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1 Introduction

One of the keys to the reliability, flexibility and robustness of biological visual
systems is their ability to integrate several different visual cues. Early vision
processes such as stereo, motion, texture, shading and color give separate
cues to the distance of three-dimensional surfaces from the viewer and to
their material properties. Integration of the evidence provided separately by
these cues can provide a more reliable map of the surfaces and their properties
than any single cue alone.

Thus visual integration is likely to be a key to understanding biological vi-
s,IMl systems and to developing robust vision machines. Existing methods do
not seem capable of providing a general solution. Standard regularization[2]
provides a common framework for many early vision problems and leads to
tliv tiinimization of quadratic energy functionals. If standard regularization
is used to integrate information from different processes, the energy func-
Ililal consists of the sum of quadratic parts, each associated with a separate
lroce-ss. This implies that the result is a linear combination of the different
C.i(" (possibly with space-varying coefficients). Linear combination - say of
dvpth from stereo and from shading- does not seem, however, a flexible
(ii oilgh integration method. Even more important, no instances of standard
regidarization can handle discontinuities, because the solution space is re-
stricted to generalized splines[21,2]. As we will explain later, we believe that
detex-t ing and representing discontinuities (for instance depth discontinuities)
is a key part of the integration step[21]. t .

To overcome these difficulties we have developed an extension of regular- ..

ization that promises to deal simultaneously with discontinuities and with the
integration of vision modules. This extension is based on the use of coupled
Markov Random Fields', introduced recently by Geman and Geman[9] and
extended by Marroquin, Mitter and Poggio[19. The standard regularization
met hod for vision is a special case of this new approach.

1.1 The Role of Discontinuities

One of the most important constraints for recovering surface properties is ....-:-...

that the physical processes underlying image formation are typically smooth:

'A different, interesting approach has be explored by Blake(31

W. %
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depth and orientation of surfaces are mostly continuous and so are reflectance
and illumination. The smoothness property is captured well by standard reg-
ularization. Surfaces and their properties, however, are not always smooth:
they are smooth almost everywhere, but not at discontinuities. Lines of
discontinuity are themselves usually continuous, relatively smooth, noninter-
secting curves. It is critical to detect the discontinuities reliably, because
they usually represent the most important locations in a scene: depth dis-
continuities, for instance, often correspond to the boundaries of an object
or of a part. Furthermore, discontinuities play a critical role in fusing in-
formation from different physical processes. The reason is clear: in smooth
regions, the physical processes are coupled together by the imaging equation,
and all contribute to image formation. However, the coupling is difficult to
know precisely: it depends on quantities such as the form of the reflectance
function. The effects of discontinuities are instead robust and qualitative: for
instance, depth discontinuities usually correspond to intensity edges. There-

*, fore, discontinuities are ideal places for integrating information. Furthermore,
partial information about discontinuities in a single process can be detected
relatively easily. Several types of motion discontinuities, for example, can
be measured with simple operations on the time-dependent intensity array,
especially if the interframe interval is small. Partial albedo discontinuities
also are often detectable using simple operations. Intensity edges are de-
tected quite reliably by the Canny edge detector. However, the fast, rough
detection of discontinuities performed by these early operations is noisy and
incomplete: it must be refined by integrating them across processes and by
exploiting constraints on the continuity of discontinuities.

In summary, discontinuities: 1) represent the most useful information, 2)
are easy to detect (though in a partial and possibly noisy way) and 3) provide
good locations to integrate different cues.

1.2 Coupled Markov Random Fields

Markov Random Fields for image modeling have seen increasing use since
the work of Geman and Geman[9]. Their utility for iinage modeling de-
rives from several MRF characteristics. .!MlH's provide a iaturai way to
impose general image properties of smootiness and (-ontiniltY, for example
of depth and motion, while also incorporating discont iunit es. Bayes' rule
establishes a relationship between the possibly corrupted observed dat a a1nd



the desired scene data. Solution methods are available, though often time
consuming. Some recent MRF applications have involved scene segmentation
using deptlis[18], texture[6] and motion[20].

A Markov Random Field on a lattice can be represented as a lattice of
sites. each one with a random variable. The value depends probabilistically
on the value of neighboring sites. The rules governing this local dependence
can be given in a variety of ways and can be made to capture constraints
such as the continuity of a surface (if the MRF represents depth values).

Our idea. is to associate a MRF on a lattice to each physical process to be
integrated and another (binary) MRF to its discontinuities (see figure 1). The
lattices are coupled to each other to reflect the interdependence of the corre-
sporiding processes in image formation. Thus the various MRFs mirror the
different physical events that underlie image formation: surface and surface
discontinuities, spectral albedo and albedo discontinuities, shadows, surface
normal, and so on. Physical constraints apply to each of these processes in-
dependently. In addition, there are constraints between these processes (for
instance between depth and surface normal). The image data constrain the
way the processes combine. Note that consideration of sequences of images in
time will introduce additional powerful constraints such as rigidity. The con-
straints on the surfaces are local conditions (such as smoothness, necessary
mainly because of its regularizing role in the face of omnipresent noise) valid
everywhere except at discontinuities. As we discussed earlier, discontinuities
are critically important and should be detected early.

Notice that the coupling of the line process with the associated continuous
process provides a module that combines region-based with boundary-based
segmentation (see figure 1).

The local potentials underlying the a priori probability distribution of the
MRFs represent the constraints on the physical processes (smoothness, posi-
tivity, values within certain bounds, etc.): the coupling between MRFs repre-
sents the compatibility constraints between processes. The device of coupled
MRFs provides a.n ideal tool to impose local constraints such as smoothness,
allowing at the same time an explicit role for discontinuities through the line
process Sf[9] and similar processes such as occlusions[19]. Our new idea is to
incorporate additional obsrvablc discontinuity data provided by algorithns
specialized to detect sharp changes in the observed properties of intensity,
iiotioji, otereo disparity, texture, and so on. The observable discontinuities

3O3
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Figure 1: MRF lattices representing the output of different early p~rocesses
and their discontinuities (the c rosses repieseilt thle sites~ of t lie biria rv line
processes). Each representation, for fistd ll( e detIis Coupled to Its (Iiscon-
tinuities and to other cues such as init ensityV or mlotJOHi
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provide an initial rough solution to the segmentation problem. Using the
M'IRFs for estimating the fields gives increasingly precise solutions, simulta-
neously filling in the continuous regions that are only sparsely observable.
The solution at each iteration is available to later modules, such as recogni-
tion.

1.3 The Key Role of Intensity Edges

One of the results of our integration work is that intensity edges play pri-
mary role in guiding the search for discontinuities in other processes (for
instance depth). The point seems so important that we would like to phrase
it as a rather general conjecture on the proper organization of the integration
stage: intensity edges guide the detection of discontinuities in the other phys-
ical processes, thereby coupling surface depth, surface orientation, shadows,
specularilies and surface markings to the image data and to each other.

The reason for the critical role of intensity edges is intuitively clear -
usually changes in surface properties (depth, orientation, material, texture)
produce large intensity gradients in the image. Under the assumption of

C. opacity and of a simple imaging model (the reflectance function is assumed
to contain a lambertian and a specular term), there are six physical causes
for large intensity gradients in the image: occluding edges (extremal edges
and blades), folds, shadow edges, surface markings and specular edges. In
addition, motion discontinuities are usually coupled to intensity edges. It is
for exactly this reason that edge detection is so important in artificial -- and
probably also biological -- vision.

1.4 Plan of the Paper
In this paper we introduce a method for detecting and reconstructing depth
discontinuities by using the information provided by intensity edges. \Ve do
the same for motion discontinuities. First we introduce the Markov Random
Field formalism. The use of intensity edges for surface interpolation is dis-
cussed next, together with the derivation of the associated MRF model. We
then describe our Connection Machine implementation and the results on
synthetic and real data. Finally t lie discussion focuses on the open problems
and on the implications of our results for the general problem of integrating
all vision modules.

,,."-"'.



2 Coupling Intensity Edges with Sparse Depth

Data

To illustrate our approach we consider the specific and imlortant )robleii of
computing an approximate surface and especially the surface deptlh disconti-
nuities from sparse depth data[10,25,181. The main new idea liere is to exploit
the integration of additional vision cues. In particular we describe a scheme
in which intensity edges are integrated with sparse depth data. Sparse depth
data arise from the output of feature-based stereo algorithms. Typical stereo
algorithms provide depth data at a subset of image features[15,10.SL. These
features might be a Laplacian filter's zero-crossings from one of the intensity
images. The depth information is computed by measuring pixel displace-
ments (disparity) between corresponding image features. As is typical of all
known stereo algorithms, the disparities are plagued by errors precisely at
depth discontinuities where surfaces are usually occluded.

The problem, then, is to snooth and fill in the sparse depth data (i.e.,
reconstruct the surface), while detecting the critically important depth dis-
continuities. Prior attempts at depth discontinuity identification allowed the

*. discontinuities to form anywhere in the image provided the depth difference
between neighboring sites was significant[18,24]. Due to the sparseness and
noise in the depth data, the identified discontinuities are: 1) offset from and
2) ragged or wiggly compared with the correct discontinuities. These limita-
tions become more serious when the images contain a large range of depth
differences, as in natural images.

Because of the constraints on image formation discussed earlier, lie cor-
rect depth discontinuities will, in almost all cases, correspond precis(ely to the
locations of intensity edges. Our integration scheme exploits this by restrict-
ing depth discontinuity formation to a subset of the intensity edges. This
restriction ensures that the smoothness and continuity of discon inuilt ies can
be no worse than the intensity edges t hemselves. In addition, ti, difficult
problem of MRF parameter specification is simplified since t his lit grat io0n
scheme proves less sensitive to MIRF Parameter varatl ioii.., parti lclarl. rI wn
the depth data contain a large range of dlept hi differenes.

There are some cases in which discontinuili,, %\ ill not (,(, mr at 1tllsit v
edges. Any object that bcn ds in withI its ha ckgr,,,d piire it' , t 1ic I,
This situation occurs rarely in atiral sceins; Y(t1. tl practl I'awi> 11l

6
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as caiiiera liiiderexposii re or, Sa)t i ia t ion, tile olbjeCt May blend in with the
lbac kgrou ud at smOle loall~ IIowex',er, for d hese cases, the point, is somye-
what moot. since wit bout iiite~isit 'v edges, feature-based stereo or motion
a Igorit bins %%I!'~ not p rov ide dei l if or iliol Ion (Ia ta.

AIll' l?( geile 1(1; sit Ila1 I (II ii'( ,v lieu t 1ic feati ues used for st ereo or mo-

jin arie di fferent I hoi thw d i I;sc~mi aily- 11ilig features. Iiiis is desirable
S~fC~tie ori il~ IV (iV111 TSused by stereo and( imot ion algaorithns ass ure

thamt tile fet irsise for Ti :ICI*T '1 r loca1ted oil surfaces. Th us stereo and
uT1)11 ;il altt 'nis, ;llolll( 'seo 1)-I -, eolut.ii. dense features that identifv

sullfiace I 1ig uiJ- i 8ii:irig contouirs whilch in general corre-
s ponld to -frfalc c 10(8'ons liw at ar differenit Iil lie t wo images of a stereo

pair.' .i . r&il Tl -' a .ng -et ire owever can be chosen to bli cr

COFreSPlid to objecct hon ut Iari( 'S.
T he results sect ion conitainus exa nil es Ii which the discontinuities are

ide tli fied 811(1 thle sIu rface recoi t ted I iot i withI andi without the benefit
of intensity edge iniforrmat.:o. Thel( next sect iot lpresents a limited overview

of MIRF particlarlls anfd contmis the ;ippropriate MIRI energy function for
lilt egra"tlillo intenlsity edges witlii.ii n case. ie sparse dlepth data produced
bY a st ereo alIgorl i !)Il.

3 MRF Formulationi for Stereo and Inten-
sity Edge Coupling

I'lie 11liorv (of Ma trkox H a loin Fields c-an be found elsew here [9,17 7]. We
onscl (Ilv ;Iil (verVICW i,: 1e hIlowed byIN a description of' the energy fiinc-

foils uised For lilt egral t 011.

I'lie I! uIIIli rSle\' Cli Frord! horeT ii -,t at s thec equivalence bet ween a NIH F
;)i 25 Irlto ;i : 1*1ollows I' .Y is ai MIPF oil a Ia tfice ,S withi respect

!o Ill GC I'gtitn I\&l ( I tI' . w)Is givenlIY

7 S flO'118181 H tit a. I ihe Ifliiqn tat11n a 1id I U(N) isthle crnerqq

fi l ionm. 'I he tecl Iper;1 t 111( ii. coid( he a hsorhbed Iniito ( N ):
I[,Iw\vC\'. \ leu thw 114, 2't e "I i '1. ~issed. TV pro's' useful ;is a separate

J-%*
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variable. The energy function is of the form:

1 Y(x) =Zu(). (2)
C

The sum of the pottidials, (c,(N), is over the neigiihorhoo, 's cliques. A
clique is either a single lattice site or a set of lattice sites such that any two
sits belonging to it are neighbors of one another. The fulnction /( .
is called the prior distribution and abbreviated here by !P(X).

The prior distribution on X, where X, for example, might be the recon-
structed surface, must be determined based on some observations or input
data, Y. To relate X to Y Bayes' formula is used,

IN(YIX)P(x)
P(X Y) = (3)~l(X

P(I')

The observations, Y, are obtained concel)tually by degrading X. such as by
the addition of noise or blurring. If the type of degradation is known, the
distribution P(YIX), can be computed. larroquin[1 7] has shown that for
the case of zero-mean white Gaussian noise, P(Yj.') is a Gibbs distribution
with potential:

.(YIX) = U U(YIX); i(YI.X) =-,yi(xi - q).2. (4)
iES

The sum is over all lattice sites and

S1, if input data exists at lattice site (
"*i { O, otherwise. (5)

When this result for P(Yj A) is combitned with the, .\Ul F prior distribut ion.
IP(X), and Bayes' rule the a postc,,io.i (Iistriul)tioti j)(. V') is:

P(XIY) = exp , (6)

for 17,(\AIV) = Nx) + (}I N) and \hill Z norlziali/tation colnsi ,,t nude-
pendent of X. This a posturior (list ribuit Iii pn ovidt's ilie Iikefihods for all
possible states X, given the observal e data t .

* Given the posterior (list ribut lion tN'. } ) arid i lie ( .I( .ml./i /d ) Inhc de
sired field X can be retrieved once a suit;,lhe c'nor criterl r is sPe,Ific . l,1

IS-
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A.laxiniz: r of 1hic /Poshrior (an (IPMI) reduces tile problem of annealing

and has been successfuly a pplied for our results. With lie criterion specified.

the relaxation algorithm for solution, is largely determined. The question of

a suitable error criterion ald(1 algorithic consequences has been thoroughly

I, SI i>S,',! ' k! N 'rp)i I'll) 17i .

h'lhe rubie t has now 6ecorie urn' of slcii''ig the Mil{[ potentials,

(',(X) and Ui,( VN). Tih potent ia Is I ilpOse th ph s ica I constra I nts of con-
t i I Iit v ai j(l S lnooti loss of' sirc'-. ,,, ( ep a: I) ideptI d iscont in it ies) along

wit.h continuity and sinoot ss " ,lep! II disCOeIt iuitie-s. These cunstraints

are iinposed by tailtoring Ill( c rier,5 ' tioii tio Ininirnize the oneray (maxi-

mize the probability) wlwn tie s !a ,.e o. u pied atisti<es ithe desired phivsical

constraints. Typically 1 his 'owce i (' mipirica] iliwill n ight envi.;age

' ~ estimating the prior associated wili. for instance. depti smoothness from a

specific class oif surface da a.

The MRF state spa,, used hereir, is siiilar to that ofGeman and Geman[9]
a long with Ma rroquin[ ] where each Ii itice site is composed of a depth pro-

cess and two line processes, X = 1L1. The depth process. F, is a con-

tinuous random variable whose value is related to the distance of a surface

(0 point from the observer. The value of F at site i is denoted as fi where

-o- < fi < c~c. The depth process neighborhood system to site i consists
of the four nearest neighbors: east, south, west and north, to i. Although

a continuous random variable should not be updated using tile Heat, Bath
algoritihin, tile deptl process cii he (let ermiiistica Ily updated[17j, provided

th le NIlR' errergv is suiltal'I defiied. Figure 2 illustlrates the NIRF lattice
will]i t lie' (W )t i ael 111W processes.

'lre lilre procc.s ilsded here. L. con ains a vertical and horizontal orien-
taltion thll are cocpt aIvly located bet\ween lattice sites. The vertical line

plr occ'5 i l(oculti lwlwefo it, 'Otlrce site arid the neighboring eastern ]at-

ic(, site'. whereas the horizon ta 1 !i1, process separates its lattice site and
IlI( ll(arest soul rh'rri lalice slie. Lacli orientation is a binary randomn field,

,, . .{ . ' Iiiv i', I , s,' . ,, nil ! (! delloc(' the line process that separates

I; ice sihc I fnu T. lie heorizoltmel line" process at site ? is denroted as L :
tieh ,,1. i-,l T i C(I5 p s " i". 'm ,olung ,!" tof ire( depth process is inhibited

wlwf, Ile 1  I , t;II i.. , ,. i - I . silli.(c, , 5 lo o l  i nig should not occur across

, ,h disc,, , i,: ,' . , , . h!cpts smootiiirg is performed. An

nit , 1 ,r'' ' 5i lie l' Ir,' ,' e, (,i, dep lh (is ricoliniiit. The conditiois for

e e. %
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Figure 2: (a)A lattice sit Is coInposed of a single depth process (ilustrated
with a circle) along with a vertical and a horizontai line process. The MRF
Lattice consists of a reclangular grid of thee lattice sites, (1) 'h'e nei glh-
borhood for the depth process aid the \ert UaI li e. J)iocess ileglhl)orhood.

hIe black dot in lhe line process neighlborhood iid(1calt.es le Ia ltice site for
this neighborhood. (c) 'Ile five maNiiiial (Ii(l1WS (1io1i1i1. eist. soul hI. N-est

and central) for tle verlica Ilinae proce'ss a,(. 'ld,, 11. 111 1 his p)eio , we oillv
CoIIsider coIIfigIIrations of the (e e tra I clique. I I :- is eq I II I Io assigIIi I I
'zero energies to all coilig) rat iolls Jl I lie ( 11cl! fo r ci 1 ,.. i
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depth discont intiltyv formnation are eica psulated in the NIlUF energy function
p~resente (ISubsequentlyv.

The external fields to the NIRF are tho sparse depth information and the
Itensi tv edges. 111(2 SparEse deptI~.(~ are represented by two variables, gi

anid 1,for site i. 'lie -ahic q ;', a nalogouns to f,; it is cont intiouslv xvalued
o)xerI the real I iuilners. alt Ioiigh il pract ice, since qji is provided by stereo
oUt put, it 1; dI SCrete. 'I lie van l ncodles thle sparseness of the stereo
o0 dII'j t aidi s ef']i IS III o,'11a l ).

le i ntvlsliv edt'u's ane'e !I-~ d I)\ the field. E. T1his field is similar to
til li ;ne 1rocess. L (,X(-([);! . atlier than indicating the presence of

a letIid ~ont nnlx cc if l J' rinal 'on of at depth discontinuity between
la~t ice site ?,and( neigh h~or J. TVhe MIRF!~ energy is designed so that K=0
inipli es (in the pre.,eii t iniipleinenit ation)I= 0 for all 1,3 E S. Ani edge
detector, such as ( aniv'sr,]. will mnark a sit, i as anl edge, but ej marks
poteintial hiscolitilllit k' h~( n !I ~/. anid T o resolve this am-biguity, if
anl edlge Is at, Site I ., thIenl w x hre k is each of the nearest. neighbors to
site,1 i V s initcnsi t edge feld .', a long xwit hi (; comnprise the M RF external
fleld Y?. Such that I { T7 ')

* Giventhe( ext eria fieldIs, '. and t he randomn variables, X, equation 6
piovide., the posterior di t rlliuton xi ithle NII1F energy given as

~j [i>i~)+ :3(1-Cfl1 (7)
iE<h ,v>

A1 To irst ten-un in this equlation 11,-s Ilie couipl ing between thle depth process
and the sparsearid noisy iniput dlata. I'lie coupling factor. n, Is related to the
niOs(' ill g. For noiseless dIat a, (1-4v thlerebv enisuiring gq. Otherwise.
whlr o (= 0 inif d(ata colmplin.Lr occulis anl f is snioot lied by the termi

irixolvinug, (.1 - fJ) in eqiation T. I'llk' precise relation ibet weu oI andi thle
Ioise (lepelil' oi OH w :w k. lIc assillie I. For a mlodel of riieasuriuent

; t inc I iii ( a ; I ld (Ia i olV

N.0

%2:-
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where o, is the gaussian's half width at half maxinutm[17]. Note that if tile
noise model's parameters vary locally, it might be appropriate to vary a
locally as

1

Local variation in noise paralneters does occur in the stereo algorithm of
Drumheller and Poggio[7]; this variation is reflected in the stereo match scores
of that algorithm. The present paper does not address this issue; here we
keep a constant, usually in the range 0.1 to 2.0. The input data coupling
to f occurs when I = 1. Typically 5 to 10% of the lattice sites have input
depths associated with them.

The last term in equation 7 implements the integration scheme between
sparse stereo depths and intensity edges. The term forbids depth discontim-
ity formation except where an external edge exists. Discontinuit formation is
prevented by letting /3' -* oc. When i= 1 and K = 0, this term contributes
a large energy, U,(xly) -* oo and the associated probability for I, = I is zero.
At sites where c = 1 this energy term contributes nothing and the depth
discontinuity formation is determined by the other factors in equation 7. The
problems of misalignment might be handled by suitably modifying this term
in the energy U,(xly) to produce a it cone of influence or, for a simple case.
by "thickening" the input intensity edges. For instance, we may use instead
of e in equation 8, ei * G, where * denotes convolution and G is a gaussian
or another appropriate cone of influence function. The results presented in
this paper do not utilize a cone of influence.

The second and third terms in equation (7) encapsulate our prior expec-
tations concerning depth discontinuities and surface reconstruction. They

compose the potential U(N) of the prior (list ribution (equation I). These
two terms 'compete' in the sense that turning on a lint, costs energy 31'c(lf)
but saves energy (f, - fj)2. The interplay of tlese two potentials largely
determines the formation of depth discontiliuii ies where ( = 1. The second
termi couples the line and depth processes, the thIird tern) det.ritis the
line process clique energy. This line and de th process cmipling is >1iitmiied

over the nearest neighbors, nn, to site ., with 'ach neighbor cont ribiting an
energy (f, - f,)' when V, 0.

The quadratic term, (f, _f , tends to st ioth thle ('I)th l , ,roc's, "1ice it
is nimnitnized when f, f3. Depth disconlinutities have a higher prolialbilit
of forming when the energy to ('redie a li1e. 3f1 ('('1), is less t litil this 'lergy
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to smooth the depths. The factor 0 is a free parameter that determines what
size depth difference is likely to produce a depth discontinuity. Specification
of 3 is largely image dependent and, although a suitable range has been
determined, a. general theory specifying 03 remains elusive. The line process
cli'tie enerV will be exani ned in detail later.

The Heat B~ath algorithm cannot be simply applied to equation 7 since
the f'i are continuous variables. Instead we employ a technique to smooth
the depth process deterministically, but to update the line process stochas-
tically withl the Heat Iath algoritlm[17]. With the line process state fixed,
the MRF energy of equation 7 is non-negative definite quadratic with a sta-
ble and unique fixed point for the fi (practically, 03' never contributes since
the configuration ' = and = I has a vanishing probability). In this
situation, the depth process can be smoothed deterninistically to find the
fixed point. After this fixed point in depth is determined, the line process is
stochastically updated, the new fixed point in depth is determined and the
scheme is repeated.

Once the line process approaches equilibrium (roughly 1000 iterations),
'., statistics are gathered to compute the MPM estimate. The MPM estimate is

computed from P(Ii=) = I 1q, where n is the number of iterations over
which statistics are ga.thered[17]. When P(Ij = 1) > (0.5+ 1/V/'n), statistical
fluctuations about 0.5 are reduced and the MPM estimate is turned on to
mark a discontinuity. Use of the MPM estimate does not require annealing
but the a postcriori distribution's coupling parameters must produce a rea-
sonable amount of line process agitation thereby sampling much of the line
process sample space.

3.1 Choice of Line Clique Energies

Figure 2 shows the line process neighborhood for the vertical line process.
Of the five cliques shown for this neighborhood, only the clique centered
abouit the vertical laltic, sile has, by design, a non-zero potential t'cT (l).
-tlii pot-enlial depends on the 256 possible configurations associated with
the ciliqile. The desirabie configi rations are a small subset of all possible
configurat ions and they inipose the constraints of smoothness and continuity
on il te dept ih dis on t.i iities. T1 eso constraints ate enbodied in the following

five lienurisltcs which divide thlie desirable configurations into classes:

13
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! I

Line Creation Straight Angled
Line Growth

Cornered Straight Angled

Line Completion

I I"

* IN

Cornered Straight Angled

Tee Completion

Figure 3: The four classes of non-forbidden line configurations for the verti-
cal line process. A dot, '.' represents an off state; on states are shown with

their oriented lines. The symmetry operations producing the other allowed
configurations are discussed in the text. The horizontal line process configu-
rations are identical provided the vertical line process cliques are rotated by
90 degrees.

" Turn on a lone site provided a 'large' depth discontinuity is present
[Line Creation].

" Turn on a site extending an already present line segrment even if the
depth discontinuity is 'small' [Line Growth].

" Always turn on a site if doing so would connect two line segments [Line
Completion].

" Allow tees to occur infrequently where slf)ported by at. least a 'small'
depth discontinuity [7'ec Cornphtlion].

" All other configurat ions should occur rarely if at all fIForbidd( nJ.

Examples of the first four classes are sliown in tigu re 3. Iln addition
to these configurations, three symmetry operations produce the otlier non-

i . • . . . . . . , • * . . , • . * . . - . • . "% " . - I 'o,, ,
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forbidden classes. These symmetry operations are: rotation by 180 degrees
about an axis perpendicular to the page, reflection about the vertical axis (for
the vertical line process orientation) and the 180 degree rotation followed by
the reflection operation. With these symmetry operations and clique classes,
a total of 22 unique cotfigurations are allowed from the original set of 256.
When I" = 0 (line is off), t lie clique l)ot etial is 0. However, when ' = 1, the
clique energy is determined by the five classes; this is the energy required to
turn on the line.

The line process clique considered here is only one of the cliques associ-
ated with the neighborhood shown in figure 2. In previous work[9,17], the
smaller neighborhood did not readily produce lines of any orientation- the
cliques tended to create vertical or horizontal line segments. The 'large'
neighborhood used here (though incompletely, because we assign zero en-
ergies to several cliques), does encourage isotropic line formation without
exacting too high a computational penalty.

4 Stereo and Synthetic Image Results

The MRF scheme for coupling intensity edges to sparse stereo depth data
has been implemented on a Connection Nlachine[1 I]. The sparse depth data
and intensity images from both real 3t.eieo and synthetic images have been
examined. This section presents these image results for some typical images.

4.1 Connection Machine Implementation

The Connection Machin!e (CNI) is a fine-grained parallel computer manufac-
tured by Thinking Machines Corporation. We used their CM-1 model with
16k processors. Each processor is connected to its four nearest neighbors

* (north, east. south and west) in a two-dimensional grid, the NEWS network,
and each 16 processor group is connected to a 12-dimensional hypercube, the
lRoutcr. T'ese two conmiiunicat ion modes allow fast access between neigh-boring plocessors alld loga rithmic-tinie access between any two processors.

,ach 1roc(, *or : ; iunn' 1-! it processor with 4 kilobit.s of memory. All
Spt,(~ss( ~.:xec , ;I rIf ,w i10'1-1 c1ion strear. The CM was con figured to
lllatcli the image size. 256 x 2.56. by using virtual processors.
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For the MRF implementation each CM processor repr(i eits an .\I" lat-
tice site. This configuration proves ideal for implementing the MRF cliques
over the CM NEWS network. The limited number of non-forbidden line
clique states and energies are stored ili tabular form at ,ach processor. De-
termination of the line clique state requires access to the four nearest neigh-
bors plus the north-east (south-west) neighbor for the vertical (horizontal)
orientation. At the image borders, the line processes are always on. thereby
conveniently preventing depth process sinoothing beyond the borders.

The MRF input data was obtained from two previously implemented
CM-1 algorithms. For the real stereo depth data, .MIT's Eye-Head system
provided the stereo pair and the Drumhreller-Poggio CI-1 stereo algorit hm[S
produced the disparity data at a subset of DOG zero-crossing features. The
intensity edges came from Todd Cass' [13] iniplementation of Canny's edge
detector. These edges do not coincide with the stereo algorithm features.

When synthetic data was used, the image depths were produced by the
TMC 3-D Toolkit as was a dense depth map. A sparse map was obtained
by randomly discarding 90 to 95 percent of tihe depth values. Uniformly
distributed random noise was added to the synthetic sparse depth data.

The initial line process state is set to mimic the intensity edge map as pro-
vided by the Canny edge detection stage. TIre Miff depth values are created
by usi~rg the sparse input depths to -brush tire fill" and then by determin-
istically smoothing the depth values. During the deterninistic smoothing of
the initial depth process, the depth external ield (oulling. (1., is inlinite.

4.2 Results

Figure 4 shows the MIF result.s on a synthetic image for two intensity edge
coupling schemes. In the first scheme, initensity ,lges are riot lise I in the
MR F process. This allows depth (iscont iniities to form anvwhre amid is
achieved by setting = I for all i,j E . The ulpper left image shows the
synthetic scene from which the sparse depth data was\ derived. The lower
left image in Figure 4 illustrates tire dept h discontiluities i(Iciltifieti with the
MPM estimate of the MR1" process. \Vhiel the ( lpt hs vary rapidly. 1nra ny
closely spaced discontinuities are formeld. These discon tininities are raggedl
and also displaced from the actual oh.ect Itindailis ias marked 1,Y iitenlsitv
e(dges). The reconstructed depth surfa is nt sinwn).

The second scheme strongly penalies (d)th ( iscontinit v furniration cv-
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ervwhere except at the intens1i v edges shown in the upper right image of
Figure 1. The exterila! fie(d,. ,±il;,s one only at the intensity edges pixels.

The depth discontinuitics found atn' shown "m the lower right of Figure 4.
Nearly all the intensity edges due to m irface orientation anil texture are
eliiuilal ed. lIll s(nle phi, cs. S,ch as lear i he ge desic sphere's holindar. the
surface slope alone is larg,' (.1ol011 to yield ( dept h discontinuity.

A not her represe! I aiv e ii mage -this time a real image -is shown in Figure 5
where a stereo a gorithii p,odued tue sparse depth data. The right image
fro'li the srcrco pair al))(.nrs oi the up per left of Figure 5. This scene consists
of a tall stack of newspapers an( a small box or carton. The stereo depth
data and tin reconstructed surface are not shown. Once again we consider
two cases, depending on whether or ;iot the intensity edges are utilized.
Without the intensity edges, as with the synthetic stereo results, the depth
discontinuities are poorly positioned aid ragged. however, with the intensity
edges (upper right of Figure 5), the d iscoiitinluties on the lower right agree
rraonal)lv well with the o)ject boundaries.

For these stereo image resilts, a few difficulties are worth mentioning.
- A large depth discontinuity along the top left of the newspaper boundary

is not found. The stereo algorithm produced very poor depth data at this
location and positioned the depth change roughly 5 pixels above the news-
paper IltensieyX edge used by the NI1lF process. Also the small box's shadow
vijeld,'d a small (isparity that created a deplth discontinuity. The box itself
a lo had a stmiall dispa rity so tha, modifying MRF parameters to eliminate

hlie shadow disconliim it womiId have elminated the box's discontinuity. This
sort of varahiblit v Vi iMrvita hle iintil a reasonable method for local paraineter

I''iis h. on ij ,I,'v ,e.

Sittai ttI.. , n arise whrein (liscoil inuity detect ion is hampered when the

ilitt, I t.\ ed(e" s os not coincid,' vilh the sites at which external depth
I! .,,I lo~i(Ie~l Vilrc6 (i d isljdays a e, -;sihlity where a depth discontinuitv

-i , F ',lr; 1, , e r . a,i \ 2 inclusive. However, lh(e discol-
t
jilli W\ -1,1 u f ll)( t1~l~ t( (d c ;0t B-1 ;lmid. becauise o e t
Willi , i , i i , , 1 the d m) il '- 1v I I ii be ash( d old ''. lie tI'(shinily

1 , ' I 1 )1l, (til i .Ii , -ir .'. i)tho Separation 1 e ween edges
, , ' ' \ 2 ; Ii', , , t, : . If 1de B- I wvei. Il A -I or
' ' It. , 1 : ' h " , , l i - W , , : , T 1 , 1 1 , ,f \, f ! ! , , , , l .( ) l l e a p p~ r o a c' h t o , \ o 'i ~ l i l lh I s
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I')
. .

AIMS A



/-0

Edge A-2
Edge A-1 Disparity =0

Disparity 10

SEdge -

-Stereo Disparities Exist

5% -- -Intensity Edge

Figure 6: The disparities at edges A-i anid A-2 suggest that a depthi discoli-
tinuity should be formed somewhere lbetweeni A-i aud A-2. Yet, because of
depth process smoothing, the d1epth (difference at jintensity edge B3-1 may he
too small to support a discontinuity. No discontlinity will form (lue to this
'misalignment' of edges.

location. Then the discontinuities could form not only at the intensity edges
b~ut also for one, two or more pixels on either side of the edge. This has
the disadvantage of leading to somewhat poorly localized and ragged edges.
Straightness of the resulting line process is enforced locally by the intrinsic
prior of the line process when the cone of influence is no larger than the
line process neighborhood. Another approach, used here, was to ,vold the
washing out by an appropriate selection of the coupling parameters. More
work mnust be done in this area.

5 Coupling Intensity Edges to Sparse Mo-
tion Data

Ilie Simp1 licity of linliltirlig discorit)[iri WS o al stihist (of iiitelsitY (edges 1i1-
inediate!y suggests its use for other %ViSili mod(u les. 'I'lle san ie pri icilples

emiployed for the stereo dlept h application have beeni ut ilized oln iot ion dIata.
As withI depths, motion fields both from syii t et ic (~iat aw a 1( feat re- based
iiotiori algorithm have beeii used to dlnt ify ilolionl 4iscolnt iriijt ies arid to

sumoothi and( fill the sparse miotioni field. Tlie di ffeie lie Is that miot ion is a
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V rfieldl,(( de t I -is lot.

I he MI R F enlergy of c'qll a l ISii ., iod i fe I by rep~lacing the randomn fiebid
Faibl.I. by a vector ra 11o011 fieldl. 1l. Likewise. Ilhe external field, (1.

B. riw -; a vector it1c(( Ilie, MNi ' ejIIer1-4 is:

12 _j_' p' I 'f ,'..10*

\\ ieie UA! it.± Cwith' a siiiila ir definlitionl for V anid where Jil, -M I

2 ~) + 2c ~). The inpUt field A' contain)S 1 he- two (:omponen ts Of

the 01)t ica~l flow; the out put is Al or equiivalently, (I i, Vi ) for all lattice sites i.
With this energy formulation, motion field direction discontinuities are not
identi Ied only magnitudle discontinuities are marked.

A specilized motion algorithm, such as Horn and Schunk's[12], can be
used to compute the motion field for input to the MIRF. Thle motion data
employedl here derive from- a parallel algorithn41 14] that provides match scores
ImuCh like the pre-violsly usdstereo, algorithm. Match scores provide a local
nieasnre of t rust for the motion data lbut are not utilized her(-, Rather than
splitting the probleim Into early and middle vision parcels, an alternative
ap)proachi uses the MIN machinery to compute tire motion field fin addition
to segiieiliig Ile Iniagvs ,201

Iigi ire 7 Ill ustr ales somi ie iesti Its onl a s imp~le sYnthletic motion seq uence.A
'l" inmage conltain1s al whit e squatre wit )Iiia sniiall grey texture marking Moving :
dItagona i ly aicross ai giey aw black hi arlgrounrd. Thle motion field Is non -

Ze1ro only on) the wif te squarie aiid its texturrc marking where both x' an

Y/ (0I111 )otieits t'Xisl .lRoull"v o~ f Ilie liage iiiotion dlata Is Input to the

MIR F. Thle hot tonil hal1f of' figulre 7 shlow' I lie n11t io11tiscontifiiili es idezit ified
1)()t 11 wit 11 a1 lid \%'I hl! Hli riisit v edve 1n1"LI'IlIti lion). \ ain1. I he lint erisihy cdge

siinhant ',' eincne t I'loai" o 'irc illot ionl disr"ot ililiities.
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Sparse and Noisy X-Y Optical Flow

from a trivial Synthetic Image
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6 Discussion

6.1 Central role of intensity edlges

I1'l le tilts presented here siliipt the O!lIa t hat inwnity edgcs can1 be used

Tu 1 i11 jes III I Ilie I)1, her I mese h2 ~ a . 111 :"w, text1 lit- a lidi (Idol. Al
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li'r [here a re also T o re s pec If ic q IestI it 1)> 1o. (, 1:tei i: 1 1 11 -it

in tegration and (1iscon t inity detectionl.

6.2.1 The Structure of Visuail Integration

1 lic scheme sketched in fion re 8 Is a prelIIitnInIa rV i H", 0ge>1 ( I If,,] I Lt Itic-

I Ilre of visual integr'at ion. It is close li spirit t-o tw he na'd ai ii! lili'11.lO

Inltgo's proposed by Blarrowv and ''lenii'ta umi I heyn did nu(t,, I tuw eer.

have thle powerfuil theor'y of coupjledl NIR m~I'iodels tImiplemenit hewir ideas.
hi forni at ion about the image intens it y has aI prima r role I I I t (I is It 1Y (xl g

litlpi thle line Ipro('esses associa ted withI color, te'0tni.iu1(1 (Id cthI.

)e-pt I t self has, also at special IOle in a senlse, It is tilt~' mlail on! pu t of

thco w hole sstlem. Miot ion, tex uire and c-olor art' ('oil p i t) lo'ptil. 11lev
mai n ot he di rect ly coupled to tach other. Nothic that //I( 1111 a Cu roil !1

611, f/trollgh /ilie pPO((., '(S, itcCoitling to) the priiheipit' out Ihiied Mi t'
>1 rtithiction. Notice also t hat loc'al est lmle.it' (of liliahijill. I lie use1 d to,

1 tn al )p('li qu~est ion howv. 11) the presentli 11ii tIii tionl th 11e ltoloit' v 'doe'-

*c t 'allY d Iri veil h\t ex Iti al data, piei~i ld h Ii; '(' iVS (Ittect U!

'A ;Wt'rt, d 'pt 1i anld III()?ittu e1I, :! u: 1_B 'iNl i1,:1 : 11 ;'w itIhttiil

i I f I, itc]I, tIlt I t' edge i n - I ti d '"I' 1 1 K - ~
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Figur-e S: The or-ganizatrion of the integration slage. Each of the processes is
colupied i 1 its irel pl-0cess I1tcnsily da~t a feed into the' mot ion, color, tv('Miire

il (1 depth i rw pr-ocesses, The litic p)F0cesses ar ri ot hidden riocesses: t heY
TM i V aso r-eceive dat a fr~nr specialized di scont initY detect ors. 'I'l( leri i n Iv

I inc PrOcss gets ii jni t dIatIa from Canny* edges. It, Is coupled to a hiighier level
field wh ich 1 iiplernents comstr-aintIs of I Me confti imrat ion anrd coil incanrtv oil a
more glroball Ibas~s I han tre neighboliood sysicerr of thle fine pr-ocess. Thec line
process ass(,cmate(l with tire depth l)I'oce-,Ss is alIso corIpi'ed to a higher level
field which im i plements thle appi-opriate constr-aints ii iderl ig occluisionis of
srirlfaces. 'Vile pla irsibil itv of inl t eractlionls bet weell imo ion, textulre and color

is rtl I open qulest ](M.
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6.2.2 Detailed Questions

O)the'r open qulestions are: u,,t .u,u liitm tfmfl/lflmt/t 4
lol ti ft ~ tC)! '/i

clo.'tea Intts mt H It lif ( rctic ss, ti, n ItIf-f it) .11,t111 m Itqn(tu i It // t >o I fou fi, /d1..

( t 1i. fr(JIft (za111fp/i ..

Integration of additional visual cues As~ fig i, ye *. >llx>.w plani to jil

grate other visual cties with stereo, iiitt ;omad d;t' 0t ia. Il pcI trl ictlir.

we will include textutre and color. liecise text tire hoiroaries, ditl\tependt

oil (changes oIf miaterial or sharp (llimigt, Ii sit rfhic orin il iII. I~e l it. Cth

he( uisedl to support t ie( line Jprocvsses, it i lit, fcpt 11 mid not ,1i HIM111ibs. l)r
color thle goal is to find~ hotidarui's that th elicl c r2ii Id, 4titllstallf ;It hidi
(at at coarse resoluitioin. since smiall surface miarkirns -litmildill 1wo lievvn i-ell

this stage). .As Ill the case of depth Iiard itot oi. iiettvelZspktv icritical

role for these two aidditional visuaml moiotiles. Iftirlfiert taid ('0~i "1 2
have-( sketched a posllesleii ortilii lf i itltl-lil i citi

It is iimportantt to notice thiat h oiii; jl l\': .. -,d :-a

only allows rein forcem en t of evItlei e fo r. it. dept li 'Lt t 1 Ol . kitt alsi
achieves a classificat ion of' aui Inoiiet*stvedgel inl ternv d* it drerlvu ii-- ph.\ ital
cau ise: for instance, whether it Is, dute to( a Iitto ri illtIpti idI-I 1 I ( Ii dicI t 111ir Y.

C'learly. psychophysics canl give uiseful liidicat in d which iritetrctiw ti re
import ant in the humiian v-isual svst eni

Local versus global constraints on the line proces Ihline Jtrocvs

Ipro\ildes aimeans for imposing iimpJortanlt pit> sicaf l rnto ielwdsconl -

iities suich as: corttirttiity. relativ spiittl t julitw antd poio~tlv oliteait
These constraints are enforced by trimtg appropru- hitfqie> andt ~tioci()'Utld
t' ti r values. Hlowev-er. ilt (iir experie-nce( wit it Nlairk-,v Hit rd0 m F~ield nid

ol. ipplicol to real data. at prolert ha> criwrged( tthl ?ie 11. 4d il h ite

prctss . fit man yi catses tw heprioptrt V of dIliwnariIt ft ;it tall ho a id rcud il
this wvay remafi> too lowilliortiiiiit eitti t1,t4 1'. ht. 1 1 '11h >i

timesC. ven broken when integraion it f[Ilit tige>, rI uItii. llon
carn one en force thle propertyv of coni in t v or s5 i n t lv td nert ivtr limrger
distances within the N10 I : friiiwork.' I livtt ( i dt d iot \&t li;, e Ii'gtiil

toi explore is to have a iglier level NIRHF tliat toi-'>tfeattires". s-iicll a>
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straight lines of different orientations, with its prior probability distribution.
coupled (bidirectionally) with the line process lattice (see figure 8). 45%

Tolerance in registration When data from different cues are combined,
say from intensity and from stereo, they must be registered. Spatial coinci-
dence is the main constraint exploited here. In general, however, one cannot ""
expect that discontinuities in depth and intensity will always have exactly
the same location. Because of errors in the early vision processes, effects of
filtering, photometric effects and so on, depth discontinuities may be offset
by one or more pixels from intensity edges. To deal with this registration
problem the cone of influence might be useful, in which the intensity edges
facilitate (or don't veto) the formation of depth discontinuities. The cone of
influence size should be on the order of the line process neighborhood. In this
way the line process constraints will ensure collinearity within the cone-of-
influence. Again, important information will come from psychophysics: we
expect to learn how alignment of, for instance, intensity edges with depth
discontinuities affects human vision.

Learning parameters from examples A critical problem in using MRFs
is the problem of parameter estimation. The performance of the scheme
depends critically on the natural temperature of the field, the potentials
associated with the clique configurations, the coupling between the lattices,
and so on. Parameter estimation should provide estimates for these factors;
pos-ibly by learning from a set of examples.

Does integration influence early vision modules? In our computa-
tional approaii to integration we have tacitly assumed that information flows
from'r the ca rlv vision urodules to the integration stage - the coupled Mi Il

YsI emI bti not backwards. The outlput of say, stereo, is modified by the
Ollpi ls of other r nod iles at the level of the MHFs but the stereo process
it-,l f tI i( matching, for instance -- is not affected. The decision to neglect
fe'd I,ack int eractions, from the i ntegration stage to the early processes, in the
pr')r:(nlt version of (nIr t lheorv is mairildy dr ie to reasons of simplicity. Without
110o !ifyirg or r sc hrerne In an esseIntial way, it, is easy to incorporate backward
effects from the inegration slage by assuming that the whole process from
early vision aig,ri 0 trs to tlie int egration stage can be controlled by a higher
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order system taking into account higher-level goals and the avaijable resuits.
If recognition is the goal, for instance, the current results of the recognition
operation on the integrated information can control whici early proces"ses to
apply, where, and how (i.e. which parameters to use). In this case. onW may
hope to develop a useful theory of integration without worrying at first about
the problem of feedback.

A different possibility is that interactions between the integratioll stage
and the early vision modules are an essential part of any- integralion theorv
and cannot be neglected even in a first-order approxination. In an extreme
case one might not be able to separate the integratioll stage ,1seilillv front
the early vision modules and even the modules one from another.

In principle, this is possible. The algorithms for the early processes can
be regarded in several cases as MRFs themselves (regularization algorithms
are special cases of MRFs[2,23]). Thus our coupling schemes for integration
can be extended to couple the early processes. In practice, we expect that
parameter estimation may become a very serious problem once the ,arly
vision processes are tightly coupled.

Hardware implementations As discussed elsewhere[19,21] tie coupled
MRF models used here can be implemented efficiently in mixed digital and
analog hybrid networks. It is interesting that, the interaction underlying
coupling between fields is of the type of a multiplication, logical-and or veto
operation. These operations have some intriguing possible innple:nentations
in terms of the properties of synapses.

While it is certainly possible to implement the sate mixed (leterininistic
and stochastic algorithms described here in, say, VLSI technologies. it is
also interesting to explore approximative deterministic algorithms that may
be simpler and more efficient. Marroquin[l 6] has provided an encouraging
initial analysis along with estimates of convergence properties.
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