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Kig ~(D-1)1/2,
where: Kic is mode | fracture toughness,
D isthe fractal dimension .
Assuming that fracture can be modelled as a scaling fractal, the

constant of proportionality of this relationship is found to be a product of

Young's modulus (E) and a characteristic length (ag);

Kic = A(D-1)1/2,

where A= 5{30)1/2,
The constant A s a family parameter which identifies a line in the
toughness-fractal dimension plane. Materials within a given line experience an

increase in tougnness as ihe fractal dimension increases.

Using experimentally determined values of K . E.and D, a

characienisiic length, ag . can be computea. Tiis length is inaicative of the
“unit process” of fracture, and represenis an average siep size in the
geomelry of fracture. For example, the charazisnistic length ot a polycrysialling
alumina (AD20) is 3 A , suggesting the Al-Q bond rupture as charagiaristic of
iﬁe teaciure. Aleraztively, a zinc silicate glass coramic  { MS408&5 ) has a
characierisiic length of 76 A, This indicztes a cluster-iike iraciure. suggestive of
T GIoUDINGS 35 the unit process. Thus, if (his modeins

coirecs, we have a techrique vineraby we can i¢iahs theo goomelny of the

[YIR)

fracisre surizee of britle matenais (0 an alomic scaieo gasomalry.

£33

——— ity

Ty a ¥ g ;s
Uaclagnecésad

IECURITY CLASSIAITAYION CF “nig BPagg

*v

,‘-4

)

.
Ay ¥y

25 .8

or I 7oy

REREA AR S -
Xxe,

= J
~4

.;‘
AP

e
Vet %

S %

w,



i
ABSTRACT

Fractal geometry provides a tool for the description of irregular objects.
While Euclidean geometry allows for only integer dimensions, iractal geometry
admits to the existence of a dimensionai continuum. Thus, geometric shapes

can be classified according to their dimensions.

in previous work, a relationship was shown to exist between a materials

fracture toughness and its fractal dimension. It was found that:

Ky ~(D-1)1/2,

where; K| is mode | fracture toughness,

D is the fractal dimension .

Assuming that fracture can be modelled as a scaling fractal, the

constant of proportionality of this relationship is found to be a product ot

Young's modulus (E) and a characieristic tength (ag). FRroeT R
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The constant A is a family parameter which identifies a line in the
toughness-fractal dimension plane. Materials within a given line experience an

increase in toughness as the fractal dimension increases.

Using experimentally determined values of Ki, , E, and D, a

characteristic length, ag, can be computed. This tength is indicative of the

“unit process" of fracture, and represents an average step size in the
geometry of fracture. For example, the characteristic length of a polycrystalline
alumina (ADS0) is 3 A, suggesting the Al-O bond rupture as characteristic of
the fracture. Alternatively, a zinc silicate glass ceramic ( MS498#5 ) has a
characteristic length of 76 A. This indicates a cluster-tike fracture, suggestive of
glass-crystal molecular groupings as the unit process. Thus, if this model is

correct, we have a technique whareby we c¢an relate the geoimetry of the

fracture surtace of brittle materials to an atomic scale geometry.
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CHAPTER 1
INTRODUCTION TO FRACTALS AND FRACTURE
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Eractals

Fréctal geometry is a non-Euclidean geometry that was developed,
popularized and applied by B.B. Mandelbrot.12 The word fractal is derived
from the latin "fractus” which means fragmented or broken. Mandelbrot realized
that fragmented geometries vather than Euclidean geometries are, by far, the
most common geometries of nature. His research has created a framework for
the description of systems that, up to now, were too chaotic for geometric

description.

in his book, The Fractal Geometry of Nature, Mandelbrot describes the

extensive applications of fractal gaometry. The concepts have been used to
describe the geometry of clouds, soot aggregates, dielectric breakdown,
mountainous terrain, coastlines, etc. This thesis uses the notions of fractal

geometry to describe the geometry of fraciure surfaces.3

Basic Concepts of Measure

To estabiish a “leel” for fractal geometry we can simply consider how wa
measure the length of a line. 4 1tis clear that the measurement of a set requires

a measuring 160l, or ruler.
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Suppose we use a supply of discs of a given radius, R, and consider the

line of Figure 1.

A\ : .

. ;:,,

R
N

%

Wy .
. ;;, _ Diameter=2R

& A

Figuia 1. Measuring the length of a line requires a ruler

i The length of this line is measured by covering it completely with as few discs

as possible, as in Figuia 2. The length, then, is given by:

wi": length = (number of discs)X\2R)
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e :pi‘: ’ '
! _ . ' Diameter = 2R
(4

- ’ Length = (# of balls)X( bali diameter)
=12X2R=24R

! Figure 2. The line is completely covered to determine its length.

O = Diameler=R

Length = (# of balls)X(diameter ot a ball}
=27R

Figure 3. Changing the size of the measuring disc may
produce a ditferent measure of the length.
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Now, suppose we have a new supply of discs with a different radius, say

N
{:: : (1/2)R. The line length is determined in the same manner, and a new line
Ay
.
?f , length is computed, Figure 3. Note the difference in the measured line length in
. ::E Figures 2 and 3. Although the measuring disc was decreased to half of the
195 :"9' .
g i‘é{ original measure, the number required to cover the line more than doubled.
£
B
y The "tortuous" nature of this curve gives a length that is scale dependent. As
A
-3:;3 the scale decreases, the measured length increases.
e
X
B The measured length of a line can be succinctly described by the
, 43} following equation, called Richardson's equation‘:
s
S '
g L=ke!D, | (1)
.‘4-
."
. 4
3 Where, L is the measured length,
»
2 E is the measuring scale,
X
R D is the dimension of the curve,
3
k is a proportionaiity constant.
. a
3
o
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I D is equal to one, the ling is Euclidean and its measured iengthis not a

function of scale. If 1<D<2, the curve is said to be fractal with a dimension

given by D. This dimension can be thought of as an indicator of the

“wiggliness" or space filling nature of the curve.

If we are given a line, we can compute its fractal dimension from

equation (1). The line’s length is computed over a range of scales. A log-log

plot of length vs. scale gives a straight line witi slope equal to 1-D, Figure 4.

Slope = 1-D
LogL /

Log E

Figure 4. A log-log plot of Richardson's equation
provides a slope equal to 1-D.
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it should be mentioned that mathematical fractals will obey equation (1)
for all scales. Thus, as the scale goes to zero, the measured length becomes
infinite. Physical fractals, however, may have a finite cutoff at both the large
and small scales. In the physical world, the fiuctuation of a fine will find its limit
in the smallest measureable featu~>. The sensitivity of our measuring stick will
determine the smallest feature we can measure. If fluctuations occur below the
sensitivity of our instrument, the line will appear to be Euclidean. In this
instance, the upper bound of the measured length of a line is simply that length
that corresponds to the finest possible scale of measurement. We could not
conclude, however, that the line has exhausted its fluctuation, we have simply

exhausted our ability to measure any fluctuations.

On the contrary, a line may be composed of indivisible components.
After our measuring stick has become smaller than the smallest of these
components, the line would cease to exhibit scale-dependent length. This
length, then, would represent a true upper bound. Such a line could be called
“fractai" over the range it exhibited scale-dependent length. Itis not, however, a

fractal in the strict mathamatical sense.
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Both of the aforementioned possibilities would have a Richardson plot as
in Figure 5. The object would be described as a fractal over a bounded range
of scales. These cut-off scales are of special significance to the particular

geometry of a specific physical phenomenon.

< T Fractal
on
bounded
range
LoglL
Llog E

Figure 5. Physical fractals have scale dependence over
a bounded range ot scales.

Fractals and Fracture

Fracture markings on glasses and polycrystalline brittle materials
( known as mirror, mist and hackle) are precursors o crack branching5 and can
be used to describe the stress state® and charactedistics of crack propagaaion.7

These markings have been observed for over S0 years and were related




quantitatively to the stress in the 1950's.8 More recently, the repetition of these
{eatures (multiple mirrors) was observed and quantitatively related to stress
intensity.g Ravi-Chandar and Knauss® also recently noted that mist and hackle
are self-similar; i.e., they appear to be physically simiar and produced in the
same fashion. This observation follows previous-detailed descripticins of the
structure of mist and hackle.10  These descriptions did not, however,
emphasize the self-similar nature of the features. These recent observations of

multiple mirror, mist, hackle, crack-branching and self-similarity led to this

research.

A Basic Model of Fracture

In order to understand the essentials of material fracture, fracture
mechanists employ a basic model of fracture. In this model, atoms interact with
their nearest neighbors via a simple two-body potential. The derivation
assumes that atoms lig in a plane, that they interact only with theii nearest
neighbor and that bonds break sequentially. Thatis, fracture is localized to

only two atoms at a time.
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The potential energy between atoms in a crystal structure can be

approximated by a function of the form11;

U= -Qq/ ™+ Qo 1Y, (2)
where -Qq/ * is an aftraciive term,

Qo Y is a repulsive term.

For ionic crystals, the exponent in the attractive term (%) is close to unity whiie

the repulsive exponent (y) is between 6 and 12. Such a furction would have
the form shown in Figure 6, where dg is the equilibrium spacing between
neighboring atoms. The depth of the potential minimum is related to fracture
energy, while the curvature of the potential minimum is an indication of the

modulus. The derivative of this potential function gives the force function

between neighboring atoms, as shown in Figure 7.

—
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Energy

Separation distance

Figure 6. Potential energy between neighboring atoms

slioss

Theoretical cohesive strength

/ < ~ o
/ oeparation distance

Figure 7. Force funclion between negighboring atoms.

When a material is stressed beyond a certain limit, irreversible changes

will gccur. I loading is continued, the material can be fraclured. As a crack

propagates through a specimen, the polential energy of the specimenis

teduced. 2
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Energy is released via the creation of new surface, the emission of light,

acoustic energy, etc. The energy required to propagate a crack is called the

fracture energy, 1;.

Crack propagation through a microstructure is a geometrically
complicated statistical process that contains atomic scale as well as
macroscopic scale geometries.!3  Interaction of the crack {ront with the

microstructure wiil affect the geometry and, hence, the surface area generated.

A material's resistance to crack propagation is called fracture toughness.

Fracture toughness may be characterized by the {racture energy, ¢ . the strain
energy release rate, G ( Gg =2yy), or the citical stress intensity factor K,

(Kg=V2Ey;). Atoughening mechanism, then, is a microstructural property

that atlects a material's fracture toughness. One paricular class of toughening
mechanisms religs on influencing the direclion of crack propagation

(e.g.. zrack deilection4).  Anincrease in toughness can be achieved by
making the crack path irequiar. 14 Thus, the geometry of the iracture surace

plays a role in the materiai's toughness.
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KA The importance of fracture energy is made obvious in the following
i simplified derivation assuming plane fracture in a perfect crystal.11,19,16

R A crack is assumed to reside between two planes of atoms with interplanar

spacing dg, Figure 8.
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Figure 8. ldealized crack separating planes of atoms in a crystal structure.

Rathar than using the detivalive of equation (2), the stre~s rasuiting from the
strain of the interplanar bonding is approximated by a sinusoidai funciion,

Figure G,
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stress Separation distance
d d.+a

Figure 9. Sinusoidal approximation of the force between
neighboring atoms.

At the equilibrium spacing, dg, the stress is zero, rising to a maximura

and dropping to zero at a distance Jgp+a, the distance of bond rupture.

Therefore, o= gy sin (n{x-dg)/a), (3)

where; x is the separation beyond equilibrium,

ais the failure separation.

f-or small displacements, x, the sin is equalto its argument.

Therefore, ¢ =0p T (x-dg)a, (4)

and do/dx = ogn/a . (5)
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By definition, the strain is;

€= X/do ’ . (6)

and, for small displacements,

c=Ee=Exdg, (7)
so that do/dx = E/dg . (8)
Comparing equations {5) and (8) provides;

og = Ea/ndg . 9)

Thus, an estimate of the theorstical cohesive strength is obtained from known

values of €, @, anddp. Now, infracture, the work of separation must at least

be equal 1o the energy required 10 create o new suraces, 27, 1+19.16
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a‘,{ - The work per unit of area generated by fracture is;
a0 work/unit area = [ gpsinn(x-dg)/a dx = 2Yg (10)
s so that, 2ogain = 2y , 1)

9
_ '3 but, from equation 7

2Ea?/m?dg = 2y, (12)

o
;}": SO Ts = Ea®/ n2d0 . (13)
&

+ :‘ y

'.I.

' Equation (13) shows that the surface energy for plane fracture, Ys.i5a

~ function_ot modulus, E, interplanar spacing, dg. and the displacement to bond
rupture, a. For single crystals, the suriace energy, g + IS assumed o be nearly

equal to the fraclure enrgy, y; . Gilman'® assymed that the constant, a, was

equal to the radius of atoms within a given plane.
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For single crystals, his results were uniformly high, yet of the same order of
magnitude as experimentally obtained values. Polycrystalline fracture
energies, however, are approximately an order of magnitude higher than their
single crystal counterparts.1 1 part of this difference is due to an increase in

the roughness of the fracture surface.

The model of fracture presented here takes no account of fracture
surface roughness. It is assumed that fracture creates two perfectly plane
fracture surfaces. Fractal geometry can accommodate surface roughness by
allowing for irregular paths. These paths could be constructed from straight line

segments imbedded in an orderly geometric matrix.

Imagine a two-dimensional array of atoms as shown in Figure 10.
Fracture could progress from region A to region B through a number of paths.
Some of these paths are shown in the Figure ( a-a, b-b, and c-c). The basic
modei would assume only a straight line, whereas a fractal model could
describe other more complicated paths. Thus, surface roughnass can be

accommodated without a radical deparure from the basic model.
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Figure 10. Schematic of possible crack paths in an idealized lattice.
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Fracture Energy and Fracture Toughness

Equation (9) provides an estimate of the theoretical cohesive strength of
a material. Brittle ceramics exhibit fracture strengths that are generally orders
of magnitude lower than this estimate. This difference results from the stress

concentrating effects of flaws.

Grifiith12 was able to calculate the stress at which a crack would
propagate. He postulated that crack extension would occur only if the creation
of new surface acts to reduce the potential energy of the system. He found that,

under conditions of plane stress;

of = (2EyynC)1/2. (14)

Where: oy is the fraclure strength,

E is Young's modulus,

Yy s the fracture energy,

C is the {law size.
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Q' Inglis made computations of the stress concentration created by flaws of
BN * . . . .
7 };}u various geometries. It was found that cracks in a material could be
H
My . L . .
- conveniently modelled as elliptical, and their stress concentration computed.
by
' . L . .
3::' The stresses near the tip of such elliptical cracks have a precise mathematical
f. N
‘!‘{
15 T . .
Iy description that depends upon a parameter called stress intensity, K
:g ( The t denotes tensile loading). For a material to fail, the far field stress must
W
;§:: be concentrated to the level of theoretical cohesive stress. Thus, stress
_ intensity reaches a critical value called the fracture toughness, or critical stress
%
3 intensity factor, K. This critical value is found to depend on the flaw size and
-3
s the far field stress;
) 4
s
)
i
N Kic =Y o{VC. (15)
Y
-
&
M
') Where: oy is the far field stress,
C isthe tlaw size,
Y is atactor that depends on the geometry ot
loading and crack configuration.
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Comparing equations (14) and (15) provides a reiationship between K;; and ;.

Under conditions of plane stress;

Kje = (2Ey)1/2. (16)

racture Profiles as Fr. | Curv

In many cases, a fracture surface presents a rather complicated
geometric structﬁre. This complex geometric shape is not amenable to
description by Euclidean geometry, thus, fracture surface energies have not
been accurately modeled as functions of this geometry. Fractals, however,
provide a tool for the description of such surfaces. At the very least, they can be
used to quantify the surface roughness. A fracture profile presents a curve
similar to that of Figure 11. The "complexity" of this profile can be categorized
by its fractal dimension. As discussed earlier, Richardson's equation, where
the profile length is measured for various scales, provides a method tor
determining the fractal dimension. Ol course, a fracture surface is, atthe
very least, atwo-dimensional object, but as a lirst step in bategorization. itis

worthwhile to compute the dimension of the profile, Figure 11.
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w
Fractured sample Protila view

Figure 11. Fracture profiles can be measured according to
Rickardson.
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it is quite possible that there will be a physical limit to the scale

(dependence of length. Features on the fracture surface may vary only down to

a finite cut-off size. This may be on the grain size, molecular, or atomic scale.

But, this, in itself, is useful information.

ing Fractal

There is a particular subclass of fractal geometry which is comprised of
“scaling fractals”.*3 This is what is generally referred to as a fractal.
Regardiess of the nature of a curve, Richardson's equation can be used to
compute a fractal dimension. Scaling fractals, however, have two very
important properties: scale invariance, and self-similarity. Scale invariance
refers to features, geometrically identical, appearing on all scales of
observation. Self-similarity means that a small feature of the object can be
scaled to precisely match a large feature. These concepts are most easily

understood by observing the construction of a scaling fractal.

Consider a box, as shown in Figure 12a1+%17, whoss sides are of unit
length. Next to this box is a shape called a generator, composed of ling
segments scaled to 1/4 of the length ot a side of the box. Now, replace each

side of the square with this “scaled” generator.

e
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The result is shown in Figure 12b. Again, take the generator and scale it down
to the length of each straight line segment of this new object. The generator is
now composed of line segments of length (1/4)2. Replace each of the straight
. line segments of Figure 12b with the scaled generator. A podion of the
resu'ting shape is shown in Figure 12¢. This process is continued, ad infiriitum,

generating an object which is said to be scale irivariant and self-similar.
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generator

|

Figure 12a
Each side of the square
is replaced by the scaled
generator.
Figure 12b

Again, the generator is scaled to replace ﬁ “L};-'b
each of the segments of Figure 120b.

Figute 12¢

Figure 12. The stepwise construclion of a scaling fractal.
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A scaling fractal looks geometrically the same everywhere and on all
scales. Clearly, w'e have generated an object whose perimeter will be a
function of scale (as in equation 1). The fractal cimension of this object,
however, can be computed in another, quite different fashion. 1:4 Scaling

fractals obey the following;
NI’D =1, (1 7)

-Where: N is the number of elements in the generator,
ris the scale factor of an element,

D is the similarity or fractal dimension.

For the curve of Figures 12, called the quadratic Koch curve, N= 8, r=1/4.

Thus,
D = log8 fogd = 2. {18)

Figure 13 contains three pholographs of a2 glass iraclure surlace. Such
fraclures contain readtly identiliable regions called mirror, mist, and hackle. A
glance &l the photcgraphs will demonstraie the similadity of the mist and hackle

regons.
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Figure 13b is a photo of the mist-hackle boundary, while 13ais a view

E

of the mirror-mist boundary. Figure 13c is a magnified view of a region in 13a.
The identification of these boundaries is clearly affected by magnification.
Given such scale dependence, it seems possible that a geometry that
describes one region may simply be a scaled version of a geometry that

describes another region. This is precisely the notion of scaling fractals and

fractal geometry.

It is certainly true that {racture profiles can be measured according to
Richardson's equation and, if such is the case, assigned fractal dimensions.
The proposal of this thesis is that fracture surfaces can be accurately modelled
as scaling fractals. Thus, we can imagine a scheme of generation and a
generator that is repeated and scaled as fraclure progresses. This generator
may be an atomic scale process that cascades, through the scale invariance of
fractal geometry, to the macroscopic features of a fracture surface. Given D, we

can uyse oguation 14 together with knowledge of the crystal siruclure of a

et L R RN E N NI b Lor 2 F B bt s A AN S S R e By F S S

material to determine possible values for r and N. - Modelling fracture in this
{ashion allows for geometric intetpretation of measurentents on the

macroscopic scale, to a descaption of geomelry an the atomic scale.
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Research has siiown a relationship between fracture toughness (i.e.,
resistance to crack growth) and fractal dimension.18,19,20,21,24 At first
glance, this may not seem surprising. After all, fracture toughness is, in some
ways, related to surféce roughness, and fractal dimension provides a measure

of this roughness. The relationship is nct simple, however, and contains some

‘interesting results.
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13a. Mirror-mist )
transition. 2

13b. Mist-hackle
transition.
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13c. Eniargement
of the mirror-

miist transition \

fegion, 1

Figure 13. Self-similarity of mirror, mist and hackle. ‘
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CHAPTER 2
EXPERIMENTAL TECHNIQUE
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In this study, two independent techniques were used to determine the
fractal dimension of fractured samples: slit-island analysis19»22 and
Richardson plots. Passoja2® used a third technique, Fourier transform
analysis, on a zinc silicate glass ceramic and obtained values within 2% of

those obtained by slit-island analysis and Richardson plots.

Fractured samples, obtained from previous studies,®/ were carefully
cleaned and coated with nickel. The nickel coating performs two functions: It
provides good contrast during polishing, and it helps to hold the fracture
surface together. The samples are then potted in epoxy and polished parallel
to the fracture surface,w-?-2 Figure 14. As the fracture surfaczs is
encountered, a section of the fracture surface appears in the polishing plane.
These sections appear as islands in the polishing plane. As polishing

proceeds these islands begin to grow. The perimeter of the islands presents a

line that can be measured according to Richardson's equation.
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top view

Figure 14. Fractured samples are encapsulated in epoxy and polished parallel
tothe fracture plane. Islands emerge in the polishing plane.

An adaptation of Richardson'’s equation reveals a relationship between

‘the area and perimeter of an island;

A ~p2/D (19)

where; Ais the island area,
P is the island peiimeter,

D is the dimension of the perimeter.
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At the first emergence of an island, a polaroid photograph is taken at
magnifications ranging from 10X to 400X. Polishing proceeds in stages, each
stage fcllowed by a photograph. Once a magnification is chosen, that same
magnification is used for all subsequent photos. As polishing progresses, the
islands grow and sometimes merge. A representative sequence of photos,

taken at 10X magnification is shown in Figure 15. These photos are of a zinc

silicate glass ceramic (MS-508).

The "roughness” of the perimeter is an indication of the roughness of
the fracture surface. A sequence of approximately 20 photographs is taken to
document island growth. These provide data fc! a log-log plot of area vs.
perimeter (equation 19), from which a slope of 2/D is obtained. A
representative graph is shown in Figure 16. Data and graphs for the materials

tested are contained in following sections.
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Photo #4

Photo #6

Photo #7

Photo #8

Figure 15. Sample photographs from zinc silicate MS508
slit-island analysis.
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<«4—— Slope=2/0
log A

log P

Figure 16. Fractal dimension can be obtained from
area-perimeter growth of slit-islands.

Occasionally, an island will encounter the machined edge of a sample,
(e.g., Figure 15). The island will have a perimeter that is composed of two
sections: A line representative of the fracture surface, and a line representative
of the machined edge. The resulting fractal dimension would be a weighted
average of these two portions. Yet, ourinterest is only in that portion that
represents the fracture surface. Such edge encounters are simply folded out of
existence. Figure 17 explains graphically how the island can be folded across
the edge to create an island with twice the original area and twice the “fracture
perimeter,” Thus, we are left with an island that is unbiased by the dimension

of the sample edge.
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This island has encountered
the sample edge

The island is folded’
across the edge

UGS TSR RS

Figure 17. Edge correction is accomplished by simply folding an
island across the sample's edge.
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Isiand areas and perimeters are computed from the polaroid
photographs using a Lemont Scientific image analysis sys.tem.1 9 Different
grey levels of the photographs are assigned different colors. The system
software is'then able to compute area and perimeter of the different colored

regions.

In brief, the system places a grid with one micron spacing atop the
selected image. Points of intersection of the grid and island perimeter are then
assigned Cartesian coordinates. Straight fines are drawn between these
points and simple trigonometry allows for the computation of the length of these
lines. The island perimeter is taken to be the sum of these straight line
segments. Island area is equa! to the area of all totally enclosed rectangles
plus the triangular regions along the edges. Figure 18 demonstrates this

procedure.
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1 micron

Cartesian coordinates are assigned to the
intersection points of the grid and island

Straight lines connect the intersection points.
The area and perimeter are computed irom this
approximation.

Figure 18. A grid is placed atop the island of interest. Intersection points of
the grid and perimeter are used to compute area and perimeter.
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The area and perimeter information is used to plot a graph for each

island that appears on the fracture suriace. Log-log plots, asin Figure 16, are

of o B B § i da S SN w | S PSS

used to extract the fractal diménsion. ‘

-

As a check on the eniire procedure, an object of known dimension was
analyzed with the slit-istand technique. The chosen object was an alumina
sphere. Any cutting plane through a sphere reveals a circle, the dimension of
which is equal to one. The sphere was nickel coated; encapsulated in epoxy
and polished. Sections through the sphere were photographed at 10X, Figure
19, and image analyzed. The resuits are shown in Figure 20. The computed
dimension was equal to .98, a difference of only 2 percent from the expected

value of a perfect sphere, D=1.0.
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Photo #10

Figure 19. S- ..ple photographs irom shit-island analysis
of an alumina sphere.
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y= -3.0857 +2.0338x R=0.99

log A

log P

This graph shows the experimental data obtained
through slit-island analysis of a Euclidean abject.
Such an object should have a dimension equal to
one. This graph resulls in a dimension of .98

Figure 20. Data {roni the Euclidean test specimen.
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Richardson plots, as mentioned in the introduction, detail the change in
measured length of a line as a ‘unction of scale. Therefore, construction of a
Richardson plot for a fracture surface requires a line that is representative of the
fracture surface and a range of scales for measuring that line. As in slit-isiand
analysis, fractured samples are coated with nickél and encapsulated in epoxy.
The sample is then polished either parallel or perpendicular to the fracture
plane. If bolished parallel, we obtain an island whose perimeter is
representative of the fracture. If polished perpendicuiar, we obtain a fracture
profile. In either case a photo-montage is constructed from polaroid
photographs at 400X magnification. This montage is then measured with
dividers seito 2, 1/2, 1/4, and 1/8 mm openings, as depicted in Figure 21.
The length of the profilz (or perimeter) is tabulated for each divider setting. In
this fashion, profile length is computed as a function of scale. A log-log plot of

le.igth vs. scale (Figure 4) gives a straight line with slope equalto 1-D.
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Figure 21. A montage of the profile is measured with dividers

The scale (or divider opening) is a measure of discernibility. The
smallest observable feature is that of the scale. As the s;:ale becomes finer,
we observe greater and greater detail. |f the scale is larger than the largest
features, the observation is insensitive to those features. Thus, acurve will
begin to look fractal only after the scale becomes smaller than such features.
Figure 22 shows a sample montage for a section of island perimeter of an

Ocala chert (chert US).
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rigure 22. Sample island perimeter at 400X magnification.
This is a US chert sample, D = 1.32
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CHAPTER 3
RESULTS AND DISCUSSION-
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Mecholsky, Feinberg and Passdja24 determined a relationship

between fracture toughness (Kjc) and fractal dimension (D). They found that;‘.

Kic ~ (D-1)172, (20)

Thus, as fractal dimension increases, fracture toughness increases.

(The term (D-1) will, henceforth, be referredto as D*. D*, then, is the
fractional part of the fractal dimehsion). They obtained the fractal dimension of
a number of zinc silicate glass ceramics and aluminas, Table |, Figure 23.
The data conformed to a straight line in the log-log plane with a correlation of

92.

A number of new materials were chosen for testing. A complete
summary of these materials, the technique used for the determination of their
fractal dimension, and the resulting fractal dimension is contained in Table |l.

A complete listing of the individual data tables and graphs follows this section.

The Ocala cherts, commonly referred to as flint, are similar in structure
to glass ceramics (crysiallites imbedded in an amorphous matrix). These

cherts represent a series of heat treatments that alter the fracture toughness

and fracture surface tc::ography.
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U5 chert was untreated and exhibits the highest toughness. Numbers three,

four and F5 chert were heat treated at 300C, 400C, and 500025 respectively.

It is common to assume that fracture in single crystals will occur along a

e d

single plane. In general, loading conditions and inherent flaws will alter the

planar propagation of a crack through such crystals. It is not certain, then, that

;
:
g
K

the dimension of the fracture surfaces of single crystals will always be equal to

-

one (plane fracture). Single crystéls of Calcium Fluoride and Spinel were

chosen to demonstrate this possibility. Large grain (~500um) CdTe and ZnSe
were dimensioned as a first step in determining grain size effects on the fractal
dimension. Pyroceram 9606, a magnesium-aluminosilicate material, and

MS508 Zinc Silicate are glass ceramics.
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3 ' TABLE |

Data from Mecholsky, Feinberg and Passojaw'z4

k3
‘:%
“ Material Fracture Toughness Eractal Dimension
o
- Kie (MPam!/2)
'-.'.‘
i MS 498 6b #4 1.6 1.05
i MS 500 12b 45 18 © .00
- MS 500 #5 22 1.1
N MS 498 #5 2.0 1.16
(XY .
’:: LAS glass ceramic 2.7 1.18
y Monsanto AloO3 35 : 1.21
GE Al)O3 3.9 1.23
Lucalox 4.0 1.31
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Figure 23. A graph of the data of Table |shows; K;g ~ D*1/2,
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TABLE Il

Data Summary

MPam12
CdTe 7 1.2 - S
ZnSe 9 1.3 S.L
PZT 1.5 1.23 R
MS 498 1.6 1.05 S..
MS 500#4 1.8 1.09 S..
MS 50045 2.2 ' 1.11 S.l.
MS 498#5 2.0 1.16 S.L
Alumina #3 35 1.21 S.l.
Alumina#5 GE 3.9 1.23 S.l.
Alumina#3 GE 3.9 . 1.06 . S.L
Pyroceram 2.4 1.17 S.L
“Spinel(s.c.) 1.2 1.09 S.h
CaFjp (s.c)) 3 1.07 S..
Poly Spinel 2.1 1.13 S.L
US chert 1.55 1.32 RS
#3 chent 1.46 1.26 R
#4 chen 1.25 ' 1.24 R
F5 chent 1.05 117 RS..

*S.\. reters to the slit-istand measurement technique, R relers to Richardson's technique
s.C. Is a single crystal sample
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Analysis of these new materials, at first glance, seemed to indicate no

definite relationship between fractal dimension and fracture toughness.

Indeed, as shown in Figure 24, the data is thoroughly scattered in the K.-D*

plane. If, however, we assume that the relationship of Equation 20 is correct, s
4
we can order the data. o

PROPOSITAION: There exists a family of lines in the log-log K|-D* plane all of

slope 1/2.

A graphical representation of this proposition is shown in Figure 25.

Though we have no mathematical proof of this proposition, we may be able to

AR A A ST

demonstrate "reasonableness.”
NS
X
The existence of these curves implies a relationship between the points
ry
within any given line. Such points constitute a family and will be characterized ?r_f
<
by a family parameter. Any one of these lines will have the following functional i
form; s
5
¥i
,:..
)
Kig = AD" 12, (21) ¥
5
. wheie; A is a family parameter. '
7
‘
v
: ‘u’
L
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'5:\5‘1 The family parameter, A, identifies a line in the K;.-D* plane. Within a family,

i an increase in fractal dimension corresponds to an increase in fracture

0 toughness.

¥,
Ao A vertical line in the K|,-D* ‘plane will intersect a number of family lines.

,% |

R ' y . . , ,

. b Hence, materials which exhibit the same fractal dimension do not necessarily
.2** have the same toughness. Similarly, materials of equal toughness do not

& necessarily have the same fractal dimension. Thus, the functional relationship

of Equation (21) is useful only in the comparison of materials within the same

family.
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Figure 24. The data are apparently scattered in the K;-D* plane
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SRR

. v » ’
-

I

As noted previously, toughness is proportional to fractal dimension;

Kje ~ D*12, (22)

The parameter which will identify a family in this space is the constant of

proportionality, A

DA S B S LA A P - PN = A

Kic = AD* 172, (23)

Rl

TEE

W ,‘:

Since D* is dimensionless, a dimensional analysis of this equation requires

that A have the dimensions of toughness. Suppose that this constant can be
further reduced %o one involving Young's modulus, an indicator oi bond

strength, and some characteristic length parameter. The rationale for this

PR SRR TE

supposition stems from the special importance attributed to scaling fractals.

(] fj"t

v L0y
Hata

Scaling fraclals are constructed from a unit process, i.e., a generater-shape
which is scaled according to a scheme for generation. Thus, the geometiy of

fracture, if it can be accurately mudeled ty scaling fractals, will have such a unit
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We propose that the fracture topography, in its atomic form, is recorded
on the fracture surface through the scaling cascade of fractai geometry. There
will, then, be an atomic scale generator with a characteristic length. Suppose

the constant A is a product of this characteristic length and Young's modulus,

sothat-A= E(ao)”z.'

Then;
Kie=E (gD 2, (24)
where: Kic Is the fracture toughness,

E is Young's modulus,

D* is the fractal dimension,

ag is the characteristic length.

The plane fracture model of Chapter 1 demonstrated the importance of

thermodynamic surface energy, ¥y , in fracture. This derivation assum.ed ideal
plane fracture. The real world, however, is far fromideal. Other processes
will absorb energy, the most obvious of which is the non-planar propagation of
acrack. A new quantity, called the fracture energy, ¥, is used as an effective

fracture energy.
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This term includes processes that consume energy by the formation of suriace,

zones of piastic deformation, acoustic and photo emission, etc.

Under conditions of plar.a stress, fracture toughness is related to fracture

energy;
| Kic = 2E 1)1, - (25)
sothat K2 = 2E¥;. | (2;3)
VJﬁere; ¥; is the fracture energy.
Now, from equation 23,
Kic? = E2agD". (27)
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Inserting equation 27 uno equation 2€ gives:

(% /E) = 1/2 agD". (28)

Equation (28) can now be used to compute the value of ag.  Using
experimentally obtained values of y; and E, and the experimentally determined

value of D, aplotof (y/E) vs (agD) is constructed, Figure 26. This plotis’
derived to have a slope of 1/2. The materials that were scattered throughout

the Kjo-D* plane of Figure 25 are now situated along a single line.

The macroscopic fracture energy, v, is normalized to Young's modulus,

£. Young's modulus can be conceptualized as a measure of atomic bond

strength. 1t represents a weighted average of all the possible bond strengths of
the material. Thus, as y/E increases, the fracture energy is increasing with

respectto E. Along the horizontal axis, ap represents an atomic scale length
while D* represents a measure of surface roughness. Moving oulward along

this axis demonstrates another interplay between microscopic (ag) and

macroscopic (D°) properties.
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More importantly, the vertical axis represents energy, the horizontal axis
represents geometry. This implies an intimate connection between energy and
geometry. .Equ.ation (28) provides a clear statement of this connection. Using
fractal geometry, we may be better able to compute the actual fracture energies

from fractal theoretic models.

Table lIl documents the calculated values for the characteristic length,
ag, for a number of materials. Notice that the single crystals and large graih

polycrystals (ZnSe, CdTe) have characteristic lengths of a few angstroms.
These values are of the order of lattice parameters and SL;ggest that the unit
process of fracture for these materials is on the order of atomic bond breaking.
The zinc silicate glass ceramics show much larger characteristic lengths. This

suggests that fracture of these materials is a cluster-like or molecular process.
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. o ) : TABLE Il

Summary of the Calculated Values.of Characteristic Length ag

'y . MATERIAL. . L3 E(GPa) . R, g

B Alumina
it AD90 11 300 1.21 3
. AD959 19 5 406 . 1,31 3

i Lucalox 26 305 1.31 5

‘:,.‘ Zinc Silicates

; .

MS 49845 27 90 107 76
MS 50084 27 g9 1.12 53

Pyroceram 25 120 1.17 20

CdTe 1% 40 1.20 3

ZnSe 55 69 1.30 4

CaFa(s..)* 0.5 114 1.07 1

Spinel(s.c.) 3 240 1.09 3

* s.c. refers to single crystal
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The determination of this characteristic length, ag, is of startling

significance. This length came about from a number of important assumptions.
First, it is assumed that fracture is a fractal process. Further, it is assumed that
this fractal process is scale invariant and self-similar. From this assumption,
we propose that fracture on the macroscopic scale is composed of the scaled
insertion of a unit process on the atomic scale. in other words, there is some
small scale event with a definite geometric shape. This shape is repeated
everywhere along the fracture and reveals its signature from the atomic to the
macroscobic scales. Therefore, measurements of the geometric shape of .
fracture on the macroscopic scale can be used to infer the unit process on the
atomic scale. Likewise, if we know the unit process, we can generate a shape.
If we have a fractal dimension of a fracture surface, and we know something
about the structure of the material, then we can deduce possible shapes for the

unit process. We could then build a fracture surface from these shapes.

4

)

Our second assumption involves the tamily lines in K| - D* space.

These lines have proposed slopes of 1/2. The slope of 1/2 was obtained

from cbservations by Mecholsky et al, 23
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This assumes that all of the materials originally tested should lie along the
same line (i.e., are members of the same family). It is not clear, however, that

the zinc silicates should be in the same family with alumina.

The members of a particular family should exhibit similar fracture
behavior. Their differences in toughness should reflect differences in crack
geometry, not fundamental differences in fracture mechanisms. For example,
consider a hypothetical material which is toughened by the addition of a
second phase. This material would have three basic possibilities for crack
propagation, only one ot which would surely place it in the same tamily as the

untoughened material:

(1) Fracture could pass through the second phase addition.

(2) Fracture could pass through the interface of matrix and
second phase.

(3) Fracture could detlect around the second phase and remain

“entirely within the matriz.

Only the third possibility would represent a purely geomaetric toughening. The
crack still "sees” the same material yet, because of defiection around the

second phase, is forced to follow a longer path.
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A series of heat treated Ocala cherts were obtained from Ed
Beauchamp of Sandia National Labs. Purdy and Beauchamp25 calculated a
decrease in toughness as a result of heat treatment. Along with a decrease in

toughness, there is a decrease in the qualitative fracture surface roughness.

in untreated chert, fracture propagates around zones of hiéh density.
Heat treatment improves the bonding at the zone boundaricc ard the craék
now follows a less tortuous path through the dense zones. It may seem
paradoxical that improved bonding results in a decrease in fracture toughness;
yet the improved bonding allows the crack to propagate more smoothly,

thereby generating less surface area.

The dominance of geometrical factors in affecting the toughness of

Ocala chert suggested that these samples would constitute a family in the
K|c-D* plane. Figure 27 shews this data plotted in the toughness-fractal

dimension plane. A least squares fit gives a slope that is, again, 0.5. Figure
28 shows coastline sections for two of the Ocala chert samples; U5 and #4.
Note the dilference in roughness of these coastlines, and how this difference is

quantified by the fractal dimension.
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Another assumption that went into the determination of the characteristic
length is the constant, A, of equation 23. The components of A, namely
Young's modulus and the characteristic length, were derix)ed from a
dimensional analysis. We assured the existence of this length parameter by
assuming that it was reasonable for Young's modulus to appear in equation
(21). This is hinged upon the understanding that, ultimately, for a material to
fracture, bonds must break. The elastic modulus provides an average
measure of the strength of these bonds and, so, should appear in a model of

fracture.
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TABLE IV

Data Summary for the Ocala Cherts

Sample Toughness Fractal Dimension
us 1.55 1.32
#3 | 1.46 1.26
#4 1.25 1.24
F5 1.05 1.17
1
10 T T N W
] 1 1 1 i T
I y=28127° x“05|245 R= 096 :1
o
* -
1
/ o
>/ncy
10" 1g°

DQ

Figure 27. A plot of toughness against fractal cimensmn for the
Ccala cherts again shows that: K ~ DV
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Us chert, D =1.32

#4 chent, D=1.24

Figure 28. Sample coastiines for U5 and #4 chent samples.
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Data_Summary

Two techniques were used to detarmine the fractal dimension:
Slit-island analysis and Richardson plots. Slit-island analysis uses

area-perimeter data in the following equation:
A~p2/D

Therefore, logA ~ 2/D logP.

The slope of a graph of such datais equal to 2/D, where A, P, and D are as

defined earlier.

Richardson plots employ the scale depender.ce of measured length i

L=ke?D,

Therefore, logl = (1-D) logE.

The slooe of such a relationship is equal to (1-D), where L E, and D are as

delined earlier.

Figures 29 through 41 contain the data oblained from either Richardson
or shit-island analysis for the maleriais listed in Table Il ( This excludes the

data of Mecholsky, Feinberg and Passoja.)
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Figure 29. Data for single crystat calcium fluende
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i y=0.1102 + 1.6228x R=0.97
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log P
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7.12 4.40
7.20 4.35
7.37 4.51
7.36 4.39
7.42 4.53
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Figure 30. Data for cadmium telluride
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Figure 31. Data for F5 chert

3.6

71




-0.1
4 y=-1.2984-0.259x R=0.99
0.2+
-0.37
1
-
g-, ‘0.41
~0.51
1
0.6
-0.7 T ! b
-5 -4 -3 -2
logE
Richardson plot
slope = 1-D
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Figure 32. Data for chert #3
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Figure 33. Data for chert #4.
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Figure 34. Data for U5 chert.
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Figure 35. Data for the Euclidean test sample.
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Figure 36. Data for zinc silicate MS-508
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Figure 37. Data for polycrystalline spinel.
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Figure 38. Data for pyroceram.
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Figure 39. Data for PZT.
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Figure 40.

Data for single crystal spinel
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Figure 41. Data for 2inc selenide.
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CHAPTER 4
CONCLUSIONS
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The irregular structure of many fracture surfaces presents a picture that is
too complicated for normal geometric description. A cross section through
these surfaces will provide contour lines that are indicative of this complicated
geometry. The length of these lines is related to the roughness and area of the
surface from which it was derived. Therefore, classification of the dimension of
such a line is useful in the description of the surface from which it was obtained.
The basic constructs of fractal geometry give a simple methodology for
categorizing the tortuosity of a line. Thus, fractals are used to classify the

geometry of a line passing through a fracture surface.

A relalionship is shown 10 exist between a material's fractai dimension

and its fracture toughness;
Kie = AD-1)112,
The constant Ais as a family parameter that groups matenals in K.-D”

space {where D* = D-1). The vaiue of this constant will identily a panicular

family line that may represent & fraclure machamsm,




Assuming that fracture can be modeled as a scaling fractal, we

proposéd that the constant A is a product of Young's modulus and a
characteristic length, ag;

A=E(ag)1/2.
Thus, it was possible to compute values of the characteristic length. Modeling

fracture as a scaling fractal makes it possible to infer the atomic and

microscopic geometric stiucture srom the macroscopic geometric structure.

Fractal geometric modeling of fracture shows a numbar of encouragin
G

results:

(1) The dimensicn ot a line tirough a fracture surface gives an
indication of the surface roughness, i.e., as D increases the
surface roughness increases.
(2) D was shown to be related to fracture toughness. Withina
‘ given family. as U increases, toughness increases.
{3) Medeling the fracture surface as a scaling fracial permits the

calcutation cf a characternstic length of fracture.
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The use of scaling fractals allows for an orderly construction of a
complicated geometric shape. Shapes that appear too chaotic for description
find themselves well modeled by scaling fractals. Computer simulated
landscapes, as found in Mandelbrot's book, are strikingly reminiscent of the
natural world. It seems reasonable that these fractal models will be useful in

describing the structure of the objects they simulate.

This thesis has shown that a fractal dimension can be assigned to brittle
fracture surfaces. This dimension, as yet, is restricted to the description of
contour lines on the fracture surface, as well as fracture suiface profiles. It must
be extended to the actual two-dimei:sional nature of the surace. The surface
dimension will lie between two and three--two being a periectly piane fracture.
As the dimension increases from two to thres, ine surface will be increasing in
roughnriess and geometiic cumplexity. The relation between fractal dimension,
fracture toughness, fracture surface roughness and surface area cannot be
properly explored without the two-dimensional counterpart of the dimensions

determinad in this thesis.

Itis clear that fraclure models have taken no account of the tremendous
complexity of fraclure. In fac?, the mooels assume that a ~rack simply separates
planes of atoms into two perfecily plane fracture surfaces. The iractal approach

will enable the accommodation of surface roughness into the basic models.




Instead of separating planes of atoms, the crack is allowéd to wander.
The new profiles generated by such a crack will be composed of shapes that
resemble fractal generators. Thus, fracture surfaces can be corstructed from

atomic scale shapes that cascade, via the scale invariance of fractal geometry,

10 macroscopic fracture surface features. Computer simulations of this
hypothesis are the next step in understanding the applicability of fractal

concepts to brittle fracture.
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