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High Yield Synthesis of B4C/BN Ceramic Materials by Pyrolysis of

Polymeric Lewis Base Adducts of Decaborane (14)

William Smith Rees, Jr. and Dietmar Seyferth*

Department of Chemistry
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

In previous work, we have developed useful polymeric precursors

whose pyrolysis provides high yields of silicon nitride or silicon

nitride/silicon carbide blends.f '1 The main applications of such
"preceramic polymers" (preparation of ceramic fibers and coatings and

their use as binders for ceramic powders) require that the polymeric

precursor be processable, i.e., soluble in organic solvents and/or fusible.

Although the major efforts of workers in the preceramic polymer

area have, to date, been directed toward the development of useful

precursors for silicon carbide, silicon nitride, "silicon carbonitride" and

silicon oxynitride, boron-containing ceramics (the carbide, nitride,

phosphides, silicides and others) are a class of ceramic materials whose -

properties are very attractive in terms of high technology applications.

Thus boron carbide has exceptional thermal stability (mp 2450eC), a

microhardness of 4.05 GPa (vs 2.53 GPa for SiC), high compressive slon Po.

strength and radiation stability:8'Various routes exist for the preparation cRk1

of boron carbide and boron nitride. For boron carbide, however, none of ,) nc, e d

these proceed by way of a processable intermediate. For boron / -. _-

it Ion/
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nitride, preparative routes based on the pyrolysis of silicon-substituted,

oligomeric borazines4aand of a boric acid/1,2,3-propanetriol

condensation producthave been reported.

We report the results of our initial efforts to develop processable

polymeric precursors whose pyrolysis gives boron-containing ceramic

materials in high yield. The initial objective of our research was the

preparation and evaluation of polymers which would serve as precursors

for boron carbide or blends of boron carbide and boron nitride. ,

Various polyhedral borane systems were considered as candidates

for the boron-containing component in the design of the preceramic

polymer. Since the pyrolysis of the polymer should give a high ceramic

yield (to minimize shrinkage and the destructive effect of evolved gases),

the pyrolysis chemistry should involve extensive thermal crosslinking so

that retention of the pyrolysis charge is maximized. Thermal "cracking",

the evolution of volatile molecules containing the elements of interest (B,

C, and N in the present case), should be avoided as much as possible. On

the basis of these considerations, we directed our efforts to an

investigation of the applicable chemistry of decaborane (14) which has a

reactive, open nD& structure (Fig .1) rather than to the more stable Q

borane derivatives. The known reactivity of B10 H14 is well suited to the

preparation of polymeric derivatives. A well-studied reaction of B10 H14

is the Lewis base substitution process shown in eq. 1. Electron

B10H14 + 2:,L -- L-B10 H12 ,L + H2  (1)

donors of diverse type (:.) undergo this reaction with B1 0 H14 in an

2



organic solvent at ambient temperature with evolution of one mole of H2

and formation of L'B10 H1 2 "L compounds whose structure is shown in Fig. 2.

There is no polyhedral rearrangement during the reaction, the only

structural difference being the relocation of the B-H-B 3-center,

2-electron bridge bonds upon going from one nido structure to the other.5

It will be appreciated that if the Lewis base molecule used in eq. 1 has

b electron pair donor sites, then a polymer should result (eq. 2).

x B10H14 + x ,L~~-L: x H2 + [B10H12 L---- L]x (2)

Some examples of such polymers already were reported 25 years

ago, in which the difunctional Lewis base molecules (:L ----- L* were

Et2PCH 2CH2 PEt2 ,6 Ph2 POPPh2 and Ph2 PN - PPh 2 CH2CH2PPh 2 - NPPh2.7

These and other phosphorus-containing polymers which we prepared
(:L --- L: - Ph2PCH 2CH2PPh 2, Ph2 PC-CPPh2 , Ph2 PNHNHPPh2 ) proved to

be largely unsuitable for our purposes for two main reasons: (1) There

was a high retention of excess carbon and phosphorus when they were

pyrolyzed to 1 000°C under argon (for instance, [B1 0 H1 2 Ph2POPPh2]x gave

a 93% ceramic yield on pyrolysis, leaving a residue which contained

52.01 %C, 25.30%B, 8.69%P and 12.050/O). (2) Fibers could not be prepared

from them, although some of them, e.g., the [B1 0 H1 2 Ph2POPPh2]x polymer

served well as binders for B4C powder in the preparation of shaped bodies

and as such in the preparation of ceramic monoliths by pyrolysis of shaped

polymer bodies.

3



Such problems were not encountered with the new B10H12,

ethylenediamine polymers8 which were prepared by the reaction of

Bl0H14 with the appropriate diamine in a suitable organic solvent. In

diethyl ether or tetrahydrofuran medium solvated products, e.g.,

{[B 1 0 H12 "H2NCH2CH2NH2] (Et2 0)0 .15)n in the case of the ethylenediamine

product, were obtained. Unsolvated products may be obtained by employing

hexane or toluene as the reaction medium. These are soluble in polar

organic solvents such as dimethylformamide, dimethyl sulfoxide,

hexamethylphosphoric triamide and acetone, but not in hydrocarbon

solvents such as benzene, toluene or hexane. The inapplicability of vapor

pressure osmometry to the determination of their molecular weight

suggests that their molecular weights exceed 50,000. Such

B1 0 H12 diamine polymers were prepared using H2NCH 2CH2NH2 ,

(CH3)2NCH 2CH2N(CH 3)2, (CH3)2NCH 2CH2 NH2 , a commercial 85/15

CH3NHCH2CH2NHCH 3/ CH3NHCH 2 CH 2NH2 mixture, H2N(CH 2)3NH2 , and other

diamines. Heating these polymers above 1200 C gives materials of reduced

solubility in solvents of medium polarity: thermal crosslinking processes

appear to be operative. In the case of the [ 1 0H1 2 H2 NCH2CH2NH2]x

polymer, pyrolysis under argon to 10000 C (1 0°C/min) left a gray-black

amorphous residue in 83% yield. Its composition (analysis for C, B, N)

could be rationalized in terms of a constitution (B4 C)1 (BN), (C)0 .19 .

Further heating to 15000 C under argon resulted in another 6.8% weight

loss and left a ruddy-brown colored ceramic residue which now contained

a slight excess of boron. This material, on examination by powder X-ray

diffraction, showed the presence of B4 C. Examination of both the

amorphous and crystalline pyrolysis products by diffuse reflection
4
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infrared Fourier transform (DRIFT) spectroscopy showed absorptions due

to B-C and B-N bonds. Similarly, pyrolysis of

{B 1 0H1 2 -(CH 3)2NCH 2CH2 N(CH3 )2)x gave (B4C)1 (BN)I (C)0. (80%yield) at

10000 C and (B4C)1(BN)1(C)0 .17 at 15000 C. High ceramic yields were

observed in the pyrolysis to 10000 C under argon of other systems:

[11 0 H1 2 (CH3)2NCH 2CH2NH2 ]xo 85%; [B1 0 H12 .H2N(CH 2)3 NH2 ]x , 89%;

[B1H12 .H2NC6H4NH2(para)]x, 88%. (TGA-derived yields; yields of

pyrolysis of larger quantities in a tube furnace usually gave ceramic

yields 3 - 10% lower).

Ceramic monoliths may be produced by pyrolysis (under argon) of a
rectangular polymer bar. The resulting cerramic bar, uniformly shrunken

by J0%, was found to be of excellent strength. These B10 H12 .diamine

polymers can serve as good to excellent binders for commercial boron

carbide powder, (0.5g polymer/2.5g B4 C) in that pyrolysis (under argon) of

a rectangular B4C powder/polymer binder bar gave a ceramic bar that had

retained its shape without undergoing any discernible shrinkage or

bloating. Fibers could be pulled from a syrup of the

[B1 0 H12 .H2NCH2CH2NH2] x polymer and DMSO/acetone. The green fibers

maintained their form and could be pyrolyzed (to 1 0000C under argon) to

give black ceramic fibers 3 - 5 g in diameter. Scanning electron

microscopy (SEM) showed them to have a circular cross-section, a smooth

surface and no obvious major flaws (Fig. 3). Others of the B10 H1 2 .

diamine polymers noted above were capable of forming fibers. The

polymers derived from (CH3)2 NCH2CH2N(CH 3)2 and from the 85/15

CH3 NHCH 2CH2NHCH 3/CH3NHCH 2CH2NH2 mixture melt when heated (mp 246

5



-250 0C and 222 - 2250C, respectively) and may be suitable for

melt-spinning.

The B1 oH 12 "diamine polymers also serve as boron nitride

precursors. Their pyrolysis to 10000 C in a stream of ammonia (rather

than argon) leaves a whitLceramic residue. These samples were, within

our limits of determination, spectroscopically indistinguishable from

authentic boron nitride. Analytical data supported this. For instance, the

pyrolysis of [B1 0 H1 2 .H2NCH 2 CH 2 NH 2]x in a stream of ammonia gave a

powdery ceramic residue in 62.4% yield which contained B and N in 1.02:

1 ratio and only a slight amount (0.08g atom/g atom N) of carbon. In a

manner like that described above, a ceramic bar was produced by pyrolysis

(to 1000C under ammonia) of a rectangular BN powder/polymer binder

(2.7g BN/0.3g polymer) bar. The resulting white bar was of excellent

strength and exhibited shape retention in all dimensions. White ceramic

fibers, with solid circular cross-sections, could be obtained by pyrolysis

of green fibers (produced as outlined above) under an atmosphere of NH3

(to 1000°C).

The syntheses of the B1 0 H12 diamine polymers are easily

effected; the polymers are stable at room temperature and their pyrolysis

gives a high yield of the desired ceramic product without producing large

amounts of excess free carbon or boron. They are soluble in polar organic

solvents and so the desired applications may be realizable. It is clear that

potentially useful preceramic polymers which serve as precursors for

boron nitride and for boron carbide/boron nitride blends are in hand.

Detailed studies of the ceramic materials formed in their pyrolysis are in

progress.
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Figure 1. Structure of Decaborane (14), B, 0H1 4

HH
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Figure 2. Structure of Bl0H12 2 Ligand Complexes
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SEM photograplis of ceramic fibers derived from [B10 H12 .H2 NCH 2CH2NH2 ] x
a) note long, regular shape
b) note small size and smooth surface
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Polymers of type [B1 0H12 "diamine)x (diamine = H2 NCH 2CH2 NH 2 ,
(CH3)2 NCH 2CH2NH2, (CH3)2 NCH 2CH2 N(CH 3)2 , etc.) have been found to be
useful ceramic precursors. In a stream of argon, their pyrolysis gives
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