney and

Ayres (19,6) sought to design experiments that would clatify some of the

issues and they concluded that conditioned excitation did result from

backwdro conditioning. At this time, the consensus appears Tu be that

bdckward conditioning can lead to conditioned excitation initially but

that extended backward conditioning usually yields conditioned inhibition

(Pavlov, 1928; Rescorla, 1969; Wagner and Terry, 1975; Heth, 1976;

Schwartz, 1984; Flaherty, i985; Dolan, Shishimi, and Wagner, 1985). The

initial conditioned excitation may be due to transient effects associated

with global brain processes such as arousal triggered by the onset of the

surprising US. In this view of backward conditioning, the hypothesized '-

underlying process is one of conditione inhibition which prevulls with

extended conditioning, after the US has come to be expected. The

predictions of the drive-reinforcement model are consistent with this

hypothesis, as can be seen in Figure 15. In Figure 15(a), forward

conditioning is shown for d LS, the onset of which occurs two time steps

before the onset of the US. In Figure 15(b), backward curditioning is

shown fur the same CS and US, in this case with the onset. ot the CS

following the onset of the US by two time steps. The drivL-reinforcement

model predicts that backward conditioning will lead to conditioned

inhibition, consistent with the experimental results ubtdined in must--

cases of extendea backward conditioning. however, regdrdiri9 tt e

5'
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STIMULUS CONFIGURATION
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Figure 15. Results of simulated classical conditioning experiments in
which the drive-reinforcement model's preaictions for (a) forward and (b)
backward conditioning are compared. Consistent with the experimental
evidence, the model predicts that conditioned inhibition will result trom
backward conditioning, in contrast to conditioned excitation being
predicted as the result ot forward conditioning. (See text and Appendix
tor details.)
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experimental results, J. W. Moore (personal communication, June 18, ]986)

suggests that one cavedt is in order: "... n studies have used the

requisite combination uf summation and ret(irddtion tests to assess the

presumed learned inhibitory properties instilled by backward training."

blocking and overshaoowiny

Temporal contiguity between d CS and US is fundamental tU classical

conditioning. This has lung been understood to be the case. But while

temporal contiguity is necessary, Kaihin (19b8, 1969) has demionstrated

that it is not sufficient. Koiin has shown that a CS must also have

predictive value. That is to say, there must be a contingent

relationship between the CS arid US as well as a relationship of temporal

contiguity; otherwise, no conditioning will occur. Kamin demonstrated

this by first reinforcing CS with a US until an asymptotic level ofi

associative strength was reached. Then he added CS such that CS was
2 2

presentea simultaneously with CS drid both were reinforceo. Karin showed
1

that nu or very little associative sLrength oeveloped between CS2 arid the

US. The first CS 6ds said to have blockeo conditioning of the second CS.

The drive-reinforcement model predicts the phenomenon uf blocking,-

as can be seen in Figure 16. In this simulateo blocking experiment, CS
I

is reinfurceo by the US in the first stage of conditioning (trials

1-]00), until the CS excitatory weight has approached Its asyriptotic

level. Then, in stage two of concitioning (trials 101-160), CS and CS
1 2

are presented siiiiultaneously arid reinforced with the US. It is seen that

the CS excitatory weight rerdlris unchanged during thE second stage of

conditioning. Consistent with the experimental evioence, the d

59 2-
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drive-reinforcement model predicts that conditioning of CS2 will be

blocked by CS1, due to the previous conditioning of CSI '

US proexposure effects may be due to the phenomenon of blocking

(Mis a ro Poore, 1973). If an anlilal experiences a number ot US

presentations prior to experiencing paired preseritotions of a CS arid

the US, the result is that the conditioriry process is retarded.

This effect may be due to the experin;ental context, during U S

preexposure, becoming a blocker for subsequent conditior,g Lsee

review by Flaherty (1985) and, e.g., Balsam and Schwartz (1981)-.

A question in animal learning theory has beer: whether

contingency aspects of classical condi tioning derive f rom

I initatiuris on the amount uf associative strength available so

that, in effect, stimuli must compete for the available asscciative

strength (Rescorla and Wagner, 1972) or whether, in effuct, stimuli

must compete for an animal's attention (Sutherland anc Mickintosh,

1971; Mackintosh, 1975; Moore and Sticknty, 1980, 1985). The .,

alternative hypotheses are not mutually exclusive. Tht

drive-reinforcement neuronal model's predictions are consistent with

the hypothesis that there are limitations on the ossociativC

strength available to stimuli. However, the neurondl riodel does riot

rule out the i,volvement of higher level dttention mechanisns. I
In the case ot the drive-reinforcement model, it cdrn be seen that

the lir, ts on Ay(t) serve to lirit the amount of associative strength

available to competing stimuli. y(:) is bunoed such that it is less

than or equal to y'(t), the maximal frequency of firing of the neuron.

6(0
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S7IMULUS CONFIGURATION AND RESPONSE:

TRIALS 1-100: TRIALS 101-160:

CS ------

CS 2

CONDITIONED EXCITATION -~l-BLOCKING

2

W1

0 , I I I

TRIAL

Figure 16. The drive-reinforcement miodel's predictions of the effects of

a blocking stimiulus. Consistent with the experimental evidf-ice, the

model predicts that after delay conditioning of CS in stage I (trials
1-100), coniditioning of CS 2 9 presented simultaneously with CS 1in stage 2

(trials 101-160), will be blocked. The CS 2excitatory synaptic weight,

I29does riot change in stage 2. (Se.e text and Appendix for oetails.)
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For nonoverlapping CSs and USs, the upper bound on y(t) may actually be

less that y'(t) because, in this case, y(t) never exceeds the amplitude

of the UR. Thus, as was seen in Figure 1b, if CS1 has been reinforced

until an asymptotic level of conditioninrg is reached, subsequent

conditioning of a secor;o stimulus, CS,, will be blocked if the second

stimulus forms a compound with the first arid the onsets of CS anu CS
12

are simultaneous. Whdt happens is that it: stage 1 of conditioning, the

positive Ax.(t-j) associated with CS interacts with the subsequent
i 1

positive Ay(t) induced by the unstt of the US, causing CR1 to grow and

thus diminishing Ay(t) with each trial. Eventually the positive Ay(t)

associated with US onset diminishes to the point where its effect is

cancelled by the subsequent effect of the neydtive Ay associated with US

offset. The amplitude of CR has grown to th point where there is ti,1

room for the generation. of a net positive Ay subsequent to a positive

Ax. when CS2 is introduced as part of a compound. Thus, consistent with

the experimental evidence and consistent with the hypothesis of Rescorla

arid Wagner (1972) that there are limitations or the associative strerigth

available to stimuli, the orive-reinforcerierit nodel predicts that

conditioning will be blocked with respect to CS,. •

A variant of blocking is overshaoowinU (e.g., Baker, 1968; Courillur

and Bitternian, 1982), first reported by Pavlov (1927), in which two or ii
more siniultdr;eous CSs are reinforced ir a single stage of conditioning.

In this type of experiment, it is cbserved that the more salient stirulus

acquires the greatest associative strength, in effect, partially blocking

15?5
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conditioning of the other stimuli. The orive-reinforcement amodel predicts

overshaaowing, as may be seen ii, Figure 17. In this siwulated classical

conditioning experiment, three simultareuus CSs are reinforced by a US.

CS and CS are of equal amplituce. The amplitude of CS is twice that
1 2 3

of either of the other two CSs. Consistent with the exptrimental

evidence, the drive-reinforcement model is seen to preoict thdt the CS
3

excitatory weight will achieve a substantially higher dsynptutic value

than the equal and lower asymptotic values achieved by the CS and CS
1 2

excitatory weights. This effect occurs with the drive-re,iforcement

model because the change in the presyrtaptic frequency of firing upon

CS onset is greater for CS3 than it is for CS or CS Thus, the CS.

excitatory weight increases more rapidly, taking up a larger fraction of

the total available associative strength than either the CS, or CS,

excitatory weights.

Compound conditioning

In compuund conditiuninj, multiple CSs are presented simultdneously

or sequentially for reinforcement (or for nonrelifurcement). Compouno

CSs have appeared in some of the simulated classicdl conditioning

experiments discussed above, including those experiments involving

cunditiuned inhibition, blocking, and overshoowinig.

A compound conditioning experiment reported by Rescurld drid Wagner

(1972) can be utilized as d test of the drive-reinforcement wudtl. The

experimental results were obtained, Rescorld dnd Wagrner (1972) note, in a

previously unpublished study due to Wdener aid Saavedra. The txperiiient

involved comparing the eftects of two CS-US confguraLi ns. In one

63 ]
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Figure 17. The drive-reinforcement model's predictions of the effects of

stimulus salience on compound conditi oin,. Consistent with the

experimental evidence, the model predicts that a more salient stimulus,

CS3, which has an amplitucie of 0.4 will condition more rapidly and

strongly than less salient stimuli, CS and CS edch with an amplitude
1 29

of 0.2. The asymiptotic excitatory synaptic weight for CS is murL than
3

double that of either the CS or CS2  yiSYMt.tic excitatury syrnptic
weights. Thus, the drive-reinforcement model predicts the pheiuoierion of

overshadowing. (See text arid Appendix tor details.)
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configur'ation, CS occurring alonie was reinforc(ed and; also CS Pd IreJ

with CS was reinforced. An excimple of such a CS-US conifiguration

appears in Figure 16(a). In the second collflgurdtion, dfn exAIlIple of

which is shown in Figure 18(b), CS 1occurring alone was not reinforced;

o nly CS1 paired with CS wais reinforced. IIn the case of the first
2

configuration, where both CS alone anid CS -C5 pair'ed were reinforced,

the asymptotic associdtive strength of CS WdS 01zbE-I efVJ to be h igYh adi
I

*that of CS~ was observed to be low. The rdnking of the asymptotic,

associative strengths reversed vwhri, the seconid conf igurationr Was

employed, in which CS 1alont was not reinforced ano CS -CS 2paired was

reinforced. These results are predicted by the drive-reiniforcemenit

model, as can be seen in Figure 18. In effect, whdt happens is thait the

CS that more relidbly predicts the US comes to block the other CS.

Space limitations precludeL the presenitationi of additional results of

computer simulations of comipound conaitionini, experiments. However , two

other compound conditioning effects that aIre predicteGr by the

a dri ve-re inf orceaen t modelI should be noted. In the cast of the

*overexpectdtiuri pardigm1, two stimllI , C S ao r S , a re ti1rst

individually curnditioned to an dzsYnptLotiC level , edch stimulus beinig

reinforced with the saMe US. lhtii, in d second stdye (i ;,.rditioriiin),

the two stimuli cire presented as a compound that is roiirtorecj utilizing

the samle US as in the first stagye. Kescorla aind Wagriyr (19,'L) airid Kruemer

(1987) report thdt, the associative Strer(th, Of the two.' timiulV oCt.reise

in the second stage, of coriodiiririg. Furthermert,, f 1 1 t dntal

neutrdil stiirulus , CS, , is, prestittl(l III (W1dWith I-1 ujf i in) the

30
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Figure 18. RLSUItS (if simulated cumpound conditioning experiments in

which the dri vL-rei nf orcement model 's predictions for reinforced and o

nonreinilurced CS's are compared. Lonsistent with the experimnental

evidence, it; (a) the model predicts strong conditioning ot 1.S relative

to CS, where both CS alone dnd the CS -CS pair are reinforced. Again
11 2

consistent with the experimental evidence, in (b) the model precicts thdt

the rainking ot associative strengths for CS Iand CS 2 will be reversed

with respect to (a) when CS alone is nut re-inforced dod the CS -CS pair
1 2

is reinforced. (See text and Appendix for detdilS.)

6 tj

0j



seconid stage of coridi tiurinrg, CS. becomes d conor ti one rnh i i tur. I fit

drive-r-eiriforcement miodel predrcts these effects.

Ini the case of supercondi tionrig, the cuwpourlo t~ r ii it

consists of two stimul i, one ini tidilly neutracl d r ( the other i

conditioncoL inhibitor by virtue of prior conditionling. oorocn.n f

this compound is observed tu yield art asymptotic dissociutiVe stoyt f Of

the initially neutrdtl stimulus thdt is greater thair the correspuridinyj

ajssociative strength in d control experiment in which both ,tiiiuii oie

initially neutral (Rescurla, 1971; Wagner, I,)/ lit

drive-reirifurcement model prt;dicts this effect.

Iiscrimincitive stinmulus effects

The simulatedi classical conditioniity experiirtents OiSCu5I ,tCc (Ajc

the results of which were shown in Figure 18, iirvulvd (,,),I

cunditioning and discririonatiun ledrninjj D~scriindtion trI

experi1neit s tes t a n a r ima '5d ab ilIi ty to d i sc r ini na te U etweu ri reiii f cc o

ond nunreinforced CSs. A more complex exallple of a omlpun1d rCtri,

experiment that tests for arscriiiirdtive stiimulus teltW,. , 'Jowri B

Figure 19(a), where the compound CS -CS is reinforced dIIil OWi .U!!IP4IIl
1 3

CS -CS- is noct reinforced. For thi s CS-US confryrtur exlp)~t r lfIW' to
2 J

evidence reviewto by Rescorla arcd Wagner (1972) s u y o tlhalt tho-

dsyfltOtiC aSSOCiative strengyths will be high tot U , lov for f,,-]C

zero for CS,/ Actually, CS is observed in the expeti- i t

cunraitioned ioh ib itor. It is seen in F 1(i t u 1 '

dri ve-reiitourcumient model predi cts these rcsul t . 'W 111'

dr ive- rerifourcenient mode IpreurcItC t hdt the Coiiibiu .

67
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Figure 19. Results ut simulated ((puund curiditioniny expL i ments ir,
wh;ch the urive-reinforcement iiiudlls predictions ot th, effVcts of
discriminltlve stu .ul were deternued fur u more comple (use thhdil th,,t

purtrayed in Figure l. (St text and Appendix tur Oetails.)
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strengths of CS ana CS- will increase initially danu then decrease. This

transient effect predicted by the model 1 hs been obs~erved by

experirientalists, ds Rescorld and Wagner (197L) Ulte.

A CS-US configuration, similar to thdt show. i 11lyure 1 9 (d) is) sk-W!

in Figure 19(b). Rescorla and Wagner (19/2) review the results u1 d

study by Wagner, Logan, faberlanat, and Price (1966; in which the

discrimirdutive stimulus effects of the CS-US crnf iyurdtin shown in

Figure 19(a) were corsipdred with the ettects of the CS-US cuOtiyurationl

shown ir. Figure 19(b). The CS-US configurdtioii shown in, FI~u~re 19(b)

represents a"pseudodiscrimindtior" experimnent in thdt both comIpUIOun CSs

are rei nfor-CLC sowetimes anid both dYre ronrei nforceo suIetiii~tS so it. is

actually 6 partidl reinforcement experiirient. Because of the siiilcrity

between the C.S-US cofigurations in pcYiel s (a) ana (b) of Figure 19, i t

is of interest to compare the uexput imental outcomes. It v.5, touro by 4

Wagner et dI . (19b8) that while L'Y vods reinforced an equal f roction of

the time in both the discrimination adG Lhe pseuacdiscririirnctiuon traJining

arid occurrec i n' compound with the sGI~ie CSs, the evenitual dsSc'.Iotive

strength o)f LS, when tested alIone, w Lis much yruater after-

pseuaudi scrimi ndtionT tV dining than af ter, di SLY 1111 niation trdi rii t15 . T hi

is predicteu by the ot ive-reinfor'ceMet. Moce I as can be seern by

COnlparinig the aSynlpt~tr. synlaptln weights for CO ih Pdnels' (d) arid (b)

of Figure 19. The net CS asyMPtotic synaoptic weight (i.e., L, t
3 '

dSyrnptotLH. excitatory weight minius the absolute valuC U' I Ih

asymptotic inhibitory weight) in, Fujoure 19(b) is dppruo~cIivtl ocult

that Of the retL CS aymptotic SY1dPti CWeigYhI i r F igure t

3%



shoul o be no~ted iuK thle kescorlIa -Waygner (±972) arid Sutton -Bart u .1981)

.u 1I dl 5Is ccr-iect ly predi ct the experimental 00tconies of the

G 1SC Y I1 FoiIdr! drid pstcodi scriminati uri ex peri merits just discusscci,

ir 1 1Ld infg the t rans ien t increase in the associative strength of the

~-LS~ coripound stirilus in the case of the discrimination traininy.

2 3

va-riart uf -the drive-teinturcement neuroncil iiudel

7he drive-renforceIV'et neuronal niodel, ds specified above, requires

1116t d positive change in piresynacptiC signal levcl occur in order that di

I riipse 1), renderec eligible for a change if, it~s efficacy. It was noted
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STIMULUS CONFIGURATION AND RESPONSE:

TRIALS 1-100: TRIALS 101-160:
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CS2
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us __JL

CONDITIONED EXCITATION 3- BLOCKING

Soo I

4WI

300
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Figure 20. Results of a simulated blocking experiment that was ident cdl
to that reported in Figure 16 except that the drive-reirforcement model
utilized to gerLrote the predictions ir; Figure 16 rendered a sjr~apse
eligible for a change in its efficacy, w., only upon the occurrence of a
positive chdnge in the presynaptic signal level. To generate the
preditiuns shown here, a veriant of the drive-reinturcement model was
empluyed, such that both positive and nejative changes irn presyndptic
signal levels reruered d synapse eligible for a change in its efficacy.
it is seer, that the variant of the n.(,del employed here yields predictions
that deviate mcirkedly from the expeririental evidence. Because these
deviaticurs are typical of this vdridnvt of the drive-reirfurcement model
the other variyit of the model, utilizco to generate the predictions
shown in Figures 4 through 19, seems more likely to reflect. the function
uf biological neurons. (See text and AppLnaix tor o tails.)
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20 bears no discernable relationship to experinertal ly observed behavior

in the case of blocking experiments.

Surmmary

By mean! of computer simuldtiuris of the drive-ririforceient miuronal

model, it hds been shown that the mnodel correctly predlicts classical

conditioning phenomena i n the foullIowi ng bas ic categor ies: delay and

trace conditioning, conditioned and uncuriditioned stIMUlus aurotion and

amilplitude effects, partidil reinforcemient effects, IfiterStIMIiuus inlterval

effects including simultdneous conditioni ng, secono-order conditiuning,

conditioned inhibitiori, extinctiui, reacquisition effects,, backward

corid it on ivy, blocking, ujverhdoCWin 1Y compoundo conor tiuni ng, and

discriwinative stiriulus effect,-.
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SECTION 4

DRIVES AND REINFORCERS

The behavior of the proposed neuronal model may be understood in

terms of two processes involving postulateo neuronal drives and

reinforcers. If weighted presynaptic signal levels are defined to

be neuronal drives and weighted changes in presynaptic signal

levels are defined to be neuronal reinforcers, then the

drive-reinforcement learning mechdnism operates such that neuronal

drive induction promotes learned excitatory processes dnd neuronal

drive reduction promotes learned inhibitory processes. The

interplay between these two processes yields the classical

conditioning phenomena discussed above.

In this section, definitions of drives and reinforcers at the level

of the single neuron and at the level of the whole animal will be

examined further. Then the relationship of the drive-reinforcement

neuronal model to animial learning theory will be discussed. I will begin

by offering precise definitions of drives dd reinforcers, definitions

niotivateo by the neurunal model as it may be viewed in the context uf

animal learning theory.

Definitions

For the drive-reinforcement neuronal model, neurondl drives are

defined to be the weighted presynaptic signals, w (t) x (t). These

weiyhteo presynaptic signals drive the neuron. Equation (1) is termel

the drive eCuation because it specifies huw neuronal drives, w (t) x (t),
1 i

are transformed into neurundl behavior, y(t). Neuronad reinfurcers are
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defined to be the weighted changes in presynaptic signal levels, w.(t)
I

Ax.(t). Neuronal reinforcement results from the net effect of all of

the weighted Ax 's experienced by a neuron at time, t. Neuronal

reinforcers thus manifest as Ay(t) and neuronal reinforcement is defined

to be equal to Ay(t). Note the distinction here: A neuronal

reintorcer is a weighted change in signal level that the neuron

experiences at a single synapse; neuronal reinforcement is defined to be

the collective effect of the neuronal reinforcers, manifesting as the

change in output, Ay(t). Incremental neuronal reinforcement is defined

to be an increase in the postsynaptic frequency of firing and decremental

neuronal reinforcement is defred to be a decrease in the postsynaptic

frequency uf firing, with both increases and decreases in firing %

frequency measured over intervals not exceeoing a few seconds.

It, the drive-reinforcement neuronal model , changes in presynaptic

signal levels play two roles. A change in presynaptic signal level,

Ax (t), renders the 1th synapse eligible for future reinforcement. The

synaptic weight, wi(t), for such an eligible synapse changes if a .2

subsequent cnange in postsynaptic signal level, Ay, occurs not more than

Ttime steps in the future. The other role for Ax.(t), when weighteo by

11
w.(t), is to ciiitribute to (i.e., partiailly or wholly cause) Ay(t) and

thus reinlorce synapses rendered eligible by earlier changes i n

,iresyr'optic signal levels. In effect, Ax.(t) looks to the future with

• ,idru tu its role in rendering a synapse eligible for ruinforrompnt and

, the. past in contributing to the reinforcement of synapses

lt-bI urlier. Equation (2), the neuronal learniny
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mechanism, is termed the reitforcement equation because it specifies how

neuronal reinforcers [wi(t) Ax(t)'s manifesting collectively as Ay(t)]

are transfornfie into changes in behavior Ldue to tw.(t)'sj. Thus, we

see that equation (1), the drive equation, involves the processing of

signal levels to yield behavior and equation (2), the reinforcement

equation, involves the processing of changes in signal levels to yielo

learning.

It was noted earlier that the drive-reinforcement learning mechanism

moves the onsets and offsets of pulse trains to earlier points in time.

It should also be noted that, in doing this, the learning mechanism sets

up the possibility of a chain of reinforcing events. Because of the way

Ax's and Ay's interact in the model to yild Aw's, Ay's come to occur

earlier in time, mdking them available to reinforce even earlier Ax's.

Thus, chains of reinforcing Ax's and Ay's can be established beginning

with a primary reinforcer (which will be defined below).

While the drive-reinforcement neurona) model appears complex

relative to, say, the hebbian model, this seems Uppropriate because the

single neuron is coming to be recognized as a highly sophisticated cell.

Nione of the operations proposed here seem incompatible with the known

capabilities of the single neuron (e.g., see Woooy, 1982, 1986).

The terms I have defined at a neuronal level mirror terms animal

learning researchers have defined at the level of the whole animal.

Additional terms may be defined in this way. For example, innate or

primary neuronal drives may be distiniguished from acquired neuronal

drives. Primary neuronal drives are oufined to have fixed synaptic
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weights. Acquired neuronal drives dre defined to have varibble synaptic

weights, under the control of the neuroral learning mechanism. Primary

neuronal drives will include deficit related signals having an internal

source (drives to eat arnd drink are examples) and unconditionea stimuli

having an external source (food and water are examples). Acquired

neuronal drives, likewise, are expected to have internal sources (as the

result of possible conditioning, for example, of the hypothalamic reward

and punishment centers) and to have external sources in the case of what

becumes conditioned stimuli. The notion of acquired Grives was first

suggested by Miller (1951).

Psychologists have generally defined drives to include only the

category of deficit related internal signals. I am broadening the

definition to include any signal that drives a neuron. M~1y definition of

primary drives comes closer to the conventional definition of drives but,

in this case, I still include (external) unconditioned stimuli as well as

(internal) deficit-related signals. My point in changing the definition

is to suggest that drives, defined in this broader fashion and at a

neuronal level, can serve as the basis for a simpler and more rigorous

learning theory.

I have noted that neuronal drives can have internal and txternal

sources and can be primary (innate) or acquired. The same is true of

neuronal reinforcers as they have been definied above. Unconditiur;eo

stimuli, for example, function as primary drives, yielding unconditioned

responses. Unconditiuned stimuli dIso function as primary reintorcers,

yielding conditioned responses. The drive-reinforcement niocel suggests
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that when an unconditioned stimulus is functioning as a neuronal drive,

it is the signal level, itself, that is important Lsee equation (1)] anG

when an unconditioned stimulus is functioning as a neuronal reinforcer,

it is the onset and offset of the signal that is important Lsee equation

(2)].

I have defined drives and reinforcers in a straightforward fashion

at a neuronal level. However, such clear-cut definitions have not proved

to be possible at the level of the whole animal. For example, Toates

(1985, p. 963) remarks that the notion of drive "has been around for a

long time. No one seems to know quite why we need the concept, but we

keep putting it on display. It tends therefore to assume a variety of

uncertain functions." 1 am going to argue that we should not be sur-

prised by this state of affairs. In the history of animal learning

research, it has not been unusual for the notions of drives and rein-

forcers to be seen as problematic. When such notions are invoked at the

level of the whole animal, this may be understandable. If the notions of

drive ana reinforcement are relatively straightforward at the level of

the single neuron, as I am suggesting here, then we should not
.,

necessarily expect such notions to also be straightforward at higher

levels. If neurons are classically conditionable cells in their own

right, as the drive-reinforcement model suggests, then when millions or

billions of such neurons interact in phylogenetically advanced nervous

systems, the interactions may not be simple. That we can make as much

sense out of whole brain function as we have, thanks to the dedication of

animal learning researchers and many others, might even be seen as
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surprising, consi dering the complexity of the neural network of, say, a

dog. That Pavlov (1927) anG those who worked with jr,o after him were

able to see their way through to a relatively clear view of classical .

conditioning suggests that brain function may not be as cuii,plex as we
V.

miyht have expected. However, as Gray (1975) demon strates in an

especially careful and incisive analysis, complications arise with the

notions of drives and reinforcers at the level of the whole animal.

if the notion of drive has been problematic at the level of the

whole animal , what about the notions of drive reduction dnd drive

induction, postulated to function as reinforcers (e.g. , see Mowrer,

1966)? I have suggested that, at a neuronal level, drive reduction arid

induction have straightforward roles to play with respect to the process

ut reinforcement. Assuming for the moment that the hypothesized

3rive-reinforcement neuronal model is correct, how might we expect

neuronal drive reduction arid induction to map onto the level of the whole

animal? Let us consider an example. The global reward or "pleasure"

centers discovere by Olds and Milner (1954) are known to be inhibitory

(Fuxe, 1965) so they would be expected to yield decremental neu-unal

reinforcement. However, we know that thE salivary reflex is excited by

the taste of food. Also, the brain's global reward centers are

presumably excited by the taste of food but they will, iii turn, deliver

inhibition throughout the nervous system. This inhibition, in some

cases, is likely to reach inhibitory interneuruns arid, thus, in effect, "

could be translated into excitation. Disirhibition is knuwn to play a

major rule in the nervous system (Roberts, 1980) We care seei then that.
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there will be no clear-cut, slmple lapping of excitation a1d inhibition

into drives. Neither should we expect increases and decreuses in

excitdtiun anid inhibition (neuruol drive reduction ano induction) to m1adp

in a clear-cut, simple way into lobdl reinturcement (i.e., rewdrd and

punishment). In each case, the involved neural network will have to be

considered before any nidppin ot neuronal drives cino reintorcers into

global drives and reinfurcers can be established.

Evidence for this kind Lf complexity has been obL,;ined by Keene

(1973). Olas (1977, p. 95) has summarized Keene's findings as follows:

"A fanily of neurons excited by aversive broin shocks ord inhibiteu by

rewarding ones was identified in the intralaminar system of the thclamus;

and a second family acceleratea by rewards and decelerated by punishments

was observed with probes in the preuptic area." Keene's results.,

demonstrate that the brain's global processes of reward oao punishment

can have opposite effects in different parts of the nervous system.

Thus, the practical coPplexity of this situation at the levl ot the

whole animal, reflecting perhaps the pragmatic decisions of the

evolutionary process, may account for the probleimntic history of the

psychological notions oi drives and reinforcers.

Relationship of the drive-reinforcement rEuronal rioude I to ariiiiatl

learninn theory

haviiig defined drives, reinforcers, and related teris at a neuroxiol

level, and haviny acknuv,ledyed the complexities thot arise around these

concepts at the levt.l ut the whole aninial, I will now discuss how th(-
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drive-reiniTurcement neuronal model relates to theories of 6 niral 

learning.

In this century, the study of learning began with stimulus-response I %

(S- R) association psychology (Thorndike, 1911; Pavlov, 1927; Guthric,

1935). In place of S-R association psychology, the drive-reinforcert

neuronal model suggests what could be called AS- /R association

psychology. The neuronal modLl suggests that it is rct stimuli and

responses that are associated but, rather, changes in stimuli und changes

in responses except, of course, in the theoretical modEl I am proposing,

it is neuronal AS's and AR's that dre associated, not the AS's and

AR's of the whole animal. At the level of the whole animal, we can

expect a more complicated situation, as I have already discussed.

hull (1943) confronteG the complexities that arise at the level of

the whole animal. As Hilgard and Bower (1975) note, Hull, ir, his

herculean Litort to systematize learning theory, was moving psychology

from an S-R formulation to an S-O-R formulation, where "0" represented

the state of the organism. Central to Hull's (1943) theory of learning

was the definition of reinforcement as drive reduction. Hull (1952) went

on to revise his position, concluding that reinforcement should be

defined as drive-stimulus reduction. Actually, Hilgard ana B Swer (1975,

p. 167) observe that "While favoring drive-stimulus reduction, Hull left

the matter somewhat open, havir, vacillated between ci'ive reduction and

drive-stimulus reduction as essential to reinforcement" (Hull, 1952, p.

153). The drive-reinforcement neuronal mPodel suggests that Lull may have

been right on both counts; both drive reduction and drivc-stimulus
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reduction may function as r Lluurcers becaust, btth can result in Ly's.

Thus, at a neuronal level, the distinLctiun between drive reductiUn dd

drive-stimulus reduction dppears Lo dissolve. WE' ste d redson why drives

should probobly be defined more broudly than Hull cousidecd.

Hull's rdrruwer definition of drives resulted in dnother problem for

his theory. Hull's identification of drives and drive reduttion with

physiological needs or tissue deficits did riot seem to leave room fur

such phenomena as animal play ari6 the learning that results. Mishkin and -U

Petri (1984, p. 92) point out that "Shortly after Hull developeo Lhlsj

ideas, a number of studies on curiosity, manipulation arid exploration

suggested that other motives, not obviously related to physiological

needs, also generated learning." Mishkin ana Petri go on to say that

"The recognition that there are motives that have no apparent basis in

tissue deficits or other physiological needs was one major factor that

eventually led to the demise of the drive reouction theory of learning

(bolles, 1967)." The drive-reinforcement neuronal model solves the

problems encountered with Hull's theories by moving from the level of the

whole animal to the level of the single neuron, by suggesting a broader

definition of drives, by allowing both drive reduction and drive

induction to be reinforcing [consistent with Mowrer (1960)], and by rot

necessarily identifying Grive reduction with reward.

Regarding the relationship uf drive reduction to reward, Gray (1975)

discusses the question of whether rewards and punishments shOulo be

associated with drive decrements and increments, respectively. Based on

Gray's analyses ria those of others whoii, he cites, I have comt, to the



conclusion that toU close dfn identification of drive reduction with

reWdrd may not be wdrrdrlted. The Darwinian process may have been more

flexible in its approach cis it evolved nervous systems. Therefore, I

"A

will not, in the theoretical framework I dii; proposing in this report,

identify drive decrements with rewia and drive increments with

puni shnment even though, as generalizdtions, such identitications

may be valid. There is nothing in the theoretical framework that

requires such a rigid identification to make the theory workable.

After Hull, animal learning theory's next major step forward was

due, in my opinion, to Mowrer (1960). A colleague of Hull's at Yale,

Mowrer moved from Hull's drive reduction (or drive-stimulus reduction) -

theory to a symmetric theory in which learning was attributed to both

drive reduction aria arive induction. Also, in Mowrer's theory, classical
I %"

conditioning was accepted as basic. Mowrer s emphasis on classical .2

conditioning and on symmetric processes in learning has had a strong

irifluence on the theoretical framework I am proposing in this report.

Since Mowrer proposeo his theory, substantial theoretical and

experimental advances have occurred in the understanding of classical

conditioning phenomena. Model systems such as the rabbit nictitating

membrane response are providing a refined understanding of cldssical

conoitioning at psychological and neurobiological levels (e.g., see

Gormezano, 1972; Moore and Gormezano, 1977; Moore, 1979; Gormezdno,

Kehoe, and Marshall, 1983; Thompson, 1976; Thompson Berger, and Madden,

1983). Also, the investlgations of Kamin (1968) dnd Rescorla and Wagner

, I
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(1972) have clearly demunstrdted contingency uSpectS Of Cld Slcl

conditioning as distinguished from contiguity aspects.

Along with aor increased understandirig of classicdl conditiuning has

come a growing conviction on the part ot some animal learning theorists

that classical conditioning phenomeri are fundamental to dnimol ledrning;

instrumental conditioning phenomena are then de-emphosized by these

theorists. Mowrur (1960) early on and bindra (1976, 1978) wore rLcently

have been leaders in this movewment. The drive-reinforcement neuronal

model is consistent with this view. if brains are, fundamertally,

classically conditionable systems, then this may be because they dre

composed of classically conditionable neurons, as the drive-reinforcement

model suggests. Instrumental conditioning phenomena are then seen to

arise out of d neural substrate that utilizes classical conditioning

mechanisms. As Bindra (1976, p. 245) has noted: "Once it is explicitly

assumed that the production of any specific instrumental response or of

some of its act components is linked to one or more particular eliciting

stimulus configurations, then the way becomes clear for interpreting

instrumental learning in terms ot the learning of stimulus-sIIulus

contingencies alone. The problem of instrumental training then uecoi;es

one of i,,aking certain response-eliciting stimuli highly potent

motivatiorldlly, ano this can be done through stimulus-stimulus

contingency learning between the respunse-eliciting stimulus and the

incentive stimulus." Research on autoshapirig in whlr(i-d niuals hdtiu

their behavior without a response-reinfurcer contingency supports thi,,

position (Brown and Jenkins, 1968; Jenkins and Moure, 19,3). A
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expressed by Flaherty, Hamilton, Gandelman, and Spear (1977, page 243),

"the law of effect is apparently not necessary for the development of

instrumental-like behavior."

Another way of viewing Bindra's theoretical position is as part of a

movement away from drive reduction theories that emphasize internal

deficit signals and toward incentive-motivation theories (binara, 1968;

Bolles, 1972). Incentive-motivation theories suggest that "motivated

behavior results not only from the 'push' of internal, deficit signals

but also from the 'pull' of external, incentive stimuli" (Nu~genson and

Phillips, 1976, p. 200, emphasis is that of the quoted authors). It may

be noted that neuronal drives, as defined earlier in this report, include

both internal deficit signals and external incentive stimuli.

While finding myself in sympathy with thosut who emphasize that

classical conditioning is fundamental to learniig, I do not want to go

too far in that direction. Miller and Balaz (1981) note that classical -.

conditioning has often been seen as involving the learning of .

stimulus-stiniulus associations while instrumental conditioning has often

been seen as involving the learning of stimulus-response associations or,

in the case of Mackintosh (1974), response-reinforcement associations.

Frequently animal ledrning theorists have chosen one particular class of

associations as being funaciaiental and then have ruled out other classes

of associatiuns. Bindra (1976, 1978), for example, suggests th.

learning does not have to do with the furming of stimulus-response

assUcIatonis but rather with the learning of curntingencies between

stimuli. tils question of which Class Of ;'sc(cidtions is funddln ,rital to

8i4
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learning has been debated by animal learning tneorists for decdOes. The

drive-reinforcement neurunal model suggests tlat it may not be necessory

to choose one class of associations over another. Solomon (1981, p. 2)

observes: "One persisting question is 'what is learned?' The four

candioates tronm the past were S-S associations, S-R associations,

R-reinforcer associations and S-reinforcer associations." Solomon goes

on to say: "it appears ... that associations of all four kinds can be

established with the right procedures." The drive-reiniorcement model

allows for all four possibilities, suggesting that any of the four

classes of associations will form when neurondl signals representting

stimuli, responses, and reinforcers occur in appropriate temporal

relationships. If a stimulus, response, or reinforcer results in a

positive Ax. that is followed within the interval, , by another

stimulus, response, or reinforcer that yields a Ay at the same neuron,

then an association will form. Thus, an implication of the
SC

drive-reinforcement model is that, at a neuronal level, classical

conditioning, instrumental conditioning, drive-reouction and induction,

response-reinforcement, and incerntive-motivation theories may all

describe associations that can form in the nervous system. However, it

is not the presence of signals representing stimuli, reponses, or

reinforcers that is required, according to the drive-reinforcement model,

but rather changes in signal levels representing the onsets and offsets

of stimuli, reponses, and reinforcers.
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A arive-reinforcement theory of ledrning

What kind of theory of learning is inmpl ied then by the

drive-reinfurcement neuronal model? At this point, I will sketch one

possible furm such a theory miyht take.

lhree principles would appear to be fundii;entdl to what I will call

a drive-reinforcenient theory of learning:

(1) Primary reuronal drives are the foundation upon which all

learning rests.

(2) Neuronal reirfurcers are changes in nturonal drive levels.

Neuronal arive irduction promotes learnied excitatory processes.

Neuroml drive reduction proii,otus ledrried inhibitory processes.

Together, these processes yield acquired drives or learning.

(3) The neuronal learning mechanism correlates earlier changes ii,

presynaptic signals with later chdrrges it, postsynaptic signals

yieloing changes in the tfficacy of synapses. A chaige in the

efficacy of a synapse IS pruportiondl tu the currenit efficacy

Oi the synapse. I
If these prinoiplts should turti uut to be correct at d eurunal

level, how should we expe(ct such iiechdnisis tu uarnitst ot the level of

the whole fniaial o ,dt I Will call the ittwurk level? rNeurural drives

Ilidit be expected tk ermecqje dt thef ntLr 1 tvelI d t te PUS i ti Iye dt) -

ncA(.Ivu lee buOL l(i(;pS theft ( cv.trui be -nvio(r. As .h eS, cursider a

blood jblutuO t Ltte tor t ridt uI 1 (its d1 ,4-t'rfdl orlj,1ia t drivt slyldi

(thl i what drill 1  l t, r , i r sylh , >, s hj L, a i rl y l erred to
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as a drive) or the taste of tood that provides an external primary drive

signal (what animal learning psychologists have customarily referrea to

as an unconditioned stimulus). These primary orive signals are parts ut

inate negative feedback loops that are associated with what are termeo

the hunger drive and the salivation reflex. These feedback loops cduo

the blood glucose level to rise because the animal is driven to eat and

assist in causing food to disappear from the mouth and be digested

because the animal is driven to salivate. More generally, feedback loops

representing drives include mating behavior, drinking behavior, behaviors

dssociated with the approach to and consumption of prey, and behaviors

associated with the attack of or flight from predators. In generdl,

behaviors can be classified as approach or avoidance (Mowrer, 19bU).

right expect approach behavior to be supported by positive feedbdck ,'

and avoidance behavior to be supported by negative feedback

Positive and negative feedback loops that emerge at the +"

whole animal will be defined to be network drives, as disti ,,.

the neurondl drives defined earlier. Neuronal drives i

tinure dtomistic basis of network drives.

Primary network drives are the iriidtL bCd

Acquired network drives are the learned Y.,"

basis of the hypothesized Orive-rei,4

mechanism, it is expected that dcqu
i .

'

constructed on top of the ,ri>;

acquired) drive levels,

reinforcement o(ic It 'I)
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positive and negative feedback loops). In this way, the process of

learning is hypothesized to be sustained, with drives being built on top

of drives. (Actually, in some cases, the process will riot involve the

acquisition of new orives so much as it will the refinement of current

drives.) When acquired network drives become sufficiently complex,

cognitive phenomena may begin to emerge.

To support the process of drive acquisition or learning dt the

network level, global centers that can broadcast generalized "start" and

"stop" signals may be helpful. Such signals could serve to introduce
',T

appropriate Ay's in the network at crucial times, thus rendering the

overall activity of the network coherent. Such may be the roles of the

global reward and punishment centers discovered, respectively, by Olas

and Milner (1954) and by Delgado, Roberts and Miller (1954). Consistent

with this idea, global reward centers appear to employ inhibitory

mieurotrariSnitters (Stein, Wise, and Belluzzi, 19Y7) that may function as

"stop" signals and global punishment centers appear to employ excitatory

neurotransmitters (Stein, Wise, and Belluzzi, 1977) that may function as

"start" signals. That a rewaro center should generate "stop" signals

might seem paradoxical with respect to some behaviors, but disirihibitory

mechanisms that are prevalent in the nervous system (Roberts, 1980) may

make such an approach workable by enabling releasing mechanisms to be

implemented where necessary. It should also be noted that if

reinforcers are changes in drive levels, then ylobal drive and

reinforcement centers can be one anc the same. A center's output will

constitute a drive and a change in a center's output will constitute a
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as a drive) or the taste of food that provides an external primary drive

signal (what animal learning psychologists have customarily referred to

as an unconditioned stimulus). These primary drive signals are parts of

innate negative feedback loops that are associated with what are termed

the hunger drive and the salivation reflex. These feedback loops cause

the blood glucose level to rise because the animal is driven to eat and -,

assist in causing food to disappear from the mouth and be digested

because the animal is driven to salivate. More generally, feedback loops

representing drives include mating behavior, drinking behavior, behaviors

associated with the approach to and consumption of prey, and behaviors

associated with the attack of or flight from predators. In general,

behaviors can be classified as approach or avoidance (Mowrer, 1960). We

mlight expect approach behavior to be supported by positive feedback loops

and avoidance behavior to be supported by negative feedback loops.

Pusitive and negative feeoback loops that emerge at the level of the

whole animal will be defined to be network drives, as distinguished from

the neurunal drives defined earlier. Neuronal drives may be seen as the

ifiore dtomistic basis ot network drives.

Primary netwurk drives are the innate goals of the organism.

Acquired network drives are the learned goals of the organism. On the

basis of the hypothesized drive-reinfurcement neuronal learning

mechanism, it is expected that acquired network drives are, in effect,

constructed on top of the primary network drives. When primary (and

acquired) drive levels vary, these variations in arive levels constitute

reinforcement and this reinforcement will spawn new drives (acquired
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reinforcer. Consistent with this theoretical possibility, drive and

reinforcement centers in the limbic system and hypothalamus appear to be

so close together (Olds, 1977) as to be, perhaps, identical. 'i
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SECTION 5

EXPERIMENTAL TESTS

In the computer simulations reported above, the drive-reinforcement

neuronal model has been demonstrated to be consistent, in general, with

the experimental evidence of classical conditioning. However, such a

demonstration involves comparing theoretical predictions of a neuronal

model with experimental evidence obtained from whole animals. To some

extent, whole animal data has to be problematic vis a vis the predictions

of a neuronal model. The effects of multiple interacting neurons , the

effects of the brain's many interacting subsystems and, in general, the

effects of the global architecture of the brain will, of course,

influence whole animal data. All of these effects, collectively, I will

refer to as network effects to distinguish them from neuronal (meaning

single neuron) effects. Network effects will preclude rigorous

experimental tests of any neuronal model in terms of whole animal data.

Tests at a neurobiological level will be required. Fortunately, such

experimental tests are becoming feasible arid, indeed, results to date

encourage the notion that classical conditioning phenomena may manifest

at the level of the sinyle neuron, as the drive-reinforcement model

suggests. [See reviews by Kandel and Spencer (1968), Mpitsos, Colli~is,

and McClellan (1978), Thompson, Berger, ana Madden (1983), Farley and

Alkon (1985), Woody (1986), Carew and Sahley (1986), and Byrne (1987).

See also Hawkins and Kandel (1984) ano Kelso and Brown (1986).]
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Instrumental conditioning experiments at the level of the single neuron -

are also becoming feasible (Stein and Belluzzi, in press).

At this point, perhaps a note is in order regardng the semantics I

am adopting. When I suggest that a single neuron may manifest classical

conditioning phenomena, the "single neuron" I am referring to includes .-"

.4%

the synapses that impinge upon it. Those synapses, of course, come from .

other neurons or from sensory receptors and, in that sense, what I am -

referring to as a phenomeSon involving a "single neuron" is, in fact a

multineuron or neuron and receptor phenomeron. The point, though, is.

that a single neuron may be unergoing the conditioring, as distinguishe

.-.

from alternative theoretical models that cn be envisioned in which whole

circuits consisting of many neurons would be the lowest level at which "'

conditioning could occur. An implication of the drive-reinforcement

neuronal model is that classical conditioning is not an emergent

pothtneuon so t and, ri t ato undergo classICal

conditioning is a fundamental property of single cells. i nft

Actually, the hypothsized drive-reinforcement learning mechanism..-

could be implemented t da rewer level than that of the single neuron.

Minimlly, what would seem to be required would be two syapses

interacting such that onbe unae would deliver the signal corresponding

to axln(t-j)i rflecting the onset of th Can e onher synapse would

.1

deliver th signal corresponding to Ay(t), reflecting the onset or .

ofnset of the US. Evidence of such interactions beteen synapses has

been obtained in investigations of classical conditioning in Aplysia.

The leirning mechanism appears to involve wha is termed

Aculy tehpthszddrv-enfreet erig"ehns

coul be mplmentd a a lwer eve tha tht ofthe inge neron



activity-dependent amplification of presynaptic facilitation (Hawkins,

Abrams, Carew, and Kandel, 1983) or activity-dependent neuroniodulation

(Walters and Byrne, 1983) of sensory neuron terminals. The optimal

interstimulus interval between activation of the sensory neuron terminal

representing the CS and activation of the facilitator neuron terminal

representing the US has been found to be about 500 ms (Carew, Walters,

and Kandel, 1981; Hawkins, Carew, and Kandel, 1986). While the evidence

for conditioning at a neuronal level in Aplysia has been interpreted as

suggesting a presyraptic learning mechanism, Farley and Alkon (1985)

indicate that the sites of the changes may n,)t be exclusively

presynaptic. 
. .

Whether presynaptic or postsynaptic processes or both underlie

learning is d question that has been investigated theoretically (Zipser,

1986) and experimentally (Carew, Hawkins, Abrams, and Kandel, 1984). In

this report, I have formulated the drive-reinforcement learning mechanism

in terms of postsynaptic processes although,as discussed above, the

learning mechanism could be implemented in an exclusively presynaptic

form. Apart from activity-dependent amplification of presynaptic

facilitation or activity-dependent neuromodulation offering a possible

implementation of the drive-reinforcement learning mechanism, other N %

possibilities can be envisioned that would still involve less than a

whole neuron. Portions of dendritic trees and their impinging synapses

might function in a manner analUgous to the mooel I have envisioned for

the whole neuron. Thus there are a range of possibilities fur

implementation of the drive-reinforcement learning mechanism, extending

,~. '. . % --. - ' . A . " - , ' - -  " . ' -. -. -- -' -" -" . - %- ' . . " -'
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from what is perhaps a minimal two-synapse interaction on the low end

ranging through portions of dendritic trees functioning as a basic unit

of learning, up through the level at which a single neuron functions as

the basic unit and beyond to the point where the whole organism is

treated as a single unit. Variations of the arive-reinforcement model

may have relevance at each of these levels, even though the learning

mechanism seems to lend itself naturally to implementation at a neuronal

level.

Regarding the questior of how the drive-reinforcement model can be

tested at a neuronal level, synaptic inputs will have to be controlled

and monitored precisely fur a single neuron while the neuron's frequency

of firing is continually monitored. It will be necessary to measure the

direction and preferably also the magnitude of the changes in efficacy of

affected synapses. Changes in synaptic inputs, as potential CSs, ano

changes in neuronal outputs, representing potential reinforcement, will

have to be tested to determine which, if any, input and output patterns

yield changes in the efficacy of synapses. In this way, it can be

established whether onsets and offsets of hypothesized neuronal CSs and

USs aetermine the efficacy of synapses in the manner specified by the

arive-reinforcement model.

Experimental evidence that bears on this question of neuronal

learning mechanisms has been obtained from studies involving the

phenomenon of long-term potentiation (LTP). The results have been

interpreted to suggest that neurons are Hebbian in character with

respect to their learning mechanisms (Levy, 1985; Levy and Desmond, 1985;
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Kelso, Ganong and Brown, 1986). However, the relationship of the

phenomenon of LTP to learning is unclear at this time (Morris and Baker,

1984). As Bliss and Lomo (1973, p. 355) point out in the article in -

which they reported their discovery of LTP. "Whether or not the intact

animal makes use in real life of a property which has been revealed by

synchronous, repetitive volleys to a population of fibres the normal rate

and pattern along which are unknown, is another matter."

kecent experimental results involving LTP suggest that sequential

neuronal inputs may be more efficacious than simultaneous inputs in

causing synaptic weight changes to occur. Larson and Lynch (1986) have a
shown that brief high frequency pulse trains delivered to nonoverlapping %

sets of synapses of hippocampal neurons are most effective in inducing

LTP if the pulse train to a first set of synapses precedes a pulse train

to a second set by 200 milliseconds. With this experimental procedure,

LTP is induced only in the second set of synapses. LTP is not induced in

either set of synapses if the delay is reduced to zero or extended to two

seconds.

Recently, long-term depression (LTD) of parallel fiber test

responses after conjunctive stimulation of parallel and climbing fiber

inputs has been demonstrated in the cerebellum (Ito, Sakurai, and

Tongroach, 198 2 ; Ito, 1986). However, the relationship of this

phenomenon to classical conditioning is unclear at this time because, as

Byrne (1987, p. 411) notes: "Activationl of parallel fiber input during

the period between 20 ms prior and 150 ins after climbing fiber

stimulation were roughly equivalent in inducing LTD [Ekerot and Kano,
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cited in Ito, 1984]. This indicates that the neural analug of the US

(climbing fiber input) can induce a change in the neural analog of the CS

(parallel fiber input) even if the CS occurs after the US. Therefore the

intrinsic mechanism could support backwaro conditioning, a phenomenon IL

that is not observed with behavioral conditioning."

Additional experimental evidence relevant to the questiun of

neuronal learning mechanisms has been obtained by Baranyi and Feher

(1978, 1981 a, b, c) who have attempted to classically condition

pyramidal neurons in the cat's motor cortex. CSs in the form of

presynaptic activity were paired with USs in the form of postsyrnaptic

cell firing. Evidence of conditioning was obtained in the form of

enhanced EPSPs, with the enhancement being sustained for up to 41

minutes. The relationship of these experimental results to classical

conditioning phenomena remains to be demonstrated, however, because

evidence of conditioning was obtained for interstimulus intervals ranging

from 0 to 400 ms and for either forward or backward pairint; of the CS and-

US.

In summary, Baudry (1987, p. 168), in a group report from a Dahlem

Workshop, offereo this assessment of some of the experimental evioence

discussed above: "For discrete stimulus-response learning (i.e.,

skeletal muscle responses), no learning occurs with backward (UCS first)

or simultaneous onset or in fact until the CS precedes the UCS by nearly

100 ms. Learning is best with intervals from 200 to 400 ms and decredses

as the interval is lengthened further. In terms of current wodels, the

Aplysia system seems to follow this function remarkably well and this

9b
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seems also to be the case for Hermissenda [Lederhendler and Alkon, 1986].

It is riot yet clear how LTP ana LTD could satisfy this function although

the newly described paradigm to obtain LIP [Larson and Lynch, 19861 also

seems to follow this temporal specificity."

9'
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SECTION 6

DISCUSSION

The learning mechanism underlying nervous system function (if,

indeed, there is a single basic mechanism) may not be of the character

suggested by the Hebbian neuronal model. The Hebbian model suggests that

approximately simultaneous neuronal signals are associated. The

drive-reinforcement neuronal model, on the other hand, suggests that

sequential changes in neuronal signals are associated. An implication of

the drive-reinforcement model is thdt nervous systems, in effect, pay

attention to changes, encoding causal relationships between changes as

the basis for learning. ".

Besides psychology and neuroscience, several other disciplines have

been addressing questions related to learning. These disciplines include

(a) the cybernetically oriented efforts referred to as connectionist or

neural network modeling, (b) artificial intelligence research, and (c)

adaptive control theory and adaptive signal processing. In this section, '

the implications of the drive-reinforcement neuronal model for each of

these approaches will be considered.

Connectionist and neural network modeling

For a few decades now, neural network models, or what are sometimes

more generally referred to as connectionist models, have been proposed as

theoretical models of nervous system function. Connectionist models have

also been proposed as engineering solutions to problems, without any

claim of biological relevance. In either case, with or without the claim
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of biological relevance, the thrust of connectiorlist modeling has been to

address the issues of memory, learning and intelligence by means of

cybernetically oriented designs for massively parallel systems (Hinton

and Anderson, 1981; Grossberg, 1982, 1987; Klopf, 1982; Levine, 1983;

Kohonei, 1984; Barto, 1985; Feldman, 1985; Rumielhart and McGlelland,

1986; McClelland and Rumelhart, 1986).

In recent years, several approaches to connectionist modeling have

come to the fore, these approaches appearing to have promise in terms of

-4

solving the problem of accomplishing learning in large, aeep networks.

The ultimate potential of these approaches cannot be assessed yet bECduse

efforts to scale up the respective connectionist networks are only.e

beginning. What can be done at this point and what I will attemipt to do

here is to assess some of the approaches for their relevance to animal

learni ng.

One aimension along which connectionist models may be assessed has

to do with thr nature of the feedback the models require fran their

'.%p

environments. Some connectionist m~odels operate in a strictly open loop

fashion, requiring no feedback from their environment. An example is the

connectionist model due to FukushiM. (1980, 1982). Fukushiia's network,

when presented with spatial patterns, adjusts connection weights so that

the patterns tend to cluster in useful ways, for some purposes of pattern

classification. No feedback from the environment is given or required. 7

pen loop or nongoal -seek i ng fashion, can be relevant to biological

information processing. An implication of the drive-reinforcement

0

to d wih t ntur ofthefeebac zh moelsreqirefro thir .4%
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neuronal model and of the learning theory implied by the model is that

feedback loops through the environment are a fundamental part of

biological information processing. In biological systems, it appears Ile

that positive and negative feedback loops, constituting drives, support

goal-seeking and that the changes in the levels of activity of these

closed loops or drives constitute reinforcement.

Nearest neighbor classifications of spatial patterns, like that

accomplished with Fukushima's clustering technique, can also be

accomplished with Boltzmann machines (Hinton, Sejnowski, and Ackley,

1984; Ackley, Hinton, and Sejnowski, 1985; Hinton and Sejnowski, 1986)

and what are sometimes called Hopfield networks (Hopfield, 1982; Cohen

and Grossberg, 1983; Hopfield, 1984; Hopfield and Tank, 1985, 1986;

Tesauro, 1986). These latter two classes of connectionist models, having

been inspired by theoretical models in physics, utilize symmetric

connections and what may be called adaptive equilibrium processes in.

which the networks settle into minimal energy states. The networks have

been demonstrated to have interesting dna potentially useful properties

including, for example, in the case of Hopfield networks, solving analogs

of the travel ing salesman problem. however, symmetric network

connections and adaptive equilibrium processes have not yet been

demonstrated to be relevant to the modeling of nervous system function,

at least with regard tu the underlying learnirng mechanisms. It may b®"

noted that a wide range of classical conditioning phenomena are predicteo

by the drive-reinforcement neuronal model and it uses no symmetric

connections or adaptive equilibrium processes. What the
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drive-reinforcement neuronal mocel does utilize is the real-time

operation of drives and reinforcers that can be understood in terms of a

network's ongoing, closed loop interactions with its environment.

Continuing to look at connectionist models in terms of the nature of

the feedback they require from their environment, a class of models that

might be considered the other extreme from open loop models are those

using supervised learning mechanisms. Such network moaels require

detailed feedback in the form of an error signal indicating the
,%

difference between a desired output and the network's actual output.

Rosenblatt (1962), Widruw (1962), and subsequently many others have

investigated connectionist models utilizing supervised learning

mechanisms. Fur these network models, error signals play no role in a

theoretical neuron's computations relative to its input-output

relationship, their only role being to instruct the neuron with

regard to the mod ification of its synaptic weights. Supervisea

learning mechanisms introduce the need for a "teacher" to provide

a learning system with desired responses. In contrast, the

drive-reinforcement neurunal model, like some other real-time

learning mechanisms, does not require the introduction of a teacher and,

thus, is an example of an unsupervised learning mechanism. In the case

of the arive-reinforcement neuronal model, fixea (nonplastic) synapses

mediating USs function like an internal teacher or goal specification.

It should be noted that unsupervised learning mechanisms have

sometimes been associated with systems thdt operate in an open loop mode

with respect to their environment. Unsupervised learning mechanisms have

1 UO04



also been associated with clustering techniques as an approach to pattern

recognition. However, as defined here, unsupervised learning mechanisms

represent that class of learning mechanisms that do not require a teacher

external to the learning system and, thus, they may be utilize. in

learning systems that operate either in an open or closed loop mode with

respect to their environment.

The distinction between unsupervisc learning mechanisms that do not

require a teacher and supervised learning mechanisms that do require a

teacher woula appear to be of fundamental importance. While supervised

learning mechanisms may have a role to play in artificial intelligence, A

it would seem that only unsupervise learning mechanisms are likely to be

relevant to the modeling of natural intelligence. In general, biological

systems accomplish learning without a teacher being present in any

explicit sense. Of course, a biological system's environment always

functions as a teacher in an implicit sense but that is exactly what

real-tim~e unsupervised learning mechanisms can take into account, as

could be seen in the results of the computer simulations of the

drive-reinforcement neuronal model presented earlier.

One qualification is in order regarding the role of supervise(;

learning mechanisms in natural intelligence. It is clear that something

like supervised learning mechanisms play a large part in natural

intelligence at higher, cognitive levels. At such levels, explicit

teachers play an important role. However, I suggest that this has misled

neural network modelers, causing them to introduce supervised learning

mechanisms at a fundamental level. It is this hypothesized tundamental
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role fur supervised learning mechanisms that I think is unlikely to be

valid in the case of neural network or connectionist models, if the

models are intended to be relevant for natural intelligence.

Regarding connectionist models that employ supervised learning

mechanisms, the most promising recent form of this class of models is due

to Werbos (1974), Parker (1982, 1985), Le Cun (1985), and Rumelhart,

Hinton and Williams (1985, 1986). They have proposed mechanisms for

propagating error signals from the output layer back to the input layer
a'.

of a network. The performance of the resulting networks has been .'

encouraging and, therefore, the question arises of whether these

connectionist models may be relevant to the understanding of animal

learning. Such relevance seems unlikely for two reasons that, in part, I

have already discussed. First, animals do not receive error signals
Iw."

during learning except, in the case of humans, after a fairly high level

of cognitive function has been achieved. Second, the drive-reinforcement

neuronal model demonstrates that, at least for classical conditioning

phenomena that appear to be fundamental to learning, back propagating

error correction mechanisms are not required.

Recognizing that animal learning does not, in general, involve

evaluative feedback from the environment, some investigators have moved

away from supervised learning in which error signals must be provided to

the learning system. A step in the direction of unsupervised learning is
7.

reinforcement learning (Farley and Clark, 1954; Minsky, 1954; Barto and

Sutton, 1981a;, 1981b; Sutton, 1984; Barto and Anandan, 1985; Barto and

Anderson, 1985,) or what Widrow, Guptd, and Maitra (1973) have called
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learning with a critic. Williams (1986, 1987) notes that in this type of

learning the network may be provided with performance feeaback as simple

as a scalar signal, termed reinforcement, that indicates the network's

degree of success. Reinforcement learning networks have been

demonstrated to be workable (e.g., see Barto, Sutton, ana Anderson,

1983), at least in the case of small scale versions. Furthermore,

reinforcement learning networks appear more likely to be biologically

relevant than supervised learning networks because less evaluative A

feedback is requirea from the environment. However, an implication of

the drive-reinforcement neuronal model is that environmental feedback

does not come in the form of reinforcement but, rather, comes in the form

of changes in drive levels. Biological systems appear to compute their

own reinforcement by utilizing learning mechanisms that compare current

and recent drive levels. In this way, a drive-reinforcement learning

mechanism requires no evaluative feedback from the environment. The

environment simply provides sensory input, some of which functions as

drives, ana when the drive levels change, it is hypothesized that neurons

arid nervous systems treat these changes in drive levels as reinforcement.

Having used the expression, "evaluative feedback," I should define

it. By evaluative feedback, I mean any kind of signal that requires the

environment (actually, a "teacher" or "trainer" in the environment) to

make some judgment about the performance of the learning system that is

receiving the feedback. In an extreme case, that could mean the teacher

or trainer would have to know the desired response and would then inform

the learning system of the direction and magnitude of its error. In a
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less extreme case, the teacher or trainer could utilize implicit or

explicit criteria to form judgments about whether the learning system's

performance was improving or not and then signal these evaluations of

relative levels of performance to the learning system. Nonevaluative

feedback, then, is any signal a learning system can generate for itself, -

without the aid of a teacher or trainer, simply by having an appropriate

sensor with which to detect events in the environment.

Whether feedback comes to a learning system in the form of drives,
"N

reinforcers, or error signals has relevance with regard to two further

questions: What should constitute the innate knowledge in a learning

system and what form should the innate knowledge take? A reinforcement

or a supervised learning system will, innately, know how to utilize

reinforcement signals or error signals to discover appropriate drives. A

drive-reinforcement learning system, on the other hano, will begin with

some primary drives in place and will then acquire additional drives,

utilizing changes in the current drives as reinforcers. Biological

systems appear to take this latter approach, beginning with some primary

or innate drives and ther, building acquirea drives on top of them.

This approach may offer d solution to a fundamental problem in

connectiunist modeling. A basic question has been that of how the -.

network elements or neurons in a large, deep, multilayered network can

learn to respond properly without direct feedback from a teacher 71

informing them of what their correct responses shoula have been at each .\V.

step along the way. The answer suggested by drive-reintorcement learning V..

theory, as outlined earlier, is to utilize whatever network drives

10U4
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(feedback loops) are already in place anci then treat changes in drive

levels as reinforcers. In this way, reinforcement signals are always

available locally (i.e., changes in neurondl drive levels can be computed

locally) and, thus, there would appear to be no requirement for a

teacher, trainer or critic at any level in the network. (This does not

preclude the eventual evolution, at higher levels in a neural network, uf

global reinforcement centers that could aid the process of learning by

providing overall direction.) Additional theoretical work including

computer simulations uf large, deep networks will be required to test

this idea that drive-reinforcement learning mechanisms will enablE

multilayered networks to learn to model their environment appropriately

without evaluative feedback from the environment.

Having examined the kinds of environmental feedback required by

various classes of connectiortist models, let us now consider the related

question of what kir,us of goals are implemented in these networks. In

supervised learning systems, the goal is to minimize the error signal.

In reinforcement learning systems, the goal may be to maximize a scalar

associated with the reinforcement function. In arive-reinforcement

learning systems, the goal may be to reduce drives although, as discussed

ir, an earlier section of this report, biological systems don't 8lways

appear to be reducing drives and, even if they are, the behavioral

manifestations can be subtle and complex. Some of the subtleties and

complexities may be due to global reinforcement centers arising in

nervous systems at the level of the limbic system and hypothalamus. Such

global reinforcement centers may, in part, be responsible for certain
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theorists proposing reinforcement learning systems as models of nervous

system function. At a still higher level of riervous system function,

coriitive processing appears to have motivated the introduction of

supervised learning systems as theoretical models. From this

perspective, we see that the drive-reinforcement learning mechanism might

reflect the neuronal level of nervous system function, with reinforcement

ano supervised learning mechanisms reflecting progressively higher levels

of function. It would seem then that it is important to be clear about

what level of nervous system function one is modeling. Furthermore,

modeling higher levels of nervous system function may require taking into

account the nature of the learning mechanisms that operate at lower
.4"

levels.

Regarding drive reduction as the possible goal of biological systems

and, perhaps, as the goal ol drive-reinforcement networks, one point

that should be made is that drive reduction would seem to be the goal fur

urives that are implemented as negative feedbdck loops. Drives

implemented as positive feedback loops woulo seem to support the goal ot

arive induction rather thon drive reduction. Having said this, it may

then be observed that, in the case of biological systems, drive

induction, as in the pursuit of prey, clways seems to be followed by

dr;ve reduction, as in the consumption of prey. This 111dy suggest d

simple gene-al principle for the design ur evolution) of

drive-reinforcement networks: primary drives implemented as positive

feedback loops should always lead, when activated, to the subsequrt i

activation of primary drives that dre implemente1 as negdtive feedback
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louops, If thi s pri rci ple I S foulIo(Wed, then oi 11 it Ives will1, ul1ti motel1y ,

support the goal (,f drive reduction. This, ii-ay help to insure the

stobility of learning systuwrs.

i have traversed the conrceptual or theoret" ccA territory of

connectionist fiedels twice now, oncL Il'oking at the kinds oi teecdback

various classes of models reqUireC irotn their environimencS da once

loukiri a1 the nature of the goai implemented ini these uIcclels. I want

to make one wore pass, examining the cilclurithrnic or heuristic cIhardcter

of various connecLILuist models.

SuI Itviseo learning mechowiisms, in their most recenit form, in which

back propagation Lechruiques arE utilizeo, heve a certain appeal btcouse

(If %11!dt I woulci suggest ii. 1 ~ieir nearly aelyorithriic charaCter. I mean

Viii. in the matheraadtical seiise in which an a12gkitqm is cietinieL toi bf: a

procedure that is Lernfiteed to produce o rv u it, as distinguished frumt a

heuristic that. like d rule of thumb, may or i11dY not procitce the desired

outrcoin. Lack propagating err'ul LurreLctior learninY NeL rianisils utilize

radient aescent tecV-iques such that they provide, with some a]l lotrI es

fur the problem of yettir, huriy up or, local peaks, vi. uptimlll sclutioln toi

.h probleri cutfruri.i( the networ[, the prubleu being to arriVe at 01V

be .t set of ccurnectlim wc-i~hts. back propagdtifl, Lrror curyr-ction

networks becUne ('Lf i nterest. , theni i u-i o theoretical Stanop.i it

irreSfi+L!,Vt of thcir biolo() 1 .1C itflevciwce, beCdUst' th iiudels r,1kt

r'epresent .4 L,-ifia or near cpt~iiral sIL1 1 iOnS Of Cf~rtdin pr utdis. Ever

here, thvfri i~ay be Uitlicultit-s Iiugh, becduse for ttw 1,t~tr, deep(-r

networks 1niny ttheorists irc iiiterestLv if,, ,cdlinq 14 ) t back Pr(JYCdtine
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error correction networks may pose adr ubstacle (Plaut, Nowlo;, ind
4.-

Hintor, 1986).

At any rate, if we consider that back prop6gatinY error correctir,

networks have something of an algorithmic character, the other extreme

might be connectiurist networks that utilize random search techriques to

ioentity reasonable values for the connection weights (e.g., see Barron, *5

1968). Random search techniques woul seem to be about as for removed

from an algorithmic character as a learning mec1 .etism can get. -

.ri between these two extremes are such classes of riodels as

reinforcement and drive-reinforceneO. learning mechanisms that appear to

have d heuristic character. For example, utilizir, drives and

reinforcers as the basis for learning may not guarantee correct results '.

but, on the dverdge, such an approach tu learning appears to be

effective in the cdsE ef biological systems.

%,,55

htiticial intelIiitrce

Funaamental to the prucess of learning in tti case of the

drive-reinfurcement neurunal noccl is the tenForal shaping uf behavior.

This is it: ccntrdst to the kinds Of lrucesses that occur in ortificial

intelligence whert, the emphasis is ptaced on what might be called

cognitive searching. "Logritive" becdue there is an emphasis (ir. the

ratiunrl and symbolic aspects uf ititelligence ana 'seorching" because

there is an emphdis on selecting fro, o lrye number of possiblt'

Ledviors. An irIlicatcIm of the drivc-r'inrTurcLient neuronal model is

that, funoamental1,, i-atural i telliger(et oru the ledrning mechorisis
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S.

.%

.** * *.-"4 4.



that support ii. 0( riot involve symbols or searching but, rather, uctiurs

and shapi r. Learned behavior is gradually shaped thruu h experience to

become more oppropriiAte. This dydariiic process yields assciatuns that

refine bet.ivior that is ilreaoy in place. Animals are ccIutirually

"riding" a larc.; humber uf feedback lops thdt reach thruugh tt animdl

ano out into the environment. The more cognitively ur symbolically

oriented kinds of searching through large rumbers of possibilities that

humans sometimes engage in is, most likely, an emnergen: phenomenon that

arises out of the internalization of d very large rumber of caUSCl

relations, this internalizatiun being accomplished, it would seem, with

something like a trive-reinforcement learning mechanism that tenporally

renties dctions. Another way of saying this is that first we learn to

grasp an objectorio then we learn to grasp e problem.

The convnErts I am making regarairg artificial iritelliyence research

apply as well, I ieel, to cognitive science. There seems to be the view

in both of these disciplines that mnemory, learning and intelligence have

to do, fundiamentally, with cognitionr. however, doesn't n.u rat l

intelligence have to oc with action, emotion, ana cugnition? The

crive-reinforcement Lurondl model contdins what may be a complete set 0l

the funoanental elements that underlie intelligence, ,amely, outputs that

reflect actions, inputs and changes ir, inputs that reflect (rives and

reinforcers, synaptic weights tcit represent knowleoyc, and changes in

synaptic weights that represent Ivi-roing. The seeds of aclicr, emotion,

and cognitloi, appear to be present ii the drive-reinfurcement reurunal

model.

3 C' 9
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In such areas of artificial intelligence resuerch as i mage

understandiny drnd the relatea area ol pet.tern recognition (although the

latter is sometimes more closel) associated with conrectionist models

than with aicinstreaw artificial intelli er,(e), the tendency ha been to

treat the temporal aspects od intelligent inforr,otion processing as too

difficult for current techniques to handle. (Some recent resedrch

coustVitutes exceptions to this statement.) Ofteii, ways have been sought

to autonmatically understanc static scenes or to recognize spatial

patterns. The temporal aspects of rtatural intelligence, asseciatea with

motion and assuciated with real-time information processing, in general,

have frequently riot been addressed in image understancing and pattern

recognition research, the strategy seeiiy to be that these difficult

issuEs v.ill be addressed later, when these fields ef research are more

advanced. But if the temporal and, indeed, real-time aspects of natural

intelligence turn out to be furcdmental with regard to learning, as the

drive-reinforcement neuronal model suggests, could it be that the goals

of in.ge understanding and pxittern reccgnitior resEdrch will be more

easily achieved if the temporal or real-time aspects of intellicent

infuri;wtion processing are confronted first rather thir last?

hcvir y discussed cogrnlve searching rid its role in artificial
intelligence, it may te useful at this point tG conent on evolutionary

inocLls of learning because such nodels also invoke seorch mechanisms in a.

fundamental way. Fcgel, Owens, and Walsh (1966), Klopf and Gose (Ub9-),

and hullnrid (1975), for exanFilC, have proposed evolutionary models of

ledrning in which olternative structures ur behdviors are yencruLeu--

ft,
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rdndomly or by sonme process that is rnore lystemaatic than a purely ladldU,

one. iher', the alternatives arc CVailudted and the bestL Lcrk saved. Such

an evolutioiiary- process appears to hE' frlalentally diffurcrt Tronm a

l ed rin pr__.ocess. Funddmeintclly, learning ces nut 6pear to involve

generating and ev-a'uating alternatives. Prther, as aiscussed ery'ier,%

learning appears to involve tie direct temporal shlicpy of behavior.

Experienced caOLS&I leldtioriships are irtterndliZec; i.e., ass(oclatiuris are

forieG oifeCCtly as a result of the cxperience. For examp'le, whet, a bell -

rings and fuc~c lollows, animals forri: dssocidtions directly. No search

process occurs. Of course, at a higher level, seurchirig can be

occurrinrg . It car be seithat if an animal is l,,i poriny -it environmenti

and causes a bell tu riin con then food follows, Lhe consequences of the

LXPloratory or search process may result ii' thte cirect temporal shdajir;

Lf behavior. Direct teiipurl shaping of 5ehdiviur roiy be occucririy thei.

ait the most fundameolo, -level arid a search proces s may be cccurrin t

hiaher level.

In sunc~var. *it could be said that o i impl~caition of the

drive-reinforceiient riocdel is that time i,. the teacher (that is tu tsoy, 1

reol--time) and behavior or ections is what is tau~ht. Ultimately, inl a

phylogeretically advanced oryarisri like a hurni, knuwie dge dC1qoistiur,,

rEpresentatJion, and util1ization become importfint too dutd TIcrf d rce>

like the orie I am callimy cogri Iive s.earchiny takes or tI rt -is i nC

ifimportance. However, it seems that ti, w hy havt : illed drti f~k

iintelligence rCsearcher's ind cognitive sciertists, drdwing "'heIrI

cttention away from tht: Lrocerlyiric rfiecharis;i's that appea-r to hdve, nrc .u

V V V
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co with temporal shaping. Artificial intelligence researchers have, for

exaimple, sometimes been aisriayed by the lack of comiiiin sense in the ,

a,

systems they have dcsigned. Could it be that coion sense derives frun,

the operation of drives dr d reinforcers and froi, the kind of real-time

embedding in the envirunment that is charactutistic of biological

sys tens?

Adaptive contrul theory and adaptive, signal processing ..%

Fur several decades now, cntrol theory hds beer, SucCessfully
:..

applied to the problemkis of analyzing and synthesizing automatic control

systeils. Adaptive curtrol theory seeks to extend control system

applicatiuns tu cases in which adaptation or learning is required on the -4-

part of the automatic controller (e.g., see Chalam, 19&6). In this way,

control theory contacts the probler of learning in the conrte'et ut

eriginecring applications.

Related to the subject of adaptive co,tr l theory is adaptive signal

processing (e.g., see Widrow and Stearns, 1985". In both adaptive .- 9

control and adaptive signal processing, it it sunetimes assumed thrit L

"de!sired response" or "training signal" is a uilable with which tht

(cntroller's or signd prucessor's actual ou ut can be compared for tII-

purpose of learning. DrivL-reinforcemerit lear'nitg theory, as outlined

earlier, suggests or; alternative way to extcnri control theory or sigrial % %

processing techniques for thL case of learning, such thot no knowleGge of

d desired resporse or training signil is, required when the leoriing

system is operating.

0



In the drive-reinfurcement learning theory outlined earlier, retwork

drives are fundamental. In control theory, negative teedback loops ure

funaamental. kt network drives, as I have aetired them, and neytLive

feedback loops are one 6nd the same thing. (One qulification: ir

biological systems. network drives may also occasionally be positive

feedback loops.) One sees that drive-renforctir !tet theory ano control

theory start on the sa we basis. It can then be seL11 thdt

drive-reiniforcement theory suggests a "natural" learnirg nechanism for

control and srignal processing systeris. While I am not aware cf any

aaaptive control or signal processing systems using lagged derivatives of

inputs and OLtputs as a basis for adaptdtion, such a learriiig EIcohanism

would sei, to constitute d straightforward extension ut conventional

control systcn, ahd signal processing techniques.

The essence of the drive-reinfurcement learning mechanism, in

aadptive control theoretic terms, can be simply stated. A network uT

drivL-reinforcement neuron,s, viewed as a control system, will interact

with its envirurient through some set of posiLIve and negative fe oback

loops. Pursuit of prey, fur exdmple, may involve positive feedback

loops, as noted earlier, and avoidance of prCoators may involve necdyive

feedback loops, At &ry given time, a biologiccel system will be

irtLracti1ig with its environment through a set Of Ictual positive cr,o

negative feedback loops thaL constitute its current primary and acquireo

drives and through a set of potential positive and )U9u0Lve feedback

loops that c unstitute possible lutUre icquired drives. Pottial

acquired drives will become actuol ii the inputs for the pIlrtIAld drives
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become dctive nc wore than T tilie steps before any of the current actual

drives charige their levels of activity. In this way, what may be called

a drive-reintorcement controller will learn to control 4ts output not

only to deliver more or less of a control signal (as current adaptive

controllers do) but. also to deliver the control signal sooner or later.

That is to say, a ariv-reinforcement controller would be expected to

modify not only the amplitu(es of its responses but. also the timing.

e ory, anu l earning

Before concluoing this discussion of some of the implicatioi;s of the

drive-reinforcement neuronul model , a few words shuuld be said about

nmory and how it relates to learrilny. As Squire (1986) notes, in

phylogenetically old dnimals such as invertebrates, what is learned takes

the form of procedural memories. In phylogeneticlly recent animals such

as maimials, what is learnea car; also take the form of decldrdtive

me m__rories. The aistinction between procedural and decl6rative memories is

that between skills and procedures, on the one hand, and specific facts

dnd cota, on the other.

The drive-reinforcement learniny mechanism appeors to be well suited

fur the laying down of procedural memories because the learning mechonism

tredtS time as a fundamental dimension, utilizi9 time derivatives of the .-

neuronal inputs and outputs and correlating the derivatives across a

temporal interval. If the drive-reinforcement learning mechanisri shuuld

turn out to be the learning mecharism for acquiring prucedural memories,

could it also turn out to be the learniny mechanisni for acquirivy

declarative memories' To see how this could be d p'ssibility, it may be
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necessary to consider the interaction of the brain's attention mechanism

with the registration of sensory and other information in the cerebral

cortex. The medial temporal cortex and especially the hippocampal

formation and associated areas appear to he imiportant with respect to

declarative memories. Squire (1986) notes that the capacity for

declarative memories reaches its greatest develupment in rammals in which

these cortical structures are most fully elaborated. Given our tendency

to remember that to which we attend, might it be that signals generate.

by the attention mechanism, the signals originating perhaps in the

thalamic reticular formotion (Klopf, 1982), interact with sensory and

uther information registering in thE medial temporal cortex, such that

the temporal relationships specified by the drive-reinforcement learning

mechanism are satisfied anG oecldrative memories result? In general,

could the role of the attention mechanism in the laying down of both

procedural ana aeclarative memories be the induction of Ay's at

appropriate times relative to Ax's so that the resulting synaptic weight

changes yield learr,irg?

'
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SECTION 7

CONCLUDING REARKS

In the Foreword to Olds' (197j) book on Drives and Reinforcements,

Neal Miller reradrks (p. v): "A fundamental step in the line of evolution

leading to human behavior was the development of learning, a new process

of adaptation that could occur far more rapidly within the lifetime of "

the inaividual instead of slowly during the evolution of the species. In

determining which particular response will be performed and learned, the

selective factor is reinforcement which, in turn, is closely related to

the drives that are active at d given time." In this report, i have

attempted to relate drives and reinforcers by means of a theoretical

model of neuronal function. The model has been demonstrated to predict a

wide range of classical conditioning phenomena. Implications of the

model have been considered for the fields of animal learning theory,

cunnectionist and neural network modeling, artificial intelligence

research, adaptive coritrol theory, and adaptive signal processing. It

has been concluded that d real-time learning mechanism that does not

require evaluative feedback from the environment may be fundamental tU

natural intelligence and that such a learning mechanism may have

implications for artificial intelligence.

In addition to accomplishing experimental tests of the neuronal

model , a useful next step may be to sir;ulate networks of the pruposed

theoretical neurons to determine the properties ot the networks, in

general, and, in particular, to determine it instrumental conditioning
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phenomena emerge. Actually, in pursuing this theoreticil %urk, it may be

useful to simulate not only the neural network but also a simplified

organism controlled by the neural network and a simplifiec eriviruniient

with which the organism is interacting. [See BartU and Sutton (1981b)

for an example ot how this kind of simulation can be carried OL t.j By

means of such computer simulations of nervous systemIs, organisms, and

environments, it may become possible to make behavioral obserVtIons wi a

mathematically well defined network of drive-reinforcement neurons during

the process of learning.

% VJ
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APPENDIX: Parameter Specitications for the CoUIIputer Simlulations

of the Neuronal Iodels

Drive-reinfurcement model

Learning rate constants: c1=5.0, c2=3.0, c =1.5, c =0.75, c,=0.25(T =E0
1 3 4

CS initial synaptic weight values [i.e., wW(t) at t=0]: +0.1 (excitatory

weights), -0.1 (inhibitory weights). Exceptions: For the

simulations reported in Figures 12 and 18, the initlal values

of the inhibitory synapti( weights were 0.0, thus preventing

the inhibitory weights from changing during these simulations.

This was Gone to simplify the graphs and to focus attentiun or

the excitatory weights that were priiirily responsible for the

phenomena being manifested. Haa the iitial inhibitory

synaptic weight values for Figures i" and 18 been set at -0.1,

as was aune for the other simuldtions, small changes in

inhibitory weights woul have been observed at some points in,

these simulatiGns while the overall phnorera being manifestd,

would have remained unchanged.

US (noriplastic) synaptic weight values: +1.0 (excitctory weight) and U.L

(inhibitory weight).

Lower bound on synaptic weights: wi(t)I> 0.1

Neuronal output limits: 0.0 . y(t) i.0

Neuronal threshold: a =0.0

CS amplituues (measured relativw to zero-level baseline): 0.2 except for

Figure 7 where the amplitudes were 1.0, 0.5, dind U.L fur CS1 ,

CS2 , and CS,, respectively, and Figure 17 where the amplituces

33were 0.2, 0.2, and 0.4 for CS1 , CS, n CS3 , respectively."
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US amplitudes (niedsured relative to zero-level baseline): 0.5 uxcept for

Figure 8 where the US amplitucs were 1.0, 0.5, and 0.25 for the

USs occurring in conjunction with CS1 , CS and CS3 ,2

respectively.

CS and US timing: See Table 1 for times of otnset and offset of CSs and

USs within a trial. Also specified in Table 1 are the trials

during which edch CS and US was present. For all of the CS-US

configurations, the time of onset of the first stimulus was

arbitrarily chosen to be 10. Onset of d stiriulus at tire step,

t, means that the stimulus was on during time step, t, and was

not on during the previous tirlle step. Offset of a stiniulus at

tire step, t, means that the stimulus was off durir9 time step,

t, and was not off during the previous time step.

hebbidn model

Where applicable, parameter values were the same as for the

drive-reinforcement irodel except that c=0.5, the initial synaptic weight

values were 0.0, and there was no lower bound (n the synaptic weights.

Sutton-barto model

Where dpplicdble, parameter values were the same as for the

drive-reinforcement model except that c=0.5,a=0.9, the initial synaptic

weight values were U.U, and there was no luwer bound on the synaptic

weights.
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