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~ DISCONTINUITIES: THE KEY ROLE OF INTENSITY EDGES
o
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:.\ Abstract: Integration of several vision modules is likely to be one of the
- keys to the power and robustness of the human visual system. The problem
(4 _ of integrating early vision cues is also emerging as a central problem in cur-
- (: rent computer vision research. -In this paperswe suggest that integration is
. - best performed at the location of discontinuities in early processes, such as
'.' g discontinuities in image brightness, depth, motion, texture and color. Cou-
" ' pled Markov Random Field models, based on Bayes estimation techniques,
)

.:a can be used to combine vision modalities with their discontinuities. These
! models generate algorithms that map naturally onto parallel fine-grained ar-
chitectures such as the Connection Machine. We derive a scheme to integrate
intensity edges with stereo depth and motion field information and show re-
sults on synthetic and natural images. The use of intensity edges to integrate
» other visual cues and to help discover discontinuities emerges as a general
' and powerful principle. -~ -
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1 Introduction

One of the keys to the reliability, flexibility and robustness of biological visual
systems is their ability to integrate several different visual cues. Early vision
processes such as stereo, motion, texture, shading and color give separate
cues to the distance of three-dimensional surfaces from the viewer and to
their material properties. Integration of the evidence provided separately by
these cues can provide a more reliable map of the surfaces and their properties
than any single cue alone.

Thus visual integration is likely to be a key to understanding biological vi-
snal systems and to developing robust vision machines. Existing methods do
not seem capable of providing a general solution. Standard regularization[2]
provides a common framework for many early vision problems and leads to
the minimization of quadratic energy functionals. If standard regularization
is used to integrate information from different processes, the energy func-
tional consists of the sum of quadratic parts, each associated with a separate
process. This implies that the result is a linear combination of the different
cues (possibly with space-varying coeflicients). Linear combination - say of
depth from stereo and from shading - does not seem, however, a flexible
enough integration method. Even more important, no instances of standard
regnlarization can handle discontinuities, because the solution space is re-
stricted to generalized splines(21,2]. As we will explain later, we believe that
detecting and representing discontinuities (for instance depth discontinuities)
is a key part of the integration step[21].

To overcome these difficulties we have developed an extension of regular-
ization that promises to deal simultaneously with discontinuities and with the
integration of vision modules. This extension is based on the use of coupled
Markov Random Fields!, introduced recently by Geman and Geman[9] and
extended by Marroquin, Mitter and Poggio[19]. The standard regularization
method for vision is a special case of this new approach.

1.1 The Role of Discontinuities

One of the most important constraints for recovering surface properties is
that the physical processes underlying image formation are typically smooth:

'A different, interesting approach has be explored by Blake(3]
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depth and orientation of surfaces are mostly continuous and so are reflectance
and illumination. The smoothness property is captured well by standard reg-
ularization. Surfaces and their properties, however, are not always smooth:
they are smooth almost everywhere, but not at discontinuities. Lines of
discontinuity are themselves usually continuous, relatively smooth, noninter-
secting curves. It is critical to detect the discontinuities reliably, because
they usually represent the most important locations in a scene: depth dis-
continuities, for instance, often correspond to the boundaries of an object
or of a part. Furthermore, discontinuities play a critical role in fusing in-
formation from different physical processes. The reason is clear: in smooth
regions, the physical processes are coupled together by the imaging equation,
and all contribute to image formation. However, the coupling is difficult to
know precisely: it depends on quantities such as the form of the reflectance
function. The effects of discontinuities are instead robust and qualitative: for
instance, depth discontinuities usually correspond to intensity edges. There-
fore, discontinuities are ideal places for integrating information. Furthermore,
partial information about discontinuities in a single process can be detected
relatively easily. Several types of motion discontinuities, for example, can .
be measured with simple operations on the time-dependent intensity array, h
especially if the interframe interval is small. Partial albedo discontinuities
also are often detectable using simple operations. Intensity edges are de-
tected quite reliably by the Canny edge detector. However, the fast, rough
detection of discontinuities performed by these early operations is noisy and
incomplete: 1t must be refined by integrating them across processes and by
exploiting constraints on the continuity of discontinuities.

In summary, discontinuities: 1) represent the most useful information, 2)
are easy to detect (though in a partial and possibly noisy way) and 3) provide
good locations to integrate different cues.

1.2 Coupled Markov Random Fields

Markov Random Fields for image modeling have seen increasing use since
the work of Geman and Geman[9]. Their utility for image modeling de-
rives from several MRI' characteristics. MRI's provide a natural way to
impose general image properties of smoothness and continuity, for example
of depth and motion, while also incorporating discontinuities. Baves’ rule
establishes a relationship between the possibly corrupted observed data and
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the desired scene data. Solution methods arc available, though often time
consuming. Some recent MRF applications have involved scene segmentation
o using depths[18], texture[6] and motion[20].

A Markov Random Field on a lattice can be represented as a lattice of
sites. each one with a random variable. The value depends probabilistically
i on the value of neighboring sites. The rules governing this local dependence
can be given in a variety of ways and can be made to capture constraints

) such as the continuity of a surface (if the MRF represents depth values).

. Our idea is to associate a MRF on a lattice to each physical process to be
o integrated and another (binary) MRF to its discontinuities (see figure 1). The
o lattices are coupled to each other to reflect the interdependence of the corre-
’ sponding processes in image formation. Thus the various MRFs mirror the
W different physical events that underlie image formation: surface and surface
' discontinuities, spectral albedo and albedo discontinuities, shadows, surface
N normal, and so on. Physical constraints apply to each of these processes in-
2 dependently. In addition, there are constraints between these processes (for
5-: instance between depth and surface normal). The image data constrain the
o~ oA way the processes combine. Note that consideration of sequences of images in
- (’T time will introduce additional powerful constraints such as rigidity. The con-

N straints on the surfaces are local conditions (such as smoothness, necessary
mainly because of its regularizing role in the face of omnipresent noise) valid
3 everywhere ezcept at discontinuities. As we discussed earlier, discontinuities
L are critically important and should be dectected early.

Notice that the coupling of the line process with the associated continuous

My process provides a module that combines region-based with boundary-based
3,': segmentation (see figure 1).

;: The local potentials underlying the a priori probability distribution of the
e MRIs represent the constraints on the physical processes (smoothness, posi-

tivity, values within certain bounds, etc.): the coupling between MRF's repre-
sents the compatibility constraints between processes. The device of coupled
MRFs provides an ideal tool to impose local constraints such as smoothness,
allowing at the same time an explicit role for discontinuities through the line
A processes[9] and similar processes such as occlusions[19]. Our new idea is to

; incorporate additional observable discontinuity data provided by algorithms
specialized to detect sharp changes in the observed properties of intensity,

o
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4 motion, stereo disparity, texture, and so on. The ohservable discontinuities
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Figure 1: MRF lattices representing the output of different carly processes

and their discontinuities (the crosses represent the sites of the binary line

processes). Each representation, for instance depth, is coupled to its discon-
tinuities and to other cues such as intensity or motion.
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. provide an initial rough solution to the segmentation problem. Using the

\ MRFs for estimating the ficlds gives increasingly precise solutions, simulta-
neously filling in the continuous regions that are only sparsely observable.
The solution at each iteration is available to later modules, such as recogni-
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= 1.3 The Key Role of Intensity Edges

) One of the results of our integration work is that intensity edges play pri-
. mary role in guiding the search for discontinuities in other processes (for
':-; instance depth). The point seems so important that we would like to phrase
J it as a rather general conjecture on the proper organization of the integration

stage: intensily edges guide the detection of discontinuities in the other phys-
ical processes, thereby coupling surface depth, surface orientation, shadows,
specularilies and surface markings to the image data and to each other.
The reason for the critical role of intensity edges is intuitively clear -
usually changes in surface properties (depth, orientation, material, texture)
produce large intensity gradients in the image. Under the assumption of

-

_'r.\,"_, 7

= {_: opacity and of a simple imaging model (the reflectance function is assumed
SN to contain a lambertian and a specular term), there are six physical causes
" for large intensity gradients in the image: occluding edges (extremal edges
/- and blades), folds, shadow edges, surface markings and specular edges. In
3 addition, motion discontinuities are usually coupled to intensity edges. 1t is
' for exactly this reason that edge detection is so important in artificial —~ and
> probably also biological - vision.
.
> 1.4 Plan of the Paper

In this paper we introduce a method for detecting and reconstructing depth
y discontinuities by using the information provided by intensity edges. We do
j\- the saine for motion discontinuities. First we introduce the Markov Random
< Field formalism. The use of intensity edges for surface interpolation is dis-
a cussed next, together with the derivation of the associated MRF model. We
then describe our Connection Machine implementation and the results on
synthetic and real data. Finally the discussion focuses on the open problems

. and on the implications of our results for the general problem of integrating
.« . . .
all vision modules.
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2 Coupling Intensity Edges with Sparse Depth
Data

To illustrate our approach we consider the specific and important problem of
computing an approximate surface and especially the surface depth disconti-
nuities from sparse depth data{10,25,18]. The main new idea lierc is to exploit
the integration of additional vision cues. In particular we describe a scheme
in which intensity edges are integrated with sparse depth data. Sparse depth
data arise from the output of feature-based stereo algorithms. Typical stereo
algorithms provide depth data at a subset of iinage features[15.10.8]. These
features might be a Laplacian filter’s zero-crossings from one of the intensity
images. The depth information is computed by measuring pixel displace-
ments (disparity) between corresponding image features. As is typical of all
known stereo algorithms, the disparities are plagued by errors precisely at
depth discontinuities where surfaces are usually occluded.

The problem, then, is to smooth and fill in the sparse depth data (i.e.,
reconstruct the surface), while detecting the critically important depth dis-
continuities. Prior attempts at depth discontinuity identification allowed the
discontinuities to form anywhere in the image provided the depth difference
between neighboring sites was significant[18,24]. Due to the sparseness and
noise in the depth data, the identified discontinuities are: 1) offset from and
2) ragged or wiggly compared with the correct discontinuities. These limita-
tions become more serious when the images contain a large range of depth
differences, as in natural images.

Because of the constraints on image formation discussed earlier, the cor-
rect depth discontinuities will, in almost all cases, correspond precisely to the
locations of intensity edges. Our integration scheme exploits this by restrict-
ing depth discontinuity formation to a subset of the intensity edges. This
restriction ensures that the smoothness and continuity of discontinuities can
be no worse than the intensity edges themselves. In addition. the difficult
problem of MRF parameter specification is simplified since this integration
scheme proves less sensitive to MR parameter variations, particularly when
the depth data contain a large range of depth differences.

There are some cases in which discontinuities will not ocour at intensity
edges. Any object that blends in with its backgroanud presents such o case.
This situation occurs rarely in natural scenes; vet. for practical reasons such
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as camera underexposure or saturation, the object may blend in with the
background at some locations. However, for these cases, the point is some-
what moot. since without intensity edges, feature-based stereo or motion
algorithms will not provide depth or motion data.

A more general situation arises when the features used for stereo or mo-
tion are different frotn the diseontinnity: limiting features. This is desirable
since the continuity constraimts used by stereo and motion algorithms assume
that the features used for matehing are located on surfaces. Thus stereo and
motion algerithms should we high resolution. dense features that identify
suiface pinrkings as opposed 1o houreding contours which in general corre-
spond to surface locations that ave different in the two images of a stereo
pair. The discontinn v Bmiting features however can be chosen to better
correspond to object boundaries.

The results section contains examples in which the discontinuities are
identified and the surface reconstructed hoth with and without the benefit
of intensity edge information. The next section presents a limited overview
of MRI particulars and contains the appropriate MRI® energy function for
imtegrating intensity edges witly, in this case, the sparse depth data produced
by a stereo algoriihm.

3 MRF Formmulation for Stereo and Inten-
sity Edge Coupling

The theory of Markov Random Fields can be found elsewhere[9,17]. We
proesent only an overview bere followed by a description of the energy func-
tions used for mtegration.

The Hammersley Clifford theorem states the equivalence between a MRF
and a Gibhsdistribation as follows, If Visa MRF on a lattice S with respect
to the neighborhoad sysveny (G0 then PUN = @) s given by

! 140 v
PN = e 7(*7’ (V) (1)

Zsaonormahization fetors T the domperature and U(X) is the enerqy
Junction. The temperatare parameter. 10 could he absorbed into {7(X):

however when the sobition methiod is Cisenssed. T proves useful as a separate
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) variable. The energy function is of the form:
e UX) = Us(X). (2)
C
) The sum of the potentials, Un(X). is over the neighborhood’s cliques. A
~ clique is either a single lattice site or a set of lattice sites such that any two
N sites belonging to it are neighbors of one another. The function P(\ = w)
A is called the prior distribution and abbreviated here by /7(X').
The prior distribution on X, where X, for example, might be the recon-
p structed surface, must be determined based on some observations or input
) data, Y. To relate X to Y Bayes’ formula is used,
)
PY[X)P(X
! P(x|y) = ZPE) o
P(Y)
- The observations, Y, are obtained conceptually by degrading X, such as by
~ e . ) S
. the addition of noise or blurring. If the tyvpe of degradation is known, the
. distribution P(Y|X), can be computed. Marroquin[17] has shown that for
the case of zero-mean white Gaussian noise, P(Y|X) is a Gibbs distribution
. with potential:
" UY|X) =Y UdY|X); UlY|X) = —avi(a: — y)% (4)
< €S
'l
The sum is over all lattice sites and
& I, if input data exists at lattice site ¢ .
. T = : (;))
. 0, otherwise.
) When this result for P(Y|X) is combined with the MRFE prior distribution.
‘ P(X). and Bayes' rule the a pos/criori distribution P{X1Y) is:
g s 1
) P(‘\|Y)=7(=\(p ——Z( XY (6)
. for U;(N)Y) = 1(X) + U(Y]X) and with Z a normalization constant inde-
pendent of X. This a postcriord distribution provides the likelihoods for all
. possible states X, given the observable data Y.
: Given the posterior distribution P(X]Y) and the caternal ficld Vo othe de
'_ sired field X can be retrieved once a suitable error eriterion is specified. The
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Maximizer of the Posterior Mcan (MP\) reduces the problem of annealing
and has been successfully applied for our results. With the criterion specified.
the relaxation algorithm for solution is largely determined. The question of
a suitable errorv criterion and algorithniic consequences has been thoroughly

diserssed by Mavrogmn 170

The problem has now become one of specifving the MRLE potentials,
LX) and U{YIN). The potentials impose the physical constraints of con-
tinuity and smoothness of sarfces {except at depth discontinuities) along
with continuity and smoothiness of depth discontimuities. These constraints
are imposed by tailoring the cnergy fiuction 1o minimize the eneray (maxi-
mize the probability) when the state occupied satisfies the desired physical
constraints. Typically this choice is cmpirical althongh one might envisage
estimating the prior associated with, for instance. depth smoothness from a
specific class of surface data.

The MRF state space used herein is siimilar to that of Geman and Geman(9)
along with Marroquin{17] where cach lattice site is composed of a depth pro-
cess and two line processes, X = {F.L}. The depth process. F, is a con-
tinuous random variable whose value is related to the distance of a surface
point. from the observer. The value of F' at site ¢ is denoted as f; where
—oc < [; < oo. The depth process neighborhood system to site ¢ consists
of the four nearest neighbors: east, south, west and north, to . Although
a continuous random variable should not be updated using the Heat Bath
algorithm, the depth process can be deterministically updated[1 7], provided
the MRE cnergy is suitably defined. Figure 2 illustrates the MRF lattice
with the depth and line processes.

The lire process vsed here, L. contains a vertical and horizontal orien-
tation that ave conceptually Tocated between lattice sites. The vertical line
process i< located between its Tattice site and the neighboring castern lat-
tice site, whereas the horizontal line process separates its lattice site and
the nearest southern lattice site. Fach orientation is a binary random field,
o 100t where the seripts on I odenote the line process that separates
lattice sie 7 from . The horizontal line process at site ¢ is denoted as I
the vertival line process v {70 Smoothing of the depth process is inhibited
when the e srate s onl 17 = 1 sinee smoothing should not occur across
depth discontinuitios: otherwise. depth process smoothing is performed. An
on <tate <ionifies the presenec of a depth discontinuity. The conditions for
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Figure 2: (a) A lattice site is composed of a single depth process (illustrated
with a circle) along with a vertical and a horizontai line process. The MRF
[Lattice consists of a rectangular grid of these lattice sites. (b) The neigh-
borhood for the depth process and the vertical e process neighborhood.

v u il

The black dot in the line process neighborhood mdicates the lattice site for
this neighborhood. (c¢) The five maximal chiques (north. cast. south. west
and central) for the vertical line process are shiown. Tn this paper we only
consider configurations of the central eligne. This s equinalent to assigning
zero energies to all configurations of the other four cligies
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depth discontinuity formation are encapsulated in the MRI® energy function
presented subsequently.

The external fields to the MRF are the sparse depth information and the
intensity edges. The sparse depths. (/0 are represented by two variables, g;
and v, for site +. The value 4, v analogous to fi; it is continuously valued
over the read numbers. although in practice. since ¢; is provided by stereo
output, it is diserete. The variable ; encodes the sparseness of the stereo
ov*pnt and is defined as in eonation 3.

The intensity edges are represer ted by the field, £, This field is similar to
the line process. Loexcept thar o0 = ' vather than indicating the presence of
a depth discontinuity, permts the formation of a depth discontinuity between
lattice site 7 and neighibor j. The MRI energy is designed so that ¢ = 0
implies (in the present implementation) I = 0 for all i,5 € S. An edge
detector, such as Canny's{4]. will mark « site i as an edge, but e! marks
potential discontinuitios befween ~ites 1 and j. To resolve this ambiguity, if
an edge is at site i, then ¢ = 1 where k is cach of the nearest neighbors to
site o This intensity edge field, Falong with (7 coinprise the MRF external
ficld Y such that Y = {G L},

Given the external fields, Y. and the random variables, X, equation 6
provides the posterior distribution with the MRF energy given as

Uy = >0 ely)

1"1'("'!,’/) = ()7!‘\.[! - f/l'}z + Z(l - [:')(fl - fj);+

1€un

S et a - ehel. (

JE<h,u>

-]
~—

The first ternm in this equation i 1he coupling between the depth process
and the sparse and noisy input data. The coupling factor. a, is related to the
noise in g, For noiseless data, o — o0 thereby ensuring f; = ¢;. Otherwise,
when o = 0 no input data conpling occurs and [ is smoothed by the term
involving (f, — f;)? in equation 7. The precise relation between a and the
noise depenas on the notse model assimed. For a model of measurement
that includes Ganesian random noise

(y — —-
-




where o is the gaussian’s half width at half maximum[17]. Note that if the
noise model’s parameters vary locally, it might be appropriate to vary o
locally as

1

_2.

;, =
ag

Local variation in noise parameters does occur in the stereo algorithm of
Drumbheller and Poggio[7]; this variation is reflected in the stereo match scores
of that algorithm. The present paper does not address this issue; here we
keep o constant, usually in the range 0.1 to 2.0. The input data coupling
to f occurs when v = 1. Typically 5 to 10% of the lattice sites have input
depths associated with them.

The last term in equation 7 implements the integration scheme between
sparse stereo depths and intensity edges. The term forbids depth discontinu-
ity formation except where an external edge exists. Discontinuity formation is
prevented by letting 8' — oco. When [/ = 1 and ¢/ = 0, this term contributes
a large energy, U;(z|y) — oo and the associated probability for I] = 1 is zero.
At sites where ¢/ = 1 this energy term contributes nothing and the depth
discontinuity formation is determined by the other factors in equation 7. The
problems of misalignment might be handled by suitably modifying this term
in the energy U;(z|y) to produce a it cone of influence or, for a simple case,
by “thickening” the input intensity edges. For instance, we may use instead
of ¢ in equation 8, e} * (G, wherc * denotes convolution and G is a gaussian
or another appropriate cone of influence function. The results preseuted in
this paper do not utilize a cone of influence.

The second and third terms in equation (7) encapsulate our prior expec-
tations concerning depth discontinuities and surface reconstruction. They
compose the potential U(.X) of the prior distribution (equation 1). These
two terms ‘compete’ in the sense that turning on a line costs energy 3U- (1)
but saves energy (f; — f;)%. The interplay of these two potentials largely
determines the formation of depth discontinuities where ¢/ = 1. The second
termy couples the line and depth processes, the third term determines the
line process clique energy. This line and depth process coupling is summed
over the nearest neighbors, nn, to site /. with cach neighbor contributing an
energy (f, — f,)* when I} = 0.

The quadratic term, (f, — f,)%, tends to smooth the depth process since it
is minimized when f, = f,. Depth discontinuities have a higher probability
of forming when the energy to ereate a line, S0 (7). is less than this energy
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i to smooth the depths. The factor B is a free parameter that determines what
p p
X size depth difference is likely to produce a depth discontinuity. Specification
i . . .
W of 3 is largely image dependent and, although a suitable range has been
determined, a general theory specifying 8 remains elusive. The line process
. g y specifying p
' clinue energy will be examined in detail later.
\j The Heat Bath algorithm cannot be simply applied to equation 7 since

:_j the f; are coantinuous variables. Instead we employ a technique to smooth
» the depth process deterministically, but to update the line process stochas-
tically with the Heat Bath algorithm{17]. With the line process state fixed,

4:: the MRF energy of equation 7 is non-negative definite quadratic with a sta-
E-: ble and unique fixed point for the f; (practically, 3’ never contributes since
NG the configuration ¢/ = 0 and {; = 1 has a vanishing probability). In this
‘,‘ situation, the depth process can be smoothed deteministically to find the
T fixed point. After this fixed point in depth is determined, the line process is
,;.; stochastically updated, the new fixed point in depth is determined and the
" schieme is repeated.
:: Once the line process approaches equilibrium (roughly 1000 iterations),
o o2 statistics are gathered to compute the MPM estimate. The MPM estimate is
N e computed from P(f; = 1) = 157!, where n is the number of iterations over
: which statistics are gathered[17]. When P(I = 1) > (0.541//7), statistical
‘s fluctuations about 0.5 are reduced and the MPM estimate is turned on to
o) . - . . . .
- mark a discontinuity. Use of the MPM estimate does not require annealing
-~ but the a posteriori distribution’s coupling parameters must produce a rea-
sonable amount of line process agitation thereby sampling much of the line
- process samaple space.
4
3 3.1 Choice of Line Clique Energies
) Figure 2 shows the line process neighborhood for the vertical line process.
" Of the five cliques shown for this neighborhood, only the clique centered
. about the vertical lattice site has, by design, a non-zero potential Uc(1}).
)

This potential depends on the 256 possible configurations associated with
the clique. The desirabie confignrations are a small subset of all possible
configurations and they impose the constraints of smoothness and continuity
on the depth discontinnities. These constraints are embodied in the following
five heuristies which divide the desirable configurations into classes:
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Line Creation Straight Angled
Line Growth

Cornerad Straight Angled
Line Completion

L] l *
Cornarad Straight Angled
Tee Completion

Figure 3: The four classes of non-forbidden line configurations for the verti-
cal line process. A dot, ‘" represents an off state; on states are shown with
their oriented lines. The symmetry operations producing the other allowed
configurations are discussed in the text. The horizontal line process configu-
rations are identical provided the vertical line process cliques are rotated by
90 degrees.

e Turn on a lone site provided a ‘large’ depth discontinuity is present
[Line Creation].

e Turn on a site extending an already present line segment even if the
depth discontinuity is ‘small’ [Line Growth)].

e Always turn on a site if doing so would connect two line scgments [Line
Completion).

o Allow tees to occur infrequently where supported by at least a *‘small’
depth discontinuity [Tee Complction).

o All other configurations should occur rarvely if at all [Forbiddon).

F.xamples of the first four classes are shown in figure 3. In addition
to these configurations, three symmetry operations produce the other non-
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forbidden classes. Thesc symmetry operations are: rotation by 180 degrees
S about an axis perpendicular to the page, reflection about the vertical axis (for
¢ the vertical line process orientation) and the 180 degree rotation followed by
the reflection operation. With these symmetry operations and clique classes,
‘ a total of 22 unique configurations are allowed from the original set of 256.
: When /! = 0 (line is ofl), the clique potential is 0. However, when [ = I, the
g clique energy is determined by the five classes; this is the energy required to
‘ turn on the line.
The line process clique considered here is only one of the cliques associ-
> ated with the neighborhood shown in figure 2. In previous work([9,17], the
" smaller neighborhood did not readily produce lines of any orientation: the
P cliques tended to create vertical or horizontal line segments. The ‘large’
‘: neighborhood used here (though incompletely, because we assign zero en-
i ergies to several cliques), does encourage isotropic line formation without
& exacting too high a computational penalty.
y 1-: °
L 4 Stereo and Synthetic Image Results

4
o

The MRF scheme for coupling intensity edges to sparse stereo depth data

2 has been implemented on a Connection Machine[11]. The sparse depth data
Y and intensity images from both rcal stereo and synthetic images have been
::' examined. This section presents these image results for some typical images.
» 4.1 Connection Machine Implementation

d
.‘I I . . . .

I'be Connection Machine (CM) is a fine-grained parallel computer manufac-

- tured by Thinking Machines Corporation. We used their CM-1 model with
A\ 16k processors. Lach processor is connected to its four nearest neighbors

. (north, east. souti and west) in a two-dimensional grid, the NEWS network,
“ and cach 16 processor group is connected to a 12-dimensional hypercube, the
- J L]
= Router. These two communication modes allow fast access between neigh-
~ : . L

- boring processors and logarithmic-time access between any two processors.
e N . . . . . .

‘ Fach processor is a simple 1-bit processor with 4 kilobits of memory. All
' processors execite a singie mstruction stream. The CM was configured to
X mateh the image size. 256 x 256, by using virtual processors.
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For the MRF implementation each CM processor represents an MRF lat-
tice site. This configuration proves ideal for implementing the MRF cliques
over the CM NEWS network. The limited number of non-forbidden line
clique states and energies are stored in tabular form at cach processor. De-
termination of the line clique state requires access to the four nearest neigh-
bors plus the north-east (south-west) neighbor for the vertical (horizontal)
orientation. At the image borders, the line processes are always on. thereby
conveniently preventing depth process smoothing beyond the borders.

The MRF input data was obtained from two previously implemented
CM-1 algorithms. For the real stereo depth data, MIT's Eye-Head system
provided the stereo pair and the Drumbeller-Poggio CM-1 sterco algorithm[8]
produced the disparity data at a subset of DOG zero-crossing features. The
intensity edges came from Todd Cass® [13] implementation of Canny's edge
detector. These edges do not coincide with the stereo algorithm features.

When synthetic data was used, the image depths were produced by the
TMC 3-D Toolkit as was a dense depth map. A sparse map was obtained
by randomly discarding 90 to 95 percent of tiie depth values. Uniformly
distributed random noise was added to the synthetic sparse depth data.

The initial line process state is set to mimic the intensity edge map as pro-
vided by the Canny edge detection stage. The MRE depth values are created
by using the sparse input depths to “brush fire fill" and then by determin-
istically smoothing the depth values. During the deterministic smoothing of
the initial depth process, the depth external tield coupling. . is infinite.

4.2 Results

Figure 4 shows the MRF results on a synthetic image for two inteasity edge
coupling schemes. In the first scheme, intensity cdees are not used in the
MRF process. This allows depth discontinuities to form anvwhere and is
achieved by setting ¢! = 1 for all i, € S. The upper left image shows the
synthetic scene from which the sparse depth data was derived. The lower
left image in Figure 4 illustrates the depth discontinuities identified with the
MPM cstimate of the MRI™ process. When the depths vary rapidly. many
closely spaced discontinuities are formed. These discontinuities are ragged
and also displaced from the actual ohject houndaries tas marked by intensity
edges). The reconstructed depth surface is not shown.

‘The second scheme strongly penalizes depth discontinuity formation ev-
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crywhere except at the intensity edges shown in the upper right image of
Figure L The external field, ¢ /. cquals one only at the intensity edges pixels.
The depth discontinuitics found are shown on the lower right of Figure 4.
Nearly all the intensity edges due to surface orientation and texture are
chivunated. In some placesssuehas near the geodesic sphere’s boundary. the
surface slope alone is large cnongh to vield a depth discontinuity.

Another representative image -this time a real image -is shown in Figure 5
where a stereo algorithin produced tie sparse depth data. The right image
from the siereo paiv apnears ou the upper left of Figure 5. This scene consists
of a tall stack of newspapers and a small box or carton. The stereo depth
data and tiie reconstructed surface are not shown. Once again we consider
two cases, depending on whether or not the intensity edges are utilized.
Without the intensity edges, as with the synthetic sterco results, the depth
discontinuities are poorly positioned and ragged. However, with the intensity
edges (upper right of Figure 5), the discontinvities on the lower right agree
reasonably well with the object boundaries.

For these sterco image results, a few difficulties are worth mentioning.
A large depth discontinuity along the top left of the newspaper boundary
is not found. The stereo algorithm produced very poor depth data at this
location and positioned the depth change roughly 5 pixels above the news-
paper intensity edge used by the MR process. Also the small box’s shadow
vielded a small disparity that created a depth discontinuity. The box itself
also had a small disparity <o that modifying MRF parameters to climinate
the shadow discontinuity would have eliminated the box’s discontinnity. This
sort of variabibity is inevitable until a reasonable method for local parameter
estimation s developed,

Sttuations can arise wherein discontinuity detection s hampered when the
intensity edege sites do pot coincide with the sites at which external depth
divnare provided. Figare 6 displays a pessibility where a depth discontinnity
should form hetween features AT and A2 inclusive. However, the discon-
Pty core el form o the intensity edge at B-1 and. because of depth
fitling nd stvoothing, the discontinuity may be washed out. The washing
ont depepds primarite on the depth difference, the separation hetween edges
Vb oand V2 and e smoothine perainetersss 1 edee Bl were on A-1 or
Ao then the discan it cond v readilys One approach to avoid this

corwidesce prolens lto project o cone of nfluence abont the infensity edge
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) \ Edge A-2
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Disparity = 0
” Disparity = 10
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B p F 22X

Figure 6: The disparities at edges A-1 and A-2 suggest that a depth discon-
tinuity should be formed somewhere between A-1 and A-2. Yet, because of
depth process smoothing, the depth difference at intensity edge B-1 imay be
too small to support a discontinuity. No discontinuity will form due to this
‘misalignment’ of edges.

[z ey

location. Then the discontinuities could form not only at the intensity edges
but also for one, two or more pixels on either side of the edge. This has
" the disadvantage of leading to somewhat poorly localized and ragged edges.
Straightness of the resulting line process is enforced locally by the intrinsic
prior of the line process when the cone of influence is no larger than the
line process neighborhood. Another approach. used here, was to .void the

washing out by an appropriate selection of the coupling parameters. More
work must be done in this area.

5 Coupling Intensity Edges to Sparse Mo-
tion Data

The simplicity of limiting discontinnities to a subset of itensity edges ine
mediately suggests its use for other vision modules. The same principles
emploved for the stereo depth application have been utilized on motion data.
As with depths, motion fields both from synthetic data and a feature-based
motion algorithm have been used to iwdentify motion discontinuities and to
| smooth and fill the sparse motion field. The difference is that motion is a
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vector field: depth s not. o
The MRE energy of equation 7 is modified by replacing the random field 7
variable, /. by a vector random field. M. Likewise. the external field, G. ~
heconies a vector tield. N The MIRE energy is: -
o
Uity = o~ M, = N ST 00— IO, — M1 7
bt s
. o
o ) + A0 =) (R)
1T > T
waere M = ué, +vé, with a similar definition for N and where [1\7, — 1’\7J|2 = ;‘_:
(= u,)? + (v, = v;)% The mput field N contains the two components of ;::
the optical flow; the output is M or equivalently, (u;, v;) for all lattice sites 1. -3
With this energy formulation, motion field direction discontinuities are not .
igentified. only magnitude discontinuities are marked. :'_:
A specialized motion algorithm, such as Horn and Schunk’s[12], can be i
used to compute the motion ficld for input to the MRF. The motion data *-
employed here derive [rom a parallel algorithm(14] that provides match scores ~
much like the previously used stereo algorithm. Match scores provide a local R
measure of trust for the motion data but are not utilized here. Rather than N
splitting the problem into early and middle vision parcels, an alternative }:‘
approach uses the MRT machinery to compute the motion field in addition -
to segmenting hie images{20]. o
Figure 7 illustrates some results on a simple synthetic motion sequence. Rt
The image contains a white square with a small grey texture marking moving -
diagonally across a grey and black background. The motion field is non- :}"
zero only on the white square and its texture marking where both r and Y
y components exist. Roughly 5% of the image motion data is input to the "~
MRE. The hottam half of figure 7 shows the motion discontinumties identified -
bhoth with and without iniensity edge mformation. Again. the intensity edges "
.

siontficantly enhance the localization of “nice”™ motion discontinuities.
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Figure 7: The MRF process and its resalt on synthetic motion data. Monion ‘
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6 Discussion -

.
.

6.1 Central role of intensity edges o

The results presented here support the idea that intensity edges can be used

a~ the prunary cue to pelp detects coanpete and precsely locate the diseon

tinuities 1 the other processes =uehas depths motion, texture and color. As :
we mentioned carlier, the reason for this s ihat discontinmitios in depth, sur- .
face orientation, motion. texture and co'or typicallv originate large gradiont. :
i the image iniensity, i e odges. Vextare bonndaries, for instance, can be o
sviithesized withous anyv inten- v edees o s sathiciont ook aronnd 1o con "

vinee cnrselves that e the rea’ wor'd rost of the toxtnre bevind aries oo

together with an intensiiyv edge. The -ame i< trie for motion discontimities.

Color boundaries also correspond to borgbooas honndar s Deolnminans bor -
ders exist only in the psyehophvsics lanbn Inaddiion imrensity edges can be <
i . . S . A
better localized than motion. depthorexnre el color diseontinmities. The o~
. e O . . ‘-
case of texture s espectatly lear e e oty an the location of texture R
L _ ~
bhoundaries s no less shan e e v L elenent s of texture, called o
- g™m
. \ . | Y
‘ textonsI260 and vonadlv coverad ces ae el T most cases stereo can- £
naot [)I‘(,".'.!ll(‘ {)]‘(‘t'iﬂ' 1?("!“’" ol vo"‘_"Hz' BN ‘H e 'll. lJ((“l\;MYH\. (‘Ul()l ‘\ in A
A stndlar sthaation becanse ol e c e ven e st awhiae o i ('nm;nnml he .:::_‘
. . ) ) X X A
low resolution s posce Toothe dow sieed To naise ratio and the desired \‘:
Eens vty to sa D sarface te Kees, t%
Pavchophvsios a'so ~oeecars thin otensity information has a privileged ¥
. . . ey . . )
rote solative fo ot o ces Clace ey Bas Shown that only intensity edges Tk
can support sabiective cortoe e shiid o nterpretation. Furthermore, NN
dlseont i nties porttaved e o Yeside mtensity edges, are more dif- NN
fro i toocce a the Tovel o et o, N
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' cues. There are also more specific questions about our techniane of visual
) imtegration and discontinuity detection.
D
. 6.2.1 The Structure of Visual Integration
D)
I'lhie scheme sketehied in figure 3 is a preliminary suggestion for the strue-
[) . . . . . . . N <, - . .
ture of visual integration. It is close in spirit to the 1deas abont intrinsic
T images proposed by Barrow and Tennenbaum{ll  heyv did not, Lowever,
have the powerful theory of coupled MRIT models to implement their ideas.
A [nformation about the image intensity has a primary role  intensity edges
Lelp the line processes associated with color, texture, motion and depth,
- Depthoatself has also a special role — in a sense, it is the main output of
the whole system. Motion. texture and color are coupied to depth. They
_ may not be directly coupled to each otlier. Notice that the mam couplings
y wre through the line processes, according 1o the principles outhned i the
A citroduetion. Notice also that Jocal estimates of reliabiiity may be used to
.
.. controb Jocatly the strength of the coupling: we have seen earlier that in the
‘ MRE model the coupling between depth and 1ts discontinnitios is controlled
by the parameter @ which is mversely proportiona: o o~
% . . . , . . S
Fhe hine processes may receive data fromearly ciconthins at ths point it
N I~ an open question how. In the present nuplementation the mtensity edges
J . . . .
p are totally dnven by external data provided by 1he Canny edee detector
» whereas depth and motion do not get extornal fnformation about disconti-
Luites  depth or motion.
2 The mntensity edges are also conpled wirh g boeher Covellela tha fovons
. conheurations of the subjective contour types provedne cotpietion o Lnes
P ahdl collinearity ona more ciobal basis than the nechinorhoad of e e
v ot ; - C
. process 220 The depth Tine process - consior wiith another hic Jevel neid
Yt l'r'r\hi«'.\ the cOtTec Conmtiaind~ (o ihe 1 T er b Gl s e e s e G
:' ned iy Hi)ik'('1\ \ T ill!h Provn O~ a e "y e 0 o way atie o e Two
‘. "‘7:"' !H)w.;lll(l* !:\ B i .\ :],"‘1\11' oo, o e byt [ I D S es
"y o ot Pheoob oo e N . : S O U T | ol
: i o Vo i Ao e st e s T e o D e, P vatues
ate docads avadabics Gefanit valaes for o0 pant and Aendid are viven to the
. it Jf; IS EUTI AN
\ 3
L]
£ ]
]
o o
P T
«
- - . . - » " e - c et . " .. - ..’ .' bl ‘- ‘si M .l ~~ . ..I “.l --- .. M -- “. ~-\ - 'l .~! ‘....~I - ---'-\..1
T N et Lt e M T e e Nt S R L e T RO A ~ Y




! ]
AN
N
lntensltyv Motion Texture| | color
l o
\lol A‘-
NN
Subjective o\ ,0
P WY ;
ontours \0' N\ -
NG o
\ Io\ I A
! ,0\ +
N o
NI o
N !0\ Sa
\'0’ >
\
Binoculan
F Sterec
=
N =
‘ NS
=S NRN ~;
Depth e
[N
T
o
i~
T
Occluslons ’
-
{
i
A
Iligure 8: The organization of the integration stage. Fach of the processes is
coupled 10 its line process, Intensity data feed into the motion. color. texture
and depth line processes. The line processes are not hidden processes: they
may itlso receive data from specialized discontinuity detectors. The intensity
line process gets mput data from Canny edges. It 1s coupled to a higher level
field which implements constraints of line continuation and collinecarity on a
more global basis than the neighborhood system of the line process. The line
process associated with the depth process is also coupled to a higher level
field which implements the appropriate constraints nnderlying occlusions of
surfaces. The plausibility of interactions between motion, texture and color
1§ 2N open grestion.
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6.2.2 Detailed Questions

Other open qll(‘.\ti()lh are: /H/f.:/l'(lflul) Ufclt/(////ulltr/ vistual cues local rs. f//r)/;tl/
constraints on the line process, folcrance i peqistration. madtive solution ficlds.
approrimatice alyorithms and uewral vnplemcntations and leariing of pavas-

eters from ceample .

Integration of additional visual cues As figure X shows, we plan to te
grate other visual cues with stereo, motion and intensity data. In particular.
we will include texture and color. Because texture boundaries nsnally depend
on changes of material or sharp changes in surface ortentation. they conld
be used to support the line processes in the depth and wotion modules. For
color the goal is to find boundaries that delineate recions of constant albedo
(at a coarse resolution. since small surface markines ~hould not he “veen™ at
this stage). As in the case of depth and motion. intensity edges plav eritical
role for these two additional visual modules. Hurlbert and Posgio iwee 20
have sketched a possible schene for coupling albedo with intensity eddwes.

It is nnportant to notice that the combiad on o severan ol o ot
only allows reinforcement of evidence for. savea depth discontinnity. bat also
achieves a classification of an intensity edge in terms of its underlying physical
canse: for instance. whether it is due to i shadow or a depth discontinuity.
Clearly. psychophysics can give useful indications of which interactions are

important in the human visual system.

Local versus global constraints on the line process The line process
provides a means for imposing important physical constramts on the disconti-
nuities such as: continuity. relative spatial isolation and possibly collinearity,
These constraints are enforced by using appropriate cligues and associated
energy values. Howeveroin our experience with Markov Randons Field modd
els apphied to real data. a problem has crierzed with the wee of the hne
process. In many cases the property of collinearity that can be enforeed in
this way remains too local: discontinuitios tend 1o he tao jageed and songe
times even broken when integration with intensits edues 15 nof used. How
can one enforce the property of continuity or simply collinearity over larger
distances within the MRF framework? | he basic tdea that we have begun
to explore is to have a higher level MRE that con<ists of “features" . such as
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straight lines of different orientations, with its prior probability distribution, .:_':
coupled (bidirectionally) with the line process lattice (see figure 8). ;:

.

Tolerance in registration When data from different cues are combined, =9
say from intensity and {rom stereo, they must be registered. Spatial coinci- '.':"
dence is the main constraint exploited here. In general, however, one cannot -
expect that discontinuities in depth and intensity will always have eractly ,
the same location. Because of errors in the carly vision processes, effects of oie
filtering, photometric effects and so on, depth discontinuities may be offset o
by one or more pixels from intensity edges. To deal with this registration o
problem the cone of influence might be useful, in which the intensity edges E:
facilitate (or don’t veto) the formation of depth discontinuities. The cone of .
influence size should be on the order of the line process neighborhood. In this AN
way the line process constraints will ensure collinearity within the cone-of- o
influence. Again, important information will come from psychophysics: we o
expect to learn how alignment of, for instance, intensity edges with depth :::'_:
discontinuities affects human vision. ,::‘-:'.
Learning parameters from examples A critical problem in using MRFs 3
is the problem of parameter estimation. The performance of the scheme ::::
depends critically on the natural temperature of the field, the potentials :"::
associated with the clique configurations, the coupling between the lattices, _:
and so on. Parameter estimation should provide estimates for these factors; N
pos<ibly by learning from a set of examples. R
o)

Does integration influence early vision modules? In our computa- \'
tional approach to integration we have tacitly assumed that information flows e
from the carly vision modules to the integration stage - the coupled MRF N
systemn - but not backwards. The output of say, stereo, is modified by the 2
outpats of other modules at the level of the MRF's but the stereo process o
it~clf  the matching, for instance -~ 1s not affected. The decision to neglect :}::
ferdback interactions, from the integration stage to the early processes, in the -;::

present version of our theory is maily due to reasons of simplicity. Without an
modifying onr scheme in an essential way, it Is easy to incorporate backward ..;
effects from the integration stage by assuming that the whole process from .
early vision algorithms to the integration stage can be controlled by a higher - _:'_.E:
o

vy
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order system taking into account higher-level goals and the available results.
If recognition is the goal, for instance, the current results of the recognition
operation on the integrated information can control which early processes to
apply, where, and how (i.e. which parameters to use). In this case. one may
hope to develop a useful theory of integration without worrying at first about
the problem of feedback.

A different possibility is that interactions between the integration stage
and the early vision modules are an essential part of any integration theory
and cannot be neglected even in a first-order approximiation. In an extreme
casc one might not be able to separate the integration stage nsefully from
the early vision modules and even the modules one from another.

In principle, this is possible. The algorithms for the early processes can
be regarded in several cases as MRFs themsclves (regularization algorithms
are special cases of MRF's[2,23]). Thus our coupling schemes for integration
can be extended to couple the early processes. In practice, we expect that
parameter estimation may become a very serious problem once the carly
vision processes are tightly coupled.

Hardware implementations As discussed elsewhere[19.21] the coupled
MRF models used here can be implemented efficiently in mixed digital and
analog hybrid networks. It is interesting that, the interaction underlying
coupling between fields is of the type of a multiplication, logical-and or veto
operation. These operations have some intriguing possible imple:nentations
in terms of the properties of synapses.

While it is certainly possible to implement the same mixed deterministic
and stochastic algorithms described here in, say, VLSI technologics. it is
also interesting to explore approximative deterministic algorithms that may
be simpler and more efficient. Marroquin[16] has provided an encouraging
initial analysis along with estimates of convergence properties.
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