.~ RD-R188 378

UNCLASSIFIED

fl NEURDNFIL MODEL OF CLASSICAL CONDITIONING(U) RIR FORCE
MRIGHT AERONAUTICAL LABS WRIGHT-PATTERSON RFB OH
A H KLOPF OCT 87 AFNAL-TR-87-1139

172




B R B ‘e Big 8 ok d '-i
. P la 8'adledn v adtyap8'a by big bty b
§ AT L R AR A AP A S S S AN A WA L SO LT ALY M I 8 WOLT SE AT SR A Y - '
5
+ IO XA KN PN RRN )
Regss S

R
iy

] ] .':'.
| } i 4

) !

. 1.0 i1 as 3
| "“ =k e
= e

|| £ 20 =

L)

i’

HHI

"m | R \
iz s e

»,

e T
1{4 L - -
/ =
v ‘.‘“

b

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-

.
A

i
i
i
i
!
& -

p oo

o
.’)’\

LA A

’

N s wai e
IR S )
@ 2

55 5P

R
vy
e

w e . W W . w

B A AT A AR
l; -‘.‘ X \Vs"\“‘. \_,-\vs :&\;\,- .- P
\.." ',f‘ -.-' ’1’ \-
Ja ot -l‘o .




AD-A188 378

AFWAL-TR-87-1139

A NEURCNAL MODEL OF CLASSICAL CONDITIOMING

A. Harry Klopf
Information Processing Technology Branch
System Avionics Division

' .
‘.‘...‘l'

(s
A0
Sl

AT
oLyl
X3t/ 7'~

October 1987

Ny
[

L
;. {
’

f,
P

A

INTERIM REPORT for period COctober 1979 - September 1987

Approved for public release; distribution is unlimited

AVIONICS LABORATORY L

AIP FORCE WRIGHT AERONAUTICAL LABORATORIES 2 Ce
AIR FORCE SYSTEMS COMMAND H
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

37 14 o

R A S T o N S R e e



iy
I\’ 3

(WRE R TR T R R R R U WU WU PUTRRA N YWY I R) AN) Y et oY v » "N

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibilitv or any
obligation whatsocever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

A. HARRY KLOPY RICHARD C. JONES Chlef
Principal Investigator Advanced Systems Research Group
Advanced Systems Research Group Avionics Laboratory

Avionics Laboratory

FOR THE COMMANDER

Wyt o [hrenen |

CHARLES H. KRUEGER, JR
Acting Chief

System Avionics Division
Avionics Laboratory

If your address has changed, 1f you wish to be removed from our mailing
list, or if the addressee is no longer emploved by vour organization please

notifyAFWAL/AAAT , WPAFB, OH 45433- 6543 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

- S TN R g " [ --r.—-,- Co Ca W, .
\ o ,‘-..\ ,-\- (\}."~";\-'-~'J"~.' J‘\(\ ‘. .‘\' .\lf vl'-uf\_(\ ,_ g'\, . i.)-_.‘._‘_.:‘-‘_ ‘ Cele '. ‘. , .f ( )

S, WY

e

RN

¢ .
CCA R )

RRTRAN

*

A N
0
18]

RIS
e - \:

L

K

R
) eI
""- Ay 2 5:-

A oo
e s % % PR Y
O L
9.

1
A

LS

TATAANNN
LA

4

XA
<
P

o
Era

»
7
‘'r
-

\\\q

M
'l.'

el



UNCLASSIFIED '

SECURITY CLASSIFICATION OF THIS PAGE L/ s . ]
_—
REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution
2b. DECLASSIFICATION/GOWNGRADING SCHEDULE is unlimited o
‘ o
) 4 PERFORMING ORGANIZATION REPORT NUMBER (S} 5. MONITORING ORGANIZATION REPORT NUMBER(S) *
AFWAL-TR-87-1139 B¢
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Avionics Laboratory, AF (If applicabie) ;
Wright Aeronautical Labs AFWAL/AAAT-3 X
6c. ADORESS (City, State and ZIP Code) 7h. ADDRESS (City, State and ZIP Code) :‘
AFWAL/AAAT-3 ~
Wright-Patterson AFB OH 45433 o
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1] applicable;
AFOSR NL
8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS
3 PROGRAM PROJECT TASK WORK UNIT ..
Bolling AFB DC 20332 IRV o o A R
-\
: A 61102F 2312 Rl 02 R
11. TITLE (Include Security Classification) A Neuronal Model '-I"'
of Classical Conditioning (U) ;)\
12. PERSONAL AUTHOR(S) Ly
A. Harry Klopf s
13s. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT /Yr. Mo, Day) 15 PAGE COUNT
Interim From 10/79 To_9/87 October 1987 159 T
16. SUPPLEMENTARY NOTATION :
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and tdenttfy by block number) '
FIELD GROUP SUB. GR. Neuronal Mod:1 Learn]:.ng
12 09 Neural Network Model Adaptive Network =
05 08 Artificial Intelligence Classical Conditioning .
19. ABSTRACT (Continue on reverse if necessary and identify by block number, .
.\\‘ . »
A neurona] model of classical conditioning is proposed.\ The model is most easily g
Qescr1bed by contrasting it with a still influenitial neuronal model first analyzed by
tebb (1949). It is propcsed that the Hebbian medel be modified in three weys to yield 2
a mode] more in accordance w1th.an1nw] ]eorning_phenomena. Eirstt instead of e
correlating pre- and postsynaptic levels of activity, changes in pre- ana postsynaptic il
lTevels of activity should be correleted to_determine.tﬁe changes in synaptic efficacy o
that represent ]earq1ng.~$ecnnd? instead of correlating approximately simultanevus pre- -
anc  postsynaptic s]gnals, earl er changes n presynaptic sionals should be correlated .
with later changes in postsynaptic signals. Third, a change in the efficacy of a 5
Syrapse should be proporticnal to the current etficacy of the synapse, accounting for o
the 1q1t1a1 positive qcce]erat1on in the 5—§haped acquisition curves observed in animal o
1earn3ng. The resulting model, teried o drive-reinforcenent model of single neurcr e
function, suggests that nervous system activity can be uncerstood in terms of two et
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION ’
UNCL 3SIFIED/UNLIMITED (3¢ SAME AS RPT .. DTIC USERS L UNCLASSTFTED
22s. NAME OF RESPONSIBLE INDIVIDUAL 226 TELEPHONE NUMBER 22¢ OFFICE SYMBOL
nclude Vrea Code.
A, Harry Klopf (713) 255=7649 AFWAL/AAAT=3
DD FORM 1473, 83 APR EDITION OF 1 JAN 7315 OBSOLE TE UNCLASSTFIED
SECURITY CLASSIFICATION OF THIS PAGE

AT T T AT A T AT
RS S S QRS Yy

-
T4 . R e

'\.':J'-'d“




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

19. Abstract (Continueu) 1

classes of neuronal signals: Drives that are defined to be sigral levels and
reinforcers that are aefined to be changes in si¢nal levels. Defining drives and
reinforcers 1n this way, in conjunction with the neurnnal nwadel, suggests a basis for a
neurobiolcgical theory of learning. The prcposed neuronal model is an extensicn of the
Sution-Barto (1981) model which, in turn, can be scen as a temporally refinea extension
¢f the Rescorla-Wagner (1972) model. - It is showr that the proposed neurcnal model
predicts the basic categories of c]ass1Ca1 coraitioning phenomena including delay and
trace conditioning, conditioned and unconditicred stinulus duration and amplitude
effects, partial reinforcement effects, interstimulus interval effects including
simultaneous conditioning, second-uvder conditioning, concitioned inhibition,
extinction, reacquisition effects, backward conditiuning, blocking, overshadowing,
compound conditioning, and discriminative stimulus effects. _The neuronal model also
eliminates some inconsistencies with the experimental evidepce that occur with the
Rescorla-Wagner and Sutton-Lerto models. Implicavions of the neurcnal moael for
animal learning theory, connectionist ena neural network modeling, artificial
intelligence, adaptive control theory, and adaptive signal processing are discussed.

It is concluded that real-time learning mechanisms that do rot require evaluative
feedback from the environment are fundamental to natural intelligence and may have
implicaticns for artificial intelligence. Experimentol tests of the model are
suggestec,

i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

NI N, e L e L e L S

e e e o DIRCI Do ’ . . S o e
$ﬁw (L‘(x\ ¥ l\_f&' "- - \..(\':‘-\‘\._ M RN N ~ v

l.' Y
L ]
o

R
LIV

.

Yy :I- 4

5 A

I PN
P AP

s

. .
LT T S A
RN A

, [RCICICRR A

.

'l

Y

AR

&2,

P
B ,.'.
s _t ‘ ‘t'
PRI
..L"‘"_J_L\JJ

i

P
N
.‘-'.A.‘

2y %
.
s

"




ACKNOWLEDGEMERTS

This research was supported by the Life Sciences Directorate of the

Rir Force Office of Scientific Research under Task 2312 RI.
Jim Morgan has contributed substsntially throughout the course of
I want to acknowledge many valueble

this research. 1n particular,

discussions and the software Jim wrote for the computer simulations of

the neuronal models.
I am grateful to the following people for commernts on an earlier

draft ot this report: Andy Bartu, [liana Blazis, Jack Byrre, John

Desmond, Bruce Edason, Chuck Hendrix, Joan Klopf, John Moore, Jim Morgan,

Libby Patterson, Rick Ricart, ana kich Sutton.

.
&

5

gy

v v N &
-.“.'.'.f'

~

o

" DTI™ TAB
l Unnnowoaed

| R AN 1
{ | SRS
Aavatl

Tyt

"
Y|

Soattfeentben ]

teny

chrtilty Ccodes

Creeelnld

L Aéoession_—l;or
NTIS 6GRA%I E

n
"

[V

ang/or

|

I




SECTION
1.

2.

TAELE GF CONTENTS

INTRODUCTION

THE NEURONAL MODEL

Qualitative Description. . . . . . . « v . ¢ & o o ... ..
Mathematical Specification . . . . . . . . . . . « o . o . .
Properties of the Model. . . . . . . . . « . o« v v v o ..
Refinement of the Model. . . . . . . . . . . . o . o o o

Derivation ard Evolution of the Drive-Reinforcement
Model from Earlier Models. . . . « « « & ¢« « v v o v « « .

CLASSICAL CONDITIONING: PREDICTIONS CF THE
NEURONAL MODEL

Delay Conditioning . . . . . « « ¢ v v v v v v v v e e e
CS and US Duration Effects . . . . . . . . oo o000
CS and US Amplitude Effects. . . . . ¢« « « o ¢ v v v v o .
CS Preexposure Effects . . . . . « « . o o o o o0 o0 o
Partial Reinforcement Effects. . . . . . . . . . . . . . ..
Trace Conditioning . . . . + « ¢ v « v v o v v o v o 0 0.

Interstimulus Interval Effects Including
Simultaneous Conditioning. . . . . . . . . . . . . ..

Second-0Order Conditioning. . . . . . . . . . . . . « . « ..
Conditioned Inhibition . . . . . . . « . .« o o o o ...
Extinction and Reacquisition Effects . . . . . . . . . . . .
Backward Conditioning. . . . . . « « ¢« v ¢ o v o 0w . e
Blocking and Overshadowing . . . . . . « « ¢« v & ¢ ¢ o o o .
Compound Conditioning., . . . . . . . . « ¢« o v o o o o o .

Discriminative Stimulus Effects. . . . « « « « ¢ v ¢ « « « .

PAGE

(&3]



SECTION
A Variant of the Drive-Reinforcement
Neuronal Model . . . . . e e e e e e e e e e e e e
SUMMATY. & v v v v v v v o o 4 e o e e s e s e e e e e
4. DRIVES AND REINFORCERS
Definitions. . . . . . . o o . v v i 0o e e e e e e .
Relationship of the Drive-Reinforcement Neuroral
Mcdel tc Animal Learning Theory. . . . . . . . . . ..
A Drive-Reinforcement Theory of Learning . . . . . . . .
5. EXPERIMENTAL TESTS
6. DISCUSSION
Connectionist and Neural Network Modeling. . . . . . . .
Artificial Intelligerce. . . . . . . . . . . . . ..
Adaptive Control Theory and Adaptive Signal Processing . .
Memory and Learning. . . . . e e e e e e e e e e e e
7. CONCLUDING REMARKS
REFERENCES . . & v v v v v e e e e e e e v e e e e e e e e e

FaP NPT A L AT PR I I I D I N I R
~ L R SR R AL L A A S
O R AR R

TABLE OF CONTENTS (CONCLUDED)

APPENDIX: Farameter Specifications for the Computer

Simulaticns of the Neuronal Models

Drive-Peinforcement Model. . . . . . . . . . « « v . . .

Hebbian Model. . . . . . . . . . o . . .. ...

Sutton-Barto Model . . . . . . . . . . .. e e e e e
vi

B2 4 ':."I\..\{'I{ ‘.!

Pyt

.
1‘.
Y

: &
:};‘5

v
R

x
'-

~g
X
R

o

p
»

lad%

P S TR
DIR,
Y

{
)
v i




LIST OF ILLUSTRATIONS

FIGURE PAGE
1. A Model of a Single Neuron with n Synapses . . . . . . . . . 9

2. Examples of how the Drive-Reinforcement Learning
Mechanism Alters the Onsets and Cffsets of Pulse
Trains for a Single Theoretical Neuron . . . . . . . . . . 14

3. The Drive-Reinforcement Meuronal Model Employed
in the Computer Simulatiens. . . . . . . . . o o o o o .. A

4. Acquisition Curves in Simulated Delay Conditioning
Experiments with (a) Hebbian, (b) Sutton-Barto,
and (c) Drive-Reinforcement Neurcnal Models. . . . . . . . 31

5. Effect of CS Duration in Simulated Delay Conditioning
Experiments with (a) Hebbian, (b) Sutton-Barto, and
(c) Drive-Reinforcement Neuronal Models. . . . . . . . . . 35

6. The Drive-Reinforcement Model's Predictions
of the Effects of US Duraticn. . . . . . . . . . « « . . . 37

7. The Drive-Reinforcement Model's Predictions
of the Effects of CS Amplitude . . . . . . . . . . .. .. 39

8. The Drive-Reinforcement Model's Predictions
of the Effects of US Amplitude . . . . . . . |

8. The Drive-Reinforcement Model's Predictions
of the Effects of Partial Reinforcement. . . . . . . . .. 43

10. The Drive-Reinforcement Model's Predictions
of the Effects of Trace Conditioning . . . . . . . . . . . 44

11. The Drive-Reinforcement Model's Predictions
of the Effect of the Interstimulus Interval. . . . . . . . 46

12. The Drive-Reinforcement Model's Predictions
of the Effects of Second-Order Conditioning. . . . . . . . 49

13. Results of a Simulated Classical Conditioning
Experiment Modeled after Experiments Performed
by Paviov (1927), in which Conditioned

Excitation, Conditioned Inhibition, and
Extinction Paradigms ere Employed. . . . . . . . . . . . . 51
vii

3N

-

.
8

i I T

£

Prsrrss e

o T .
-
.

v 8-

1. « [ f.:’"{. {%f5r515 ;‘

-
[y

£

LR

._:-..::':" ‘. rsr o

S

A a8

RV AR A TR - .
..'Jrj;,i:l..&‘n » )&a'-'ll R,

>N S T T i L S UL L TP N R L UL A T I S SN R T S S
" »S \ '» - o . n e . SR A A e e N A DS RN P P e
RN AR 4 ,‘_‘ o < Wi o -,.5\ ..;(.;-\* oAl _ S O S AN R N TN

"



FIGURE

14.

15.

16.

17.

18.

19.

20,

W WO W W VT W WL L W TR ML TR e W s S Wt W T U N TN

LIST OF ILLUSTRATIONS (CONCLUDED)

Results of a Simulated Three-Stage Classical
Cenditioning Experiment Examining
Reacquisition Effects . . . . . . . . . . .. .. ..

Results of Simulated Classical Conditioning
Experiments in which the Drive-Reinforcement
Model's Predictions for (a) Forward and
(b) Backward Conditioning are Compared. . . . . .

The Drive-Reinforcement Model's Predictions of
the Effects of a Blocking Stimulus. . . . . . . . . . ..

The Drive-Reinforcement Model's Predictions of
the Effects of Stimulus Salience on Compound
Conditioning. . . . . . . . o v v o oo L

Results of Simulated Compound Conditioning
Experiments in which the Drive-Reinforcement
Model's Predictions for Reinforced and
Nonreinforced CSs are Compared. . . . . . . . . . . . ..

Results of Simulated Compound Conditioning
Experiments in which the Drive-Reinforcement
Model's Predictions of the Effects of
Ciscriminative Stimuli were Determined for a
More Complex Case than that Portrayed in
Figure 18 . . . . . . . . . . o o o e e e e e

Results of a Simulated Blocking Experiment that
was Identical to that Reported in Figure 16
Except that a Variant of the Drive-Reinforcement
Model was Employed. . . . . . . . « . . . . . 0.

vijj

TP A - .','~’..,\.-_ .....

- Cy Codn oy Ce, 4 "n
IRV PO R

PAGE

58

61

64

€6

68

71




StCTICN 1

INTRODUCTION

Paviov (1927) and  Hebb (1949) were among the first
investigators to extensively analyze possible relationships between
the behavior of whole animals and the behavior of single neurons.
Building on Pavlov's experimental foundation, Hebb's thecretical

analyses lea him to a model of single neuron function that continues

to be relevant to the theoretical and experimertal issues of
learning and memory. There had been earlier attempts to develop
such neurcnal models. Among themn were the models of Freud (1895),
Rashevsky (1936) and McCulloch and Pitts (1943) but, to this day,
the neuronal model proposed by Hebb has remained the most
influential among theorists. Current theorists who have utilizea
variants of the Hebbian model include Anderson, Silverman, Ritz, and
Jones (1977), Kohonen (1977), Grossbery (1982), Levy and Desmond
(1985), Hopfield and Tank (1986), and Rolls (19&7).

In this report, I will suggest several nodifications to the
Hebbian neuronal model. The modificetions yield a model which
will be shown to be more nearly in accera with animal learning
phenomena that are observed experimentally. The model to be
proposed is an extension of the Sutton-Barto (1981) model.

After defining the neuronal model, first cualitatively and
then mathematically, 1 will show, by  means of computer

simulations, that the neuronal model predicis the basic categories of

N AL L T AT e s Ty DN D A ".'.'\'.- PSR ”-. T U A G AN ORI T
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classical conditioning phenomena. Then, 1 will wciscuss the neuronal
model in more general thecretical terms, with particular reference to the
psychological notions of drives and reinforcers. My conclusion will be
that the model ofters a way of defining drives and reinforcers at a
neuronal leve) such that o neurobiological basis is suggested for aninal
learning. In the theoretical context that the neuronal model provides, I
will suggest that drives, in their most general sense, are simply signal

levels in_ the nervous system and reinforcers, in their most yeneral

sense, are simply changes in signal levels. This seems too simple and,

| indeea, 1t is - but I hope to show that 1t 1s not that much too simple.
I will attempt to make a case for drives and reinforcers being viewed, in

their essence, as Ssignal levels in the nervous system and as changes in

signal levels, respectively. The result will be a theoretical framework
based on what I propose to call a drive-reinforcement model of single

neuron functiun,
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SECTION 2
THE NEURONAL MODEL

Qualitative description

I will Dbegin by defining the drive-reinforcement neuronal
model in qualitetive terms. It will be eassiest to do this by
contrasting the model with the Hebbian model. Hebb  (1949)
suggested that the efficacy of a plastic synapse increases
whenever the synapse 1is active in conjunction with activity of the
postsynaptic neuron. Thus, lebb was proposing that learning (i.e.,
changes in the efficacy of synapses) is & function of correlations
between approximately simultaneous pre- dand postsynaptic levels of
neurondal activity.

I wish to suggest three modifications to the Hebbian niodel:

(a) Instead of correlating pre- and postsynaptic levels of

activity, changes ir presynaptic levels of activity
should be correlated with changes in postsynaptic levels
of activity. In other words, instead of correlating
signal levels un the input and output sides of the
neuron, the first derivatives of the input and output
signal levels should be correlated.
(b) Instead of correlating approximately simultaneous
pre- and pustsynaptic signal levels, earlier presynaptic
signal levels should be correlated with later
postsynaptic signal Tevels. More precisely and

consistent with (a), earlier changes in presynaptic signal
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levels should be correlatec with later changes in postsynaptic
signal levels. Thus, sequentiality replaces simultaneity in
the model. The interval between correlated changes in pre- and
postsynaptic signal levels is suggested to range up to that of
the maximum effective interstimulus interval in delay
conditioning.

(c) A change in the efficacy of a synapse should be

proportional to the current efficacy of the synapse,

“n

accounting for the initial positive acceleration in the

s-shaped acquisition curves observed in animal

LT A
. ",;" A '(".".'

learning.

hin I
b1

.,
»

A refinement of the model wi1ll be noted now and discussed

AR

more fully later. The ability of the neuronal ncdel to predict
animal learning phenomena 1is improved if, instead of correlating

positive and negative changes 1in rnieuronal inputs with changes in

neuronal outputs, only positive changes in inputs are correlated
with changes in outputs. To clarify this, positive chenges in
inputs refer tu increases in the frequency of action potentials at
a synapse, whether the synapse is excitatory or inhibitory.
Negative changes in inputs refer to decreases in the frequency of
action potentials at a synapse, whether the synapse is excitatory

or inhibitory. Furthermore, the changes in trequencies of action

G

potentials I'm referring to will be relatively abrupt, occurring :f,

2

e . . s

within about a second or less. It is hypothesized that nore e

s

™
gradual and  long-term changes in the frequency of action ([

V
RARS]
potentials at a synapse do not trigger the neuronal learring mechanism. :ﬁi
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Atter the neuronal model has been defined precisely and the results

of computer simulations have been presented, it will be seen that this
model of neuronal function bears the following relationship to models of
whole animal behavior. In general, changes 1n presynaptic frequencies ¢f
firing will reflect the onsets and offsets of counditioned stimuli. In
general, changes in postsynaptic frequencies of firing will reflect
increases or decreases in levels of drives (with arives being defined
more broadly than has been customary in the past). In the case of the
neuronal model, changes 1in the levels of drives (which will usually
manifest as changes in postsynaptic frequencies of firing) will be
associated with reinforcement. With regard to the behavior ot whole
animals, the notion that changes in drive levels constitute reinforcement
has been a fundamental part of animal learning theory since the time of
Hull (1943) and Mowrer (1960). here, I am taking the notiun down to the
level of the single neuron. Changes in signal levels, which play a
fundamental role in the neuronal model being proposed, have long been
recognized to be of impurtance. For example, Berlyne (1973, p. 16) notes
that "many recent theorists have been led from different starting puints
to the conclusion that hedonic value is dependent above all on changes in
level of stimulation or level of activity. They include McClelland,
Atkinson, Clark and Lowell (1953), Premack (1959), Helson (1964), ana
Fowler (1971)."

Before concluding this introduction to the drive-reinforcement
neuronal model, it will be useful to briefly note how the model relates

to earlier models from which it derives. The derivation and evolution of

the model will be discussed more fully later. As has already been
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indicated, the drive-reinforcement model 1is an extension of the

Py

Sutton-Barto (1981) model. The Sutton-Bortu model, in turn, can be

viewes as a temporally refined extension of the Rescorla-Wagner (1972) 3
model. I will show that the drive-reinforcenent model eliminates some e
!
shortcomings of the Rescorla-Wagner and Sutton-Barto models. Both of the {
latter models predict strictly negatively accelerated acquisition or ~
learning curves. The Rescorla-Wagner model also predicts extinction cf y
concitioned inhibition. Consistent with the experimental evidence, it j
( i
will be seen below that the drive-reinforcenent model predicts (a) an oS
ol
acquisition curve that dis initially positively accelerating and E{
subsequently negatively accelerating and (b) conditioned inhibition that S
does nct extinguish. In addition, the drive-reinforcement model solves 2?
some problems with conditioned stimulus auration effects that arise in "
NS
the case of the Suttun-Barto model. '
.\l
o™,
>
Mathematical specificaticn .;
y
The proposed neuronal model may be definea precisely as follows. K
\ -«
The input-output relaticnship of a neuron will be modeled in a fashion :3
that is customary arionyg neural network modelers. Namely, it will be Qi
~9
assumed that single neurcns are forming weighted sums of their excitatory
and inhibitory inputs and then, if the sum equals or exceeds the thres- :;
Mo
hold, the neuror fires. Such a model of a neuron's input-output '\.
LY
relationship can be based on the view that neuronal sigrnals are binary <
Ty
(either a neuron fires or it doesn't) or on the view that neuronal Sp»
)
signals are resl-valued (reflecting scme measure of the frequency of éi‘
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firing of neurons as a function of the amount by which the neuronal :Sv
>,

threshold¢ is exceeded). Here, the latter view will be adupted. Neuronal S
input and output signals will be treated as frequencies. This approach .
o,
l*.
to modeling neuronal input-output vrelationships 1is cornsistent with KN
e

experimental evidence reviewed by Calvin (1975).

Mathematically, then, the neuronal input-output relatiunship may be Cf
specified as follows: ]
n o

y(t)=c w.(t)x.(t)-0 (1) ‘

i=1 1 1 P

where y(t) i< a measure of the postsynaptic frequency of firing at o
-'.-

N

discrete time t; n is the number of synapses impinginyg on the neuron; é;

. . .th .
wi(t) is the efticacy of the i synapse; X;(t} is a measure of the

L)

. .th ,
frequency of action potentials at the i synapse anc 9 1s the neuronal

»

threshold. The synaptic efficacy, wi(t), can be positive or negetive,

Py

SNSRI

1
. »

corresponding to excitatory or inhibitory synapses, respectively. Also,

o
y(1) is bounded such that y(t) is greater than or equal tu zero and less \
N
]
than or equal tu the maximal output frequency, y'(t), of the neuron. &4
.i
Negative values of y(t) have no meaning as they would correspond to "
. . . -
negative frequencies of firing. “i:
To conplete the mathematical specification of the neuronal model, .§
the learning mecharism described earlier in qualitative terms reneins to o
DA
be presented. The learning mechanism may be specified as follows: Sfj
T ‘-':-:
aw_(t)= ay(t) ¢ c_ |w (t-3)] ax (t-J) (2) N
where Awi(t)=w,(t+1)-w1(t), ay(t)=y(t)-y(t-1), and -
1 3
Axi(t-j)=x](t-j)-x,(t-J-l). aw (t) represents the change in the E}
i i .
) ‘th .. . K/
efficacy of the i synapse at time t, yielding the adjusted or -“
4 4
new efticacy of the synapse at time t+], AX1(t-j) represents a @
R
.
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presynaptic ckange in signal level at time, t-j, and ay(t) represents
the postsynaptic change in signal level at tine t. T is the longest
interstimulus interval, measured in discrete time steps, over which delay
conditioning is effective and cj is an empirically esteblished learning
rate constant which is proportional to the efficacy of conditioning when
the interstimulus interval is j. The remaining symbols are defined as in
equation (1). A aiagram of the neuron nuaeled by equations (1) ana (2)
is shown in Figure 1.

Generally, in interpreting &and working with equation (2), I have
adopted the following assumptions, consistent with what is known of
learning involving the skeletal reflexes. 1 usually consider each
discrete time step, t, to be equal to one-half secona. This 1is a
meaningful interval over which to obtein neasures of the pre- and
postsynaptic frequencies of firing, xi(t) and y(t). Also, it is probably
@ reasonable interval of time with respect to the learning processes
underlying changes 1in synaptic efficacy. For example, the optimal
interstimulus interval for classically conditioning a skeletal reflex is
nominally one-half second [optimal interstimulus intervals vary from
about 200 to 500 ms depending on the species anc¢ the response system
within the species (see review by Woody, 1982)], ana very little or no
conditioning is observed with intervals appruvaching zero or exceeding
three seconds (Frey and Ross, 1968; McAllister, 19%3; Russell, 1966;
Moore and Gormezano, 1977). Thus, in equaticn (2), indexing starts with
J equal to 1 because c0 is equel Lo zerou, reflecting the tact that no
conditicning is observed with or interstinulus interval of zero. c1 is

assigned the meximal value reflecting the fact that one-half second is
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Figure 1. A mudel of a single neuron with n synapses. Presynaptic
frequencies of firing are represented by x (t), synaptic efficacies by
wi(t), and the postsyraptic frequency 1of firing by y(t). The
input-output (I/0) relationship is specified by equation (1) and the
learning mechanism (L.M.) is specifiea by equation (2) in the text.
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(approximately) the optimal interstimulus interval. Then, Cj+l is less
than cj for the remaining c-values, reflecting the decreasing efficacy of
cenaitioning as the interstimulus interval increases beyond one-half
second., T is normally set equal tu & because, when j equals 6
(corresponding to an interstimulus interval of three seconds), little or

no conditioning would occur so ¢, would be approximately equal to zero.

6

A lower bourd is set on the absolute values of the synaptic weights,
wi(t). The bound is near but nut equal to zero because synaptic weights
appear as factors un the right side of equation (2). It can be seen that
the learning mechanism woula cease to yield changes in synaptic efficacy
for any synapse whose efficacy reached zero; i.e., Awi(t) would
henceforth always equal zero. A lower bound oun the absolute values of
synhaptic weights results ir excitatory weights always remaining
excitatory (positive) and inhibitory weights always remaining inhibitory
(regative); i.e., synaptic weights do not cross zero. This is consistent
with the known physiclogy of synapses (Eccles, 1964). A nonzero lower
beund on the efficacy of synapses is also consistent with evidence
suggesting that pctential conditionea stimuli are weakly connected to
unconditioned responses priur to conditioning (Goula, 1986; Schwartz,
1978; Pavlov, 1927). Also, a nonzero lower bound on the efficacy of
synapses models the notion thet a synapse must have some effect on the
postsynaptic neuron in order for the postsynaptic learning mechenism to
be triggered. That learning mechanisms are postsynaptic, at least in
phylogenetically cdvanced organisms, has been well argued by Mchaughton,

Barnes, and Raoc (1984). In the case of the mammalian central nervous

system, Thompson, FcCormick, Lavond, Clark, Kettner, and Mauk (1S&3) note
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that what little evidence now exists is perhaps niore consistent with the
hypothesis of postsynaptic rather than presynaptic learning mechanisms.

In general, it is expected that the efficacy of synapses, wi(t), 1s
variable and under the control of the neurongl learning mechanisn.
However, some synapses car be expected to have fixeu weights; i.e.,
weights that are innate and unchangeable. This may be true for many or
most synzpses 1n the autonomic nervous system. In the somatic nervous
systeni, it is likely that many nore synapses and perhaps most are
variable or "plastic". 1In the case of the drive-reinforcement neuronal
model, it will be assumed that synapses mediating conditioned stimuli
have variable weights and that synapses mediating unconditiorea stimuli
have fixec weights. The innately specified synaptic weights that are
assumed to necdiate unconaitioned stinuli are expected to reflect the
evolutionary history of the organism.

Let us now consider what 1is happening in equaticn (2). As the
specification of the learning mechenism for the drive-reinforcement
neuronal rnwcel, equation (2) sugcests how the efficacy of a synapse
changes as a function of four factors: (1) learning rate cunstants, cj,
that are assumed to be innate; (¢) the absolute value, !wj(t-j);, of the
efficacy of the synapse at time, t-j, when the change in presynaptic
level of activity occurred; (3) the change in presynaptic level of
activity, Axi(t-j); and (4) the change in postsynaptic level ¢f
activity, ay(t).

Une way of visuelizing either the Hebbian ur the drive-reinfurcenent

Tearning mechanism is in terns of o temporal window thet slides along the
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time line as learning occurs, changiny the efficacy of synapses as it
moves alung. In the case of the Hebbian model, the learning mechanism
employs o temporal window that is, in effect, only one time step wide.
The learning mechanism slides along the time line, modifying the efficacy
of synapses proportional to (l; e learning rate constant, (2) the
presynaptic level of activity, and (3) the postsynaptic level of
activity. (The Hebbian model will be presented in mathematical form
later.) In the case of the darive-reinforcement nwdel, the learning
mechanism employs a temporal window that is t+1 time steps wide. The
learning mechanism slides along the time line modifying the efficacy of
synapses proporticnal to (1) learning rate constants, (2) the etficacy of
synapses, (3) changes in presynaptic levels of activity and (4) changes
in postsynaptic levels of activity. Il can be seen that the Hebbidn
learning mechanism correlates approximately simultaneous signal levels
and the drive-reinforcement learning mechanisti correlates temporally
separated derivatives of signal levels. (In the case of the drive-
reinforcement model, I am not suggesting that a neuron woula have to
compute enything as refined as a first derivative. A first-order
difference will suffice, as will be genmunstrated later.) The differences
in the behavior of the Hebbian and the arive-reinforcement learning
mechanisms will be examired below when the results of computer
simulations of both mcdels are presented.

Pruperties of the model

The drive-reinforcement neuronal model suggests that what neurons

are learning to do 1s to onticipate or predict the onsets and offsets c¢f

pulse trains. By pulse trains, I mean sequences or clusters of action

&5"“
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potentials in sxons. The model neuron learns to predict the onsets and
offsets of pulse trains representing unconditioned stimuli, utilizing the
onsets of pulse trains representing conditioned stimuli. This will
become evident when the results of computer simulations are presented.
It will be seen that the learning mechanism moves the onsets end offsets
of pulse trains to earlier points in time. Fundamentally, the learning
mechanism is a shaper of pulse trains. The efficacy of a synapse changes
in a direction such that the neuron cones to anticipate the unconditioned
response; 1.e., the conditioned stimulus comes to produce the conditioned
response prior to the occurrence of the unconditioned stimulus and the
unconditioned response. The way the drive-reinforcement neuronal
learning mechanism shapes pulse trains is illustrated in Figure 2. Many
investigators, including Paviov (1927), have pointed to the anticipatory
or predictive nature ot conditioning phenomera [e.g., see Kamin (196&,
1969), Rescorla and Wagner (1972), Dickinson ana Mackintosh (1978), arnd

Sutton and Barto (1981)].

Refinement of the moael

The drive-reinforcement neuronal lecrning mechanism, as defined by
equation (2), can be refinea in a way that improves the model's ability
to predict animal learning phenomena. The refinement, as briefly noted
earlier, involves allowing only positive changes in presynaptic signal
levels to trigger the neuronal learning mechanism. In other wcrds,

Axi(t-j) must be greater than zero. If Ax1(t-j) is less than zero, it
is then set equal to zero for the purpose of calculating Awi(t) in

equation (2).
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(A) ONSETS (B) OFFSETS

s —

[V S —

CR/UR: BEFORE
LEARNING

——
———————
T ————
P————
————

CR/UR: AFTER
LEARNING

Figure 2. Examples of how the drive-reinfurcement learning nmechanism
alters the onsets and offsets of pulse trains for a single theoretical
neuron. Panels (a) ana (b) show the effects cf unconditioned stinulus
onset and offset, respectively. In each example, the conditioned
stimulus (CS) is followec by an unconditioned stimulus (US), both of
which represent presynaptic signals. The two presynaptic signals are
assumed to be mediated by separate synapses, with the CS-mediating
synapse having a variable efficacy (weight) under the control of the
neuronal learning mechanism. The conditioned and unconditioned response
(CR and UR) before and after learning (i.e., before and after a nunber of
presentations of the CS-US pair) are shown below the wave forms for the
CS and US pulse trains. The conditioned and unconditioned response
(CR/UR) represents the postsynsptic frequency of firing of the neuron.
In panels (a) and (b), it is seen that the onset and offset of firing,
respectively, occurs earlier in time after learning. Thus, 1in each
case, the neuron has learned to anticipate the unconditioned response by
learning to start firing earlier (panel a) or stop firing earlier
(panel b).
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There is an intuitive basis for this refinement. A negative change i:

in presynaptic signal level means that the presynaptic signal is falling :€

away; i.e., that it is headed toward zero. If such a negative change in EQ

presynaptic signal level were to trigger the neurcnal learning mechanism E;

and possibly cause a synaptic weight to change, then a synaptic weight ;;
woula have changed for a synapse that just ceased to carry the signal :ﬁ
that caused the change. That is to say, the relevant part of the signal ii
N

on which the synaptic weight should operate woulda nc longer be present. fﬂ
Some residual portion of the signal might still be present after the :l

negative change 11n presynaptic signal level. However, the residual ES;

portion of the signal is not relevant because it might have been there :E:

Tong before the negative change in presynaptic signal level and might be éf’
there long afterward. With the drive-reinforcement neuronal learning ;?

nechanism, only the dynamic part of the signal is relevant, as will be ;f

more clearly seen after the computer simulations are presentéd. This is gd

not to suygyest that a drive-reinforcement Tlearning mechanism would ;i
precliuge learning about nedative changes in levels of stimuli. However, ;:

1f such changes are to trigger a drive-reinforcement learning mechanism, 37
1t 15 suggested that they would have to be, in effect, inverted, such ;
that they would manifest in some part of the nervous system as positive ;
changes in signal levels. :::
Allowing only positive changes 1in presynaptic signal levels to EE
trigger the neuronal learning mechanism is part of a strategy of not k{

changing o synaptic weight unless there is ygooud reason tu believe the ;t

welght change will be useful. Such ¢ strategy seems reasoneble because, E”:

in @ neural network, there is always the possibility that ¢ synaptic qﬂ

y

%
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weight change will interfere with or constitute overwriting of a previous
weight change. Thus, weight chariges are to be minimizea.

The rationale offerea above for refining the learning mechanism does
not constitute a rigorous argunent. However, it 1s hoped that the
rationale provides soume insight into why the refinement might make sense.
Later, a more rigorous approach will be taken. It will be shown that the
besic categories of classical conditioning pheromena are predicted by the
neuronal model when only positive changes in presynaptic signal levels
are allowed to trigger the learning mechanism. Then, it will be shown
liow the model's predictions deviate from the experimental evidence when
both positive and negative changes in presynaptic signal levels can

trigger changes in synaptic weights.

Derivation and evolution_of the drive-reinforcement nicdel from e rlier

models

Having defi.ed the neuronal model in qualitative and mathematical
terms, I will now cescribe the model's aerivation and evolution from
earlier neuronal models. The reuronal learning mecheniisms that have been
proposed, leading to the drive-reinforcement model, will be portrayed in
two ways: (1) by means of the sequence of critical events that have been
hypothesized to lead to learning and (2) by means of the eguation that
cheracterizes the learning mechanism. As it 1is customary to number
equations, I will also number the criticel event sequences so thet T can
refer to them later. To distinguish them from the equation numbers, an

"S" will be acded as a prefix to the critical event sequence rumbers.
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Hebb suggested that the sequence ¢t critical events for learning was
simple:

x, (1) =y(t) aw (1) (s-1)
In other words, presynaptic activity, xi(t), folloewed directly by
postsynaptic activity, y(t), was hyputhesized to result in a change,
Awi(t), irn the efficacy of the assouciated synapse. (The convention
adopted in this report is that when presynaptic activity, xi, is a direct
cause of pustsynaptic activity, y, then xj and y will have the same time
step, t, assuciated with them.) The equation for the Hebbian learning
mechanism may be written as follows:

Awi(t)=cxi(t)y(t) (3)
where ¢ is a learning rate constant and the other symbols are as
definea earlier.

Hebb's model is an example of a simple real-time learning mechariism.

Keal-time learning mechenisms emphssize the temporal association of
signals: each critical event in the sequence leading to learning has a
time of occurrence associated with it and this tine plays a fundamental
role in the computations that yield changes in the efficacy of synapses.
It should be noted that "real-time", 1in this context, does not mean
continuous time as contrasted with discrete time ror does 1t refer to a
learning system's ability to accomplish its ccmputations at a sufficient
speed to keep pace with the environment within which it is embedded.
Rather, a real-time learning mechanism, as defined here, is one for which
the time of occurrence of vach critical event in the sequence leading to
learning is of fundamertal importarice with respect to the computatiuns

the learning mechanism is perforriing. Real-tinie learning mechanisms nay
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be contraste¢ with nonreal-time learning mechanisms such as the

perceptron (kcsenblatt, 1962), adaline (Widrow, 1962), or Lback
propagation (Werbes, 1974; Parker, 1982, 1985; Le Cun, 1965; Rumelhart,
Hinton, and Williams, 1985, 1S66) learning nechanisms for which error
signals follow system responses and only the order of the inputs,

outputs, and error signals is important, not the exact time cf occurrence

ST UL LN S s

of each sigral, relative to the others. For aaditional discussions of
real-time learning mechanism models, see Klopf (1972, 197%, 1979, 1982,
1986), Mocre and Stickney (1980), Sutton and Barto (1981, 1987), Wagner
(1981), Grossberg (1982, 1987), Schmaejuk and Moore (1985), Gelperin,
Hopfiela, ana Tank (1985), Blazis, Desmond, Moore, and Eerthier (1986),
Tesauro (1986), and Donegan and Wagner (1%&7). Proposals for real-time
models that yive especially careful attention to neurobivlogical
constraints are those of Hawkins and Kandel (1984) and Gluck and
Thompson (1987;.

Klopf (1972, 1982) proposed an extension to Hebb's model that

introduced the notions of synaptic eligibility and reinforcement into

real-time Jlearning mechanisms, resulting 1in a neuronal nmodel that
emphasized sequential rather than simultaneous events. The following
sequence of critical events was hypothesized to lead to learning:
xj(t-k) sy(t-k) -s(t) »ij(t) (s-2)

where s(t) is the sum of the weightec inputs to the neuron at tLime t and
k is the nominal interval of time required for a neuronal vutput to feed
back and influence the neuronal! input, the teedback occurring either
throuyr the remainder uf the neural network or through the environment.

The variable s(t; represents the neuronal membrane potential. 1n this

18
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nodel, presynaptic and pustsynaptic actlivity, x](t—k) and y{t-k,, when Li’
they occur 1n conjunction, render d synapse eligible for nwdification, s
However, the efficacy of an eligible synapse does not change unless the Eg.
subsequent membrane potential, s(t), 1s nonzero, s{t) functionminy ¢s a ;:7
reinforcer that follows the eligibility coumputation. The equaliun tor 2
the learning mechanisi is as follows: Eﬁ
v (t)=ex_(t-k)y (t-K)s(t) (4) ,2
In the context of real-time learning nechanisms, the notiuns ¢t L2
synaptic eligibility ana reinforcement based on sequential rather than E;
simultaneous events yielded a neuronal model that could make yreater E;
cutitact with the experimerntal evidence ot classical and instrumental f?
conditioning (Klopf, 1972, 1982). A further step was taken in that EE'
d¢irection when Barto and Sutton (198l¢) discovered that replacing s(t) n Es
sequelice (S-2) above with as(t) permitted the neuronal riodel to meke =
much rore substantial contact with classical concitioning phenomena. The
resulting neuronal learning mechanism is described by the following X
critical event sequence: :
xi(t'k> »y(t-k) »as(t) *Awi(t) (S-3) E:
where as(t} = s(t) - s(t-1). ;ﬂ‘
<y
The equation for the learning mechanism is: -
ij(t)=cx1(t—k')y(t-k) as(t) (5) *
This form of learning mechanism led to a simplification. Barto and i:;
(i
Sutton (198la) found that the critical event sequence (S-3) could be ??
b
replaced with the following simpler sequence: i:
X, (1K) ey(t) aw (1) (5-4) 7
ay(t) in sequence (S-4) replaces :s(t) in sequence (S-3). This ﬁ:;
19 \;
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can be seen to be plausible in that ay(t) implies as(t). However, ;
proceeding from sequence (S-3) to sequence (S-4) irvolved the additional >
discovery that y(t-k) in sequence (S-3) was not essential for predicting \
classical conditioning phenonena. The result was a neuronal model that :
can be specified by the following equatiun: N
Awi(t)=cxi(t—k) ay(t) (6)
) Actually, the form the model took in the coiiputer simulations Sutton and
Barto (1981) reportec was as follows: '«.'
| o (t)=CR_ (1) ay(t) (7) 2
.
where j
X(0)=  aF (t-1)ex (t-1) (8)
In equation (&), is & positive constont. It can be seen that equation :}_
(7) is of a form similar to eguation (6) except that xi(t-k) is replaced i
by 3(",(1:). ii(t) represents an exponentially decaying trace of X, "
extending over a number of time steps. :'
It wes at this point that neuronal rodeling intersected strongly ‘::
with the theoretical ana experimental results of onimal learning ‘.

MCANE RS g

researchers such as Kamin (1968) and Rescorla and Wagner (1972). Sutton

ana Barto (1981) demonstrated that the model they prcposed could be seen

v .,

as a temporally refined extension of the Rescorla-Wagner (1972) model.

Like the Rescorla-Wagner model, the Sutton-Barto model accounted for a

- ]

variety of classical conditioning phenomena including blocking,

[} ¢
cvershadowing, and concditioned inhibition. Here was what could be "
te
interpreted as a neurunal model (although Sutton and Barto did not insist N
. . . . . P N
on that interpretation) making predicticrs similar to those of a whole ::;“
animal model! The Suttun-Bartu model represented a milestone in terms ot ‘
'.w‘
-\-
>
. I‘\.
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the contact prospective neuronal models were making with the experimentd)
evidence of animal learning (Sutton and Barto, 1981; Barte ond Sutton,
1982; Moore, Desmond, Berthier, Blazis, Sutton, and Bartu, 1966; Blazis
and Moore, 1987).

Huwever, the Suttun-Bartu model still deviatea from the experinental
evidence in a number of sigmificant respects. One procblem was that the
sensitivity of the nodel to conditivned stimulus durations causeu the
mcdel to yield inaccurate predictions for a variety of conditioned
stimulus-unconditivned stinulus configurations for which the cournigitioned
stimulus and unconditioned stimulus overlapped significantly. The model
also does not account for the initial positive acceleration in the
s-shaped acquisition curves observed in classical conditioning.

One approach to correcting the problems of the Sutton-Barto rodel

has been to utilize a variant of the adaptive heuristic critic algorithi

developed by Sutton (1984), and this has led to the temporal difference

model propused by Sutton and Barto (1987). Temporal difference models,

as defined by Sutton ana Barto (1987), utilize differences Letween
temporally successive predictiuns as a basis for learning. Sutton (1987)
notes that the earliest and most well known use of a temporal ditterence
(TD) method or model was that due to Samuel (1959) in his checker-playing
program. Other examples of TD methcds or models include thcese due to
Witten (1977), Sutton and Barto (1981), Booker (1982), Hampson
(1983/1984), Sutton (1984), Gelperin, Hopfield, and Tank (1985), ond
Holland (1986). The drive-reinforcement neuronal model proposed 1n this

report is an example of a temporal difference model.
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Variants of the adaptive heuristic critic model (Bartu, Sutton, dnd
Anderscn, 1983; Sutton, 1984) represent one approach to solving the
problems of the Sutton-Barto model. Seeking to address these safie
problems, [ have adoptec on glternative appruach that has led to the
neuronal learning mechanism specified by equation (2). For this mudel,
the hypothesized sequence of critical events leading to learning is as
follows:

ax (t-3) say(t) aw(t) (S-5)
where j repluaces k and all of the critical events involve derivatives
with respect to time. The variable, k, was the time required for the
neuron to receive feedbdack regarding its earlier output, y(t-k); k
retlected an instrumental cunditioning orientation. The variable, j, 1s
simply an interstimulus interval reflecting a classical counditicning

orientation. Barto and Suttun had also considereg using :x {t) instead
i

[

ot x](t) in their learning mechanism but decidea 11 was unworkable. 1

7

.
.
-
.
-

returned to this possibility of a differential learning mechanisii, one

)
Ll d

that correlates earlier derivatives of inputs with later derivatives of
outputs, and found a way tou niake 1t workable such that the problem with
conditioned stimulus duration effects wos eliminated. The class of
differential learning mechanisms was independently discovered by Klopf
(1986), coming from the directions of neurunal modeling and dninal
Tearning, and by Kosko (1986), coming from philosophical and mathematical

directiuvns.

Sequence (S-5; implies the following kind of learning mechdanism:

P

ij(t)=c Axi(t-J) ry(t) (9) o
Y4
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However, I have founa that the most workable torm of the learning
mechanism involves adding multiple terms and nultiple learning rate
constants to the right side of equation (S), the terms and constants
corresponding to a range of interstimulus intervals, J. Also, making
Awi(t) proporticnal to the absolute value of wi(t—j) allows the nudel to
account for the initial positive acceleraticn in the acquisition curves
of classical conditioning. These refinements led to the neuronal

Tearning mechanism specified by equation (2) and repeated here:

aw ()= ay(t) T ¢ |w (t-3)] ax, (t-j) (10)
1 i=l ] 1 1

where ax (t-j) must be greater than or equal to zeru; otherwise,
i

ax (t-j) is set equal to zero for the purposes of equation (lU). The
i

resulting model predicts the basic cctegories of classical conditioning

¥
o

P As

phenomena, as will be cemonstrated in the next section.
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SECTION 3
CLASSICAL CONDITIONING: PREDICTIONS OF

THE NEURONAL MODEL

Classical conditioning phenomena are basic to learning. I will show
in this section that the drive-reinforcement neuronal model predicts a
wide range of classical conditioning phenonena. This will be
demonstrated by means of computer simulations of the model.

The neuronal model that was simulated is shown in Figure 3. The
input-output (I/0) relationship assumed for the neuron was that of
equation (1). The neuronal learning mechanism (L.M.) was that of

equation (2) with the refinement noted earlier: whenever

Axi(t-J) was less than zero, Axi(t-j) was set equal to zero tor the
purpose of calculating ij(t). In the computer simulations, a
conditioned stimulus (CS) or unconditionea stimulus (US) that was
presented to the neuron had an amplitude that ranged between zero and one
and a duration that was specified in terms of the times of stimulus onset
and offset. In the figures showing results of the computer simulations,
each CS-US configuration is gyraphed so the reacer may see the relative
amplitudes and duratiuns of stimuli at a glance. (For exact values for
any of the parameters for the computer simulatiuns, the Appendix should
be consulted.)

Each stimulus was presented te¢ the simulated neuron through both an
excitatory and an inhibitury synepse so that the neuronal learning
nechanism had, for each input, both an excitatory and an inhibitory

welght available for moditication. The Tearning mechanism could then
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Figure 3. The drive-reinforcement neuronal mode! employed in the
computer simulations. This 1s a specific example of the more general
model shown in Figure 1. The description that was given in Figure 1
applies here. In addition, each CS and US 1is represented by an
excitatory (+) and an inhibitory (-) synapse. The efficacies of synapses
[i.e., the synaptic weights, w (t)] are variable (plastic) for synapses
mediating CSs and fixed (nonplagtic) for synapses mediating USs.
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choose to moaify oune or the other weight ur both in each time step. In

the case of an actual (biological) neuron, if a CS is nul represented by
both excitatury and inhibitory synapses, the individual neuron will be
constreined in terms of what clessical conditioning phenomena it can
nanifest. It will be seen in the simulations below that, for a
arive-reinforcement neuron, some classical conditioning phenomena require
only excitatory plastic synapses and sorie require only inhibitory plastic
Synapses. Those classical conditioning phenomena requiring both
excitatury dand inhibitory plastic synapses would have tu emerge at a
higher level if the individual neurons 1nvulved had their CSs represented
by only excitatory or only inhibitory plastic synapses.

In the discussion that follows, a conditioned or unconditioned

stimulus and the assoclated xi(t) in Figure 3 are identicel. For
example, xl(t) ana xz(t) are one and the schie as CSl. The weights

associated with the synapses carrying the unconditioned stimulus were
tixed (nonplastic) and the remaining Synaptic weights were variable
{(plastic).

The conditiuned stimulus or unconditioned stimulus that 1s described
should, perhaps, more properly be referred to as a neuronal conditioned
stimulus our a neurongl unconditionec stimulus because it is the stimulus
that 1s reaching the neuron, not the stimulus that is reaching the whole
animal. However, for the sake of simplicity in the discussiun, [ will
refer to these neuronal input signels aS conditioned ana unconditioned
stimulr or, swmply, CSs and USs. Likewise, the output, y(t), ot the
neuron would more properly be referrea tu o5 the neurondl conditionea or

unconditioned response but I will usually refer to the rneurundl response
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as the conditioned response (CK) or unconditioned response (UR). Built

into these terminological conventions 1s the assumption that stimuli and
responses external to on animal's nervous system o not differ
fundamentally in form from the way stinuli and responses are represented
internal to the animal's nervous system. This assumption might not hold
up well at higher, cognitive levels c¢f function but the assumption
appears reesonabie as a starting point for testing the ability of a
neuronal model to predict fundamental learning phenomena.

Just as the range of xi(t) in the simulations was from zero tu one,
as was noted when the range of CS arnc LS amplitudes was discussed, so the
range of y(t), the neurcvnal output was from zero to one. Such a rénge
serves tou model ¢ finite range of frequerncies for neuronal inputs and
outputs. Actual frequencies cof biological rneurons range up to several
hundred spikes per second in the case of neccortical neurons firing tor
brief intervals (Lynch, Mountcastle, Talbot, and Yin, 1977). Therefore,
one could multiply the neuronal input and output amplitudes used in the
simulaticns by, say, three hunared if one desires to see more realistic
numbers. However, for the purposes of the simulations to be reported,
the relative nognitudes of the parareters are important, noet the absolute
magnitudes.

The nuiber of synapses 1mpinging on the simuleted neuron is eight,
ds is indicated 1n Figure 3. This correspurds to three possible (5s and
ore LS. The absolute values of the plastic synaptic weights mediating
the CSs have a luwer bound of 0.1 and, wher the simulations began, these
excitctlury and inhibitory weights were set at plus and winus 0.1,

respectively. (For exceptions tc this statement, see the Appendix; in
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some simulations, inhibitory synaptic weights were set equal tu zero
because they did not play a significant role and it simplified the
graphs.) The neuronal threshold was set at zeruv because, at higher
values of the neuronal threshold, the form ot the model's predictions did
not change. The only effect of higher thresholds was that more trials
were required for the synaptic weights tc reach their asymptotic values.
For the learning mechanism, the learning rate constants, cl through c5,
were set at values such that cj> cJ_+ . As noted earlier, this 1is
reasonable if one views each time step ds being equivalent to one-half
second because then c1 is maximal, corresponding tu a nominal optimal
interstimulus interval of ¢ne-half second. Successive c-values then
) decrease as the interstimulus interval increases. As also noted earlier,
CO and c6 were set equal to zerou, corresponding to interstimulus

intervals of zero and three seconds, respectively. Thus, 1in the

simulations, j ranged from one to five; i.e., 1 was set equal to five.

Vv ¥ ™

What follows are the results of computer simulations of the
drive-reinforcement neuronal model for a variety of CS-US configurations.
{ The predictions of the model are examined for delay and trace
conditioning, CS and US duration and amplitude effects, partial
1 reinforcement effects, interstimulus interval effects including
simultaneous conditioning, second-order conditiouning, conditioned
inhibition, extinction, reacquisitiun effects, backward conditioning,
blocking, wouvershadowing, compound conditioning, dand discriminative
stimulus effects.

During a simulatiun, the CS-US configuration was presented once 1n

each trial. The values of the synaptic weights at the end of each trial
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were recorded and plotted as o function of the trial number. These

PR,

P,

graphs of synaptic weights versus trials are shown in the figures
accompanyiny the aiscussion below. In &adition, in each figure, the
CS-US configuration 1s graphed along with the response of the neuron
during the last trial. The neuronal response is labeled "Y," designating
a plot of y(t) for the last trial of the simulation. The definition of a
trial should be noted. The CS-US configuration, or what is referred ¢
in the figures as the "stimulus configuration", aefines a trial. Thus,

the graphed stimulus cunfigurations in the figures are intended to show

v

PRSI

not only relative times of onset and offset alung with amplitudes of

s v 7
LY
"

£

stimuli but also the number of tines a stimulus was presented during a

LA

trial. What will be seen in the figures is that the behavior ot the

v
~

PR

(-

synaptic weights, as predicted by the drive-reinforcement neuronal model, -

B
¢ e e
.,

mirrors the observed behavior of animals aS they are learning auring
classical conditioning experiments.

Before discussing the individual simulations, two remarks are 1n
order regarding the graphs of synaptic weights versus trials. Any
synaptic weight that played a significant role for the conditioning
phenomenon being discussed is shown in Lhe accompanying graph. Any
synaptic weight that played no significant role (typically meaning that
the neuronal learning mechanism did not alter the weight at all during
the simulation) is not shown in order to simplify the graphs. Also, data
points for the synaptic weight values at the end of each trial are not
shown on the graphs because the resulting aensity of the data points
would be excessive and because the data points fall exactly on the

(theoretical) curves that have been drawn.
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’%‘ Delay Conditioning
k' Delay conditioning is detined such that CS onset precedes US onset
g‘ and CS offset occurs at the same time a5 or after US onset. An example
g, is the well kriown Pavlovian experiment in which a bell (the CS) is paired
b with focd (the US). The observed result in such experiments is that
J conditioned excitation develops. The bell becomes excitatury with
;; respect to the salivary gland. In addition, 1t 1s cbserved that the
: amount of salivatiun in response to the bell alone (measured with
:; occasional test probes) increases with 1increasing trials such that an
§ s-shaped or sigmoid curve results when the amount of calivation is
:- plotted versus the trial number. That is to say, the amount of
{; salivation in response to the bell alone, as a function of trials,
‘ positively accelerates initially and then negatively accelerates das an
8
s asymptotic level of conditioning is approached (Pavlov, 1927). Spence
a (1956) has observed that the acquisition curves of clessical conditioning
:‘ are always s-shaped, providing that the experiments are done caretuily
M enough to capture the 1nitial positive acceleration and the later
;Z negative acceleration. For example, Spence (1956, pp. 68-70) states that
'§ acquisition curves that "do not exhibit an Initial, positively
X acceleratea phase do not do so either becduse they Go not start at zero
Tevel of conditiuning or because the conditiuning is so rapid that the
: periovd of initial acceleratiur is too brief to be revealed except by very
S small groups our blocks c¢f trials."
'? Figure 4 shows the predicted acquisition curves of three neurondl
'E models for delay conditioning. In Figure 4(a), the results of a
b simulation of the model proposed by Hebb (1949) are shown. For the
3
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(a) HEBBIAN MODEL STIMULUS
250 CONFIGURATION
5 AND RESPONSE:
O 200 -
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ib) SUTTON-BARTO MODEL
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Figure 4. Results of simulated celay conditioning experiments with (a)
Hebbian, (b) Sutton-Barto, and (c) drive-reinforcement neuronal models.
The Hebbian model yields cn essentially linear acquisition curve. The
Sutton-Barto model yields a negatively accelerated acquisition curve.
Consistent with the experimental evidence, the arive-reinforcenent
neuronal model yields an s-shaped acquisition curve. (See text ang
Appendix for cetails.)
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Hebbian model, the 1rput-output relationship is the same as for the
drive-reinforcement model and is, therefoure, specitiea by equation (1).
The Hebbian Tearning mechanism has already been noted and is specified by
equation (3). It cen be seen in Figure 4(a) that if a Hebbian neuron
were driving the salivary gland, the anount of saliva produced in
response to the bell alone as a function of trials would exhibit an
essentially linear relationship because the excitatory syneptic weight
associated with the CS varies in an essentially linear fashion with the
trial number. Also, it may be notea that the Hebbian learning mechanism
does not yield an asynptotic synaptic weight value but, rather, continues
to incredase the synaptic weight indefinitely or, of course, until an

upper bound would be reached.

Vg s

EaO I I T IR

In Figure 4(b), the results ¢t a simulation of the Sutton-Barto

A

(1961) model are shown. The Sutton-Barto Jlearning awchanism was
specified earlier in equations (7) and (8). The model's input-output
relationship is that ot equation (1). The model is seen to predict a
negatively accelerated acquisition curve in that the excitatory synaptic
weight associated with the CS neyatively accelerates with increasing
trials. It may be noted that the Rescorla-Veyner (1972) model also
predicts a negatively agaccelerated acquisitiun curve, as have earlier
whole animal models [see, four example, a model due to Estes (1950)].

In  Figure 4(c¢), the results of a simulation of  the
drive-reinforcement model dare shown. The model iy seen tu predict
an s-shaped acquisition curve: Conditioned excitation develops,
first through a positively accelerating phase and then through 4

neyetively accelerating phase. The drive-reinturcement model 1s
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thus seen to be consistent with this aspect of the experinental evidence

of delay conditioning.

Sone reasons why the drive-reinforcement model yields an s-Shapea
acquisition curve may be noted. The initial pusitive acceleration is due
to the efficacy of the relevant Synapse oppearing o5 @ factor on the
right side of equation (2). Thus, as the learning mechanism incredses
the efficacy of the synapse, the future rate of change of the efficacy of
the synapse 1is also caused to increase. With continued conditioning, il
anuther process comes to dominate, yielding the eventual negative
acceleration in the acquisition curve. The regative acceleration 15 due
to Ay(t) decreasing with countinued conditioning. In effect, ,y(t)
moves to an earlier point in time with conditioning, becomng ay(t-3j)
where j is the i1nterstimulus interval. Thus, throughout the conditioning ‘E

process, increasing values of wi(t-J) dare competing with decreasing kS

values of Ay(t) 1n equation (2). Rdpidly increasing vdalues of wi(t-j) ;_i

prevail initially and rapidly decreasing values of aAy(t) prevéill later, éﬁ'

yielding the respective positive and negative accelerations in the %;

acquisition curve. ij

o

o

CS and US duratiun effects L
A careful reader may note that, in Figure 4, the same CS-US i_
configuration is not used fur the simulation of each of the models. Tne i:
hebbian model's CS uftset coincides with the ¢ffset of the US whereas the g.
Sutton-Barto and drive-reinturcement niodel's CSs have the offset occuring -{;
at the time of US ounset. 1 chose those particular CS-US configurations )

because, otherwise, the Hebbiar, and Sutton-Barto models would not have iL;

ol
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predicted the development of conditioned excitation. Both of these

models are sensitive to CS durations in a way that is not consistent with

the experimental evidence, the models predicting no conditioning or

conditioned inhibition for some CS-US configurations that,

e ¥.EK N B

experimentally, are known to yield conditioned excitation, The

effect of (S duration is examinea systematically 1in Figure 5 where

each model's predictions are shown for the same set ot three CS-US
configurations. 1 will specify how the three CS-US configurations
differ and then aiscuss each model's predictions for each of the

three configurations.

In Figure 5, CS, offset occurs at the time of US onset, CS, offset

1 2

occurs at the time of US offset, and CS3 offset occurs one time step
after US offset. Experimentally, it is known that conditioned excitation
(corresponding in the neuronal models to the growth of positive synaptic
weights) is observed in all three cases. In general, the efficacy of
delay conditioning is a¢ strong function ot the time of CS onset and
relatively independent of CS duration (Kamin, 1965).

In Figure 5(a), it 1is seen that the Hebbian model predicts
conditionea excitation for CS2 and CS3 but not for CSl. In Figure 5(b),
it is seen that the Sutton-Barto model predicts conditioned excitation
for CSI and strong conditionea inhibition for C52 and CSB' In Figure
5(c), it is seen that, consistent with the experimental evidence, the
drive-reinforcement model predicts conditioned excitation for all three

CSs and, 1n each case, precdicts an s-shaped acquisition curve.

In Figure 5(c), more detarled aspects of the drive-reinfurcement

model's predictions may be noted. For example, the model predicts a
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Figure 5. Results of simulated delay conditiuning experiments with (a) o
Hebbian, (b) Sutton-Barto, and (c) drive-reinforcement rneurondl models. o
The effect of CS duration is examired. (See text and Appendix for 0

details.) -




particular ranking of CSs in terms of initial rate of conditioning and

asymptotic synaptic weight value as a function of CS duration. The
experimental literature does nut, at this point, permit the accuracy of
these niore detailed predictions tu be assessed. Furthermure, whole
animal data tiay be insufficient to test these predictions, 1n that higher
level attention mechanisms may play ¢ significant roule when (S
durations are extended beyonc the US (Ayres, Albert, and Bombace, 1987).
Experiments at the level of the single neuron may be required tou test
these predictions.

Kegarding the effects of US duration, the drive-reinforcement model
predicts increasing rates of conditioning as the US duration increases
(see Figure 6) and this is consistent with the experimental evidence
(Ashton, Bitgood, and Moure, 1969; Gormezano, Kehoe, and Marshall, 19&3).

Thus far, the dr1vq:re1nfurcement neuronal nodel's predictions have
been demonstrated to be daccurate for three cateyories of classical
cunditioning phenomena: (a) the form of the acquisition curve in delay
conditioning, (b) relative insensitivity to CS duration, and {(c) US
duration effects. The predictions of the model for a variety of other
CS-US configuraticns will now be examined, these CS-US configuratiouns
corresponding to what appear to be the remaining basic categories of
classical conaitioning phenomena. While the predictions ot the Hebbian
and Sutton-Barto models fur these CS-US configurations will not be shown,
it should be notea that the Hebbian model's predictions frequently
deviate substantially from experimentally observed behavior, examples of
this having already been seen in Figures 4 and 5. (0f course, it remains

a theoretical possibility that biological neurons are Hebbian and that
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Figure 6. The drive-reinforcement model's precictions of the effects of
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e,

US duration. Consistent with the experimental evidence, as the US
duration increases, the excitatory synaptic weights associated with the

reinforced CSs increase more rapidly and reach a higher asymptotic level.
(See text and Appendix for getails.)
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f classical ccnditioning phenumend ore  emergent, resulting from the
interactiuns of perhaps large numbers of Hebbian neurons. Experimental
, tests to be aiscussed later will be required to resolve this question.)

The predictions of the Sutton-Barto model are similar to those of the

drive-reinforcement model, 1if one 1is careful, in the case of the
Sutton-Bartu nmwodel, not to use substantially overlapping CSs and USs and

accepting thet the Sutton-Barto model's predicted dcquisition curves are

y
|
! not s-shaped.
LS and US amplitude effects
It is known that faster conditioning results as the intensity of the
CS 1ncreases (Pavlov, 1927; see review by Moore and Gurmezano, 1977). As
is seen in Figure 7, the drive-reinforcement model predicts this
relationship. Shown in Figure 7 are CSs of three different amplitudes,
edach being reinfurced by a US of the same snplituage. The predictec rate
ot cunditioning is seen to 1ncrease as the amplituge our intensity of the
CS ncreases. Four the three CSs, the rank ordering of the asymptotic
velues of the syndaptic weights is the reverse ot the rdnk ordering of the
rates of acquisition because o Tow amplitude CS requires a ldarger
aSymptotic synaptic weight to yield the same evertual CR amplitude as can
be obtained with a high amplitude CS and a lower asynuptotic synaptic

welyht,
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STIMULUS CONFIGURATION
AND RESPONSE:
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Figure 7. The drive-reinforcement model's predictions uf the effects of
CS omplitude. Consistent with the experimental evicence, as the CS
amplitude decreases, the rate of yrowth of the excitatory synaptic
weights associated with the reinforced CSs decreases. Asymptotic
excitatory synaptic weight values vary inversely with CS amplitude
because a lower CS cnplitude requires a higher excitatory asymptotic

synaptic weight value to yireld a CR amplitude equal to the UR amplitude.
(See text and Appencix for details.)
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Regarding US amplitude effects, Moore dand Gormezanu (1S/7, p. 115)
note that "Within Timits, the rate of dcquisitiun ond  level of
performance of a CR are 1ncreasing functions ot the intensity of the US."
This is predicted by the aurive-reinforcement wcdel as can be seen 1in
Figure 8 where three identical CSs are shown being reinforced by USs of
decreasing amplituce., It is seen thal both the rate of acauisition and
the asymptotic weight velue aecrease as the US anplitude decreases.

CS preexposure effects

S _preexposure refers to nonreinturced presentations ot a CS prior

to reiunfourcea presentations. The obsurved result is that (S preexposure
retards subsequent acquisitiurr ot the conaitioned respunse  when
reintorced presentations of the (S beyin but the experimentel evidence
also suggests that the preexposed (S dues nut become inhibitury [see
review by Flaherty (1985) who cites, e.q., Rescurla (1971), Reiss and
Wagner (1972) ana Sulomon, Brennan and huore (1974)]. As Flaherty (19&5)
notes, one possible explanation for CS preexposure etfects 1s that the
animal may, during the nonreinforced (S presentations, learn not tu
attend to the stimulus. If this is the case, (S preexpusure effects
would not be predicteu by a neuronel model. Rather, such effects woulc
require network-level considerations for their prediction. The related
subject of US preexposure effects will be ciscussed later when the
phenomenon ot blucking is considerea.

Partial reinforcement effects

In the case of partial reinforcenent, a €5 15 not olways follouwed by

a US. This cdan be contrasted with countinuous reinturcenent, in which

case the US always fulluws the CS.  The ubserved result of pdrtial
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Figure 8. The drive-reinforcement model's predictions of the effects of N
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US amplitude. Consistent with the experimental evidence, as the US
anplitude decreases, the rates of growth and asymptotic values of
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excitatory synaptic weights associated with the reinforced CSs decrease.
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(See text and Appendix four details.) -
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reinforcenent is a reduced rate of cunditioning and sometines a reduced

asymptotic level of responding (Gormezanu, Kehoe, and Marshall, 1983)
| relative tc the rates and asymptotic levels observed for continuous
reinforcenent. The drive-reinforcement nodel's predictions are
consistent with this, as can be seen in Figure 9, where CS1 is reinforced
160 percent of the time, CSZ 15 reinforced 50 percent of the time, and
CS3 1s reinforced 25 percent of the time. In Fiyure 9, 1t is seen that
rates of acquisition dana asymptotic weight values are predicted to

decrease as the percent reinforcement decreases.

Trace conditioning

Trace conditiuning is an experimental procedure in which CS offset

precedes US unset. The time betweer CS offset and US onset 1s termed the

trace interval. In general, the longer the trace interval, the lower the

rate of acquisition and the lower the asymptotic level of conditioning
[See Flaherty (1985) tor a review of the experimental evidence]. The
drive-reinforcement model predicts these relationships, as can be seen in
Figure 10, where three CS-US configurations are shown. It can be seen
that i1ncreasing trace intervals yielded both lower rates of acquisition
and lower asymptoutic synaptic weight Tlevels. In terms of the
drive-reinfurcement model's  dynamics, some  reasons  that  trace

conditiening i1s less effective than delay conditiuning are that the ax

that ouccurs at CS onset is paired not only with the positive sy of US

'~
<.
'._\
“~
v
S
e
g

onset but also with the negative A4y of CS offset and, furthermore, the

L]
&L
%)

interstimulus interval for the negative 4y has o larger learning rate

'
g

A

QCbéisjdr

constant associated with 1t than does the interstimulus interval for the

4t e

positive Ay.
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STIMULUS CONFIGURATION
AND RESPONSE:
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Figure 9. The drive-reinforcement model's predictions of the effects of
partial reinforcement. Consistent with the experimental evidence, it is
seen that as the fraction of CSs that are reinforced decreases, so does
the rate of growth of excitatory synaptic weights associsted with the
reinforced (Ss. The drive-reinforcement model also predicts lower
asymptotic excitatory synaptic weight values as the percentage of
reintorced CSs decreases, an etfect that is consistent with some partial
reinforcement studies. (See text and Appendix for details.)
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STIMULUS CONFIGURATION
AND RESPONSE:
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Figure 10. The drive-reinforcement model's predictions of the effects of
trace conditioning. Consistent with the experimental evidence, as the
trace interval increases, the rates of growth and asymptotic values of

the excitatury synaptic weights associated with the reinforced CSs
decrease. (See text and Appendix for details.)
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Interstimulus interval effects including simultaneous ccrnditioning :-*
The predictions of the drive-reinforcement mcdel for a variety of rd
interstinulus intervals in delay conditiuning are shown 1in Figure 11. E}_‘-.
The interstimulus interval is defined to be the time between CS and US ’
onsets., In the case of CS1 in Figure 11, CS and US onsets are SN
simultaneous. This CS-US configuration is an example of what is referred N
to as simultaneocus conditioning. Citing Pavlov (1927) as well as Smith, «.
Coleman, and Gormezano (1969), Flaherty (1985) notes that "little or no -:j:'
conditioning occurs with simultaneous CS and US onset." This is what the ;Z;:-_
drive-reinforcement model predicts. As can be seen in Figure 11, the "
synaptic weight for CS1 remains unchanged during the sixty trials for :
which the computer simulation was run. Flaherty (1985) goes on to note :_
that some ccnditioning has been repurted for simultaneous CS and US .E
onsets in the . case of fear conditioning (Burkhardt and Ayres, 1978; '“:'}
Mahoney and Ayres, 1976). Thus, the experimental results with regard to E_:‘
simultaneous conditioning appear complex and it can only be noted that E:
the predictiuns uf the drive-reinfurcement model appear to be consistent '.\
with some of the experimental evidence. ﬂ
For interstimulus intervals greater than zero, experimental results ,
suggest that a noninal interval of 500 ms (one time step in the :-.
simulations) is optimal when conditioning short latency skeletal '
reactions. With lunger intervals, the efficacy of conditioning declines \
until, tor intervals exceeding a few seconds, no conditioning is observed i:
(see review by Moore and Gormezano, 1977). This is consistent with the '
predictions of the drive-reinforcement model. In Figure 11, it is seen \
that conditioning is must rapid for an interstinulus interval of one time .

J,\ Ny \ \ 5 ‘ N
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Figure 11. The drive-reinforcement model's predictions of the effect of ik
the interstimulus interval. Consistent with the experimental evidence )
and consistent with the assignment of values to the learning rate _
constants, c¢_, the model 1is seen to predict no conditioning for -
simultaneous %Sl and US onsets and then decreased rates of conditioning

]
s e
@ s .

4

as the interstimulus interval increases beyond the ¢ptimal interstimulus

interval employed with CS_ . Interstinulus intervals were as follows:

oL
bl

[
zero time steps for CS_, one time step for CS,_, three time steps for CS

1 2’ 3° pe

five time steps for CS4’ and six time steps for CSG' {See text and :fl

. . RO

Appendix for details.) o2
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step in the case of CS_, progressively slower for intervals of three and

2

five time steps in the cases of CS3 ana CS4,

conditiuning manifesting for an interstimulus interval of six time steps

respectively, with no

in the case of Csb.

An alternative way uf viewing the simulation results shown in Figure
11 is to see them as contirming the expected consequences of assigning
the learning rate constants, Cj’ in the manner described earlier.

Neanely, c. and c_ were set equal to zero, C, was assigned the highest

0 6 1
value ang c2 through c5 were assignea progressively lower values. Thus,
the simulation results in Figure 11 reflect the fact that the learning
rate constants were chosen consistent with the empirical evidence

regarding interstimulus interval effects.

Second-order conditioning

Second-order conditioning is an experimental proucedure in which one

CS is reinforced by anuther CS, the latter CS having been previcusly
reinforced by a US. Pavlov (1927) reported that this procedure yielded
conditioning 1n the second stage, the secund CS coming to elicit the
conditioned response oriyinally elicited only by the first CS. However,
in discussing secund-order conditioning, Rescorla (1980, pp. 5-4)
conments on "a historicelly nagging issue". Rescorla states that the
"issue concerns whether, in fact, second-order conditioning is a real and
pewerful phenomenon.,  Although Pavliov reported its occurrence, he
described it s transient. Subsequent  authors have uften  been

less than enthusiastic about its reality." This is interesting

because the drive-reilnforcement model predicts that second-urder
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corniditioning will not be as strung as first-order counditioning and that
secong-order conditioning will be transiernt. Simulation results that are
the basis uf this prediction are shown in Figure 12 where, in stage one
of conditioning, CSl is reinforced by a US, achieving an asymptotic
synaptic weight value of just a little more than tour. After delay
conditioning in stage one (trials 1-60), secona-urder conditioning occurs
in stage two (trials 61-200). The drive-reinforcement model predicts

significantly weaker conditioning in stage two, the synaptic weight

Tyt

WA

»
.l ‘.( .

associated with CS, peaking at a value between uiie and two. Furthermore,
<

the transient nature of second-order conditioning, as reported by Pavlov

L

L)
P

s

(1927), 1is predicted by the model. In stage twu of the simulatea
secona-order conditioning experiment, after the CS2 synaptic weight
peaks, the model predicts the subsequent aecline of the weight aue to
what 1s essentially an extinction process. Had the simulation been
carried out for further trials, the CS2 synaptic weight would have

declined to the lower bound of 0.1.

Congitionea inhibition

Deiay conditioning yields conditioned excitation; i.e., the CS cones

to excite the conditioned response (CR). An alterngtive procedure

ceveloped by Pavlov (19z7) yields what he termed conditioned inhibition;

j.e., a CS would come tu inhibit a CR thdat otherwise would have
manifested.

One of Pavlov's procedures for demonstrating conditioned
inhibition was as follows. In the first stege of conditioning,
Paviov woula wutilize a delay conditioning procedure 1o rendger CS

1
excitatory with respect to a CR. Then, in « second stage of
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Figure 12. The drive-reinforcement model's predictions of the effects of ®
. . . . . . N/

second-order conditioning. Consistent with the experimental evidence, ‘:
after delay conditioning in stage 1 (trials 1-60), the excitatory o
synaptic weight associated with CS1 extinguishes in stage 2 (trmals \,.
61-200) during second-order conditioning. Also consistent with the .
experimental evidence, the excitatory synaptic weight associated with C52 Zj::
increases initially during stage 2 and then decreases. (See text and :i-;_v
Appendix for details.) \.}'
@
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cunditicning, he would continue to reinforce csl with the US but he would

also present an unreinforced CSl-CS2 pair tu the danimal. During the

second stage of conditioning, the animal's respounse to CS1 unpairec would
decrease initially anc then return to its original level. The animal's

response to the CSl-CS, pelr would decrease to zeru. Furthermore, Paviov
C

was able to demonstrate that CSZ became a conditionea inhibitor in that,

after stage-two conditioning, if CS2 was pdired with another CS, sey 653,

that was known, by 1tself, to be a conditiuned exciter, the CR assuciated

"
La
- N .

with CS3 wes, in general, reducea or eliminated. Ny
\ ..
. . . . L
The drive-reinforcement model predicts this behavior, as cah be seen ~
-~
=

in Figure 13. In stage one (trials 1-70) of the simulatec cunditioning,

o
CS1 is reinforced by a US such that conditioned excitation develups, with j;
)
S
the progress ¢t the excitatory weight, wl(E), exhibiting the usual ﬁ:
R

s-shaped acquisition curve. Then, in stage two (trials 71-200), CS1
unpaired is reinforced by the US once in each trial while the C51~CSZ
pair 1is alsu presented once during each trial and the pair is
unreinfurced. The model predicts that the excitatory weight associated
with CS1 will decrease initially and then return to its previous level,
mirroring the behavior Pavlov cbserved with his aninals. Also, the model
preaicts that the inhibitory weight, wz(l), associated with CSZ’ will
grow stronger «% Stage two conditioning proceeds, consistent with
Paviov's observation that C82 becomes a  cunditioned inhibitor,
(Regarding the notation employed here, an "E" or an "1" in pdarentheses

following W signities an  excitdtory or intnbitory  weight,

respectively. This notdation 1nvolves d degree ot redungancy in that

excitatory weights will always be pusitive and 1nhibitory weights will

s \':
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STIMULUS CONFIGURATION AND RESPONSE:
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C51 — \r— vl . ad " . P o
c82 -l Nt —— St
s —t i

Y — - U e S

CONDITIONED CONDITIONED
EXCITATION ™1™ [INHIBITION

———= |=— EXTINCTION

(7]
£
(¢
w
3
Q
E 4 \\ w(l)
g \
[7,] \
A Y
\\
2 \\\ Wz(”
-3 ' 1 ' 1 ! 1
0 50 100 150 200 250 300
TRIAL

Figure 13. Results of a sinmulated classical conditioning experiment
moageled after experiments performed by Pavlov (19¢7), in  which
conditioned excitation, conditioned inhibition, and extinction paradigms

are empluyed. (See text ana Appendix for detaiis.)
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always be negative so, in the graphs, excitdatory and inhibitory weights
tor a particular CS coula be distinguished on that basis.)

Because the decrease in the excitatory weight associated with CSl

during the second stage of conditioning and then its subsequent return to
the asymptotic level achieved in the first stage of conditioning may seem
surprising, a few words of explanation may be in order. The initial

decrease is due tu Lhe occurrence of the unreinforced CSl-CS2 pair in

that the onset of the CSI_CSZ pair yields a positive X that is followed

by a negative Ay at the tine of termination of CS1 arnd CS,,. The negative

[
Ay occurs because, with an unreinforced pair, n¢ US onset occurs at the
time of CSl-C52 offset and thus there is nothing to cause the neuronal

response to be sustained. The drive-reinforcement learning mechanisn

yielas negative aw's whenever a positive ax is followed within ¢ tine
g P ;

steps by a negative Ay. Thus, the excitatory weight associated with CS1
decreases 1nitially in stage two of conditioning. Similarly, the

inhibitory weight associated with CS_. 1s decreasing (i.e., becoming more

2

negative or becoming stronger in terms of its absolute value) because C52

onset yields a positive sz that 1< followed by a negative Ay ot the

time of CSl-CS2 offset. The excitatory weight associated with CS1 ceases

to decrease and starts increasing when the conditiuned inhibition becomes

sufficient, such that the positive ay following the onset of CS, unpuired

1

with CS2 is laryer than the negative 4y following the onset of CSl-CS2

paired. The inhibitory weight associated with CS, continues to decrease
I4
(become more strongly inhibitory) because its onset, yielding a positive

Ax continues to be folluwed by a negative Ay until the conditioned

2’
inhibition of CS_ becomes sufficient tu cancel the concitioned excitation
[4
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of CSl, at which point the CS, inhibitory weight, wz(l), approaches 1ts
(S

asymptotic level. At the same time, the CS1 excitatory weight, w_(E),
i

approaches its asymptotic level, equal tu its pricr asymptotic level,

because when the CS2 conditioned inhibition cancels the CSl conditivrea

excitation, the reinforcement of CS. unpaired is the only event in each

1
trial that yields a nonzero Ay following a positive Ax. Thus, towerd
the end of stage two conditioning, the situation in terms of positive

Ax's tollowed by nonzero ay's is similar to that which occurred in stage

one.

Extinction and reacquisition effects

When conditiouned excitation develops in conjunction with a CS, as
was the case for CS1 at the conclusion of stage one (trials 1-70) and
stage two (trials 71-200) of conditioning in Figure 13, if the CS
continues to be presented in a third stage of conditioning, this time
without reinforcement, then Paviov (1927) observed that the CR
extinguishes; i.e., the CR decreases in magnitude, reaching zero with a
sutficient number of unreinforced presentations of the CS. In additicn,
Pavlov inferred that conditioned inhibitiorn ceveloped during the
extinction process beccuse he observed "spontaneous recovery” of the CK
with time and he alsu cobserved more rapid reacquisition of the CR if
reinforced presentations of the CS were resumed. The predictions of the
drive-reinforcement model are consistent with Pavlov's observations and
inferences. Note that in stage three (trials z01-300) of conditioring in
Figure 13, where CS. 1s presented without reinforcement, the CS

1
excitatory weight, wl(E), declines and the CS

1

| irhibitory weight, wl(l),
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grows stronger, until they cancel one another, at which time the CR will
nu longer appear.

Perhaps a few words dare in order reyaraing the phenomenon of
spuritaneous recovery following extinction. Spontaneous recovery refers
to the tendency of an extinguished conditioned response to return cfter
the CS 1is not presented for some period of time. It seems that
spuntanevus recovery could be due to the state of the nervous system
changing sufficiently with time so that the conditioned inhibition that
may develop during the process ¢f extinction becomes less effective. [As
nreted above, Pavlouv (1927) believed that condgitioned inhibition developed
aguring the process of extincticn., However, Rescorla (1969, p.87) has
stated that "There is ounly meager evidence bearing on this question".]
It the hyputhesized concitioned inhibitiun were to become less effective
because a change in the state of the nervous system resulted in fewer of
the conditioned inhibitory synapses beiny active, then it would beccue
easier for the concditioned response to manifest again. If this
explanation of spontaneous recovery 1is correct, o neurovndl model would
not be expected tu predict the phenomenon. A network model would be
required to generate the prediction.

In  the third stage of conditioning in  Figure 13, the
drive-reinforcenent model makes one further prediction that has noet yet
beeri  discussed. In this simulation, not only was CS1 presented
unreinfurced in stage three but the CSl-CS2 pair was alsu presented
unreinforced. Pavlov (1927) observed that under these circumstances, the

conditiunea excitation associatea with csl extinguished but the

conditioned inhibition assuciated with CSZ did not. 1This is predicted by

54

rﬁr‘;‘;‘: 5'r 5~ \"'-..\ ‘-..‘- ', ) .. t V“ ( 2

foSl 1

F"- '.- .' .' " l. g

e

¥

AR SN

AN LN s

e e e

[ T

A A
a' sl

[

) v ‘..‘"
L L0 2"

LA P gl
.. "

L

- ‘,"J g .
4

e

[

TSR

b 'I.'.'.. PS

W e,
AT TN

1

-

.h
N




the drive-reinforcement mudel. In the thira stdage of congitioning 1in
Figure 13, notice that the inhibitury weight, wz(l), refidins unchanged
during the wunreinforced presentations of the csl-LsZ palr. This
prediction of the drive-reinforcement model difters from that of the
Rescorla-Wagner mouael of classical counaitioning. As Rescorle ona Wagner
(1972) pouint out, their model 15 inconsistent with the experimental
evidence of conditioned inhibitiun studies in that the model preaicts the
extinction of cenditioned inhibition. The drive-reinfurcemnent model does
not make this prediction becouse the positive A4x occurring at the time
of C52 onset is not folluwed by a pcsitive Ay.

Paviov (1927) reported that after extinction of a CR, if reinfurced
presentations of the CS were resumed, then the CK would be reacquired
more rapidly than during the first series of reinturced trials. The
arive-reinforcement model predicts this reacquisitiun effect, as can be
seen in Figure 14 where aelay conditivning occurs in stege one (tricls
1-70), extinction ot the CR occurs in stage two (trials 71-140), dna
reacquisition of the CR occurs in stage three (trials 141-200). When
measured to dan accuracy uf three sigmificant figures, the (S excitatory
welght reached its asymptotic level in 61 trials 1rn stage one but only
required 47 trials tu reach the sdame level in stage two. This effect
occurs because, during reacquisition, the CS excitatory weight begins at
a higher level than during the initial acquisition process. 1t may be
noted thal this prediction of the drive-reinforcement nodel ditters from
that uf the Rescorla-Wagner (1972) and Suttur-Barto (1981) nodels 1. that

the latter two models du rnol predict the mure rapic redequisition of

conditioned respurnses.
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STIMULUS CONFIGURATION AND RESPONSE: .

TRIALS 1-70: TRIALS 71-140: TRIALS 141-200: 2
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Figure 14. Results of a simulaeted three-stage classical conditioning N
experiment in which the drive-reinforcement model's predicted rate of .
. L. - . . . . b
reacquisition of a CR in stage 3 (trials 141-200) after extinction in N
stage 2 (trials 71-140) is comparea with the predicted rate ot initial <
acquisition in stage 1 (trials 1-70). Consistent with experimental NN
evidence demonstrating that reacquisition occurs more rapidly, the ::L-
drive-reinfurcement model predicts that acquisition in stage 1 wil) o
require €1 trials as compared with 47 trials for reacquisition in stage ~
3. (See text anc Appendix for details.) -
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Backwara conditivning

In backward cunditioning, the onset of the LS precedes the onset of

the CS. There have been contiicting reports regarding whether backward
conditioning leads to conditiuned excitation or conditiunea inhibition
(e.g., see review by Gormezanu, Kehoe, and Marshall, 1983). Ilchoney and
Ayres (1976) sought to design experiments that would clarify some of the
issues and they concluded that counditioned excitation did result from
backward conditioning. At this time, the consensus appears tu be that
backward conditioning can lead to conditioned excitatiun initially but
that extended backward conditioning usually yields conditioned inhibition
(Paviov, 1928; Rescorla, 1969; Wagner ana Terry, 1975; Heth, 1976;
Schwartz, 1984; Flaherty, 1985; Dolan, Shishimi, and Wagner, 1985). The
initial conditioned excitation may be due to transient effects assuciated
with global brain processes such as arousal triggered by the onset ¢f the
surprising US. In this view of backward conditioning, the hypothesized
underlying process is one of conditiuned inhibition which prevaills with
extended conditioning, after the US has come to be expected. The
predictions of the drive-reinforcement model are consistent with this
hypothesis, as can be seen in Figure 15. In Figure 15(a), forward
conditioning is shown for a CS, the onset of which occurs two time steps
before the onset of the US. In Figure 15(b), backward counditioning is
shown fur the same CS and US, in this case with the onset of the (S
following the onset of the US by two time steps. The drive-reinforcement
nodel predicts that backward conditioming will lead tu conditioned
inmibition, consistent with the experimental results obtained in most

cases of extendea backward conditioning. However, regarding these
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STIMULUS CONFIGURATION
AND RESPONSE:

51
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STIMULUS CONFIGURATION
TRIAL AND RESPONSE:
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Figure 15. Results of simulated classical conditioning experiments in
which the drive-reinforcement model's predictions for (a) forward and (b)
backward conditioning are compared. Consistent with the experimental
evidence, the model preaicts that conditioned inhibition will result trom
backward conditioning, 1in contrast to conditioned excitation being
predicted as the result ot forward conditioning. (See text and Appendix
tor details.)
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experimental results, J. w. Moore (personal communication, June 18, 19¢b) f:
suggests that one caveat is in order: “... nu studies have used the ;Sf
requisite combination of summation and retardatiun tests to assess the EE’
presumed learned inhibitury properties instilled by backward training." @f.
Blocking and overshagowing ;;ﬁ
s,

Temporal contiguity between a CS and US 15 fundamental tu classical gfa
conditioning. This has luong been understood to be the case. But while :;
temporal contiguity is necessary, Kemin (1968, 1969) has demncnstrated :E
that it is not sufficient. Kamin has shown that a CS must also have i;
predictive value. That is tu say, there must bLe a contingent "
relationship between the CS and US as well as a relationship of tenporal i?g
contiguity; otherwise, no conditioning will occur. Kamin demonstrated 2%:
this by first reinforcing CS1 with a US until an asymptotic level of Tl
associative strength was reached. Then he added C52 such that L52 was ﬁfi
presentea sinultaneously with CSl and both were reinforceu. Kamin showed i?
that nu ur very li1ttle assoCiative strength aeveloped between C52 and the o
US. The first CS wos said to have blockea conditioning ot the second CS, Eizi
The drive-reinforcement model predicts the phenomenon of blocking, E;E;

as can be seen in Figure 16. In this simulatec blucking experiment, CS] :ii
is reinfurcea by the US in the first stage of conditioning (trials iii
1-100), wuntil the CSl excitatory weight has approached 1ts asymptotic ES%
level. Then, in stage two of concitioning (trials 101-160), CS1 and CS2 ?;E
are presented sinultaneously and reinforced with the US. 1t is seen that :;;
the CSZ excitatory weight remains unchanged during the second stage of ;;é
conditioning. Consistent with the experimental evicence, the ;E'
X
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drive-reinforcement model predicts that conditioning of CSZ will be

blocked by CS., due to the previous conditioning of CS

1’ I
US preexposure effects may be due to the phenomenon ot blocking

{ (Mis ana Moore, 1973). If an animal experiences a number ot US
presentations prior to experiencing paired presentotions of a (€S and
the US, the result 1s that the conditioning process 1is retarded.
This eftect may be due to the experimental context, during LUS
preexposure, becoming a blocker for subsequent conditivniug [see
review by Flaherty (1985) and, e.g., Balsam and Schwartz (1981)].

A question in animal learning theory has beenrn  whether

oA e,
P 4

contingency aspects of classical conditioning derive froni

Y
.
>R

Timitations on the amount of associative Strength available so

\l; Y
®

that, 1n effect, stimuli nmust compete for the available asscciative
strength (Rescorla and Wagner, 197Z) or whether, in effect, stimuli -

must compete for an animal's attention (Sutherland anc Mackintosh,

1971; Mackintush, 1975; Moore and Stickney, 1986, 1985). The
alternative hypotheses dare not mutually exclusive, The
drive-reinforcement neuronal model's predictions are consistent with
the hypothesis that there are limitations on the g¢ssuciative
strength available to stinuli. However, the neurondal nudel does not
rule out the wnvolvement of higher Tevel attention mechdanisks.

In the case ot the drive-reinforcenent model, it cdn be seen that

. » DR ‘ P
@

the limits on ay(t) serve to liuit the amount of associstive strength )
available to competing stimuli. y(<) 3% buunaed such that it is less
than or equal to y'(t), the maximal frequency of firing of the neuron.
i
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STIMULUS CONFIGURATION AND RESPOWSE:
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TRIALS 1-100: TRIALS 101-160: ::
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Figure 16. The drive-reinforcement niodel's predictions of the effects of )

™ t

a blocking stinulus. Consistent with the experimental evidence, the v

model predicts that after delay conditioning of CS1 in stage 1 (trials lf

1-100), conditioning of Cs,, presented simultaneously with CS  in stage 2 -

(trials 101-160), will be blocked. The CS2 excitatory synaptic weight, .

W, does nout change in stage 2. (See text and Appendix for cetails.) :i
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For nonoveriapping CSs and USs, the upper bound on  y(t) may actually be >
(-.
less that y'(t) because, in this case, y(t) never exceeds the amplitude ::
s

of the UR. Thus, as was seen in Figure lb, if CSl has been reinfurced

s

until an asymptotic level of conditioning 1s reached, subsequent

2

conditioning of a seconu stimulus, CS?, will be blocked if the second

stimulus forms ¢ compound with the first end the onsets of CS1 anu C52 E}:

are simultaneous. What happens is that ir stage 1 of conditioning, the

positive Axi(t-j) associated with CS1 interacts with the subsequent :EE-
positive ay(t) induced by the unset of the US, causing CRl to grow and Eﬁ
thus dininishing ay(t) with each trial. Eventually the positive ay(t) ';'
associated with US onset diminishes tc the point where its effect is ;i;
cancelled by the subsequent effect of the negative Ay assuciated with US E:;
offset. The amplitude of CR1 has grown to the point where there is no ";'
room for the generation of a net positive Ay subsequent tu a positive Ei
Axi when C32 is intreduced as part of 4 compound. Thus, consistent with EE'

o

the experimental evidence anc consistent with the hypothesis of Rescorla
and Wagner (1972) that there are limitations or the associative strength
available to stimuli, the arive-reinforcement wodel predicts that
conditioning will be blocked with respect to CS?'

A variant of blocking is overshaduwing (e.g., Baker, 1968; Courillen
and Bitternan, 1982), first reported by Pavlov (1927), in which two or
more simultareous CSs are reinforced in a single stage of conditioning.
In this type of experiment, it is cbserved that the more salient stimulus

acquires the greatest associative strength, in effect, partially blocking
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conditioning of the other stinuli. The arive-reinforcement moudel predicts

overshadowing, as may be seen in Figure 17. In this siuulated classical :;‘
o,
\I
conditioning experiment, three simultaneous CSs are reinforcea by a US. D

CS1 and C52 are of equal amplituce. The amplitude of CS3 1s twice that =

of either of the other two CSs. Consistent with the experimental )
evidence, the drive-reinforcement model 1s seen to predict that the CS3 i{i
excitatory weight will achieve a substontially higher asymptutic value ~
than the equal and lower asymptutic values achieved by the LSl and 652 g;
excitatory weiyhts. This effect occurs with the drive-reinforcement 55;
model because the change in the presynaptic frequency of firing upon -
CS onset 1s greater for C53 than it is for CS1 or CSZ' Thus, the CS3 éz
excitatory weight increases more rapidly, taking up a larger fraction of :;
the total available associative strength than either the CSl or CS2 “
excitatory weights, 3}:
Cumpound conditioning %S:
In compound conditioning, multiple CSs are presented simultanecusly i:;
or sequentially for reinfurcement (or for nonreniforcement). Compound i;%
CSs have appeared in some of the simulated classical conditioning ‘g;'
experiments discussed above, including those experiments 1nvolving {i;
cunditivned inhibition, blocking, and oversheGowing. :%'
o
A compound conditioning experinent reported by Rescurla dnd Wagner EE'
(1972) can be utilized as a test of the drive-reintforcement wmodel, The ?$‘
experimental results were obtained, Rescorla and Wagrner (1972) note, 1n a ;%-
previously unpublished study due to Wayner and Seavedra. The experiuent Ei;
involved comparing the eftects of two CS-US configurations. In une :-..
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STIMULUS CONFIGURATION
AND RESPONSE:

081—’_"'_

1—
7
= cSy ———
o
w W3,
3 e cs,— L —
/
Q ’
- n
% ,/ w,W, us
£ /7
> I'd
» / y —— 1
0 T T T L
0 10 20 30 40 50

Figure 17. The drive-reinforcement model's predictions of the effects of
stimulus salience on compound conditioning. Consistent with the
experimental evidence, the model predicts that a nore salient stimulus,
CS3’ which has an amplituce of 0.4 will condition more rapidly and
strongly than less salient stimuli, CS, and CS,, each with an amplitude

| 2’
of 0.2. The asymptotic excitatory synaptic weight for CS3 1s more than
double that of either the CSl or C52 asymptotic excitatury syndaptic

weights. Thus, the drive-reinfurcement wodel predicts the phenviienon of
overshadowing. (See text and Appendix for details.)
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configuration, CS1 occurring dlone was reintorced dang also CS1 paired
with CS2 was reinforced. An example of such a (S-US confiquration
appears in Figure 1b(a). In the second contiguration, dan example of
which 1s shown in Figure 18(b), CSl occurring dlune was not reinforced;
only CS1 paired with CS, was reinforced. In the case of the first

2

configuratiun, where both Csl alone and (S -CSZ paired were reinforced,

1

the asymptotic associative strength of CS. wds obscrved tu be high and

1
that of CS2 was observed to be low. The raenking of the asymptotic
associative strengths reversed when the secund configuration was
enployed, in which CSl alone was not reinforced and LSl-CSZ paired was
reinforced. These results are predicted by the drive-reinforcement
model, as can be seen in Figure 18. In effect, what happens 15 that thie
CS that more reliably predicts the US comes to block the other CS.

Space limitations preclude the presentation of gaditional results of
cuomputer simulations of compound conditiuning experiments. However, twu
other compound conditiuning effects that dare predicted by the

drive-reinforcement model should be noted. In  the <case uf the

overexpectation pardadigm, two Sstimuly, CS1 and Lbz, are tirst

individually conditioned to an dsymptutic level, each stinulus being
reinfurced with the same US.  Then, in ¢ second stage ot conditivning,
the two stimulil are presented as a coumpound that 1s reinturces utilizing
the same US ds in the first staye. hkescorla ond Wagner {(19,/z) and Kremer
(1987) report thet the associdtive strengths of the two stimull decrease
in the second stage of  conditiuning. Furthermore, 1t e anitially

neutral stinulus, CS , 15 presented 1n conpound with UL ond LS 1n the
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STIMULUS CONFIGURATION
(s) AND RESPONSE:
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TRIAL
(b)
STIMULUS CONFIGURATION
27 AND RESPONSE:
[
g CS1"'—h— —_
: v
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Figure 18. Resuits of simulated cumpound conditioning experinents in
which the drive-reinforcement model's predictions for reintorced and
nonreintorced C(S's are comparec. (Lonsistent with the experimental

evidence, i (a) the model predicts strong conditioning ot LSl relative

to CSZ’ where both CSl alone dand the CSI-CS2 pair are reinforced. Again

consistent with the experimental evidence, in (b) the model precicts that

the rotiking ot associative strengths for CSl and C82 will be reversed
with respect to (a) when CS] alone 1s net reinforced and the CSI-CSZ pdir
is reinforced. (See text and Appendix for details.)
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second stage of conditiceritng, CS. becomes a conaitioned inhibitur. lrne
o)
drive-reinforcement model precdicts these effects.

In the case of supercunditioning, the couipound te v rernforoen

consists of twu stimuli, one Initially neutral and the other o
conditiunea inhibitor by virtue of prior conditionming. Keintoreepent of
this compound 1s observed to yield an asymptetic associative strenglh for
the 1nitially neutral stinulus that 1s greater thanr the corresponding
gssociative strength in a control experiment in which both stinull are
initially neutral (Rescorla, 1971; Wagner, 1971, Hie
drive-reinfurcement model predicts this effect.

Discrimindtive stimulus effects

The simulated classical conditioning experiments discusscee cbuve,
the results ot which were shown in Figure 18, 1nvolved conpour g

cenditioning  and  discrininatiun learning. Ciscrimination  learian,

experiments test an animal's ability to discrininate between reinforced
and nonreinfourced CSs. A nore complex example ot o compound conditivning
experiment that tests for discrininative stinulus etffecis 15 shown n
Figure 19(a), where the compound CSl—C53 1s reinforced and the cumpound
CSZ_CSX 1$ ncet retnfurced.  For this CS-US contiguration, experimeotal
evidence reviewed by Rescorla and Wagner (1972) suyuests that  the

dsymptutic associdtive strengths will be high tor (S, Tuw for 05 ond
1

J
zeru for CSZ. Actually, CSZ 15 observed 1n the experioort o o e Lt
congitioned iahibitor, It is  seen in  Filgure iYia;  het the
drive-veinforcement model predicts these results. FPoartmerne re, i
drive-reinforcement model predicts that the Cumbince anuao. 1ot
67
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Figure 19,

which the drive-reinforcement

(a)

model's

2 5
STIMULUS CONFIGURATION
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Results ot simulated compound cunditioning experiments

predictions of the effects

in
of

discriminative stinuli were determined for o more complex Cuse than that

purtrayed in Figure 18,
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(See text and Appendix four details.)
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strenygths of CSZ ana CS3 will 1ncrease initially anc then decredse. This
transient effect predicted by the model huas been observed by
experimentalists, as Rescorla and Wagner (1972) note.

A CS-US confaguraticn similar to that shown i Figure 19(a) 15 Stown
in Figure 19(b). Rescorla and Wagner (197¢) review the results of 4
Study by Wayner, Logan, Haberiandt, and Price (196t 1in which the
aiscriminative stimulus effects of the C(CS-US counfiguration shown 1n
Figure 19(e) were cuipared with the ettects ot the CS-US contiguration
shown 11 Figure 19(b). The CS-US counfiguration shown 1 Figure 19(b)
represents o "pseudodiscrimination”" experiment in that both compuund CSs
are reinforced sonetimes and both are nonreinforced summelines so 1t is
actually & partial reinforcement experiment. Because ¢f the simnlerity
between the LS-US counfigurations in penels (a) dana (b of Figure 19, 1t
15 of Interest to compare the experimental outcomes. It waS touna by
Wagner et al. (1968) that while LS3 wus reinforced an eqQual fraction of
the time in buth the discrimination ana the pseudodiscrinninetion training
and ouccurred in compound with the same (Ss, the eventual assccrative
strength  of LSS, when tested alone, wdaS much  yreater after
pseudodiscrimination training than after discrimination training,  Thas
15 predicteu by the avive-reinforcement mocel. aS can be Seen by
comparing the asymptotic synaptic welghts for ,Sg 1 panels (¢ and (b

of Figure 1Y. The net CS3 asymptotic syraptic welght (1.e., Ut ti(

asymptulic  excitdtory welght ninus  the absolute vdlue ot the (S

asymptotic nhibitory weight) an Figure 19(b) 1is appruxiiately, gouble

that ot the net LSJ asymptotic synaplic welyht 1o Figure 19{(¢,. [t
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shouid be noted 1hal the Rescorla-Wagner (197z) and Sutton-Bartu (1981)
fodels  also  correctly  predict  the  experimental cutcomes of the
Giscrimindgtion ond pstudodiscrimination  experiments just discussea,
ircluding the transient increase in the associative strength of the

LS -CS_ compouund stinulus n the case of the discrimination training.
¢ 3

A variant ot the drive-reinforcement neurondl nodel

The drive-reinforceient neuronal nodel, as specified above, requires
thal d poSitive change in presynaptic signal level occur in order that o
synapse be renderec eligible for a change 11 its efficacy. It wds noted
voriier that the best argument tor this constraint 1s that it yields a
neurundal wodel thet is consistent with the experimental eviaence of
clasticel conditioning. When the constraint is lifted su that Axi(t—j)
in eguation (¢) 1¢ allowed to assume any velue, positive or negative, the
nearvr ol model  then  frequently gyenerdates predictions thdat deviate
substantia.’ - from the experimenta) evidence. An example 15 shown in
Figure UL The simuieted cldassicel conditioning experinent reported in
Figure ¢ is 1aertical to one repurtea 1n Figure 16 (which was a blocking
exprrient; except that, in the cdase of Figure 20, Axi(t—j; G1d nout have
to be regter then zero for the learming nechanism to be triggered,  With

thr vorstigaint reroved, the f&l daru LS excitatory synaptic welyghts

L

Afrreact tindty hecause the negallive  Lx occurring ot the time of Lo
Ltie e wudtipaored by the negative Ay occurring ot the time ot U5
et Treo btenavicr that s plotted in Figure ib 1s ¢ clear-cut
precas ton o the blocking phenomenor while that plotted 1n Fagure
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STIMULUS CONFIGURATION AND RESPONSE:

TRIALS 1-100:

cs,_;“\__...

TRIALS 101-160:

— e

—_—
— N

L

500 - |
» |
E 400 o |
g |
300 i
3 ﬁ W, | w2
3 [
g 200 + I
/
> 1004 /
/
s
0 ¥ v T B L L Al
(] 20 40 80 80 100 120 140 180

Figure 20. Results of a simulated blocking experiment that was identical
to that reported in Figure 16 except that the drive-reintorcement model
utilized to generote the predictions 1n Figure 16 rendered a syrapse
eligible for a change in its efficacy, w,, only upon the occurrence of a
ositive chonge 1in the presynaptic signal level. To generote the
precictions shown here, a veriant of the drive-reinturcement model was
employed, such that both positive and negative changes in presynaptic
signal levels rencered a synapse eligible for a change in its efficacy.
It 1s seen that the variant ot Lhe nodel employed here yields predictions
that deviate mnorkedly from the experinental evidence. Because these
deviaticns gre typical of this variant of the drive-rertforcement model,
the other variunt of the nmodel, utilizea to yenerate the predictions
shown 1n Figures 4 through 1Yy, seems more likely to retlect the function
of biologicael neurons. (See text and Appendix tur details.)
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20 bears nu discernable relationship to experinentally observed behavior
in the case of blocking experiments.
Summary

By means of computer simulations of the drive-reinforcement neuronal
model, it has been shown that the model correctly predicts classical
conditicning phenomena in the following basic cateyories: delay and
trace conditioning, conditioned and uncenditioned stimulus auration and
amplitude effects, partial reinfurcement effects, interstimulus interval
effects 1ncluding simultanecus conditioning, secunu-urder conditioning,
conditioned Inhibitivn, extinctiun, reacquisition effects, backward
conditiuning, blucking, uvershadowing,  compound conditivning, and

discrimirative stinulus effects.
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SECTION 4

DRIVES AND REINFORCERS

The behavior of the proposed neuronal model may be understood in
terms of two processes involving postulatea neuronal drives and
reinforcers. If weighted presynaptic signal Tlevels are defined to
be neuronal drives and weighted changes in presynaptic signal
Tevels are defined to  be neuronal reinforcers, then the
drive-reinforcement learning iechanism operates such thdat neuronal
drive induction promotes learned excitatory processes and neurcnal
drive reduction promotes learned inhibitory processes. The
interplay between these two processes  yielas the classical
conditioning phenomena discussed above.

In this section, definitions of drives and reinforcers at the level
of the single neuron and at the level of the whole animal will be
examined further. Then the relationship of the drive-reinforcement
neuronal model to animal learning theory will be discussed. 1 will begin
by offering precise detinitions of drives and reinforcers, definitions
motivatea by the neurunal model as it may be viewed in the context of

animal learning theory.

Definitions

For the drive-reinforcement neuronal model, neuronal drives are

defined to be the weighted presynaptic signals, w (t) x (t). These
i

i

weightea presynaptic signals drive the neuron. Equation (1) is termed

the drive equation because 1t specifies huw neuronal drives, w (t) x (t),
- i i

are transformed into neurunal behaviur, y(t). Neuronal reinforcers are
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defined to be the weiuhted changes in presynaptic signal levels, wi(t)

Axi(t). Neuronal reinforcement resulls from the net effect of all of
the weighted ij's experienced by a neuron at time, t. Neuronal

reinforcers thus manifest as Ay(t) and neuronal reinforcement is defined

to be equal to Ay(t). Note the distinction here: A neuronal
reinforcer is a weighted change 1n signal level that the neuron
experiences at a single synapse; neuronal reinforcement is defined to be
the coliective effect of the neuronal reinforcers, manifesting as the

change in output, ay(t). Incremental neurcnal reinforcement is defined

.
to be an increase in the postsyraptic frequency of firing and decremental N
—_— .
N

neuronal reinforcement is defired to be a decrease in the postsynaptic N
X

frequency o¢f ftiring, with both increases and decreases ir firing :j
~

frequency measured over intervals not exceeuing a few seconds.

In the drive-reinforcenient neurcnal model, changes in presynaptic :::
signal levels pluy two roles. A change in presynaptic signal level, j
th . : oy

Axi(t), renders the 1 synapse eligible tor future reinforcement. The .
synaptic weight, wi(t), tor such an eligible synapse changes if a :ﬂ

subsequent cnange in postsynaptic signal level, Ay, occurs not more than jf:

ttime steps in the future. The other role for Axﬁ(t), when weighteu by
\".
wi(t}, is to contribute to (i.e., partially or wholly cause) ay(t) and -
thus reinforce synapses rendercd eligible by earlier changes in ﬁ?
presyreptic signal levels., In effect, Axi(t) fooks tu the future with -
“egarG o te 1ts role in rendering a synapse eligible for reinforcement and -
v~ ' the pdast an contributing to the reinforcement of synapses

c e Tigable earlier, Equation (2), the neuronal learning )

. !

"
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mechanism, is termed the reinforcement equation because it specifies how

nevronal reinforcers [wi(t) ij(t)'s manifesting ccllectively as ay(t)]
are transforned into changes in behavior [due to Awi(t)'sj. Thus, we
see that equation (1), the drive equation, involves the processing of
signal levels to yield behavior and equaticn (2), the reinforcement
equation, involves the processing of changes in signal levels to yiela
learning.

It was noted earlier that the drive-reinforcement learning mechanism
moves the onsets and offsets of pulse trains to earlier points in time.
It should alsu be noted that, in doing this, the learning mechanism sets
up the possibility of a chain of reinfurcing events. Because of the way

ax's and  Ay's interact in the model to yield Aw's, Ay's come to occur
earlier in tine, making them available to reinforce even earlier aAx's.
Thus, chains of reinforcing Ax's and ay's can be established beginning
with a primary reinforcer (which will be defined below).

While the drive-reinforcement neuronal node)l appears complex
relative to, say, the Hetbian model, this seems appropriate because the
single neuron is coming to be recognized as a highly sophisticated cell.
tone of the operations proposed here seem incompatible with the known
capabilities of the single neuron (e.g., see Wcuay, 1982, 1986).

The terms 1 have defined at a neuronal level mirror terms animal
learning researchers have defined ot the level of the whole arimal.
Raditional terms may be defined in this way. For exsmple, innate or
primary neuronal arives may be distinguished from acquired neuronal

drives. Primary neuronal drives are aefined to have fixed synaptic
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weights. Acquired neuronal drives are defined to have variable synaptic
weights, under the control of the neurcnal learning mechanism. Primary
neuronal drives will include deficit related signals having an internal
source (drives to eat and drink are examples) and unconditioneda stimuli

having an external source (fooa and water are examples). Acquired

neuronal drives, likewise, are expected to have internal sources (as the

result of possible conditioning, for example, of the hypothalamic reward
and punishment centers) and to have external sources in the case ot what
becumes conditioned stimuli. The notion of acquirea arives was first
suggested by Miller (1%51).

Psycholugists have generally defined drives tc include only the
category of deficit related internal signals. [ am broadening the
definition to include any signal that drives a neuron. My definition of
primary drives cones closer to the conventional definition of drives but,
in this case, I still include (external) unconditioned stimuli as well as
(internal) deficit-related signals. My point in changing the definition
is to suggest that drives, defined in this broader fashion and at &
neuronal level, can serve as the basis for a simpler and more rigorous
learning theory.

I have noted that neuronal drives can have internal and external
sources and can be primary (innate) or acquired. The same is true of
neuronal reinforcers as they have been defined dabove. Unconditionea
stimuli, for example, function as primary drives, yielding unconditioned
responses. Unconditioned stimuli alsu function as primary reintorcers,

yielding conaitioned responses. The drive-reinforcement model suggests
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that when an unconditioned stimulus is functioning as a neuronal drive,
it is the signal level, itself, that is important [see equation (1)] anc
when an unconaitioned stimulus is functioning as a neuronal reinforcer,
it is the onset and offset of the signal that is important [see equation
(2)].

I have defined drives and reinforcers in a straightforward fashion
at a neuronal level. However, such clear-cut definitions have not proved
to be possible at the level of the whole animal. For example, Toates
(1985, p. 963) remarks that the notiun of drive "has been arcund for a
long time. No one seems to know quite why we need the concept, butl we
keep putting it on display. It tends therefore to assume a variety of
uncertain functions." 1 am going to argue that we should not be sur-
prised by this 'state of affairs. In the history of animal learning
research, it has not been unusual for the notions of drives and rein-
forcers tc be seen as problematic. When such notions are invoked at the
level of the whole animal, this may be understandable. If the notions of
drive and reinforcement are relatively straightforward at the level of
the single neuron, as [ am suggesting here, then we should not
necessarily expect such notions to also be straightfurward at higher
levels. If neurons are classically conditionable cells in their own
right, as the drive-reinforcement model suggests, then when millions or
biilions of such neurons interact in phylogenetically advanced nervous
systems, the interactions may not be simple. That we can make as much
sense out of whole brain function as we have, thanks to the dedication of

animal learning researchers and many others, might even be seen as
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surprising, considering the complexity of the neural network of, say, a
dog. That Pavlov (1927) anc those who worked with o¢na after him were
able to see their way through to a relatively clear view of classical
conditiuning suggests that brain function may not be as ccrplex as we
might have expected. However, as Gray (1975) demonstrates in an
especially careful and incisive analysis, conplications arise with the

notions of drives and reinforcers at the level of the whole animal.

."' -

It the notion of drive has been problematic at the level of the ;;:
whole animal, what about the noutions of drive reduction ond drive ‘2§:
S

induction, postulated to function as reinforcers (e.g., see Mowrer,
1960)? I have suggested that, at a neuronal level, drive reduction and :2:
induction have straightforward roles te play with respect tu the process
vt  reinforcement. Assuming for the moment that the hypothesized

arive-reinforcement neuronal model is correct, how might we expect

neuronal drive reduction and induction to map onto the level of the whole 5 N
animal? Let us consider an example. The global reward or "pleasure"

AT
centers discoverea by 01ds and Milner (1954) are known to be inhibitory e
(Fuxe, 1965) so they would be expected to yield decremental neurunal :i_.

reinforcement. However, we know that the salivary reflex is excited by
the taste of food. Also, the brain's glubal reward centers are
presumably excited by the taste of food but they will, in turn, deliver ;Q}f
inhibition throughout the nervous system. This inhibition, 1in sone
cases, is likely to reach inhibitory interneurcns and, thus, in effect,
could be translated into excitation. Disinhibition is knuwn to play a

major roule in the nervous system (Roberts, 1980). We can sec¢ then that
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there will be no clear-cut, simple mapping of excitation and inhibition
into drives. Neilther should we expect Increases and  deCrecses 1n
excitation and inhibition (neurunal drive reduction danc 1nduction) to map
in a clear-cut, simple way into global reinturcement (i.e¢., rewdard and
punishment). In each case, the involved neural network will have to be
considered before any mapping ¢t neuronal drives onc reintorcers into
glubal drives and reinfurcers can be estabiished.

Evidgence for this kind of complexity has been oblained by Keene
(1973). Olas (1977, p. 95) has summarized Keene's findings as fulluws:
"A fanily of neurons excited by aversive brain shocks «n¢ 1nhibited by
rewarding ones was identified in the intralaminar system of the thalamus;
and a second family accelerated by rewards and deceleraled by punishments
was observed with probes in the preoptic area.” Keene's results
demonstrate that the brain's global processes of reward aug punishment
Ccan have oppusite effects in difterent parts of the nervous system.

Thus, the practical complexity of this situation at the level of the

¥ , . .
whole animal, vreflecting perhaps the pragmatic decisions of the
X evolutionary process, may account for the problematic history of the
. psychological notions of drives and reinforcers.
A
.
5 Relationship of the drive-reinforcement reurunal niodel  to  aning)
learning theory
\
2 having defined drives, reinforcers, and related terns at ¢ neurond)
)
¥ . .
» level, and having acknowledyed the complexities that arise around these
)
¥
concepts at the level ut the whole animal, [ will now discuss how the
)
4
N
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drive-reintforcement neurcnal model relates to theories of animal
b learning.

In this century, the stuay of learning began with stimulus-response
(S-R) association psychology (Thorndike, 1911; Paviov, 1927; Guthrie,
1935). In place of S-R associdtion psycholouyy, the drive-reinforcenent
neuronal model sugyests what could be called AS- AR association
psychclogy. The neuronal model suggests that it is nct stimuli  and
responses that are associated but, rather, changes in stimulil und changes
in responses except, of course, in the theoretical model | am proposing,
it is neuronal AS's and AR's that cre associated, not the 4S's and
AR's of the whole animal. At the level of the whole animal, we can
expect a more complicated situation, as I have already discussed.

Hull (1943) confrontea the complexities that arise at the level of
the whole animal. As Hilgard ana Bower (1975) note, Hull, in his
herculean ctfort to systematize learning theory, was moving psychology
from an S-R fornulation to an S-0-R fornulation, where "0" represented
the state of the organism. Central to Hull's (1943) theory of learning
was the definition of reinforcement as drive reduction. Hull (1952) went
on to revise his position, concluding that reinforcement shoula be
defined as drive-stimulus reduction. Actually, Hilgard ana Bewer (1975,

p. 167) cbserve that "While favoring drive-stimulus reduction, Hull left

the matter somewhat open, having vecillated between arive reduction and
drive-stimulus reduction as essentiel to reinforcement™ (Hull, 1952, p.

153). The drive-reinforcement neuronal nodel suggests that hull may have

been riyht on both counts; both drive reduction and drive-stimulus @
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reduction may functiun as reinfurcers becduse both can result in ay's.
Thus, at a neuronal level, the distinction between drive reduction ond
drive-stimulus reduction oppedars Lo dissolve, We sce d redson why drives
should probably be defined mure bruudly than Hull cunsiderec.

Hull's narrower definition of drives resulted in another problem for
his theory. Hull's identification of drives and drive recuction with
physiclogical needs or tissue deficits dia nut seem to leave room for
such phenonena as animal play and the Tearning that results. Mishkin and
Petri (1984, p. 292) point out that "Shortly atter Hull developea [his]
ideas, & number of studies on curicsity, manipulation and exploration
suggested that other nmotives, not obviovusly related tou physivlogical
needs, also generated learning." Mishkin and Petri go on to say that
"The recognition that there are motives that have no apparent basis in
tissue deficits or other physiological needs was one major factor that
eventually led to the demise of the drive reauction theory of learning
(bolles, 1967)." The drive-reinforcement neuruvnal model solves the
problems encountered with Hull's theories by moving from the level of the
whole animal to the level of the single neuroun, by sugyesting a broader
definition of drives, by allowing both drive reduction and drive
induction to be reinfurcing [consistent with Mowrer (1960)j, and by rnot
necessarily identifying arive reduction with reward.

Regarding the relationship of drive reductiun to reward, Gray (1975)
discusses the question ut whether rewards and punishments shoula be
associated with drive decrements and increnents, respectively., Based on

Gray's analyses «na those of others whoi he cites, I have come to the
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conclusion that toc close an identificaticn of drive reduction with
reward may not be wdrranted. The Darwinian process may have been more
flexible in its approach as 1t evolved nervous systems. Therefore, ]
will not, in the theuretical framework 1 aii propusing in this report,
identify drive decrements with reward and drive increments with

punishment even though, as generalizations, such identitications

may be valid., There 1is nothing 1in the theoretical framework that

requires such a rigid identification tu nicke the theory wourkable.

After Hull, animal learning theoury's next major step forward was
due, in nmy opinion, to Mowrer (1960)., A colleague of Hull's at Yale,
Mowrer moved from Hull's drive reduction (or drive-stimulus reduction)

theury to a symmetric theory in which learning was attributed to both

drive reduction arna arive induction. Alsu, 1n Mowrer's theory, classical

Ly

)

. . . +
conditioning was accepted as basic. Mowrer's emphasis on classical :;
.

o
conditioning and oun symmetric processes 1in learning has had a strong ;;
N
1.’

influence on the theoretical framework I am proposing in this report.
Since Mowrer proposeu his theory, substantial theoretical and
experimental advances have occurred in the understanding of classical
condaitioning phenomena. Model systems such as the rabbit nictitating
membrane response dre providing & refinea understanding of classical "f
conaitioning at psychological and neurobivlogical levels (e.g., see
Gormezano, 1972; Moore and Gormezano, 1977; Moore, 1979; Gormezaro, e
Kehoe, and Marshall, 1983; Thompson, 1976; Thoumpsun, Beryger, and Madden,

1983). Also, the investigations of Kamin (1966) and Rescorla and Wagner
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(1972) nave clearly demcnstrated contingency aspects of cldassical

conditioning as distinguished from contiyuity aspects.

Along with an increased understanding of classical conditioning has
come a growing conviction on the part ot some animal learning theurists
that classical conditioning phenomenc dare fundamental to anmuie! learning,
instrumental ccenditioning phenomena are then de-emphasized by these
theorists. Mowrer (1960) early on and Bindra (1976, 197&6) wmore recently
have been leaders in this movement. The drive-reinforcement neuronal
model 1is consistent with this view. [f brains are, fundamentally,
classically conditionable systems, then this may be because they are
composed of classically conditionable neurons, as the drive-reinforcement
model suggests. Instrumental conditioning phenomena are then seen to
arise out of 4 neural substrate that utilizes classical conditiuning
mechanisms. As Bindra (1976, p. 245) has noted: "Once 1t is explicitly
assumed that the prouduction of any specitic instrumental response or of
some of 1ts act components is linked tu one or more particular eliciting
stimulus configurations, then the way becomes clear for interpreting
instrumental learning in terms ot the learning of stinulus-stimulus
contingencies alune. The problem of instrumental training then becones
one of making certain response~eliciting stimuli  highly potent
motivationally, and this can be done through stimulus-stimulus
contingency learning between the response-eliciting stimulus and the
incentive stimulus." Resedrch on autoshaping in which gnimals shape
their behaviur without a response-reinturcer conitingency suppurts this

position (Brown and Jenkins, 1968; Jenkins and Mooure, 19,3). A<

83



expressed by Flaherty, Hamilton, Gandelman, and Spear (1977, page 243),
"the law of effect 1s apparently not necessary for the developnent of
instrumental-like behavior."

Another way of viewing Bindra's theoretical positiun is ds part of a
movement away from drive reduction thecries thdat emphasize internal
deficit signals and toward incentive-notivation theories (Evnara, 1968;
Bolles, 1972). Incentive-motivation theories suggest that "motivated

behavior results not only from the 'push' of internal, deficit signals

but also from the ‘'pull' of external, incentive stimuli" (Mugenson and

Phillips, 1976, p. 200, emphasis is that of the quoted authors). It may
be noted that neuronal drives, as defined earlier in this report, include
both internal deficit signals and external incentive stimuli.

While finding myself in sympathy with those who emphasize that
classical conditioning is tundamental to learning, I do not want to go
too far in that direction. Miller and Balaz (1981) note that classical
conditioning has often been seen as involving the learning of
stimulus-stiniulus associations while instrumental conditioning has often
been seen as involving the learning of stimulus-response associations or,
in the case of Mackintosh (1974), response-reinforcement associations.
Frequently animal learning theorists have chosen one particular class of
assuCiations as being funaanental and then hdave ruled out other classes
ot associations. Bindra (1976, 1978), for example, suggests that
learning does not have to do with the furming of stimulus-response

assuCiations but rather with the learning of contingencies between

stimuli. This question of which cldass of associations is fundamerntal to
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lTearning has been debated by animal learning theurists for decades. The
drive-reinforcement neurunal model suggests thal 1t may not be necessory
to choose one class of associations over another. Solomon (1981, p. ¢;
observes: "One persisting question is 'what 1is learned?' The four
candidates from the past were S-S associations, S-K associatioens,
R-reinforcer associations and S-reinforcer associations.” Solomon goes
on to say: "lt appears ... that associations of all four kinds can be
established with the right procedures." The drive-reinforcenent model
allows for all four possibilities, suggesting that any of the four
classes of associations will form when neurondl signals representing
stimull, responses, and reinforcers occur 1in appropriate temporal
relationships. If a stimulus, response, or reinforcer results in a
nositive ij that is followed within the intervel, t , by another
stimulus, response, or reinforcer that yields a Ay at the same neuron,
then an association will form. Thus, an implication of the
drive-reinforcement model 1is that, at a neuronal level, classical
conditioning, instrumental conditioning, drive-reauction and induction,
response-reinforcement, and incentive-motivation theories may all
describe dassociations that can form in the nervous system. However, it
is not the presence of signals representing stimuli, reponses, or
reinforcers that is required, according to the drive-reinforcement model,
but rather changes in signal levels representing the unsets and offsets

of stimuli, reponses, and reinforcers.
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A arive-reinforcement theory ot learning

What kind of theory of Jlearning 1is implied then by the
drive-reinfurcenent neurcnal model? At this point, 1 will sketch one
possible tourm such a theory might take.

Three principles would appear to be fundawmentdl to what [ will call
a drive-reinforcenent theory of learning:

(1) Primary neuronal drives are the foundation upun which all

learning rests.

{2) Neuronal reinfurcers are changes in neuronal drive levels,

Neuronal drive 1nduction promotes learned excitatory processes,
Neurunal drive reduction proiutes learned inhibitory processes.
Together, these processes yield acquired drives or learning.
(3) The neurondal learning mechanism correlates earlier changes in
presynaptic signals with later changes 1n postsynaptic signals
yleloing changes in the efticacy ot synapses. A change in the

efficacy of o synapse 15 pruportionel to the current efficacy

¢t the Synapse.

It these principles should turn cut to be correct 4t o neuronal
level, how should we expect such mechanisms tu manitest at the level of
the whule animal or what | will call the netwourk level?  heuruvnal drives
mignt be expecled Lo emerge at the nelwerk level ds the pusitive dnd
negative feeaback toops that corntrul behavior.,  As exanples, consider g
blovd ylucuse aelector that provides ol internal orimdry arive signal

(this 1o what aninel Tearning poycholo, ity have co "uiariiy reterred to
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0s a arive) or the taste of tcod that provides an external primary drive

signal (what animal learning psycholoygists have customarily referrea tu

as an unconditioned stimulus). These primary arive signals are parts ot
tnnate negative feedback loops that are assouciated with what are termea
- the hunger drive and the salivation reflex. These feedback 100ps cause

the bloud glucose level tou rise because the animal is driven to eat and

et
e

.

assist in causiny food tu aisappear from the mouth and be digested
because the animal is driven to salivate. More generally, feedback loups

representing drives include mating behavior, drinking behavior, behaviurs

a2 a a4 2

assuCiated with the approach to and consumption ot prey, and behaviurs
associated with the attack of or flight from predators. In general,

behaviors can be classified as approach or avoidance (Mowrer, 196U). we

right expect approach behavior to be supported by positive feedback li,
and avoidance behavior to be supported by negative feedbach 1,
Pusitive and negative feedback loops that emerge at the Tevel ¢

whole animal will be defined to be network drives, as distir,.: ..

the neurona] drives defined earlier. Neuronal drives i, t:

icre atomistic basis of network drives,

Primary network drives are the innete yua

‘--c.-&.

Acquired network drives are the learned yoa: -
basis of the  hyputhesized drive-reirnt.
mechanism, it is expected thdt augulir.. - s
constructed on top uf the privary v w

acquired) drive Tevels vary,, -
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positive and negative feedback loops). In this way, the process of
-
. . . . . . . . hS'
learning is hypothesized to be sustained, with drives being built on top =9
Ay

o

of drives. (Actually, in some cases, the process will not involve the e
F
%]

acquisition of new arives so much as it will the refinement of current ~
drives.) When acquired network drives become sufficiently complex, %
cognitive phenomena may begin to emerge. :::
~

To support the process of drive acqguisition or learning at the
network level, global centers that can broadcast generalized "start" and -
"stop" signals may be helpful. Such signals could serve to introduce
appropriate Ay's in the network at crucial times, thus rendering the
overall activity of the network coherent. Such may be the roles of the

global reward and punishment centers discovered, respectively, by 0lds

Y L.’;’t_'l ey W.r“(l‘,-‘_:‘-‘,:‘.".‘,

and Milner (1954) and by Delgado, Roberts and Miller (1954). Consistent

with this idea, global reward centers appear to employ inhibitory 1
neurotransmitters (Stein, Wise, and Belluzzi, 1977) that may function as ..
"stop" signals and global punishment centers appear to employ excitatory R
neurotransmitters (Stein, Wise, and Belluzzi, 1977) that may function as '_:.:
"start" signals. That a rewara center should generate "stup" signals :E
might seem paradoxical with respect to some behaviors, but disinhibitory
mechanisms that are prevalent in the nervous system (Roberts, 1980) may \
make such an approach workable by enabling releasing mechanisms to be ':;
implemented where necessary. It should also be noted that if J"
reinforcers are changes 1in arive levels, ther g¢lobal drive and ‘:‘
reinforcement centers can be one and the same. A center's output will
constitute a drive and a change in a center's output will constitute a &

N
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8s a drive) or the taste of tcod that provides an external primary drive
signal (what animal learning psychologists have customarily referred to
as an unconditioned stinulus). These primary drive signals are parts of

1nnate negative feedback loops that are associated with what are termed

the hunger drive and the salivation reflex. These feedback loops cause

NN ¥
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the blood glucose level to rise because the animal is driven to eat and

Pl
5 5 Y

assist in causing food tou aisappear from the mouth and be digested

-
b

because the animal is driven to salivate. More generally, feedback loops

-
)

»
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,
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representing drives include mating behavior, drinking behavior, behaviors
associated with the approach to and consumption ot prey, and behaviors
associated with the attack of or flight frum predators. In general,

behaviors can be classified as approach or avoidance (Mowrer, 1960). We

might expect approach behavior tou be supported by positive feedback loops
and avoidance behavior to be supported by negative feedback Toops.
Pusitive and negative feeaback loops that emerge at the level of the

whole animal will be defined to be network drives, as distinguished from

the neurunal drives aefined earlier. Neuronal drives may be seen as the

iore atomistic basis ot network drives.

Primary netwurk drives are the innate goals of the organism.
Acquired netwurk drives are the learned goals uf the organism. On the
basis of the hypothesized drive-reinfurcement neuronal learning
mechanism, it 1S expected that acquired network drives are, in effect,
constructed on tup of the primary network drives. When primary (and
acguired) drive levels vary, these variatiuns in arive levels constitute

reinforcement and this reinforcement will spawn new drives (acquirea

87
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reinforcer. Consistent with this theoretical possibility, drive and

reinforcement centers in the limbic system and hypothalamus appear to be

so close together {0lds, 1977) as to be, perhaps, identical.
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‘ SECTION 5
EXPERIMENTAL TESTS

In the computer simulations reported above, the drive-reinforcement
neuronal model has been demonstrated to be consistent, in general, with
the experimental evidence of classical conditioning. However, such a
demonstration involves comparing theoretical predictions of a neuronal

model with experimental evidence obtained from whole animals. To some

extent, whole animal data has to be problematic vis a vis the predictions
of a neuronal model. The effects of multiple interacting neurons , the
effects of the brain's many interacting subsystems and, in general, the

effects of the ¢lobal architecture of the brain will, of course,

influence whole animal data. A1l of these effects, collectively, I will &

refer to as network effects to distinguish them from neuronal (medaning E%
o

single neuron) effects. Network effects will preclude rigorous Q\
b
A

experimental tests of any neuronal model in terms of whole animal data.

'
Tests at a neurobiological level will be required. Fortunately, such C;J
L
experimental tests are becoming feasible and, indeed, results to date :j
o
~a

encourage the notion that classical conditioning phenomena may manifest

at the level of the single neuron, as the drive-reinforcement model

suggests. [See reviews by Kandel and Spencer (1968), Mpitsos, Colli.s,
and McClellan (1978), Thompson, Berger, ana Madden (1983), Farley and
Alkon (1985), Woody (1986), Carew and Sahley (1986), and Byrne (1987).

See also Hawkins and Kandel (1984) ana Kelso and Brown (1986).]
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Instrumental conditioning experiments at the level of the single neuron fadd
are also becoming feasible (Stein and Belluzzi, in press). *
)
At this point, perhaps a note is in order regarding the semantics 1 :ﬁ_
am adopting. When I sugyest that a single neurcon may manifest classical *-\'
conditioning phenomena, the "single neuron" I am referring to includes Y
RS
the synapses that impinge upon it. Those synapses, of course, come from ‘_-:Z‘_.
other neurons or from sensory receptors and, in that sense, what I am ‘
PRy
referring to as a phenomenon involving a "single neuron" is, in fact, a :f,
. \q"
multineuron or neuron and receptor phenomerion. The point, though, is .:.'f
s
that a single neuron may be undergoing the conditioning, as distinguished =]
=
from alternative theoretical nmodels that can be envisioned in which whole j{;
circuits consisting of many neurons would be the lowest level at which ::.:
-.’:.r
conditioning could occur. An implication of the drive-reinforcement s
neuronal model is that classical conditioning is not an emergent :-.f.
4
phenomenon but, rather, that the ability to wundergo classical o
F\.{'
conditivning is a fundamental property of single cells. >
Actually, the hypothesized drive-reinforcement learning mechanism :‘f:"_:
could be implemented at a iuwer level than that of the single neuron. :I::-
o
» "™
Minimally, what would seem to be required would be two synapses ("
interacting such that one synapse would deliver the signal corresponding
. . i
to Axi(t-J), reflecting the onset of the CS, and the other synapse would a“
deliver the signal corresponding to Ay(t), reflecting the onset or ”C\
offset of the US. Evidence of such interactions between synapses has \_
I'\.f
: - . e s . . . . »
been obtained in investigations of classical conditioning in Aplysia. ;:_:,.
The learning mechanism appears to involve what is termed Y
=
|N.I
-~
o4 3
l\ '
-
.r_
.:’--.
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activity-dependent amplification of presynaptic facilitation (Hawkins,
Abrams, Carew, and Kandel, 1983) or activity-dependent neurcniodulation
(Walters and Byrne, 1983) of sensory neuron terminals. The optimal
interstimulus interval between activation of the sensory neuron terminal
representing the CS and activation of the facilitator neuron terminal
representing the US has been found to be about 500 ms (Carew, Walters,
and Kandel, 1981; Hawkins, Carew, and Kandel, 1986). While the evidence
for conditioning at a neuronal level in Aplysia has been interpreted as
suggesting a presynaptic learning mechanism, Farley and Alkon (1$85)
indicate that the sites of the changes may r)t be exclusively
presynaptic.

Whether presynaptic or postsynaptic processes or both underlie
learning is a question that has been investigated theoretically (Zipser,
1966) and experimentally (Carew, Hawkins, Abrams, and Kandel, 1984). In
this report, I have formulatec the drive-reinforcement learning mechanism
1 terms of postsynaptic processes although,as discussed above, the
learning mechanism could be implemented in an exclusively presynaptic
form. Apart from activity-dependent amplification of presynaptic
facilitation or activity-dependent neuromodulation offering a possible
implementation of the drive-reinforcement learning mechanism, other
possibilities can be envisioned that would still invulve less than a
whole neuron. Portions of dendritic trees and their impinging synapses
might function in a manner analugous to the model I have envisioned for
the whole neuron. Thus there are a range of possibilities for

inplementation of the drive-reinforcement learning mechanism, extending
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from what 1is perhaps a miminal two-synapse 1interaction on the low end
ranging through portions of dendritic trees functioning as a basic unit
of learning, up through the level at which a single neuron functions as
the basic unit and beyond to the point where the whole organism is
treated as a single unit. Variations of the arive-reinforcement model
may have relevance at each of these levels, even though the learning
mechanism seems to lend itself naturally to implementation at a neuronal
level.

kegarding the questicn of how the drive-reinforcement model can be
tested at a neuronal level, synaptic inputs will have to be controlled
and monitorea precisely fur a single neuron while the neuron's frequency
of firing is continually monitored. It will be necessary to measure the
direction and preferably also the magnitude of the changes in efficacy of
affected synapses. Changes in synaptic inputs, as potential CSs, ana
changes in neuronal outputs, representing potential reinforcement, will
have to be tested to determine which, if any, input and output patterns
yield changes in the efficacy of synapses. 1In this way, it can be
established whether onsets and offsets of hypothesized neuronal CSs and
USs aetermine the efficacy of synapses in the manner specified by the
drive-reinforcement model.

Experimental evidence that bears on this question of neuronal
learning mechanisms has been obtained from studies involving the
phenomenon of long-term potentiation (LTP). The results have been
interpreted to suggest that neurons are Hebbian in character with

respect to their learning mechanisms (Levy, 1985; Levy and Desmond, 1985;

93

A ALY AT e A A L A e
) LN AR T - ) e
NN o, (o Ot N O O T o S 0 A P e N W

T AR AMICUAUNTS
T e,

o,

ol

*g
s
(St

s
‘Wl
o

v



P O T N T N Uy T T T P O N O Oy Y T O POV TRO WU WU YU WY
Yy
}"
kelso, Ganong and Brown, 1986). However, the relationship of the ;‘
phenonenon of LTP to learning is unclear at this time (Morris and Baker, E
1984)., As Bliss and Lomo (1973, p. 355) point out in the article in E
which they reported their discovery of LTP: "Whether or not the intact ;1
animal makes use in real life of a property which has been revealed by ?
synchronous, repetitive volleys to a population of fibres the normal rate ??
and pattern along which are unknown, is another matter." ;v
Recent experimental results involving LTP suggest that sequential éi
neuronal inputs may be more efficacious than simultaneous inputs in E
causing synaptic weight changes to occur. Larson and Lynch (1986) have § 
shown that brief high frequency pulse trains delivered to nonoverlapping &;
sets of synapses of hippocampal neurons are most effective in inducing g
LTP if the pulse train to a first set of synapses precedes a pulse train -
to a second set by 200 milliseconds. With this experimental procedure, Eﬁi
LTP is induced only in the second set of synapses. LTP is not induced in iE:
either set of synapses if the delay is reduced to zero or extended to two i:
seconds. ;ﬁ
Recently, Jlong-term depression (LTD) of parallel fiber test i?
responses after conjunctive stimulation of parallel and climbing fiber f;
inputs has been demonstrated in the cerebellum (Ito, Sakurai, and §:
Tongroach, 1582; Ito, 1986). However, the relationship of this E
phenomenun to classical conditioning is unclear at this time because, as ';
Byrne (1987, p. 411) notes: “Activation of parallel fiber input during §.
the period between 20 ms prior and 150 ms after climbing fiber i;
stimulation were roughly equivalent in inducing LTD [Ekerot and Kano, ﬁ:
2
o
94 ::-:-' :
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cited in Ito, 1984]. This indicates that the neural analoyg of the US

(climbing fiber input) can induce a change in the neural analog of the CS
(parallel fiber input) even 1f the CS occurs after the US. Therefore the
intrinsic mechanism could support backwara conditioning, a phencmenon
that is not observed with behavioral conditioning."

Additional experimental evidence vrelevant to the questiun of
neuronal learning mechanisms has been obtained by Baranyi and Feher
(1978, 1981 a, b, c¢) who have attempted to classically condition
pyramidal neurons in the cat's motor cortex. CSs in the form of
presynaptic activity were paired with USs in the form of postsynaptic
cell firing. Evidence of conditioning was obtained in the form of
enhanced EPSPs, with the enhancement being sustained for up to 41
minutes. The relationship of these experimental results to classical
congitioning phenomena remains to be demonstrated, however, because
evidence of conditioning was obtained for interstimulus intervals ranging
trom 0 to 400 ms and fur either forward or backward pairing of the CS and
Us.

In summary, Baudry (1987, p. 168), in a group report from a Dahlem
Workshop, offered this assessment of some of the experimental eviaence
discussed above: "For discrete stimulus-response learning (i.e.,
skeletal muscle responses), no learning occurs with backward (UJCS first)
or simultaneous onset or in fact until the CS precedes the UCS by nearly
100 ms. Learning is best with intervals from 200 to 400 ms and decreases
as the interval is lengthened further. In terms of current models, the

Aplysia system seems to follow this function remarkably well and this
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seems also to be the case for Hermissenda [Lederhendler and Alkon, 1986]. {
It is not yet clear how LTP and LTD could satisfy this function although
the newly described paradigm to obtain LTP [Larson and Lynch, 1986 also

seems to follow this temporal specificity."
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SECTION 6
DISCUSSION

The learning mechanism underlying nervous system function (if,
indeed, there is a single basic mechanism) may not be of the character
suggested by the Hebbian neuronal model. The Hebbian model suggests that
approximately simuitaneous neuronal signals are associdted. The
drive-reinforcement neuronal model, on the other hand, suggests that
sequential changes in neuronal signals are associated. An implication of
the drive-reinforcement model 1s that nervous systems, in effect, pay
attention to changes, encoding causal relationships between changes as
the basis for learning.

Besides psychology and neuroscience, several other disciplines have
been addressing questions related to learning. These disciplines include
(a) the cybernetically oriented efforts referred to as connectionist or
neural network modeling, (b) artificial intelligence research, and (c)
adaptive control theory and adaptive signal processing. In this section,
the implications of the drive-reinforcement neuronal model for each of

these approaches will be considered.

Connectionist and neural network modeling

For a few decades now, neural network models, or what are sometimes
more generally referred to as connectionist models, have been proposed as
theoretical models of nervous system function. Connectionist models have
also been proposed as engineering solutions to problems, without any

claim of biological relevance. In either case, with or without the claim
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of biological relevance, the thrust of connecticnist modeling has been to i
.
address the issues of memory, learning and 1intelligence by means of '_
Ld
cybernetically oriented designs for massively parallel systems (Hinton *“
]
| and Anderson, 1981; Grossberg, 1982, 1987; Klopf, 1982; Levine, 1983; ¢
Kohonen, 1984; Barto, 1985; Feldman, 1985; Rumelhart and McClelland, ff
1986; McClelland and Rumelhart, 1986). 2
:‘A<
In recent years, several approaches to connectionist modeling have »
-:
come to the fore, these approaches appearing to have promise in terms of it
.:\
solving the problem of accomplishing learning in large, aeep networks. E:
The ultimate potential uf these approaches cannot be assessed yet because ;f
™
effurts to scale up the respective connectionist networks are only 3:ﬁ
-'. -
beginning. What can be done at this point and what I will attempt to do -;
g2
here is to assess some of the approaches for their relevance to animal K
-“,
learning. %
(‘:'
One aimension along which connectionist models may be assessed has a
o
to do with the nature of the feedback the models require from their ;'
l":'
environments. Some connectionist models operate in a strictly open loop 5}:
fashidn, requiring no feedback from their environment. An example is the =

o

connectionist model due to Fukushima (1980, 1982). Fukushima's network,

when presented with spatial patterns, adjusts connection weights so that

the patterns tend to cluster in useful ways, for some purposes of pattern ES?
classification. No feedback from the environment is given or required. :;
Une question that arises is whether networks operating in this way, in an éi;
vpen loop or nongoal-seeking fashion, can be relevent to biological fi:

information processing. An implication of the drive-reinforcement

b1
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neuronal model and of the learning theory implied by the model is thdat
feedback 1loops through the environment are a fundamental part of
bivlogical information processing. In biological systems, it appears
that positive and negative feedback loops, constituting drives, support
goal-seeking and that the changes in the levels cof activity of these
closed Toops or drives censtitute reinforcement.

Nearest neighbor classitications of spatial patterns, like that
accomplished with Fukushima's clustering technique, can also be
accomplished with Boltzmann machines (Hinton, Sejnowski, and Ackley,
1984; Ackley, Hinton, and Sejnowski, 1985; Hinton and Sejnowski, 1986)
and what are sometimes called Hopfield networks (Hopfield, 1982; Cohen
and Grossberg, 1983; Hopfield, 1984; Hopfield and Tank, 1985, 1986;
Tesauro, 1986). These latter two classes of connectionist models, having
been inspired by theoretical models in physics, utilize symmetric

connectiuns and what may be called adaptive equilibrium processes in

which the networks settle 1nto minimal energy states. The networks have
been demonstrated to have interesting ona potentially useful properties
including, for example, in the case of Hopfield networks, sulving analogs
of the traveling salesman problen. However, symmetric network
connections and adaptive equilibrium processes have not yet been
cemonstrated to be relevant to the modeling of nervous system function,
at least with regard tou the underlying learning mechanisms. It may be
noted that a wide range of classical conditioning phenomena are predictec
by the drive-reinforcement neuronal model and it uses no symmetric

connections or adaeptive equilibrium processes. What the
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drive-reinforcement neuronal model does wutilize 1is the real-time -
o
operation of drives and reinforcers that can be understood in terms of a o
l’l
network's ongoing, closed loop interactions with its environment. s
Continuing to look at connectionist models in terms of the nature of s
the feedback they require from their envirornment, a class of models that
might be considered the other extreme from open loop models are those ?
using supervised learning mechanisms. Such network moaels require
detailed feedback 1in the form of an error signal indicating the '2‘
. K
difference between 4 desired output and the network's actual output. i
'
ol
Rosenblatt (1962), Widrow (1962), and subsequently many others have ko
investigated connectionist models utilizing supervised learning 11}
nechanisms. For these network models, error signals play no role in a 2{
theoretical neuron's computations relative to its input-output ’f’
relationship, their only role beinyg to instruct the neuron with i:
L
regard to the modification of its synaptic weights. Supervisea ;
learning mechanisms 1introduce the need for a "teacher" to provide o
a learning system with desired responses. In contrast, the ]
drive-reinforcement neuronal model, like some other real-time ‘
" \
learning mechanisms, does not require the introduction of a teacher and,
o
thus, is an example of an unsupervised learring mechanism. In the case s
of the arive-reinforcement neuronal model, fixea (ronplastic) synapses :§
mediating USs function like an internal teacher or goal specification. f'
)
It should be noted that unsupervised learning nechanisms have Y
.
v
sometimes been assouciated with systems that operate in an open loop mode 9
0
with respect to their environment. Unsupervised learning mechanisms have e
~ 1
.::J. '
160 ¢$
. "'l
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also been associated with clustering techniques as an approach to pattern
recognition. However, as defined here, unsupervised learning mechanisms
represent that class of learning mechanisms that do not require a teacher
external to the learning system and, thus, they may be utilizeu in
learning systems that operate either in an open or closed loop mode with
respect to their environment.

The distinction between unsupervised learning mechanisms that do not
require a teacher and supervised learning mechanisms that do require a
teacher would appear to be of fundamental importance. While supervised
learning mechanisms may have a role tc play in artificial intelligence,
it would seem that only unsupervised learning mechanisns are likely to be
relevant to the modeling of natural intelligence. In general, biclogical
systems accomplish learning without a teacher being present 1in any
explicit sense. Of course, a biological system's environment always
functions as a teacher in an implicit sense but that is exactly what
real-time unsupervised learning mechanisms can take 1into account, as
could be seen in the results of the computer simulations of the
drive-reinforcement neuronal nodel presented earlier.

One qualification is 1in order regarding the role of supervisec
learning mechanisms in natural intelligence. It is clear that something
like supervised learning mechanisms play a large part in natural

inteiligence at higher, cognitive levels. At such levels, explicit

teachers play an important role. However, I suggest that this has misled
neural network modelers, causing them to introduce supervised learning

mechanisms at a fundamental Tevel. It is this hypothesized tundamental




role for supervised learning mechanisms that I think is unlikely to be
valid in the case of neural network or connectionist models, if the
models are intended to be relevant for natural intelligence.

Regarding connectionist models that employ supervised learning
mechanisms, the most promising recent form of this class of models is due

to Werbos (1974), Parker (1982, 1985), Le Cun (1985), and Rumelhart,

Hinton and Williams (1985, 1986). They have proposed nechanisms for
propagating error signals from the output layer back to the input layer
of a network. The performance of the resulting networks has been
encouraging and, therefore, the question arises of whether these
connectionist models may be relevant to the understanding cf animal
learning. Such relevance seems unlikely for two reasons that, in part, 1
have already discussed. First, animals do not receive error signals
during learning except, in the case of humans, after a fairly high level
of cognitive function has been achieved. Secord, the drive-reinforcenent
neuronal model demonstrates that, at least for classical conditioning
phenomena that appear tu be fundamental to learning, back propagating
error correction mechanisms are not required.

Recognizing that animal learning does not, in general, involve
evaluative feedback from the environment, some investigators have moved

away from supervised learning in which error signals must be provided to

the learning system. A step in the direction of unsupervised learning is

reinforcement learning (Farley and Clark, 1954; Minsky, 1954; Barto and

Sutton, 198le;, 1981b; Sutton, 1984; Barto and Anandan, 1965; Barto and

Anderson, 1985,) or what Widrow, Gupta, and Maitra (1973) have called
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Tearning with a critic. Williams (1986, 1987) notes that in this type of
learning the network may be provided with performance feeaback as simple
as a scalar signal, termed reinforcement, that indicates the network's
degree of success. Reinforcement learning networks have been
demonstrated to be workable (e.g., see Barto, Sutton, ana Anderson,
1983), at least in the case of small scale versions. Furthermore,
reinforcement learning networks dppear more likely to be biologically
relevant than supervised learning networks because less evaluative
feedback is requirea from the environment. However, an inplication of
the drive-reinforcement neuronal model is that environmental feedback
does not come in the form of reinforcement but, rather, comes in the form
of changes in drive levels. Biological systems appear to compute their
own reinforcement by utilizing learning mechanisms that compare current
and recent drive levels. In this way, a drive-reinforcement Jlearning
mechanism requires no evalualive feedback from the envirunment. The
environment simply provides sensory input, some of which functions as
drives, ana when the drive levels change, it is hypothesized that neurons
and nervous systems treat these changes in drive levels as reinforcement.

Having used the expression, "evaluative feedback," | should define

it. By evaluative feedback, I mean any kind uf signal that requires the

environment (actually, a "teacher" or “trainer" in the environment) to
make some judgment about the performance ot the learning system that is
receiving the feedback. In an extreme case, that could mean the teacher
or trainer would have to know the deSired response and would then inform

the learning system of the direction and magnitude ot 1ts error. In a
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less extreme case, the teacher or trainer could utilize implicit or

explicit criteria to form judgments about whether the learning system's
performance was improving or not and then signal these evaluations of

relative levels of performance to the learning system. Nonevaluative

feedback, then, is any signal a learning system can generate for itself,
without the aid of a teacher or trainer, simply by having an appropriate
sensor with which to detect events in the environment.

Whether feedback comes to a learning system in the form of drives,
reinforcers, or error siygnals has relevance with regard to two further
questions: What should constitute the innate knowledge in a learning
system and what form should the innate knowledge take? A reinforcement
or a supervised learning system will, innately, know how to utilize
reinforcement signals or error signals to discover appropriate drives. A
drive-reinforcement learning system, on the other hana, will begin with
some primary drives in place and will then acquire additional drives,
utilizing changes in the current drives as reinforcers. Biological
systems appear to take this latter approach, beginning with some primary
or innate drives and then building acquirea drives on top of them.

This approach may offer a solution to a fundamental problem in
connectignist modeling. A basic question has been that of how the
network elements or neurons in a large, deep, multilayered network can
learn to respond properly without direct feedback from a teacher
informing them of what their correct responses shoula have been at each
step along the way. The answer suggested by drive-reinforcement learning

theory, as outlined earlier, is to utilize whatever network drives
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(feedback Toops) are already in place anc then treat changes in drive

levels as reinforcers. In this way, reinforcement signals are always

FX R KK A

available locally (i.e., changes in neurunal drive levels can be computed
locally) and, thus, tiere would appear to be no reguirement for a
- teacher, trainer or critic at dany level in the network. (This does not
. preclude the eventual evolution, at higher levels in a neural network, c¢f
global reinforcement centers that could aid the process of learning by
providing overall direction.) Additional theoretical work including
computer simulations of large, deep networks will be required to test
this idea that drive-reinforcement learning mnechanisms will enable
: nultilayered networks to learn to model their environment appropriately
: without evaluative feedback from the environment.

Having examined the kinds of environnental feedback required Ly

various classes of connectionist models, let us now consider the related

question of what kirnas of goals are implemented in these networks. In
supervised learning systems, the goal is to minimize the error signal,
In reinforcement learning systems, the goal may be to maximize a scalar
associated with the retnforcement function. In arive-reinforcement
learning systems, the gyoal may be to reduce drives although, as discussed
: in an earlier section of this report, bioloygical systems don't always
N appear to be reducing drives and, even if they are, the behavioral
manifestations can be subtle and complex. Some of the subtleties and
complexities may be due to global reinforcement centers arising in

nervous systems at the level of the limbic system and hypothalanus. Such

PR

global reinforcement centers may, in part, be responsible for certain
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theorists proposing reinfurcement learning systems as models of nervous
system function. At a still higher level of nervous system function,
coguitive processing appears to have motivated the 1ntroduction of
supervised learning systems as theoretical models. From this
perspective, we see that the drive-reinforcement learning mechanism might
reflect the neuronal level of nervous system function, with reinforcement
ana supervised learning mechanisms reflecting progressively higher levels
of function. It would seem then that it is important to be clear about
what level of nervous system function one is moceling. Furthermore,
mudeling higher levels of nervous system functivn may require taking into
account the nature of the learning mechanisms that operate at lower
levels.

Regarding drive redauction as the possible goal of biological systems
and, perhaps, as the goal ot drive-reinforcement networks, one point

that should be made 15 that drive reduction would seem to be the gual fur

arives that are implemented as negative feedback loops. Drives

implenented as positive feedback loops woula seem to support the gual ot
arive induction rather than drive reduction. Haviny said this, it may
then be observed that, 1n the case of biological systems, drive
induction, as in the pursuit of prey, olways seems to be folluwed by
ar,ve reduction, as in the consumption of prey. This may suyygest d
simple general principle for the design (ur evolution) of
drive-reinforcement networks: primary drives implemented as positive
feedback Tloops should always lead, when activdted, to the subsequent

activation of primary drives that are implementeda us negative feedback
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loops. If this principle 1s fullowed, then o1l drives will, ultinately,
support the goal ¢f drive reduction. This mnay help to insure the
stability of learning systens.

I have traversed the conceptual or theoreticel territory of
connectiomist ncdels twice now, once leoking at the kinds o1 teedback
various classes of models require 1rom their envireonuencts dond once
looking @' the nature 0f the goais implemented 1n these uccels. [ want
1o make one more pass, examining the algurithmic or heuristic character
of various connecticnist meodels.

Supervised learning mechanisms, in their most recent torm, in which
back propagation techniques are utilizeu, heve a certain appeal becouse
of what 1 would suggest iu their nearly elgorithrmic character. [ mean
this in the mathenatical sense in whick an aigorithm is detinec tu be a
prucedure that is (Leranteed to produce o result, as distinguished froum a
heuristic that. like a rule of thumb, may or may noi preduce the desired
outcome. Lack prupacating errur correctior learning necnanisns utilize
¢radient cescent tecknigues such that they provide, with some altuwances
fur the problem of getting hung up un local peaks, ¢ vptimal selution to
the problen contronting the network, the probilen being to arrive at the
besy set of connection weights., Back propagating crror correction
networks becune of interest, then, fru o theoreticel sStancpeint,
irrespeciive of  their biolocice] relevance, because the models  riay
represent  cptinal or near cptimal sclutions of certain problems.  Ever
here, there lLay be difficulties thouyh, because for the lorger, deeper

networks many theorists are interestec 1n, scaling up ot back projayeting
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error correcticn networks may pose an cbstacle (Plaut, Nowlen, dana K
Hinton, 1586). o
At any rate, if we consider that back propuyating error correcticrn ét
networks have something of en algorithmic character, the other extreme
might be connectionist networks that utilize random search techniques to :E
o
identity reasonable values for ihe connectior weights (e.g., see Barron, Eﬁ
1968). Randoin search techniques woula seem to be about as fur removed ;
from an algorithmc character as a learning mechenism can get. ;;
n between these two extremes are such classes c¢f models as S;
reinforcement ard drive-reinforcemert learning mechanisms that appear to ;f
have « heuristic character. For example, wutilizing <crives and E
reinforcers as the basis for learning may not cuarantee currect results Ei
but, on the average, such an approach to¢ iearning appears to be LJ
R
effective in the case cf biological systems. ;3
N
~ ]
Artiticial intelligerce :
Funganental to the prucess of learning in the case of the 3?
drive-reanforcement neurunal mocel is the tempoural shaping of behavior, S
o
This is ir ccntrast to the kinds c¢f processes that occur in ¢rtiticial '
intelligence where the emphasis is placed on what might be called I;U
cognitive searching. ‘"Cloynitive" becouse there 15 an emphasis orn the ;;
rativnel and symbolic aspects of intelligence ana "seorching" because ;ﬁ
there is an emphasis on selecting frorn o lcrge number of possible ZE:
tefeviors.  An dimplicatien uf the drive-reinturcerent neuronal model s Ek;
e
that, funcamentally, ratural 1ntelligerce onu the learning mechanisis T,
=
108 7
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that support i1 dc not involve symbols or searching but, rather, oCtions
and shapirng. Learned behavior 1s gracually shaped through experience to
become more oppropriate. This dynamic process yields asscciations that
refine Ltetovior that is alreasy in place. Animals dare centirually
"riding" a large number uf feedback locps that reach through the animal
ana cut into the environment. The more cognitively or symbolically
oriented kinds of searching through large numbers of possibilities that
humans schetimes engage in is, most Tikely, an emergent phenomenon that
arises out of the 1internalization of o very large rumber of causal
relations, this internalization being accomplished, it would seem, with
sonething like & crive-reinforcement lesrning mechanism that temporally
retines actions. Another way f saying this is that first we learn to
grasp an object "ena then we learn to grasp & problen.

The commerts 1 am making regarding ertificial intelligence research
apply as well, 1 {eel, to cognitive science. There seems to be the view
in both of these disciplines that menory, learning and intelligence have
to do, fundamentally, with cognitior. however, doesn't natural
intelligence have to ac with action, emotion, ana cogrition? The
erive-reinforcement neuronal model conteins what may be a complete seu of
the funaenental elements that underlie intelligence, ramely, outputs that
reflect actiuns, inputs and changes in inputs that reflect drives and
reinforcers, synaptic weights ihet represent knowleage, and changes in
synaptic weights that represent lecrning. The seeds of acticn, emotion,
and cognition aeppear to be present in the drive-reinfurcement neuronal

model,
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In such areas of artificial intelligence research as image
understandiny ond the relatea area of pettern recognition (althuugh the
latter i< sometines more closely associated with connectionist models
than with nainstream artificial intelligence), the tendency has been to
treal the temporal aspects of intelligent infurnation processing as too
difficult for current techniques to hancle. (Some recent research
constiiutes exceptions to this statement.) Often, ways have been sought
to autonatically understanc static scenes or tc recognize Spatial
patterns. The temporal aspects of natural intelligence, asscciated with
motion and assucisled with real-time information processing, in general,
have frequently not been addressed in inage understancing and pattern
recognition reseorch, the strategy seering to be that these aitficult
issues will be addressed later, when these fields ¢f research are more
advanced. But 1f the temporal and, indeed, real-time aspects of rnatural
intelligence turn out tu be funcamental with regard t¢ learning, as the
drive-reinforcenent neuronal model suggests, coula it be that the ¢oals
of imuge understanding and paitern reccgnition research will be more
easily achieved if the temporal or reai-time aspects of intelligent
infurtiation processing are contronted first rather than last?

having discussed cognitive searching end its role in artificial
intelligence, it nmey te useful at this point t¢ comment on evolutiovnary
moaels, of learning because such nodels also 1nvoke seorch mechanisms in a
fundamental way. Fogel, Owens, and Walsh (1Y66), Klopf and Gose (1Y),
and helland (1975), for exanple, have proposed evuluticnary models of

Tearning in which alternative structures ur behaviors are generuired
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randomly or by sunme process that is more cystematic than a purely random
one, lhen, the alternatives are evaluated and the besi ore saved. Such

an evolutiundry process appears to be fundamentally differert trom a

learning process. Fundamentelly, learning aoes nol «ppear to involve

generating and evaluating alternatives, FRether, a$ discussed eariier,
Tearring appears tu 1nvolve the direct temporal shaping of behavior.
Experienced causel relationships are interndlizec; i.e., asscciations are
formea airectly as a result of the experience. For exampie, when & bell
rings and focc 10llows, animals furm associations directly. No search
process occurs., Of course, ot a higher level, seurching can be
oceurring. It can be secn that 1f an animal is explioring its environment
ard causes @ bell tu ring ond then fooa foullows, ibe consequences of the
exploratory or search prucess may result in the cirect temporal shapirg
of behavior. Direct temperal shaping of bSehaviur ray be occuvring then
at the must fundamentei ievel ang a Search process may be cccurring atl o
higher level.

In  summar,, 3t could be said thal o wmplication of the
drive-reinforcenent nodel is that time 1u the teacher (that 1s tu scy,
real-11me) and behavior or gciions is what is tauckt. Ultimately, in q
phylogeretically advanced orgerism like a human, kuowledge acquisitiorn,
representeticn, and utilization become important too and then d urocess
like the one I am celling cognitive searching takes un  increasine
impertance.  However, 1t seems that this wmay have nnsled gartifigicl
irtelligence resedrchers  and  cognitive  sClentists, drawing  thelr

ettention away from the ungerlyinc mechanisme that dappear to have rore Lo

R R S G
EANENAN
% S M

a8
s
AR

f;.f (!.\'.‘f f\'.f ’ V

A ARN

PPNV

2y

PRI
i‘ St w

13
™2

. 7
R

1‘: l'r‘ (’J’.!{i

A

S

Yo e
]
elete el

,l' y

e Ay A
) ',-l,'-_,“ ‘.‘_. o

L %]
P
-

> 7

'\' (:'.' )

g

PR R

PR
.y

[ SRR

. oy & _a_ 8 v _-
* .l * ‘I .' ¥ "
@ e e

..-".’:.

-



ao with temporal shaping. Artificial intelligence researchers have, for
exahple, sometimes been aismayed by the lack of coniicr sense in the
systems they have designed. Could it be that common sense derives Troum
the uperation of drives and reinforcers and from the kind of real-time
embedding in the environment that 1is characteristic of biological

systems?

Adaptive cortrc) theory and adaptive cignal processing

Fur several decades now, coentrol theory has been successfully
applied to the problems of analyzing and synthesizing automatic control
systems. Adaptive cuntrol theory seeks tTo extend control system
applicatiuns t¢ cases in which adaptation or learning is required on the
part of the autumatic controller (e.g., see Chalam, 1967). In this way,
control thecry contacts the problert of learning in the context of
engineering applications.

Related to the subject of adaptive contrul theory is adaptive <ignal
processing (e.g., see Widrow and Stearns, 1985,. In both adaptive
control and adaptive signal processing, it is sometimes assumed thal «
"desired response" or "training signal" 1s aveilable with which the
controller's or signal prucessor's actual outpul can be compared for the
purpose of learning. Urive-reinforcement learning theory, as outlinec
earlier, suggests on alternative way to erxtend control theory or signal
processiny technicues for the case of learning, such that no knowleage of
a desired resporse or training signal 1s required when the learring

csystem is operating.

1le




In the drive-reinfurcement learning thecry outlined earlier, network
: drives are fundamental. In control theory, negative teedback loops are
. furgamental. But network drives, as I have getined them, and regualive
- feedback loops are one «nd the same thing. (OUne quelification: in
biological systems, newwork drives may also occaSionally be positive
feedback Toops.) Une sees that drive-reinforcenent theory and control
B theory start on the Some basis. It can then be seen  that
drive-reinforcement theury sugygests a "natural" Tlearning nechanism for
control and signal processing systerns. While 1 am not aware of any
adaptive control or signal processing systems using layged derivatives of

inputs and outputs as a basis for adapteiion, such a learning nechanism

R

would seerr to constitute o straightforward extension ot conventional
control system and signal processing techniyues.
The essence of the drive-rewnforcement learning mechenism, in

adaptive control theoretic terms, can be simply stated. A network ot

20 a4 & e

drive-reinforcement neurons. viewed as a control system, will interact
with its envirurment through some set of pesitive and negative feeaback
. loups. Pursuit of prey, tor example, mey involve positive feedback

loops, as noted earlier, and avoidance of preaators niay involve necaiive
' feedback loops, At any given time, a bioloyicel system will be
: interacting with its envirunment through a set of actual positive cra

negative feedback loops that cunstitute its current primary and acquirea

drives and through o set of potentidl positive and neyslive tfeedback

loops that constitute possible 1uture dcquired drives. Fotential

e 0w AR

acquired drives will become actual 11 the inputs for the potential drives
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becone active nc more than t tike steps before any of the current actual

(Y]

drives change their levels ot activity. In this way, what may be called

a drive-reintorcement controller will learn to control its output not

:}
A
v

enly to deliver more or less of a control signal (as current sdaptive

controllers do) but alsu to deliver the contrel signal sooner or later.

That is to say, a drive-reinforcement controller would be expected to
modity not only the amplituces of its responses bhut ¢lso the timing.

Menory and learning

Before concluuing this discussion of some of the implicetions of the

drive-reinforcement neuronc) model, a few words should be said about

nemory and how 1t relates to learring. As Squire (1986) notes, in L
phylogenetically olc gnimals such as invertebrates, what is learned takes 2;‘
the form of procedural memories. In phylogeneticelly recent animals such '2”
as manmals, what 1is ledrnea can also take the form of declarative §§~
menories. The distinction between procedural and declurative memories is 'EE
D)
that between skilly and procedures, on the c¢ne hand, and specific facts ﬁ'l
and cata, on the other. Et_
e

The drive-reinforcement learning mechanism appears to be well suited iif
for the laying down o1 procedural memories because the learning mechanism ~,$b
treats tinie as a fundamental dimension, utilizing time derivatives of the 25
neuronal inputs and outputs and correlating the derivatives across a ;;“
o

temporal interval. If the drive-reinforcement learning mechanism <hould ?f
turn out to be the learning mechanism for acauiring procedural memories, i;i
R
could it g¢lso turn out tu be the learninyg mechanism for acquiring ;E;'
cdeclarative memories? To see how this could be ¢ pessibility, 1t may be g5
114 '
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necessary to consider the interaction of the brain's attention mechanism
with the registration of sensory and other information in the cerebral
cortex. The medial temporel cortex and especially the hippocampal
tormation and associated areas appear to be important with respect t¢

declarative memories. Squire (1986) notes that the capacity for

declarative memories reaches its greatest developnent in niammals in which

these cortical structures are most fully elaborated. Given our tendency

to remember that to which we attend, might it be that signals generated

by the attention mechanism, the signals originating perhaps 1in the

thalamic reticular formation (Klopf, 1982), interact with sensory and

vther information registering in the nedial temporal cortex, such that

the temporal relaticnships specified by the drive-reinforcement learning

mechanism are satisfied dang ceclarative memories result? In general,

could the role of the attention mechanism in the laying down of both

procedural ana ceclarative memories be the induction of Ay's at

appropriate times relative tc ax's so that the resulting synaptic weight

changes yield learning?

.....
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SECTION 7
CONCLUDING REMARKS

In the Fureword to 0lds' (1977) book on Drives and Reintorcements,
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Neal Miller renarks (p. v): "A fundamental step in the line of evulution \
leading to human behavior was the development of learning, a new process \
of adaptation that could occur far more rapidly within the lifetime of 7
the inaividual instead of slowly during the evolution of the species. In \E
determining which particular response will be performed and learned, the :$
selective factor is reinforcement which, in turn, is closely related to %
the drives that are active at ¢ given time." In this report, i have :
attempted to relate drives and reinforcers by means of a theoretical ";
model of neuronal function. The model has been demonstrated to predict a .’-'"
wide range of classical conditioning phenomena. Implications of the ;"
model have been consigered for the fields of animal learning theory, Ef;
cennectionist and neural network modeling, artificial intelligence ::3:
research, adaptive cuntrol thecry, and adaptive signal processing, It ::
has been concluded that « real-time learning mechanism that does not '.::.;
require evaluative feedback from the environmnent may be fundamentol 1o l".i:'
natural intelligence aond that such a Tlearning mechanism may have ;;
implications for artificial intelligence. 3‘:2
In addition to accomplishing experimental tests of the neuronal
model, a useful next step may be to sinulate networks of the proposed ”‘_:.-
thecretical neurons to determine the properties ot the networks, in \_'Z“
general, and, in particular, to determine 1t instrumental concitioning ":'
N
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phenomena emerge. Actually, in pursuing this theoretical wurk, it may be
useful to sinulate not only the neural network but also a sinplified
organism controlled by the neural network and a simplified environment
with which the organism is interacting. [See Barto and Sutton (1981b)
for an example ot how this kind of simulation can be carried out.j By
means of such computer simuiuations of nervous systens, organisms, and
environments, it niay become possible tu make behavioral observations on a
mathematically well defined network of drive-reinforcement neurons during

the process of learning.
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AFFENDIX: Parameter Specitications for the Computer Simulations

of the Neuronal Models

Drive-reinfurcement model

Learning rate constants: c1=5.0, c2=3.0, c3

CS initial synaptic weight values [i.e., wj(t) at t=0]: +0.1 (excitatory

=1.5, ¢ =0.75, ¢, =0.25( 1 =5)
4 3

weights), -0.1 (inhibitory weights). Exceptions: For the
sinulations reported in Figures 12 and 18, the initial values
of the inhibitory synaptic weights were 0.0, thus preventing

the inhibitory weights from changing during these simulations.

This was done to simplify the graphs and to focus attentiun on
the excitatory weights that were primurily responsible fur the
phenomena being manifested, Haa the 1initial inhibitory
synaptic weight values for Figures 1¢ and 18 been set at -0.1,
as was acne for the other simulations, small changes in
inhibitory weights woula have been obscrved at some points in
these simulaticns while the overall phenomena being nisnifested
would have remained unchanged.

US (nonplastic) synaptic weight values: +1.0 (excitatory weight) and U.C
(inhibitory weight).

Lower bound on synaptic weights: lwi(t)|z 0.1

Neuronal output limits: 0.0 s y(t) s 1.0

Neuronal threshold: 6 =0.0

CS amplituues (measured relative Lo zero-level baseline): 0.2 except for
Figure 7 where the amplitudes were 1.0, 0.5, and 0O.cdb for CSl,
€S, , and CS3, respectively, and Figure 17 where the amplitudes

2
were 0.2, 0.2, and 0.4 for LSI, CSZ, and CS3, respectively.
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US amplitudes (mecsured relative to zerc-level baseline): 0.5 cxcept for
Figure & where the US amplitucdes were 1.0, 0.5, and 0.25 Tor the

USs occurring in  conjunction with (S CS

E % and CS3,
respectively.

CS and US timing: See Table 1 for times of unset and offset of CSs and
USs within & trial. Alsc specified in Table 1 are the trials
during which edch CS and US was present.  For all of the CS-US
configurations, the time of onsel of the first stimulus was
arbitrarily chosen to be 10.  Onset of a4 stinulus at time step,
t, means that the stimulus was on during tine step, t, and was
not on during the previous time step. Offset of a stimulus at

tine step, t, means that the stimulus was off duriry time step,

t, and was not off during the previous time step.

Hebbidn model

where applicable, parameter values were tlhe same as for the
drive-reinforcement nodel except that c¢=0.5, the initial synaptic weight

values were 0.0, and there was nu lower bound on the synaptic weights.,

Sutton-Barto model

Where applicable, parameter volues were the same as for the
drive-reinforcement model except that ¢=0.5,a =0.9, the initial synaptic
weight values were U.U, and there was nc lewer bound on the synaptic

weights.
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