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1. INTRODUCTION

There are three versions of the finite element method: the h-version,

the p-version and the h-p version. The h-version is the standard one, where

the degree p of the elements is fixed, usually on low level, typically p =

1,2,3 and the accuracy is achieved by properly refining the mesh. The p-

version, in contrast, fixes the mesh and achieves the accuracy by increasing

the degrees p of the elements uniformly or selectively. The h-p version is

the combination of both.

The standard h-version has been thoroughly investigated, and many

programs are available, both commercial and research codes. The p-version and

h-p versions are new developments. There is only one commercial code, the

system PROBE (Noetic Tech, St. Louis). The theoretical aspects have been

studied only recently. The first theoretical paper appeared in 1981 (see

[7)). See also [1), [7], [81, [9), [101, [11]. For the numerical, computa-

*, tional and implementational aspects we refer to [2].

In [41 it has been shown that the rate of convergence is an optimal one

up to an arbitrarily small c > 0, namely

(1.1) leg H1  C(E)p-(k-l)+:IuNHk

In the case when the solution has singular behaviour of the type

a,
u a r a > 0, ((r,e) being polar coordinates) and the vertex of the

elements is at the origin, then

(1.2) NeN C(C)p .

H

The p-version has the rate of convergence which is twice the rate of the h-

version with uniform mesh.

I I
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The proof of [4] indicates that the term C(e) can grow quickly with E

+ 0. Nevertheless, computational experience indicates that (1.I) and (1.2)

hold without the term c, i.e. it suggests

(1.3) lei H Cp lHk

and

(1.4) I1ell Cp- 2aH I

respectively.

We show in this paper that in fact (1.3) and (1.4) hold and the term

4 in (1.1) and (1.2) appeared only due to technicalities in the original

proof.

In [4], only the case when essential boundary conditions are homogeneous

was addressed. In this paper we deal with the general case. The ideas and

techniques of this paper differ significantly from what was used in [4]. Sec-

tion 2 addresses the preliminaries and basic notions. Section 3 deals with

approximation properties of polynomials on a square. Section 4 analyzes the

rate of convergence under the assumption that the solution does not have sin-

gular behaviour and proves (1.3) for homogeneous and nonhomogeneous essential

boundary conditions. Section 5 deals with the case when the solution has a

singular behaviour and proves (1.4). Section 6 summarizes the results and

addresses briefly various generalizations.
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2. PRELIMINARIES

2.1. Notation

By R2 we denote the usual Euclidean space with x (xl,x 2 ) E R
2 .

By Q C R 2 we denote a bounded polygonal domain with the vertices Ai, i

M
O,...,M, A0  AM,, and the boundary r where i are open straighti0I

lines with the end points Ail.,Ai. The internal angle of [i and ri+l is

denoted by wi, i - 1,...,M, 0 < wi 4 2w. We mention that we also allow

- 2w and so w include into our consideration the slit domains (wi = 27)

when the boundary is two sided (in an obvious sense).

Let rD r I and rN - r - rD r F., D n N = 0. We will call
jD J N jEN

rD the Dirichlet boundary and rN the Neumann boundary. Obviously,

rD U r N . r.

By L2(") - H0(Q) and Hk(SQ), k > 0, integer, we denote the standard

Sobolev spaces (with index 2). Also, HD (Q) -H (o) n H (Q) where H 16)
D D D

{u E H(1)u - 0 on rD}. For k > 0 not an integer, we define Hk(Q),

HkD(Q) as the usual interpolation space (by the K-method, see [6]):

H Z+6( ) - (H i ) ,H+l()) ,q

with q 2, 0 < O < 1, X + O - k. For k > I we define S+ ()

H k+( 2) H I(Q). in [31 we have shown that if i < 27 thus
1)

Hk+ () = (Hk(') 'Hk+1 (Q)
D D O,q

Later we will also use q - w and will explicitly mention this case.

We will also deal with the Sobolev spaces Hk(ri), Hk(j), I = (a,b)

which are defined for k integer in the analogous way.

3
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The spaces Hk(Q), Hk(a), Hk(ri), etc., are Hilbert spaces and their

inner products will be denoted by (.,-)Hk( ), etc.

For K > 0 we let

(2.1) R(K) - {(x1 ,x 2) I Ix1 < 
K, Ix21 

< c}

and by HpkER(R(K)) c H k(R()) we denote the space of all periodic functions

with period 2K.

By P (Q), respectively T (R(c)), we denote the space of all algebraic,
p p

respectively trigonometric (with period 2K), polynomials of degree at

most p in each variable on Q, respectively R(K). Analogously we

define Pp(r), Pp(1), (I = (a,b)).

2.2. The model problem and its properties

We will consider the following model problem

(2.2) -Au + u - F on a

(2.3a) u = g on rD

(2.3b) 2u b on

The model problem (2.2) (2.3) is a classical case of the elliptic equation

problem on a nonsmooth domain. The structure of this problem is well

studied. We refer here to [13] and the survey paper [151 where the relevant

information and references could be found.

We shall assume that the solution of (2.2), (2.3) can be written in the

following form:

M

(2.4) U = u1 + U 2 + u3i]

i=1

4



where

uE q (j), q > I

u 2 E Hk() u g on , k>

2 2

n ~[ii [liin i  i] i]

(2.5) u ]  C[i Ilog r. ri  .[i(Ei)x (ri E HE (2)

with atil > 0, ai] > [i] Iii > 0, 0[] (0i) and x [i(ri) are Cit .+ i i

(or sufficiently smooth) functions, x[i](ri) = 1 for 0 < ri < Ki] <

X[i](ri ) - 0 for ri > 2 0[i ] .  By (ri,ei) we have denoted the polar coordi-

nates with the origin at the vertex Ai of the polygon i. The partition

(2.5) is typical for the regularity of the solution of the problem (2.2)

(2.3). The functions utii describe the singular behaviour of the solution
3

caused by the corners of Q or by the abrupt changes of boundary conditions.
-U

Function u2  relates to the nonhomogeneous Dirichlet conditions on and

u, relates to the solution of the problem with the homogeneous Dirichlet

conditions. For the details and proofs of the partition (2.5) we refer to

[131 [14].

So far we assumed that Q is a polygon and we considered only the model

problem (2.2) (2.3). In Section 6 we will make comments about more general

cases.

2.3. The p-version of the finite element method
N

Let Q = U . where Q are (open) triangles or parallelograms.i=i

(In Section 6 we will comment on curvilinear triangles and quadrilaterals.)

We shall assume that si. n o. 0 for i Q J i. is either the empty

1%
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set or an entire side or a vertex of Si and Q. We will assume that all

vertices of S are the vertices of some 2.. a. will be called elements.
J J

Denote

S " {u E HI () I u E Pp(si) i = 1,...,N}

S D  -S n HI(Q).p p D

Let 7. c rD be a side of the element 2- and let A.,,A.j E rD be the end

point of j. We define g[] p E Pp (vj)

(2.6a) g[J](A. ) = g(A.i), i = 1,2

(2.6b) f (gpJ ])'h'ds f g'h'ds
'Ii p 17 *

for all h E P (7j) with h(A. ) 0. We define then

(2.6c) gp = {g[J]}, D

p

The p-version of the finite element method consists now of finding uP E Sp,

up =gp on rD such that

(2.7) (u v Fv d + f bv ds
H () r D

Dhold for all v E S

(2.7) is the usual definition of the finite element solution when

replacing g by gp on rD so that gp is the trace of a function in SP.

Our construction of gp is slightly restrictive because we assumed

6
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that g E H() and not g E H ) < k < 1. This restriction is not
t2

important in practice. It could be avoided at the expense of simplicity of

construction of gp.

Remark. If 2. is a parallelogram then P (02) is meant as the set of poly-1 p

nomials in variables which are parallel to the sides of 0i"

!7
*1*

,%
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3. APPROXIMATION PROPERTIES OF Sp

Let Q x (-1,1) x (-1,1); yi, i = 1,2,3,4 be the sides of Q and

Y5 be the diagonal x1 = x 2  of Q.

LEMIMA 3.1. Let u E H k(Q). Then there exists a sequence zp E Pp(Q), p =

0,1,2,... such that

(3.1) for k > 0, q 0,1, q < k:

flu-Z 1 < C - (k-q) 1 l
u- q Cp 2ul k

PHq) H (Q)

(3.2) for k > 3
2"

llu-z 1 0 4 Cp-(k- 1/2 )IIUlf k
P H (YiH(Q)

3i

(3.3) for k > 2

- (k-3/2)
IU-Z uk , i ,...,5

pH (-Yi) H(Q)

3
(3.4) for k > - and any x E Q:

2

H1u-z )(x)I 4 Cp-(k-I k .PHk(Q)

The constants C in (3.1) - (3.4) depend in general on k but are inde-

pendent of u and p.

Proof. Let r0 > 1. Then Q C R(r0 ) (see (2.1)). Since Q is a Lipschitz

domain, there exists an extension operator T mapping Hk(o) into

Hk(R(2r0 )) such that

3
(3.5a) Tu =0 on R(2r0 ) -R(7 r

20

8
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~~= -- = -- - n. N-u-w r -n .:. .. .. 2J : .. . ..... ''w .- '.. .' .c' : - 2 .: . -' , '. .. °.

(3.5b) ITu Hk (R(2r )) Cu k(Q)

where C is independent of u. For a concrete construction of T we refer

to [3].

Let t be the one-to-one mapping of R(2) onto R(2r0 ):

R(2r O) ? x = (Xl1,x2) = () = (2r0 sin EP 2r sin

with (E 2= ) E R(-).

Further, we let

'p -1 r3
=~ [Qr 0 2CR7

-1
where I denotes the inverse mapping of 0.

Let v = Tu and

(3.6) V() = v( ()).

Because of (3.5a) we easily see that

(3.7) supp V(s) C .

In addition it can be readily seen that

(3.8a) V() is a periodic function with period 27

(3.8b) IIV()u Hk(R(r)) k Civ Hk 3 r CIuIHk(Q)
H(iT)H(R(-f r,)) H(Q)

k
and hence V E H (R(r)).

PER

(3.8c) V() is a symmetric function with respect to the lines . = ±-

i = 9,2.

9'
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Let us expand the function V in terms of its Fourier series

- - i(J&1 +Z& 2 )

(3.9) V(&,&2)  a=- t ae

and denote

p p i(J I+t 2 )

(3.10) V ( 1 ,&2 ) a .

Obviously, V E T (R(O)).
P p

We have

(3.11) kV,2  
- [ aj2 22 /2 2k

H (R(r)) j,z

where has the usual meaning of equivalency. (3.11) yields immediately

for 0 q 4 k

(3.12) IIV-V N H Cp-(k-q)v I kHq(R(r)) k R()

(using (3.8.b))

Cp- (k-q) UHk (Q)

with C independent of u.

Let yi i = 1,...,4 be the sides of R(7r) and let &,, = 2 be one of

the sides. Then

(3.13) V( 1 , 2) - Vp(& I z 2 ) =I )a e + &
Iji>p 04+lp0

10
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(1 ii 2 j~l [31 ''
ij>p b t e + bp b e + ejT>p b.

where for lIJI > p:

le 2 2 !2(3.14) Ib[111 2 a ae 2 21 )

l Ij i (1e) ( itl

(by Schwarz inequality)

4(l~ ja jt£2(l+j2+92 )k)( jj¢p (1+j2+j2)-k)

<Aj P 2. k CA p - ( 2 k - 1 )

* (i+j )

where we denote

(3.15) Aj - Iaj 2 I(I+j +2)

For i J P:

(3.16) lb[ 2 ] 12 ( ja j 1) 2

It >>p

4 Aji 
p  (I+j2+E2 

) -k

< CA. (l+j 2+x 2 )  dx
3 p+1

< CA I(k,p)

where
(3.17) 1(k,p) = f < (2k-1)

p+1 x 2

p4'



provided that k > 1/2 .

Analogously
2

(3.18) lb.3] CA.I(k,p) 4 CA p- (2k
-1 )

J 2 2

provided that k > 1/2 . Hence for 1 1,2,3,4,

H2 o(3.19) IIV-V 2P 0O i
H 0y.)

2 2

4 c[ Ii >p Ib"' 1 + 1bf2' l [2 lb [3'11]
I a (i >p

4 Cp-( 2k-1) A.

(2-1 221j2k

= Cp - J _k i) 2

Cp -(2k-i)2

CpI RVII
H k(R())

Cp-(2k-1)a 2

H (Q)

provided that k > 1/2

Now we estimate IV-V q 1  . We havePH (;i}

(3.20) d(V-V ) jb [ e + [21e 'd& P lJ > J J (  >p

and analogously as in (3.14), for IJI > P,

12



2 2

(3.21)j 2k
3 (1+j)

Consider now the function

2
f(x) 2 k

(l+x2)k

Then

f'(x) 2x (1-(k-)x )
( 2+x ) k+1

and hence for k > 3/2 and x2 > 2 we obviously get f'(x) < 0. Hence f(x)

is a decreasing function for x > 2 and k > 3/2.

Hence for I > P, p > 1:

,[1] 2 P(~)2 - (2k-3)
(3.22) P

(l+(p+l) 2)k j J

provided that k > 3/2. For j 4 p we get analogously as in (3.16),

[2] 2 .2 -(2k-3
(3.23) jib. < CA f i2dx 2 k A. -3

p+l (l+j 2 +x 2 )k C

provided k > 3/2.

Finally, for j > p,

2 2

gol 21

r 1 +x2 )x

= CA.[ ( 2 2k - 2 2 k)dx]
p+l (1+j +x (1+j +x2)

CA. p-(2k-3)

13
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provided that k > 3/2. Hence from (3.20) and (3.19)

(3.25) IV-V qj2  , (k3 H

Let us estimate now I (V-V VE) Because VV~ E R() wca
p 12 PE

assume without loss of generality that (E22 E Yi* Using (3.13) and (3.22)

we get for k > 3/2

-(2k)lbIl-3)' 2 1b -Illi 2

i 7

C. Cp (k3 Hull2k I < Cp- l(-1ull 2k

H (Q) t H (Q)

Using (3.13), (3.16) we get for k > 3/2

(3.7)1 2 [2 2 C 2 (k-1) 2

(3o27) Ib 1] < ( lb I )( -- 1 )

H3(Q) lj< H C)lu 2 (Q )

Finally, using (3.13), (3.24) we get for k > 3/2

(3.28) [31 p 2(2k-1) H- 2

lb2] )p p Cp
( I p kIJ

lJi>P i H k (q) "

Combining (3.26), (3.27), (3.28) and (3.13) we get for k > 3/2

(3.29) I (V-V p) ( i,$211 4 Cp- (k- 1) 1
1uHk (Q).

Let us prove now (3.19), (3.25) for ;5" We have

14
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(3.30) v(&,~ - V p

W ( Iji>p It 4p + Ii 4p Iti>p + lj:>pIt> )at eij)

- (C Ill + U C2 +C3 )e iq&i q q q

where

(3.31a) 5''1 . a
q J+Itq

II I>p,ItI~p

(3.31b) C [2 1 .-

q j+9-q i
jjj~p, LtI>p

(3.32) Cc'' 23 2 I 22
q+L j- +it

Nweye Shazieult

(3.33) Aq Il 1 2 a 1 (1+j 2+ 2 )1j2 j2-
q~t

j~ ~ (fl- )+-
I'9.-E~ j~p i l.

-9 A 1111k~p 15



-, it

and N(p,q) is the number of terms in the second term on the right hand side of

(3.32). Obviously, N < 2p. Hence

2 - (2k-i )

(3.34) Ic[]1 CA p
q q

Analogously,

(3.35) IC[2) CAp( 2 k 1 )
C q Cq

Finally,

(3.36) Ic [3 I A ( (I+j2+ 2) - k

q q J+Imq

IiI>pIzI>p

dx -(2k-I)A

C CA f - , Cp A
p+ x q

provided that k > 1/2. From (3.33) we see that

(3.37) 7 A q CllVD 2 k Cl 1u .
q-H (RO)) H (Q)

(3.37) together with (3.34), (3.35), (3.36) and (3.30) yields

(3.38) nV-V Cp- ( k -  1/ 2 )ull kP'HO( 5)Hk(Q)

Now we estimate IV-V iI H . Using (3.30) we have

d (V-V )(,) = 7 iq(C [1 ] + C [2 ) + C[3])e iq C

d p iq q q

and

16



[1 2

liq C l]I 2 A 
2 2

q q j+t=q (1+j2 +x )
Ijl>p'l1t1p

If p 2 ; q2 then

2

2 2k +2 22k
j+i=q (l+j +1 )k j+£=q (1+j )

Ijl>p'1l it-p Ijl>p,lz! p

c 3 2-(2k-3)
(l+p2)

If p2 < q2 then

p2 < q2 (j+) 2  < 2(j 2+L2

and we get

2 2

j+tq (IAj + j 2 j+=q )2 k 2 k
ljI>pI =p IiI>pIti'p q

<Cp provided k > i.

Hence,

2 -( 2k-3 )

(3.40) 'qC[ ] 2 4 CA p
q q

Similarly,

(3.41) qC [2112 CA
qq

Finally,

2 2
(3.42) JqC 1 CA 2 2 )k

qq j+jiq (1+j 2+z

lJl>p,ltl>p

17



For q2 4 p2 we get

2 2 1 -(2k-3)
(3.43) 2 2 k P 2k Cp

J+L.q (1+j +z2) lJ>p (1+j)

Ii I>p, Itl>p

If q2 > p2 then

2 q 2
(3.44) 2 2 k k 4 Cp -

j z=q q=p+l ( 1 2+a-)
lj I>P, I 1>P2

and hence

(3.45) JqC 3] 2 CA p .(2k-3)

q q

Combining (3.40), (3.41), (3.45) and (3.39), (3.38), we get

(3.46) IV-V I H 0 Cp- (k -  3/2)11ull kSH(y 5 ) Hk(Q)

Because of (3.8c), V (- (x)) E P (Q). Further, 1 is a regular mappingp

of R(rO ) on Q, (r0 < ) and 0(;i) D Yi. Hence for k integer (3.1)

follows immediately from (3.12), (3.2) from (3.19) and (3.38), (3.3) from

(3.25), (3.46), and (3.4) from (3.29).

There is a known one dimensional version of Lemma (3.1). For the proof

see e.g. [9]

LEMMA 3.2. Let I = (-1,1), u E Hk(I), k > 1. Then there exists a polynomial

Zp E P p(1) such that

(3.47) u(+l) - z p(±)

and for t = 0,1:

18
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(3.48) Iu-z I € Cp-(k-t)IUD k

Let us mention another form of the approximation theorem

LE'MA£ 3.3. Let u E H'(1)

+1 2 k k d x - A 2 k = 0,1 ...
f' (1-x ) dx k-A,
-1 dx

Then there exists a polynomial zp E P (1) such that

p

(3.49) u(±1) = p(±1)

and for t = 0,1 and p > k:

(3.50) I1u-z I t Cp (k-t+l) A
P Ht(I)

where C depends on k but not on A and p.

For the proof see [5] or 9].
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4. THE CONVERGENCE RATE OF THE p-VERSION: THE CASE WHEN u E Hk(g)

4.1. The case k > 3/2.

In this section we will analyze the rate of convergence of the p-version

in the case that the exact solution u E Hk(jj), k > 3/2.

THEOREM 4.1. Let u E Hk(Q), k > 3/2 be the solution of (2.2) (2.3). Then

there exists up E S,+, up = g. on rD (see 2.6a,b,c) such that

( 1 Cp-k(k-1 11u H k(4. ) U-UpH (H ( 2)

where C depends on the partition of Q and on k, but is independent of u

and p.

Proof. Let Qi' i 1 ,...,N be the elements of the partition of 1. First

Ii
let us construct the functions z as in Lemma 3.1. The lemma is applicable

p

because a linear transformation maps the parallelogram or triangular element on

a square or on a right angled triangle, preserving the polynomials. Hence

(4.2) llu-z [i Cp-(k-I) ull
P H. (Qi) Hk (Q)

Using (3.4) we can assume that u = z[ i ]  at the vertices of Si by adding a

linear (triangle) or bilinear (parallelogram) function to z

Let now y = n2 f 2 and A1 , A2  be the end points of y. Now z

z1ZI on y. Denote w z - zW on y. Then because z (A.)

u(Ai) , (A we have wjz(A i ) = 0. Using (3.2) and (3.3) we get for t =

0,1

(4.3) u1w.t t Cp-- I/ 2 -t) (tll kSHt(y) H

20
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If aj is a parallelogram, then we can assume without any loss of generality

that f2 = Q = (-1,1) x (-1,1) and Y {x I Ixll 1 1, x2 =

Let

-p(x2 +-l) -2p

(4.4) (x = e -e
_P - 2p x2 E I = (-1,1)

Then

(4 .5a) P10 CP/2

(4.5b) P1 1/2

and

(4.6) O p(-l) = 1, p(1) = 0.

Using Lemma 3.3 with k = I and t = 0,1, there is a Pp(x,) E Pp (I)

such that

2+t 4 - 2p(x 2+1 ) 2 1/2(47 n t4Cp-2+If P e (l-x 2)dx 2
(4.7) P P Ht I

2 1/2 t-1.

Cp( f ye- 2 pdy) 4 Cp
0

Hence, for

jz = wjp (x 2) E Pp(Q

we get

j -- 0 on a1. -y

r = w O y

21



and

(4.8) ( Cn1wipa 1 I + wji 4)IaH]H48 I~ H(Sj) H (Y) HO0 (1) HH0 (y) 1P H (I)

p + ,p- I (p 0C[ w~H I (y) H 0 (1)  pPH0(1 )

+ Iw ZI0 ( H 1 )] 0PjHO(y)  PH(I) H (I)

by (4.3)

-(k- 3/2)(- 1/2 - -(k- 1/2) 1/2+1 un
S C[p (p 1 +p - + p- PH k

H (2

-(k-1)SCp ArUi k( .

H k(Q2)

[j]°

Repeating this process for all four sides of 02. we can adjust Z so that
p

the continuity across y is obtained and (4.2) still holds on Q

So far we assumed that Qj was a rectangle. Now iet j be a

triangle. Then without any loss of generality we can assume that

( {x I 0 < xO, x < x }j1 2 1

S {x 1 0 1 x =0)

and we assume that wj.(O) wj(1) = 0.

Let now

&jjt(Xlx 2 ) p(2x 2-1)[(xl-x 2 )w j(xi) + (l-x I)wj(K I-x2 )].

Obviously, .j, is a polynomial of degree at most p + I in each variable,

which vanishes on a. - y (because wj (0) = wj (1) - 0) and jz (x ',)

w. (x Now by quite similar arguments as before we see that
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IM -MWT 1 I(V) UP "p-(k-)lk

H (SI. H ( Z)

Adjusting z j ]  by we achieve the continuity across y. The continuity

across each side f of a i belonging to rD can be similarly obtained. This

completes the proof for g = 0 and for g a polynomial of degree pO < p on

every 3Q D.
J

If g is general we can proceed quite analogously. Let y z rD be the

side of the element Qj with the end points Ai, i = 1,2. By Lemma 3.1 we

have for t = 0,1 and k > 3/2:

lz[J]-ua < Cp- (k - t - 1/2 )u .
P Ht(y) H k(2)

On the other hand, by the imbedding theorem we have for s > 1

H (y) HS(Y) Clull + 1/2 (o)

Applying Lemma 3.2 we have for t = 0,1:

a Cp-(k-t) g k ( Cp- (k-t) il u Itk+ 1/2pg- J H t(Y )  H/ k(())

Hence,

(4.9) !liz [ j] -gJi q[ Cp - (k - t - 1/2 u k-gp Hl u (-)H Q

and

S[J](A )  = [J] (A.)
p g 1

so that we can construct the adjustment of z ] exactly as before.

This completes the proof.

23
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4.2. The case 1 < k ( 3/2

We assumed in Section 4.1 that u E Hk, k > 3/2. Let us analyze now the

general case.

THEOREM 4.2. Let u E Hk(Q), k > 1, be the solution of (2.2) (2.3) such that

U = U i + u 2

u E H iD () u 2 E H k2 (), k > 3/2

and such that if ki < 3/2 then a is a Lipschitz domain (i.e. w. < 27).

Then there exists u E Sp+1, U on rD  (see 2.6a,b,c) such that

(4.10) Ihu-u p H H Cp-(k-1)HuiHk(), k ; min(kl,k 2 )

Proof. Because of Theorem 4.1 we can assume that u2 = 0, i.e. g = 0 on rD

and that 1 < k < 2. Let us assume first that for any 0 < t < we can write

(4.11) u = vl(t) + v2 (t)

where vi E H1 (Q), i 1,2 and

(4.12a) 1iv 1 1 Ctk -I H

(4.12b) 11v2 n ctk-2 ll

2 kH (Q) H (Q)

with C independent of u. Then by Theorem 4.1 there exists zp E SD such

that

p 2  k-2RZp-V2H (0 4 Cp 11V2 2a 0 Cp t 11,111 (

H 1(Q) 2H 2 H k(2)

24I



Choosing t - lp, (4 .12a) gives

IV 1 ( Cp-(k-l)4UI k

We get by the triangle inequality

(4.13) p ) -CP(k-i) I(kU-Hk (

i.e. the estimate (4.1).

The assumed splitting (4.11), (4.12) is equivalent to the definition of

the interpolated space (H 1 (Q),H 2( ) n H1(2)) defined by the K-method

(see 161).

We have shown in [31 that

(H (HQ~) , H 2 ( a ) )  n Hl( )

(Hl~~fl),H2(~fl),[ D~l

6,cc

= (HI () n %D Q1

- 1+6 1 k
Be o nsp H e .() 4 S

(1 0)H20 1 Q

Ip-Hk (Q) PH 1(Q

where 1+ 4 'I'hl if '

weeB 2 ,, is the usual Besov space. Hence (4.1 1 ), (4.12 od fi

and Theorem 4.2 is proven.

Remark 4.1. We mention that we have proven slightlv more then the claim of

Theorem 4.1, namely that we can use the Besov space B 2 ,(Q) instead of

Hk (Q). This of course follows easily from the interpolation theorv.

25
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Remark 4.2. The assumption wi < 21r (i.e. the exclusion of the slit domain)

was made here only because it is used in a result from [3] quoted by us.

4.3. The rate of convergence of the p-version of the finite element method

THEOREM 4.3. Let u E Hk(Q), k > I be the solution of (2.2), (2.3). Assume

further that g is such that

u = u1 + u 2

uE E H kI(a), u 2 EH (k2(), k 2 > 3/2

and that Q is a Lipschitz domain if ki 4 3/2. Let up be the finite element

solution based on the p-version defined in Section 2. Then

(4.14) lu-u II 1 Cp- (k-1)1luI k k = min(k1 ,k2).PH (a) H.

The constant C is independent of p and u. It depends on the factorization

of a into elements Qi"

Proof. If g 0, then (4.14) follows immediately from Theorem 4.2 because

1lu-u I 4 CIlu-z IIPH(n2) P H' a

If g # 0 then denote by Up the exact solution of the problem (2.2), (2.3)

when replacing g by gp. Denoting w = u - Up, function w obviously

satisfies

-AW + W = 0

-- = 0 on rN
an
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W g- gP on rD.

Using Lemma 3.2 and the same argument as in Theorem 4.1, i.e. the extension by

the function in (4.4) we conclude that there is a function w E H1(2) such

that

w I Cp (k-1)Iu

H (fl)

and

W- = g - gp on rD.

Hence

(4.15) N 1  cp(k - I )iUNk,
H Q) H( ) '

because w minimizes 1- among all functions with trace g - gp on

rD. By Theorem 4.2 and a basic property of the Finite Element Method, we have

Ilu -U fl Cllz -U HlI P PHlI

11C( 1 Ulz 1 + lu-U I (

zH P PH (a)

4Cp- (k-1)lluII k

and Theorem 4.3 is proven.
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5. THE CONVERGENCE RATE OF THE p-VERSION: THE CASE OF THE SINGULAR SOLUTION

In Section 4 we analyzed the rate of convergence of the p-version under

the assumption that u 3  0 in (2.4). In this section we will consider in

detail the case when u = u .
3.

5.1. An approximation result

, Let Q = (-1,1) x (-1,1) as in Section 3. Denote 3 = xi + 1, i =

1,2 and let for K > 1, 0 < P < 1,

1K = {x E Q IL 1 < 2 
< )I )

K p 2 2 2

SP = S n ixI 52 + R2 < 2}

Q0  = {x 0 < < 1, 0 < e2 < i}

Q0 =  {x [ 1 < I 2 ' 05<e < 1/2 }

SIcP = SP n Q
0 IC 0

R S n Q0

ric SI K 0

Let IC0 > I > 1. Fig. 5.1 shows the domains under consideration.

28
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R 0

2. 01_ ~RK

2+ 2 2 2
KX2 X 1

K 0 X2 X I

Fig. 5. 1

Let (r,0) be the polar coordinates with origin (-,4; r2 2 2

e=arctan(-).

Let

Obviously (P () is an analytic function in G, and is a polvnomial which

vanishes on the lines 11 = E and 5Z t2-

29



Let, for a > 0, y > 0

(5.2) u(E, 2) ralog rIy x(r)0(9)

where 0(0), x(r) are sufficiently smooth functions (e.g. C0 functions) and

X(r) I 1 for 0 1 r 4
3

x(r) = 0 for 2P - r, 0 < p < I
is a function defined on Q. We shall assume that u vanishes on the lines

I
31 . I2 and 3f I and has support in R Then

(5.3) u O ,Eu 1  2) a- r Ilog rjyX(r)(O)
0 2(3E1 OR 2 )

where *(0) is once more smooth (e.g. C0 function).

Now we can write

a,

(5.4) u(Zl9R 2 ) - &(ZI'=2)u0( I ' 2)"

The main result of this section is

THEOREM 5.1. Let u be given by (5.2). Then there exists z E Pp+2 (Q) such

that zp 0 on the lines I = IC3 and Z 3z and for K > I,
1 2 1 PC 2' 0

2aa

(5.5) Ilu-z H' 4 Cilog p!p-2
p HI ( )

0

where C is a constant independent of p.

We will need a series of lemmas to prove Theorem 5.t.

Let w(r), 0 C r < - be a C ® function satisfying

30
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w(r) - 0 for 0 < r 4 1

w(r) - I for 2 4 r < m.

Further, for any A > 0 let

A r
(5.6) w (r) - w(-)

and

(5. 7 a) v W Au0

(5.7b) w = (l-.WA)u 0 .

Then obviously

(5.8) u0  = v + w.

It can be readily seen that

v = 0 for 0 r A

w = 0 for r ; 2A.

LEMMA 5.1. Let k - k i + k 2 where 0 4 k1 , k 2 4 k are integers. Then there

exists a constant C(k) such that for x = (xl,x 2,) R<0

a kv y a- ok
k k C(k)llog AlY(1+x ) - on R

(5.9) 3X 1 2

=0 on S .

Proof. We have

I-I- ' I C[Ir -31log rIYx(r)4(O)2A(r)j + ir Irlog r I-!×(r)W()2 r

31
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+ r-2l1og rlyX'(r)(G)w (r) + Ira-2 1 og rjyx(r)*(G)w(r)

Note that the third term on the right hand side is 0 except for

we have
r 4 2 and the fourth term is zero for r >2A. Hence for A <( ehv

33

'ar = 0 for 0 < r 4 A

C llog A,,r - 3  for A r 2A 2I.

4 Cllog Aly max(ra-2 r-3 f 2,GloAmxr ,r )for r 2A, .2. z -

-3~ 3 0 .

< Cliog Alyr- 3  for r > 2A, r R , 2

Hence

- I < C jlog Aj'r 

-.

ar

for all r.

This process can be repeated to obtain

(5.10) 12Lv 1 4 C(k)jlog Al r oi
- 2-k

ar

In S we havePCo0

Dl(l+x i )  r < (l+xi)D 2

ar 3r
- Cos 0, r sin 0 p.

axI  ax2

30 sin G ao cos 0

ax r ax r

and t(0) is smooth. Hence (5.10) gives immediately (5.9).
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In what follows we will assume that v satisfies (5.9) and not the

explicit form (5.3), (5.7a).

Let

(5.11) v(xlx 2) 1 0 0 aijPi(xI)Pj(x 2 )i=0 j-o

1

where Pi(xZ) - Pi(xeSB), B > - - are Jacobi polynomials of index B which

will be determined later. Then

+1 +1 26 2 dd
aij = CiC (i+l)(j+l) f f V(Xix 2 )Pi(x1)P (x 2 )(I-x1) (1-x 2) dX dX2

-1 -1

where Ci, C. are bounded from above and below independently of i, j but

depending on B (see [12], p. 841, formula 7.391.1).

Define

p P
(5.12) vp(xl,x 2 ) = I I aijPi(xl)Pj(x2),

i=o j=0

(5.13a) bi(x 2 ) - aijPj(x 2),
j=0

(5.13b) b!P](x 2 ) aijPj(x2)
j=0

with

+1

(5.14) bi(x 2) Ci(i+1) f v(xl,x 2)(1-xj)SPijx 1)dx1
•

-1

It can be readily seen that

(5.15a) v = bi(x 2 )Pi(xi)
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p
(5.15b) Vp = yb[P] (x2lPi(X.i =0

Let

p
(5.16) ,p(X 1 ,x 2 ) I bi(x 2 )Pi(xI),

i =0

then

(5.17) v- V = (V-Wp) + ( -Vp) = p +
P P P P P p

We now mention a lemma which will be needed.

LEMMA 5.2 [Bernstein]. Let 8 > - , then

(5.18) IP.(x,B,8)I -
1/2

For the proof, see [10], p. 299.

LEMMA 5.3. Let a - m + T- - < 0. Then2 4

dMb. (x2) -m+ B 5

(5.19) i 2 1  C(i+l 12 Iog AjY(I+x 2 ) - 0
dx2

where C is independent of i, x2  but depends on a, 8, Y, m.

Proof. Using (5.14) and (5.18) we get for i > I

drab (x 2 ) +1 2.m

dmbi (x2 +Id mv 2 8
dCi(i+I) f d (-x) P (xl)dxjI

dx2  -1 d

+1 m +1

(1+1) f ml (1-x) (I-x dx
-1 dx2
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dm
d has support in R and is zero for x, lying outside the interval

dx2

ll(x 2 ) = [-1 + -L (l+x 2 ), -1 + K0 (l+x 2 )]"
K0

Using Lemma 5.1 we get

d'i(x2) 1/2 A( a-2-m+ -

4 m C(i+J2 f Ilog AlI+x) 2 4 dx

dxm I (x 2 )

i a-2- B I +

4 Ci/ 2 Ilog A I(1+x 2 )

provided that a - m + - < 0 which is (5.19) for i > 1. The case i = 0
2 4

is verified separately (using the fact that a > - 1/2).

LEMMA 5.4. Let a - m + - < 0 . Then
2 4

#d"'b.(x ) flgAy -+ - -i

(5.20) i 2 L C (1+x 2) 2 4.

dxm 1/2
2 (i+1)

Proof. We have (see [12], p. 1039, Formula 8.964)

(5.21) (-x 2 )Pi(x) - 2x 1(+)P(x + i(i+26+I)P (x 1 ) 0.

Multiplying (5.21) by (l-x)2)B we get

(5.22) -i(i+2B+1)(1-x 2) xP ) d I )
'2 1+ P ' (x )

Hence, differentiating (5.14) m times, using (5.22) and integrating by parts we

get

d mb. (x2 +1 m +tB
(5.3x I a v d

x52 3 2 +1 m P'(x l))d

dx I a (26+1+i) 1 m dx ((X7) P 1))dx

2 2
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+I 1 am+l 2+

11 2

As in the proof of the previous lemma, the integrand is zero outside of II(x 2 ).

Further,

(5.24) (1(-x 2)1 6T
I ax Iax 2

1 2+(2 M i 2
II-x 2 v +v

I axx 2  
ax1 ax2

4 C(m) ( l+x I) a-m+B-31 log Aly

2
where we used Lemma 5.1 and the fact that (1-x 4 2(1+x on I Hencei )  ~ I (~ I  n1(x2). ec

by Lemma 5.2, (5.23), (5.24) we get

a 6 13
dmbi(x2) log A4-

(5.25) I 2 d x 3/2 (1+xl) dxl

dx2 (i+1) 1 (x 2 )

Cilog Ai (1+x 2 4(i13/2 (x2)

a 9
provided that a m + < 0. Combining (5.19) and (5.25),

2 4

dmb(x2) -m+- (+x)-

(5.26) m ' Cjlog AI(+x '4 min{(1+1) 2 2
I AI + 2) 3/2'

dx2  (i+1)

Using the logarithmic inequality

min{a,b} al/2 1 / 2

yields (5.20).
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%,- Let us analyze now p p v given in (5.17). We haveLet us anlyz n w p = p Vp

0p(XlX 2  [bi(xm)-b [P] (x2)]Pi(x )

i=0

P = [bi(x[)-b Pl (x )]P-(x

ax1 i

Because

P-(xaa) (2a+i+1)Pi I(x,6+1,8+1)

(see [121, p. 895 formula 8.961.4), we obtain for 0 < m 4 p + 1

+1 +1 ap 2 2+1 5

(5.27) A, = f (f ( P (XlX2 ) (2 -x J dxl)(l-x2 dx 2(5.27 A- - i x2 d

+1 
2 2

C fi(b(x 2)-bi(x )) (x 2 dx2- i=2 1

- +1 C 2 6

' C i ( P a i P.(x 2) ?  (I-x
2  dx 2

i=1 -1 p+I

2 2

i=1 j=p+l p 2i=l j=p+l

p +1 dab (x) 2 S m

-C i .) (f-x2 dx,.

p i=1 -1 dx2

Using (5.14) we see that the support of bi(x×)  lies in I- = [-i+A sin > ,Q]

where tan 0 = -- Hence from (5.27) and (5.20) for a - m + - - -<
0
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0 drab 2 2 +m

(5.28) A 4 0- 2 2

p i-1 -1+A sin 0 dx

0 2(a-m+ - -)++mcl°2m 1 [i f 1i(+x2) d2
p i=l -I+A sin 0

, l ol g  6,I2Y 2a-m+2 -5
p

4c 2m-1
P

5

provided that 2a - m + 28 - 2 < 0. Analogously, using (5.19) for

i-m+i--<0 and 0 m p+ 1,
2 4

+1 +1 2 28 2
(5.29) A2  - f (f (p) (1-x 2 dxl)(!-x 2 ) dx2-1 -1

+1 - 2 2a

-1 i =

C 1 (x2)ix 2 2

Sm ( (1x2) d6+Mx
p i=1 1+-A sin e0 dx2

_ 0 2(8-m+ 5

f i1log Al 2 ( I -x2 ) (l+x 2 ) dx 2
p i 1 -I+A sin 0

3
C log A2 2a-m+2B- -

2m-1 log A2
p

3
provided that 2a - i + 2B - < 0.

2

Similarly we estimate the term a in (5.17) with 0 - m 4 p + 1

Op(X1 ,X 2) = bi(x 2 )Pi(x 2 )
i=p+l
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+1 +1 aa 2 2+1

- -1 1

9+1 CO 2 264'. 4 C f I ib (x 2))(i-x 2) dx 2

S-1 ip+l

+1 b2 (x2 (i+m)!

C f I _____2_____ 2 dx2
1(-)C f (i-m)'i (-2

2(m-1 1 i-p+1

1 +1 +1 im 2 6 4-m
2(f a ) 1-X dx )(-x2) dx2.

p 2( -I -I ax m 12

Since the support of v lies in R - S we can use Lemma 5.1 and obtain

with I -I + I_- (+x2), -1 + 'c0(1+x2 )I
0

C log A,2y  0 2(a-2-m) 26+m  2B
(5.31) B C __g___ f (1+x) (-x 1 ) (1-x2 ) dx dx2

p2(m-1) -1+A sine 0 I1

(-log f (1+x2 ) 22-m+28-3dx

p -1I+A sin 0

C _log Aj2y a2a-m+28-22(m-1 )

p

provided that 2a - m + 2p - 2 < 0.

Similarly for 0 4 m( p +

+15+1 Bp2 2 2

(5.32) B2  - f f (a) (I-X ) (I-x2) dxIdx,
-1 -1
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+1 +1 (aMv 2 2 S+ 2 B
2-1mf f 2 x ,  2

p -1 -1 1

IlC &27 A2,-,+2B-2

p

provided that 2a - m + 2B - 2 < 0.

We will summarize (5.29) - (5.32).

LEMMA 5.5. Let p and a p be defined in (5.17). Then for 0 < m ( p + 1

and k - 0,1

+1 +1 akp 2 2+k 28
(5.33) f fI (-- (i-x) ( 2) dxdx2

y 2 -- -

4 C iog Al A~ c---8 2 k2m-1
p

provided that a- m + --- <0 and 2a3-m+2 -k<0f- - n 2 2- -k<0

+ +1 ak 2 2 8k $k

(5.34)f If ax) (i-xl) (1-x2) dX1dX2

C log m
2 . A2 a-m+2 6- 2

2(m-k)
p

provided that 2a - m + 2S - 2 < 0. The constant C is independent of A,

p but depends on a, 8, y, m.

Let

R = R n 2A

where
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2AQO {x 1 > -1+ 2A, x 2 >-1 +2A}.

Further, for f(xlX 2), x1 ,x2 E Q and A <(- we define

(5.35) f (x x )=f(x -2A x -2A), (x1 ,x) E 2
A 12 1 '22 0

and f&(xllx2) - 0 on Q Q 2

LEMMA 5.6. Let &(xl,x 2) be given by (5.1) and 0 < A <(L Then on R A
4~ K 0

(5.36) k(Xlx) c~-2 -2

A 21 X2

*(5.37) a(P C~-2

Proof. For (xlx 2) E RIC

I x2 +1

K0 1O

and for (xl ,x 2 ) E R

2A 1 + xi.

Hence

(4.38) k&A(x 1x 2i

I(i+x 1-2A-(+X 2-2A))(c(1+x -2A) -(1+x 2-2A)fl

1 (1+x I) - 'c(1+x 2) + 2A(C-1)11I'(l+x I) - (1+x2) + AI-)

'(IK O(1+x2 )I + I(1+X 2 )1 + I(K-1)C (+x2)K j
*1~~ *I~41



x (Ii(1+x1)1 + I o(1+xl)l + I(K-1)(1+x1 )IJ

4 (1+x2 )(l+xI )(C 0+c+(-) 0 )(<+K04IC-1).

Because on RKo

(+x 2) ( C(1-x 
2)

2 2

(1+xI) ( C(1-x )

1 1

(5.38) yields immediately (5.36). (5.37) can be proven in an analogous way.

LEMMA 5.7. Let v satisfy (5.9) and vp be given by (5.12). Then for A =

-2

•C11og pI~p-2 =(5.39) OE A (V-V p) nH 1(R A) ~o -2

K 0

where C is independent of p.

Proof. As in (5.17) v - Vp =ff p + p p Let us estimate first

I 1A PIHI(RA )  To this end we estimate Ap 11 AL(RA a1- p1 I L(RA ) and

H RK 0 2 1 2( IC)

apa
A xI  A The estimates of the terms involving follow from the

a x1 L (R A)a 2
2 KC0

symmetry of x, and x2.

Using (5.36) we get

Dp 2 2 p 2
(5.40) D1 = A 2(A ) dx dx

A IL 2(R' R Aax1 12
0 K0

A2 2 3x 1ao2

K 0
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Because on R
K0

0 < C 22A

using Lemma 5.6 we get for 8 > 2

+1 +1 (1-xl) (1-x2) (ap)2

C f 81 8 2  (-) dX dx
I -11 A

2a-m+2B- 2-28+3

C Ilog Al
2y 2

2m-1
p

C Ilog Al 2y A 2 - ( m- 1/ 2 )

2(m- /2 )

8 55

provided that n - m + -- < 0 and 2a - m + 28 - - < 0.
2 4 2

Choosing m large enough and A - p 2  we get

(5.41) DI  Clog pI 2 p 4 a .

Similarly

D2
= -x PpqL 2 (R '

Cff(1-x 2 ( p)2 dX dX2

R A
0

22 2  x

+1 +1 (-x (1-x2 2

C f f 8-2 2 2 dxldx 2

-1 -1 AA
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3log a 2 2a-m+28- - -28+2
2m-2

p

Clog 2a-m+ 1/2

p2(m- 1/2)

8 5

provided that a - m + - < 0 and 2a - m + 25 < 0. Hence for m
2 42

large enough

(5.42) D 2  4 Cliog p,2yp-4a.

Also

+1 +1 (1-x1) (1-x 2
( D f f 1 2 ) 2dx dx

( 5 .43)ID3(R ) -1 -1 A2 B p 1 2

I0

SclIlog p,2yp - 4 t- 4.

Combining (5.41), (5.42), (5.43) we get

(5.44) IIAp I(R A < lo l, 2

The estimate for I& Plan can be obtained quite analogously.

0

Let now a > 1 not be an integer and k - [a] be the largest integer

less than a. For 0 4 T 4 k, T integer, let v I T] denote the th

derivative of v (see 5.7a) along the direction A where ; is the unit

vector along the line - xj. Then we see that v satisfies Lemma 5.1

with a replaced by a - T > 0. Hence using Lemma 5.7 we get
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(5 45)[TI , A , [T,[ ] , I c log pl-y, -2(CL-T) "
(54)•&~ p H1 (RA) C

IC
0

Let wA be defined by (5.6) and wA be its translation given by (5.35).

Then (see 5.8)

(5.46) uA uAA (-W

= vA + w A .

Because uE H H( ), then u E H I(R) and hence

0A IIAA

AwA u (1"WEH ).A 0

LEMA 5.8. Let A P - = 2V2 A. Then for k [a], a > 0 noninteger

k -iA2a
(5.47) It&A(VA - (-1) )i A Clog pip-1=0 TV (R )

(5.48) NAwA I 1 A cil g PI2a
H (R )

C0

where C does not depend on p, A.

Proof. By Taylor's theorem, for any (xlx 2 ) E RA and s = 0,1, we get
0

using Lemma 5.1

s2 k (-I) i z i vi]

ax1S(V i 07! )xlx)

4 C Ak1 I ak+1 sv (x -ex2- E))

45Qi~k]



CAk+1 (1+x a-3-s-k log Aly

where 0 < 101 < 2A. Hence using Lemma 5.6 we get for A p-2

1-s a s k 7 2
x 1 i-0io,

C f (-x) (1-x2) 2sa2(k+1) log A, 2 y(+X l2a-6-2s-2k

RA

K 0

2(~~io 1f 2(a-k-2)+l
4CA(kllo A (l+x) dx 1

Cliog Aj 2 y 2 (k+l) 2 (a - k - l)

4 CI log P, 2yp-4cL.

In the above inequality we used the obvious fact that a - k - 1 < 0. The

other terms in (5.47) can be bounded analogously and the first part of Lemma

5.8 is proven.

Let us now prove (5.48). It is easy to see that

A AWn I A H wq 1H R ) H (T)
K 0

where T = {(r,G)J, 0 < r < 2A, 0 < 0 < j}. Using (5.1) we have

(5.49) 
4(r,0)I Cr 2

(5.50) 121 (rO)I 4 Cr.
ar
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Further, by (5.3)

Iw(r,e)I 4 1u0(r,E) 4 Cjlog rj'r -2  for r < 2A

(5.51)

= 0 for r > 2A

,wr,O),i 4 C~log rIYra - 3  for r < 26
ar

(5.52)
0 for r > 2A.

Hence, since a > 0 for A =p-2:

2 = /2 2A 2 2
1 w,, ; f f 2 ILI r dr dO
ar HI(T) 0 r

262-f 2a-6+4+1d d
<C f Ilog rr drd

0

C o~log 6 12f A2a

< C~log p 2p-4a.

Similarly,

ii wi2 2A 2y 2a-5
ar 2 " C f log rj r - dr

L (T) 0

4C l og P,2,P - 4a -

The other terms in (5.48) can be treated in a similar way. Hence Lemma 5.3 is

completely proven.
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Now we can prove our main result.

Proof of Theorem 5.1

Let SK be the translation of S. obtained by the transformation

,x - i - 2A. Let

k
ZpA CA( I (-i)i ii] k [].

Then z E p+2() and z = 0 on the sides of S We have

k 
i

Hu -Z 11 = -A - I (,)i i' [iA-pA H (RA ) i0 7 r 1 (RA)

K:0  0

A+ u(v 1- A (-1) v i 1 A
H (R) i=O H (R )

0 0

k A i ij,
+! I ,i llg v 1Iii

by (5.45), (5.47) and (5.48)

< Clog p yp -2a.

Translating back to S we get the theorem.

Remark 5.1. We have proven more than Theorem 5.1 claims. It is sufficient to

assume that v and w defined by (5.7 a), (5.7b) satisfy (5.9) and (5.51),

(5.52) respectively.

Remark 5.2. It is easy to see from the proof that the internal angle wi

of Yi and Yi+, could be equal to 2n, i.e. that we may also consider the

slit domain.
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5.2 The rate of convergence

We return now to the problem of approximation of the function u3  in

(2.4).

Let the vertex A i  be at the origin 0. The part of the domain

containing the elements with vertices at 0 is shown in Fig. 5.2.

B 2  B3

aB' M Tm BB

Fig. 5.2

We will assume that the lines OB. have the coordinate 0. and that

OB1 C rD  OBm, c r . Although we assume that we have only triangular

elements, the case when elements are parallelograms does not change the

argument.
m m _ _2

Let = U T., U B i B r. Denote p= {x + x 2 < p)
i= 1 i=2 i i+1 p 1

and assume that P0 C Q, 0 < P0 4 1. Now we prove

THEOREM 5.2. Let u be the function given by (5.2) with P P L and w

sufficiently small. Then there exists zp E H1 (Q) satisfying z EP (Ti),

i - t,...,m, zp = 0 on OB, and r and

(5.53) llu-Z II CIlog pYp- 2a

where C is independent of p.
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Proof.

1. Assume first that 0(0j) 0, j = 1...,m+l. Denote 0j(0) to be

an extension of O(0) onto (0- A, j+I+A) where 12A+ j+I-0I < 7r and

S(0)= 0 on (G -A,E) A) and (9j+ -, j+A)

Oj-A -\ /
joj \\2 2'

___+_ _ __ _ B~+-j+IBj

Fig. 5.3

Let S = {(r,0)IGj-A < E < j+i +} and S = {(r,®)I3. < 0 < ® K

Denote by uj the function given by (5.2) when (0) is replaced by 1 j(3)

and extend uj by zero. Let now T be the linear mapping which maps

onto R K and S onto R . Denote T. T(T.) and assume that

i : K J JQ0J Ic 0.

The mapping T transforms uj into u. on T. Denoting by n theS J ~
U.

linear function which is zero on T(B.Bj+), the function n satisfies
J 1

obviously the conditions mentioned in the Remark 5.1 to Theorem 5.1.
U.

Therefore, j can be approximated by a function z* satisfying (5.53) on
. nlj p
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T and hence z pn. j zp+ s atisfies (5.53) too. Hence (5.53) is proven in

the case that (G 0, =

2. Now we will consider the case when 4 (O. 0 for j #j 0 . Consider

the ~ ~ elmns To, i as shown in Fig. 5.4

BjjO 1

Fig. 5.4

If the angle 10 jo 1--0 jo (1 < , then we can proceed exactly in the

same way as before only replacing n~ by 1 r 2  Hence we have to

consider the case when 0. -o+ 0 ro1 (see Fig. 5.5)

Jo+1  +1o eo

B+10

Fig. 5.5
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In this case we first map Tjo onto TJo by a linear mapping so that OB.-0

is mapped onto itself and the total angle is < w (see Fig. 5.6)

'.4o

Bjo I  0

Fig. 5.6

Extending O(0), 0 < 0 < G. so that 0 +0). 0 we can get the
j0-I JOJ 0+1

desired estimate for this case as before. We approximated on T.Jo of

course, a different function than we wanted. Nevertheless, the difference is

zero at 0. and O0+l , and we can proceed analogously as in part I of the

proof. Hence (5.53) is proven.
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6. THE CONVERGENCE OF THE p-VERSION OF THE FINITE ELEMENT METHOD

In this section we will summarize the results we have proven and further

generalize them.

6.1. The case with triangular and parallelogram elements

We have

THEOREM 6.1. Let 0 be the polygonal domain as introduced in Section 2.

Consider the problem (2.2) (2.3) and assume that the solution can be written

in the form (2.4) (2.5) with k > 3/2 and that Q is Lipschitz for q < 3/2.

Assume that up is the finite element solution as described in Section

2.3 with triangular or parallelogram elements. Then

(6.1) lu-u II Cp-'llog pIVRPH ( 2)

where

(6.2a) = min(q-l, k-1, 2c[ii] ) = min(q-l,k-1,24Jl )

i

v = max y1 l if w = 2az j ]

(6.2b)

= 0 otherwise

(6.2c) R = I 3U1  IIu 2 11 kit + I 1CIH q ) Hk (Q) it , Z

The theorem follows immediately from Theorem 4.3 and 5.2.

Although we have'dealt with the model problem (2.2), (2.3) only, it i.

obvious that the theorem holds for any second order elliptic problem if the

53



solution has the form (2.4), (2.5) or when (2.5) is different but has the same

character concerning the growth of its derivatives.

6.2. The case of curved elements

So far we assumed that the elements are triangular or parallelogram.

The obtained results can be immediately generalized to the case of curvilinear

triangles and quadrilaterals which can be mapped individually on the standard

triangle or square by a mapping which is one-to-one and sufficiently smooth

(in both directions). (In practice this is always achieved.)

We proceed then in the usual manner by approximating the function on

standard squares and triangles.

Theorem 6.1 holds then without changes. The function u3 is of course

defined now on the straight line triangles (squares) and does not have the

explicit form given in (2.5) but possesses the same character.

So far we assumed that all elements are of the same degree. The modifi-

cations in our proofs and results when the degrees are different in different

elements are obvious.
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