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Preface

The purpose of this study was to develop a new
method for teaching combinatorics, given the fact that o=
previous presentations leave a great deal to be desired
pedagogically. Most combinatorial textbooks use very dif- .
ficult languages and notations, do not place enough empha-
sis on visualization and fail to show the relationships

between general and particular concepts. Students, under

O OOV O

these circumstances, usually learn combinatorics in a pure
rote manner, finding no motivational reasons for this
discipline.

A conceptual map was proposed in order to facili-

tate the teaching of this subject in a more graphical form,

showing the hierarchical interrelations between super-

AR AP

ordinate and the subordinate concepts. Several examples

..

of how such concepts can be visually taught have been

vt ‘.’ l.‘ |.‘ (s

created and presented, so that future research can investi-
gate ways that computer graphics and expert systems can be
used to facilitate the accession and employment of the con-

ceptual map.

Along the process of this investigation I received
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constant support from my thesis advisor, Professor Daniel

s,
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Reynolds, to whom 1 express in public my deep appreciation,

‘

AR
AT AT



admiration and recognition. I also thank his wife, Phyllis
Reynolds, for her extremely well done typing, that is not
typing, but a piece of art. Finally, a big hug for my
children Raquel, Pedro, Natalia and Patricia for their
patient suffering of the bad moods of this part-time

father and part-time mother.
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Abstract

The purpose of this study was to construct a new
methodology for teaching combinatorics based on Doctor
Ausubel's theory about meaningful learning. The key idea
in Ausubel's theory is that if learning has to be meaning-
ful, then the learner has to have subsuming or anchoring
concepts in his cognitive structure.

Combinatorics has typically been one of those sub-
jJects the students have more difficulty in understanding.
This phenomenon happens because previous presentations of
combinatorics leave a great deal to be desired peda-
gogically, and do not place enough emphasis on visualiza-
tion. As a result, students use to learn course materials
in a rote manner, and find little motivation for such
learning activities.

A prescription has been found to remedy such
pathology. A conceptual map, rather than a typically
organized hierarchy of concepts, has been developed. The
conceptual map interrelates the main and subordinate con-
cepts in a cyclical manner, in a repetitive way, in a
gradual and smooth progress, to enable the reader to

assimilate ideas meaningfully.
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THE CONSTRUCTION OF A PEDAGOGY TO PROMOTE MEANINGFUL
S LEARNING OF STRATEGIES AND TACTICS FOR SOLVING

. PROBLEMS OF ELEMENTARY COMBINATORICS

I. Introduction

General Issue

Combinatorial analysis is an old branch of mathe-
matical science which has been treated by many authors.
? Nevertheless, previous presentations leave a great deal to

be desired pedagogically, and do not place enough emphasis

a8 8

on visualization. On the other hand, there is a lack of
available course material and/or strategies to help the

S neophyte acquire an adequate combinatorial concept base to
study more advanced notions of probability and statistics.
These circumstances and needs are the motivation for the

research study.

Problem Statemert

3 The introduction of combinatorics in elementary
statistics textbooks typically focuses on the memorization
and subsequent regurgitation of nine key formulae that can
be used to compute the total number of configurations of

elements that meet certain criteria:

‘ol W

1. The number of variations, where order of the

clements 1s relevant, and




2. The number of combinations, where order 1is
irrelevant.

Because evaluation instruments and grading criteria
associated with such learning activities normally reward
students for rote learning, they promote a pedagogy that
k. reduces, and sometimes eliminates, any opportunity for
: meaningful learning of course materials. As a result, con-

cepts associated with counting problems appear dry and
N irrelevant. Management students, in particular, find little
motivation for such learning activities and, at least dur-
ing the period of studying such problems, even less utility.

The motivational vacuum fostered by such a pedagogy
leaves facilitating the construction of an adequate com-
binatoric framework to serendipity, and encourages most
A students to begin their study of applied statistics without
the necessary cognitive structures with which to assimilate,
reconcile and integrate the concepts of probability theory.
Without such structures, students, despite long hours of
study, find it difficult to cultivate the skills needed to
deal with the complexities of scientific research.

A pedagogy needs to be constructed that promotes
a thorough diagnosis and an adequate supplementation of any
shortfall in concepts associated with the central problems of

combinatorics and management.
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Research Objectives

The objectives of the research are as follows:

l. A conceptual mapping will be proposed rather
than a topically organized hierarchy of concepts, that will
facilitate the teaching of this subject, and allow con-
crete presentations of applications within the context
provided by the conceptual map.

2. Several examples of how such concepts can be
visually taught will be created and presented, so that
future research can focus on their implementation on com-
puter software. Combinatorial problems in one-, two-~, and
three-dimensional space will be introduced, but not
exhausted, leaving an attractive open field for future
investigations.

Such a renaissance in teaching strategy will
encourage meaningful learning by establishing evaluation
criteria and heuristics for learning how to learn that
facilitate acquirement of the necessary cognitive struc-
tures for solving elementary combinatorial problems, and
help students cultivate strategies and tactics for dis-
covering solutions to more classical or possibly unique
combinatorial problems.

A new pedagogy will be developed (employing typical
problem scenarios accompanied by an explanation of the

value of aforementioned heuristics) that practically




guarantees students (who choose to learn} can experience q
felt significance with course material.

Recent findings of educational psychologists favor-
ing the theories of David Ausubel have demonstrated that,
when such teaching and learning take place, the necessary
conceptual foundations for whatever the subject, can be

built by highly motivated and enthused students. |
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II. Research Background and Proposal

Introduction

Previous presentations of combinatorics leave a
great deal to be desired pedagogically because most text-
books use difficult languages and notations, do not place
b enough emphasis on visualization, and fail to show the
relationship between general and subordinate concepts.
Students, under these circumstances, usually learn combina-
torics in pure rote manner, finding no motivational reasons
Y for this discipline.

Doctor Ausubel's theory about meaningful learning
will be used in order to prescribe a remedy for such
deficiencies. The key idea in Ausubel's theory is that
"if learning is to be meaningful, then new knowledge to
be learned must have anchoring concepts available in the
learner's cognitive structure" (Novak, 1977:137).

This chapter is presented in four stages: three
- phases and a glossary.

Phase I will deal with Ausubel's theory of learn-
< ing.
. Phase II will present the reasons why current
combinatorics texts simply do not support a pedagogy that

facilitates the meaningful learning process defended by

Ausubel.

I N N RN,



Phase III will propose a new approach for teaching
combinatorics by using a conceptual mapping, rather than a
topically organized hierarchy of concepts, that will allow
presentations of applications in one, two, and three dimen-
sions.

Finally, a glossary provides definitions of the

basic terms used in Ausubel's theory.

Phase I. Ausubel's Theory

Ausubel's theory of learning deals with four main
concepts: meaningful learning versus rote learning and dis-

covery learning versus reception learning.

Meaningful Learning. Novak defines meaningful

learning as: "a process in which new information is related
to an existing relevant knowledg: (subsuming concepts) in
the individual's cognitive structure" (Ncvak, 1977:74-75). :
The cognitive structure of an individual refers to )
the total content and organization of this individual's
ideas or concepts.
The subsuming or anchoring concepts are those rele-
vant ideas that an individual has in his cognitive struc- N
ture; those relevant ideas play the main role to enable <
the individual to assimilate new knowledge if there 1is any
interrelationship between the new information and his pre;

viously existing ideas.
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Rote Learning. Novak points out that

When relevant concepts do not exist in the cogni-
tive structure of an individual, new information must
be learned by rote, a process in which new information
is not associated with existing concepts in the indi-
vidual cognitive structure, and therefore little or no
interaction occurs between newly acquired information
and information already stored [Novak, 1977:77].

It is important to distinguish between reception

learning versus discovery learning too.

Reception Learning. Individuals receiving this

type of learning play a passive role in the sense that they
accept external elaborated information because it is
presented in logical, assembled and congruent form; thus
they can assimilate it into their cognitive structures.
That is why Ausubel defines reception learning as "that
kind of learning in which the entire content of what is

to be learned is presented to the learner in more or less
final form"” (Ausubel and others, 1978:629). Ausubel
emphasizes the role of reception learning in all education,

especially in schools.

Discovery Learning. The individuals receiving

discovery learning have to play an active role in the sense
that the content to be learned has to be selected, dis-
covered, acquired and digested by the learner. That is

the reason why Ausubel defines discovery learning as

. . . that kind of learning in which the content of
what is to be learned is not given or presented, but
must be discovered by the learner before he can
assimilate it into his cognitive structure [Ausubel
and others, 1978:626].
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Reception learning and discovery learning are
viewed as a separate and independent continuum from that
involving rote learning and meaningful learning. Figure 1
shows typical forms of learning. An interesting explana-
tion of Figure 1 is given by Novak when he says,

Discovery learning can be rote; anyone can dis-~
cover a solution to a puzzle or algebra problem by
trial and error, and not associate this "discovery"
with existing knowledge in cognitive structure. A
"discovery" made by a scientist is not a real dis-
covery until the new information can be related to
concepts already familiar to scientists or to a new
concept that encompasses or supercedes earlier con-
cepts [Novak, 1977:100-101].

Ausubel's learning theory is extremely important
for combinatorics educational purposes since most text-
books and presentations do not usually provide an easy
path for meaningful learning. 1If the task of learning
combinatorics is to be meaningful, then the new knowledge
to be learned must have subsuming, anchoring ideas avail-
able in the students' cognitive structure. These sub-
suming ideas have to be the most general, main, basic and
inclusive combinatorial concepts.

The lack of suitable course material promotes in
students a rote approach to combinatoric learning, that is
subsequently forgotten because "forgetting depends pri-
marily on the degree of meaningfulness associated with the
learning process" {(Novak, 1977:84).

It is also very important to remark here the sig-

nificance of the following paragraph written by Novak:
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Most information learned by rote in schools is
lost within six to eight weeks. Ars a result, students
recognize that they have forgotten much of the infor-
mation presented earlier, and that their earlier but
now lost learning is interfering with new learning
[Novak, 1977:85].

Phase II. Diagnosis

The pathology of current combinatoric textbooks is
clear, according to Ausubel's theory, because it does not
offer a pedagogical procedure that facilitates meaningful
learning. Such approach to teaching should follow a con-
gruent, assembled and logical model; for instance,

STAGE 1. RECEPTION LEARNING

1. 1Introduce the most general and inclusive con-
cepts first.

2. Introduce the specific and subordinate concepts
later.

STAGE 2. GUIDED DISCOVERY LEARNING

1. Show explicit relationships between the most
general and inclusive concepts.

2. Present explicit relationships between the
general and the subordinate concepts.

3. Show explicit relationships between all kinds
of subordinate concepts.

Following this model, reconciliation of concepts
should be best achieved, because instruction deals with

all ideas at all levels of the conceptual hierarchy in an

up and down cycle fashion.
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A critical aspect that reinforces the pathology
for teaching combinatorics is the nomenclature normally
used in textbocks, that requires a deep background in some
other disciplines, such as theory of groups, for instance,
or many notions of what has been called modern mathe-
matics. These supporting areas of knowledge are not com-
pletely required and should be avoided in a great per-
centage. Thus, combinatorics can be presented in a more
suitable, easy and straightforward manner, without loss
of continuity or content.

On the other hand, the lack of scientific rigor in
those textbooks is astonishing when they extrapolate results
from particular cases to general conclusions, following
unclear inductive methods.

Examples of what has been criticized can be found
all along the following main books about combinatorics
published in the United States:

1. Elementary Combinatorial Analysis, by Martin

Eisen. New York: Gordon and Breach, Science Publishers,
1969, from page 1 to page 215 (entire book).

2. Introduction to Combinatorial Mathematics,

by Chang Laung Liu. New York: McGraw-Hill Book Company,
Computer Science Series, 1968, from page 1 to page 161

(Chapters, 1, 2, 3, 4, and 5).
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3. Elements of Discrete Mathematics, by Chang

Laung Liu. New York: McGraw-Hill Book Company, Computer

Science Series, 1977, from page 1 to page 45 (Chapters 1

and 2).

4. Notes on Introductory Combinatorics, by

George Polya, Robert E. Tarjan, and Donald R. Woods.
New York: Birkhauser, 1983, page 1 to page 115 (Chapters 1,
2, 3, 4, 5, 6, 7, and 8).

Under such a lack of pedagogy, opportunities for
combinatoric meaningful learning is sometimes eliminated,
and students are forced to study course material in a rote
manner. In order to improve the above-mentioned situation,

a prescription will be given in the following Phase III.

Phase I1I. Prescription

To promote meaningful learning along any stage of
the continuum, from reception to discovery learning, a
remedy will be provided by:

1. Developing the most general and inclusive con-
cepts first, and the specific and subordinate concepts
later, all of them assembled on logical sequential order
of difficulty.

2. Illustrating some relationships between all
concepts in order to make clear distinction between which
one of those are the most general and superordinate, and

which ones are more specific and subordinate.
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3. Introducing a conceptual map, rather than the

mere definition of the topics, that will graphically show
those relationships bridging general and subordinate con-
cepts. The conceptual map will be used recursively in
solving combinatoric counting problems in one, two and three
dimensions.

4. Presenting an adequate set of problems,
arranged in increasing degree of difficulty, to help stu-
dents understand the combinatorial hidden snags. Such
problem-solving ability represents an opportunity for mean-
ingful learning because it requires well-differentiated

relevant concepts in cognitive structure.

Glossary (Ausubel and others, 1978:624-630)

1. Anchoring idea(s)--an established relevant idea
(proposition or concept) in cognitive structure to which
new ideas are related and in relation to which their
meanings are assimilated in the course of meaningful
learnings. As a result of this interaction they them-
selves are modified and differentiated.

2. Cognitive structure~--the total content and organi-
zation of a given individual's ideas; or, in the con-
text of subject-matter learning, the content and
organization of his or her ideas in a particular area
of knowledge.

3. Discovery learning--that kind of learning in which
the principal content of what is to be learned is not
given (or presented), but must be discovered by the
learner before he can assimilate it into cognitive
structure.

4. Forgetting--a process of memorial reduction or
obliterative assimilation that occurs in the course
of storage (retention); as a result of this process,
the dissociability strength of an acquired meaning
falls below the threshold of availability and the
meaning is accordingly no longer retricvable.

13
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5. Idea--a concept or proposition relatable to cogni-
tive structure.

6. Integrative reconciliation--part of the process

of meaningful learning that results in explicit delinea-

tion of similarities and differences between related
ideas.

7. Meaning--a differentiated and sharply articulated
content of awareness that develops as a product of
meaningful symbolic learning or that may be evoked by
a symbol or group of symbols after the latter have
been nonarbitrarily and substantively related to
cognitive structure.

8. Meaningful learning--the acquisition of new mean-
ings; it presupposes a meaningful learning set and a
potentially meaningful learning task (that is, a task
that can be related in nonarbitrary, substantive
fashion to what the learner already knows). Part of
the rote —» meaningful learning continuum as dis-
tinct from the reception —% discovery learning con-
tinuum.

9. Meaningfulness--the relative degree of meaning
associated with a given symbol or group of symbols

as opposed to their substantive cognitive content,

as measured by degree of familiarity, frequency of
contextual encounter or degree of lexical substantive-
ness (for example, a noun or verb in contrast to a
proposition).

10. Problem solving--a form of directed activity or
thought in which both the cognitive representation of
prior experience and the components of a current
problem situation are reorganized, transformed, or
recombined in order to achieve a designated objective;
involves the generation of problem-solving strategies
that transcend the mere application of principles to
self-evident exemplars.

11. Progrecssive differentiation--part of the process
of meaningful learning, retention, and organization
that results in further hierarchical elaboration of
concepts or propositions in cognitive structure from
the top downwards.

12. Reception learning--that kind of learning in which

the entire content of what is to be learned is presented

to the learner in more or less final form. Related to
the reception ——————— discovery continuum as distinct
from the rote — meaningful learning continuum.

14
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13. Rote learning--the acquisition of arbitrary,

verbatim associations in learning situations where
either the learning material itself cannot be nonarbi-

r trarily and substantively related to cognitive structure,
or where the learner exhibits a nonmeaningful learning

X set.

. 14, Superordinate learning--learning the meaning of a
! new concept or proposition that can subsume relevant
and less inclusive particular ideas already present in
cognitive structure.
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III. Presentation of Concepts

Introduction

This chapter will introduce the most general and
inclusive concepts of combinatorics first, and the specific
and subordinate concepts later, permitting a smooth recep-
tion process into the students'’ ¢ognitive structure. Later
on, those concepts will be explained in detail and graphi-
cally represented, allowing a guided discovery learning
when some considerations will be made about the relation-
ships between concepts compiled in a hierarchical conceptual
map.

Thus, thfee interconnected sequences are going to
be presented in an uninterrupted flow:

1. Sequence l--main and subordinate concepts

2. Sequence 2--graphical representation of concepts

3. Sequence 3--relationships between concepts

Along the trip that goes from reception learning
to discovery learning {(guided), students should be able to

find enough clearness, hopefully, for a meaningful learning

task.

Sequence 1

Main Concepts. Combinatorics deals  ith the prob-

lem of counting how many different subscts can be made by

choosing n elements from a given set of m distinct objects.

16
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In other words, given a set of m different elements (a; # a,
# ag # . . . # am), combinatorics' job consists of computing
the number of all possible distinct selections of n objects
that, meeting certain criteria, can be made from the given
original set of m different elements. Such criteria only
have two options:

Option l--the order is relevant (variations)

Option 2--the order is irrelevant (combinatorics)

Option l1--Order is Relevant (Variations).

Two subsets of n elements selected from m, such that both
subsets contain exactly the same elements, are considered
different subsets if the order their elements are arranged
is different.

Example. Given a set (a, b, c, d), two different
subsets are (a, b, c¢) and (a, c, b) because even though
both have the same elements (a, b, c), they are arranged
in different order. When order is the relevant criteria,
the combinatorics notion is named variations.

Consequently, variations can now be defined like
this: any ordered sequence of n objects taken from a set of
m distinct objects is called variation of size n.

Another way of expressing the same idea could be:

Given a set of m distinct elements a

1 # a, # ajy .. .
# a s variation of size n is every possible subset composed

by n elements taken from those m, agreeing that two

17
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variations of size n are different if they have at least
one element that is different; or if both have the same
elements, these are arranged in a different order. That
is to say, subsets are different if they differ at least
in one element, or, if they have the same elements, their
arrangement (order) is different.

Example. The twenty-four variations of the four
different elements (a, b, ¢, d) taken in subsets of three
elements are:

(a,b,¢), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (¢,b,a),
(a,b,d), (a,d,b), (b,a,d), (b,d,a), (d,a,b), (d,b,a),
(a,c,d), (a,d,c), (c,a,d), (c,d,a), (d,a,c), (4d,c,a),
({b,c,d), (b,d,c), {(c,b,d), (c,d,b), (4d,b,c), (4,c,b).

One way to symbolize this accounting problem is Vz = 24.
In general, V; would represent variations of m elements
taking n at a time. )

In Chapter 1V, a general procedure for calculating

variations will be explained.

Option 2--Order is Not Relevant (Combi-

nations). Given a set of m distinct objects, any unordered

subset of size n is called combination. Thus, combinations

of those m different elements taken in subsets of length
n have to differ in one element at least.
Example. If three soldiers have to be chosen from

a group of 4, the Ci are four:

18
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(a,b,c), (a,b,d), (a,c,d), (b,c,d), because here order of

the elements does not matter.

In Chapter IV a general formula will be deducted
for computing combinations of m different elements taken n
at a time.

So far, the two basic concepts of variations and
combinations have been introduced, albeit from these main
ideas some specific and subordinate concepts should be

derived.

Subordinate Concepts.

Option l--Order is Relevant (Variations).

Given the initial set of m distinct objects (ay #.az # a,
#F .. % am) the selection of subsets of size n can be
constructed in two forms:

l. No permitting replacement into the original
set of length m of any element that has been used for con-
structing a subset of length n. 1In this manner, objects
cannot be repeated because they cannot go back and forth
from the original set into any subset, and vice versa.

It is a one-way trip. Thus, m > n (if m = n, this is a
particular case called permutations, that will be studied
later). These kinds of variations are named ordinary
variations, the notion having already been introduced.

Remember that, for example, Vz = 24.

19
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2. But if replacement is permitted and, conse-
quently, all elements belonging to the original set can be
repeated any amount of times in the process to construct
the subsets of length n, the problem is absolutely differ-
ent, and this new situation could be seen as if the original
set has now m different elements, each of them indefini-
tively repeated. This is the case called variations with
repeated selection.

Example. The nine different two-digit numbers that
can be formed using the single digits 1, 2, and 3 are:

12, 13, 23, 11, 22, 33, 21, 31, 32.

A form to represent the variations with repeated
selection for this problem is VR§ = 9.

In general, VR; represents variations with
repeated selection of m elements taken n at a time.

3. Going back to the concept of ordinary vari-
ations (where replacement is not allowed) it has been
assumed that m - n; that is to say, the number of the dif-
ferent objects composing the original set is greater than
the number of the different elements belonging to every
subset. But nothing prevents that, in the limit, m could
be equal to n. In such case, every subset of length m
has to take all the m elements belonging to the original
set. As in variations the order of the elements is rele-
vant, every subset of length m has to have a different

arrangement. In this particular case, ordinary variations

20




are called ordinary permutations, and they are represented
as V' = p_.
m m
T Example. The six permutations that can be formed
) with the elements (a, b, c) are:
(a,b,c)
(a,c,b)
K (b,a,c)
. (c,b,a)
¥ (c,a,b)
. (b,c,a)
4. Speaking about ordinary permutations as a par-
ticular case of ordinary variations when the number n of

objects composing each subset coincides with the length m

of the original set (m = n), some extremely important con-

P

siderations have to be made:

oo ¥ g

a. In two dimensions. For instance, when an

observer is trying to solve on a piece of paper (that is a

f plane) the problem of counting in how many different ways
2 he can arrange (that means, permute) three different

, elements (a, b, ¢) in a circular fashion, he would notice

y

v that a c b

; v c b b a a c

. These three permutations are all the same because the

i relative position of the three elements is always the same;
: 21
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so, instead of three, he finds there are only two different

a a
c ’Qb b@C

Thus, if every single linear ordinary permutation

permutations:

is going to be seen three times circulariy, the observer
should divide between 3 the number of ordinary permutations
in order to solve his problem. 1If P3 = 6, now % = 2 1is
the solution.

This case is called circular permutations (PC),
and the ability to visualize it well will be extremely
useful later on in order to solve three~dimensional prob-
lems.

b. In three dimensions, the observer is try-
ing to figure out, for example, in how many different ways
he can paint the vertices of a right equilateral triangular
prism, painting one vertex in red, one vertex in green,
and leaving blank the other four. The graphical solution
e

] . |

This is a more difficult problem, but especially

is going to deal with circular permutations by rotating the
figures along all these axes of symmetry and computing only

the different arrangements (confiqurations or permutations)

te
|89
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: that appear after every rotation (eliminating those arrange-
» ments that are iacntical). In this process, the concept of
)
: substitutions will be presented later. This is a method
that facilitates the representation of the relative posi-
M tion of the vertices in the space every time the figure
oY
N (prism, tetrahedron, pyramid, cube, etc.) has been rotated
2 .
) a certain amount of degrees.
Going back to the problem, let us say for now that
the solution is five, as can be seen graphically.
5. 1In the way combinatorics concepts have been
” presented, an assumption has been made: all m elements
L
- belonging to the original set are different; thus,
) a; # 22 # aj £ .. . # a - But a new situation can be
- presented if several of those m elements are repeated.
: Under the new assumption, the original set structure could
: be
- m
? aja; aja,a, . ajaza; . ay - aa . a
. , AN
2
) where element ay is repeated i times,
L4
v element a, is repeated £ times,
. element a, is repeated , times,
) element a 1s repeated times,
2]
; being « + - + + + = m.
L]
! 23
&
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When calculations are made for computing the

number of different permutations here, some corrections to
the concept of permutations formerly presented have to be
made to avoid the selection of duplicated arrangements.
Example. The different ways that the three letters
a, b, b can be permuted are three:
(a,b,b), (b,a,b) and (b,b,a),
a solution that is different to be one presented in the
previous paragraphs.
Thus, a new notion has to be introducted, that con-
stitutes an exemption to the general hypothesis that
a, # a, # a, £ .. . F a - The name for the new concept
is permutations with repetition, and will be a golden key

that will unlock the door of many problems.

Option 2--Order is Not Relevant (Combina-

tions). Given the initial set of m distinct objects
(al # a, # aj £ . . . # am), the selection of subsets of

size n can be constructed in two forms:

1. No permitting replacement into the original
set of length m of any element that has been used for con-
structing a subset of length n. Thus, objects cannot go
back and forth from the original set to the subsets. Thus,
m > n. These kinds of combinations are called ordinary

combinations, the notion of which has already been explained

in option 2. Recall that CZ = 4.
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2. But if replacement is permitted and, conse-
quently, elements comprising the original set can be
repeated in constructing the subsets, the case is totally
different, and the new situation can be seen as if the
original set has now m different numbers, each of them
indefinitely repeated. This case is named combinations
with repeated selection.

Example. With the three objects a, b, ¢, the
following combinations with repeated selection can be made:
Length 2. aa, ab, ac, bb, bc, cc.

Length 3. aaa, aab, aac, abb, abc, acc, bbb, bbc, bcc, ccc
Length 4. aaaa, aaab, aaac, aabb, aabc, aacc, abbb, abbc,
accc, bbbb, bbbc, bbcc, bececc, cccec

A form to represent this problem is

2 _ .. 3 _ . _
CR3 = 6; CR3 10; CrR, = 15

4
3

35 o

In general, CR

Sequence 2

Main and subordinate concepts can be interrelated

in the hierarchical map shown in Figure 2.

Sequence 3

1. The highest and most inclusive concept 1in
combinatorics is ordinary variations because it takes into
account every possible different configuration of the
elements attending to the order in which the chosen elements

are arranged.
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In a second level of importance are ordinary com-
binations, where order of the chosen elements is irrele-
vant. For instance, if 234 is a particular combination
of length 3, all the possible arrangements (permutations)
that can be made with these three digits are

234, 243, 423, 324, 342 and 432.

These six different numbers represent the same combination,
but they are six different variations. Thus, if the n
elements of a combination are permuted in all possible ways,

the result is variations. That means

2., Ordinary permutations is a particular case of

ordinary variations, when m = n. Thus, V; = Pm.

3. Permutations with repetition should be con-
sidered particular cases of ordinary variations when the
general hypothesis that a; # a, # as £ ... # ay is broken
and some elements are equal between them.

4. Circular permutations concept is the same as
ordinary permutations concept. What introduces a differ-
ence here is the fact that ordinary permutations are devel-
oped in one spacial dimension, while circular permutations

are presented in two spacial dimensions. Thus, the observer

counts differently in every case. For instance,

b AT AT A A A T L e




4 2341
E 34102
E 4123 ,'
l represent four different ordinary permutations, but only
E one circular permutation
1 2 4 1 3 4 2 3 !
4[1—3 32 2 1 1]4 ;

because the spectator has the freedom in two dimensions
to rotate or flip the figure along its axes of symmetry
and verify that the relative position of the four elements .
is always the same.
All these relationships will be explicitly shown
in Chapter IV, where formulas to be applicable to every con-

cept already introduced will be deduced, £followed by some

practical applications. B
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IV. Formulas and Applications

Introduction

This chapter will be divided into the three follow-
ing sections:
1. Section I. Deduction of the general formulas
of:
a. Ordinary variations.
b. Variations with repeated selection.
c. Ordinary permutations.
d. Circular permutations.
e. Permutations with repetition.
(1) Power of the polynomial (Leibniz'
Formula) .
f. Ordinary combinations.
(1) Properties.
(2) The Tartaglia's Triangle.
(3) Power of a binomial (Newton's Formula).
2. Section II. Solution of concrete problem
scenarios 1in one and two dimensions using the conceptual
framework provided by the concept map.
3. Section III. This part will exclusively deal
with solving combinatoric problems in three dimensions.
When a regular body is rotated or flipped in the space

along its axes of symmetry, students have to be able to

29




. count how many different arrangements (permutations) of the
faces, vertices and sides, they can see.
As it will be seen later, permutations in one

. dimension (Ordinary Permutations) compute a bigger number

of possibilities than permutations in two dimensions (Circu-

lar Permutations), and these compute an even bigger number
of possibilities than permutations in three dimensions
(Substitutions). The conclusion is that as more freedom

a body has, the simplest is the solution (less possibili-
ties), which goes against human intuition.

The theory of substitutions (Ordinary and Circular
Substitutions) will be presented as a method that will
allow any static observer to track the relative interposi-
tion of the vertices, faces and sides of a regular body
when it is rotated symmetrically in the space.

In order to solve this kind of problem, two steps
are necessary:

Step 1. Calculate the cycle index. The cycle
index (that serves as a catalyst) consists in a division
or proportion between:

a. Numerator: the total number of rotations per-
formed, grouping them in circular substitutions or cycles
that have the same pattern or structure.

b. Denominator: the total number of rotations per-

formed.
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For instance, 1if the total number of rotations

that has been performed is 10, and these 10 rotations can
be classified in three different kinds of circular sub-
stitutions, such that

10 = 1 circular substitution class A + 3 circular

substitutions class B + 6 circular substitutions class C,

the cycle index will be:

circular circular circular
1l substitution + 3 substitutions + 6 substitutions
class A class B class C
10

Step 2. Calculate the pattern inventory. This
tool consists of the replacement of every term in the
nominator of the cycle index (circular substitutions
class A, circular substitutions class B, etc.) by all the
possible circular substitutions belonging to each class.
Really, what the pattern inventory does is the development
in detail of the cycle inventory. Hopefully, analyzing
the pattern inventory, an answer to every specific problem

should be deducted, as it will be seen later.

Section I. General Formulas

Ordinary Variations (Order is Relevant). Any

ordered sequence of n objects taken from a set of m dis-
tinct objects is called a variation of size n of the

objects.
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Given m different elements a; # a, # a, F oo .

1
# as variation of size n is any group of n elements
chosen from those m, agreeing that two variations are

different if they differ in one element at least, or if

both have the same elements, their order of allocation

is different. Thus, two variables are taken into account

in variations: different elements and order of the elements.
The number of variations of size n made from m
given elements, will be symbolized by V;. Notice that
here m > n.
The general formula for ordinary variations can
be deduced in this way:
Supposing that all possible variations of size
{n-1) are known (V;-l), there are m - (n-1) = (m-n+l)
elements that have not been used in every variation of
size (n-1).
The objective now is passing from V;—l to V;.
If every one of the (m-n+l) elements that have not been
used in every Vﬁ—l is added to its right, for each vari-

ation, V;-L will appear (m-n+l) variations of the type

vl
m
Giving values 1, 2, 3, ..., n to n in the expres-
sion (m-n+l1). Vn_l = Vn,
m m
32
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n =1, (m—l+l)Vm = me = Vm
! n=2, m2¢1)v >t = @-nvi = v
% n=3, @3+1v >t = (m-2vi = v
n=4, ma+)v = @envd o= vl

- —— . ———————————— T ——— —— - " ——— - ————

n=n, (mn+l)v 21 = (mensn)v®L = VR
m m m

Therefore,

Vl =m
m
: v2 = (m-1)V
] m
|
‘ 3 _ 2
Ve o= (m-2) Ve
v; = (m-3)V

Multiplying these gualities member by member and

eliminating common factors,

VB = m(n-l) (m-2) (m-3) ... (men+l) = R
v = m!
m  (m-n)!

Example. How many different numbers of three characters
could be formed with the digits 1, 2, 3, and 4 without

repeated selection?
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= 421 _ 21 _ 4.3.2.1 = 24 numbers.

Example. How many different numbers of four digits without

having a repeated digit are there in the decimal system?
The total different numbers of size four that can

be generated with the ten digits (0, 1, 2, ..., 9) are

Vio, but those beginning with 0 have to be subtracted

because they are not four-digit numbers. Therefore,

4 3 __10¢ 91 _ 10t _ 91 _
Vio ~ Vo T {104yt ~ (9-3)T ~ 6! " &1 -

|

(10!-91)

(o)}

4,536 numbers.

Variations with Repeated Selection (Order is

Relevant). If in ordinary variations every variation has
to be composed by different elements, in variations with

repeated selection it is possible that any object a a

17 72!

A3s eeer @y could be repeated any number of times.

The number of variations with repeated selection
of size n, made from a set of length m, will be symbol-
ized by VR;. Notice here that m><n.

The general formula for variations with repeated
selection can be deduced in this way:

Suppose that all possible variations with repeated

n-1

selection of size (n-1) are known (VRm ). There are

always m elements available tc use when the objective is

1

passing from vR?™" to vr'.
m m
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If every one of the m elements that have not been
-, used to construct every VR;-l is added to its right, for
48
fd
B . - .
;:j each variation with repeated selection VR; 1 will appear
XS
33 m variations with repeated selection of the type VR; Thus,
o . . . n-l . . n .
N if one variation VR produces m variations VR all vari-
?2 ations VRn-l will produce m - VRn-l = vRE. Giving values
o m m m
> 1, 2, 3, ..., n in the expression m-VRrI:I'-l = VRg,
‘ 1-1 0 1
.‘ - = = =
Q}f n 1, mVRm mVRm VRm m
~.
N _
e n =2, mr>"t = mvRL = VRZ
N m m m
23
o n =3, mvR> ! = mvr? = Vg3
-, m m m
L
= n =4, mve?™! = mvr3 = vr!
o - -
o n=n, v ! = @r®! = vr"
*“
s
9
V? Multiplying these equalities member by member and
- eliminating common factors VR; = m.
-
" Example. How many different numbers of three characters
X could be formed with the four digits 1, 2, 3, and 4?2
) "
ti 3 3
i VR4 = 47 = 64 numbers.
v,
N
- Example. How many different numbers of four digits are
-
o there in the decimal system?
7 vrd - wr3 = 10% - 107 = 9000
10 10 )
=
>
o
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Ordinary Permutations (Order is the only Possible

Variable. 1In ordinary permutations, order of the elements
is not only important, it is the only variable that can be
taken into account because the same m elements are always
selected from the original sample space. Thus, different
permutations can only differ in the way those m elements
are arranged. Recall that two variables were taken into
account when n elements were selected from m for construct-
ing variations.

Ordinary permutations are a particular case of
ordinary variations when m = n. Thus, the ordinary varia-
tions of size m that are made by choosing all the elements
belonging to the original set of m objects are called

ordinary permutations. That is to say

= - mi _m _m!
P, = Vp = m-my! - or _ 1 - M
Mathematicians have convened that 0! = 1 because
if v; = m(m-1) m=2) . . . (m-n+3) (m=n+2) (m-n+1),
Therefore,

vﬁ = m(m-1) (m=2). . . (m-m+3) (m~-m+2) (m-m+1)
= m(m-1){(m-2). . . 3 + 2 . 1 = m!
Thus,
P_ = m! Q.E.D

o ™
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In how many different ways can the seven colors

Example.

of the rainbow be rearranged?

P7 = 7! = 76.5-4-3.2-1 = 5,040 ways.

Example. How many different words of eight letters can
be constructed with the vowels a, i, o, u, and the con-
sonants b, ¢, d, £, without having two vowels or two
consonants together, and without repeating any vowel or
consonant?

The four vowels can be arranged in P4 = 4! ways.

The four consonants can also be arranged in
P4 = 4! ways.

Every arrangement of the 4! permutations made with
vowels can be associated with every arrangement of the 4!
permutations of consonants in two different ways:
beginning with vowel or beginning with consonant.

For example, a bucif od or

bacufido

Therefore, P, - P, - 2 =2 - (P,}" = 2(4!)2 = 1,152

4 4

different words.

Circular Permutations (Ordinary Permutations but in

a Two-dimensional Space). The difference between ordinary

permutations and circular permutations is that the former

works in one dimension (a line), but the later works in
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two dimensions (a plane). For instance, given three
people a, b, ¢, two different problems are:

1. Arrange the three people in a row in all pos-
sible ways (ordinary permutations); and

2. Arrange the three people around a table in all
possible ways (circular permutations).

The solution for the first problem is easy,

P3 = 3! = 6 different arrangements. Graphically,

abc, acb, bac, bca, cab, cba

But in two dimensions the problem is not so easy because
here there is no first and no last element. What counts
is the relative position of every object in respect to

the other objects. Thus, three arrangements
a c b

are indeed the same circular permutation because the
intermutual position of the three elements is identical.
Therefore, the problem has only two solutions in two spa-

cial dimensions:

38
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A general procedure for forming the number of
circular permutations that can be done with m different
objects (a; #a, # a, # ... # a) could consist of fixing
one element and permuting, by ordinary permutations, the

remaining (m-1) elements.

a a a a /fl_\ a
TN N : y
b{:::>d af }c c! b c<::;;d at+ ‘b b<::j*c
N \\w/’ \*/, /
c b d b c d

Given four different elements (a,b,c,d), the figure
above represents the six different circular permutations
that can be formed. Element a has been fixed, and the
other three elements (b,c,d) have been ordinary permuted.
Not taking a into account, there are now first and last
elements.

= = - |
In general, PC, Po-1 (m-1)!

Example. In how many different ways can seven people sit

down around a circular table?

PC, = C = C6 = 6! = 720 ways.

Example. In how many differert ways can the vertices of a

square be painted with four different colors?

b
7 abcd
bcda
Recall that cdab
d c dabc

represent four different ordinary permutations (one dimen-

sion), but only one circular permutation (two dimensions).

39
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As a square, like a circle, is a a two-dimensional figure,

the solution is PC4 = P3 = 3! = 3.2-1 = 6

Graphically,
a b a d a c a b a c a d
d C b c d b c b d c b

Permutations with Repetition (Order is the Only

Possible Variable). 1In ordinary permutations all the m

elements belonging to the original set are assumed to be
different (al # a, # as # ... # am).
In permutations with repetition some of those given

m elements are repeated:

al,al’--.al, 2,a2'-..a 3,33,...a3,..., aQ, az’-.o az

\a// \\ / \ / \,x//

where
element a; is repeated o times
element a, is repeated 8 times

element a, is repeated Y times

element a, is repeated X times
being a + B+ Y+ ... + A =m
40
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:: A procedure for calculating the general formula

of permutations with repetition could be:

»
4
: Suppose you have an original arrangement of those
o m elements

' m

< 4187 ...27853,...8,3385...85...3)3,...3,

\a/ \\B/" \\Y/ \A/

;{ If the o ay elements are switched between them,

N

= there will be P, = a! identical permutations.

If the 8 a, elements are switched between them,

é there will be PB = B! arrangements exactly equal.
o The same reasoning is applicable to the rest,

< getting PY = v!, ... P, = 2! permutations that are identi-
A

:: cal to the initial one.

.

. Thus, the total number of permutations that end
4 up being identical to the original arrangement is a!B!y!

A

. co At

>

*~ Therefore, dividing the ordinary permutations (Pm)
- of the m elements between the total number that each one

f of those permutations is found repeated, the result will be
A the number of different permutations.

. The result of this process is called permutations
- with repetition, and is represented by
N

.

AS

™
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Example. 1In how many different ways can be ordered 20 books
in a book shelf knowing that 6 have a black cover, 5 a white

cover and 9 a red cover?

77,659,752 ways

Example. What is the number of different permutations of

the letters in the word Mississippi?

There are 1 M
4 i's
4 s's
2 p's
11 letters
1,4,4,2 _ 11! _ ,
Thus, PRll = {7d1araT = 34,650 permutations
Power of a Polynomial (Leibniz' Formula).

The purpose of computing the power of a polynomial is te

calculate the value of expressions like

n
(a + b+ c+ ... +Z)m
n
being a#fFb#c# ... #1
42
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In general, it can be said that

- ~
- ~ i
(a+b+c+...+2)m = EfaQbBc(...Qx,

where there are n different factors (a#b#c#...#.) in every
B8

term of the sum Zaab cY...QA, albeit there are a total of

m factors (w+B+y+ ... +X) in all of the summed terms.

The following question is how to calculate those

terms with their respective coefficients.

The coefficient for every term can be obtained

using permutations with repetitions, because any term

N N TN N

aa...abb...bcc...c...28...0 = aabBcY...QA

Ay ByYyenarr _ m!
m alBly!looont!

will be repeated PR

being w+g+y+...+3= m.

Thus, the expression has turned to be

n

///// m m! e 3" i
(a+b+c+...+7) = 7T - - a*bcl... Y,
alplylolon!

but how to know the value of «,8,vy,...)\? A tricky method

will be taught. Splitting the number m of total factors

(m=g+B8+y+...+%) into all possible natural (nonfractional)

subsets of n different factors, their respective exponents

will be derived.

.....
P



s aae gy TR P TOC T Py Uttt Fad el "ataf a0 aln At Ala Y e A0 atat : Salldalted ¢
W TR ikl aid a1 Al S aa A% Phalt I AU I AR A N -J.ﬁ._,nu.----.h-.h

' 4
~
- ~
’ -
’

' ’ Y5 51

For instance, (a+b+c+d)” = I TR aO‘bachcS
alBlytéd!

]
(%))
]

a+B+y+S8 = m # of total factors

/7N

\ a#b#c#d; n

i
>
1]

# of different factors

Splitting 5 into 4 subsets, 1in all possible natural
ways (fractions cannot be used), the values for exponents

2,8,y and ° are:

whus, (a+hecsiy’

5!

STor0 g R

5!

(a4b+a*c+a4d+b4arb4c+b4d+c4a*‘4b+c4d+d43&

+ _—

4111010

110'0 4 4
d b+d c¢) +
' s
+ 312?0'0{ (33b2+a3c2+ 33d2+ b3a2+ b3c“+ b3d2* c332*
volbls c3a%s dlats adpds a3c?)
14
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+ T_].—E'%'_OT (a3bc+a3bd+a3cd+b3ac+b3ad+b3cd+c3ab+c3ad+
+c>ba+ralab+dac+abe)
+ §T§$%TET (a2b2c+a2b2d+a2c2b+a2c2d+a2d2b+a2d2c+b2c2a+
+b2c2d+b2d2a+b2d2c+c2d2a+c2d2b)
1
+ §7T$i7TT (a2bcd+b2acd+c2abd+d2abc)

In general, the Leibniz Formula for obtaining
the power m of a polynomial expression composed by n dif-

ferent elements, is

n\\\\
m _ . m! o, By . A
(a+b+c+...+2) = L yTBI L. @ b~ c 2
being a+B+y+...+X = m
where «,8,Y,...,2 receive all possible systems of natural

values into which m can be split. NOTE: The power of a
binomial (Newton's Formula), that will be seen in ordinary
combinations, 1s a particular case of the power of a poly-

nomial (Leibniz' Formula).

Ordinary Combinations (Order is Irrelevant). Recall

that two variations are different either because (1) they

differ in one element at least; or (2) they have the same
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elements but in different order. 1In contradistinction to
the case of variations where either one or both variables
may be relevant, in the case of combinations there is only
one variable: some element(s) are different.

Thus, given a set of m distinct objects, any
unorder subset of n of the objects is called an ordinary
combination. Consequently, two combinations are the same
if both have the same elements, even though they are
arranged differently; and two combinations are different
if they differ in one element at least.

The number of combinations of size n, made from a
set of m different elements (a1¢a2¢a3#...#am), will be

m

symbolized by Cg or (n)

Notice that here m > n.

A method for computing the general formula of
ordinary combinations could be:

Suppose you already know all possible C; (where
order is not relevant).

Take every single combination from C; and permute
it (Pn) in all possible ways. For every single combination
you will get Pn different permutations (where order is the
unique variable).

The total number of configurations that you will
have now is C; X Pn, because all the combinations (C;)
have been arranged in every conveivable manner, and that,

by definition, are ordinary variations. So,



ab, ac, ad, ae,
bCI bd’ be’ lO - C2 = 5! - 5! =5'4=.2_0=lo
cd, ce, > 2l5m2rt o 2e3 i i
de
Properties.
m, m
(n) = (m-n)
Proof .
m n _ m!
(n) - Cm "~ (m-n)!n!
47
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C xp =V
m n m
Therefore,
n m!
Cn = .‘]L“ = ——————(m—n) : = m!
m P n! (m-n) !n!
Example. How many different selections of 11 soldiers from

a group of 14 can be made?

11 _ 14! _ o lav .
C14 = (Id-Iin)TIiT - 31117 - 364 selections.

Example. Form the ordinary combinations of length 2 of the

objects a, b, ¢, 4, e
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( m ) = Cm—n _ m! _ m!
m-n’ ~ m [m=(m-n)] (m-n)! ~ (m-n)!n!
0.E.D .
m, _ ,m-1 m-1
(n) = n ) + (n-l)
Proof . ;
(m-l) - (m-1) ! - (m-1)!
n (m-1-n) !'n! (m~n-1) In!
(m—l) _ (m=1)! _ (m-1) ! .
n-1 [m-1-(n-1)]!(n-1)1 = (m-n)!(n-1)! g
(m=-1)! (m=1)!
SUM = mon-D) 'nt T @=n) ! (n-1)1
{m=1)! {m~n) ({m=1)!n P
(m-n-1) !n! {(m-n) (m-n) ! (n-1) !n "
_ (m=1)! (m-n)+(m-1) tn _(m=1)! [m-n+n] .
(m-n) !'n! = (m-n) 'n! B
4
(m=1)'m _ m! _ (m) - cn 3
(m-n) !n! (m-n)!n! -~ 'n m ~
Q.E.D. p
The Tartaglia's Triangle. Being (:): ﬂ:l) :
+ (g:i), the Tartaglia's Triangle is, by definition, o
;J
A
48 :
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Given m binomial factors,

Power of a Binomial

(Newton's Formula).

the product is

x+a x+a x+a e.e. (x+a x+a
(x+a,) (x+a,) (x+a,) (xta__1) (x+a_)
= x" + xm—l(a +a.+a_+ + a)
1 72 73 m
+ xm_z(a a.+a.a.+a.a,+ +a_ ,a)
172 7173 7174 m-1"m
+ xm-B(a ajas+taja,a,ta ajac +
17273 4 717275 e
+a
m-2 m-1 m)
b ittt ettt e e e e e
+ x + a a_+ .
(a,a,23 An-1121233y m
+ +A2,A,2.,5 ... :
ady ap) tajasa, -1
49
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If a; = a, a3 = ... an the new development

of the product is

(x+a)™
_ Jm m-1 oAl
= X + X a Cm
m-2 2 2
+ X a Cm
m-3 3 3
+ X a Cm
+x - am—l . Cm-l
m
+ am
Therefore,
(x+a)m - (m)xmao + (m)xm—l + (m)xm—z 2
0 1 2
m, m=-3_3 m m-1 m m
+ (3) + + (op)xa + (J)x a
Example.
(x+a)6 - (6)x0a6 + (6)xa5 + (6)x2a4
0 1 2
6, 3 3 6, 4 2 6, 5 6, 6 0
+ (3)x a~ + (4)x a“ + (5)x a+(6)x a

The coefficient for every term can be obtained

using the Tartaglia's Triangle:




Therefore,

6 6 2

(x+a) a + 6xa5 + 15x2a4 + 20x3a3 + 15x4a

+ 6x5a + X

> oY AN

R L SR - e e e
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Note the symmetry of the coefficients (1-6-15-20-15-6-1).

The same result should be obtained usin.” the Liebniz
Formula for the power of a multinomial.
6! a_B

6 !
(x+a) = 3181 Z x a~ = PR

a,B
6

B

o
- X7a

Set of natural values for o and B

m= 4 + 2
m=3+ 3

Thus, (x+a)6

6! 6 _6 6! 5 5
- §i07 (x +a )-+§TTT(X a+xa’)

6! 4 2 2 4 6! 3
+ T127 (x a +x a )+3!31 ° X a3
= x6 + a6 + 6x5a + 6xa5 + 15x4a2 + 15x2a4 + 20x3a3
= a6 + 6xaS + 15x2a4 + 20x3a3 + 15x4a2 + 6x5a + x6
Q.E.D.

Note again the symmetrical disposition of the coefficients
(1-6-15-20-15-6-1) .

Comparing both procedures, the binomial and the

multinomial, a conclusion can be made that,

','}w

.
.e
K
1
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0 _ .6 _ 6,0
v Ce = C6 = PR6 = 1
"
» 1 _ .5 _ 5,1 _
C6 = Cg = PR6 6
o
2 _ 4 _ 4,2 _
C6 = C6 = PR6 = 15
[ 303 3,3 _
b C6 = C6 = PR6 = 20
“w
al
- Note: These equalities happen because
LN

- n _ _m-n _ n, (m-n) _ m!
; Cn Cm PRm ~ ni{m-n)! '’

S but such particular mathematical truism cannot be general-

ized in the sense that any ordinary combination can be

N represented by a permutation with repetition. Remember

o+

” the different initial conditions: in ordinary combinations
- the m given elements are all distinct (al#a2¢a3# R am),
i but in permutations with repetition some of the m elements
LY

~

are repeated

1°° 122 2...a2a a3...a3...a2az...a’2

/
\
p
R
lf/u
N
\

L

Ao,

LEN \\._‘._,‘
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Example.Calculate(a+b+c)4 using the Leibniz Formula.

Solution.
m=4=4+ 0+ 0| set of all possible values
m=4=3+1=0]for o, B and y.

m=4=2+2+0}|n-=3

(a+b+c)4

4! 4.0 0 4! 3 0

) ) 1
= F10107 L abc 3y fabe

41 220 41 o211
* 372101 L abc +t5mgy tabe

4 + 4(a3b+a3c+ab3+b3c+ac3+bc3)

il
o}
+
o
+
Q

2

+ 6(a2b2+a2c2+b c2) + 12(a2bc+ab2c+abc2)

Example. Calculate (a+b+c)4 using Newton's Formula.

Solution.

(a+b+c) ¥ = [ (a+b)+c)?

0 1 2

(g)(a+b)4c + (f)(a+b)3c + (;)(a+b)2c

+

) arbrte? + (§) (arp) 0!

(a+b)? + 4(a+b)3c+ 6(a+b)2c? + 4 (a+b)co+c?

54
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o

.8

o~ 4, 4.0 4. 3.1 4. 2.2 4. .3 4. 0.4
o = (O)a b~ + (l)a b~ + (2)a b™ + (3)ab + (4)a b
= v 403)a%% + 43)adlc + a3 abie + 4(0)a%3c
o 0 1 2 3

~ + 6(5)a%b%2 + (% atplc? + 6(%) a2

o 0 1 2

o

-3

N 3 4

4ac3 + 4bc” + C

+

.\.
2
}: = a4 + 4a3b + 6a2b2 + 4ab3 + b4
o
-.\
x + dac + 12a%bc + l2ab%c + 4b°c
N
N
f; + 6a2c2 + lzabc2 + 6b2c2
Y
y + gac® + apcd + !
= a4+b4+c4 + 4(a3b+ab3+a3c+b3c+ac3+bc3)
2 + 6 (a’b+a’c?tb?c?) + 12(a’be+rabicrabe?)
N
hi = a4 + b4 + c4 + 4(a3b+a3c+ab3+b3c+ac3+bc3)
!‘rc
-4 + 6(a2b2ra?c?+b2c?) + 12 (aberabcrabe?)
T
-
~
W
&
- 55
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Combinations with Repeated Selection (Order is

Irrelevant). If in ordinary combinations every combination

M ‘e et T, Tat. T s T e - AN - ) -~ - » - - -
O S A N SRl Sl ST A L S S N RS
- - L)

is composed by different elements, in combinations with
repeated selection it is possible that any element can be
repeated any number of times. Therefore, combinations

with repeated selection are different subsets of n elements
each, which have been taken from a given set of m different
elements, but with the possibility for every single object
to go back and forth from the given set into any subset.

In this way, there are always m elements available for con-
structing subsets, as every element can be selected
repeatedly again and again.

A form to represent combinations with repeated
selection is CR;.

Notice then here m % n, because there are m dis-
tinct objects (al¢a2¢a3¢ I am) in the given set, each
of them can be indefinitely used for constructing subsets
of length n.

The general formula for combinations with repeated
selection can be deduced using an auxiliary transformation.
Suppose the combinations with repeated selection are all

known and perform the following auxiliary transformation to

every combination:

56
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.n auxiliary
—‘\\\\\ixansﬁxnatﬂmx n_‘\\\\\
/ ~

2121313535 wee @y > BBy Py by aba s e Py )

333,343 A11 70 3m T P3PuyPuoPriaPirig s Poy n-1)
Group Group
(1] (2]
33333535 ... ay "> byb, 0y B b P -1y

Using the former algorithm, you have passed to the second
set of elements b (Group 2) by adding consecutive natural

numbers to the subindex of elements a (Group 1):

0 to the a element in the first position of each row
1 to the a element in the second position of each row

2 to the a element in the third position of each row

. —— ———— — . ———————— ———————————— . ——————————————————

/n\ /,f—'n\>
7 > -
Y /

3131313533 +es e T bybyPgbb, e b

333424297117 Ppem T P3PsPgP 0By - By

Group Group
[1] 12

ala2a3a5a5 .o am - blb3b5b8b9 .o bm+(n—l)
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Passing from Group [l] to Group [2] was performed
using an algorithm that allows one to see a mutual corres-
pondence between every pair in both groups: to each combina-
tion on the left side (with combination repeated selection)
corresponds a combination on the right side (ordinary
combination}. Checking the new subindex for elements in
the right side group, the highest subindex of b must cor-
respond to a. —* bm+(n—l) because m is the highest sub-
index in group a and it is allocated the last one; so the
algorithm gives to it the biggest subindex (m+n-1) in
group b.

Therefore, a general formula can be established

n _ .n _ ,m+n-1)
CRy = Cm+n—l = n

Example. How many different subsets of two coins can be

made with pennies, nickels, dimes and quarters?

!
cr? = 2 2. __5

4 = Ca42-1 5 = (5-2)137 - 10 subsets

Section II. Problems

Introduction. This section will present the solu-

tion of concrete problem scenarios in one and two dimen-
sional space using the framework provided by the conceptual
map. The conceptual map is updated in Figure 3 which

includes the general formulas for main and subordinate
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concepts already obtained. Substitutions will be explained
in the third section along with some problems in three

dimensions.

Problem No. 1. Ordinary Variations. "In how many .

ways can 3 prizes be distributed to twenty competitors if

each person can receive at most 1 prize" (Eisen, 1969:12)?

Solution. Assume you have been asked to assign people (all

different, of course) to three prizes (different, too).
This is the most general and inclusive concept in combina-

torics (variations), where order is relevant.

Thus,
3 _ 20t _ 20! _ .10. _
V20 = 120-3)7 - 17T © 20-19-18 = 6840 ways
Problem No. 2. Ordinary Variations. "In how many

ways can four letters be put in four envelopes, one in

each" (Eisen, 1969:8)7?

Solution. Order is relevant.

Note that this problem can be solved using ordinary permu-
tations because permutations are a particular case of
variations when m = n.

Thus,

60




4 vl = p = m!
m m
4 = = ! =
V4 = P4 4! 24

a"a"a"A

Problem No. 3. Ordinary Variations. "How many

L
.

different numbers can be formed using the digits 1, 2, 3,

- 4 if repetitions of the digits are not allowed" (Eisen,

1969:10)7?

} Solution. Order is relevant. Length of the numbers (the
N 20 2t10n

N
N value of n) is relevant.

o Thus,

' 1 2 3 4

: Vy +V + VY,
-

- _ 4! 41 41 4!
Y R R e IR U e N T VI
Y
Y

[~ =4 + 12 + 24 + 24 = 64 different numbers.

’l

.

- Problem No. 4. Ordinary Variations. "How many
I-

Q different 3 letter words (with no repetition) can be formed
¢ from the letters a, b, ¢, 4, e, £, g, h which (1) include
-

f the letter e; and (2) do not include the letter e" (Eisen,
. 1969:13)?

;: Solution.

;$ 1. There are a total of 8 different letters.

'

v

Letter e can be fixed in three different places:
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Order is relevant here, and repetition is not allowed.

Thus, the other seven letters can be chosen in V2 ways.

7
So,
3 places for e v V% ways for the other 7 letters
=3 2 -3 .1 -3.7.6=126 word
R V= I T % T 228 WOres

2. Excluding e, there are only 7 letters, that make

cap" TS TR AN S .
vy = (7-3)r ~ ar "~ 7 6 5 = 210 words. :
Problem No. 5. Ordinary Variations. "How many

distinct 3 digit numbers are there which are even and have

no repeated digits" (Eisen, 1969:16)7?

Solution. !
The last digit has to be )
0,2,4, 0, 2, 4, 6, or 8

6,8 !
»
If last digit is zero 0 Vg f
b9
If last digit is 2, 4, 6, or 8 ~
2,4, :

6,8
2 1 )
4 x (V9 - V8) .
e
2
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Numbers beginning with 0 are not three digit numbers and

have to be subtracted.

Thus,
2 2 I, _ _ 9! 9+ _ __8!
Vg + 4V - V) = mIoyT * 4 oot - BT
g1 91 8!
= W + 4 (7!—) - 7_!—)

I

9.8 + 4(9-8-8) = 9-8 + 4.8.(9-1)

9.8 + 4-8-8 = 72 + 256 = 328 numbers.

Problem No. 6. Variations with Repeated Selection.

How many numbers of five digits are in the base 4 numerical

system?

Solution. Digits available in base 4 are four: 0, 1, 2,
and 3. Order is relevant. Numbers can be repeated.
Numbers beginning with 0 are not five digit numbers, and
they have to be subtracted.

Thus,

vrR? - vRY = 4° - 4% = 4% (4-1)

= 4" + 3 = 256 - 3 = 768 numbers.

Problem No. 7. Variations with Repeated Selection.

(1) How many reversible (symmetrical) numbers with six
digits exist in our decimal numerical system? and (2) Add

them.
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Solution.

1. Symmetrical structure |ajbjc|c|b]a]

Order is relevant. Working with is enough .
VRiO. But those numbers starting with 0 are not six digit
numbers; and, therefore, they have to be subtracted.

Thus,

0TbJc] VRio - VRi‘O = 107 - 10% = 102 (10-1)

=9 « 10 = 900 numbers.

2. In order to add these 900 numbers, three steps
are required:
a. Lateral or peripheral columns. There are
only numbers 1, 2, 3, 4, 5, 6,.7, 8, and 9 (no 0's). How
many? Each number is equally distributed 900/9 = 100

times. Thus, each number has to be added 100 times,

100 x (1+2+3+4+5+6+7+8+9) = 100 x 45 = 4,500.
b. Intermediate columns. Number 0 appears
here. So, there are 900/10 = 90 times that each number

0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 has to be added.

90 x (0+1+2+3+4+5+6+7+8+9) = 90x 45 = 4050.

c. abccba=ax lO5 + b x lO4

+ ¢ X lO3 + Cc X 102 + b x 10 + a
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¥
o
e
Lo
” = 450000000
40500000
. 4050000
" + 405000
5 40500
N 4500
.9 495,000,000 symmetrical numbers
N Problem No. 8. Variations with Repeated Selection.
R
N "How many different outcomes are possible when 100 differ-
ent dice are rolled" (Eisen, 1979:9)?
X
‘v
N Solution. Every dice has 6 different faces. The order
“
\ of presentation of any of such six faces, after every dice
& is rolled, is relevant. Each value is repeated 100 times.
- Thus,
N VRéOO = 6190 gifferent outcomes.
M s
N
]
) Problem No. 9. Variations with Repeated Selection.
- 1. How many numbers with seven digits exist in
our numerical system?
't 2. How many of those numbers have four 2's and

three 5's? Add them.

g Solution. ///,»—-7~\\\\\

: 1. T 17 T T 1 [} Order is relevant.
P When éalculating VRZO, all possible seven digit numbers
"’
LY are obtained, including those beginning with 0, which are
L d
. not real seven digit numbers; so, they have to be sub-
¢
' tracted.
<
o
s
v
9 65
o

AR RN

............................
................................
----



. fLate ke e g - Cam el vag v an_.ab_ aba’; g TAR ol tall ol .ol %ol 'S Ul s AN ) LYY ST LYY JS atatalo'et talk.t
. (RN LR CYNS KRV WY A i te Aba ity gl o) fa gt . C WO ¢

..... - R NN Y .

Thus,

/’6\ '
o

7 6 .7 6 .6 _
VRIO ~ VRIO = 10 107 = 1¢° (10-1)

= 9,000,000 seven digit numbers.

/m=7\\_ "
2. 222255+5 3
/ _
\x‘—‘4/ \S=3
4,3 _ 1 .
PR7 = 2131 ° 35 numbers o

For adding those 35 numbers consider that there
are a total of 35 rows to be added; that each row is

composed of seven elements of which four are 2's and three

are 5's.

7 columns A
Structure 2222555 :k
2525252 35 rows o
2255522 N
2552225 °
R ]
o
A
s
In every column there are a total of 35 numbers; 3
these numbers are just 2's and 5's in amounts proportionally o
'
distributed to 4 and 3 respectively. Dividing 35 pro- 3
portionally to 4 and 3, ;‘

# of 2's _ # of 5's _ % of 2's + # of 5's _ 35 |

4 3 4+3 -7
3
e
66 .
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# of 2's = 4 2; = 20 twos.
# of 5's = 3 - 2; = 15 fives.

Adding the 35 numbers of any column (without carrying),

20 twos + 15 fives = 20 x 2 + 15 x 5 = 40 + 75

= 115

The total addition will be

115 + 115 - 10 + 115 - lO2 + 115 - lO4 + 115 - lO5

115 . 10°

+

115 (1 + 10 + 102 + 10° + 10% + 10° + 109

127,777,765

Problem No. 10. Variations with Repeated Selection.

"Among the 10 billion numbers between 1 and 10,000,000,000,
how many of them contain the digit 1? How many of them do

not" (Liu, 1968:6)>?

Solution. Calculate how many numbers do not contain the

digit 1.
0 1 2 3 4 5 6 7 8 9

10 10

Among 0 and 9,999,999,999 there are VR9 =9

numbers that do not contain the digit 1. Think that, as

repetition is allowed, number 0 plays a basic role when it

67
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is conveniently positioned in first place in order to con-

struct all numbers of length < 10.

Among 1 and 10,000,000,000 there will be vago -1

numbers that do not contain digit 1, because now number

0,000,000,000 is excluded, but also because the new

10,000,000,000 does not count here either, because this

number contains digit 1.

Thus, there are VRé0 -1 = 910 - 1 numbers that

do not contain the digit 1.

The total number of numbers containing the digit

1l is calculated by the difference

10 10

- 1) =10 - (9 - 1)

+ 1=6,513,215,600

Problem No. 11. Ordinary Permutations. How many

words can be formed with n different vowels and n different

consonants in such a way that there are not two vowels,

and not two consonants together?

Solution.

Order is relevant.

Suppose every line corresponds to a vowel and

every dot to a consonant.

o F% A R e i e M et e T AN A n MmN e e e = e
IIERTN Y o~ o, o > P A A A S e R e R et P Lt Tt TP S S Pt SRC I e
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Permuting vowels: Pn

Permuting consonants: Pn

Every word can begin either with a vowel or con-
sonant.
Thus,

P x P x 2
n n

I
N
L]
jgo

Problem No. 12. Ordinary Permutations. "In how

many ways can 10 men be arranged in a row given that three
particular men must always stand next to each other"

(Eisen, 1969:16)7?

Solution.

123456782910

Consider, for example, the block made by the three
elements 5, 6, 7 . This block can be internally

rearranged in P, = 3! = 6 ways.

3

Considering this block 5, 6, 7 as one single
element, the whole group is now composed by 8 elements,
which can be permuted in P8 = 8! = 40,320 ways.

Thus, the result is

P3 X P8 = 6 x 40,320 = 241,920 ways.
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Problem No. 13. Ordinary Permutations. If the

numbers obtained by permuting 1, 2, 3, 4, 7 and 9 are put
in increasing order of value, what position will the number

432917 occupy?

Solution.

BENEEN el T[] [ Bl LT
Quantity of numbers starting with 1: P5 = 5! = 120

Total
Quantity of numbers starting with 2: P5 = 5! = 120 360
Quantity of numbers starting with 3: P5 = 5! = 120

The total number of numbers starting with 1, 2, and 3 is

360. Now, number 4 is in the first place [4] [ T [ T |

A ,/4—7\\\
L [ [ @izl T 1 1]
Quantity of numbers with 1 in second place: P4 = 41=24 Total
Quantity of numbers with 2 in second place: P, = 41=24 | 48

The total number of numbers starting with 41 and 42 is 48.

Now 43 is in first places.

3
AT [ 1]
Quantity of numbers with 1 in third place: P, = 3! = 6 STogal
A

Now 432 are the three first digits.
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‘.
~ 3 /2N PN
41312 [ af3f21] T | 413[2]7] [ |
X
o Quantity of numbers with 1 in fourth place: P, = 2
'O Total
: Quantity of numbers with 7 in fourth place: P2 = 2 4
LN The total number of numbers starting with 432 is 4. Now
>
aj 4329 are the four first digits.
1
\:; ;o
e 4131219 [ | [4[372]971] |
‘_J
> ' Total
- Quantity of numbers with 1 in fifth position: Pl =1 3 ola
".':
j{ The last square has to be assigned to number 7.
Nt
o Thus, the solution is
~ _ th
. 360 + 48 + 6 + 4 + 1 = 419 place.
x:
’,
.. Problem No. 14. Permutations with Repetition.
< "How many different words can be formed by rearranging the
v
> letters of the word oNGINEER" (Eisen, 1969:14)?
-
. Solution. There are 3 E's
A
s 2 N's
:.\
. and a total of 8 letters.
b
* Thus
’ 3,2 _ 5! 5.4 _
:: PR8 = 3757 % T3 < 10 words.
"
7
-~
o
Y

s

LA A A
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Problem No. 15. Permutations with Repetition.

What is the number of ways of painting 7 different cars
knowing that 2 cars have to be painted in white, 4 in black
and 1 in green? :
Sclution.

PR$'4'1 = FZ—:‘F = 105 ways.

Problem No. 16. Permutations with Repetition.

"In how many ways can three 6's and two 5's be obtained

when five dice are cast" (Eisen, 1969:16)?

Solutijion.

If three 6's and two 5's have always appeared
(according to the data), the only way tc differentiate
between different results is permuting the order of the

outcomes and eliminating duplication.

Thus,
3,2 _ 5! 5.4 _
PRg =37 T T3 < 10 ways.
Problem No. 16. Permutations with Repetition. ,

"Five distinct letters are to be transmitted through a
communications channel. A total of 15 blanks are to be
inserted between the letters with at Liast three blanks :
between ever§ two letters. In how many ways can the letters

and blanks be arranged" (Liu, 1968:14)?

QXL Ll

72
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Solution.

space space space space

a | | b c[ |d] | e

There are P5 = 5! ways to arrange the letters.

The number of blanks inserted between every two letters

have to be at least three. One can insert three blanks
(the required minimum amount) in the open spaces, which

would make

12 blanks

4 spaces x 3 blanks

W

15 blanks - 12 blanks 3 remaining blanks.

The problem can be readdressed now under the fol-
lowing terms: in how many different ways can three non-

distinct objects be distributed into four boxes?

3 _ 4 _

1 1 1 0 PRy, = 37 = 4
2 _ 41 _

2 1 0 0 PRy = 57 = 12
3 _ 4

3 0 0 0 PR, = 37 = 4

The result 1is

P5 (4 + 12 + 4)

= 5! x 20 = 120 x 20 = 2,400 ways.




Problem No. 18. Permutations with Repetition.

A city has rectangular shape and it is crossed by m streets
going North-South, and by n streets going East-West,
including peripheral streets.

In how many ways can we pass from a cornerA to its
opposite vertex B without going backwards anytime?

Solution.
m streets

n streets

For going from A to B, you have to travel, what-
ever route you choose, a total amount of (m-1) + (n-1)
blocks = m + n - 2 constant blocks, of which (m-1) blocks
have to be traveled vertically (v), and (n-1l) horizontally
(h) .

Those (m-1) blocks in vertical direction have
equal opportunity of selection in the whole city; and
those (n-1) blocks in horizontal direction have an equal
chance for being chosen too.

Thus, a permutation like

vvhvhh. ... v

means that you have to travel two blocks vertically ||,

then one block horizontally — , later one block

vertically, then two blocks horizontally, etc.
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So, the solution will be

(m=1), (n-2) _ _(m+n-2)!

PR (m+2-2) = =1 T (n-2)1

Problem No. 19. Circular Permutations. In how

many different ways can four people sit down around a

circular table?

Solution.

PC, =Py =Py =30 =3 -2-1=56 ways.
Problem No. 20. Circular Permutations. "In how

many different ways can four different colored spherical
beads be strung on a string to form a necklace" (Eisen,

1969:17)?

Solution. Recall that in circular permutations PR = P

PC, = Py = Py = 3! = 6.

4 2 (1]
Element 1 has been fixed, for instance, and the

other three beads have been permuted around it. One of

these permutations is, for example,

N N T T R i R T R R i I S N AR AN

280 At AR AR At Al 4]

SN O
W



y . e . aas ke . -aa - T
0 fta 4 g A‘n URUAYVY VRN R R PO AW SOOI WL WU W ol G Soll Sl 9ol Sal tud Vol tal PalED L\ A

(2]
3
Because the necklace can be taken in hand and
flipped 180° in the space, figures [1] and [2] are
the same. Notice that, under this consideration, the

problem is three dimensional. Thus, the result is

PC4

2

= 3 different ways.

o

Problem No. 21. Ordinary Combinations. In how

many different ways can we put in a row p positive signs
(+) and n negative signs (-), being n < p, in such a manner

that two negative signs should not be together?

Solution.

1 2 3 4 -l p ptl

As you can see in the above helping figure, there
are (p+l) possible places available for placing the n

negative signs in. Order is not relevant. Thus,

Cn - (p+l

p+l )
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i‘ Problem No. 22. Ordinary Combinations. "In how

many ways can a committee of 3 teachers and 4 students

N be chosen from 9 teachers and 6 students knowing that
X,

*: teacher A refuses to serve if student B is a member"
| (Eisen, 1969:23)?

Solution.

Ways to select teachers: Cg. Order is irrelevant.

Ways to select students: Cé. Order 1is irrelevant.

\ PN

Total number of ways to select teachers and

3 4
students: C9 X C6 .

But because of the given constraint, those combinations
where A and B appear together have to be deleted, such as

e teachers students
™, (A ) (B )

Eliminating teacher A, ways to select 2 teachers: Cg.

- Eliminating student B, ways to select 3 students: Cg.

2 3
8

. Total number of combinations to be deleted: C_, X CS.
N

Thus, the result will be:

Lo it T

L
-1
3
"o
.

. 77
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9! 6! 8! 51

T 6131 2141 ~ 612t 3121

= 1260 - 280 = 980 committees.

Problem No. 23. Ordinary Combinations. "In how

many ways can three numbers be selected from the numbers
1, 2, 3, ..., 300 such that their sum is divisible by 3"

{Liu, 1968:9)?

Solution. The 300 different numbers pertaining to the

set (1, 2, 3, ..., 300) can be classified in three differ-
ent subsets:

Subset 1, that groups all the numbers that are divisible

by 3. That means that any number N, belonging

1

to subset 1 makes Nl = 3. Thus, any three
numbers selected from subset 1 will make

nyq + “12 + n13 =3 4+ 3 + 3 =3,

Subset 2, that groups all the numbers that yield 1 as
remainder when divided by 3. That means that any
number N2 belonging to subset 2 makes N2 = é + 1.

Thus, any three numbers selected from subset 2

will make:

78
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= (3+1) + (3+1) + (3+1)

=3 + 3 =3

Subset 3, that groups all the numbers that yield 2 when

they are divided into 3. That means that any

N3: 3 + 2; and summing any three of those
o numbers belonging to subset 3,
"
2 = (3 3 3

nyp + Ny, * Ngg (3+2) + (3+2) + (3+2)

- =3 +6 =3
’ It is obvious that there are 2%9 = 100 distinct numbers
N in every subset. It is evident too that one number can
N
N be selected from each subset, sum the three numbers, and the
A
N result will be divisible by three also.
5 N1+N2+N3=3
. because
d 3 4+ (3+41) + (3+2) =3 + 3 =3
: Numbers can be selected using ordinary ccmbinations, where
Y order is not important.
. Thus,
>
a
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j 3 numbers from subset 1 CiOO = 3}ggi = 161,700
| 3 numbers from subset 2 ——~ Cioo = = 161,700
3 numbers from subset 3 —— Cioo = = 161,700
1 number from each subset Cl X Cl X Cl
100 100 100
(C]l_oo)3 = 1,000,000
Total different ways:
o0 * C1o0 * Cho0 * (Clgg)”

= 3 x 161.700 + 1,000,000 = 1,485,100.

Problem No. 24. Combinations with Repeated Selec-

tion. "Out of a large number of pennies, nickels, dimes
and gquarters, in how many ways can six coins be selected"

(Liu, 1968:10)7?

Solution. Order is not relevant. Elements can be taken
repeatedly.
Thus,

CR, = C6 = CG N 84 ways

4 4+6-1 ~ 2 " Gir3r - 22 Ways.

Problem No. 25. (ombinations with Repeated Selec-

tion. "If a candy factory manufactures 10 different kinds
80
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of chocolate and puts them in boxes of 32, how many dif-

ferent boxes can be formed" (Eisen, 1969:25)7?

Solution.

32 32 32 41!

CRyo = C10+32-1 = €41 = 332191

= 350,343,570 different boxes.

Problem No. 26. Combinations with Repeated Selec-

tion. "How many divisors does the number 1400 have"

(Liu, 1968:10)?

Solution. Number 1400 will be represented as a product of
its prime factors. The divisors are combinations made

with those prime factors.

1400 = 23 - 52 . 7

Ways to select factor 2 (maximum three times):

0 1 2 30 1
CRp * CRy + CRy + CRy = Crip-1 * Cra1a1
2 3
* Cre2-1 T Cre3a
0,12 3 .
= PO HC +Cy =1+l el 41 =4

Ways to select factor 5 (maximum two times):




Ways to select factor 7 (one time only):

0 1 _ _
CRl + CRl =1+ 1= 2

Notice that factor 7 can be selected two times because
70 = 1 and 7l = 7 are both considered. Thus, the result

will be,

4 . 3 - 2 = 24 divisors.

Problem No. 27. Combinations with Repeated Selec-

tion. In how many different ways can a regular tetrahedron
be painted with seven different colors such that each

face is painted with one and only one color?

R o N

Solution. A tetrahedron has four faces:

4 4 a 10!
= = %10 T 7T (10-4)!

Solving the problem in four analytical steps:

Step 1l: Painting with 1 color, there are

1 ! C L
7 = 1167 = 7 colors for painting —

ER R AR]

—— 7 different ways to
paint the tetrahedron.

5
T
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Step 2: Painting with 2 colors, there are

4 2 71 . L
N C7 = 35T 21 pairs of colors for painting
" With those 21 pairs, the tetrahedron can be

painted, for example,

- 1l face red, 3 faces blue

There are 3 different
2 faces red, 2 faces blue possibilities for
" every pair
) 3 faces red, 1 face blue

Thus,
21 pairs x 3 possibilities each

= 63 different ways to paint the tetrahedron.
Step 3: Painting with 3 colors, there are
. C7 = 5%%7 = 35 trios of colors for painting
The four faces can be painted, for instance,

1 face red, 1 face blue, 2 faces green There arce

s 3 differ-
: 1l face red, 2 faces blue, 1 face green ent possi-
: bilities

- 2 faces red, 1 face blue, 1 face green for every

g trio.

E-. Thus,

35 trios x 3 possibilities each

= 105 different ways to paint the tetrahedron.

& A

83
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Step 4: Painting with 4 colors, there are
L4
4 _ 7! ’
C7 RN 35 groups of four colors available .
for painting the tetrahedron -- - oy
—— 35 different ways to paint 1it.
Adding partial results,
7 + 63 + 105 + 35 = 210 wavs Qi
— &
Note that expressions [1] and 2 are oen
But a reqular tetrahedron s 1 three dimer o i
body that can be rotated along 1ts axes
symmetry and the spectator can visua!l o
ent arrangements of the -~oior Poor st e,
selecting a group o0 tour colors (A, b, )

a trihedral conta:ning the ol s A, B o v
be colored 1n twe dittereont vders:

A B C or ¢ B AL |

Thus, painting with four colarsg, overs
produces two difterent possibilities (w1t
ent arrangements of the same four colors that

produce differcent presentations oy the obseroern

’ -
and, conseguently, there are 35 x 0 - 70 distinocs )
ways to paint the tetrahedron.  Then, the ©onsl -

.:\

result will be N
7+ 63 + 105 + 70 = 245 different ways.
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Srdinary substitutions
to interrelate the n distinct

rmutation with the same n

iinary permutation. There-
ssertialily deal with permuta-

static bserver to track
cterpesition of the
i body when 1t 1s

© L2 oaxes 2f symmetry.

. .
fad - ~ ~ o
. ’ Pothey noJdistinct
- * b

e substitution opera-

Lt l. bLadlo rermuta-

(rrangenents that can

. . -
B i

., *rom which the

-«

Lendonumerator. Every
~ *+he onl rossible
,.,,»:“\,—

+or, because 1in the

croesentad, the

o camerator in osuch a way

oo palrs of elements can

:now, 3iven 6 distinct
nitial arrangement could be
s l1rst selected permuta-
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numerator. Those 6 elements can be arranged in P6 = 6!
= 720 different ways (denumerators), every one of which
can be interrelated with the numerator. When a particular

relationship, such as <a bcde f> is established

af decb

the meaning is that

the initial element

|

should be now substituted by itself

the initial element should be now substituted by

|\o
|

the initial element

10

should be now substituted by

Q.

the initial element

o

should be now substituted by

|®

the initial element

| @

should be now substituted by

the initial element f should be now substituted by b

As one can see, element a is related to itself and,
therefore, it is going to be substituted by itself.
Moreover, the possibility exists that every single element
is related to itself. 1In this case, the substitution per-
formed is not going to provide a different arrangement.

The name for this type of substitution is the identity

substitution.

Example. Given three distinct elements a, b, c, a numerator

could be a, b, c, and all possible 6 substitutions (P3 = 6)
are:
86
N N N N A T e e NN e T T A T e Y
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& abc

(a b C) —— Identity Substitution
>
-’ (a b c)
- ach
¢

abec
> (b a c)
)
~
> abc
B, (b c a)
< abec
. (c a b)
-
’r
- (a b c)
- c b a
l.: - 13 . .
N Product of Substitutions. It is important to
~
; define now what is understood by the concept product of
» substitutions. What this expression really means is the
s result of applying two consecutive substitutions to the
P same initial arrangement. For instance, given the initial
P permutation M = 1234, if two substitutions A and B, such
by that
<
J

_ 4,1 2 34 _,1 234

A=y 23 and B=1(; 73 3.
l‘
v
Y are consecutively applied to M, the product will be
= _ - (1234 . 1234 _ 1234
7, P=A-B=1{1123 " G1a3 = G314
b
¥,
)
4
3
‘e
»
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‘4 ath avh oth ota ath

TS TPy ~ T TSI O v _ga: (. Y » P

L)
;; where

element 1 was substituted by 4 in A, and 4 by 3 in B
element 2 was substituted by 1 in A, and 1 by 2 in B
Y. element 3 was substituted by 2 in A, and 2 by 1 in B

element 4 was substituted by 3 in A, and 3 by 4 in B.

v What has been done here is a double substitution.
T

But be careful, because the product of substitutions do not

S obey the commutative law when the two factors A and B have
o
: elements in common. Thus, because factors
!
; 1234 1234
A=y q123)andB=1( 143
;j have elements in common, is not the same to multiply A X B
- than B x A,
N _ 123 4 1234 _ 1234
- AxB= (123 x (G143 =374
3 and
N _,1 23 4 1234, _ 1234
: BxAa=1{ 143 G123 =43
Example. Given S = (§ g i 3 2) and T = (i i g g g)
: multiply S x Tand T x S
d
\|
Solution.
_ /12315 12345 _ /12345
SxT=1(35724 %G 1523 = G312
It
88
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3 Example. Given

ab

N . (abc de (
c b

(b cea d) and T =

(o7l o]
O Q
o 0

LS

prove that S x T # T x S.

g -
L

Solution. Both factors £ and T have elements in common.
>
"
¥ - (@abcde abcde
ij SxT (b cea d) X (c bde a)
5
_,abcde
N = gacelr but
\
l.
1S
. _ (@bcade abcde
: T xS (c bde a) X (b c e a d)
Cx - @ bcd e
A ecadhb
' Q.E.D.
"~
3 Commutable Substitutions. When the product of two
¢ . . . . .
< substitutions enjoys the commutative property, that 1is to
W
Tx say, when
\
l‘
)
™ SxT-=TxS,
5
1)
; these substitutions are called commutable. That happens
)
? when both substitutions do not have elements in common.
v For example, given
L
. 89
4
N
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Effectively, as S does not have any element of T,
and T does not have any element of S, neither S can
modify T, nor T can modify S. That is to say, for multi-
plying two or more substitutions that do not have common
elements, it is enough to yuxtapose in any other the pairs
of elements which compose all of them. Therefore, the
order of the factors does not change the product.

So far, only ordinary permutations have been
mentioned when the notion of substitutions have been intro-
duced. Recall that ordinary permutations only deal with
different arrangements of the same elements in a row, which
implies there are first and last elements. This is a one
dimensional approach that is not valid when the problem
is presented in two and three dimensions. Thus, a bridge
has to be constructed that allows one to pass from one
dimension (ordinary permutations and ordinary substitutions)

to two dimensional problems {(circular permutations and

4, Ln, oy

0 U T T N A NP 0 I I S N A PN (P
Rat VR Ty 4 N o B D) b P,

()
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circular substitutions) and from two dimensions to three

dimensional problems (cycle index and pattern inventory).

To develop a feeling for such notions, consider

:L the following problems:
-~ 1. One dimensional problem. In how many dif-

i ferent ways can three soldiers a, b, and ¢ be arranged in
N

ﬁ: a column? The solution is obvious, P3 = 3! = 6 ways.

. 2. Two dimensional problem. In how many different
;E ways can three persons a, b, and c¢ sit around a circular
ﬁf table? The solution is easy too, PC3 = P3_i = P2 = 2! = 2,
4 3. Three dimensional problem. In how many differ-
;; ent ways can three distinct colored beads be strung on a

ﬁ string to form a necklace? The solution given by PC3
:; = P2 = 2 has to be divided by 2 because the necklace can
ZE be rotated along its diameter, and permutations

:3 a a

; and

s b c c b
7

ﬂ become identical.
): But imagine how difficult it is to visualize three
;: dimensional problems when, for instance, instead of having
rs three distinct colored beads, there are n > 3 beads and,

% in addition, some of them are repeated. A procedure for

E solving these cases will be explained in the remaining

3 pages of this chapter.
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Circular Substitutions or Cycles. Circular sub-

situtions or cycles are a particular case of ordinary
substitutions, in the same manner that circular permuta-
tions can be considered a particular case of ordinary
permutations.

Given a set of n distinct elements aj, a2, a3,
ceer @y, @ cycle or circular substitution takes place if
every element in the denumerator is exactly the same as
the element to its right in the numerator, and the last
one in the denumerator is the first one in the numerator.

Thus,

a2 a3 a4 a5 coe an al

The following expressions represent circular substitutions

or cycles:

,"'—)l

Gih=az23 :

3 2

r
45 _ K
(5 3) = (4 5) 5\\//4
6 6 .
(6) = (6) &j) Identity

substitution

A circular substitution or cycle of length K (number
of elements) can be written in K different ways by

cyclically permuting the elements composing the cycle.
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the 9 equivalent ways to repre-

for instance,

Here they are,

AL PP

sent a cycle of 9 elements:

AL
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Breaking Down Ordinary Substitutions into Cycles.

Any ordinary substitution (no circular) can be broken down
into a unique product of circular substitutions without

common elements. For example,

g
o N
N W
o
N
~N o
0
0 ©
w o
o
LS
<o
n
o
b
®
0 ©
w o
N W

The multiplication cannot be done
because any element in any of these
two cycles is repeated.

N
NN
v w
-

The reasoning is the same as before.
Notice here that you have the option of
not showing the identity substitution

(2) which means that the substitution of
6 by itself is implied.

3. 512 7 3 8 9
70 = (1 25 x (33) x (g g)

=
N
[V,
W
O
@ WO

Il
w

3
70 x (1 5 5) x (g

89 7 3 5 1
= (g g) *x (330 x (1,

The reasoning is the same as before.
Notice here that the product has the
commutative property (the order of the
factors does not change the result)
because the cycles do not have elements
in common.
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v In general, given any ordinary substitution (no

N circular), it can be represented in product form of factors,
2]

>y

! being such factors the circular substitutions into which

W

w the given ordinary substitution can be decomposed. That

N

N is to say,

N
b (al a, ay ... a5 by b, by ... bg ..... 21 22 23 .. )

.o ees by L. g2, 2, ...

. 3, @3 84 --- @ by by b, by 2 "3 "4 1

-

e

7 b, b, b b L. L. % I}
% - C %3 0 %y 21 %203 00 PB M1 T2 3t
> - 8, 2, 2, J.0 2

- a Ay eee @y b, b3 b4 -+ by 2“3 %y 1
Lﬂ

o,

3

. = L2 2 3
P~ (al a, az .- ay) x (bl b2 b3 .o bB) X ... x | 1%9%3 - )
It

_f Notice the abbreviated way used in the last expression to
; symbolize the circular substitutions or cycles.

-

’ It is important to mention at this point a different
T

S type of notation for representing the breaking down of
.: ordinary substitutions into cycles. For instance,

.&h

‘i 1234567, _ 124 357 6
v 2451763 = (Gg1) * 573 %)
o

. = (6) x (1 2 4) x (3 5 7)
ﬁ

- 1 1 1 1 2

ﬁ —fl f3 f3 = fl f3

ﬁ What does fi : fg mean? It is just a brief and condensed way
S

~
™3
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to say that the ordinary substitution

1l 2
2 4

34567 .
( 517 6 3) has been broken down into one cycle of
f cycles

_ 1=# o
length 1, (6) = £ _ length of every cycle.

plus two cycles of length 3,

# of cycles
length of
every cycle.
In general, the expression fg represents that
there are p cycles with g elements each. But notice that
this notation does not tell you anything about the specific
elements that are interrelated. You lack information here.
The only thing that you know is the general cyclical struc-~

ture of an ordinary substitution.

The Cycle Index. Imagine an equilateral triangle

that has its three vertices numbered with one different
number each. Suppose you are a statical observer who

stands just in front of one of the triangle faces. You
are seeing a particular arrangement of the three numbers

1
at this starting moment, such as

At this point, the triangle is static. But later
on, the triangle is going to start rotating around itself,

symmetrically, around its axes or points of symmetry.
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Every time the triangle completes any of those symmetrical
movements, you would like to compute how many different
configurations, or distinct arrangements of the numbers,
you have seen. This is done in order to be able to tell
at the end, when all possible rotations have been performed,
the total amount of distinct arrangements of the vertices
that have appeared during the whole process.

The theory of substitutions will play a funda-
mental role here for tracking in the space the position
of the three vertices (three numbers) with respect to its
initial positions.

The initial position of the vertices is given when
the triangle has not yet started any movement. Thus, no

rotation, initial position and identity substitution go

together. 1
2 3
123 _ 1 2 3, _ <3
(1 2 3) = (l) (2) (3) = (1) (2) (3) = fl

Later on the equilateral triangle is flipped 180° around
the three axes going through vertices 1, 2, 3 and through

the center of the respective opposite edges. Thus,

97
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1 1 23 1 1

T3 =M G =0 @3y =15
.
1 3 N

2 3 2 1
123 _ 2 13 1 1 -
(3 2 1) = (2) (3 l) = (2) (13) = fl f2 :
1 2 .
2 3 1 3 '
123 _ 3 12 1 %
°
<
When the three rotations are over, it can be said that the s
three have the same structure fi fé in the sense that the &
three ordinary substitutions can be expressed by the pro- ;
duct of one cycle of length 1 (fi) by one cycle of length .
2 (f%). As the same thing happens three times, the general

structure for the three 180° rotations together will be }
1.1 J
3f7 £5 . -
1 2 3
Notice again that with this notation you are ::
>

losing information, because such notation, by itself, O»




PAEN 4

> does not show the specific vertices that are cyclically
‘ interrelated. A solution for clarifying such temporal
L lack of clearness will be given by the pattern inventory.

The equilateral triangle can also be rotated
360°

P, around its center of gravity, 120° = 3 three times
-
Ve, 1 3 2
% 2/ 7 N3 1 2 3 1
;.
P
~ This is what the spectator can see after every rotation has
. finished:
N
" . o . 123 1
“ after first 120° rotation, (3 7 3) = (1 3 2) = f3; and
v, . .
- after second 120° rotation = 240° total rotation,
- 123, !
', (2 3 l) - (l 2 3) = f3-
‘ﬁ As it has been analyzed, the static spectator has
. rotated the equilateral triangle around all its axes {or
o points) of symmetry. The 6 total number of rotations per-
‘:
formed have produced the following configurations:
o
'
l
b 99
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i 1. (1)(2) (3) = f:l’
1.1
f 2. (1)(2 3) = £ £5
_ 1 1 _ 1 .1
(2) (1 3) = fl f2 = 3fl f2
_ 1.1
(3) (1 2) = fl f2
3. (13 2) = fé’
!
= 2f;
(12 3) = f;'

Total number of rotations performed = 6

By definition, the cycle index is a division which
the denumerator is the total number of rotations performed,
and the numerator is the sum of all the arrangements that
have appeared afiter all rotations have finished.

The cycle index for the equilateral triangle

will be: 2
3 1 1 -
fl + 3fl f2 + 2f3 X
6
The cycle index is a very abstract formula that compiles \

cycles, but, as a chrysalis, it explodes plenty of mean-
ingfulness when the pattern inventory notion is applied to
it. ©So, what will be the value of the cycle index? The

cycle index will be the base for counting how many different

100
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. configurations, with respect to the initial one, the static

! observer sees when the body has been rotated around all its

N axes of symmetry.

? The cycle index is, in a certain sense, the unit
because it is a fraction whose numerator and denumerator

represent the same quantities. The denumerator is just the

Llal Tad S 6 9 4

number of total rotations performed, and the numerator pro-
5 vides a picture of the different types of substitutions

found during the rotations. That is why

A Cycle index . . .

: for cquilateral - S gEdinany substitutions

. triangle . P

- _ 1 substitution fi + 3 substitutions f} f; + 2 substitutions f;‘

d 6 rotations performed

The Pattern Inventory. Any ordinary substitution

can be cyclically represented by mean of a product of
circular substitutions. As far as the equilateral tri-

angle 1is concerned, it has been already proved that:

101
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\
1 Cycles of
C Rotations Substitutions the Vertices Condensed Form
) 123 _ _ 3
; 0° (1 2 3) = (Ly (2) (3) = fl
123 _ _ o211
123 _ _ el 1 1.1
: 180° (3 2 l) = (2) (1L 3) = flf2 ’3flf2
: 123 _ oLl
180° (2 1 3) = (3) (1 2) = flf2
o 1 23 _ _ ol
2f
3
o 123 _ _ .l
240 (2 3 1) = (1 2 3) = f3
3 1.1 1
3 Cycle Index - fl + 3flf2 * 2f3
! for Equilateral Triangle 6

One time that the cycle index has been calculated,

fp=# of cycles

each of those abstract terms g=length of each cycle

is replaced by the called pattern inventory. Thus,

| fg —_— (xq + yq + 29+ ... )p

’

being X, y, 2, ... etc., the different variables playing

a role in the specific problem to be solved. For instance,
if the problem consists of calculating in how many differ-

ent ways can 6 beads (1 red, 1 green, 4 vellow) be attached
to the vertices of a regular hexagon, the variables are

three (red, green, yellow).
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Application Problems.

Problem No. 1. In how many different ways can

the vertices of an equilateral triangle be painted if
three different colors (a, b, c) are available, and

repeated selection of the colors is allowed?
Solution. The cycle index is %(fi-+3fif§-+2f§).

There are three variables (a, b, c), so the replace-
ments to be performed in the cycle index, in order to cbtain

the expanded cycle index are:

fi=(a+b+c)3
3-f - f3=3@+b+c) - (@’ + >+ ch
2 f; = 2(a3 + b3 + c3)

That means,

gggaggZdEgﬁiiEtiggix _ (a+b+c) 2+3 (atbrc) (al+bi+c?) +2 (@)
Triangle 6
The pattern inventory terms can easily be solved:

3 _ 3! o B Y . PR |

Term (at+b+c) —Z:a'B'Y‘ a b c (Leibniz' Formula)
Q+B+Y =m= 3; n= 3
103

T N T NG T T e L AT T TN TR - " N e ‘,,1




..»:\-,\‘l‘\4‘lii.'|VQ\"0)I‘iv'\'I gt tal satatatoval tal gl ‘phgt ‘atotata st ol ‘el et otal fety’

S

i

l..

¥

o Values for o,8,y

’ m=3=3+0+0— a3, b3, 03
;:

_f m=3=2+1+0— azb, a2c, bza, b2c, cza, c2b
N m=3=1+1+1— abc

)

"

L}

. 3 3! 3.3, 3 3! 2,2 .2 2
:1 (a+b+c)™ = W(a +b +c”) + 3711107 (a2b+a ctb"atbh ctc a+(,2b)
o !

- * 113111 " (abc)
- 3..3 3 2 2 2 2 2 2
- = a~+b"+c"+3(a“b+a“ct+bTa+tb"c+c"a+c"b) + 6 abc.
1& Term 3 x (a+b+c) (a2+b+c?) = 3(a3+b3+c3)
N
+ 3(a2b+a2c+b2a+b2c+c2a+c2b).
;
AY]
E Term 2 X (a3+b3+c3) = 2(a3+b3+c3).
<
. Adding the three terms and dividing by 6,
. gigigded _ 6(a’+b3+c>) + 6(a’bra’crblatbicrc®atc’h) + abe
Ay Index 6
f = a%b3+c3+a213+a2c+b2a+b2c+c2a+c2b+abc.
(-
~ There are 0 terms here. Thus, there are 10 differ-
“ ent ways of painting the vertices of the equilateral tri-

angle with repeated selection of colors:

104
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Vertex 1 Vertex 2 Vertex 3

lst a a a
i 2nd b b b
3 3rd c c c
: 4th a a b
3 5th a a c
é 6th b b a

7th b b o
N 8th c c a
ES 9th c c b
y 10th a b c
;
E A consideration for computing the number of differ-

&
[ g8

] L WP I Y S

Tt

-

ent ways of painting the vertices of the equilateral tri-

angle using the

g;gigded = a +b3+c3+a213+a2c+b2a+b2c+c2a+c2b+abc,
Index
is the following:

As a, b, and ¢ can be equally pondered, because
the three different colors a, b, and ¢ are used the same
amount of times, it 1is convenient to make a = b = ¢ =1
in order to obtain a value for the expanded cycle index.
Thus, this value is 10; which indicates that there are 10
different ways to paint the equilateral triangle, using

three different colors, when repeated selection is allowed.
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The question that immediately occurs is why does

the replacement of the pattern inventory into the cycle
index produce such a result. The explanation will be given

in the following paragraphs. Such explanation will be

provided along with the resolution of several problems.

As the explanation of those typical problems is given,

‘IIA.

everyone should be able to understand why the pattern
inventory is a convenient albegraic expression that

. usually drives one to have to multiply two or more poly-

.4

nomials, all containing the same variables. The result of

»

~9'

that convenient multiplication produces all possible com-

binations of those variables, the variables of the particu-

Telaa A& K]

lar problem to be solved.
Why has fi been replaced by (a+b+c)3? Recall that
fi means that there are three independent vertices,

(1) (2) (3); each one is a cycle by itself:

10 20 30D

These three vertices (1, 2, 3) have to be painted with

three different colors (a, b, c¢) that can be repetitively

selected. Representing the vertices by three independent

boxes [ ][ ][], they can be painted

L
5
) a3, b3, c3; a2b, a2c, bza, b2c, Cza, c"b; abc. '
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a3 indicates that the three boxes are painted with color a.

a2b indicates that two boxes are painted with color a, and
the other box with color b.

abc indicates that every box is painted with a different
color.

Table 1 shows the assignments of colors (a, b, c) to

vertices (1, 2, 3). Referring to Tablel, onecan see the

result is a3+b3+c3+3 (a2b+a2c+b2a+b2c+c2a+czb) + 6abc,

exactly the same result as was gotten by the development of

the term (a+b+c)3 using the Leibniz formula.

Analytically it has been proved why fi was

replaced by (a+b+c)3. Now, the question is similar: why

Bfifé was replaced by 3(a+b+c)(a2+b2+c2)?
Recall that 3fif§ means here that when three 180°

rotations were completed around three homologous axes of
symmetry, the spectator saw three different arrangements

of the three vertices, each of them broken into two
disjoint cycles; that means, into two cycles with no common
elements.

Graphically,
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TABLE 1

ASSIGNMENTS OF COLORS (a, b, c¢) TO VERTICES (1, 2, 3}
1 2 3 :
a3 a a a a3
b3 b b b b3
c3 c c c c3
a2b a
2 b
2
a‘c a
3a2c
a
bza b b a
b2 b b 3b2a
2 b b 4
b2c b c
b?c b b 3b2c
b2c b b :
b
) .
c”a c a
2 :
a C 3c”a X
C \]
czb c c b
2
c’b b 3c2b K
czb b C
108 .
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TABLE l--Continued
2
b
c
b
b
o)
c

abc

abc

abc

abc

abc

abc
‘xudimax‘x
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Representing the vertices by three boxes, one
independent box [] , two dependent and joined boxes

] , they can be painted in this way:

where
a” means that the three boxes are painted with the
same color a.
ab”™ means that one box is painted with a and the two

joined boxes with the same color b.

Notice that the joined boxes [ | | are always

painted both with the same color (aa, bb, cc). That happens

because the circular substitutions or cycles

2/’““.A l//’—‘\\ l,//—‘\\

\\\—///3 k\\_—_//’3 \\\_4//2
imply that the first color that is given to any vertex
included into a cycle is cyclically transmitted to the
other i1interrelated vertices. Thus, the color assigned in
the first arrangement to vertex 2, when the triangle is
flipped around its height

over *he side 2 3, 1

A
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The color assigned to vertex 2

is reassigned to vertex 3,

and vice versa.

Table 2 shows all possible assignments of colors

(a, b, c) to the vertices (1, 2, 3). The table result is:
3 (a%+b%+c?) + 3(ab+ac®+ba®+bcl+calich?),

exactly the same result as was gotten by the development

of the term 3 x (a+b+c)(a2+b2+c2).

Analytically it has been proven why Bfif; was

replaced by 3(a+b+c)(a2+b2+c2). Similarly, the question

3.3, 3

now is why 2fl was replaced by 2(a”+b +c7).

3

Recall that 2f§ means here that when two consecu-
tive 120° rotations were completed around the center of
gravity of the triangle, the spectator saw two different

arrangements of the three vertices, each of them is cyclical.

Graphically,
2
1 (1 3 2) {1‘}
2f3 N G
(L 2 3) 1/ .
;
\‘3




TABLE 2

ASSIGNMENTS OF COLORS (a, b, ¢) TO VERTICES (1, 2, 3)

23

L]

aa
bb
cc
bb

CccC

[] —

aa
cc
aa
bb

a
b
c
a
a
b
b
c
c

13

]

aa
bb
cc
bb

ccC

[] o

aa
cc
aa
bb

a 0 o oty 0 U oo
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TABLE 2--Continued
{1
3 1 2 :
3
a aa a
b bb b3
3
c cc
2
a bb ab
2
a cc ac
b aa ba2
b cc bc2
2 i
c aa ca
c bb cb2
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Representing the vertices by three joined boxes

[j:j:] and E]:]:] , these boxes can only be painted

[T T] .

3
aaa aaa 2a
bbb bbb 2b3
ccc ccce 203

The reason why only one single color can be seen every
time the triangle is rotated is because of the cyclical
structure of the vertices.

2 2

f-} \
\
L
1 3
For instance, if color a was given to vertex 1 in the first

assignment, when the triangle is rotated 120° around its

center of gravity, the same color a goes to vertex 2.

a

$ /

And when a new rotation of 120° is performed, the same
color a goes to position 3. Therefore, it has been justi-

fied why 2f§ was replaced by 2(a3+b3+c3).
114
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On the other hand, it is interesting to remember

that the cycle index is really the unit,

3 1 1
6 ordinary substitutions _ ! fl+3f f2+2f3

6 rotations performed

. Cycle Index
- for Equilateral =
Triangle

N

l +3 4+ 2 =26

At this point it should be clear in a general way,
L why the terms of the condensed cycle index expression is

properly replaced by the pattern inventory

J fg really means (aq+bq+...+zq)p
ot |
- because developing the p power of the polynomial
(aq+bq+...+zq)p by the Leibniz Formula
)
2
' . q Q q B q A
P
- L argr oo (ah (b (27)
. o + 3+ +A=7p
o
2 the different factors (aq, b, ... 29 involved in every
" term of such develcpment always have the required length
; g of the p cycles. Additionally, there are always p fac-
1
f‘ tors or cycles in every term, because a + B + ... + X = p.
W
.
N 115
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Problem No. 2.

1. Calculate the cycle index of a regular hexagon.
2. In how many different ways can 6 beads (1 red,
1l green and 4 yellow) be attached to the vertices of the

regular hexagon?

Solution.

1. Cycle index. No rotation. Initial position.

Identity substitution.

2 1
4 5
123456, _ _ = # of cycles .
(1 23456 = @B MAGIEO) = £ _ 1 10th of each
cycle

Rotating 60° = 3200 around its center of symmetry,
2 1 1 6
3&\&, >6 2<i:::>5
4 5 3 4

Rotating 120° around its center of symmetry,




[S2 00
[ )3 S}
=W
[N -

Rotating

P A I g

&
&
NN
o w
o

Rotating

Dyley:

a

!

lll“.
w
NN
0w
o

Rotating

N
wN
= w
LS

34 = (537 42 = (53) (26 4)
_ ol 1 2
= f3°f3 = £5

180° around its center of symmetry,

2 1 5 4
3 & )6 6<i:::>3
4 5 1 2

56, _ ,14 2 5 36, _ 3

2 3) = (1) (53 (g3) =%

240° around its center of symmetry,

2 1 4 3
4 5 6 1

56, _ ,135 246, _ 1 1 _ .2

12) = G5 1) (g = f37f5 = 5

300° around its center of symmetry,

2 1 3 2
(e ()
4 5 5 6
56, _ 1
6 1) = f¢
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Rotating 180° around the axe that goes through vertices

1 and 4,
2 1 6 1 ;
‘ 3@6 SOZ .
Pt a3
3
123456, _ ,1, 4, ,26. ,35 )
(165432 =) (g G 53

_ CoGlgl1l.l 2.2 .
= (1) (4) (26) (35) = £1£7f f, = £7£5 ;

Rotating 180° around the axe that goes through vertices

2 and 5, 3
2 1 2 3
4 5 6 5 )
123456, _ ,2, 5 ,13, .46
321654 =& G G Y

C1.1.1.1 _ .2.2
(2) (5) (13) (46) = £yE E £, = £7€7

Rotating 180° around the axe that goes through vertices

3 and 6,
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o 2 1 4 s
P -3 6. 3 6
i
4 5 2 1
5
. 123456, _ 3, 6, ,15 24
’ (543216 = G (g (51 G
*0
2 1.1,.1.1 2.2
-)(: = (3) (6) (15) (24) = flflf2f2 = fle
-
< Rotating 180° around the three axes going through the middle
- points of opposite edges,
. ,
’ 2.1 1 2

AL
(V8]
(o))
N
w

’
R

NI ML S

= (12) (36) (45)=f

-

3
2

\'
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49555,

2 1 3 4
4 5 1 6
123456, _ 14 23,56, _ ) -
(3321605 = (3 1) (35 g) = (1d) (23 106y
2 1 5 6
3 6 4/r_‘.y
- N/
4 5 302
123456, _ 16 25 34 ) |
652321 = (1 () (g3 = (e s o

Total of rotations performed: 12 rotativrns igﬁ;f; o

Types of circular substitutions or cycles made witin o e
12 rotations: £° + 2f% + 2£2 + 4f3 eo3pegs (Y ndexy
1 6 3 < 172 nuMer 1401

Thus, the cycle index 1is

6 1 2 .3 .
Cycle Index for _ fl v 2t 2ty 4;34uﬁf;g;:
the Regular Hexagon 12

2. Pattern inventory. There are three variables

in *nhis problem:

a. red bead
b. green bead
c. vyellow bead

MM A i o

A
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e
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Ny

J- Thus, the pattern inventory function will consist
. in the replaceme .: of the following convenient expression
“»

s

;j into the cycle index formula,

s

N}

g (aq + b + cq)p
o q
..

Cycle Index _ 1 6 1 2 3 2.2,
<. for the Hexagon ~ 12 = (f1 * 2fg + 283 + d4f5 + 3£,17)
N
N
y)
¥ Expanded Cycle Index _ 1 6 6 .6 6

for the Hexagon 12 [(a+b+c) ™ + 2(a"+b"+c™)
+ 2(a3+b3+c3)2 + 4(a2+b2+c2)3
'\
f + 3(a+b+c)2(a2+b2+cz)2]
.
'I
"
~ The development of the whole expanded cycle index
: produces a result valid for attaching beads to the vertices
i} with repeated selection. But in this problem there is no
.. chance for repeated selection. So, the only valid struc-
:2 ture for this problem is ak:c4 {1 red bead, 1 green bead,
~
:j and 4 yellow beads).
g; The term fi = (a+b+c)6 produces the structure
:'J'
" abc4 whose coefficient can be obtained applying the
:: Leibniz Formula,
ladlf
-:‘
.
o 121
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(a+b+c)6 = Eaf—J—— a bB Y

l'§:4' alblc4 = 30 abc4
The terms 2fé = 2(a6 + b6 + CG),
2f§ = 2(a3 + b3 + c3)2, and
4fg = 4(a2 + b2 + C2)3

do not produce the arrangement abc4
i g = 3(a+b+c) 2- (a%+b%+c?) 2

The term 3f7f

= 3(a2+b2+c2+2ab+2ac+2bc)
2 2

x (at+pircte2a®b42a%c?+2b°c?) .

From this expression it can be deduced that

3 -2ab - c* =6abct

Replacing these two values in the expanded cycle

index,

Y,
‘5\' Y \.' \" \.fa.’
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Expanded cycle index _ 1 (3Oabc4-+ 6abc4+-......)
for regular hexagon 12
_ L 4
=13 (36 abc™ + ..... .)
4 1
= 3 abc + == + rest of arrangements.

12

Thus, the solution is 3 different ways. The same solution

can be graphically observed

Solution: 3 different
arrangements

The reader's concern should be focused again in
knowing why the pattern inventory works. Why fi was
replaced by (a+b+C)6°

Recall that fi

ordinary substitution into six circular substitutions with

signifies that there is a decomposed

no elements in common,

I N O O A N A B

123
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The six beads have to be assigned, one to each box.

In how many ways can they be assigned?

This expression and solution are both identical to those

obtained using the Leibniz Formula,

1
rorr atble? = 30 abc?
The logical question to ask next is why fé was

replaced by (a6 + b6 + c6). The reasoning is always the

same: what does fé mean? A circular substitution of

length 6.

If fé is a cycle, the same initial colored bead

that was assigned to its first cyclically linked vertex

will be repeated through all the six concatenated vertices.

That implies that the six boxes should receive the same

colored beads (a, b, c):

LI T[T T

aaaaaa — a
bbbbbb — b6

6
cccccd — C

124
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But a constraint in this problem is that there are

not six equally colored beads, and repeated selection is
not allowed either. Therefore, this computation does not
serve any purpose.

Another question that should be asked is what is

the rationale for the transformation
3fif§<—+ 3 (a+b+c)? (al+b2+c?)?

Here there are three ordinary substitutions broken down

into circular substitutions or cycles.

(1) (4) (26) (35) — [ [ [I 13
(20 (5) a3 «e) — I O [ (I3 3¢
(3) 6) (15 (29) — [ [ [13J [14

Beads a, b, and ¢ can individually go into the
single independent boxes. Paired beads aa, bb and cc,
identically colored, have to go into the joined boxes

because of their cyclical condition. Thus, the product

3(a + b+ c)2 (a% + bl + 42

3(a® +b% +c? + 2ab+ 2ac +2bc) (at + bt +ct+2a%p?

+ 2a%c? 4 2b2c?)

3(a6+a2b4+azc4+2a4b2+234c2+2a2b2c2+...)

125
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provides all possible combinations of assignments. For

instance,

[
]

ocaogaoaovo e
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In the problem, the constraint is
1 bead of red color
1 bead of green color
4 beads of yellow color
and the variables are the three colors
a color red
b color green
c color yellow

Therefore, not every combination of those given by the

expanded cycle index can be accepted. Valid replies are

only those satis“ying the constraint alblc4 = ak3c4.
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L Problem No. 3.

S 1. cCalculate the cycle index of a regular tri-
S
}: angular prism.
;: 2. Calculate in how many different ways two

Y distinct colored beads (a and b) can be attached to the
< . . .
;: vertices of the regular triangular prism.

e

'r\

Solution.

b

) 1. Cycle index. No rotation. 1Initial position.
_ﬂ Identity substitution. 2

N

:: 3 1
:.; ~

e U5

ol - !
. u
123456,_,1 3, (4, (5 6 4
- 6

- = (1) (2) (3) (5) (5) (6) = fl

--‘.

NS

K3

+

!
- . 360° . .

- Rotating 3 = 120° around a vertical axe that goes

-

J through the center of symmetry of both triangular faces,
;;
N

N
9 127
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A
6 J 4 5 6
G
123456, ,132 ,465,_ 2
(312622 G 53 e)=1(132) (465 =£3

K . i

f‘" \“
4 — 5

123456, _ 123 456, _ 2
(331564 (33710054 4) =(123) (456) = f£]

The prism also has three horizontal axes of symmetry going
through the middle point of each rectangular face to the
middle point of the respective opposite edge.

Rotating 180° around the horizontal axe that goes
through the middle point of the face, 2365 to the middle

point of edge 14,

X
128 'h
R
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= (1 4) (2 6) (3 5) = fg
Rotating 180° around the horizontal axe that goes from the

middle point of the face 1254 to the middle point of edge
4

O\,
EN
.

S

36,

> o

6 15 24 .36
3

3
2

Rotating 180° around the horizontal axe that goes from the

middle point of the face 1364 to the middle point of
r
edge 25, '
1
2 5
. /N, A
. ’ | | ‘ 1
l e
| A ! SN
Vs AN )’ .
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3

) = (1L 6) (25) (34) = f2

(82 1\
> W
W o>

There are a total of 6 rotations performed, which produce

the following structures:

6 2 2 3 3 3 _
fl + f3 + f3 + f2 + f2 + f2 = f + 2f; + 3f

w N
[\S O]

So, the cycle index for the regular triangle prism

Recall here again that the cycle index is really the unit
because fi + 2f§ + 3fg has only a symbolic value for indi-
cating the interrelation between the original and final

situations of the six vertices. Thus, the cycle index

condenses the following information.

1 time (1) (2) (3) (4) (5) (6)
+ 1 time (132) (465)
+ 1 time (123) (456)
+ 1 time (14) (26} (35)
+ 1 time (15) (24) (36)

+ 1 time (16) (25) (34)




AR AN A A L G G g L e L ‘g atasatasate  gtacatipvaian b ol f g tan sl gniet cian S Ratt ek Sefl heb B A0 ah PR A ' AR Ahe A,

W
.:n
o)
L
“w
.
g
.-'_:;
;q Later on, when the cycle index is expanded accord-
N ing to the specific number of variables playing a role in
L
:: the given problem, one has to compute the different
B
k' arrangements of those variables into all the cycles men-
< tioned in expression [l]. Graphically, those arrangements
;ﬁ of variables represent a problem equivalent to the one con-
k>
fﬁ sisting in filling, with repeated selection, the following

boxes:

6
- T 00O oOooOod

f2
2z 3 1T13] [T13
.‘-Z 2 ,
3 (A O A
V 2 [IO O O
‘.: 3
i A e i

3
t2 12 1

o The constraints in solving this problem are:

»
4
4 1. Repeated selection of the two colored beads
,t% is not allowed.
’:: 2. The joined boxes represent cycles, and there-
o
~ fore the same type of colored beads have to fill them.
o
2
‘a f.
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2. Pattern inventory. There are three variables
in this problem:
a. color a
b. color b
€. no color c
Thus, the pattern inventory function will consist
of the replacement of the following convenient expression

into the cycle index formula,

fg —s (a9 + 9 + P,

Cycle index for fi + 2f§ + Bf;

the regular tri- = 3

angular prism

Expanded cycle

index for the _ (a+b+c)6+2(a3+b3+c3)2+3(a2+b2+c2)3
regular tri- 6

angular prism

The development of the whole expanded cycle index
produces a result valid for attaching colored beads to the
vertices with repeated selection. But in this problem
there is no chance for repeated selection because there
are only two beads available. Thus, the only valid struc-
ture here 1is abc4 (1 bead of color a, 1 bead of color b,
and three vertices with no beads).

The term f? = (a+b+c)6 produces the structure
ak>c4, which coefficient can be attained applying the

Leibniz Formula,
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-l—,if—‘“ abc4 = 30 abc4

(a+b+c)6 = I

1 +1 + 4 =6

The rest of the terms within the cycle index,

2f§ = 2(a> + b3 + ¢3)? ana 3f§ = 3(a% + b% + ¢

do not produce the structure abc4 obviously. The value of

the expanded cycle index will be something like:

6 6 6

% [a~ + b+ ¢ + 30 abc4 + ...+2(a3

+b3+c3) 2 43(a%+p2 Yy,

from where the only valid solution, that accomplishes the

constraints, is taken,

- 30abci=s5abc?

o

Thus, the solution is 5 different ways.

The same solution can be graphically computed:

Solution: 5 different ways

133




Problem No. 4. "Find the number of ways of paint-

ing the four faces a, b, ¢, and d of a isosceles tetra-
hedron with two colors of paints, x and y" (Liu, 1968,
150) .

Solution.

Explanation about the initial presentation of the tetra-
hedron according to the spectator point of view:
Face a is located just in front of the reader.
Face b is located at the back right hand side of
the pyramid.
Face c¢ is located at the back left hand side of
the pyramid.
Face d is the base of the pyramid.

Faces a, b, and c are equal; face d is not.

Notice, on the other hand, that the isosceles
tetrahedron only has one axis of symmetry that vertically
goes through vertex D on the top and the center of gravity
(baricenter) of the opposite face d at the base. That axis
of symmetry is superimposed on to the pyramid height.

During rotations face 4 will remain in its initial place.
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1. Cycle index. No rotation. Initial position.

Identity substitution.

AU T
oU
QaQ

a, b, c 4, _ _ .4
(a)(b)(c)(d) = (a)(b) () (d) = £,

—
|

Rotating 120°

bed _ ,2abec, d _ 1, .1
c a d) = (b c a)(d) = (abc) (4) 1

]
th
H

Total of rotations performed: 3 (cycle index denumerator).

Types of circular substitutions or cycles made with those

3 rotations:

4 1.1 1.1 _ _ 4 1 .1 cycle index
£) v £5 5+ f3fl = F o+ 2f) £y (numerator)
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Thus, the cycle index is

1
lf

w

Cycle index for fi + 2f
the isosceles =
tetrahedron 3

2. Pattern inventory. There are two variables
in this problem:
a. color x

b. color y

and both colors can be chosen with repeated selection.
Notice the difference with the regular triangular prism
problem, where there was not any chance for repeated selec-
tion, and the number of variables was three (color a,
color b, no color).

The pattern inventory function will consist in the
replacement of the following convenient expression into

the cycle index formula,

P
£ (xq + yq)

g
Cycle index for f4 + 2fl fl
) _ 1 173
the isosceles = 3
tetrahedron
1 4
=3 [(x+y) + 2(x+y)(x3+y3)]
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% [(x+y)2(x+y)2+2x4+2xy3+2x3y+2y4]

%[ (x2+y2+2xy) 2+2xte2x3yraxy 2yt

4

% . (x4+y +2x2y2+4x2y2+4x3y+4xy3+2x4+2x3y+2xy3+2y4)

% (x4+2x4+4x3y+2x3y+2x2y2+4x2y2+4xy3+2xy3+y4+2y4)

(3x4+6x3y+6x2y2+6xy3+3y4)

1
3

x4 + 2x3y + 2x2y2 + 2xy3 + y4

There are here 8 possibilities of painting the

four faces of the pyramid with repeated selection:

Face a Face b Face c
X X X

X X X

NN




The same result is obtained adding the coefficient

of [1]:

l + 2+ 2+ 2+ 1 =28.

Problem No. 5. "Find the distinct ways of painting

the eight vertices of a cube with two colors x and y"

(Liu, 1968:151).

Solution.
1. Cycle index. No rotation. 1Initial position.

Identity substitution.

—
NN
w W
S
v\
o o
~
© o
i
—
’.—l
N
w
e
S
S—
w
—_
o
o’
~
—
[

(L) (2) (3) (4) (5) (6) (7) (8) = £

= oo

Three 180° rotations around axes connecting the centers

of opposite faces,
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s
¢ 7 6
/,’.'—T‘——]
s V
' s
g 3 "'l’iJz
L %
: g —1
)
: 12345678, _ 13 24 (57, 68
: 33127856 = G1 42 Gs) lge
: 4
. = (13) (24) (57) (68) = f,

(— e
3| f
P
4 1
12345678, _ ,16, 25 .38 47
‘ (658721413 =61 G2 g3 (34
= (16) (25) 38) (47) = fg
7 6 S 2 3
A o | 1/// 4///\
(4 - ) | !
- i { 6 (7
" Loyt 2 e
» 3 i// C l -
g == 5 8
-.
>,
)
. 12345678, _ ,18 ,27, ,36, 45
L (6 7es5a321 = G1) G 3 g
- = (18) (27) (36) (45) = f3

There are 3f3 cycles.
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(1432)(5876)= £

Six * 90° rotations around lines connecting the center of

opposite faces,

(1234)(5678)= fi

3 g IaXe]
=
o <
N ™M

—~ N

(1562)(3487)= fi

)

~ ™

o ™~

™M <
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o
= O
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(l 23 4567 8) = (l 58 4)(2 6 7 3)
56 218734 58 416 732
(l 234567 8) _ (l 4 8 5)(2 37 6)
4 3781265~ ‘4851 '37¢62
There are 6f§ cycles.

[m)]

4) (267 3)

th

5)(2376)

Six 180° rotations around lines connecting the

opposite edges,

6 2
I /}

au

2 \/
12345678 _ .17 26.(35 .48
(76583214 =G 100G ) 53 (5,

(17) (26) (35) (48)

There are 6fg cycles.
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Eight $120° rotations around lines connecting opposite

vertices {the diagonals of the cube)

>

Notice the equilateral triangle ZQXB .  The pyramid

1

rotates around point 5 and its base 1 6 8.

6

360

=T = o
3 120

186,247
861”472””

( 2)

Q
>N
w W
~ &>
v
= o
~
s ¢]

(3) (5) (186) (247)

There are 8f g cycles.
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Types of circular substitutions or cycles made

with these rotations:

£

=N

2 + 6f., + 8f

[ (SIS
w N

Total number of rotations performed:

1+ 3+ 6 + 8 = 24 rotations.

Without numerical calculations one can see that
there are 24 different positions (or rotations to be per-
formed) for the cube, by observing that there are six
faces any of which can be positioned at the top; and that
for each choice there are then four faces any of which can

be positioned at the front.

8 4 2 2.2
Cycle index _ 1 ¥ 9fp + 6f, + 8f;f;
for the cube
24
2. Pattern inventory. There are two variables in

this problem, where repeated selection of colors is allowed:
a. color x
b. color y

- . e a,.,q,"
Thus, the pattern inventory is fq —  (x7+y7?)

143




o . Vall €ap Y, ?, Wag $a i B tal. . L 9 A Aag, o ] St sattabotal Al CROR) Yol Pag vag ¥ ) ;,....- ian Vel cad ‘el

(x+y) 249 (x2+y?) +6 x4y ?) 28 (xy) 2 (3 4y3) 2 '
24

Expanded cycle
index for =
the cube

All possible combinations of colors represented in the N,
expanded cycle index are valid. As the problem only

requests the number of distinct ways of painting, thus,

colors x and y can be pondered equal 1 (both are equally

distributed in the whole tableau of different arrangements). .
For Xx =y =1, !
’
8 4 2 2,2 o

27+ 9-27 + 622 + 8-27-2" _ 23 ways

After this problem has been already solved, the
reader should have noticed the practical use of the nota- -

tion fg just in order to represent and collect homogeneous

cycles after the rotations have been performed. By applying ;
1)

this notation, a lot of repetitive and tedious calculations f
o

can be saved, because the symbolism fg allows one to group N
together all the homogeneous cycles that follow the same ?
structure, even though they have different contents. For -
. Rt

instance, "4
p P p p !

mf® + nf* = (m+n)ft = Mf "

q q ( ) q q

Those M cycles, grouped together because of their N

common structure, have different contents, which are : g
‘A

ignored at a first sight. But the application of the )
pattern 1inventory to every term fg in the cycle index X
[ )

[p

L d

N

>
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returns its full sense to every singular cycle and to every

item, vertex, face, side, edge, variable, etc.

Problem No. 6. Given a regular tetrahedron and

four different colors a, b, ¢, and d calculate:

a. The number of different configurations that
can be obtained by painting the four vertices with the four
colors, with repeated selection.

b. The distribution of color a in the differ-
ent configurations obtained in 1.

1. Cycle index. No rotation. Initial arrangement.

Identity substitution.

CD =@bcd = (@)@ =f

+120° rotations around lines connecting a vertex and the

center of its opposite face.

abcd, _ 1
(c a b d) = (acb) (d) —f3fl
1.1
2f3fl
abcd, _ il
(b c a d) = (abc) (d)—f3fl

As the same structure happens four times, considering the

four vertices on the top, 4 x 2f§fi =8 f{f%

145




W
”
o
ty
“, 180° rotations around lines connecting the midpoints of
. opposite edges d b
’ ///ﬁ\\ ,LD ,/A
) Py
: a /o
51' a<s c’ - 4 Na
2! . :
S o
e \\Qa
abcd _ _ g2
(Caap = (@ac (ba =1
As the same structure happens three times, 3xf§ = 3f§,
X
:‘ thus’
~
\‘
{
4 Cycle index £ + Bfif: + 3f2 £ 4 8E1E; + 3£
g for regular = =
- tetrahedron 1 +8+ 3 12
5
-
2z The same result can be obtained observing that the four
' faces can serve as the tetrahedron base, and that for each
-%ﬁ base there are three possible edges at the front.
i: So, 4 x 3 = 12 different configurations.
= There are four variables: a, b, c, d.
2 - P 4, .9, 9, 49"
. Pattern inventory fq = (a® + b* + c* + 4d7)
"
: Expanded cycle 4 3,3, 3.3, ,.,.2.2 2 272
o index for _ (atbt+cHd) "+8 (atbtc+d) (a7+b " +c +d7 )43 (@ +b +c"+d")
S regular - 12
& tetrahedron
o,
% Weightinga =b =c=d =1,
; \
4 1
:.r
R, 4
a
-
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1§

)

y number of different ways for painting the vertices of the
P regular tetrahedron, with repeated selection =

' _ 1 4 2, _ 1 _ 432 _

=13 (4 +8-+4-4+3-47) = 15 (256+128+48) = I3 - 36

-
b 2. Weighting a = a; b =c¢ = d =1, the pattern
l inventory is fg = (aq + 1 + 1 + l)p, and the

-,

’.

<
& Expanded  (,,3)%,8 (a+3) (a3+3)+3(a%+3)?

- Cycle = 13

* Index

_ (a2+6a+9)2+8(a4+3a3+3a+9)+3(a4+6a2+9)
B 12

2 = %3 (a4+l2a3+36a2+18a2+108a+8l+8a4+24a3+24a
)
; +72+3a%418a%427)

-

3

N = 75 (12a%+36a7+72a°+132a+180)

N
o = a? + 32 + 6a + 11a + 15.
-

'.3

4
.

‘J

J

d

‘d
S 147
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Distribution:

1 arrangement containing four vertices painted with a

3 arrangements containing three vertices painted with a
6 arrangements containing two vertices painted with a
11 arrangements containing one vertex painted with a

15 arrangements containing zero vertices painted with a

36 total arrangements, 21 of which (1+3+6+11) contain
color a.
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V. Conclusions and Recommendations

for Further Research

Conclusions

The capital characteristics of the number applied
to a set of elements are two:

1. That number is independent of the order in
which the elements are taken into account;

2. That number is independent of the nature of
the elements it compiles.

But when combinatorics concepts are employed for
computing what number has to be assigned to a set of
elements, the first of these two characteristics could be
modified in the sense that the number to be given can be
dependent or independent of the elements' order. Such
distinction makes the difference between variations, where
order of the elements is relevant, and combinations, where
order is irrelevant.

Besides the sense of order as a variable for
computing the elements of a set, combinatorics can deal
with another wvariable: the possibility of selecting all the
elements in a repetitive manner. Such distinction makes
the difference between ordinary variations and combina-
tions versus variations and combinations with repeated

selection.
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Recall at this point that ordinary permutations are
a particular case of ordinary variations, and recall also
that permutations with repetition play a key role for
rejecting duplicate arrangements of elements.

Moreover, most of those calculations have only been
researched in one dimensional space, leaving an open field
for future studies. A modest attempt was made in two
dimensions (circular permutations) and three dimensions
(substitutions).

It is important to remark here that equivalent
problems arrive to distinct solutions when they are solved
under different dimensional conditions. To greater degrees
of freedom, corresponds a more simple answer, and vice
versa. Thus, when the number of dimensions increases, the
number of solutions for any particular problem decreases.
For instance, compare the three distinct results obtained
when n different colored beads are arranged in one, two
or three dimensions:

1. Arrangements along a row, Pn=n! different
arrangements;

2. Arrangements around a circular table,

PC =P,y = (n-1)! different arrangements.
3. Arrangements made by stringing the beads into
pCn (n-1)! .
a necklace, 5~ = 5 ~ different arrangements.
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The conclusion goes against normal human intuition:

- |
n! 5 (n-1)! > 12_%l;
One dimension Two dimensions Three dimensions

On the other hand, consider the basic alternatives
that could be present at solving any specific problem:
1. Ordinary selection (variations, permutations,

combinations)

2. Repeated selection (variations, combinations)

3. Repetition (permutations)

No other research effort (as far as one knows)
has been conducted in order to solve problems where the
three alternatives are simultaneously presented. For
example, given an original set of m beads, in which some
of those beads are unique and, therefore, they only can be
used one time; some other beads are repeated a finite
é number of times (e.g., o times red, R times green, ...,
etc.) and they can be repeated that finite number as a
< maximum; and the rest of the beads are repeated indefinitely
and can be used with no restriction. A question that could
well follow the former data could be: in how many different
ways could those beads be attached to the n vertices of a
regular polyhedron? 1Imagine the complexity of problems

of this nature, moreover in three dimensions, and even
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more if m > n, because the pattern inventory function

cannot be discerned when the variables do not obey the
same law.

Nevertheless, a new approach for teaching combina-
torics has been developed by the present thesis effort as
a remedy to the fact that previous presentations leave a
great deal to be desired pedagogically, not only because
most textbooks use very difficult languayes and notations
for beginners, but also because they do not place enough
emphasis on visualization and fail to show the relation-
ships between general and subordinate concepts. Thus, a
partial solution has been found for promoting meaningful
learning of combinatorial concepts, giving to them a touch
of freshness and relevance. It is true that one has not
been able to solve every facet of the problem; that would
require at least a lifetime of study and research, but it

has been demonstrated that it is solvable.

Recommendations for Further Research

One regrets the lack of time for continuing deeper
theoretical research through the fascinating world of
combinatorics. Far from being discouraged by this fact,
this research effort has opened the door to at least two
new research efforts:

1. Explore the characteristics and structure of

those problems already presented in the first part of this
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chapter, dealing with situations in two and three dimen-

sions where the possibility for the simultaneous occurrence
of ordinary selection, repeated selection and repetition
exists.

2. Investigate ways that computer graphics and
expert systems can be used to facilitate the accession and
employment of the conceptual map presented in Chapter IV
in order to enhance the visualization and computafional
capabilities of the combinatorial analyst.

Finally, one hopes that this modest attempt to
advance the theory and pedagogy of combinatorics has at

least made some contribution to the science.
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Block l19--Abstract

The purpose of this study was to construct a new
methodology for teaching combinatorics based on Doctor
Ausubel's theory about meaningful learning. The key idea
in Ausubel's theory is that if learning has to be meaning-
ful, then the learner has to have subsuming or anchoring
concepts in his cognitive structure.

Combinatorics has typically been one of those sub-
jects the students have more difficulty in understanding.
This phenomenon happens because previous presentations of
combinatorics leave a great deal to be desired peda-
gogically, and do not place enough emphasis on visualiza-
tion. As a result, students use to learn course materials
in a rote manner, and find little motivation for such
learning activities.

A prescription has been found to remedy such
pathology. A conceptual map, rather than a typically
organized hierarchy of concepts, has been developed. The
conceptual map interrelates the main and subordinate con-
cepts in a cyclical manner, in a repetitive way, in a
gradual and smooth progress, to enable the reader to
assimilate ideas meaningfully.
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