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We survey some mathematical aspects of finite element methods for

incompressible viscous flows, concentrating on the steady primitive variable

formulation. We address the discretization of a weak formulation of the Navier-

Stokes equations; we then consider the div-stability condition, whose

satisfaction insures the stability of the approximation. Specific choices of

finite element spaces for the velocity and pressure are then discussed.

Finally, the connection between different weak formulations and a variety of

boundary conditions is explored. Aieslo or
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MATHEMATICAL ASPECTS OF FINITE ELEMENT

METHODS FOR INCOMPRESSIBLE VISCOUS FLOWS

One of the most successful and well developed mathematical theories

concerning finite element methods is that connected with incompressible flow

problems. The success of this theory lies not only in the accumulated elegant

mathematical results, but also in its impact on practical computations. The

outstanding monographs by Girault and Raviart [GRI,GR2] give a rigorous account

of this theory and to this day remain the definitive sources.

In this survey we examIne certain mathematical aspects of finite element

methods for the approximate solution of incompressible flow problems. Our

principal goal is to present some of the important mathematical results which

are relevant to practical computations. In so doing we also discuss useful

algorithms. Due to space limitations we focus on the steady primitive variable

formulation. Moreover, even within this narrow context, we will concentrate on

only one of the very many different known approaches. Some other approaches are

discussed in, e.g., [GRI,GR2,To).

We state at the outset that we make no attempt at being comprehensive in

our coverage or in our attributions. To anyone who takes offense, we sincerely

apologize.

I - The Primitive Variable Formulation '*

Let Q denote a bounded, possibly multiply connected, domain in R d=2 or

% % %
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3, and let I denote its boundary. As a prototype for incompressible flow

problems we consider the Navier-Stokes equations

(1.1) u - grad u + grad p = v Aiu + f in Q

together with the incompressibility constraint

(1.2) div u = 0 in 0

and the boundary condition

(1.3) u = 0 on r

where u is the velocity field, p the pressure, f the given body force, and u

the given constant kinematic viscosity. In (1.1) the constant density has been

absorbed into the pressure. Whenever u and p represent non-dimensionalized ek

variables, then u is the inverse of the Reynolds number Re.

Following our detailed discussion of the approximation of solutions of

(1.1)-(1.3) by finite element methods, we will consider other incompressible

flow formulations, especially as they concern boundary conditions other than

1. 1 -Yunc ton ) paceo, norm4 anda jopm6

In order to introduce a Galerkin type weak formulation through which a ?

finite element approximation is determined, we first need to define some]'

function spaces, associated norms and forms involving functions belonging to :

those spaces. Lucid and more detailed accounts con~cerning these spaces may be ,f
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found in, e.g., (BaC,GR2,OR].

First we denote by L2 () the space of functions which are squa:-e integrable

over ( and which is equipped with the inner product and norm

(p,q) f pq and :qi!0  (qq)1 1 2

respectively. We then define the constrained space

L 2 (0 9)

Thus L2 (Q) consists of square integrable functions with zero mean over 9. This
0

space is used in connection with the pressure; such a constraint is needed -. %*

since it is clear from (1.1)-(1.3) that the pressure can be determined only up

to an arbitrary constant. Other constraints, e.g., fixing the pressure at a

given point, may be used instead without effecting any appreciable change in

the results discussed below. Next we define the Sobolev spaces

%. .v.,H ((2) qeL(Q2) ID q e ((2)fo l,.

where Ds denotes any and all derivatives of order s. Thus [k(Q) consists of

square integrable functions all of whose derivatives of order up to k ar- 5ls0

k
square integrable. H (9) comes equiped with the norm

( ! 2 )1/2
k '0 0D]q" )= I " % ,,

where the summation extends over all possible derivatives of order k or loss. .

0 21
Clearly H ()=L (9). Of particular interest is the space H J Q ) consisting of

* ~ Ip.p. '..W .'V...i%..> %



functions with one square integrable derivative and the subspace

H'_ M) (q e R' (0) 1 0 on r)

01

whose elements have one square integrable derivative over Q and which vanish on

the boundary F. These spaces have the associated norm

(1.4) Iqll = ( Ilqj!o I 0 E -- I3 )
1=1

We note that for functions belonging to H'(2) the semi-norm
0

d aq 2 1/2
(1.S) 1ql 1 : I a- 0 "

is actually a norm equivalent to (1.4) and thus, for such functions, (1.5) may

be used instead of (1.4).

For vector valued functions we use the spaces

(Q) = H v I v e HkR'Q) for i=1,...,d

and

Q)= =) v I v E H 10 ) for !=l d

For example, fW(Q) consists of vector valued functions each of whose components

belongs to H('2). FW(Q) is equiped with the norm

% I
V 1 V 12 .. 4

alternately, W0€Q) has the norm

0~

N~" N. N

i=1 *_% *

% %%#.

+--..+*
,"%,
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1=1

Also, the inner product for functions belonging to L.2()=HO(Q)=rL(Q)J]d Is

given by

(u V f U-v

where there Is no ambiguity possible resulting from using the same notation for

both the inner product of scalar and vector valued functions.

We now define the bilinear forms-

(1.6) a(u,v) V f gradu:gradv for all u, vEH A( )
0

and
(1.7) bv,q) - qdivv for all vEW-(D) and qEL P),

and the trilinear form

* 4 4

(18) cwU,,V, .gradu.v for all u,v, H (Q' .
o2 0

In (1.6) and (1.8) we have that (gradu)1 1 =au lax 1 and

d au av d a
gradu:gradv = Z x and w-gradu-v= V v.

1,j=.=1 Jax b.1

%. .-

, , -. .~. ~ ,..-...:...,:...V4 ..

% ..' '
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Using the bilinear form b(-,.), we can define the subspace

Z = v E H'-(Q) I bMv,q) = 0 for all q e L 2(a)j

which consists of (weakly) dive/agence /./we ,jinction-, i.e., functions whose
2

divergence is orthogonal to all L2 (Q) functions. Certainly any divergence free
0

function, in the strong sense, belongs to Z.

1.2 - 4 ,kepkin tvpe Veal/,tation

The most commonly used weak formulation of (1.1)-(1.3) is the following. ,

Given f&L (0f), we seek H'(Q2) and p2 () such that

(1.9) a(u,v) + c(u,u,v) + b(v,p) = (f,v) for all veH(Q),.

2

(1.10) b(u,q) =0 for all qeL 0 ).

By virtue of (1.10) we see that the solution u belongs to Z.

We note that L 2(0) is not the largest function space for the data f such

that the problem (1.9)-(1.10) makes sense; indeed, all that is reqlired of the

data is that the right hand side of (1.9) be bounded and this is possible for

some functions which are not square integrable. However, for our purposes,

fEL (Q) is sufficiently general.

It can be easily verified that whenever a pair u,p satisfies (1.9)-(1.10)

and is sufficiently smooth to allow for the appropriate integrations by parts,

then u,p is also a solution of (i.i)-(1.3). Of course, (l.9)-(1.i0) admit 'J

solutions which are riot sufficiently smooth to be solutions of (I.1)-(1.3);

hence the terminology weak j mw.tatin and qen ertied .ofuticrn are applied to

'. ~ ...9_**
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(1.9)-(1.10) and their solution, respectively. On the other hand, it is also

clear that any solution of (i.I)-(i.3), i.e., a -t/onq .-ojuttion, satisfies

For the weak formulation (1.9)-(1.10), the boundary condition (1.3) is an

e6'jntiat one, i.e., it must be imposed on the candidate solution functions.

Below, in section IV.3, we will discuss the natu'tt boundary conditions

associated with the weak formulation (1.9)-(1.10).

We will not enter into details concerning the existence, uniqueness,

continuous dependence on data and regularity of solutions of (1.9)-(i.10). Such

results may be found in, e.g., the definitive treatise of Teman [Tel.

Furthermore, many of these results are similar to those discussed below for the

approximate problem.

II - The Finite Element Problem and the Div-stability Condition

11.1 T he ditx.rete finite etenent ppobtem

Once the Galerkin formulation (1.9)-(1.10) is established, the approximate

problem which determines the finite element solution is defined in the usual

manner. First one chooses the approximating finite element spaces, or more

precisely, a family of finite element spaces, h and S for the velocity and A

pressure, respectively. Here h is a parameter which is usually related to the

size of the grid associated with the finite element partitioning of Q. Then one

requires that (1.9)- (i.I0) hold for functions belonging to these finite *

dimensional spaces, i.e., one seeks u and phh such that

hh h- h h hh(2.1) a(uh vh) + c(uh h v b(v h, (fV for all v-
• ,u v h ) += (fv h )  fr all.h .% -

-v-u-
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and

(2.2) b(u,q 0 for all qh

If and Sh are subspaces of the underlying infinite dimensional spaces of

(1.9)- (1.10), i.e., if 0hH-Q and ShcL 2(g), then the finite element solution

defined by (2.1)-(2.2) is said to be coanPtminq. Otherwise, i.e., if t0(
0

and/or S hL (Q), then the method is said to be non-cantaminq. We will restrict
0

our attention to examples of the former.

Once one chooses specific bases for and Sh, (2.1)-(2.2) are equivalent

to a n ontineo-jn -ttem a/ atoL,'aic eqt IonA. Indeed, if (q(x)), j=,...,J and

1v (x)), k=i ..... K, denote bases sets for Sh and Yb, respectively, we may then
k

write
.. 4.

h h K
p ) (X) and u = (X

j=1 k=1

for some constants aj, j=1.,... ,J, and 8k, k=1, .... K. Substituting into (2.1)- F-.

(2.2) then yields

K K
L a(vk Vf) 8k + - v vk ve) sG -N
k=k,m=

(2.3)

+ b(v ,q1 ) a, (f, V) for 1,....K
j=1

and

,4.. 1. .

'e .C . Ke: Y :e'eX-?L-:.'..-:.-- .-?-,,...-:', , :? :.:.'. e~e' '>
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(2.4) L b(Vk,q1) 
8k = 0 for ii.... J.

k= I

which constitute a nonlinear algebraic, in fact, quadratic, system of J+K

equations for the J+K unknowns . , J=I... J, and . k=I ... K. Note that the

the discrete continuity equation (2.2) yields the JxK rectangular Cinca r system

(2.4).

11.2 - T'he di -z tabititV* cwaditi n,

In the positive definite case, e.g., for the equations of linear

elasticity, the mere inclusion of the finite element spaces within the

underlying function spaces is essentially sufficient to assure that the

approximations are well defined and are as accurate as possible for the type of

finite elements functions being used. Here the inclusions VhcHi1(Q) arnd S hcL 2 (412)
0 0

are not by themselves sufficient to produce stable, meaningful approximations. 'S

We find ourselves in the realm of what are known as mixed iniite eement

me~ thad.

There are number of conditions which the elements belonging to the finite

element spaces should satisfy. Host of them, e.g., the boundedess of the

various bilinear and trilinear forms, are easily satisfied by conforming finite

element spaces. The one condition which presents a problem has the following %

mathematical realization:

h h
given any q eS.

b(v ,qh) qh
(2.S) supt h - - 'q' 0

O~ vhs Vh  v I.,

S.v S. %

I-t •*. I



where the constant Y>O may be chosen independent of h and of the I-

h hparticular choice of q ES %,.%

This condition may be equivalently expressed in the form: Jr

h h h sc ht,

given any q eS there exists a non-zero vh60 such that

h h h, I
(2.6) b(vh , ) rq 1 011 Vhl

where the constant -00 may be chosen independent of h and of the %

particular choice of qhesh.

Of course, for each qh a different vh may be used in order to satisfy (2.6).

The condition (2.5), or equivalently (2.6), is variously known as the

- or the Z22 or the inj-bup condition, the latter

designation following from the third equivalent form:

there exists a y)>, independent of h, such that

h h

(2.7) inf sup ( ,qh 
.

h h h h h h,
O*q ES Oitv Eh 'IV 1 i1;:q

.. " ..

1 0- $

We will refer to any of the equivalent statements (2.S)-(2.7) as the condition

for ,iu-.toiZitV. Note that these have nothing to do with the non-linearity of

the Navier-Stokes equations and, in fact, the possible problems its

satisfaction poses is shared by the linear equations of Stokes flow.

Associated with the finite element spacesh and Sh and the bilinear form

%% N % * "v -".

V' I
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b(.,.) we have the subspace

Zh =(v e h I b(vh,qh , = 0 for all qh E Sh

h~ h

of di..ci'etet~t diaengence j&ee janctlan6. In general Zh 07, even when VhcH(Q

and S hCL (2), i.e., discretely solenoidal functions are not necessarly

solenoidal. This is, of course, entirely analogous to the finite difference

case, e.g., a function satifying a difference approximation to the
icn.

incompressibility constraint is not in general solenoidal. A measure of the .

"angle" between the spaces Zh and Z is given by

h,..

(2.8) = sup inf z z . -"

zhEzh ZE Z -%

hh

In general, :Oge1, which is easily seen by observing that for Z hZ, 9=0, and

that by choosing z=O, 9=1.

Note that because of (2.2), the approximate velocity uhEz, i.e., u is

discretely solenoidal. However, since in general Zh 'Z, divuhto. Loosly

speaking, the div-stability condition (2.5) ensures, as h-O at least, that

discretely solenoidal functions tend to solenoidal functions.

II.3 - Sp ip etimate3 and Othen eAutz conceflning the appp xiate joaLltion " .

We now present some of the available mathematical results concerning the

h h ."

solution u ,p of the finite element problem (2.1)-(2.2). Here we cz.ww that

the chosen finite element spaces and Sh satisfy the div-stability condition.'-.

V %...



-13-

(2.S). Subsequently, we will look into the issue of verifying that condition.

The summary presented is based on the detailed analysis found in [CR, JR, GRi,

GR2, and GP. 
0

First off, for any feL2 (9), (2.i)-(2.2) has a solution u ,p , provided that0%
the div-stability condition (2.5) holds. However, one can prove that the

solution is unique only for "sufficiently small" data f or "sufficiently large"

viscosity v. More precisely, let 4.

,(W U ,V )

K sup h h h
h h,h Vh luIllvV lI

For standard choices of finite element spaces K can be shown to be independ:nt

of h and, in fact, depends only on QcRd and d. Then, one can show that (2.1)-

(2.2) has a unique solution whenever

f h

2 sup UP h.S h Vh  IV 1h "' -'

This condition is very similar to the one which is needed to show the '

uniqueness of the solution of (1.9)-(1.1O) and in fact the latter implies the

former-, i.e., whenever (1.9)-(1.10) can be shown to have a unique solution,

then, provided the div- stability condition is satisfied, (2.1)-(2.2) also have .% 'N

a unique solution. ., .

When one can show that (1.9)-(1.10) has a unique solution, it can also be IL

shown that the finite element solution of (2.1)-(2.2) converges to that

%
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solution. In addition, something can be said about the convergence of the

finite element solution even when (i.9)-(i.1O) does not posses a unifqi.e

solution. For details, see [GRI and GR2).

Error estimates can also be derived. Provided that the div-stability

condition is satisfied, we have that

(2.9) 1- uh 1 C inf Ilu- vhl + C9 inf p- qh

Vh EV 1 qh esh 0

and 
i . -

(p- 1 0  C3  inf u v- 1 + C4  n p -q 0I-

v heVl q hc h

where 9 is defined in (2.8) and Ci, i=1,..,4, are constants independent of h.

These estimates are optimal for the "graph norm" u:, +1p of functions

belonging to 0 (O2)xL0(0) in the sense that the rate of convergence of the

finite element solution, measured in this norm, is the same as that of the best

approximation to u and p out of vh and Sh, respectively.

If the solution of (1.9)-(1.10), or more precisely, of the* linearized

adjoint problem corresponding to (1.9)-(1.10), is sufficiently regular, then

one can obtain an improved velocity error estimate in the L2 (Q)-norm, namely

(2.11) 'lu - Uhi! - C hhlu-
0 5 u

where again C is independent of h. ', ',4
5

We see that once the div-stability condition is satisfied, the error in the

finite element approximation depends only on the ability to approximate in the

% .%-. .. . - .. . . .-. . . . . .. , , . . . , - ,. , -,.,, %, ,.,,..,. ,.. ,.? ..--. ..nN. ... ,. . , ."
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chosen finite element subspaces. In general, (2.9)-(2.10) indicate that the

velocity and pressure errors are coupled. Furthermore, one finds that it is

efficient to equilibrate the rates of convergence of the two terms on the right

hand side of (2.9)-(2.10). For this reason, one would like to use, for Pxample,

polynomials of one degree higher for the velocity components than those used

for the pressure. As a final comment, we note that the constants appearing in ..

(2.9)-(2.10) are in general proportional to 1/y where y is the stability

constant appearing in (2.5).

11.4 - Yei Vingq the di tojtabitV condit ion

For particular choices of Vh and Sh, it is usually not an easy matter to

verify that the div-stability condition holds. To accomplish this task for ",.

families of such spaces is even more difficult. Here, we sketch three

techniques for verifying the div-stability condition.

a) Fortin's method - One seemingly attractive method of showing that the -.. J.

div- stability condition holds is due to Fortin. He has shown [F] that the div-

stability condition (2.5) is equivalent to the existence of a linear operator

11h from WO2Q)* h such that given any vc-WO(Q)
0 0

b(hv,qh) b(v,qh for all qhEsh

and

".l v11 C': v
i I

where the constant C>O may be chosen independent of h and of the particular

choice of vEHl1 ( Q). Thus the task of verifying the div-stability condition (2.9)
0

is reduced to the task of showing the existence of the operat,r flh

unfortunately, although the latter task has been accomplihled Iii I ,.-v ;-)P,-If . ,

'-dr

%,PN

--. - -. -1 .



settings, in general, it is also a difficult thing to do.

b) Verfi.rth's method - Verfijrth [VI) has developed a method for verify'ing

the div-stability condition (2.5) which applies to the case of continia3

discrete pressure spaces.

Specifically, if S hcH I(0)flL 2(92), he starts out by combining the inverse
0-

inequality, see, e.g., [Ci),

(2.12) IV h I C h- Il h, for all v he~

1 0.

and the result

h h
(21)b(v h) h h

(21)SUP C. Iq ~ I for allq CS
0, Vh) hv

%. .. 1

to yield .V

SP b(vh 2h _ Ch
0,14 su Vh jh C for all lEsh

The inequality (2.13) can be shown to hold for many element pairs involv.:; -

continuous discrete pressure fields; see, e.g., [BPI. Note that (2.13) ,as - .

similar appearance to the div-stability condition (2.5), but that it involves . .A

the "wrong" norms.

Next, one combines the result, which can be found in, e.g. , [CR1,GR2, L,

Yiven any qhF-ShcLf"2), there o'xists "I r (Q) Such ~ht 11Vw -(I n

IWI I c (1h with the approximation theore-tic -S.SUMPtL1 ton -rcerning the -spaco~

V:for any wEW (Q) tticrp -xists a wt h ~h t hat

V~~~ "NN 4,'

..LA J .0 A~ A'i tZ1' -Z~''.
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(2.15) IW-w I C 4h ul I for k=0,1

to yield

(2.16) sup b(v q C -C hIqh I for all qhESh with :qho=f.--

otvhEvV hIv 6  1
%

Verfbrth then shows that the div-stability condition (2.5) follows from (2.14)

and (2.16) provided the constants C, ...,C6 are independent of h. ?%

Thus the main task of applying his method, once the inverse inequality e

(2.12) and the approximation theoretic result (2.1S) have been shown to hold

for the discrete velocity space h, is to show that (2.13) is valid.

c) The Boland-Nicolaides method - A more useful method, in the sense of

having wide applicability and relative ease of use, has been developed by

Boland and Nicolaides [BN1]. One difficulty with verifying the div-stability

condition (2.5) is its q.aot nature; Boland and Nicolaides have shown how to

tocatle the difficult part of the verification process.

Specifically, consider a subdivision of Q into disjoint macra-eternt. , 
r

r=1,.. R, each of which consists of one or a few elements in the- the finite

element triangulation associated with Vh and Sh. The number of elements within

a macro- element is independent of h, i.e., as we refine the mesh the macro-

elements are also refined so that they always contain the same number of "

elements. Let r denote the boundary of the macro-element Q r

Now, first suppose that the div-stability condition holds for the pair Vh

and S h tocaEt. over a macro-element, i.e., there exists a constant )O',

independent of h and of the particular choice of macro-element, such that

I.. ..

0 r

%* % %
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9!1h qhh 0 )
(2.17) sup ( b-- q 1 riqh;o for all qhesh

Oh Vh r r

where

V vcVho I v-0 on Fr 3 and S h qeSh, I).r r

r h r

Since Vh and Sh have fixed small dimension, independent of h, (2.17) may oftenr r

be. verified by a direct computation.

Second, suppose that the div-stability condition holds L for the

spaces h and Sh where

(2.18) {~v
gh= L 2 (9) p iec e w se constant functions with respect

0 o the macro-elements Q2 , r=I,...,R J ~ A
r~

i.e., suppose that there exists a constant 7>0, independent of h, such that

hh
(2.19) su ? q 0 for all h-h

su Vhp h.0PS'~

'% • 
-

Sumarizing the Boland-Nicolaides method, suppose we know that the pair
h, h e with constant ; independent of h, i.e.. in the

V ,S is Ecatt itu-aLewihcntt

sense of (2.17). Further, suppose that the ca.pa ,in spaces which

satisfy (2.18), are ,talyatEV diL-4t&Lbte with constant ? independent of h, i.e.,

h' h 4
in the sense of (2.19). Then the spaces V ,s are ;C"a(t-V Yi,-ita Lfe with a

constant -r independent of h. Thus, through the use of the romparlson spaces the

div-stability of the pair VhS h need only be chec'ed locally, i.#-., over a

macro-element.

D~a. '-' , && -- =. ' :,- -'k ;:',,:', ¢,"? ,,'- '' 2">i,2-< -'-<.-? ._-..'-' -•,-. :.-k'<,'- -". N.v
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This method has been succesfully used, e.g., in [BC,BNI,BN3,GR2], to show

the div-stability of a variety of well known elements and some novel ones as
*6%-,*

well, both in two and three dimensions.

11.5 - Exanmpte-4 a/ unstaite ipace-4 ianctudin. the btineaw'-car..,tar~t puzir

There are different ways in which arbitrarily chosen finite element spaces

may fall to satisfy the div-stability condition. Here we discuss some of these %

and then give specific examples, focusing on the much studied and much

misunderstood bilinear velocity-constant pressure pair.

The most catastrophic type of failure is for (2.2), or equivalentlv (2.4),

h
to imply that u =0, i.e., the only discretely solenoidal field belonging to V-

h_
is the zero vector. The approximate solution is useless since, of uur0e, u k.

cannot be a good approximate solution of the Navier-Stokes equations. This rype

of situation can usually be detected by a counting argument, i.e.,, the .iiscrert

divergence matrix b(v,,,q., j=1.... J and k=1 .... K, appearing in (2.4) !:as

more independent rows than columns.

Less catastrophic is the situat Ion where r fur )ne or i , .,t I,,)! i:',
hh v h h h p.' '"

h h e have that b(v q ) for all v s that Y-O n (2.5). Th'i i tI 'i,,
, - ,- U...

failure of the div-stability condition is usually easy to ett,(-t -lin'o it

results, in practice, in the discrete divergence matrix being rink ,It-,f. ,

Furthermore, if these type of pressure modes q r1h the so, e r -- s w , f ,

Invalldity (of (2.5), one may often st ill o)btain, thrigt a f 'It ir ..' , -. '

useful approximations.
..

A more subtle failure of t,,e div-st abi I itv -uridit ,in :s t !i.v v,.''. ,r

h h"
at least Some q S

, % % % V.4

.° °
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(2.20) q lq19 SP -) ! C hilq!i
1 0 Ot V E V' ilV 2

for some constants C 1and C 2independent of h. In this case y=O(h) where Y is

the constant appearing In (2.5). In practice this may result in a loss of

accuracy, especially for the pressure approximations. Such instabilities are Ik

harder to detect because, of course, computations are usually carried out using-%

a finite value of h. In particular no problems such as those caused by rank U.

deficient approximations to the continuity equation are encountered. This type

of situation points out the dangers of calculating on only one grid and of not

at least performing serious mesh refinement studies. It also points out the

usefulness of rigorous results concerning the stability, or lack, tho-reof, o

finite element spaces.7

a) - -\n unstable linear-constant pair -An example of the first and most

catastrophic instability is the following seemingly natural choice for the

velocity and pressure finite element spaces. Let 0 be a square which is

r arigulattu1 as in the figujrp be low. For the velocity approximat:Il kohsz

piecewise linear fiinctions with respect to the

given triangulation which are- contintiou1s over

and which vanish on r. For the discrete pressures

we holse piecewise corust ant f tunc t ion rs wit r

respect to the same triangulation and having zero

wean over Q. Clpar lv Vh( H1 (Q) and Sh I2.()

tit isi ho i c tihe on l v d11sc re #- 1e oc it t %, e Iod .

h ~ -a sf vI Tji' g . ' e i .- ' 0 'mpr es"; I Ii 1 v .

n tr a i rit 22 . U 0. .,.~

1%* 1
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vector! One easily sees that if there are N cells to side, that the number of "I.-

equations in (2.4) is J=dim(sh)=2N2-1 which is greater than the number of

columns K=dim( h=2(N-I) 2

In the above example we see that the discrete incompressibilty condition

(2.2) imposes too many constraints relative to the available velocity degrees

h Th
of f reedom. In fact, dm(Sh)>dim(. In order to remedy the situation one

Vh tothto
must, at least, increase the dimension of relative to that of S

b) The bilinear-constant element pair - We next consider the bilinear

velocity- constant pressure pair which is often refered to as the Q1 -P0 element

pair. Again consider the case of 0 being a square and consider the -

"triangulation" of the figure below. We now choose Vh to consist of piecewise"%

bilinear functions with respect to this triangulation which are continuous over

h
'2 and which vanish on F. For S we choose piecewise constant over

the same triangulation and which have zero mean over 2. Once agan the A 1."

inclusions VhcHfI() and cL (Q) hold. The simple counting argument usci for -,0 0
the first example does not yield any definitive information since dimtV1 =

, S~~h N2 _ ,":¢"_

. , 1- " 3 -i'', . As ,Jpfrl rp, wh I 1 :-:o%. w ' in S - 2 .

t s well known, e.g., see IF, BH, SGLGE,

1P, GNP], that this bilinear-constant element

pair exhibits the disastrous "checkerboard" mode,

for the part icular discrete pressur-e field

, h S. is * I ri the squares" arid -1 in -" ..

rfie "black squares' we have that b(v( 0 for

-11 V-iV h . This is an example of the s't(nid type

)f :s abi litv I iscus.sed ubowe . 7~1,t "!,ad"1

mlur- m o'. , an ho -asa Iv f t P r d ut . "- -

er "tr r ';tAme ,avp -oiggest -it that ioncte t i s mo)de

JI-P
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is taken care of, the bilinear-constant element pair can be safely used.

However, this is not the whole story for the bilinear-constant element

pair. Boland and Nicolaides [BN2] have shown that there exist other pressure

modes for which (2.20) is satisfied. The left hand inequality of (2.4) was

previously known UPI, at least in the different context of penalty methods. Of

course, the left inequality does not imply the right, and certainly doesn't

imply that for those modes the stability constant ,=O(h). However, Boland and

Nicolaides have shown that this is indeed the case. Moreover, they have shown

[BN3] that there exist data f for which the pressure approximations do not

converge and that it is also possible to set up problems for which the velocity

approximations do not converge as well. At the least, since the constants in

the error estimates (2.9)-(2.11) are proportional to y-, there will likely be

a loss of accuracy due to these pressure modes. Their conclusions are worth

noting, especially in view of the fact that the bilinear- constant element

pair, with the checkerboard mode filtered out, has been used on numerous

ocassions in "practical" computations.

,.y

III - Finite Element Spaces for the Primitive Variable Formalation "'

In this section we discuss pressure and velocity finite element spac,:s

which have been rigorously shown to satisfy the div-stability condition. There

are many such pairs known, especially for two dimensional problems; therefore

we will restrict our attertion to pairs which have proven to be of the most

practical utility.

Throughout , P (T denotes the space of polynomials of degree less than

,lual to k w ith respect to) the set TrR and I P k(1), dnotf-s the sp-cp of J-

,' -

........... *~"~\*% *..4*.* ... .. *...'. ..... ;.'

% v v % vv : : v v .,' 'v,.' '..,,,...... . . ... " , , ',. ,,,,,%
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vector valued functions each of whose components belong to P (T). Analogous *-1
d

definitions hold for Qk() and in the case of functions which are

polynomials of degree less than or equal to k in each of the coordinate

directions, e.g., Q12) denotes piecewise bilinear functions with respect to

the set 1). Likewise we define the spaces Ck(l) and [ck d of k-times

continuously differentiable functions with respect to the set $.

2
For the most part, the results below hold for polygonal domains in R and

3
polyhedral domains in R . Through the use of, e.g., isoparametric elements,

they will also hold for domains with curved bouhdaries provided the latter ',

satisfy the usual smoothness criteria. Furthermore, we assume tha ail 1

subdivisions of Q into finite elements which are employed below satisfy the

standard conditions. For details concerning these issues, ore may consult,

e.g., [Ci.

We begin with some examples involving piecewise linear or bilinear velocity ---- p."

fields with respect to a subdivision of 9 into triangles or r:tang.es,

respectively. In all cases the discrete velocity fields are continuous over 2.

In combination with these type of velocity finite element spaces we ill.-'

consider both discontinuous piecewise constant and ront inuous, v-r 2, VP'r

piecewise linear pressure fields. Every element pair listed satisfies the div-

stability condition (2.5). Moreover, provided the solution u,p of (1.9)-(1 10)

satisfies u H(aInHO(Q) and pH'(Q)nL 2 ( ;2), the following error estimates for0 0

,phe discrete solution u p of (2.1)-(2.2) hold uniformily in h:

h O%
u -u O(h) N

(3.1) u - u h, O(h2)h

P 0 O(h)

%'
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'U. *J

Thus, these elements yield first order accurate pressure approximations and

second order accurate velocity approximations. ..

a) Piecewise constant pressures I - For the linear-constant element pair

mentioned in section 11.S the discrete continuity equation overconstrained the .1%

approximate velocity field. However, by employing different grids for the 'z

pressure and velocity fields, the linear-constant element pair may be made W

stable. For example, consider a given triangulation 
Th of a polygonal domain Q %k

into triangles. Then divide each triangle in T into four triariles by 'oinirg
h.

the midsides, thus defining a refined triangulation T h/2. An example is

provided in the figure below.

'.. -Uf

A pressure triangle in 7 The four associated velocitvtriangles in Th/2

Now define
5 h  I E P (A) f q 0'

(3.2)

I P (A)] , vh/2  VE[C%() 2 =O on F "

so that the pressure is sought among piecewise constants with respect to the ..

I.'.P '

II ' -" "J m" '- ' '- ° ',' " " ' ' ""'''' '' '' 't.  ' ," ." ." ,° .° '"'"'
5 ~ ~ ~ ~ ~ ~ ~ _ _-... 4,'~* .. . ' .~*
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triangulation Th while the velocity is sought among continuous piecewise linear

fields with respect to the finer triangulation 7 h/2 The pair of finite element

spaces defined by (3.2) are known to satisfy the div-stability condition (2.5)

and thus yield optimally accurate approximations satisfying (3.1) 'i

b) Piecewise constant pressures II - For the unstable linear-constant

element pair of section 11.S there was one velocity element for each pressure -

element; for the stable linear-constant element pair (3.2) there are four

velocity triangles for each pressure triangle. Stable linear-constant element

pairs may be defined wherein the ratio of discrete pressures to velocities is
h ,-. 4.. 4.

not so high. For example, let the velocity space Vh be as in (3.2); now" define

hthe pressure space S through the following choice of basis. For each triangle

of 7 we define three basis functions, namely piecewise constants which are
h

unity in the shaded areas in figure below and zero in the unshaded areas. Of

course, outside the particular triangle of T., the basis functions vanish as

well. This pressure space consists of three out of the

....

-. 4' ,.

"* -A'
"V.

four possible piecewise constants associated with the four triangles in T
h/2

contained within a single triangle in 7 Moreover, there are essentiallv thr-,
h'h

times as many pressure degroe of freedom for this choice, of S :s i r
: ,'g -er ave "-4.-

.' ,"-

"-" ,,*'
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for the choice made in (3.2). However, this element pair is also stable, i.e. ,-

satisfies the div-stability condition (2.5) and the error estimates (3.1).

c) Piecewise linear pressures - One may also couple a piecewise linear

velocity element with a piecewise linear pressure element and still satisfy the

div-stability condition (2.5) and the estimates (3.1). Such a pair vas

introduced in [BPI, analyzed there and in EVIl, and is given by

Sh= qI qeP (6) 'AEh q0 (IQ) q 0
(3.3)

V. = as in (3.2).

Due to the coupling between the pressure and velocity errors one cannot take

advantage of the better approximating ability of the linear pressure space. N

Thus, insufar as the rates of convergence, this linear-linear element pair is

no better than the stable linear-constant element pairs. However, in practical %

calculations we have found this to be the best element combination involving,

linear velocity fields, better in the sense of giving more accuracy for useful

values of h. Furthermore, this linear-linear element pair usually results in %

fewer unknowns, for the same grid, than do the linear-constant pairs. 7,)F 1-

example, suppose the pressure triangulation 7 is given by the first figure of
h

section II.4 with N intervals on each side. Thus there are 2N2 triangles in h

2and the element pair (3.2) has 2N -I pressure unknowns; on the hand, the number 7 V"

2of nodes in this triangulation is only (N+1) and thus the piecewise linear

2pressure space of (3.3) has only (N+1) -1 degrees of freedom. Both element

pairs have 2(2N-1) velocity unknowns so that the linear-linear element pair

2(3.3) has roughly N less degrees of freedom, for the same grid, is does the

linear-constant element pair (3.2). ""*

d) Piecewise bilinear velocitv fiolds - Entirely inalagous t, the-

triangular elements described abnve, we have the following lom,,nt: nvolving.

%~~~~ ~ IS-fk .- p!e

\ *,I

." . o
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bilinear velocity fields with respect to rectangular elements. More general

quadrilateral elements may be found from these through, e.g., isoparametric

mappings.

We start with a subdividivision 2 of Q2 into rectangles, or more generally
h 

U"

quadrilaterals. Subsequently we divide each rectangle into four smaller

rectangles by joining the midsides, thus creating another subdivision 2 h12 of Q2

into rectangles. See the figure below. In all three velocity-pressure element

pairs

'N
A pressure rectangle in 2The four associated velocity

rectangles in 2
h12

about to be described we choose the approximating velocity space I,,- consi.sto

piecwise bilinear functions with respect to the subdivision 2 hich are U
hi/2

continuous over Q2 and which vanish on r, i.e.,

(3Jl h =(v vE[Q 1 () 2 0 J~/ vC() 2  v=

;,or the first prossure space we choose piecewise constants with rfospert to

the larger quadrilaterals of thfe subdivision f and which have- zero mtean over

-U '%'. . ~~',:-U.. .r~? ~~ h
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Q, i.e.,

Sh =(q I qE=Q 0 () 06 OE2 fq=o)

As indidicated in the figure below, for the second pressure space we choose

three

out of the four possible piecewise constants associated with the rectangles %ii

belonging to Zh2 and which have zero mean over Q. Finally, the third pressure.

//

space consists of piecewise bilinear functions with respect to the subdivision *:. *:..-:

h which are continuous over 9 and have zero mean over 1Q, i.e.,

(3.5) s h ( q I qGQ 1() , UE ; qEC 0();f~

The three velocity-pressure elements just described satisfy the div-

stability condition (2.5) and the error estimates (3.1). Similar to the case

for triangles and for the same reasons, the prefered element pair involving O

bilinear velocities is (3.4) coupled with (3.5), i.e., the bilinear velocity-

bilinear pressure pair.

e %.,.
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111.2 -The 7aptai-1(,ood etement pail'

We next turn to quadratic and biquadratic approximate velocity fields.

Suppose we have a triangulation 7 of 0. Then, the Taylor-Hood element pair N-

[TH] is defined by

(6)] ( 2 ' ; Ec )] 2  ; v=O on I-
.6) 't h" (q qEP , Cu) " ; qEc,), = v'qo )
(3.6)

Note that we are now basing vh and Sh on the same grid but on different degree

polynomials, in contrast to (3.3), which uses the same degree polynomials but

different grids. The element pair (3.6) satisfies the div- stability condition

(2.5). Furthermore, if the solution (u,p) of (1.9)-(1.10) has the indicated

smoothness, then the following error estimates hold ...

uniformily in h:

-n-
-fu u = O(h t (a )nH'A (Q

M f
I, ' , I >-

u -Uhi.0 = whenever and ., m=2 or 3.(3.7) Il

p - ph, 0 = O(hm) peH - ()nL (2) )
o %

These results have been established by many authors, including [BP,V1,BN1]. We .

see from (3.7) that if Ur 3(a2N (a) and pH (2)fL (Q) then, in L. -norms, e -

have third order accurate velocity approximations and second order accurat.

pressure approximations. This is an improvement over any of the elements

involving linear velocities.

One should note that theenumber of degrees of freedom, both of velocity and

pressure type, associated with the use of (3.6) is identical to that associated-

with the use of (3.3), the most efficient linear velocity element. In fact, the

structure of the discrete system resulting from a Taylor-Hood discretization is

*-.'.--

• *, 4 4 ,; "Q "",% " " 4 % - ' -. - . - ._' -.-., v '- . -' .
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.%.P
in every way identical to that resulting from the use of (3.3). Therefore, the %

solution times for the raylor-Hood and the linear-linear liscrt-, .-. st,.m:. Aro

roughly the same if one uses the same pressure triangulation in both cases. Of, 

course, the Taylor-Hood element pair will yield better accuracy than the linear-

linear pair, provided the exact solution is sufficiently smocth.

On the other hand, on the same grid, the assembly costs of Taylor-Hood will -

in general be higher since one needs to use higher order quadrature rules to

integrate the higher degree polynomial integrands resulting from the Tivy!,lr-

Hood element pair. For many solvers, the assembly time is overwhwImed by tht"

solution time; therefore the increased assembly cost associated wi.th (3J) 1s.

not a serious drawback. Of course, this is further mitigated by the fact that

for the same .accuracy, one may use a coarser grid for (3.6) than for 3. 3).

Summarizing, provided the exact solution is sufficiently smoot-h, th.l Tvr-.

Hood element pair, when compared to any of the linear velocity elements, yields t-.

better accuracy for essentially the same work, or alternately, will vield a

desired level of accuracy for less cost. %

For rectangles or quadrilaterals we have the analogous pair tv,.

fh =' V I W[JE2)) v[C( a)J2 ; m o*
(3.8) , h vo on r .

where 2 denotes a subdivision of C2 into rectangles. TLs 1merr ;sr
h

satisfies the div-stability condition (2.5) and the error estimates (3.7).

One may well ask if further efficiencies may be gained by hi i tigher

order elements, e.g. , cubic velocities coupled wv'.th hualr "jt i, r:rs. ..-.

one needs to consider the trade-off betwfen the increased accrur:icy of higher ,

order elements and the increaseid c:iomplexity of those cierneirts. \i in itlher

settings, s.g., structural mechanics one generally f- ds th-it the optimum

* A

Y -..'...:..,', ,' .,-- . .,_ .:..,v ,-N.--'.-..... _,.';., .,,,.",."..:''? .
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S.

seems to be achieved by quadratic elements. Furthermore, it is qp -t

that in general settings the exact solution of the Navitr-Stokes ,jiat ion.s s

sufficiently smooth to enable the potential better accuracy of hiher order-

elements. In our overall experience, we have found the best choice of velocltv-

pressure elements to be the Taylor-Hood element pair 3., ) r .

qiadrilateral counterpart (3.8).

111.3 - TiuP,,ence Jree e~e',wr.

Ideally, one would like to choose the finite element spaces Vh and ,

that the functions belonging to Vh are at least discretely divrger' f,-, ..

Certainly if the functions belonging to Vh are divergence free ther they Ar-

h h
discretely divergence free as well, i.e., divv o for all vh implies !at

vl Zh. Such a case effects a great simplification since the vicit I :d

pressure uncouple. Indeed, we need only solve

h h h hh h h h
a(u ,vh) + c(u ,u ,v h ) (f, v for all v 'V"'

h i

for the discrete velocit 'ield u since in this case the tel m 1'(v q q
vh h=z h "

(2.1) vanishes for any v e h Also, since ZhEZ, note that :n tt,, velocivt%

estimate (2.9), 0=0 so that the velocity error depends only on the abilitv t -

approximate in Vh.

Unfortunately, although there are known some fini Ile-moit pair- .- clh tat 1,-

the functions in vh are at least locally divergence fr-e, these have provei to

be impractical, and we will not consider them here. We do mention that on,

obvious method of generating divergence free discrPt#, , ". I. t ,

the curl of a piecewise polynomial ftle d, 1 . e. ,, 1 ;)101 lwise- ;.o,) . ,lom 1I

streamfunct ion. One problem with this approach ti it I t I I !

.0
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Vh,

conforming velocity field, i.e. , '~1 ~2 hen the (liscrt-te st-rfamfnrLt.,on
0

field must be chosen to be continuously differfenti-ible over Q2. In R' th f V:

course, necessitates the use of at least quintic st re amf unc t i onrs ovefr

triangles, or cubic polynomials over macro-elements, e.g. , the Flourg --Ticrter -

e lement . Non-conf ormi ng ve loc it y f ielIds can al so be generat ed Ii t h is manner.

See [Ca,CN,GR1, and GR21 for details.

111.4 -T~e ~,un~ ~r,~.

Compared to the two dimensional setting, there are known much fewer stable -

element pairs for thrtee dimensional problems. However, there is greit 1trs

in this subject and therefore there has been substantial recent pors.fe

%.P mention a few of the known stable three# dimensional elements.

I n th le first pl ace o, the thbree dime rs iona 1ai o of t!".T,

element is known to be stable in 3-D; this may be shown by the methods of

Verftirth or Boland-Nicolaides. Specifically, we subdivide Q2 into tetrahedrons

an s otnospiecewise quadratic polynomials for the velIoc i t : an,

cont inuous p crew _s- i 1 nt ar p01 Ivnomi a Is f or t ht- pre ssure .Te rr x*-

combinat ion is the same as in the two dimensional case.

Next we consider linear-constant e lements. Again, s ubd iv id e

t t-ra hed r on s. For the pressure space we choose piecewise conistants it '

respect to this initial subdivision. Now we subdivide "ach ttraihedron io

Smaller tetrahedrons by f irst joining tiet centroid of the fae t * he

vertices, and then joining the centroid of the large tetrahedron to the

vert ices and the centroids of the faces. For the ye lou itv space weo chiowo

rotilos piecewise linear polynomials with respect to te snAi let

teot rahedrons.

Anter st ,ilo I irteir-rt In element pa ir 1: is je Tnit' by f i F-t mii iidi rig

* %

% % % % %

- 4* % VV 4 ~ % - ~ * .. . * *.
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Q into rectangular prisms, or mtr.o gerier-il Iv, lrit h.-t ,-

For the prpsstirp sputi-P w'e choose~ pi.p'ievi so. -- u t

subregions. We subdi ivIde each rectangular prism into 24 tetr ihedr(is :r .

drawing the two diagonals of each face. then joinirg t he -eoiit t - i '-

to the vertices and to the six intersect lon point s l fit f 1, .. l.:. 1, n

Both these linear-constant element pairs art- kn, ri . t 1, .

the same accuracy results as those for the two dimensional 1 ttau-,1st Tht

pairs. See [BoC] for details.

IV - Alternate Weak Form and Boundary Conditions -

rt this sect li n ' examlie Sime varIltit .I f ,, o

1 .10), most 1y from t he viewpo it of how ifftrpnt boundar v 'rd' t t l.

incorporated into a finite element met hod iusing primit ive Var\r i t 0.1o . :

emphasize that there are many radically different wpaK trmiuIit :,. 1,; u

ind p) 01h1,h we iwi 1 1, ot be ibe .i ttier te i.

variants of the most commonly used weak formul -t t.

Befor# cons1iering boundarv ondit i ois we hr 1t Iv iis il ti r i', - lt lt-,

formulat ion of the convert ion term in (9.'3

IV. 1 ..%n cttet'riate rpuLtat icr. eqj tt i r t ievn term

% %For thte purpose of s imp] i fvinTg t he an-3lysi1s ot t he ipp . rixmit lt

can be useful to introduce a slight lv differi.'it wteuk ft nii ,; . i t'
, 'P '.

trI l near f orm ai•, , * ) ;ippear irig in .1 . t:'fil iii , .V ' op, , - 'Iltt ,,',d

form introduced by Teman

.%

N-p

=@ .o.e". ",.. -" "." ." . -. -- " "-'".'F . .._'.'.' -"-. .'' .. .''..'''..''-.''_'' _.'.." 
°
." ' "-._'_. . .-. "-" "."% -''
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One may easily verify that (u,u,v) (u,u,v) %heiieiere divu 0 ii J2 and u~n l

F, ijhere- n 'iermit'.s the ouitw~r1 rmimal to V. 2leref-.v, ! io- .' ;.2)- .

see~ms Ir relevant ol.hether oiie 'jst-s 11 .8 )t * ! t di.

Navier- Stokes equat I is . From art analvsi., p) it ot tit-. 4"". il'* 1

(4. 1) is that ?'(b',u, v) --?(w,v,u) for any u,vwEHfQ .hII fi- r 1g'

f I)r II. 8) holId(s )it V ri1 v iher Tii1%v -- 0 n 110 n rd one )f u 0. v 0 T w- n 0 .) U

W~e P'mphaZ Ise thfat, Iri nof ar is t tie accuI s-iv f tit 'pr x 1i wt;i

- rven ei, it makes no III f f oreri who-thtr )rie is,-.z *. met.

point out that manyv of the resul ts concer n 1ng f i nite e ci -mernt 7ipprtox 1; 'oliati

.t*r 1 aul 3r ir )emn wpr IfI3f41h al no t esirmi ri inn. mn- if ,~ii 4u.

tari id ',rri Ia mrou Im emet t o f ( 4 1 1 S)It llM" . ln''
Vwp

IV.2 - rtmrlp ey i tvw tm i tV bi.ir. i(pv. ryt i *tsdmt

riIit 1 is. I fI p r'i c , tihe over oil 1irnlng fmh i Iw v

i tit t-r p(,I irit We I t-.crI it t fhI _ met hood it or p() vg(orialI Mii a ris .-.

il: t i. 1 1. i ni% to. is l i (hfr -e lMe :S 1 s I n 110! m i i

t 'o #.t hI t' I tihe I'! I,- 'Inel r mc: It

rsI1v t i. o juil., t y In II 11 Ii i

14.i g 'r.

I~~. ii ler.

.. . ... ...
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Note that VO -If-Q). The weak formulation which we will discretize is as

follows: se ek tIV and pL2(Q) such 'hat (1.9) and (1.10) hold. Note. that the
.. 0

test function v still belongs to (2) i.e., v=O on F.
0 e

In order to pose our Jiscrete problem we choose finite element spaces ".

Vh W(Q) and shcL?(Q). We denote by Vhl the restriction of Vh to the boundarv
0 F

Fi.e., v Consist of functions defined on F and which can igree with the

boundary values of at least one function belonging to vh. The finite Plement

flirt iluris be lonrginrg t- Vh, be1ig, for example, pitOCewl so polvromi 31 s, ''inot i i

general sat isfy the boundary condit ion ( 4. 2) c e r t a 11v , in -- npral g~

Theref,,re we choose an appr-x1mat 1or to g whic h %' l t e,v g ,. r,

The most cnmmon choice for g , and the one we -onrsider -ero-, ; the

nt er~i. t g r, V Il
F

.T 1 ho I, 1'. is I r Il t mpleme-rI , wh I h 'it 1 tas a v 1-c-u':t ,-:-. or
L~

;11 11pi 'ir i ' For example, sipp vh"'~'s a L.Agr-Aigi- f mito 0e etl-eit p-,'

, ne whose degrees of freedom are exclusively function valies at points.

h
v 1, k-I, .,Z Aenort the usual finite element basis for V . Let thp first

.t * eh.o ,' tas.q: f v't lorIis be associat dl with irt ,-i.,r , i' vs , , t for

I . . 0 for x*F Thp remain ig basis functon V M .... , i "kK -r

-s'ts' I wI ted h ,4ds xk lving on F. In pract ual implementat i,,ns there ar-

fni f I cf i -~[. 'u1J imeuimbor . rg schemes t fi-ri thte urip we 11re I~ I~ I oee TltCh

p:tt? r .. mpl i i,-: 't 1-hp -X -lat Irs bel-gs, 3t t mpt-"d heI'

ti ie hie hoi)intiar v 1 it .'r pii nt i g i.s ',"n -Ili i vil ,!t i

i..-r .%.

h 'i t . v ,%.''
u X) v x) + g[X, )v X

k I , &..

q k 1i J . ir t fit jnik iwfi opt f 'tit i tw 1-, t br tn i:

**, ....:..
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coefficients of the basis functions associated with boundary nodes are simply

set equal to g evaluated at the corresponding node. Note that (4.4) implies

that

h K
g (x) = g(x )v (x) for xeI-

L. k
k=K+l

The contribution to u emanating from the second summation of (4.4) becomes

part of the data of the discrete system of equations.

Once an approximation gh is chosen, one may define the set

S=gh on

No that ' is the finite element subspace of HIf(/) used in conjunction with0

the homogeneous boundary condition (1.3); also, clearly hHI(Q) is not a

subset of V . Now, the approximate problem may be defined as follows: seek
gh hh h 2 --'---

uhF and p ES CL (Q) such that (2.1)-(2.2) hold for all vhFVho and qhesh
9 0o 0h

respectively. Again, the test functions v vanish on the boundary F.

The whole discussion of the div-stability condition (2.5) carries over

intact to the case of the inhomogeneous boundary (4.2); in (2.5) we still use

the subspace V of finite element velocity fields which vanish on the boundary.
0

Results analagous t those of section "".3 -an he derived in a fairly

straightforward manner with the exception of some technicalities encountered

2 Afor the L (Q)-error estimate for the velocity approximation. S~o MP, F;P, cGR2]

for details.

In particular, if g is chosen to be the boundary intprpolant of g in Vh'p

then all the results, P.g., error estimates, concerning the finite element

3pacps di scussed I n Sect Ion ITT are esspnt ial lv ;t i 1 31 id for the

.' %

,P-
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inhomogeneous velocity boundary condition (4.2). Again, see [GP, FGP and GR21

for details.

IV.3 - Attejncite bcudoJ'rt canditi,n and lapmtatian6 al the i---cal.s ter-m

In this section we examine how different choices for the viscous term in

(1.1) affect the natural boundary conditions of corresponding weak formlations.

Some of this material can be found in [GLN].

Due to (1.2), when u is constant, the viscous term in (1.1) may be written

in the various equivalent forms %

(4.5.1) uau =

(4.S.2) div( t,( (grad u)~ + (grad u) 1

.-. 4. _'b

(4.5.3) -ucurl(curlu) = .J.v.

(4.5.4) v graddivu) curlcurlu -

Although these different realizations are equivalent insofar as the partia"

differential equations are concerned, we shall see that each generates

different numerical method.

If for some reason u is not constant or divu*O, then only (4.5.2) may be

used. Indeed, (4.5.2) is the form of the viscous term which arises naturally

in the derivation of the Navier-Stokes equations from the principle of

conservation of linear momentum and the Cauchy-Poisson constitutive equation.

The other three forms (4.5.I), (4.5.3) and (4.S.4) are derivpd from (/.5.2)

with the aid of (1.2) and the assumption that umconstant. In (1.1) we have used

.% .

C d' -r
%-.- " " ,r '. " " -,- • - .rw" " 4 ," ,, .'-" ',,r ',,'.,',," " ," " .e ," " €"W" " ," W" W" '" W ' 

"
w ' 
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(4.S.i) only because this is the most popular choice in the literature; all of

the results obtained so far hold equally well if one chooses '4.5.2) instead.

As will be seen from the discussion below, (4.5.2) is, in general, to be

prefered to (4.S.1).

Denote two segments of the boundary r by r and F . These segments may be

empty, are not necessarily disjoint and, in fact, may be equal. Now, for fixed

given functions gn and gT, define the set

9 on n-o r ) ,..

and the spaces ,.

~... .*.

V LH1I v.n=gO on F, ;vxn=g on F J

and the pace

S L2 (0) if r =r S=L 2 () otherwise..< -

S = LO n '.'',

Vhere vn denotes the component of v normal to t e boundary T and .

wvxn=-(v-n)n is the projection of v onto the plane tangent to F. In the "''

definition of V we may use vxn=O due to the relation vxn=rnxnnxvxn), i.e., % e .
2 2

nxvxn=O implies that nxv=O. In Rnxvxn=v.-r where T is the unit tangent vector

to F....,-

S = L((2) f F = , SL ((2 othewise

Suppose that we wish to specify the bound ary Fonit, P

andi hnn

(..2) n un=g o n rur n

";:r-A%

to' F.l

,, .....

Supposet , lT tha- t we _ , wish t speifyth bondr codton .
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i.e. the normal velocity on F and the tangential velocity on F) n .

respectively. For all the weak formulations which we will consider involving

any of the choices in (4.5), (4.6) will be e:ntiat boundo.p conditian6. Thus

the trial solution functions u will satisfy (4.6), i.e., uEV, and the test

functions satisfy veV O.

Consider the following weak formulation: for i=1,2,3 or 4, seek uEV and
g

peS such that

(4.7) a (u,v) + b(v,p) + c(u,u,v) = (fv) + d(v) for all veV 0i 0 -4

and

(4.8) b(u,q) 0 for all qeS.

Here, b(-,.) and c(-,-,-) remain as in (1.7) and (1.8), respectively, and f

continues to denote the body force appearing in the momentum equation. The

linear functional d(-) is given by %.."

I" '"

(49)d(v) f rv-n + fs.vxn
r/r r/r ""

nT

where the functions r and s are additional data for the problem. In (4.9), for

example, F/F denotes the complement of F in F, i.e., xEF/F implies that XwF' n n fln

but WF . Also, since v is an arbitrary test function, in direction vxn can be

taken to be vectors spanning the tangent plane to F.

The bilinear forms a.(.,.), i=,... ,4, depend on the choice made in (4.5)

and, corresponding to the four choices possible in (4.5), are given by

. %
(4.0.I aA.~)--u
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df.1/'d"s.

(4.10o2) a ,,.v = -J uI gradu + (oradu) JT grad,, (grady) T

2I 2

(4.10.3) a3 (u,v) Vf (curlu).(curlv)

and

(4.10.4) a4(u,v) = (~curlu)-(curlv) + (divu)(divv)

In the customary manner, should u and p be sufficiently smooth, one can,

through formal integration by parts procedures, ascertain what differential

equation problem the weak formulation (4.7)-(4.8) corresponds to. To begin

with, we know that the boundary conditions (4.6) are satisfied since these are

being rLquired of the candidate trial functions u. We also find that the

differential equations (1.1) and (1.2) are satisfied, where in (1.1) the

viscous term is replaced according to (4.5), depending on which choice is made

in (4.10). Finally, one finds the natulat bound-PV cond itian corresponding to

the particular weak formulation. We will now discuss these in some detail for

each possible choice in (4.10). ,

Corresponding to the paired choices (4.S.1) and (4.10.1) we have the
,--'--I

natural boundary conditions

(4.11.1) p - un-gradu.n = r on F/F and un.graduxn s on F/F .n r"'. _2 '

Unfortunately, these boundary conditions have no PhV.-tico. meaninq. Thus the

choice (4.5.1), or equivalently (4.10.1,, can only be used in conjunction with

the boundary condition (4.6) specified on all of F, i.e., u given on F =F =F.

n tc
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Next, consider the choices (4.5.1) and (4.10.1). The natural boundary

conditions are then
.- .*% .j

( )-p + vn-(gradu + (gradu)TJ-n = -r on F/F and(4.11.2) fn V

un.(gradu + (gradu)Tn = -s on F/F

Thus -r and -s are the normal and tangential stresses, respectively, on the

boundary. Then, for the choice (4.10.2), the possible combinations of boundary

conditions at a point on the boundary F are as follows: we may specify the .,

velocity, or we may specify the normal velocity and the tangential stress, or

we may specify the tangential velocity and the normal stress. The latter

combinations are useful, e.g., for free surface problems or at artificial '

outflow boundaries. Details may be found in [GLN] '.-. -

The third choice (4.5.3), or (4.10.3), yields the natural boundary

conditions

(4.11.3) p r on r/r and w s/v on F/Fn t '.%,,

so that r and s are the pressure p and u times the vorticity (A=curlu,

respectively, on the boundary. The possible combinations of boundary

conditions are now: we may specify the velocity, or we may specify the normal

velocity and the vorticity, or we may specify the tangential velocity and the

pressure. The pressure is often used as an outflow condition; the vorticity is

useful in exterior problems when matching to an inviscid irrotational flow

since it is well known that the vorticity decays to its value 3t infinity

faster than does the velocity. Again, details may be found in [GLNI.

Unfortunately, although the boundary conditions associated with the u:se of

(4.10.3) can be useful in practice we cannot employ this particular %
in %

2.. .' "

%'
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formulation of the viscous term. The reason for this is that the choice

(4.10.3) requires the use of divergence free finite element velocity fields in

order for the form a (.,.) to be coercive on Zh. This condition is also needed

to guarantee the stability of the approximations and, for the other three cases

(4.10.1), (4.10.2) and (4.10.4), is trivially satisfied for any choice of

conforming discrete velocity space.

Fortunately, the boundary conditions (4.11.3) are approximcteEV the natural

boundary conditions associated with the choice (4.11.4). In fact, for (4.10.4),

we have the natural boundary conditions

(4.11.4) p - udivu = r on F/F and w = s/t on F/F .

The second of these is identical to the second of (4.11.3). If o is "small",

and/or if we assume the incompressibility constraint holds up to portions ofr

the boundary where the normal velocity is not specified, then (p-vdivu) is

essentially equal to p. Thus we recover, at least approximately, the first ,'5e

boundary condition of (4.11.3).

In summary, when one has velocity and/or stress boundary conditions, one

should use (4.11.2) in (4.7) and when one has velocity and/or pressure and/or

vorticity boundary conditions the choice (4.11.4) is preferable.

The discretization of (4.7)-(4.8) follows the usual procedures once one

chooses the finite element spaces for the velocity and the pressure

Napproximations. The natural boundary conditions are automatically acounted for

by the inclusion of the linear functional d(-) in (4.7). The essential boundary

conditions on the components of the velocity can be enforced In a manner At

analogous to that described in section IV.2 for the case where the compltte

velocity is specified on the whole boundary. All material relating to the div-

*%

lj :$ -•, "w.5 _

*5% 5 b,,

N £9; S£: ,. £: 4I K-', ;- _-'C< J': , :. . ' - : - = v , ' - : - , ' - = . - < : . -: ,;- :'"..'...-,..-,.-.'..%" ',
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stability condition (2.5) is essentially still valid, and thus, insofar as that .

condition is concerned, the particular choices of finite elements discussed in

section III may still be used.

In actuality, there are very few rigorous error estimates available for Jb

boundary conditions other than the velocity. For polygonal or polylidral

domains Q, the error estimates of section II.3 are still valid. However, for

domains with cu'ived boundowndie6, using the type of weak formulations discussed

here may result in a loss of accuracy. For example, for (4.10.2) with normal - ,* w

velocity and tangential stress boundary conditions, it was shown by Verfilrth

EV2] that there is a loss of accuracy due to a Babuska type paradox, ie. , the "P-P

limit of solutions of problems posed on polygonal approximations to 2cR is not -,..

the solution of the problem posed on 9. Verfibrth [V3] has also shown how

through the use of additional Lagrange multipliers on the boundary, a different

weak formulation yields optimal accuracy.
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