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CHAPTER I. INTRODUCTION AND PRELIMINARIES
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Section 1. Examples of Eigenvalue Problems
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In "this section we presentg%everal model eigenvalue problems
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arising in physics and engineering. Specifically,-we -will discuss-
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eigenfunctions. Some of the model problems we:discusschere will
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serve as illustrative examples in connection with the approximation
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methods considered;in Chapter III. We will attempt to provide a
clear understandiﬂg of the fundamental ideas, but will not present,
a detailed treatment. For a more complete discussion of the mate-
rial in this section w3>refer to Courant-Hilbert {1953].

A. One Dimensional Problems

The Longitudinal Vibration of an Elastic Bar

We are interested in studying the small, longitudinal vibra-
tions of a longitudinally loaded, elastically supported, elastic

bar with masses attached to its ends. The bar is shown in Figure

1.1,

ELASTIC SUPPORT ELASTIC SUPPORT
M MM -
M M M M 7 i
10 )
> = > —_— N
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N ™M™ ™M enp mass 3
END MASS LOAD ELASTIC SUPPORT \
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Figure 1.1. Elastic Bar. :';\"
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We now derive the governing differential equation and boundary

conditions for the problem. First we consider the static prob-

lem. Suppose

f(x), 0 < x < £, represents the external longitudinal load, with

positive f(x) denoting a force directed to the right,

u{x), 0 < x < ¢, denotes the displacement of the cross-section of

the bar originally at x, with positive u(x) denoting the

displacement to the right, so that the position of a point

‘1 originally at x is x + u(x),

: £(x), 0 < x < £, denotes the strain in the x~-direction, i.e., the

‘; relative change in the length of the fibers in the bar (¢ (x)

- will be positive if it describes extension),

?? o(x), 0 < x < ¢, denotes the normal stress in the cross-section
at x, 1i.e., the force per unit area exerted by the portion
of the bar to the right of x on the portion to the left of

?S (oc(x) will be positive if it describes tension),

A(x), 0 < x < £, denotes the area of the cross-section at x,

- E(x), 0 < x < £, denotes the modulus of elasticity of the bar at

o X,

te.

B F(x), 0 < x < £, denotes the internal force acting on the cross-

5& section at x, 1i.e., the force exerted by the portion of

; the bar to the right of =x on the portion to the left, with

': positive F(x) denoting a force directed to the right,

- o(x), 0 < x < £, denotes the load due to the (continuous) elastic

g support, which is assumed to be of the form

L

l p(x) = -c(x)u(x),

is where <c¢(x) > 0 is the spring constant of the support (the
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negative sign indicates that the force is directed opposite
to the displacement), and

m(x), 0 < x < £, denotes the specific mass at x, i.e., the mass
per unit volume at x.

The strain ¢(x) and the displacement u(x) are related by

£(x) = a;(x).

This relation is valid for small displacements, i.e., when [#£(x}!

« 1, The relation between stress and strain is described by the

sun T
‘lrl

¥

constitujitive law of the material. We are assuming the linear Eﬁj
N
relation given by Hooke's Law: ;:

1
N

g(x) = E(x)e(x).

o
RLNOAENY

Thus, since F(x) = o(x)A(X), we have

~v
P
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v
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F(x) = A(X)E(xX)e (%)

Ity ]
1

r
-'.

= A(x)E(x)%;(x).

S
S f e
LA 5 &

Now the equilibrium condition for the bar is

S(x) + £(x) + p(x) =0,

which, with the use of the relations discussed above, can also be

written as
d du
(1.1) —H§(A(X)E(x)3§(x)) + c(xX)u(x) = f(x), 0 < x < ¢,

This is the governing differential equation.

We consider the three most important types of boundary condi-

tions.

Dirichlet Type

(1.2a) u(0) = a,, u(¥) = a
1 2
4
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Here the displacements of the end points of the bar are given.

Neumann Type

b

(1.2b) -F(0) = —(AE%)(O) F(e) = (Azg—‘;)(z) = b

1’ 2
Here the forces at the ends of the bar are given. The different
signs at O and { are used to express the outer normal deriva-

tive at the ends of the bar.

Newton Type

(1.2¢) -(AESZ)(0) + 7,u(0) = ;. (AEGR) (&) + r,u(f) = ¢

1'

where 71,72 > 0

Here 75 is the spring constant of a spring attached to the bar at
X = £ and -72u(£) is the force exerted on the right end of the
bar by the spring. We are thus specifying the sum of the internal
force and the spring force on the right end of the bar. The con-
dition at x = 0 has a similar interpretation.

({1.1) together with one of (1.2a,b,c) determine the displace-

ment u(x) 1in the static case. We now turn to the dynamic case.

We assume the external load depends on the time t and is

represented by f(x,t) and suppose ai’bi'ci in the boundary con-

ditions depend on t : a = bi(t), c

= ai(t), b = ci(t), i=1,2.

i i i
We further suppose the bar is subject to a damping force repre-

sented by R. If u = u(x,t) is the displacement at time t,

then from Newton's 2"? law we have

(1.3)
2
aJ A A4ua
‘§§(A(X)E(X)5*(X.t)) + c(xXju(x,t) = £(X,t) - m(xX)A(x)—=(x,t) - R,
X dt2
0 < x <4, t > 0.
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We next give the boundary conditions in the dynamic case.
The Dirichlet conditions are nearly the same as in‘the static
case, while the Neumann and Newton conditions require modification
because of the forces exerted on the ends of the bar by the

attached masses.

Dirichlet Type

(1.4a) u(o,t) = al(t), u(f,t) = a2(t), t =20

Neumann Type

(-22%) (0.t) = -m.28(0, ) + b, (t)
ax’ ! I YO Ay 1
(1.4b)
2
du _ _.d7u N

where m1 and' m2 are the masses attached to the left and

right ends of the bar, respectively

Newton Type

2
(-AE2%) (0,t) + ».u(0,t) = - m.2%(0,t) + c.(t)
3x 1 1, .2 1
at
(1.4c¢)
Ju 62u
(AE-—)(€.,t) + . u(€,t) = - m —(¢,t) + c (), £t > O
ax 2 26t2 2

We remark that we can impose boundary conditions of different
types at the two ends. For example, we could impose a Newton type
condition at 0 and a Dirithet type at <£.

Finally in this (dynamic) case we need to impose initial

conditions. We specify the initial position and velocity:

u(x,0) = v, (x)
(1.95)
au .
Tt-(x,O) = tz(x)' 0 < X ¢
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Consider now eguations (1.3), with f = R = 0, and one of :‘;E
ﬂ~,r\.«'l
the conditions (1.4a,b,c), with a1 = 32 = b1 = b2 = c1 = c2 = 0. s
If we seek separated solutions of the form ;::':,:,'
P:J::r
o,
= ¢
u(x,t) v(x)w(t), NN
in which the spatial variable x and the temporal variable t RO
RSO
are separated, from (1.3) we find that T
u a dv a%w e
[Sz(A(R)m(X)m=(X)) + c(X)V(X)]wW(t) = ~m(xX)A(X)V(X)—5(t)
dx dx 2 P
dt "V‘ ]
.r:f::r
T o
2 .r,‘:f“':r
d dv - M(t) -
- a=(A(X)E(X) ==(X)) + c(x)v(x) 2
(1.6) —2% dx - at O<x<£ tro iy
) m(x)A(x)v(x) wit) ' ’ S NN,
A
‘-:::'.{:
Imposing the boundary conditions (1.4a,b,c) on u = vw we find j-’_-'i-‘;'
(1.7a) v(O)w(t) = 0, v(€)w(t) =0, t 2 0 TR
AL
hot
d2W ,-\.f,;"t
-(ag¥ ——(t) iy
(Ade)(O) _ dt2 ::,-J' ,
mlv(O) w(t)
(1.7b) ) ;':f::l
d w ’._‘-:.‘-
dv -———(t) LR
—) (€ .’
(Ade)( ) N dt2 . o ;f;.;x
mzv(f) wit) ' - -
L RS
2 K A
_(agdv AW (e R
(AEgg) (0) + »,v(0) dt? e
mlv(o) B w(t) o
(1.7c) P, -:
2 ".\-'::
d'w
dv - (t) ..,\ Y
—_—) (£ RN
(REge) (€) *+ rpvie) el N
m, v{Z) T oTw(t) S (
\ N .':\
(RS
It is immediate that both sides of equation (1.6) equal a N
1_“.-_‘.\
N
ANOX




Y
constant, which we denote by ». We are thus led to seek a number }ﬁaﬁ
A» and a function v(x) » 0 so that LA

(1.8) 'cdi_x(A(x)E(x)%(x)) + c(x)v(x) = im(xX)A(X)V(x), 0 < x < £, N

From (1.7a,b,c) we get boundary conditions for v: R

{1.9a) v(0) = v(f) = 0, (Dirichlet type) QiRy
* .

Py
’l L

"l
2

—(AE%%;(O) = \m v(0)

o
v
e

5 5

i
]

({1.9b) (Neumann type)
dv _
h (AEH§)(€) = kmzv(f),

—(AE%%)(O) + 7,v(0) = Am v(0)
(1.9¢) (Newton type).
dv _ R
(AEI) (£) + 7,v(€) = Amv(€), :

The problem of finding A and v(x) = O satisfying (1.8) and a

boundary cohdition (1.9) of Dirichlet, Neumann, or Newton type is O
called an eigenvalue problem. ) is called an eigenvalue and Ei{i

v(x) a corresponding eigenfunction, or eigenvector, of the prob- ggi;

lem, and (\,v) 1is often called an eigenpair. If 1\ is present ;y_xf

.." o

in one or both of the boundary conditions, the problem is referred :3&;-

A to as a Steklov-type eigenvalue problemnm. Eﬁi;’

For the sake of definiteness, let us suppose we have a Newton

I

type boundary condition at 0 and a Dirichlet type at ¢ and

’

T v oy

&, 'A' .,

further assume that m, = 0. Thus we are considering the initial-

1 O :

boundary value problem .

2 A
a au a u B S
“I% ( AEﬁ) + cu = -mA—;

(1.3)
1.4c¢’ AE2Y) (0, t v t) = -
(1.4c) ~(AE3Y)(0.t) + r u(0.t) = o0,

(1.4a")

\"- -

T e
u(f,t) =0, t ~ O RGN

}

U
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|u(x,O) = tl(X)
(1.5)

du

3t

SANN A
SRy

F'd

l. 1)
iy,

(x,0) = tz(x), 0 < x < €.

The corresponding eigenvalue problem is ..
g W

d du
—— e = £ ~ -
I (AEd ) + cv AmAv, 0 < x < "

du _ ..:
(1.10) —(AEE§)(O) + 71v(0) =0 AR

S
v(e) = 0. i

L

It is known that problems of this type have a seguence of

eigenvalues

(1.11) 0 <A, <\, < ... "+

and corresponding eigenfunction
(1.12) vy (x), vy(x),

The eigenfunctions satisfy

£
. . V. =5, .,
(1.13) J m(x)A(x)Ji(x)vJ(x)dx ij
0
where aij =1 if i = 3j and Sij =0 if i1~ j, 1i.e., they
are orthonormal; in addition they are complete in L2, i.e., any mr
function h(x) €« L2 can be written as izif:
© e
1.14 = VLX), A
( ) h(x) ; chvJ(X) TN
IR
where ’Yﬁk\
A
¢ 2§02\
- ALY
(1.15) cy = j mAhY jdx NN
° .
S
L RO
and the convergence is in the L2-norm. Regarding (1.11) - (1.1%), o
e
bRy
9 o IV §.
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see (4.10) - (4.:14).

Corresponding to each ‘j we solve
(1.186} ~——(t) + xjw(t) =0, t >0

{cf. (1.6)), obtaining

wit) = wj(t) = a, sin /lj(t+6j),

where aj and 9j are arbitrary. Thus the separated solutions

are given by

(1.17) ajvj(x) sin ylj(t+9j), j=1,2,...

It is immediate that
(s V)
(1.18) u(x,t) = :E:ajvj(x) sin /lj(t+9j)
j=1

is a solution of (1.3"), (1.4c’), (1.4a’) for abitrary aj and
8 ., provided the series converges appropriately. It remains to
satisfy the initial conditions (1.5°). For this, aj and Hj

must satisfy

u(x,0) = Zjaj sin /T;ejvj(x) = tl(x),

Ju - =
HT(X,O) zjaj/xj cos /ljejvj(x) r2(x).

From the complete orthonormality of the vj(x) we see that these
two equations uniquely determine a_. and Qj' Thus (1.18), with
this choice for aj and Qj' is the unique solution of (1.3"),
(1.4c’), (1.4a"), (1.5).

The simple motions given in (1.17) are called the eigenvi-

brations of (1.3"), (1.4c’), (1.4a"). All the points x of the
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A

) !.}
s
'J »
NOGN,
th < X A
j eigenvibrations vibrate with the same (circular) fregquency A
LA
v '-\ ."- X
(defined to be the number of vibrations per 2n seconds) and e
] . . . . rr
phase displacement {ljej and the point x vibrates with ampli- :“?5
PT)

tude proportional to vj(x). Thus yxj is the frequency with ??:
_,5 '\.

Y
which the jth eigenvibration vibrates and vj(x) gives the basic L
" g

shape of the eigenvibration. The amplitude factor aj and Gj &F%
bt

are determined by the initial position and velocity of the eigen- ESR-
o'’

vibration, whereas lj and vj(x) are determined by the physical -
ERCR
\ process itself, as represented by (1.3'), (1.4c’), and (1.4a’). Ifji'
‘:':'.r_\
We have seen that any motion of (1.3"), (1.4c’), (1.4a') can be BN
SR Y

AN

written as a sum or superposition of eigenvibrations. ’“ 
;.l .:"

So far we have been dealing with free vibrations, i.e., we }Rij
NN
have assumed f(x,t) and R in (1.3) are zero. Now we briefly ’4?3

consider the case when f » 0O and R = 0, 1i.e., the case of
forced vibrations. If we write .
f(x,t) = ij(t)\‘zj(x)m(x)A(x), >
j:l F'_-" -
r\—\'-
[s +] n-‘:-.‘:-
-\.-:‘_-
then we easily see that u(x,t) = :Z:.a.(t)v.(x) is a solution if :}gf
j=13 J J *‘C-"S"
a“(t) + r.a.(t) = £.(¢t). :":::“f-
S8+ Ajagt) = £40t)
RN
'._.-'::.I
If, now, fj(t) = sin /lj(t+9j), then we see that aj(t), and PR
hence u(x,t), will be unbounded as t—®. This phenomena is ';§§
'\n“v)'
called resonance and f is called a resonant load: the resonant ﬁﬂ?
.\',%
frequencies are /lj, j=1,2,... . ':ﬂg
The damping term R could be defined in various ways. For xii
L
a -
example, we could take R to be ”5%' for a constant u, which f;ﬂl
RS,
"jx
11
SR
S
...................... A
........ ey
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\f\*
a'.
» .';:
du %R
] would lead to a term of the form f.lﬁ in equation (1.3).. ;\f
S s
Eigenvalue problems similar to (1.8) and (1.9) or (1.10) oM
: arise in a number of other situations. We now briefly mention &
A
. some of then. 23"" v
’
The Transverse Vibration of a String 4 >
‘ We are interested here in the small, transverse vibration of a ;;Z‘
o
e
homogeneous string that is stretched between two points a distance ;_
e
. € apart. Gravity is assumed to be negligible and the particles
of the string are assumed to move in a plane. We denote the den- % s
X o',
Yy L)
sity of the string by r and the tension by p. We restrict our ;’:':-
"
! attention to the case of free vibrations. b .
‘}-'
If the particles of the string are identified with the num- o
Sy
N bers 0 < x = £ and if u(x,t) denotes the vertical displacement ‘_.‘_
b T
v
of the particle x at time t, then u satisfies Za
B,
2 2 ;
. P ulx.t) . 2B o x e, b0 o~
! (1.19) ax at X .'::;
u(0,t) = u(€,t), t > 0. LA
» o)
We see that (1.19) is a very special case of (1.3) and (1.4a). T
"f.
The associated eigenvalue problem is ;S;(
,' 2 " o -.i
‘ -Cv”"(R) = \v(x), 0 < x < ¢ .y
(1.20)
v(0) = v(€) = o, o)
Dt
‘o::‘l
] where 02 = p/r. It is easily seen that the eigenvalues and ;;.:';\
» S
o
! eigenfunctions of (1.20) can be given explicitly; they are RSN
wend
Py k2c2n2 SN
(1.21) A = m——
k ¢l
AN
WY
.‘.'.\
' -\.I
- and ':\'::
RO
12 Y e
[§ 29
RV

-
A TR Y, 3 S ) “~

| ®RW y LD " Pl WL R N e ‘e [N “e Su e ] T .y v = W 'y
r‘- \ O‘-,l-l‘n » ‘» .. nl.- I\. > k " » s B " I m S A a *M‘ﬁﬂﬁ\i\t y A\fh

LY
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[ k’”
(1.22) v, (x) = 2/% sin =, k=1,2,...
The entire discussion of the elastic bar — i.e., the discus-

sion of separation of variables, of eigenvalues and eigenfunctions,
and of eigenvibrations - applies to this problem. We note that it
is possible to find the eigenvalues and eigenfunctions explicitly
only in very special situations, roughly, just in the case of
eigenvalue problems for differential equations with constant coef-
ficients in one dimension. 1In general, one must resort to approx-
imation methods. The discussion of such methods is the main topic

of this article.

Characterization of the Optimal Constant in the Poincare Inequality

The Poincare inequality states that there is a constant ¢

such that
£ £

(1.23) J [u(x)]2dx < CJ [W(x)]zdx
0 0

for all functions u(x) having a square integrable first deriva-
tive and vanishing at 0 and #. Let us consider the problem of

finding the minimal constant C. We are thus interested in

£

J uzdx

(1.24) C = sup [o
(u')2dx

a f
u(0)=u(€)=0 )

Using the elementary methods of the calculus of variations we find

that the function u achieving the supremum in (1.24) satisfies

.' LA * <"
A" At e >

L)
)
»

e e e At A g e e St TR T et e i e A e " e e T T e e e e
ey e e W T T T \..-__.h .r‘\ o NS O LG o G i .
! - L) L) . N N . - . . > . .

Yy Yy

% 1 2 .
DA

oy

!
!

e

P
3

A )
’

NNy

4
b &

P

Y P L
4 N
, »

o 7
I".':
-.-‘.l,
....' £

3y
Ny

l‘x‘.ﬁl LS
XA
»

ANy By NS
B " {: .. /.‘l" 2
NN

\ ]

]
v
Iy
t2e

0 7 Y
A
D

ALY

Y

'
P [ 2 .
7 :;"I-F '

b T ]



\\\\\\\ Bl 8 B et ¢l 8ah Ul Vag 0ol Fal ol ok ¥ “Wan Aah aB Sal ¢aR (2l tah St et vaf. a8 Vab . "ab tab sl gl et al. ade g% ad. 2l

[

o

A% e
X

for all v having square integrable first derivatives and vanish-

ing at 0 and <¢. By integration by parts we then find

1
-u” = = < < £
u Cu, 0] X

u(0) = u{€) = 0.

(1.25)

Thus 1/C is lowest eigenvalue of the eigenvalue problem (1.25),
and the optimal u in (1.24) (which achieves equality in (1.21))
is an associated eigenfunction.

B. Higher Dimensional Problems

The Vibrating Membrane

Consider the small, transverse vibration of a thin membrane

stretched over a bounded region Q in the plane and fixed along

:’{'l.;l- -
e

X0

B 4
.

T T Ja A
27
.i'r .l

its edges I = 8Q. The vertical displacement u(x,y.,t) of the ;ﬁ%
point (x,¥y) in Q at time t satisfies ﬁ&;
N
2 2 2 :::'*\':

-
du=-23-28_- 948 (x40, t>o0 N
{1.26) ax 3y at A
u(x,y,t) = 0, (x,y) € 82, t 2 0. F

o
As with the vibrating elastic bar or the vibrating string, if we ;Q}f
‘-- N

seek separated solutions of the form u(x,y,t) = v(X,y)w(t), we ¢
:x A
are led to the eigenvalue problem of finding 1 and v{(x,y) = O {Q::
satisfying :35:
NN

- = .".':'
(1.27) AV S Av, txy) € @ =
V(XIY) =0, (x,v) € aQ, :':\:'c

:q::n:

Y

and for each eigenpair (A,v) of (1.27), to the differential T
equation &f&
;%

’\-

k,
14 .
5

AT

\\,)...’ _,.‘.L“ "e "K - 1 .' _.. };‘x}xz-.:_\;ﬁ‘h‘ ’_\3_\:_: .... ., -.:_-.;:.'}-,;\:,:-"_-.:,-.:'\}\:-_-.}'.:,:-:_?.Z_\:,\'- ',},:.' ‘e .1_\:_'. oy \::\i
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(1.28) AW i) +aw(t) = 0, t o
a2

v
(o]
'l

for w(t) (cf. (1.16)). ‘f\'

It is known that (1.27) has an infinite sequence of eigen- &0
values

"N

S

0 <y = A, < ... /" o f”

and corresponding eigenfunctions '§§§

vl(le)r vz(le)' L :“u

The eigenfunctions are complete and orthonormal in L,(Q). el

ajvj(x,y) sin /lj(t+ej), j=1,2,..., are called eigenvibratibns.
RGN
/lj is the freguency and vy(%,y) is the shape of the it Y
=
p
eigenvibration. All solutions of (1.26) can be obtained as a P

superposition of eigenvibrations (cf. (1.18)). We note that if,

A"

instead of fixing the membrane on I, we allowed it to move free-

‘&l\l

[}
a1

RIS
p, f\“’

ly in the vertical direction, then we whould have the Neumann boun-

dary condition g% = 0, where g; denotes the outer normal deri-

XA S
TR R
[

1

vative, instead of the Dirichlet condition u = 0. The approxima-

Y

5

tion of the eigenpairs of a membrane is discussed in Subsection

AP EL A
NN,

" .\‘ \
i0.B., 11.B., 12.A., and 12.B. ,
i
The Problem of Heat Conduction §¥
Consider the problem of heat conduction in a body occupying a §k'
region Q in three-dimensional space. We suppose the temperature -}é:
&
distribution throughout ¢ is known at time zero, the temperature 5'§
A
is held at zero on 40 for all time, and that we want to deter- o

mine the temperature u(x,y,2,t) at the point (x,y.,z) = Q at

time t > 0. From the fundamental law of heat conduction we know

15
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that
(3 du 3 du 3 du
“ax (P(XY.2)53) - F5(P(XY.2)5) - Fz(p(x.y.2)57)
a
(1.29) J = -r{x,v,2)5¢, (%,v,2) =@, t >0
u(xIYIZIt) = 0, (X'Y,z) € aQ, t 2 o
lu(x,y,2,0) = f(x,v.,2), (x,v.2) € Q,
where
f(x,y,2) = the temperature distribution at t = 0,
p(x,y.2) = the thermal conductivity of the material at
(x,v.2),
and
r{(x,y.z) = density of the material times the specific heat of

the material.

If we seek separated solutions
u(x,y,z,t) = vix,y,z)w(t)

of the differential equation and the boundary conditions in (1.29)

we are led to the eigenvalue problem

a3 v a ov 13} av

- (pg-) ~ ==(ps=) - s=(pP5=) = Arv, (x,y.2) = Q
(1.30) % "ox dy ' “dy 3z '*3z

v(x,v.z2) = 0, (x,vy,2) € 3Q,

and for each eigenpair (A,v) of (1.30) we are led to the equation
(1.31) Ww +iw =0, t >0
for w(t) (cf. (1.16) and (1.28)). (1.30) has eigenvalues

0<llsl_2s.../’®

and eigenfunctions
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satisfying

J vivjr dx dy dz = 6ij'

Q

A
AYe

0

PR N
hff
s —

X
L3
?s

Corresponding to each lj’ from (1.31) we find w(t) = wj(t) =

h )

[
~

-1;: t
e J°,
]

a Thus the separated solutions are given by

422)
£ 2]

-A; t
V.(x,y,z)e 9, 3 1,2,...
aJ J( Y. 2) J

&

RS
i xa

4 %
'&-

and the solution of (1.29) is

s V]
(1.32) u(x,y,z,t) = j{:[

j=1

S8
P
v g

»

1t

s
i
v '
()

[ ijr dx dy dzlvj(x,y,z)e—
Q

A LS
7’

AY
7’
Wy

(cf. (1.18). We note that from (1.32) and the positivity of the

eigenvalues, one can show that 1lim u(x,y,2,t) = 0 and that the
too

rate at which the temperature u decays to zero is largely deter-
mined by Xl.

The Vibration of an Elastic Solid

The vibration of an elastic solid Q, the three-dimensional
generalization of the elastic bar, is governed by the Navier-Lame

equations

L
"'l'-"'i -
AN XA

"2,
B

[

where u(x,vy.z,t), vi(x,y,z,t), and w(x,v,z,t) are the x,vy.

I'I

’ e

and z-components of the displacement of the point (x.,y.2) < Q

TN
P A
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%
, x
du Ay . Aw s
Y at time t, 9 = =— + =— + =—, X,¥Y, and Z are the components of D
; ox 3y oz RN
1%
! the external force per unit volume acting at (x,y.,z), A > 0, and veut
u > 0 are the Lame elastic constants, and p is the density of iS'
:‘:‘:s
y the material. iy
; A0y
As in the case of the bar, boundary conditions of various WY
LI
types may be prescribed. For example, the Dirichlet boundary con- ﬁf:
ditions prescribe the values of u,v, and w on I = 3Q. Neumann ﬁi:
F~"‘J
conditions are more complicated. Let n be the unit outer normal e
3 to I, let nx,ny, and n, be the x,y, and z-components of 'iﬁ
o
) n, and let e
S . n 9 +n 9_ 4 n 9 ‘ : 2ii
on x0x vay zdz “
S e
) be the outer normal derivative. Then define lﬁ%,
X IR SRE
- du du v aw e
(1.34a) Xn—lenx+ua—n-+p[a—x nx+ﬁny+&nz]
N
_ av du av aw o
{(1.34b) Yn = leny + “ﬁ + [l[a—y' nx + ﬁ n_+ ﬁ nz] “\.-..\.
Ay
_ 3w du v 3w A
(1.34c) Zn = \an + “a‘ﬁ + “[ﬁ nx + 3z ny+ 33 nz]. ;
N LW
N
S
The Neumann conditions then consist in prescribing xn'Yn' and ;?z
Zn on the boundary. One can also mix the boundary conditions in :;:
various ways, e.g., impose Dirichlet conditions on one part of the -
- .\-.
5 AL
- boundary and Neumann conditions on the remainder of the boundary o
‘('\‘.‘
or prescribe X , Y , and w on T. ARG,

The eigenvalue problem associated with (1.33) is given by

3 -

36
(2 —_— - ,
( +I'I)8x ffAu = wpu

(1.35) <-(l+,u)%9§ - HAv wNVY

opw, (X,y,2) = O,

A 96 A
= +ll)é—£ - HAW

"
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4

N

i

where we have denoted the eigenvalue parameter by ® (to avoid

confusion with the Lame constants #4 and 1), and where here

u,v,w, and 6 denote functions of x,y, and z only, i.e., the
separation of variables has been written as u(x,y.z.t) = u(x,vy.,2)
T({t), etc. For boundary conditions we can consider any of those
mentioned above. If we consider Dirichlet conditicns (u = v = w

=0 on ') we refer to the clamped solid and if we consider
Neumann conditions (Xn = Yn = Zn =0 on ') we refer to the
free solid.

The approximation of the eigenvalues of the free L-shaped

panel (a two dimensional analogue of the elastic solid) is treated

in detail in Subsection 10.A.

The Steklov Eigenvalue Probleam

The Steklov eigenvalues of the differential operator -A + I
are those numbers 1 such that for some nonzero u,

-Au + u =0 in @

— = Au on T = aQ.

Problems of this type, in which the eigenvalue parameter appears
in the boundary condition, arise in a number of applications (cf.

{1.9b) and (1.9c)).

The Problem of Stability of a Nonlinear Problem

Consider the quasilinear parabolic problem

fau A Ju o _

ﬁ u+\I5-§-—,(X,Y)(:Q,t>O

u(x,y,t) = o(x,y).(x,y) = 3Q, t > 0.
Suppose ﬁ(x,y) is a stationary solution, i.e., suppose
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‘-AG. + U = 0, (x'y) = Q' -~ -.

G(X.y) = o(x,¥y),.(x,y) = 3Q.

YNY N

»

Then we consider a nearby time-~dependent solution

<

ARG

b

V<
X

\d

u(x,y,z,t) = u(x,y) + w(x,y,t)

f'-’g
’
Y 4o

K
[
A

and ask whether ﬁ is a stable stationary solutions, i.e.,

a
7
o

LY
s

whether

N
gy’

lim u(x,y,t) = G(x,Y)
t-

“y
'
o

Ll"

W

or, equivalently,

.
[
»
LY
[

P o

g
5 Y

A lim w({x,y,t) = 0.
t+o

’

NASS
P {'\‘

We easily see that w satisfies

5"'- 35
Vs .‘.‘ g I

. g% + Lw + Nw = 0, (x,¥y) € Q, t > 0

(1.386)

R
'.f(

‘
g

w =20, (x,v) € 8Q,

5
Y

X o
{.l.“.,.'l ‘l. L;

P S ]

b

7
g

where

14
Q@
b
Q
[
L’
[ d
v

Lw

1
N
b4
+
[
I
+

and i

4
£
]
b
%]
=
o
(\I‘: N‘ ‘: ‘1' *,

Conditions ensuring w—0 as t—» can be given in terms of the
eigenvalues of
[Lw = 1w in @

lw = 0 on JQ.

In fact, if all the eigenvalues of this problem have positive real

~

parts, then u is asymptotically stable in the L2 norm, i.e., . 4

there is a constant & > 0 such that if o
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then

ol
> 4
3

i « . I
Twi(e, ,t)xLz(Q)—-»O as t—xw,

e
IR

If the term N in (1.36) is neglected, then this result is simi-

\'
-

' lar to that mentioned at the end of the discussion of heat conduc-
tion. Note that L is a nonselfadjoint operator and its eigen-
values will, in general, be complex (cf. Section 3). For further

detail on this type of stability results see Prodi [1962].
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Section 2. Sobolev Spaces

The natural setting for a discussion of eigenvalue problems
and their approximation is the theory of linear operators on a
Hilbert space. 1In this section we will sketch the definitions and
basic properties of the function spaces we will make use of.
These are mainly the Sobolev and Besov spaces.

Let Q@ be a bounded open subset of R" and denote by x =

(xl,...,xn) a point in R®. For each integer m > 0, the real

{complex) Sobolev space Hm(Q) is defined by
(2.1) H® = H™(Q) = (u : 8%u = Ly(Q) ¥V lof < m),

where L2(Q) denotes the usual space of real (complex) valued

square-integrable functions on Q equipped with the inner product

(2.2) (u,v) = (u'V)LZ(Q) J uvdx
Q
and norm
, - 2 1/2
. fali = fak = .
(2.3) IRV u Lz(Q) (J Jul “dx)
Q
On Hm(Q) we have the inner product
a Q
. ’ = ’ = g (")
(2.4) ((w,v)) = (lu,v)) o Zldlst 8%ua%v ax
Q
and norm
. P . a2 1/2
HESRL = il = liyn =
(2.5) hall o ai o at g (Zlalsm[ fd ul “dx) .
H(Q) .
Q
With this inner product, Hm(Q) is a Hilbert space. Here «a =
(al,...,on), with the ai a nonnegative integer, x| = Zi”i’
a la| ay ag, ..
and d ' u =9 u/ax1 ,...,axn . We also have the semi-inner pro-
duct
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s
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2
o
o
s
a Sa DD
= ,V = (u,v = d ud vdx o
(2.6)  (wv) g (w vy = (Wi g me[ o
H' (Q) 0 _
) and semi-norm a?;
’
. ) ) r"':'
. a 1/2 f\
L) = = = .
(2.7) lal lal, = tul, (2|a|=m[ 10%a 1 %ax) e
H (Q) !
Q
o] SR
Y . . : = HETL = = a0
It is immediate that H (Q) LZ(Q) and ”u'o,Q 'ulo,Q :23;
!!u!!L Q)" If I = 98Q 1is Lipschitz continuous, then Cm(ﬁ) is j:::::*
) 2 .';-s:
dense in Hm(Q). (T is called Lipschitz continuous if it can be B
: e
- locally represented by a Lipschitz continuous function; see Necas e
(1967]) for further details.) 4-\
h’\’
‘ -
- Hé(Q) is defined as the closure in Hl(Q) of C;(Q), the C
- space of infinitely differentiable functions on @ which vanish j:'.:'-'
’ near [. The Poincare inequality, which states that '.1'-:::-
-I‘_.
, . -
{2.8) Iulo'Q < CIuII’Q, VvV u e HO(Q), R
? shows that |-|1 o is a norm on Hé(()). Hrg(Q) is the closure in f-j:_':_
o¥] ’ « "
g
H"(Q) of c"g(o). R
q g
If I' 1is Lipschitz continuous, then we can define the space ':-:',:
et
A L2(I‘), which consists of functions u defined on T for which :“;:
y .
E!uHL () = (J Iulzds)l/2 < », where ds denotes the surface area. e
2 r -
Lz(l‘) is a Hilbert space with inner product (u,v) = [ uvds. -f:;j:
L,(r) °r
», 2 _.._'-
A It is also known that a function u < HI(Q) has a well-d :fined '::
restriction to I, denoted by tr u, in the sense of trace: 1= f-:_/_
- tr u satisfies S
A
- LR P Syt . 1 SN
(2.9) ‘uLz([.) . C‘u‘l,()' Y ue H (Q), -'.
- and o,
- R
N
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Hé(o) = {u - HI(O) u=0 on T in the sense of trace}.
Furthermore, a function u = CI(G) is in Hé(Q) if an only if
u =0 for all =« =T. We note that if T is Lipschitz contin-
uous, then the normal vector n 1is defined almost evervwhere on
. . du . -
!'. The outer normal derivative Ih is defined for u = H (Q).
2 _ 2. _ du _
HO(Q) = {u < H”(Q) u = Im = 0 on T}
We shall occasionally make use of the vector valued Sobolev
spaces M™(Q) which are defined by
. m o m . ,
(2.10) =7(Q) = ((ul(x),...,uk(x)) : uj(X) = H(Q), j =1, K5
and
2 _ 2 2
(2.11) U = Y mee T T om0
B (Q)
In the study of eigenvalue problems, central use will be made

of Rellich's theorem (cf. Agmon [1965]),

bounded sequence in Hm(Q)

HJ(Q) if j < m, provided @

a Lipschitz continuous boundary.

So far we have defined the Sobolev space

an integer. We will sometimes use Hm(o),

and also the Besov spaces,

using the K-method.
For u - Hm(o) and 0 < t < v set
(2.12) K{u,t) = inf +1( v m,o +
% Hm,w Hm
v+wW=u
Then for m < k < m+1l define
24
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which states

has a subsequence which converges

. . n _
is a bounded cpen set in R with
m .
H (¢) only for m
for m fractional

so we now turn to their definition,

that every

in

v
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m+1
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{ -
(2.13) = u, = u = (| 1t % ¢(t,uyy? 4¢,1/2
Kk k k,Q t
H(Q)
0
and
. ~0
{2.14) R = sup {t "K{u,t)},
H(Q) 0<t<ky
where 6 = k-m. The space
k _ _ .
(2.15) HY(Q) = {(u=s H(Q) : yup Kk < x}
H™(Q)

is the Sobolev space with fractional order k and

(2.16) B 0) = (u

M

m
H (Q) : A . < 'x’}
Hk(Q)

k

2,9’

In order to fix these ideas and to obtain a fact we will use

is a Besov space, the one often denoted by B

in the seguel (cf. Subsections 10.A. and 10.B.), we now consider
the function

o

ua=r, for (r,9) = 8 = {(r,86) : 0 < r <1, 0 - 0O ”O 2n)
where -1 < a < 0, (r,®) being polar coordinates, and prnve that
u = l}(]+1(8).
Theorem 2.1, For -1 < a < 0, we have
u = r” z é1+”(S).

Proof. Let ¢(x), 0 < X < x, be a function having derivarive. of

all orders and satisfying

(X)) = 0 for 0 < x < 1 2,
e{x) =1 for 1 < x < v,
For 0 < & + 1, define

v = [1-¢(5)]u,

25
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with C independent of . Hence

+1 !

K(u,t) c[o v + ')
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If 0 <t <1, let & =t to get

7 D piat) < 20

and hence

sup (t”“*Vg(u,t)) s 2c.
0<t«1
If t : 1, we obviously have
K{u,t) = ul 0 s C
H7(Q)
and hence _
sup (¢ (“*Vgiu, )y ¢ o
1< t<x
Therefore
"ul‘(1+u) sup {t—(l+O)K(u,t)) s CY < x
H (8) 0<t<w
. altd
and hence u = H (S), as was to be proved.
- a _ S l+a
In a similar way, one can also prove that r < H (s) for
@ > 0, not an integer. Finally we note that r“ = H1+”(S), but

[V 1+u-¢
r [

H (S) for any & > 0.

For a complete discussion of the Sobolev and Besov spaces we

refer to Adams [1975], Necas [1967], and Butzer and Barens {1967].

Remark 2.1. The definition of the Sobolev spaces with fractional
index m has a very simple interpretation. For u to be in
H1+”(S) means that for any 0 < t < x, u can be split into the

sum of a smooth function and a nonsmooth function in a natural
way. We have employed this natural splitting in the proof of
Theorem 2.1 and we will use it in the sequel.

So far we have considered only one special family of Sobolev

spaces or Sobolev-type spaces. Several other families are impor-
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‘tant in various situations. For example, if © < R with 0 = Candl
e
nY.
AQ, and if 0 < 3 <1 and m = £ 2 1, we can define
. _ P9
L}
(2.17) _:\
b m, € £-1 a_ | 3+|al-e e
- Hy'T(@) = {ue H (@) : (8"u)r € L,(@) for £ : |al : m) i
and o
) o t::-f:.
b
1, 3+|a| -4 2 -
(2.18) w2 , = u? + z C(@%uy il , oo
i ™ ¢0) 11 (0) Ly (2) NG
™~ 3 ]Cl ’ ={ [N
‘ T
" 2 2.1/2 . . , g
b where r = (x1 + x2) Spaces of this kind are called weighted o
. el
LIS
: Sobolev spaces. For more details we refer to Kufner [1985]. Con- N
N , o]
‘ sider the function u = r’, with 0 < » < 1. One can show that .-G
'I-.n'
£ SRRy
u € HB' (), where Q@ = {(r,0) : 0 < r < 1}, for 3 > 1-;, m = 2, S
and ¢ = 2. In fact, since 3% = C(a)r}_'al, we have :ﬁf'
el
; - ;3= £ . h
,aau'r3+lal 2 < rf 3 2, and we see that u < H?’ () for m,¢t, .-
] and 3 as given. T
) AR
¢ We will also have occasion to use countably normed spaces ujl
constructed from Sobolev spaces. For example, consider the space -
- :::\
l\
A 1{-2+3 ! O
- (2.19) 8%(0) = (u = 2 20) o (@%yp! M2 . catla s
- L, (0) s
ik
for J|a| > 2, with C and 4 independent of «}. .
i It is easy to see that all functions u = B?(Q) are analytic in 53:
-’ «
. — . > . 2 3 :
:. Q - {0}. The function r’ considered above belongs to Bf(o) :J;
for 3 > 1-). We have here only considered weights with respect G;‘
: T
B, to the origin. More generally, one can consider weights with res- ﬁf’
RN
" pect to the vertices of domains with piecewise smooth boundaries. ;f
An important reason for introducing these spaces is to characterice N
* '\:‘\.
': the solution (eigenfunctions) of a problem as precisely as possible ft;
3
s o
. 28 - ’
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by embedding it (them) in as small a space as possible. There are

II other classes of function spaces that are important in various

contexts, but we will not go further in this direction.

Remark 2.2. We have followed the usual custom of using the same
notation for real and complex function spaces. It will be clear

from the context which version we are using. See Remark 4.1.
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Section 3. Variational Formulation of Eigenvalue Problems

In Section 1 the eigenvalue problems were stated in classical
form, i.e., we were seeking an eigenvalue 1} and a corresponding

nonzero eigenfunction wu(x) such that the eigenvalue equation and

boundary condition were satisfied in the classical pointwise sense,

These problems can alternately be given variational formulations.
Since finite element approximation methods are most naturally
defined in terms of variational formulations we now briefly indi-
cate how eigenvalue problems can be cast in variational form. We
will do this by discussing 2"?  order elliptic eigenvalue prob-~
lems in two dimensions in some detail. We begin by describing:
this type of problem.

Consider the problem:

Seek a real or complex number \ and a nonzero real or

complex valued function u(x) satisfying

(Lu)(x) = Vv (Mu)(x), x = Q
(3.1)
(Bu)(x) =0, x <= I = 3Q,
where @ is a bounded, open, connected set in R“, and
2 2
(3.2) Lu(x) = - Z ()j(aij(x):)iu) + Zbi(x)diu + Cc{x)n, ("'i Rl
N X i
i, j=1 i=1
where aij(x) = aji(x), bi(x), and c(x) are given real or com-
plex functions on «Q,
(3.3) Mu(x) = d(M)u(x),
where d(x) is a given real function which is bounded below by a
positive constant on ¢, and
30
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(u(x)
or
(3.4) (Bu) (x) = < 2
- Z aijnjaiu,
L i,j=1 :
where n(x) = (nl,nz) is the exterior unit normal to I = 30 at
X. L 1is assumed to be uniformly strongly elliptic in Q, i.e.,
there is a positive constant a, such that
2 2
2 I
(3.5) Re Z aij(x)tif:j > aoZEi, V x<=< Q and V(El,zz) < R7,
i,j=1 i=1

In addition, aij’bi'c' and d are assumed to be bounded and

measurable. (A portion of the theory of eigenvalue problems can
be developed under the more general hypothesis that d(x) is
merely assumed to be a bounded, measurable, complex function, but

we will not pursue this direction.)

(A ,u) is called an eigenpair of the 2nd order differential

operator L (relative to the o'" order differential operator

M). If Bu = u, the boundary condition Bu = 0 1is the Dirichlet
2
Z a,.nd.u = ou _ the conormal deriva-
137391 v
i, j=1
0 vields the Neumann condition.

condition, and if Bu

tive of u, then Bu

It is immediate that all of the examples discussed in Sec-
tion 1 - except the Steklov-type eigenvalue problems and the prob-
lem of the vibration of an elastic solid - are of the form (3.1)
or its one or higher dimensional analogues. 1In any case, our dis-
cussion of approximation methods will be in terms of an abstract
framework that will cover all the examples.

Let
31
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(3.6) L v(x) = - L (a 6 v) Li (b v) + cv o

. i,3=1 K
. and 4':
q 2 2 e
\":.'.‘ av N,
(3.7) ;*“Z 1371959 Z 2

v i j:l i=1

,. ' 4.
ks * i
L is called the formal adjoint of L. It is an immediate conse- ;:-

i
::: quence of the divergence theorem that N
- 2 .
~a - - - Au- g
o (3.8} J Luvdx = { { Z aijaiuéjv + Zbiaiuv + cuv)dx + J mvds ;__-
Q Q i,j=1 i=1 r N

o .
UNZ] S
é * ..lv
= J uL vdx + J g—gvdx - J uﬁ,ds -

=" al) ..-'
7:.: Q r r :-_::
for all smooth functions u and v. Hence we have :."_'r

by * -

(3.9) J Luv dx = J ul vdx PN

- Q Q PN
s. ".
if either u=v =0 on I or 9u = ov =0 on I. 7

dv *

v )

- * a S
If a, and ¢ are real and b, = 0, then L =L and

ij i A .

o S
. 3 . e
'\': = - In this case we say L,M,B or, more briefly, L is for- s
ar Y

Ky mally selfadjoint, and we have ;.
. P'
L)uv dx = | du(ir)v 4 3
u\:, (3.10) d(aL)uv X = u(a )V X ;.e
LY 0 0 -
) Y

. ) Au  Av -
. i