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We survey some mathematical aspects of finite element methods for v
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incompressible viscous flows, concentrating on the steady primitive variable
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formulation. We address the discretization of a weak formulation of the Navier-
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Stokes equations; we then consider the div-stability condition, whose
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satisfaction insures the stability of the approximation. Specific choices of
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MATHEMATICAL ASPECTS OF FINITE ELEMENT
METHODS FOR INCOMPRESSIBLE VISCOUS FLOWS

One of the most successful and well developed mathematical theories
concerning finite element methods is that connected with incompressible flow
problems. The success of this theory lies not only in the accumulated elegant
mathematical results, but also in its impact on practical computations. The
outstanding monographs by Girault and Raviart [GR1,GR2] give a rigorous account
of this theory and to this day remain the definitive sources.

In this survey we examine certain mathematical aspects of finite element
methods for the approximate solution of incompressible flow problems. Our
principal goal is to present some of the important mathematical results which
are relevant to practical computations. In so doing we also discuss useful
algorithms. Due to space limitations we focus on the steady primitive variable
formulation. Moreover, even within this narrow context, we will concentrate on
only one of the very many different known approaches. Some other approaches are
discussed in, e.g., [GR1,GR2,Tol.

.We state at the outset that we make no attempt at being comprehensive in

our coverage or 1in our attributions. To anyone who takes offense, we sincerely

apologize.

I - The Primitive Variable Formulation

’. d=2 or

Let 2 denote a bounded, possibly multiply connected, domain in R
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problems we consider the Navier-Stokes equations .".‘
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where u 1is the velocity field, p the pressure, f the given body force, and v to '.‘,
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the given constant kinematic viscosity. In (1.1) the constant density has been :.‘.:._ '
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absorbed into the pressure. Whenever u and p represent non-dimensionalized :;:: S8

variables, then v is the inverse of the Reynolds number Re. ; ’
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Following our detailed discussion of the approximation of solutions of {:-’:-::
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(1.1)-(1.3) by finite element methods, we will consider other incompressible ;.5:"
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flow formulations, especially as they concern boundary conditions other than L
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1.1 = Function spaces, norms and [osms
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In order to introduce a Galerkin type weak formulation through which a
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finite element approximation is determined, we first need to define some
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function spaces, associated norms and forms involving functions belonging to
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found in, e.g., [BaC,GR2,0R1]. At
First we denote by Lz(ﬂ) the space of functions which are square integrable »“;ﬁi

over 2 and which is equipped with the inner product and norm ' o

(po@) = [ pa and al, = @@, pGUL
Q

respectively. We then define the constrained space

Lg(ﬂ) -(qet?@ 1 [q=0)

Q . o
Thus Lg(ﬂ) consists of square integrable functions with zero mean over Q. This
space is used in connection with the pressure; such a constraint i3 needed
since it is clear from (1.1)-(1.3) that the pressure can be determined only up
to an arbitrary constant. Other constraints, e.g., fixing the pregssure at a
given point, may be used instead without effecting any appreciable change in
the results discussed below. Next we define the Sobolev spaces

H ) = (qe 2@ 1 D°q e L@ for s=1,...,k )

where DS denotes any and all derivatives of order s. Thus Hk(Q) consists of
square integrable functions all of whose derivatives of order up to k are also

square integrable. Hk(Q) comes equiped with the norm

1/2

at, = | @ng + TDsng )

vhere the summation extends over all possible derivatives of order k or less.
2
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Clearly HO(Q)=L (Q). Of particular interest 1is the space HI(Q> consisting of
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functions with one square integrable derivative and the subspace
i@ = (qe W@ 1 q=0onr)
0

vhose elements have one square integrable derivative over 1 and which vanish on
the boundary I'. These spaces have the associated norm
d 3q 2 .1/2

s )

2 : q
1Al = —_—
(1.4) thi [ Hquo + z: S5 o
i=1 i

We note that for functions belonging to Hé(ﬂ) the semi-~norm

d 3 1/2
(1.5) lal, = ( 2: ng—*g )
is1 1

is actually a norm equivalent to (1.4) and thus, for such functions, ¢(1.5) may
be used instead of (1.4).

For vector valued functions we use the spaces

e = i a@? = (v v € H @) for i=1,...,d )
and .
t,,,.,d 1 -
Hy@ = to@1% = (v v e @ for i=1,....d )

For example, Hk(Q) consists of vector valued functions each of whose components

belongs to Hk(Q). Hk(Q) is equiped with the norm

d 1/2
Vig = [ 2: ”Vi'i )

i=1

’

alternately, Hé(Q) has the norm
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Also, the inner product for functions belonging to L (Q)=H0(Q)=[L2(m]d is ;!-!:!ﬁ".ld:?

: W\ ',‘ “.'."
given by \'u

\-".'-..

‘.$\ '
(u,v) = fu-v i) !:!'
Q -

wvhere there is no ambiguity possible resulting from using the same notation for
both the inner product of scalar and vector valued functions.

We now define the bilinear forms

1
(1.6) atu,v) = v [ gradu:gradv for all u, v€H (Q )
Q 0
and
1.7 b(v,q) = —f qdivv for all veH;(Q) and qeLg({?),
Q

and the trilinear form

(1.8) c(w,u,v) = f v-gradu-v for all u,v,vsH(j)(Q).
Q

In (1.6) and (1.8) we have that (gradu)i =auj/axi and

J

~y—w ¥
LI AN

e
.
d = du, av, d au oy
gradu:gradv = Z =~ 3 and w-gradu-v = Z w 1y, v
- ox A6 Ox J3x i »
1,J=1 J J 11J=1 j e .
AN
AN LI,
TN
O
f‘-‘ "...'l
Nt e
AN
[N AR
LR N
NRNS
s ) v L e e i e ) W N L Y W A P PN A TS A WL YL Y AL URL R E AL T RSANL
e t‘, '_lva) St S 8 G at AN S e oS, , WSRO LN, n iy Nln,



Using the bilinear form b(.,.), we can define the subspace

zZ = [ v e Hz(Q} | b(v,q) = 0 for all q € LZ(Q) )

0
which consists of (weakly) divergence [ree [funclions, i.e., functions whose
divergence is orthogonal to all Li(ﬂ) functions. Certainly any divergence free

function, in the strong sense, belongs to Z.

1.2 - &4 Salesrkin type weak formulal ion
The most commonly used weak formulation of (1.1)-(1.3) 1is the following.
Given féLz(ﬂ), we seek usHé(Q) and peLg(Q) such that

(f,v) for all veHé(Q)

(1.9 al(u,v) + c{(u,u,v) + b(v,p)

i
o

(1.10) b(u,q) = for all qeLg(Q).

By virtue of (1.10) we see that the solution u belongs to Z.

We note that LZ(Q) is not the largest function space for the data f such
that the problem (1.9)-(1.10) makes sense; indeed, all that is required of the
data is that the right hand side of (1.9) be bounded and this is possible for
some functions which are not square integrable. However, for our purposes,
feLz(Q) is surficiently general.

It can be easily verified that whenever a pair u,p satisfies (1.9)-(1.10)
and is sufficiently smooth to allow for the appropriate integrations by parts,

then u,p is also a solution of (1.1)-(1.3). Of course, (1.9-(1.10) admit

solutions which are not sufficiently smooth to be solutions of (1.1)-(1.3);

hence the terminology weak formulation and generat iged solution are applied to
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(1.9)-(1.10) and their solution, respectively. On the other hand, it is also
clear that any solution of (1.1)-(1.3), i.e., a atrong asolution, satisfies
(1.9)-(1.10).
‘ For the weak formulation (1.9)-(1.10), the boundary condition (1.3) is an
essential one, i.e., 1t must be imbosed on the candidate solution functions.
Below, 1in section 1IV.3, we will discuss the nafural boundary conditions
associated with the weak formulation (1.9)-(1.10).

We will not enter into details concérning the existence, uniqueness,
continuous dependence on data and regularity of solutions of (1.9)-(1.10). Such
results may be found in, e.g., the definitive treatise of Teman [Tel.
Furthermore, many of these results are similar to those discussed below for the

approximate problem.

IT - The Finite Element Problem and the Div-stability Condition

I1.1 = The discrete finite element prolblem

Once the Galerkin formulation (1.9)-(1.10) is established, the approximate
problem which determines the finite element solution is defined in the usual
manner. First one chooses the approximating finite element spaces, or more

precisely, a family of finite element spaces, Vh and Sh for the velocityv and

pressure, respectively. Here h is a parameter which is usually related to the
size of the grid associated with the finite element partitioning of Q. Then one
requires that (1.9)- (1.10) hold for functions belonging to these finite

dimensional spaces, i.e., one seeks uhth and pheSh such that

(2.1) a(uh,vh> + c(uh,uh,vh) + b(vh,ph) = (f.vh) for all vheVh



and

(2.2) b(uh,qh) =0 for all qheSh.

1f Vh and Sh are subspaces of the underlying infinite dimensional spaces of

(1.9)- (1.10), i.e., if VeH (@ and S"cLZ(@), then the finite element solution
defined by (2.1)-(2.2) 1is said to be conforming. Otherwise, i.e., if Vhdﬂé(Q)
and/or ShdLg(Q), then the method is said to be non-conforming. We will restrict
our attention to examples of the former.

Once one chooses specific bases for Vh and Sh, (2.1)-(2.2) are equivalent

to a nonfinean spatem of algebraic equations. Indeed, if {qj(x)}, j=1,...,J and
{vk(x)}, k=1,...,K, denote bases sets for Sh and Vh, respectively, we may then
write

h h &
p = 2: ajqj(x) and u = 2: Bkvk(x)
Jj=1 k=1

for some constants aj, j=1,...,J, and Bk' k=1,...,K. Substituting into (2.1}~

(2.2) then yields

K K
Z_ a(vk,ve) Bk + z: c(vm,vk,ve) Bk Bm
k=1 k,m=1
(2.3
J
£y b(vy.a,) @, = (Fv,) for t=1,....K
j=1
and
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K
(2.4 kzib(vk,qi) B, = 0 for i=1,...,J.

which constitute a nonlinear algebraic, in fact, quadratic, system of J+K ACNY
equations for the J+K unknowns aj, j=1,...,J, and Bk' k=1,...,K. Note that the 35:"

the discrete continuity equation (2.2) yields the JxK rectangular linecsr svstem N g

(2.4). AR

11.2 - The div-ostability condit ion

LY
N
In the positive definite case, e.g., for the equations of linear . ﬁt

Sl

elasticity, the mere 1inclusion of the finite element spaces within the

L
J':

-"' "- "- 'J(' !

underlying function spaces 1is essentially sufficient to assuyre that the

)

S =
Ry
T

approximations are well defined and are as accurate as possible for the type of

P

.

3
v
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finite elements functions being used. Here the inclusions thHé(Q) and Sthg(Q)

are not by themselves sufficient to produce stable, meaningful approximations.
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We find ourselves 1in the realm of what are known as mixed [inite element Bgak
me thods. T
R

There are number of conditions which the elements belonging to the finite LA
SAs

. * Q\ .I-

element spaces should <catisfy. Most of them, e.g., the boundedfhess of the v

various bilinear and trilinear forms, are easily satisfied by conforming finite
element spaces. The one condition which presents a problem has the following \a$
L]

mathematical realization: “?‘

) h _.h <.
given any q €S, e

b(Vh,qh) . h] R
sup — | 2 7'q
. h. ) 0 -
oxvllev v NS

(2.5
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where the constant y>0 may be chosen independent of h and of the
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This condition may be equivalently expressed in the form: SN
h _h ) h Vh

given any q €S there exists a non-zero v e such that Fadtid

(2.6) b g > ruq“nouv“u1 -

where the constant y>0 may be chosen independent of h and of th K

o~
particular choice of qheSh. Lw=v

'3‘
D
s
s
P

Of course, for each qh a different vh may be used in order to satisfy (2.6).
The condition (2.S), or equivalently (2.6), is variously Kknown as the — 3
Ladyghe nskapa-Babuska-Brezz i or the «£38B or the iaf-sup condition, the latter TN

designation following from the third equivalent form: RN

there exists a y>0, independent of h, such that 5;}

',
b(vh,qh) *‘C‘r
(2.7 inf

sup [ [ e I ] >y . )
1 h‘ “ hi' F.:_F. .“
O#thSh Oxvhev Tv i " q . 0 g >

We will refer to any of the equivalent statements (2.5)-(2.7) as the condition s
for div-stabiflity. Note that these have nothing to do with the non-linearity of pr
the Navier-Stokes equations and, in fact, the possible probhlems its X
satisfaction poses is shared by the linear equations of Stokes flow.

Associated with the finite element spaces Vh and Sh and the bilinear form

N
v .- S o e N AT RS AT AT S SRR R S TN AT L L PN S S g LT PP T
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b(.,«) we have the subspace

Zh = ( v € vh | b(vh,qh) = 0 for all qh € Sh )

of discretely divergence free functions. In general ZhdZ, even when thHé(Q>
and Sthg(Q), i.e., discretely solenoidal functions are not necessarly
solenoidal. This 1is, of course, entirely analogous to the finite difference
case, e.g., a function satifying a difference approximation to the

incompressibility constraint 1is not in general solenoidal. A measure of the

"angle" between the spaces Zh and Z is given by

- . v, _ h
(2.8) e = rs]uph inf 'z z 1
z eZ zeZ
h
! =
lz "1 1

In general, 0<8<1, which is easily seen by observing that for ZheZ, 9=0, and
that by choosing z=0, 9=1.
. . h Zh . h |
Note that because of (2.2), the approximate velocity uwe€Z , t.e., u is
discretely solenoidal. However, since 1in general ZhdZ, divuhxo. Loosly

speaking, the div-stability condition (2.5) ensures, as h»0 at least, that

discretely solenoidal functions tend to solenoidal functions.

11.3 = Zrnon estimates and other results concerning the approximate solution
We now present some of the available mathematical results concerning the

solution u ,p  of the finite element problem (2.1)-(2.2). Here we assume that

h
the chosen finite element spaces Vh and S satisfy the div-stability condition
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(2.5). Subsequently, we will look into the issue of verifying that condition.
The summary presented is based on the detailed analysis found in I[CR, JR, GR1,
GR2, and GP1.
2 h h .
First off, for any féLo(Q), (2.1)-(2.2) has a solution u ,p , provided that
the div-stability condition (2.5) holds. However, one can prove that the
solution is unique only for "sufficiently small” data f or “"sufficiently large”

viscosity v. More precisely, let

a(wh,uh,vh)

K = sup
o ol Ghevh Uit

For standard choices of finite element spaces x can be shown to be independant
of h and, in fact, depends only on QcRd and d. Then, one can show that (2.1)-

(2.2) has a unique solution whenever
L L S s 1
5 Sup [ h ]

This condition is very similar to the one which is needed to show the
uniqueness of the solution of (1.9)-(1.10) and in fact the latter implies the
former, 1i.e., whenever (1.9)-(1.10) can be shown to have a unique solution,
then, provided the div- stability condition is satisfied, (2.1)-(2.2) also have
a unique solution.

When one can show that (1.9)-(1.10) has a unique solution, it can also be

shown that the finite element solution of (2.1)-(2.2) c¢onverges to that

MY 2 WA '«.}'.' > \'*u' A T T Ve S RISy, Ry

- d f
3 X 2. A MAVLI G A n SR %, W 0% 0 RN, ('y e 07 V), X

V" - ‘— I'. - "~ - h - - - - l-- - - - I-. - - - - .-- - --. l.' -
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solution. In addition, something can be said about the convergence of the “ora )
finite element solution even when (1.9)-(1.10) does not posses 3 uniqgue &jq:
Y
DA
AL Gy
solution. For details, see [GR1 and GR2]. 5{\;_
L SEY
Ny
A
Error estimates can also be derived. Provided that the div-stability -=<
condition is satisfied, we have that T
o)
m
RN
NRE:
(2.9 la - uhu £ C, inf fiu- vhH +C,9 inf Ilp - qhH ::;}f
1 1 p 1 2 h _h 0 L.
v Evh q €S K
RS
.\.'V.‘.
R
and ey
e
X \
! .q
gSE ¥
(2.10) ip - phﬂ < C, inf fu - vh" + C, inf '"p - qh” Fav‘
0" "3 1 4 h _h 0 et
vevh q €S PR
LIS
AN
"- "t- A
P’."' »
A
where @ is defined in (2.8) and Ci' i=1,..,4, are constants independent of h. -
These estimates are optimal for the "graph norm" Tudl+4p10 of functions
belonging to Hé(Q)XLg(Q) in the sense that the rate of convergence of the *“n'
WA
finite element solution, measured in this norm, is the same as that of the best P
approximation to u and p out of Vh and Sh, respectively.
If the solution of (1.9)-(1.10), or more precisely, of the* linearized Ry
AN,

adjoint problem corresponding to (1.9)-(1.10), is sufficiently regular, then

. . . . . 2
one can obtain an improved velocity error estimate in the L"(Q)~-norm, namely

h h
( ' - i i - )
2.1 lu u Yo < CshNU u 11

where again C5 is independent of h.
We see that once the div-stability condition is satisfied, the error in the

finite element approximation depends only on the ability to approx:imate in the
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chosen finite element subspaces. In general, (2.9)-(2.10) indicate that the
velocity and pressure errors are coupled. Furthermore, one finds that it is
efficient to equilibrate the rates of convergence of the two terms on the right
hand side of (2.9)-(2.10). For this reason, one would like to use, for example,
polynomials of one degree higher for the velocity components than those used
for the pressure. As a final comment, we note that the constants appearing in
(2.9)-(2.10) are 1in general proportional to 1/y where Yy 1is the stability

constant appearing in (2.5).

11.4 - Venifping the div—astability condition

For particular choices of Vh and Sh, it is usually ne? an easy matter to
verify thaF the div-stability condition holds. To accomplish this task for
families of such spaces 1is even more difficult. Here, we sketch three
techniques for verifying the div-stability condition.

a) Fortin's method - One seemingly attractive method of showing that the

div- stability condition holds 1is due to Fortin. He has shown [F] that the div-
stability condition (2.5) is equivalent to the existence of a linear aperator
Hh from Hé(Q)»Vh such that given any VEHé(Q)

b(ﬂhv,qh) = b(v,qh) for all qheSh
and

h

; , -

i vh1 s Civ 1
where the constant C>0 may be chosen independent of h and of the particular
choice of VEHé(Q). Thus the task of verifving the div-stabilityv condition (2.%)

is reduced to the task of showing the existence of the operator nh

unfortunately, although the latter task has been accomplizhed 11 2 fnw 3pecafc
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settings, in general, it is also a difficult thing to do. ’s‘

b) Verfirth's method - Verfirth [V1] has developed a method for verifving

N
the div-stability condition (2.5) which applies to the case of conlinuous :’\f

discrete pressure spaces. x*b*‘

LS.
Specifically, if Sthi(Q)ﬂLg(Q), he starts out by combining the inverse

gy
.
N

'[‘l' .
P4

PR
h 3

inequality, see, e.g., [(Ci],

g %y

—p
h )l.’l .
L

(2.12) lv“l1 < cih'iwv“no for all viev" |

Pl gon
L
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A
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and the result
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(2.13) sup for all qheSh
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h h
btv ,q ) CZ h h _h
sup ——— 2 == hiq ! for all q €S
h h C 1
oxvlley vl !

F"I
a ot
i

(2.14

The inequality (2.13) can be shown to hold for many element pairs involvi:g
continuous discrete pressure fields; see, e.g., [BPJ. Note that (2.13) %as a
similar appearance to the div-stability condition (2.5, but that it involves
the "wrong" norms.

Next, one combines the result, which can be found in, e.g., [GRL{,GR2, L:

h 1 h
given any q eSthg(Q), there exists a erO(Q> such that dwifq] aned

. h
lwllsC3 T with the approximation theoretic assumption concerning the space

h . h v
Vh: for any weHl(Q) there ex1sts a w ¢V such that AN




h 1-k )
(2.15) lw-w lk < C4h lvl1 for k=0,1 ,
to yield
h h
(2.16) b e e higM.  for all qMes! with g -1
. sup I 5 Ghiat, or all q with q ! =1.

Otvhevh v l1

Verfiirth then shows that the div-stability condition (2.5) follows from (2.14)

and (2.16) provided the constants C .,C,. are independent of h.

1 6

Thus the main task of applying his methed, once the inverse inequality
(2.12) and the approximation theoretic result (2.15) have been shown to hold
for the discrete velocity space Vh, is to show that (2.13) is valid.

c) The Boland-Nicolaides method =~ A more useful method, in the 3ense of

having wide applicability and relative ease of use, has been developed by
Boland and Nicolaides [BN1]. One difficulty with verifying the div-stability
condition (2.5) 1is its gfolal nature; Boland and Nicolaides have shown how to
Local ige the difficult part of the verification process.

Specifically, consider a subdivision of {1 into disjoint macro-efements Qr,
r=1,...,R, each of which consists of one or a few elements in the the finite
element triangulation associated with Vh and Sh. The number of elements within
a macro- element is independent of h, i.e., as we refine the mesh the macro-
elements are also refined so that they always contain the same number of
elements. Let rr denote the boundary of the macro-element Qr.

Now, first suppose that the div-stability condition holds for the pair Vh
and Sh Locullyp over a macro-element, i.e., there exists a constant ?>O,

independent of h and of the particular choice of macro-element, such that
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b(vh qh) :
(2.17) swp | ——— ] 2 7ia™, for all q'es! S
o,vhev'r’ vy

N g
where Wk

. h - h ()
Vﬂ = ( vtvhlﬂr | v=0 on Fr ) and Sr = ( Q€S |Qr ). :§$$:

Since Vg and S? have fixed small dimension, independent of h, (2.17) may often

oy
e
P

Ly
b Y ’\

hY

be verified by a direct computation.

5
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)
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3
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»
<

Second, suppose that the div-stability condition heolds zCoblally for the

spaces Wh and §h where

[ Pew

§h - Li(Q) piecewise constant functions with respect )
to the macro-elements Qr' r=t,...,R } '

i,
‘l
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LY 'e
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(2.18)
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i.e., suppose that there exists a constant #>0, independent of h, such that

SRR
h ]
s,

'\I
L4

N

>
2

2 ¥ qh 0 for all qhegh .

|

b(vh,qh)

(2.1 sup [ “————“—‘]
h ~h 1 h'

Ozv €V v 1
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Sumarizing the Boland-Nicolaides method, suppese we know that *the pair

Vh,Sh is focalfy 1iv-stable with constant Y independent of h, 1.e., 1n the f;:%ﬁ

sense of (2.1T). Further, suppose that the compastson spaces ih,§h, which NS

satisfy (2.18), are glolatly div-stable with constant ¥ independent of h, 1.e.,
in the sense of (2.19). Then the spaces Vh,Sh are atobally fv—stalle with a AN
constant v independent of h. Thus, through the use of the comparisen spaces the fs'b’

div-stability of the pair Vh,Sh need only be checked locally, 1.e., over a

macro-element .
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This method has been succesfully used, e.g., in [BC,BN1,BN3,GR2], to show
the div-stability of a variety of well known elements and some novel ones as

well, both in two and three dimensions.

I1.5 - Examples of unstalle spaces including the Lilinean—corstaort paur

There are different ways in which arbitrarily chosen finite element spaces
may fail to satisfy the div-stability condition. Here we discuss some of these
and then give specific examples, focusing on the much studied and much
misunderstood bilinear velocity-constant pressure pair.

The most catastrophic type of failure is for (2.2), or equivalentlv (2.4,
to imply that uh=0. i.e., the only discretely solenoidal field belonging to Vh
1s the zero vector. The approximate solution 13 useless since, of ~ourze, uh:O
cannot be a good approximate solution of the Navier-Stokes equations. This rvpe
of situation can usually be detected by a counting argument, i.e., the d13crere
divergence matrix b(vk,qj), j=1,...,J and k=1,..., K, appearing 1n (2.4) has
more independent rows than columns.

i.ess catastrophic 1s the situation wherein for one or a few, Lyt ot 3!
qheSh we have that b(vh,qh):o for all vhevh sn that y-=0 1n (2.5, This Rind of
failure of the div-stability condition 1s usually easy to detect s1nce 1t
results, in practice, 1n the discrete divergence matrix being rank def (o ien
Furthermore, 1f these type of pressure modes qh are the sole reason tor e
tnvalidity of (2.5), one may often st1ll obtain, through a filteriag process,
useful approximations.

A more subtle failure of the div-stability condition i35 the ~ase Chere ar

at least some thsh
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for some constants C1 and C2 independent of h. In this case y=0(h) where v is
the constant appearing in (2.5). In practice this may result in a loss of
accuracy, especially for the pressure approximations. Such instabilities are
harder to detect because, of course, computations are usually carried out using
a finite value of h. In particular no problems such as those caused by rank
deficient approximations to the continuity equation are encountered. This tyvpe
of situation points out the dangers of calculating on only one grid and of not
at least performing serious mesh refinement studies. It also points out the
usefulness of rigorous results concerning the stability, or lack thereof, of

finite element spaces.

a) - An unstable linear-constant pair - An example of the first and most

catastrophic 1instability is the followving seemingly natural choice for the
velocity and pressure finite element spaces. Let {2 be a square vwhich 13
triangulated as 1n the figure below. For the velocity approximations we - hoose
plecevise linear functions with respect to the

given triangulation which are continuous over Q2 .

and which vanish on I'. For the discrete pressures

we  choose  plecewlse  constant  functions  with

respect to the same triangulation and having zero

mean over {2 Clearly Vh( H:)(Q) and Sh: [_(?)‘(Q)_ For

this  choice the onlv discrete velocity field
u Vh satisfyvaing rthe discrers ncompressibality
Y h .
canstraint t2.0 15 u 0, 1w tHe TR
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vector! One easily sees that if there are N cells to side, that the number of
equations 1in (2.4) is J=dim(sh>=2N2-1 which 1is greater than the number of
columns K=d1m(Vh)=2(N-1)2.

In the above example we see that the discrete incompressibilty condition
(2.2) imposes too many constraints relative to the available velocity degrees
of freedom. In fact, dim(Sh)>dim(Vh). In order to remedy the situation one

h
must, at least, increase the dimension of Vh relative to that of S .

b) The bilinear-constant element pair - We next consider the bilinear

velocity—~ constant pressure pair which is often refered to as the Qi-PO element
pair. Again consider the case of  being a square and consider the
"triangulation" of the figure below. We now choose Vh to consist of piecewise
bilinear functions with respect to this triangulation which are continuous over
2 and wvhich vanish on . For Sh we choose piecewise constant functions over

the same triangulation and which have zero mean over (2. Once 3gain the

2

O(Q) hold. The simple counting argument used for

inclusions thﬂé(ﬂ) and Sth

the first example does not yield any definitive information since dlm(Vhl:
2

2 h
DIN-1DT )ttt same as before, while now dimiS ) -NT-1L

t 1s well xnown, e.g., see [F, BH, SGLGE,
JP, GNPJ], that this bilinear-constant element "

pair exhibits the disastrous '"checkerboard” mode,

i.e.. for the particular discrete pregsuyre field

h _h
1 €S which 1s +«! n the "red squares” and -1 1n
|

the “black squares" we have that b(vh,qh):o for

h
all v th_ This 1s an example of the second tvpe

Y

f instabiiity Jdiscussed above.  The single "had”
pressure mode  can be easilv filtered out,  and

*heretore some have suggested that once this mode
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is taken care of, the bilinear-constant element pair can be safely used.
However, this is not the whole story for the bilinear-constant element

pair. Boland and Nicolaides [BN2] have shown that there exist other pressure

modes for which (2.20) 1is satisfied. The left hand inequality of (2.4) was
previously known [JP], at least in the different context of penalty methods. Of
course, the left inequality does not imply the right, and certainly doesn't
imply that for those modes the stability constant y=0O(h). However, Boland and

Nicolaides have shown that this is indeed the case. Moreover, thev have shown

v 8
ARk
L]

[BN3] that there exist data f for which the pressure approximations do not

E 4
-..\',\.. f
NN

converge and that it is also possible to set up problems for which the velocity

f{'"
Ve
LY

W R

approximations do not converge as well. At the least, since the constants in
the error estimates (2.9)~(2.11) are proportional to Y-l, there will likely be
a loss of accuracy due to these pressure modes. Their conclusions are worth

noting, especially in view of the fact that the bilinear- constant element

pair, with the checkerboard mode filtered out, has been used on numerous

ocassions in "practical” computations.

III - Finite Element Spaces for the Primitive Variable Formmlation

In this section we discuss pressure and velocitvy finite element spaces
which have been rigorously shown to satisfy the div-stability condition. There
are many such pairs krown, especially for two dimensional problems; therefore
we will restrict our attertion to pairs which have proven to be of the most

practical uttility.

Throughout , Pk(w) denotes the space of polynomials of degree less than

>

»qual to k with respect to the set i)r,Rd and (Pk(i)]d denotes the space of d- "
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vector valued functions each of whose components belong to Pk(w). Analogous
definitions hold for Qk(w) and [Qk(m)]d in the case of functions which are
polvnomials of degree less than or equal to k in each of the coordinate
directions, e.g., oir»> denotes piecewise bilinear functions with respect to
the set ?. Likewise we define the spaces Ck(ﬁ) and [Ck(w)]d of Kk-times
continuously differentiable functions with respect to the set T.

For the most part, the results below hold for polygonal domains in RZ and
polvhedral domains in R3. Through the use of, e.g., isoparametric elements,
they will also hold for domains with curved bouhdaries provided the latter
satisfy the usual smoothness <criteria. Furthermore, we assume that 5.1
subdivisions of {2 into finite elements which are employed below satisfy the

standard  conditions. For details concerning these issues, one mav consult,

e.z., [Cii.

I11.1 - Pieccewise Uinear and bLilinear veloc ity fields
We begin with some examples involving piecewise linear or bilinear velocitv
fields with respect to a subdivision of Q 1into triangles or rectangles,

respectively. In all cases the discrete velocityv fields are continuous over 2.

In combination with these type of velocity finite element spaces we will

consider both discontinuous piecewise constant and continuous, Aver Q|
plecewise linear pressure fields. Everv element pair listed satisfies the div-

stability condition (2.5). Moreover, provided the solution u,p of ({.9)-¢1.10)

2
0

the discrete solution uh,ph of (2.1)-(2.2) hold wniformilyv in h:

satisfies UEHZ(Q)ﬂHé(Q) and peHi(Q)ﬂL {2), the following error estimates for

- = )
¢ u u ] O¢h
h. 2
(3.1 ) u-u = O(h™)
) 3
]
\ h
p-p = 0Och)
0
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Thus, these elements yield first order accurate pressure approximations and

second order accurate velocity approximations.

a) Piecewise constant pressures I - For the linear-constant element pair

mentioned in section II.5 the discrete continuity equation overconstrained the
approximate velocity field. However, by employing different grids for the
pressure and velocity fields, the linear-constant element pair may be made

stable. For example, consider a given triangulation 7 _ of a polygonal domain R

h

into triangles. Then divide each triangle in fh into four triangles by soining

the midsides, thus defining a refined triangulation 7 An example is

h/72°
provided in the figure below.

A pressure triangle in Th The four associated velocity

triangles in Th/z

Now define

J s'=(ql qQeP, (), KeT [a=0)
(3.2) Q

1 ~ 2 . 0,5,:2 B 3
V= (v velP (4)1° | 4eT, ,, ;i velC(@1° ; wv=0onr )

30 that the pressure is sought among piecewise constants with respect to the
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triangulation Th while the velocity is sought among continuous piecewise linear R

fields with respect to the finer triangulation 7h/2' The pair of finite element

0

P
wae

YWY
Y %

L4

spaces defined by (3.2) are known to satisfy the div-stability condition (2.5)

L
ﬁ&ﬁss
a

and thus yield optimally accurate approximations satisfying (3.1)

¥
S

b) Piecewvise constant pressures II - For the unstable linear-constant

element pair of section II.S there was one velocity element for each pressure

element; for the stable linear-constant element pair (3.2) there are four

velocity triangles for each pressure triangle. Stable linear-constant element E
.
pairs may be defined wherein the ratio of discrete pressures to velocities is {Qitiu
PRS0
not so high. For example, let the velocity space Vh be as in (3.2); now define ;“i",
Y
h . . ) Fafnd
the pressure space S through the following choice of basis. For each triangle il
N,
of 7h we define three basis functions, namely piecewise constants which are 5’5,\
. '.‘:\
unity 1n the shaded areas in figure below and zero in the unshaded areas. Of Bj\,
% e
P
L] o
course, outside the particular triangle of fh’ the basis functions vanish as b
. r
well. This pressure space consists of three out of the ixix;-
e
A.. -\
."\:’\f" 1
fze_\-(
'l f-‘*

four possible piecewise constants associated with the four triangles 1in Th/?

contained within a single triangle in Th. Moreover, there are essentially three

h
times as many pressure degrees of freedom for this choice of S as there are




for the choice made in (3.2). However, this element pair is also stable, i.e.,
satisfies the div-stability condition (2.5) and the error estimates (3.1).

c) Piecewise linear pressures - One may also couple a piecewise linear

velocity element with a piecewise linear pressure element and still satisfv the
div-stability condition (2.S) and the estimates (3.1). Such a pair was

introduced in [BP], analyzed there and in [V1], and is given by

f Sh ( q | qui(A) , Aefh ; quO(Q) ; f Q=0 )

(3.3 o)
1 Vh as in (3.2).

Due to the coupling between the pressure and velocity errors one cannot take
advantage of the better approximating ability of the linear pressure space.
Thus, insofar as the rates of convergence, this linear-linear element pair is
no better than the stable linear-constant element pairs. However, in practical
calculations we have found this to be the best element combination involving
linear velocity fields, better in the sense of ziving more accuracy for useful
values of h. Furthermore, this linear-linear element pair usually results in
fewer unknowns, for the same grid, than do the linear-constant pairs. For

example, suppose the pressure triangulation 7, is given by the first figure of

h

section II.4 with N intervals on each side. Thus there are 2N2 triangles in Th

and the element pair (3.2) has 2N2-l pressure unknowns; on the hand, the number
of nodes in this triangulation is only (N+1>2 and thus the piecewise linear
pressure space of (3.3) has only (N+1)2—1 degrees of freedom. Both element
pairs have 2(2N--1)2 velocity unknowns so that the linear—linear element pair
(3.3) has roughly N2 less degrees of freedom, for the same grid, as does the
linear-constant element pair (3.2).

d) Piecewise bilinear velocitv fields =~ Entirelv analagous v the

friangular elements described above, we have the following elements nvolving
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bilinear velocity fields with respect to rectangular elements. More general
quadrilateral elements may be found from these through, e.g., isoparametric
mappings.

We start with a subdividivision 2h of 2 into rectangles, or more generally
quadrilaterals. Subsequently we divide each rectangle 1into four smaller
rectangles by joining the midsides, thus creating another subdivision 2h/2 of 02

into rectangles. See the figure below. In all three velocity-pressure element

pairs

A pressure rectangle in Zh The four associated velocity
rectangles in 2h/2

about to be described we choose the approximating velocity space "o consist of

pilecwise bilinear functions with respect to the subdivision fh/Z which are
continuous over 5 and which vanish on I, i.e.,

L}
(3.4) V- (v ve[Qi(D)lz , 02y o veic®@i? . veoonrT ).

For the first pressure space we choose piecewise constants with regpect to

the larger quadrilaterals of the subdivision Zh and which have zero mean aver
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o

_i.e.,
s'=(gql q€Qy(@) , D2, ; fq=0 )
Q

As indidicated in the figure below, for the second pressure space we choose

YN 7

Z%/A 744, 7
7

out of the four possible piecewise constants associated with the rectangles

belonging to 2 and which have zero mean over Q. Finally, the third pressure

h/2
space consists of pilecewise bilinear functions with respect to the subdivision
2h which are continuous over Q and have zero mean over 2, i.e.,

h 0,5 _
(3.5) s = ( a1 Q@ , De2, ; qeC (@) ; gq-o )

The three velocity-pressure elements just described satisfy the div-
stability condition (2.5) and the error estimates (3.1). Similar to the case
for triangles and for the same reasons, the prefered element pair involving

bilinear velocities is (3.4) coupled with (3.5), i.e., the bilinear velocity-

bilinear pressure pair.
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II11.2 - The Taplor—Hood element pain Q]
We next turn to quadratic and biquadratic approximate velocity fields. qu:
N
e
Suppose we have a triangulation Th of Q. Then, the Taylor-Hood element pair {i:?
RSQ5t
{TH] is defined by J\,ﬂ:,
N0
2 A 3 :::?L\"
] Vh = ( v | velP_(A)]1” , AeT ;. wvelC()] i v=0on [ | -
2 h A '.'.
(3.6) " _ i ]
| s" - (a1 aeP @), ter, ; qecc@ ; fa=0) . RN
Q i ¥
h SN
Note that we are now basing Vh and S on the same grid but on different degree -::};_
R
YA
polynomials, in contrast to (3.3), which uses the same degree polynomials but ;:,::
Pt e
%
different grids. The element pair (3.6) satisfies the div- stabilityv condition fafeds
-t
’?.‘.:\'
(2.5). Furthermore, if the solution (u,p) of (1.9)-(1.10) has the indicated fn}xi
e
smoothness, then the following error estimates hold ;ﬁﬁﬂf
Rl
uniformily in h: RN

J,.w - u“t:1 - on™1) 1 uen’"(mnné(m 1 s
l,'. -
s
(3.7 g - uhﬂo = 0(h™ vhenever and (» m=2 or 3. ~-
|
, h, m I 1 2 ) Vadag:
ip - P = ( . t
p=plig = 0™ peH™ @NLS (@) -'jf-t“ix
i"'t:.\
AN
These results have been established by many authors, including [BP,¥1,BN1il. We SRS

see from (3.7) that if ueHs(Q)ﬂHé(Q) and peHz(Q)ﬂLg(Q) then, in Lz—norms, we

'
.

‘o
v

N
have third order accurate velocity approximations and second order accurate SO
S
e
pressure approximations. This is an improvement over any of the elements -3ﬂ;b
It

involving linear velocities. L

S

One should note that theenumber of degrees of freedom, both of velocity and :;;

pressure type, associated with the use of (3.6) is identical to that associated N
oy

with the use of (3.3), the most efficient linear velocity element. In fact, the

~'\J'_:-
structure of the discrete system resulting from a Tavlor-Hood discretization 1s -}4}&
RO
AT
SR
« ‘_' \-_
el
- - - - - “'.“‘
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in every way identical to that resulting from the use of (3.3). Therefore, the
solution times for the Taylor-Hood and the linear-linear discrete svstens are
roughly the same if one uses the same pressure triangulation in both cases. Of
course, the Taylor-Hood element pair will yield better accuracy than the linear-
linear pair, provided the exact solution is sufficiently smocth.

On the other hand, on the same grid, the assembly costs of Tavlor-Hood will
in general be higher since one needs to use higher order quadrature rules to
integrate the higher degree polynomial integrands resulting from the Tavlor-
Hood element pair. For many solvers, the assembly time 1s overwhelmed by the
solution time; therefore the increased assembly cost associated with (3.65 13
not a serious drawback. Of course, this is further mitigated bv the fact that
for the same .accuracy, one may use a coarser grid for (3.6) than for (3.3},

Summarizing, provided the exact snlution 1is sufficiently smooth, the Tavior-
Hood element pair, when compared to any of the linear velocity elements, vields
better accuracy for essentially the same work, or alternately, will vield a
desired level of accuracy for less cost.

For rectangles or quadrilaterals we have the analogous pair

j Vh = ( v | VEIQZ(D)]Z . Dszh ; vE[C(ﬁ)]Z ; v=0 on I’ )
(3.8 h -
l S = ( q! qul(D) , Uei’h ;i qeC(Q) g{q:o ]

where Zh denotes a subdivision of 2 1nto rectangles. This element paor
satisfies the div-stability condition (2.5) and the error estimates (3.7).

One may well ask if further efficiencies may be gained by nsing higher
order elements, e.g., cubic velocities coupled with quadratic pressures. Here

one needs to consider the trade-off between the 1ncreased accuracy of higher

order elements and the 1ncreased complexity of those elements. \s 1n otler

settings, +#.3., structural mechanics, one generally finds that the optimum
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. by
seems to be achieved by quadratic elements. Furthermore, 1t 1S questiotalie v ”,&
that in general settings the exact solution of the Navier-Stokes equations 3 o,
sufficiently smooth to enable the potential better accuracy of higher order :~ :

elements. In our overall experience, we have found the best choice of velocitv- N\

pressure elements to be the Taylor-Hood element pair (3.6), or .t:

LR i

quadrilateral counterpart (3.8).

NA N N

Wl
e
e

I111.3 - Diverngence free elements

e
Lo
& &

4
A

h T

} !
Ideally, one would like to choose the finite element spaces v and 5 3o

AN
LA
C AW XS

Sp

»
a2

that the functions belonging to Vh are at least discretelv divergence free,
Certainly if the functions belonging to Vh are divergence free then tley are

. _h h'Vh ,
discretely divergence free as well, i.e., divv =0 for all v implies ¢ lhat
Vh:Zh. Such a case effects a great simplification since the velocity and
pressure uncouple. Indeed, we need only solve

a(uh,vh) + c(uh,uh,vh) = (f,vh) for all vhth

»
.

'I
>
s

A0f

- h !
for the discrete velocity “ield u since 1n this case the term bov g ) i

o v e
L
’
& 1’,
2, !

1

(2.1) vanishes for any vhth=Zh. Also, since ZheZ, note that :n the velocity

Ay
v
AN

estimate (2.9), 0=0 so that the velocity error depends onlv an the abilityv to .

vé
.y
. oat

approximate 1in Vh.
Unfortunately, although there are known some finite element palrs =snch that
the functions in Vh are at least locally divergence free, these have proven to

be impractical, and we will not consider them here. We do mention that one

obvious method of generating divergence free discrete vector toeids 15 1o tane

the curl of a pilecewise polynomial field, 1.e., ot 2 plecewise polviomial
s

streamfunction. One problem with this approach 15 that e want 3 o "
e
EACAL
.
AR
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conforming velocity field, 1.e., Vhrﬂé(ﬂ), then the discretre streamfrunction
field must be chosen to be continuouslv differentiable over 2. In P2 thiz, of
course, necessitates the wuse of at least quintic streamfunctions ove:
triangles, or cubic polynomials over macro-elements, e.g., the Clough-Toucher
element. Non-conforming velocity fields can also be generated in this manner.

See [(Ca,CN,GR1, and GR21 for details.

111.4 - Three fumens>ionct elements

Compared to the two dimensional setting, there are known much fewer stable
element pairs for three dimensional problems. However, there is great 1uterest
tn this subject and therefore there has been substantial recent progress. He:o
we mention a few of the known stable three dimensional elements.

In the first place, the three dimensional analogue of the Taylor-Hood
element 1s known to be stable 1n 3-D; this may be shown by the methods ot
Verfirth or Boland-Nicolaides. Specifically, we subdivide 2 into tetrahedrons
and use continuous piecewise quadratic polynomials for the velocity and
continuous pilecewise lnear polvnomials for the pressure. The aconracy ot thos
combination 1s the same as in the two dimensional case.

Next we consider linear-constant elements. Again, subdivide 2 10t
tetrahedrons. For the pressure space we choose plecewlse constants with
respect to this 1nitial subdivision. Now we subdivide each tetrahedron into (2
smaller tetrahedrons by first joining the centroid of the faces t. the
vertices, and then joining the centroid of the large tetrahedron to the
vertices and the centroids of the faces. For the velocity space we choose
continuous plecewlse linear polynomials with respect ta  the  smaller
tetrahedrons.

Another stable linear-constant element pair 13 defined by first subdivaiding
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2 into rectangular prisms, or more generallv, 1nto J1st.ort s of <a b g <ms
For the pressure space we choogse plecewise - ~r5tarts  gver  the  reotgpes s

subregions. We subdivide each rectangular prism 1nto 24 tetrabedrons v first
drawing the two diagonals of each face, then joining the centrord ¢ rhe nrom
to the vertices and to the six 1ntersection polnts of *he face foagota, s,

Both these linear-constant element pairs are Known to he Stable and el
the same accuracy results as those for the two dimensional lilnear-constant

pairs. See [BoC] for details.

IV - Alternate Weak Forms and Boundary Conditions

nothis sectlon we examine same vartants of fhe ek tormiliat g -
t1.10), mostly from the viewpoiut of how Jifferent boundaryv cond:t s mas e
incorporated into a finite element method using primitive variables. We again
emphasize that there are manv radically different weak formulations it Jving u
and p which we wi1ll not be able Yo consider: we are restoot g Tt
variants of the most commonlv used weak formulat ton,

Before considering boundarv conditions, we brietlv consider w0 4t ernate

formulation of the convection term 1n (1.9,

IV.1 - dn alternate formutal iton of the convection term
For the purpose of simplifving the analvsis ot the approximate <alatiorn o
can be useful to introduce a slightly different weak formolation wieregs the

trilinear form ¢« o o) appearing in (1.9 1= replaced byt he LRewsummet o ned

form i1ntroduced bv Teman
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1
®w,u, v é[ clw,u,v) - (W v u) J

One may easily verify that fcu,u, v’/ (u,u,v) whenever divue 0 1 2 and u-n
', where p denoteg the outward normal to [T Therefore, due to o1 20-01 .73,
seeds lrrelevant whether one uses 1.8 o 401 R TR STTENY N TS N (T
Navier- Stokes equations. From an analvsis point view,  *he
(4.1) 1s that ®(w,u,v) -%(w,v,u) for anv u,v,ueulu}) while the analogons cesul?
for ¢1.8) holds onlv vhen divw=0 1n 2 and one of w 0. v 0 1 wep 0 o1, [

We emphazise that, ansofar as the accuracy o fhe  approximat cons

concernel, 1t makes no difference whether ane tses 0 20 o 04 0 e mete

point out that manv of the results concerning finite element approximat jons of

solutions of (1.1)- (1.3) were first obtained through fhe se ot 04 10 0O 20 .

-

rer o tand, any amplementat ton o of 4.1 will result  n o more compadt at tona, otk

tharn the analogous i1mplementation of ] 8.

IV.2 = #rhomogeneous veloc (ty Louricrny cornfilions
Diere are many 4t terent owavs o et L hhoame e
conditions. dn practiee,  the  overvhelming  choloe
interpolant We  descrabe this method for polvgonal demains XK
AWasogons deas may o be ased o three dimensions and
Sides Che Catter thoongph the and oof L e 0 Dsoparamett T e e ment <

Consider the bouandarsy condat pon

420

ind P he et
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Note that Vofl'l;(()). The weak formulation which we will discretize 15 3as

follows: seek usv8 and peLg(Q) such 'hat (1.9) and (1.10) hold. Note that the

test functicon v still belongs to H:)(Q), i.e., v=0on I'.

In order to pose our Jdiscrete problem we choose finite element spaces
Vh(leQ) and Sthg(Q). We denote by Vhlr the restriction of Vh to the boundarv
r. i.e., Vr" cons1st of functions defined on ' and which can agree with the

r
boundary values of at least one function belonging to Vh The finite element
functi1ons belonging to Vh being, for example, plecewise polvnomials, ~annot 1n
general satisfv the boundary condition (4.2); certainly, :1n zgeneral g(Vh'r_.
h 3

Therefore we choose an approximation to g, which we denote by g belonging to

(=]

h
Vh' . The most common cholce for g

, and the one we consider here (3 the
r

nternalant 0 g n V l[_

This chorewe 1s travial to oamplement, whilch o oat least partiallv oaceaunts for

tsoopopilarity. For example, suppose Vh 1s a lLagrange fimte element space,

1.e., one whose degrees of freedom are exclusively function values at points.
. h

ot !vk), k-1, ., K denote the usnal finite element basis for ¥ . Let the first
At thede basis functions be associated with interitor odes X, v that for
AT A vy 0 for xelI' The remaining basis function {vk), k K+#1.. . K, are

assoc1ated  with nodes X, lving on ' In practical implementations there are

more wff1elent qode numbering schemes than the one we are using: however . the

iatter simplities *he explanat lons being attempted here

. h
Choosing g to be the boundary anterpolant of g 15 then squivalent to
wWritoong
k )\
h - \ -
oy e u 'x! oMY ox) + ) X, v, X!
KK Lo 8T Yy
k 1 k R+t
Yohr Ko ko k. ire  the anknown coetfircrents to e determiied; e
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coefficients of the basis functions associated with boundary nodes are simply
set equal to g evaluated at the corresponding node. Note that (4.4) implies

that

h -
g (x) = z: g(xk)v (x) for xel

The contribution to uh emanating from the second summation of (4.4) becomes
part of the data of the discrete system of equations.

Once an approximation gh is chosen, one may define the set

Vh = ( vevh | v=gh on T )

8

Note that Vg is the finite element subspace of HI(Q) used in conjunction with

the homogeneous boundary condition (1.3); also, clearly VECHI(Q) is not a

(=)

subset of Vg. Now, the approximate problem may be defined as follows: seek

uhevg and pheSthg(Q) such that (2.1)-(2.2) hold for all vhevg and qheSh,

respectively. Agaln, the test functions vh vanish on the boundary .
The whole discussion of the div-stability condition (2.5) carries over

intact to the case of the inhomogeneous boundary (4.2); in (2.5) we still use

h

the subspace Vo

of finite element velocity fields which vanish on the boundarv.
Results analagous to those of section 11.3 can be derived in a fairly
straightforward manner with the exception of some technicalities encountered
2
for the L (Q)~error estimate for the velocity approximation. See [GP, FGP, CR2)
for details.
h Vh

In particular, 1f g 1is chosen to be the boundary interpolant of g 1in {F‘

then all the results, e.g., error estimates, concerning the finite element

spaces  discussed 1n section  IIT  are essentially still valid for the
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inhomogeneous velocity boundary condition (4.2). Again, see [GP, FGP and GRZ]

for details.

IV.3 - dtternate boundarp conditions and formulat iond of the viscous term

In this section we examine how different choices for the viscous term in
(1.1) affect the natural boundary conditions of corresponding weak formlations.
Some of this material can be found in [GLNI.

Due to (1.2), when v is constant, the viscous term in (1.1) may be written

in the various equivalent forms

(4.5.1) vau =

(4.5.2) div{ v( (grad u) + (grad u)T ]] =
(4.5.3) -vcurl(curlu) =

(4.5.4) u( grad(divu) - curlfcurlu) )

Although these different realizations are equivalent insofar as ¢the partial
differential equations are concerned, we shall see that each generates a
different numerical method.

If for some reason v is not constant or divu#0, then only (4.5.2) may be
used. Indeed, (4.5.2) is the form of the viscous term which arises naturally
in the derivation of the Navier-Stokes equations from the principle of
conservation of linear momentum and the Cauchy-Poisson constitutive equation.
The other three forms (4.5.1), (4.5.3) and (4.5.4) are derived from (4.5.2)

with the aid of (1.2) and the assumption that v=constant. In (1.1) we have used

B AR I N P PN
S T S T e

)

W oo

" ) o)

AR \:\"\ AR U RSN AR 2 SN S N

_,,
v
P

LV PP

Y

N % N
\)‘)‘n
) ".

TP
s '\4‘:} p]
R PRI

e

-. L)
r

A,
° /'f'-’ s

-
'

eee
‘
L)

RRGRIAY
‘I'
e



lf"‘l‘ . l.! LN

..38_

(4.5.1) only because this 1is the most popular choice in the literature; all of
the results obtained so far hold equally well if one chooses '4.5.2) instead.
As will be seen from the discussion below, (4.5.2) is, in general, to be
prefered to (4.5.1).

Denote two segments of the boundary I' by rn and Fr. These segments may be
empty, are not necessarily disjoint and, in fact, may be equal. Now, for fixed

given functions 8, and g, define the set

Vg = ( VEH1 | ven=g_ on Fn 3 pxvxn=g_ on Fr )
and the spaces

vV, = ( veHl | wven=0 on I' ; vwxn=0 on I’ )

0 n r

and

S = Lg(Q) if Fn=F , S=L2(Q) otherwise.

where ven denotes the component of v normal to the boundary I' and

nxvxn=v-(v-n)n is the projection of v onto the plane tangent to [. In the
definition of Vo we may use vxnp=0 due to the relation vxp=px(nxvxn), i.e.,
nxvxn=0 implies that nxv=0. In Rz, nxvxn=v.t where v is the unit tangent vector

to .

Suppose that we wish to specify the boundary conditions

(4.6.1) u-n=g on I’
n n
and
(4.6.2) nxuxp=g_ on I’
T T
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i.e., the normal velocity on Fn and the tangential velocity on Fr, -‘?\f
respectively. For all the weak formulations which we will consider involving %ﬁi,
S
any of the choices in (4.5), (4.6) will be essential boundary cond it iono. Thus kﬁh
fls
the trial solution functions u will satisfy (4.6), i.e., ueVg, and the test ¢ﬁ#ﬂ
functions satisfy veVO. {j,*
Consider the following weak formulation: for 1i=1,2,3 or 4, seek ueV_ and _3,;{
peS such that j:iif
“Tad
S
(4.7) a (u,v) + b(v,p) + clu,u,v) = (f,v) + d(v) for all ve¥, :;{({;
;.:_: " 4
and - :.'l:r
| It
(4.8) b(u,@) = 0 for all qeS. FA
::-.J_w.
7
Ay
“
Here, b(.,+) and c(.,.,«) remain as in (1.7) and (1.8), respectively, and f i\f;'
. vaimg
continues to denote the body force appearing in the momentum equation. The 355§
’
2o
linear functional d(-) is given by i?:»
S o
st
oA
(4.9 dtv) = f rv-n + f sevxn
r/r r/r
n T

where the functions r and s are additional data for the problem. Im (4.9), for

example, I‘/Fn denotes the complement of Fn in I, i.e., xEF/Fn implies that xel
NS X

but xtr“. Also, since v is an arbitrary test function, in direction vxn can be \dt

) et

taken tn be vectors spanning the tangent plane to I'. o
The bilinear forms ai(~,-), i=1,...,4, depend on the choice made in (4.5} *;

and, corresponding to the four choices possible in (4.5), are given by &

(4.10.1) al(u,v) = uf gradu:gradv
2 e

R T Tt T e S Y
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=1 o Ty, Y T
(4.10.2) az(u,v) =3 f v( gradu + (gradu) ).( gradv + (gradw) )
(4.10.3) agu,v) = v[ (curlw. (curlv)
2
and
(4.10.4) a,(u,v) = vf (curlw-(curle) + (divu)(divv) R
[T
Q Fe
LA
In the customary manner, should u and p be sufficiently smooth, one can, k”%

t'l'
A
{

through formal integration by parts procedures, ascertain what differential i
o
equation problem the weak formulation (4.7)-(4.8) corresponds to. To begin t;:é
At
with, we'know that the boundary conditions (4.6) are satisfied since these are :E;Z
being required of the candidate trial functions u. We also find that the q:ir
differential equations (1.1) and (1.2) are satisfied, where in (1.1) the S?E'
N
viscous term is replaced according to (4.5), depending on which choice is made ﬁi

in (4.10). Finally, one finds the natural boundory conditions corresponding to

RAAAT
!.‘ a

") ’

l‘l.'
Ll

the particular weak formulation. We will now discuss these in some detail for

l";
P

o

each possible choice in (4.10). .

py

2

.5

Corresponding to the paired choices (4.5.1) and (4.10.1) we have the

natural boundary conditions
(4.11. 1D p - vnegradu-n = r on F/Fn and vne.graduxn = § on F/Fr.
Unfortunately, these boundary conditions have no phApsical meaning. Thus the

choice (4.5.1), or equivalently (4.10.1), can only be used in conjunction with

the boundary condition (4.6) specified on all of ', i.e., U given on Fn=Fr=F.
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Next, consider the cholices (4.5.1) and (4.10.1). The natural boundary .*-f'v“f
conditions are then O
LSS

e

A NAY

v

Ny
T \'“\"
I -p + vn- (gradu + (gradu) )-n = -r on '/l and A i

n .

(4.11.2) T . v
1 vn- (gradu + (graduw) }xn = ~s on I"/T‘r . N
RSN

\:_\:‘-
Thus -r and -s are the normal and tangential stresses, respectively, on the {-:-'_-:-’_{
L.'--.".

o .o

boundary. Then, for the choice (4.10.2), the possible combinations of boundary f ’
R yics,:
\" '('-

conditions at a point on the boundary ' are as follows: we may specify the \‘:-.:\
e

'n" ‘.‘\

velocity, or we may specify the normal velocity and the tangential stress, or ‘,*.;:
o y,!
. et

we may specify the tangential velocity and the normal stress. The latter C N
e

\/-_,

combinations are useful, e.g., for free surface problems or at artificial Py
. AN
outflow boundaries. Details may be found in (GLNI. "--:‘_-'.'_-'
P

The third choice (4.5.3), or (4.10.3), vyields the natural boundary -

ey
conditions 1‘0:
e
SR
3 :'o' X

(4.11.3) p=r on I‘/I‘n and w = §/v on I'/T'r T
TR
* 4

so that r and s are the pressure p and v times the vorticity w=curlu, P
. Sy

Y
respectively, on the boundary. The possible combinations of boundary »«‘-")',‘
conditions are now: we may specify the velocity, or we may specify the normal ::-_::\;:
h\l -

--\-.‘l.'-
velocity and the vorticity, or we may specify the tangential velocity and the s
"

A,
0
pressure. The pressure is often used as an outflow condition; the vorticity is - _-
useful in exterior problems when matching to an inviscid irrotational flow '::"'.;'_‘_'.:
N,

e
since it is well known that the vorticity decays to its value at 1infinitv PRSI
AR

SR
faster than does the velocity. Again, details may be found in [GLN). A J‘.‘-
Unfortunately, although the boundary conditions associated with the use of ':-:“’.-:':
KA

v %
A AT
(4.10.3) can be wuseful, 1in practice we cannot employ this particular .-‘::;:;
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formulation of the viscous term. The reason for this is that the choice
(4.10.3) requires the use of divergence free finite element velocityv fields in

order for the form a_,(-,«) to be coercive on Zh. This condition is also needed

3
to guarantee the stability of the approximations and, for the other three cases
(4.10.1)>, (4.10.2) and (4.10.4), 1is trivially satisfied for any choice of
conforming discrete velocity space.

Fortunately, the boundary conditions (4.11.3) are approximatefy the natural

boundary conditions associated with the choice (4.11.4). In fact, for (4.10.4),

we have the natural boundary conditions

(4.11.4) p - vdivu = r on I‘/Fn and w = s/v on I‘/Fr

The second of these is 1identical to the second of (4.11.3). If v is "small",
and/or if we assume the incompressibility constraint holds up to portions of
the boundary where the normal velocity is not specified, then (p-vdivu) is
essentially equal to p. Thus we recover, at least approximately, the first
boundary condition of (4.11.3).

In summary, when one has velocity and/or stress boundary conditions, one
should use (4.11.2) in (4.7) and when one has velocity and/or presasure and/or
vorticity boundary conditions the choice (4.11.4) is preferable.

The discretization of (4.7)-(4.8) follows the usual procedures once one
chooses the finite element spaces for the wvelocity and the pressure
approximations. The natural boundary conditions are automatically acounted for
by the inclusion of the linear functional d(.) in (4.7). The essential boundarv
conditions on the components of the velocity can be enforced in a manner
analogous to that described in section IV.2 for the case where the complete

velocity is specified on the whole boundary. All material relating to the div-
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stability condition (2.5) is essentially still valid, and thus, insofar as that
condition is concerned, the particular choices of finite elements discussed in

section III may still be used.

-

In actuality, there are very few rigorous error estimates available for
boundary conditions other than the velocity. For polygonal or polvhedral
domains 2, the error estimates of section II.3 are still valid. However, for
domains with curved boundaries, using the type of weak formulations discussed
here may result in a loss of accuracy. For example, for (4.10.2) with normal
velocity and tangential stress boundary conditions, it was shown by Verfiirth
V21 that there is a loss of accuracy due to a Babuska type paradox, i.e., %the
limit of solutions of problems posed on polygonal approximations to QCRZ is not
the solution of the problem posed on Q. Verfiirth [V3] has also shown how
through the use of additional Lagrange multipliers on the boundarv, a different

weak formulation yields optimal accuracy.
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