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‘ ABSTRACT

B Kalman filtering techniques are applied to a two sensor bearings only passive
; target motion analysis problem. An algorithm is developed to simulate tracking long
range maneuvering airborne targets. The target tracking performance of the filter is

2 evaluated using computer generated noisy bearing measurements. The performance of
¥

% the filter is satisfactory given reasonable initial conditions and measurement noise.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and
logic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.
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I. INTRODUCTION

Air defense of a carrier battle group is becoming significantly more complex due
not only to the increased speed and range of potentially hostile aircraft but also to
more capable enemy targeting systems and greater cruise missile ranges. To reduce the
probability of an aircraft carrier being successfully targeted by an enemy cruise missile
carryving aircraft, it is imperative that fighter intercept be accomplished bevond the
maximum range of the cruise missile. Long range over-the-horizon (OTH) target
detection and tracking are necessary to achieve this goal.

A major obstacle common to all air defense scenarios is the enemy’'s use of
electronic countermeasures (ECM). Attacking enemy aircraft will undoubtedly employ
jamming as well as other forms of ECM to degrade or deny effective tracking by active
systems. Therefore, the ability to passively track is required in order to successfully
engage attacking aircraft in a dense ECM environment.

One viable approach to this problem is passive Target Motion Analysis (TMA).
The purpose of TMA is to determine the target’s position, course and speed through a
series of passive noisy measurements. For the air defense scenario, these passive
measurements may be lines of bearing (LOB) obtained from the enemy aircraft’s
jamming strobes or from the electromagnetic radiation of the aircraft’s long range
targeting radar. Theses Yo e ——

Passive bearings only TMA may be performed by one or more sensors. The two
primary considerations in evaluating TMA performance are solution accuracy and
timeliness. Single sensor TMA requires that the observer aircraft perform zig zag
maneuvers to establish a target bearing rate so that the range to the target may be
estimated. One drawback to single sensor TMA is the fact that thesec maneuvers mayv
detract from the observer aircraft’s primaryv mission. Also. a reasonable initial ¢stimate
of thie target’s state (Position, Course and speed) is Hecessary (o ensure tial Wie racaing
solution converges in a timelv manner, if indeed it converges at all. An inherent
difficulty with bearings only TMA by a single sensor is that the solution accuracy and
timeliness rely quite heavily upon a: “good” a priori estimate of target range.
Consequently, in a long range tracking scenario where the range to the target may
exceed several hundred mules, accurate tracking by a single sensor using only bearing
observations is extremely arduous and rather impractical.
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A practical solution to long range OTH passive tracking is multi-sensor
triangulation. High speed air targets can be accurately tracked by two or more highly
directional sensors that are spaced sufficiently far apart. The primary reason that multi-
sensor tracking is superior to single sensor TMA is that estimates of target range are
continually being generated through triangulation of sensor bearing lines. Multi-sensor
tracking is far less dependent on accurate a priori state estimates than is single sensor
tracking for timely convergence. The major obstacle, however, in using the multi-sensor
triangulation method is a practical one: very close cooperation is required between the
observers in order to achieve an accurate tracking solution. Three ingredients are
required to localize a target: the position of each sensor, the time of the observation,
and the bearing measurement from each sensor. Ideally, all observations would be
performed svnchronously. If asynchronous lines of bearing are encountered, then
computer processing is required to interpolate these LOB’s to produce “synchronous”
measurements. The observers are, in effect, remote sensors that transmit noisy bearing
data to a central] processing platform where the actual target tracking is performed. For
tracking a long range and rapidly closing air target, triangulation provides a
significantly more accurate and timely tracking solution. ,

Because each sensor generates its own sequence of noisy bearing observations,
the Kalman filter is ideally suited for determining a target’s position and motion. This
thesis investigates the two sensor bearings only tracking problem in a computer
simulation that emplovs Kalman filtering techniques. The simulation generates the
target and observer tracks as well as noisy bearing measurements from each sensor to
the target. The noisy bearings are then processed by the Kalman filter to provide
continual estimates of the target's state. The tracking algorithm is used in several
scenarios to determine the effect various sensor bearing accuracies and initial estimates
have on the filter’s performance.

The aim of this research is to examine how well the filter performs in tracking a
non-maneuvering target before investigating the more difficult case of a maneuvering
lurgel. The probiem geomelry Wil be presented first, foilowed by the deveiopment of
the svstem and measuremen: models. Relevant equations from Kalman filtering theory
will then be briefly reviewed before the actual tracking algorithm is analyzed in detail.
The results of several simulation runs using various parameters will be examined. Also,
the effect of target maneuvers on filter stability will be assessed. The final chapter will
summarize the results of this research and will present conclusions and
recommendations for further study.
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II. PROBLEM DESCRIPTION

A. INTRODUCTION

As the name implies, over-the-horizon detection and tracking means positioning
sensors out near the radar horizon to look over the edge and pass their observations
back to a central data fusion point for analysis. This data fusion point need not be a
surface combatant; it could be a command and control aircraft. The use of an airborne
command and control platform extends the range to which an air target can be
effectively tracked. The basic idea behind OTH tracking is to place the remote sensors
far enough apart so that effective triangulation fixes may be taken but not so far apart
that thev are bevond the range at which they can communicate with the central
processing platform. The command and control aircraft should ideally be positioned on
the threat axis between the incoming air attack and the high value unit (HVU) that is
being protected. Figure 2.1 depicts the general geometry of a basic OTH detection and
tracking scenario.

O

REmOTE sENsor | \

\
\
O O _}_TMEAT AXIS O _
HvU CeC Alc | INGD ENEMY AfC

/,'\ RABAR NHor|RonN

/ OF HvV

O /

i REMOTE SEnsoR 2 /

Figure 2.1 Basic Over-the-Horizon Detection and Tracking Scenario.

In this chapter the geometry of the two sensor TMA problem will be presented
along with a develcpment of the target motion and noise-free measurement equations.
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B. PROBLEM GEOMETRY

Consider the target-observer geometry in the two dimensional plane as shown in

TARGET Alc

Ya

(0,0

iﬂ}

POSITION

Figure 2.2 Target-Observer Geometry.

Figure 2.2. The target is located at (Xt , ¥T) from a defined reference position. The
origin may be defined as cither a fixed latitude’longitude coordinate or the position of
a high value unit such as an aircraft carrier (whose position is relatively stationary).
The x and v components of target velocity are denoted as ’.‘T and y"T and are the
Cartesian equivalents of the target’s course and speed, C1 and V1. Sensor 1 is located
at (x, . 0) and is only able to move along the x-axis with velocity x1 Likewise, sensor 2

is located at (0 , ¥,) and is only able to move along the v-axis with velocity T, As
choun in Fignre 2.2, the bearing from cenenr | 1o the targer 1< @ and the hearmg.ﬁom
sensor 2 to the target is 8,. The ranges to the target from sensors 1 and 2 are denoted
asr;andr, respectively, and the range of the target from the origin is denoted R.
1. Problem Assumptions
The following assumptions are made concerning the problem:
1. The target is initially inbound and remains within the first quadrant.

2. The target maintains a constant speed but is free to change course.
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3. Both sensor positions are known precisely.

4. Bearing data from each sensor are continuously observed and are received
synchronously.

5. Bearing noise is zero mean and Gaussian with variances clz and 6‘22 for sensors
1 and 2, respectively.

6. Target turns are modeled as instantaneous (i.e., no turn radius).
7. Target and sensor altitudes have negligible effect at long ranges.
The last assumption is entirely reasonable since the difference between the target's

slant range and two dimensional range is less than a fraction of 1% for ranges
exceeding 300 nautical miles.

2. Practical Geometrical Considerations

Placing the airborne sensors on orthogonal axes is chosen not only because it
simplifies the geometry but also because it provides adequate sensor separation with
which to perform accurate triangulation. Ideally. the most accurate triangulation fix is
formed from the intersection of two perpendicular lines of bearing. Perpendicular
LOB’s in real world scenarios, however, are extremely difficult to obtain for a number
of reasons. One reason is that the maximum range and on station time for airborne
sensors are limited. Also, if electromagnetic energy from the target is being used to
obtain LOB’s, it is important that both sensors be positioned within the main sector
beam pattern. Figure 2.3 illustrates some of these considerations. In Figure 2.3 (a), it
can be seen that in the attempt to obtain perpendicular LOB’s to the target, sensor 1 is
bevond the radar herizon of the command and control aircraft and i1s thus unable to
pass any bearing observations. Figure 2.3 (b) shows both sensors Iving within the
sector scan limits of the target's surveillance radar. While it is not necessaryv for both
sensors to be within the main beam simultaneously, both must be able to detect the
beam’s presence within a reasonable time period, a factor which depends on the radar’s
scan rate.

The scenario where the sensors are positioned on orthogonal axes could easily
bz mocified to the more general case where the sensors are located on radials that are
separated, say, by 60 degrees. Since the sensors are now closer together, range
estimates to the target would be somewhat degraded. Also, by adding a third scnsor on
a radial 120 degrees from the first sensor and 60 degrees from the second would
provide a wider sector coverage as well as improved tracking accuracy.

The simulations that have been run in this thesis involve extreme ranges from
each sensor to the target. It has been assumed throughout that the target and sensor
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::: Figure 2.3 Practical Geometric Considerations.

3

" aircraft are flving at medium to high altitudes so that all observations will meet radar
. horizon range constraints. It should be noted, however, that the practical limiting

‘ factors for maximum detection range are the strength and radio frequency (RF) of the

;a intercepted source signal. Also, bearing accuracies depend on the RF of the signal.

k> Extreme detection ranges, sometimes between 400 and 500 nautical miles, have been
N used to represent a worst case tracking problem; shorter ranges would yvield a more
;I.: accurate tracking solution.

o

& C. SYSTEM MODEL

'3: As shown in Figure 2.2, lines of bearing from two airborne sensors are used to
e determine the target’s state (position, course and speed). Using a Cartesian coordinate
:: svstem, a four dimensional state vector, XT 1s chosen.

L) ‘"

j XT = f;; (eqn 2.1)

W :"

:: [t should be noted that the svstem model is in no way limited to a Cartesian rcference
] frame or state vector; the Cartesian coordinate svstem was chosen merely for its
\ mathematicai simplicity. :
.
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1. Target Maneuvers

Two basic scenarios are addressed in this thesis. The first one involves
tracking a non-maneuvering target and the second involves a maneuvering target. In
both cases the target is assumed to be initially inbound and any target maneuver will
consist of the target changing only its course and maintaining its speed. Figure 2.4
shows the target tracks that will be examined in subsequent chapters.

14 v 1 ﬂ‘
e TARGET
TARGEY T
sEnsokt & / SENSOR 2, |sEnmem 2
|

SEnsok | SENsOR | SENSOR | L

x 3 x

NONMANEUVERING GENTLE  TUAN HARD TURN

Figure 2.4 Representative Target Tracks.

It is assumed that target mancuvers can be modeled by using white random
forcing functions. As shown in Figure 2.5, target maneuvers may be thought of as
acceieration along its course (radial acceleration) and acceleration perpendicular to its
course (turn rate). Let the random variables &, and 6é denote the target’s acceleration
along its course and acceleration perpendicular to its course, respectively. Both &, and
66 denote random changes of the target and arc assumed to be independent and zero
mean with variances 6{_2 and céz. Because of the extremely long ranges involved in the
simulations, target manecuvers have been modeled as instantancous changes ¢f position
according to the time interval used. That is, the simulation enables the target to turn
90? in two scconds. While it is acknowledged that this kind of turn rate is quite
artificial, it is informative tc see what effect such a drastic turn rate has on tracking

performance and stability. The variances used in subsequent scenarios are:
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2 = (300knots,sec)? (eqn 2.2)

632 = (45 deg'sec)? (eqn 2.3)

| g4
L:,, THRGET TURN
]
& \
(0,0 X%

Figure 2.5 Geometry of Target Manecuvers.

a. Equations of Motion
Let T represent the time interval between observations. If k represents the
observation and ty the discrete time of the k" observation. then T may be
expressed as

klh

T= tk - tk-l (eqn 2.9

Referring to Figure 2.2 and Figure 2.5, target motion may be described by the
difference equations:

ek + D] [xp(k) + T xp(k) + £,(3,, 85, K]
xp(k+1) x(k) + £5(8, g, k)
yp(k+1) yTk) + Typ(k) + £5(8,, 85, k)| (eqn 2.5)
yk+1) yT(k) + [(8,, 85, k)

e - e

X (ke1) =
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The random forcing functions f, through f, are included to account for random
changes in speed and heading which occur for a moving target. Equation 2.5 may be
written in matrix form as

1 Too| [xpw] [r220 ]
0100 x(k) T 0 Tk
xk+1) = 10 0 1 T| Jypk)| J0  T¥2| |yp(k)| (eqn2.6)
0001 Kk 0 T
LOOU P 0T
or more concisely as
XK+1 = ¢k Xk + erk (an 27)
where Nk 1s the 4 X ] state vector

®, is the 4 X dstate transition matrix
Wy is the 2 X 1 vector of random forcing functions
Ty is the 4 X 2 state forcing matrix.

The terms of the random forcing function vector wy represent the
accelerations in the x and v directions caused by target maneuvers. The state forcing
matrix I represents a uniform constant acceleration model of target motion. If the
time interval T between measurements is assumed constant, then @, may be replaced
by a constant state transition matrix ¢ and l'k may be replaced by a constant state
forcing matrix I'.  Revising Equation 2.7, the linear system model can be expressed as

Xp+1 = @xg + Twy (eqn 2.8)

D. NOISE-FREE MEASUREMENT EQUATION

As illustrated in Figure 2.2, the positions of sensors 1 and 2 along with their
respective bearings to the target, 8, and 8,, uniquely define the target’s position (X,
Y1). The target’s position from noise-free bearing observations may be expressed as

(¥, cos 8, = x, sin @) sin O,
cos(8, + 8,) (eqn 2.9)
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_ (x, cos 02 = ¥, sin 92) sin 01
) = cos(, + 6,) (eqn 2.10)

. e e R

The positions and speeds for the airborne sensors may be chosen arbitrarily for
input into the tracking algorithm. Each sensor’s position is assumed to be known
precisely for each time interval. The sensors may both head inbound or outbound or
they may go in alternate directions. Care must be exercised in choosing sensor

PSR

. positions and speeds so as to avoid having lines of bearing that are collinear (each
' sensor is pointing at the other). What results in this case is an extremely thin and
y elongated error ellipse which momentarily degrades tracking accuracy at the moment
Y that the lines of bearing are coincident.

It should be noted that using two sensors eliminates the need for any extraneous
‘ observer maneuvering as is the case for a single sensor. The observer aircraft can
3 basically flv straight and level and collect more reliable bearings to the target. Also, the

sensor’s position is known more precisely since it is not decelerating and accelerating
into and out of turns.
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HI. KALMAN FILTERING

U

A.  INTRODUCTION

e!: The technique of Kalman filtering is ideally suited to the problem of passive
" tracking. The following sections brieflv describe the theory and results of Kalman
:;. filtering and how 1t is applied to the long range airborne TMA problem. For a2 more in-
,ﬁ depth development of the Kalman filter, the reader is referred to [Refs. 1,2].

-~

k! B. THE KALMAN FILTER

", The purpose of the Kalman filter is to keep track of the state of a system
2 through a sequence of noisy measurements. This is accomplished by recursively
b updating an estimate of the state by processing a sequence of noisy observations in
: such a manner as to reduce as much as possible the effect of measurement errors.

= The Kalman filter is a predictor-corrector type estimator that propagates an
:: estimate, X, of the target state along with an associated covariance matrix, P, which
K reflects the degree of confidence placed in the accuracy of the state estimate. The
. Kalman filter is carried out in two alternating stages. First, previous estimates of x
5 and P are extrapolated one time step ahead based on the assumed system dvnamucs;
.":: this is referred to as the Movement Step. These extrapolated values are then used to
e compute a set of optimum weights called Kalman gains. The gains are applied to the
, prediction and to a new observation in a Measurement Step, which provides an
o updated estimate of the state and its covariance. This process is then repeated. [Ref. 3}
r 1. Assumptions

-;.'. The following assumptions are made:

s I.  The random forcing function wy is zero mean and uncorrelated with covariance
o X

W 2. The measurement noise vy is zero mean and is correlated with covariance Ry.

:“ 3. The random forcing function wy and measurement noise v are uncorrelated.

':; 4. The initial state X is a random variable with known mean Rm_l and covariance
- Poj1-
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- 2. Definitions

1. The estimated state vector after k observations is denoted by iklk and the
predicted state vector before the k'™ observation is represented by ’?klk-l’

Y
4
".f 2. The state estimation error vector & is defined as the difference between the
t,b )
’:‘s estimated state and the true state
L]
N
=3 - 3
K & = Xgx T X (eqn 3.1)
and the predicted state estimation vector €, is defined as the difference between
N the predicted state and the true state
.
|" A
=z y -
§ Eakel T N1 T X (eqn 3.2)
5
" 3. The covariance of estimation error matrix P, is defined as
ial
: _ T - a
! Py = Elg g} (eqn 3.3)

2 and the predicted covariance of state error matrix P, , is defined as

M
: _ T
s Piika = BUfkor Skrxa ) (eqn 3.4)
L 4. The state excitation covariance matrix is given by
)
¥ W T T
. Q =E{lw w'I"} (eqn 3.5)
i‘
\ 5. The Kalman filter is an optimal estimator that minimizes the sum of the
3 vanances of the estimation error. 1.e..
(
".
» 2y . 132 2
# E{g,(k)7} + Eley(k)7} + ... + Elg (k)7) (eqn 3.6)
i
K,
)
X)
o
¥
“l
: 20
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Enter known matrices and a priori estimates:

X011 Porn: Roy- H. @

Compute the Kalman gain:

Gy = Prgk-)HT{ HP (e pHT + Ryy )!

MEASUREMENT STEP

Rkik) = Xik-1) + Sl 2wy — Higpke))

Py = (T = GoH 1Pk

MOVEMENT STEP

Xk+1k) = P Xkik)

Pe+ 1k) = PPig®T + Qi

Compute R(]\) and Q(k)

Increment k by |

) o, o S P P O A
STt s I e LTl

Figure 3.1 Kalman Filter Algorithm.

21

ST A

~~~~~

P L R TR A AR AR
'»




PR

-}

[T X ~'.

AR Py

R

[} O Pag h \ L} -
A"-'l'!'\'?‘l"'t't'l‘. AN A AN oy UACm U M U™ Uea U S A il O e L S i

3. Kalman Filter Algorithm

Figure 3.1 summarizes the discrete Kalman filter algorithm. For the particular
TMA problem presented in this thesis, the 2 X 4 measurement matrix H, and the 4x4
state transition matrix ®, are both known, constant matrices and may be represented
by H and @. An a priori estimate 20,_1 of the target’s state with an associated initial
error covariance matrix Pol-l' as well as an initial estimate of the measurement noise
covariance matrix R; must be input into the filter algorithm. The algorithm computes
the Kalman gain G, based on these a priori values and then updates the estimate of
the target’s state when it receives a measurement. The error covariance matrix is also
updated. Next, the state estimate and its error covariance matrix are projected one time
step ahead based on the assumed system dynamics. The measurement noise covariance

R, and the state excitation covariance matrix Q, are then computed before Kk is
incremented by one and the whole process is repeated.

C. FUNCTIONS, MATRICES, AND EQUATIONS

In this section, the Kalman filter algorithm will be applied to the long range
passive airborne tracking problem. A brief derivation of the random forcing function
W,. the state excitation covariance matrix Q,, the measurement equation z,. and the
measurement noise covariance matrix R, is given next.

1. Random Forcing Function

Recalling equation (2-6), the two dimensional random forcing function w

represents the acceieration in the x and v directions caused by target maneuvers.

k

w = X - N8 + (X v,
=k ¥ %85 + (5,v )8 (eqn 3.7)

, o= (e 2 L2012
where v, = (X, + ¥, )%
Since the random variables 8, and 6g were assumed to be zero mean, it

{ollows that the random forcing function w, is also zero mean. The variances of the x
. i .
and v accelerations, denoted by 0’,-(-2 and oy respectively, are

. L2 . \2
0';‘-2 = E[x“] = g G ot ;:4) dj: (eqn 3.8)
2
2 = . - & 2 v
oy E[yu] =X, 6 + (Z_:) &t (eqn 3.9)
22
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) The covariance of the x and y acceleration 6;5,-2 is

r
) 2 " 2 %, v 2
; vl I k Yk o
4 Gy = E[xk Yu] = -x,nG * _7.7_9-" (eqn 3.10)
" Therefore, the random forcing function covariance matrix Q, " is
A\
i 3 2
. , T, o |% %y
] Qk = E{ wk Wk } = d} Cl (an 31])
5y %
.
‘l
[
..
W
' . 2 2 2 : ,
:_ where 6., cy , and O'i?. are computed at the predicted values of XT and VT
2. State Excitation Covariance Matrix
. The purpose of the state excitation covariance matrix Q, is to accourt for
N model inaccuracies or fer a target that has mancuvered. It is basicaliy a “procedure for
. . . .
L masking the effects of modeiing errors” [Ref. 2: p. 163]. In effect, the state excitation
covariance matrix increases the size of the predicted covariance of error matrix which
N, in turn increases the filter gains. As more observations are processed, Q, prevents the
‘ Kalman gains from approaching zero by continually injecting uncertainty into the
’ redicted state estimate at each iteration. A nonzero slightly degrades the filter's
) p k S &
i ) accuracy when the target is not maneuvering but it helps prevent filter divergence when
" the target does maneuver. As stated in equation 3.5, the state excitation covariance
[/
u matrix is
! [ v s -_
\ I ‘”: It L.'rz T'o"'
Y 2% 4y T
[}
3
: T2
> T T’d;? Z %y f;\'j
- Q =rq r'= (eqn 3.12)
. T™: T 2
. - 5%
> SYmmeTRIC 4
T2
y Te
pr.) v
L J
»
Yy
1. . .
-~ 3. Measurement Equation
3 In this TMA problem, the observations are noisv (x,v) positions. It is the
“ . . . . . . . -
‘ intersection of noisy lines of bearing that form the noisy (x,v) position of the target
L
I that is input into the Kalman filter algorithm. Because the observations are of the
. . . . .
e same form as the state vector, the measurement equation is linear and is expressed as
)
{ 23
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E z, = Hx + v (eqn 3.13)
‘%

" where z, is the 2 X 1 measurement vector

. H is the 2 X 4 measurement matrix

::: v, is the 2 X | measurement noise vector

,E:‘ X, is the 4 X | state vector. .
"‘,: The equation may be written explicitly as

o -

_:':3 X,

:n' Zx = 1000 )(k + vlk

Ky z, 0010 |y Vo (eqn 3.14)
@ Yk

i’,l. -

hA The most important part of the measurement equation is an accurate description of the
™ measurement noise vector v, The measurement noise vector expresses the statistical
‘ nature of the noisy (X,v) position that is derived from the intersection of two noisy lines
7 of bearing. These bearing measurement errors are assumed to be independent and zero

. . b R
mean with variances 0'12 and 6,°, for sensor 1 and sensor 2 respectively.

It is important to note that the bearing errors between sensors are statistically

a: uncorrelated; one sensor’s bearing accuracy has nothing to do with any other sensor’s
}:} bearing accuracy. However. in describing the resulting intersection in Cartesian .
;: coordinates, the noisv x and noisy v positions are correlated. The only case where the
:: noisy x and noisy v positions are uncorrelated is when the lines of bearing are
¢ perpendicular.

M 4. Error Ellipses

N An intuitive way to visualize the measurement equation is through the concept
:" of error ellipses. Error ellipses give a geometric picture of the region around a noisy
< ~osition or est:mate where the true value is considered to lie. Figure 3.2 shows a
" hivariate Gaussian probahiline density funcrinn farmed by the intereaction of tro linec
:c: of bearing with independent Gaussian distributions.

3 As can be scen in Figure 3.2, the lines of bearing intersect at an oblique angle,
v forming an asvmmetric hump. While the bivariate Gaussian probability density
4 function gives an interesting three dimensional depiction of two normally distributed
;‘: beanng errors, it does not provide the information that is really needed, quickly. What
Y
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Q Figure 3.2 Bivariate Gaussian Probability Density Function.
I
. 1s needed is an accurate picture of the measurement (or estimation) error. This
K uncertainty 1s best expressed geometrically by the error ellipse. The term “error ellipse”
efers to the two dimensional surface of constant probatbility density. Figure 3.3
:: presents these error ellipses as contour lines of the bivariate Gaussian probability
density function shown in Figure 3.2.
s The vanous ellipse sizes in Figure 3.3 correspond to different constant
probabilities. The fact that the ellipses are also rotated implies that the uncertainty in
; measurement error is indeed correlated with respect to x and v. The actual probabilities
within a specified error ellipse may be computed through lengthy integration of the
bivariate Gaussian probability density function over the surface of the ellipse. Some
X computed probabilities of the true value lving within the 16, 26, and 36 crror ellipscs
‘ are .394, .865, and .989 respectively [Ref. 3: pp. 4-39].
; Error ellipses are extremelv useful in examining postion error. Matrices
i. containing the x and y position terms convey analvuically what error cllipses display
:: graphically. A 2 X 2 error covariance matrix which contains position components x and
) v 1s able to completely describe an ellipse. The main diagona! terms represent the
"
"
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5/
' . . . . .
s variances of the x and y positions respectively. The off diagonal terms represent the
& degree of X-v coupling and the orientation of the error ellipse in the x-v plane.
i 5. Covariance of Measurement Error Matrix
o The covariance of measurement error matrix R, uses the concept of error
) eliipses to accurately describe the noisiness and degree of coupling of (X,¥)
::. measurements obtained from intersections of noisy LOB’s. The terms of the covanance
:. 2 of measurement error matrix R, depend on the standard deviations of bearing error 6,
b and o, of sensors 1 and 2 as well as the angle at which the lines of bearing intercept.
)
) The covariance of measurement error may be expressed as
}
W r
e \ . . ]
. -2 , ]
£ o, sin0, + G, cos 5, -G, sin6; 036, = 0;. 956, 3.a6,
.. cost(0,46,) coxl(e,oet)
R = ey 315)
Y
2 2 .
:; -0 sinby cmag - O, ce36, 3.8, 6',2. coie, + O{: Sun" 6.
cost(8,46,) cos (9.'91\ .
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ATy
1
N where 0, and 6, denote noisy bearing observations from sensors 1 and 2, respectively.
. The subscript k has been intentionally deleted from equation (3-15) only for ease of
]
f'{_ notation. At each discrete time interval t,, new values of 8, and 0, are generated with
. which to compute the new measurement error covariance matrix, R, A complete
X . o . o . .
: derivation of equation (3-15) is given in Appendix A for the interested reader.
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1V. THE ALGORITHM

A. INTRODUCTION
This section discusses the development of the tracking algorithm. The algorithm
1s designed to simulate tracking a long range inbound enemy air target by triangulating
noisy bearing observations from two airborne sensors. We want to be able to track a
non-maneuvering target within a one percent range error. For a maneuvering target,
we desire a stable filter response which quickly converges to the target's new state. The
effect of various sensor bearing errors, a prioni state estimates and initial error
covariance matrices on filter accuracy and convergence time are investigated. Also, the
effect of target maneuvers on filter stabiity is analvzed. Basically, the algorithm
performs three functions:
1. The target and sensor tracks are generated.
2. Noisyv bearing observations are simulated using a random number generator.

3. The noisy measurements are processed by the Kalman filter algorithm to
generate estimates of the target’s state.

B. TARGET TRACK
As mentioned in Chapter 2, three target track scenarios are investigated:
normaneuvering. gentle turn. and hard turn. In all three cases the initial target position

1s {410 nmu, 430 nmi) with X and Y velocities of —400 knots and —380 knots
respectively.

C. GENERAL SIMULATION SCENARIO

The overall purpose of this simulation is to be able to track an inbound enemy
aircraft before 1t flies within 300 nmi of the high value unit. By using two sensors which
are essentially abie 1o 'peek” over the norizon, a iong range OTH rignter intercept of
the target aircraft may be accomplished. For all simulation runs, an initial target range
of 600 nmi is chosen. This allows the sensors to passively track for thirty minutes, and
it enables fighter intercept to occur bevond 430 nmi of the HVL, depending on the
fighter’s initial position and fuel state. The target aircraft is also assumed to be flying
inbound at approximately 600 knots.
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; 1. Algorithm Flow

1 The algorithm can be broken down into the following steps:

B 1. Define the true target track.

< 2. Define the observer tracks.

3 3. Enter a priori estimates Xoj.1» Po.;» and Ry. Enter bearing error variances 612

Y and 622.

A . : .

ot 4. Compute the noise free bearings from each sensor to the target for each time
interval.

0 . .

;: 5. Compute random sensor bearing errors using computer generated normal

% distribution.

D

¥

6. Add the random bearing errors to the noise free bearings to create noisy
bearing measurements.

-..
=4

Conpute the noisy (X,¥) position that results from the intersection of two noisy

" LOB's.

N S. Input this noisy (X,v) measurement into the Kalman filter algorithm.

"

y D. TARGET TRACK

' As mentioned in Chapter 2, three target track scenarios are investigated:

e nonmaneuvering, gentle turn, and hard turn. For all scenarios, the initial target

3 position s (410 nmi, 430 nmi) with X and y velocities of =400 knots and — 380 knots

S respectively. For the scenarios where the target maneuvers, a value is input for the time

o that the maneuver is to take place. Also. values for the x and v velocities are input for

Eﬁ the secend leg of the target track. It should be noted that the turn radius of the target

::' is not taken into account in the target track. for at the extreme distances being

* investigated, target maneuvers almost appear as point turns.

:'_' E. OBSERVER TRACKS

The observer tracks each begin at 295 nmi on their respective axis and travel

3 inbound at 420 knots. These observer tracks were chosen to be inbound to represent a
more realistic, worst case type scenario. ldeally, it is desired to have both observer

F. tracke qoing aurthaund in arder 1o achieve almaoet nermendicular LOR e Alee, the fael

3 constraints and maximum on-station time for the observer aircraft are important

" practical considerations that must be taken into account.

N F. INITIALIZATION

In the first series of simulations, different combinations of the initial state

;’ estimate Xgj.; and the initial error covariance matrix Pol-l are tested. For the first
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W
o simulation, and the one by which the other simulations are compared, the a priori state
" estimate is
W —

\ &00 nmi

L -
2 % _ 1420 knots
. =0kt T 1400 nmi
)
" 420 knots |
2 : o . .
W and its associated initial error covariance matrix is
R
X h
o [(sonmi)2 0 0 0

)

- P‘, - 0 (50kts) 0 . 0
™ °H 1o 0 (50nmi)* 0
™ 0 0 0 (30kts)” |
“0 -
e
S The initial measurement error covariance matnix for the one degree bearing error case
W 1s
Ly _ |(7nmi)? (5nmi)? :
- ° | (5nmi)? (7Tnmi)?
&
¥
t . "

R G. NOISY BEARING GENERATION

KA The Box-Miiller method is used to generate normally distributed bearing errors.
J’.’ Basicaliy, it is a mapping technique that uses an algebraic identity to establish a one to
\: one relationship between a uniform random variable and a2 normal random varable.
ng Two random L(0,1) numbers, U, and U,,are transformed into independent N(0.1)
" random numbers, N, and N\, using the equations

y N, = (= 2nU))" ¥ cos 2nL,

.l' b

¥
& N, = (=2inUp' = sin 2L,

W0
\
9
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¥
. Figure 4.1 presents a histogram showing the normal distribution of the bearing error.
¢ o .
: These normally distributed random numbers are then multiplied by the standard
. B . .

; deviation of measurement error for each sensor to produce two independent normally
e distributed bearing errors for 8, and 8,
s
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V. SIMULATION RESULTS

A. INTRODUCTION

The purpose of this chapter is to show through various scenarios the effect of
different initial state estimates and measurement noise levels on the stability, accuracy,
and convergence time of the algorithm. In the following pages, fourteen simulations
involving three scenarios are presented. As shown in Figure 2.4, the three scenarios
include a nonmaneuvering target track, a target track with’gentle turn, and a track with
a hard turn. The first scenario provides the reference with which other cases may be
compared. Unless otherwise noted., all simulations use a two second time interval
between measurements. Also, all of the simulation results depict the cases of one
degree and five degree sensor bearing errors. It should be pointed out that in order to
isolate the effect of various parameter changes, a single random number seed is used
throughout to represent a specific noise history. There has been no attempt to create

statistics based on ensemble of noise histories due to the extreme computational time
required.

B. TYPES OF GRAPHS

Five graphs are used in all simulations. These include the x and v positional
errors, the x and v velocity errors, and the percent range error. For the case of
positional errors, the updated state esumate of x and v position is subtracted from the
target’s true X and v position. Likewise, for the case of velocity errors, the updated
state estimate of velocity is subtracted from the target's true x and v velocity. Range
percent error is computed as

lRf'RrI
Ry

Range Percent Error = x 100

where Ry denotes the target’s true range from the origin and ET 1s the updated
estimate of target range using the updated state estimate for the x and v positions. In
some simulations, the measurement residual error is plotted. The measurement residual
is defi.. d as the difTerence between the actual noisy measurement and the predicted
state estimate. It may be expressed as the quantity

z, = HX,),,
32
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C. SCENARIO1

¥

.:‘t : Scenario | consists of ten simulations that demonstrate the effect of various a
)

*’: prioni estimates, measurement noise levels, and time intervals between measurements
X . . .

" on filter performance. In all ten simulations, the target is on constant course and

speed. Figure 5.1 illustrates the target’s true track along with noisy measurements.

> Note by the scale that only a portion of the first quadrant is depicted. In the first
',:: simulation, the initial difference between the true target state and the initual state
) estimate is
&N FIO nmi
N
N XT dx\ 20 kt
Br, T Zolp = .
> ° " 30 nmi
40 kt
” L -
\
o . : _
d and the a prior error covariance matrix is
Yol ]
G . o) O O O
2
a p © ok o .0
\ o) ~ o o (SO.....) (o]
b © o0 o (5on
B
(N . . .
Overall, it can be seen that for the one degree bearing error case, the algorithm
o tracks quite well. Referring to Figure 5.1, the x velocity error initially gets worse before
) . . . . . .
e 1t gets better. [t is not until after five minutes have elapsed that the x velocity error is
f‘ . . . . - .
4 less than the a priori estimate. As can be seen from Figure 5.1, the tracking accuracy
for the five degree bearing error case is fair. The one degree bearing error case
: delinttely demonstrates cuick and accurate fliter convergence: the five degree bearing
M) v
P case seems to meander aimost randomly. The sudden rise for the five degree case seems
;‘ to be an anomalous disturbance. The x and y velocity gains are directly related to
; bearing accuracy; the higher the accuracy, the greater the gain. For the five degree
")
;; bearing error case, the velocity gain never exceceds 0.2.
3 The following nine cases are basically vanations of the first case. Table | lists
the parameters that have been changed for each case.
: 33
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VI. CONCLUSIONS AND RECOMMENDATIONS

A.  CONCLUSIONS

The purpose of this thesis was to invesugate the two senscr bearings only passive
tracxing prodiemn using Kaiman filtering techniques. A computer simulation was
Jeveioped to generate the target track and the noisv bearing observations from each
senscr. Filter performance was exceptional for the nonmaneuvering target case. With
one Jegree sensor bearing error and two sccond measurement intervals, the filter was
able to consistently track the target to within one quarter of one percent range €rror in
the first five munutes. As was eapected. filter accuracy was degraded as bearing error
was increased. The tracker performed reasonably well for sensor bearing errors as high
as e1ght degrees.

For the case of a mancuvering target, filter performance was marginal. Filter
convergence to an accuracy attained prior to the target maneuver did not occur. The
use of a state excitation covariance matnx by itself was not sufficient enough to
properiv account for target maneuvers. What 1s needed is a reliable zig detector that
QuiCk!v recognizes target mancuvers so that the filter gains mav be reimitiahized. The
prodiem of detecting target maneuvers i1s not trivial. At long ranges, error eliipses may
oe twenty to forty umes larger than the actual distance the target has moved. Sifung
out & becna fide target maneuver from these extremely noisy measurements 1S guite
Sfficult. Determuning a target mancuver by attempting to find a pattern in the
measurement residuals 1s only successful if the ume between measurements is greater
than thirty seconds. A drawback to tius approach is that filter accuracy is Jdegraded
necause fewer measurements are being processed.

From the simulation runs it was found that the most influenual factors in
determuning tracking accuracy and speed of convergence were the sensor beanng
accuracies and the ume between measurcments. Factors that contnibuted to a lesser
entent included the accuracy of the iniual state esumate along with 1ts assoc:ated

degree of confidence and the positions of the sensors. Inaccurate a priori information

did not degrade the filter's accuracy, 1t only increased the ume for convergence. Iilter

«ccuracy improsved as the hines of bearing came closer to being perpendicular.
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B. RECOMMENDATIONS

This study is by no means complete. Some areas for {urther study include the
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following:

l

Run an enure ensemble of simulations (perhaps 1000 runs) to generate reliable
staustics on the filter's performance.

2. Investigate more fully @ method to detect target maneuvers so that adaptive
control techniques mayv be used to alleviate the probiem of filter divergence.

3. Exuamune the utilitv of using more sensors to cover a comparable scctor. Are
more sensors necessarilyv beneficial?

4. Perform the simulation using a diiferent coordinate system (such as polar

coordinates) and comparc the results to those obtained using a Cartesian
model.
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' APPENDIX A
DERIVATION OF MEASUREMENT ERROR COVARIANCE MATRIX
N In this appendix the measurement error covariance matnx R, s denved.
i Recalling the measurement equauon tfrom Chapter 2. the meusurcment noise vector Ve
' 18 assumed to be Gaussian and zero mean with variance R . That is,
l
) v. ~ N(OR)
4 k k (A-1
P
The purpose of R, is to statistically describe the noisiness of the x and v measurements
obtained through the intersecion of noisv lines of bearing. Basically, the 2 by 2
measurement error covariance matrix describes this noisiness by displaving the variance
and covariance of the noisy x and v measurements in terms of each sensor’s bearing
measurement and accuracy. Referring to Figure A.l, the position (X7.YT) represents
W a possible true position of the target based on noisy sensor bearing observations, 6,
' and 8,. The position of the target (X1, Y1) 1s a jointly distributed random variable
” whose expected value coincides with the intersection of the bearing lines.
s v
! ‘.
L 1} |
| f
)
[ ] '
. |
} .
; !
E: |
Y 1
? —n
y (0,01 * SENSOR | x
!
;I
N Figure A.1 Target Observer Geometry Revisited.
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To develop the relationship between Xt and Y. the LOB’s from each sensor
may be expressed in the general form for the equation of a linc:

x sinb, + t’cosa, - x, 56

o A-2)

x “39, -y Sin 52 = Y2 st‘ =0 (A'3)

The distance from the position (X1, Y1) to each sensor line of bearing is denoted by
d, and ¢, for cach sensor LOB respectively. From the problem geometry and by using
the equation for the distance between a point and u linc, the displacement distances d,
and d, may be expressed as

d,
dz

f[(Xr-xl) sinb * YT cos Q] (A-‘l)
2[ Xy cos 6 ¥ (Y, 1) 5in & ] (3-5)

Since both sensor bearing errors are assumed to be Gaussian zero mean random
variables with bearing varnances clz and 0'22. it follows that the displacement random
variables d, and d, are also zero mean Gaussian with displacement variances cl; and
62:2 respectively. Figure A.2 illustrates the relationship between the displacement
variance and the sensor bearing error varance.

14 1

X

Figure A.2 Relationship Between Bearing and Displacement Errors.
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-i‘ In this figure, the bearing error standard deviation for sensor I, 6,. is expressed
;: in degrees or radians whereas the displacement error standard deviation for sensor . o,
, is expressed in nautical miles. They are related by
6y = r tanoc, (A-¢)
where r, 1s the approximate distance from sensor | to the target in nautical mules.
Therefore, the displacement distances d; and d, are normal random variables that
N .
i‘ mav be writien as
¥
.C
d, ~ N(0. 6,7 (/;-7)
: dy ~ N(0. 6,7) (A-8)
¢
Having described the displacement random variables d, and d, from sensor | and
sensor 2 lines of bearing. equations A-4 and A-5 may be rewritten as
Xy 3m6 * Y, cos8 = x5n8 ¢N, A-9)
p v
Xy cos 6, + Yr sin 6, =V Sinez + N& (A-,o)
o
o
; where N = N\(0, 6,/) and N, = N(0, ¢.7). Solving equations (A-9) and (A-10) for
Xtand YT vields:
_ : x - i&‘;" 93 cos 9, - X, s,‘ngl s.'.ez +* Nl cog 9' - N. s..net
5 r co3(6,+86,)
. : Y = X 3inB cosbh ~ Y2 5in 8 %inB, T N, cos6, -~ N, 5inB,
s T cos (6,+6,)
"
) or =
! Xr = A ¥ AN, * AN, (A-n)
- *
. Y, B, * BN, »B N, (4-12)
: where A, = Y2 $in 8, 018, - x,3/n b, s/n by
. cos$(6,+6,\
v 53
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and « 2376

———————— = Cov¥ 8.
2 cos(6,+4,) A-, cos(6,18,)
B. = x. Sin 5| Cos 9. . /1 Sl.-lg, Sin &

Cos (91 * 6.)

cos el -Sin 6:

B, = BB B, = vRTY

Note that since X and Y are linear combinations of normallyv distributed random
variables, they mus. also be normally distributed. That is,

X1 ~ N(#x 0x2) (A-13)

N 2
YT~ Ny 0y0) (A-14)
where "X,'_' A
2 _ 2w 2 242
fo— AZ Gl: + .‘\3 0'2' (A-Is)

and By = B
]

2 _n2a2 2 .2
L= Pl « S B ’
oy, B.,% o 30 (A-10)

Now, the measurement error covariance matrix R may be written as

Var(X1) Cov(XT, Y1)

R = (A-17)
Cov(XT. Y1) Var(Y7)

By definition, the covariance of the random variables X and Y is the expected
value of their product minus the product of their means. That is,

Cov(Xp. Yp) = E[X7 ¥q] - MY, (A-18)

Substituting equations (A-11) and (A-12) into the above equation vields

C°V(X1.Yr) = E[(A~’Az N, +A, Nz) (su'BIN' '8!~1)] - A8, (A-1)
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By noting that N, and N\, are zero mean, the expected value of their product is the
product of their means. Tnat 1s, E[\ N ] E [,\J [.\'2] = 0. Using this fact.
the covariance between the random variables Xt and Y is simplified to

Cov(XT, Y) = A, B, 6,7 + A, B, 6.} (a-20

Substituting equations (A-15), (A-16), and (A-20) into equation (A-17) enables the !

measurement error covariance matrix R to be written as

L T
Ay sl *ASsS A Bet A B '
R = )
A A B: d",z + B: : :

Lastly, substituting the vaiues for A, and A; into the above equation viclds the final
expression for the measurement error covariance matrix .

. - .
t I 2
s, s.nzeg *+ 6. cos"6, '°.'f ""‘az“"aa"i 036, 5.8,
cos'(6,08;) cos(6,+8,)

-" s Sl ““" el 672’ ws‘ag - 0,': PHEY ) .
cot(o,+8,) cos(0,46) k
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APPENDIX B
SIMULATION PROGRAM LISTING

Y KALMAN
a THIS PROGRAN IS A TWO-SENSOR KALMAN FILTER TRACKING ALGORITHM.
a

P
nTgE&OLLOWING ISALIST OF THE PRINCIPAL VARIABLES USED:

Tcot-n.oootoﬂp IOR STATEESTI"IAT X
REEL1,BE2.ceecvenss .I‘vOPMALLY DISTR JBUTED BEARING ERRORS
F\DT.... ...... eeee o TINME STEP (IN HOUES)

AERRE. ... cetescns .ACTUAL POSITION ERROR (TRUE-PRELCICTED)
QG-.oo.cooo.voco:.KALbl’AI G IN

RH. +MEASUREMENT MATRIX
nNTHE'TAl NTHE'TA2 . .NOISY BEARINGS FROM SENSORS 1 AND 2 TO TARGET

ANZ . e eeenseosoanss MEASURED X,Y POSITION (NOISY)
AP, .. .. lllllll 1 {E3R0R COVARTANCE MATEIX
QPP.L ¢ s e 0 e ctooooQSTATETRA’VSITIONIJATRIX

...... eesessses o STATE EXCITATION COVARIANCE MATRIX
..... I ¢EASUREWEIVT NOISE COVARIANCE MATRIX

QRNGPCERR. eseeees PERCENT RAIVGE ERROR

nR D.....0.0...'..R IANSTO REES
ATEM 2 v v vevveveees TINE VECTOR (IN MINUTES)
Vy. e ..TRUE TARGET VELOCITIES IN X AND Y DIRECTIONS
Y3 e  SENSOR1AND SENSOR 2 VELOCITIES
nxmzi' teeeeeessess  STATE ESTINATE
AXTK ,¥TK . eeeeees  VECTORS OF TRUE TARGET POSITIONS

aX1K,Y2K......... .VECTORS OF TRUE SENSOR POSITIONS
:***********************************************************

A
A INITIAL CONDITION INPUTS: :

A

A'INPUT DESIRED RANDOM LINK:'
RLSAVE<«URL«265067500

)

I'(H8” MANY ITERATIONS ARE TO BE RUN (K)?!
-~

A
'ENTER TRUE TARGET PARAMETERS: XT0,VXF,VXS,Y¥T0,VYF,VYS!
TRUESTATE<Q
XT0«TRUESTATE(1]
VX«TRUESTATE[2 3]
YT0«TRUESTATE [u]
VY«TRUESTATE(S 6]

-]
I"%;I?ENC{S THE TARGET GOING TO TURN (WHICH ITERATION NO.):
<«

A

'NEXT E’NT ER SENSOR 1 AND SENSOR 2 POSITION AND VELOCITY'
%gé S }610 »VX1,Y20,V

1

S

X1 1
VX 1<-SE'I‘JSPOS 2
Y2 3
VY

IIdE' STEP TO BE USED (DT ,IN SECONDS)?!
T«

IS<«DT
T«DT+3600
*NO. OF POINTS TO INCLUDE IN THE REGRESSION:'

QUIVIUILNOUOIOWUOINE FEFFFFEFENEFQWWWWWWWWWWNRNNNNNNRNNN S 3 1 3 b3 3 1 3 123 43 (0 00 <IN IO

OWNOMEWN R OWONOMEGWMNDPOMOSIDMFEFWNROWONOU EWNRPQWONOUI WP OLA LRI AN

(U W A W W i e W W W W S W I e
PD
< :'00
rata
pde

[
E
t
E
E
E
E
E
E

6

n
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)
NI s Y
OO OO e TS .\,‘.-. A "! Yti, dgy ,!.o i Cn Ca OGN AL ’

aNRP«0
[
'N'OW ENTER ALL A PRIORI ESTIMATES AND MATRICES:!

D-‘

}"Ig{_TéAu GUESS XHAT (FOUR ELEMENTS MUST BE ENTERED): !
X347« 4 1 o XHAT
A?P'XHATé-X&AT

A

"INITIAL PMATRIX DIAGONAL ELEVMENTS (FOUR ENTRIES):!
DIAGONAL<Q
P<-‘( (14)o,=14)x 4 4 pDTAGONAL

3
3
~
(2]
et

o
L3 .1%<-OFFDIAG[1]
[43s2]«OFFDIAG(2]

Ly
TN =y
les we (v ]
t) £ Wy

ITIAL R MATRIX (4 NUMBERS IN THE ORDER UL ,UR,LL,LR):"
VE<R<« 2 2 pR

UP SOME VECTORS NEEDED TO GENERATE THE Q MATRIX.
2(%53609)1

-F1

422484 10p2
8oL ),84F>
3ud3232
Fu ,Fy

uty - yryrgoR P -

h Wty
0 =01
’“:"hﬁ;ﬂ
- NH

44444~
£

i 1 16 O Tes oo L

DDDDDDDDDD
FEWNDRR 4

-
-

éé‘Né’E’R MAX BEARING ERROR IN DEG. FOR THETA1 AND THETA2 (22 INPUTS):!
“«

NITIALIZED STORAGE VECITORS FOR GRAPHING PURPOSES ONLY

VSTORE+QCGSTORE« VERRSTORE’*?ERRSTORE’(-QRE’SIDE'RRSTORE+ (2,K+1)p0
NGPCERRSTORE«QMSAVE«(1,K+

I
G
R
THE FOLLOWING OQUTER LOOP IS FOR GRAPHING THREE SETS OF SENSOR BEARING
ERRORS ON THE SAME GRAPH . THE TRACKING ALGORITHM IS, IN EFFECT, BEING
RUN THREE TIMES, WITH EACH RUN USING A DIFFERENT PAIR OF SENSOR
BEARING ERRORS.
Al

<
«RSAVE

HAT«APXHAT
11«BRGERR [ ]
2«BRGERR(2

A
nqSEZ’ lﬁ]Pg MATRIX INITIALLY TO BE A uXu MATRIX OF ZEROS.
p

¥ o e e ok e e AW e e e ok e v e ok o vk e die Y R R ok e e e e ke vl ok R e e die e e e e e e ok e ok A e A e e e e ke e e e ok e e e e ok b

HE PURPQOSE OF THIS PROGRAM SEGMENT IS IO

STAEBELISH TRUE TARGET TRACK (WHICH INCLUDES TWO LEGS ) AND SET UP
ENSOR 1 AND SENSOR 2 TRACKS . NOISE-FIEE BEARINGS FROM EACH SENSOR
O THE TARGET ARE COMPUTEL . NOISY ZERO-NEAN NORMALLY DISTRIBUIED
EARING ERFORS ARE GENERATELD AND THEN ADDED TO THE NO -FREE
EARINGS.FROM THE INTERSECTION OF THESE NOISY LOB'S, THE NOISY
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A
ACONTINUE WITH CALCULATIONS:

(o]

ADATAPOINTS+(2 NRP)pO

BNGPZERRSTOR +MSAV «o

EESIDERRSTORE«NZ+ 2 1
GVSTORE«VERRSTORE*ERRSTORE*BSTORE*GSTORE+NZFIX«(2 ,K+1)p0

A
XHATSTORE+ 4 1 p0
PSTORE« 4 4 p0 N

131 n}X ,Y) POSITION OF THE TARGET IS COMPUTED AND STORED FOR LATER USE
132) a INTHE PRACKINGC FILTER AS THE TARCET'S 'MEASURED ITION FOR
;gg :THEKTHTIMEITERATION ASURED' POSITION FO
4
%32 0 SET SET UP sozg{s INITIAL CALCULATIONS:
37 TKN<TR%4 \
=]
36] XTKF«XT0+VXC1]xDTx0,1TUR
307 XTKS<(“1+XTREY+VXL2]x DTX1(K TURN)
b1 x*w«ywwp xrrs
427 YIKF<7T0+VY[11xDIx0, 1 TUR r
05) YTRS<(“14YTRFY+7YC2)xDT Xt(K-TURN)
b YTH«YTKF ,YTKS
[+]
L) X1K«X10+VX1xTK
g Y2K«Y20+VY2xTK
[}
€] R2D«180+%+01
01 LUX<X1K=XTK
% LVY<Y2K=YTK
o]
3] THETA1K« §§x1x<xrxgxo13+ 3o§yrx+€x1x-xrx+zvx;g
4] i THETA2K«((Y2K<YTK)x01 )+ 30 (XTK+ (Y2K-YTK+LVY
& THETA1K+$LVXxO.5x01;+2~LVX3xTHETA1K
g THETA2K«(LVYx0.5x01 )+ {~LVY IxTHETA2K
g
0
1
2
3
y
5
6
7

O X
-
0

CE'L o,07,0,0,ACCEL,0,DT

R T L T e e T T T T e T T e T T e T
A

A START MAIN LOOP:

a

Nel
A

a
LOOP:G«P+.x(QH)+,xBR+H+.xP+,.xQH
A

A
A "KALMAN GAIN:'

A
CVSTORE[1:N]<G[2:1
CU3TOREL2 i <ote i)
CSTORE(13h +c(1;1
GSTOREL2:iNI<Gl3i2

ARG
A

A

Pe(IT-C+.xH)+

PST ORE+PSTORE' [0 Sx1+1<N] P
A

A
a'UPDATED P:'

L
.
£1
Fi
1
g
f1
[1
§i
=
by
i
r1
i
]
i
E%
1
f1
1
i
E1
1
i
i
'
3
[1
"1
"
f1
1
{1
o1
gl
1
1
£l
1
1
£
[1
i
L
;1
1
k1
"1
"1
(1
f1
E1
1
1
f
»
"1
[2

L
L
7
5
5
g
5
5
o}
5
5
5
5
6
6
6
6
6
6
6
€
6
6
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
S
g
9
9
S
9
S
9
c

8
S
C
1
2
3
u
5
©
7
8
3
0
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2
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4
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5
7
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Q
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RESIDERR«NZ-H+.xXHAT
XHAT«XHAT+G+.xRESIDERR

a

Q

XHATSTORE«XHATSTORE ,XHAT

A
RESIDERRSTORE«RESIDERRSTORE ,RESIDERR

A
aDATAPQINTS«DATAPQINTS ,NZ
ACATAPOINTS«LCATAPOINTS, 1 0 1 0 #XHAT

a
RDATAUSE«(2
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; -NRP)+DATAPOINTS
nSdMX¢+/DATAJSE;1:]
aSUMY++/DATAUSEL 2
nSUMX2++/DATAUSEP1:1*2
ASUNXY«+/DATAUSET1: IxCATAUSEL2;]
aDENOMINATOR« (NEPxSUMX2)-SUMX * 3
aM< ((NRPxSUMXY )-SUMXxSUMY)+DENOMINATOR
aMDEC«R2Dx(01)+ 3JoM
aMSAVE«K.SAVE ,MDEC
[*]
VERRSTORE[1:N]«VX" 1+N>TUPN+‘4-XHATE2:3
VERRSTORELZ:N «wy 1+N>TURN+11 -XHATu
PTRUE*(+% KxZE)w
RX«1C 10 #XHAT
RHAT« (+#RXxEX)%0.t
RNCPCERP+103x (+RTRUE )x | RTRUE-RHAT
RNGPCERRSTORE+«RNGPCERRSTURE ,RNGPCERR
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<]
a 'UPDATED XHAT: "
e XHAT
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A
P«Q+PHI+ . xP+.xQPHI
-]

A
néPREDICTEDP:'

A

A

A

XHAT«PHI+.xXHAT

]

A

p 'PREDICTED XHAT:'
nXHAT

nX2+XHATE2 i

rRXU«XHAT LU

aXA+Xu,Xu, kz X2,X4,Xu,X2,X2,X2,X
AXBeXl X5 XU XL XL XL XY S XU XX
AQTERME<CxF1xXAxXBxDTE*Fi

AQe 4 B pQTERMS

A CALCULLTE TERMS IN THE R MATRIX:

Ri*(XHATE ]*2)+(XHAT[“]-X1KLN])*2

SIG12+R1x (3041 86
:]*2)+(XHATE3'] Y2K[N])*2
3042 2

SM
><><
N
Fote]

X
R2«(XHATT
51022+R x

r\Hr\

CA1))+D1

(n

R+ 2 2 pUL ,CROSS,CROS
A 'RMATRIX:"

aF,

: T AR AR AR AR A RA RN A AN AAANR AN N AR AR R AWk

A ' ITERATION NO. ',B(N+1) N
a

NeN+1

:(N<K+1)/LO0P

- R 8 823 2.8 22 2232322 8222322202 0222320232222 2232222223283 22
A
LQM«0,5x1+1<MAINLOO
VSTORE«OGVSTORE [L?M]GVSTORE

GSTORE<QCGSTOR 8 RE

VERRSTO E+gVERkST RE ?VJVERRSTORE

)ERRSTORE«QERRSTORE , [ LQM TORE

RESIDERES ons*oasst STORE {LQM) RESIDERRSTORE

NGPCERRSTORE« (1 oRNGPCE kE)oRNGPCERRSTORE
Q?NGPCERPSTORE+ chpc STORE..LQMJRNGPCERRSTORE
AMSAVE<(1, pMSAV 2 SAVE
nQMoAVE«Qﬁs VE, c QM]MSAVE

INLOOP«MAINLO

DRL+R SAVE
*(MAINLOOPSO SxpB6)/TOP
COMPLETE
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