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Deterministic Equivalent for a Continuous
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-We consider a finite horizon control model with additive input. There are two convex

functions which describe the running and the terminal costs within the system. The cost ofor

input is proportional to input and can take both positive and negative values. It is shown Rg0

that there exists a deterministic control problem whose optimal cost is the same as the one 0

in the stochastic control problem. The optimal policy in the stochastic problem consists of

keeping the process as close to the optimal deterministic trajectory as possible.
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1. Introduction and Statement of Problem

We consider a stochastic linear system with additive "noise" and additive input which is

under our control. The controlled process is described by a stochastic differential equation

dx(t) = ax(t)dt + adw (t) + dv(t),(1.1)

z(0) = X.

Here z(t) c R1  represents the coordinate of the system, a > 0 and ce are constants, w(t)

is a standard Wiener process on (f,7, t, P) and P(t) is i-adapted process of bounded

variation.

The running cost is described by a function g(z, t) and the terminal cost by the function

G(x). A constant c > 0 represents a unit cost of input. The objective is to find

minEljg(x(t),t)dt + cv(T) + G(x(T))} (1.2)
m i.

where minimum is taken over all Tt-adapted processes v of finite expected variation.

Parallel to the above stochastic problem, we consider a deterministic control problem

dy(t) = cey(t)dt + dU(t)
(1.3)

:

with an objective to find

min( g (y (t), t) dt + c U(T) + G(y (T)). (1.4)
ft.I

It will be shown that there exists an optimal path y*(-) such that, whatever is the initial

state, the optimal policy consists of following this path exerting minimal control necessary

for that.
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In stochastic problem the optimal policy looks similar to the deterministic one. It is

necessary to follow y* (.) as close as possible. The optimal policy, however, in this case does

not exist, because the control which forces a Brownian motion into a deterministic path is

of unbounded variation.

We will also consider deterministic and stochastic problems with bounded control rates.

In these problems U is subject to

U(t) :J u(s)ds with -u(s)I < M. (1.5)

It will be shown that when M - oo the optimal cost in these problems converges to the

optimal cost of the original problem. The optimal control is bang-bang that is u is equal

to either +M or -M.

It is interesting to contrast our results with the discrete-time analog of this problem

treated in Bes and Sethi [1987]. While in both cases, it is possible to obtain equivalent deter-

ministic problems there are certain important differences between them. In the descrete-time

case, the optimal feedback control can be explicitly constructed from the optimal control

of the equivalent deterministic problem and the optimal state trajectory arising from the

feedback control is not deterministic in general. In the continuous-time case, on the other

hand, the optimal state trajectory is deterministic in general and there exists no optimal

policy yielding that trajectory.

The paper is structured as follows. In Section 2 we study the deterministic problems

and find the equation for the optimal path y*(.). We show that the optimal cost of the

bounded control rate problem converges to the optimal cost (1.4). In Section 3 we prove

that the optimal cost (1.2) is equal to that of (1.4) and we construct an c-optimal policy by

keeping the controlled process within a narrow strip around y*(.) and reflecting it at the

boundaries of the strip.
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2. Deterministic model.

We start with a controlled process governed by the following equation

y(t) =----z -+ y(s)ds + U(t), 0 < t < T (2.1)

Here a is a constant and U(t),t < T is a right continuous process of bounded variation.

We denote the set of all such processes by A.

Let G(z) be a nonnegative continuously differentiable strictly convex function such that

G'(z) -+ oo as II- oo. (2.2)

Let g(X,t) be a twice continuously differentiable function of two arguments such that

there exist constants C1 , c2 > 0 such that

cl g O0g(zt) (2.3)-1 z 2  (23

a g (X,t0 C (2.4)
axat

With each UcA we associate a cost funtional

J. (U) = g(y(t),t)dt + G(y(T)) + cU(T) (2.5)

The objective is to find

v(x) = minJ (U) (2.6)

and U* such that

3



VW= = J.(U) (2.7)

Let y(t) be any trajectory given by (2.1). Consider it as a continuous contour Y in a

two dimensional plane R 2 = (y, t) (If y(s) 0 y(s-) then we connect the points (y(s-), s)

and (y(s), s) with a segment). Then, using (2.1) for representing U(t),

M =( y ( g(y, t) - cay)dt + cy , + cx + G(y(T)). (2.8)

Let U, and U2 be two control functional which yield trajectories y, and Y2 such that

yI(T) = Y2 (T). Assume for a moment that y1 (t) >_ y2(t) for all t < T and let S be a

closed region formed by the contours Y, and Y2 . Then, by virtue of (2.8)

J(U) - J.(U2 ) = (g(y,t) - cay)dt + f cdy = Jf ag (yt) - cadtdy. (2.9)
S a

(The last equality in (2.9) is due to Green's formula. Note that f stands for the integral

taken in the countercloclwise direction). Formula (2.9) suggests the equation for the optimal

trajectory.

Denote p(s) to be as a function for which

dg (),) ca. (2.10)

By virtue of (2.3) formula (2.10) uniquely determines P(s) for each s. In view of (2.4)

a __________ 2g( (S), S) < C2 1Cl. (2.11)
Ids' aat/ 4X2

In the remainder of this section we will prove that k(s) determined by (2.10) represents the

optimal trajectory.
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(2.12) Theorem. Let 9(0) be determined by (2.10) and let a be the (unique) solution of

G'(a) = c. (2.13)

Then the optimal control U* is given by the formula

t
U'(t) = 9(t) - X - ag(s)ds + ltT(a 9(t)). (2.14)

The optimal trajectory y* is then

y* = 0(t), if t < T, (2.15)
a, if t =T. (.5

Proof. First notice that the strict convexity of G and (2.2) implies existence and

uniqueness of the solution of (2.13). Also, a simple calculation shows that (2.15) follows

from (2.14).

Note that the policy U* moves the controlled process instantaneously from x to (O),

then follows the trajectory D(.), and at the moment T moves the process instantaneously

to point a.

Consider the contour Y* associated with the trajectory y* (to be specific we assume

Sx < D(0) and a < (T))

Y*= {(y,t) : y = 9(t),O < t < T}U{(y, t) : t = O,x < y <_ 9(0)}
U{(y,t);t = T,a < y < 9(T)}

The contour Y* consists of the graph of the function 9 and two segments one connecting

the initial point x and g(0), the second connecting a and (T).

Let U be any other control and y be the corresponding trajectory. Suppose y(T) 5 a.

Consider
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UI(t) = U(t) + 1t=T(a - y(T))

Then

J.(U) - J.(Ui) = G(y(T)) - G(a) - c(y(T) - a) (2.16)

In view of (2.13) and stric convexity of G, the right hand side of (2.16) is strictly positive.

Therefore we may consider only those controls U and the corresponding trajectories y for

which

y(T) = a. (2.17)

Let Y be the contour associated with y. This contour consists of the graph of the func-

tion y(-) and the vertical segments counnecting the discontinuities of this graph (including

the segment connection x with y(O)). Using (2.8), we can write

JM(U) - J(U*) = [(g(y,t) - cay)dt + cdyl

-y f.(g (yt) - ccry) dt + cdy] (.8

f ( (, t -ccry) dt - ((yt)- cay) dtYfy t)
The last equality in (2.18) is due to the fact that fjy cdy = fy. cdy = c(a - x).

Assume that there exist k > 1 and 0 = to < t 2 < ... < tk = T such that y(ti-) <

y*(ti) < y(t 1 ) and y*(s) - y(s) does not change sign on (t-.,ti),i = 1,2,...,k. The

latter means that contours Y and Y* have intersection at the points (y* (ti), ti) and on any

interval (ti-_1, ti) the graph of the function y(.) does not intersect the graph of the function

y(.) so it is located above (or below) the graph of y(.). (The case in which k is infinite

is considered similarly.)

6
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Let the set of integers I, (the set 12) be the set of all i for which y(s) > y* (s) (y(s) <

y* (s)) for s c (ti- 1,ti). Let aSi be a closed loop formed by Y* n (R x lt_1,ti]) and the

part of Y n(R x [ti_,I,ti]) which lies above (below) of Y*n(R x [ti_.1, ti]) if i c I, (if i c 12).

Note that if y(ti-l-) = y(ti-1) and y(t,-) = y(ti) then aS, = (Y u Y*) n (R x [ti_ ,ti])

Let Si be the set enclosed by aSi.

Using (2.18), we can write

.(U) - J.(v') = - f (g(y,t) - cay)dt
id'i S.

(2.19)

+ i (g (y,t) -cay)dt

Using Green's formula we transform (2.19) into

ag(,t)- a ( x Cadydt. (2.20)

In view of (2.3) is an increasing function of x, hence 9 > ca for all y > (t). Since

y _ (t) for every (y,t) c Si such that i6l and 0 < t < T, we get nonnegativity of every

integrand in the first sum in (2.20). Likewise every integrand in the second sum in (2.20) is

nonpositive. The later implies

JM(U) - JX(U*) > 0,

which proves the theorem.

(2.21) Corollary. The optimal cost v(x) is given by the formula

v(x) = ca- x) + C(a) + T g ( (t), t)dt - caD(t)dt

Let AM be the set of all U LA subject to (1.5). Denote

* 7



VM(x) = sup J.(U)

UCAM

It is obvious that vm(x) is an increasing function of M and vM(x) < v(x).

Let

M= min{t x + Mt = q(t)}, if x <(0),

max{t a+(T-t)M=(t)}, ifa <(T),

7 =max{t a- (T - t)M = q(t)}, if a> q(T).

Let N be such that for each M > N

71 <T72M

Let N1 = amax(19(t)1,0 < t < T) + cI/c 2 , where Cl,C 2 are given by (2.3), (2.4). For

any M>NIVN put

M sign (9(O)-x), if t <r-A,

Um~t) d - ax, if r' < t < r2

M sign (a- (T), ifr2€ <t < T.

By virtue of (2.11)

Um (S) = u(s)ds Am

It is easy to see that rm -*0 and r -- T as M -- oo. Hence

9- 8



ILI"

J.(UM) =c(a - x) + G(a) + f ( t),t)dt

rT
+ ± g(z Mt,t)dt + g(a M(T - t),t)dt

- ccr.(t)dt -- v(z).

The latter shows

vM( x )  v(z) as M oo.

3. Stochastic case.

Let V stand for the set of all Yt-adapted processes v with

E{Ivl(T)} < oo (3.1)

where IvI stand for the variation of the process v(-). For each v E V we define the process

x(.) satisfying the following equation

X(t) = x + ax(s)ds + Cw(t) + v(t), (3.2)

where a > 0, a is the same as in section 2 and w(t) is a standard Wiener process adapted

to Y". With each v ( V is associated the following cost

TJ,() E jg(x(t),t)dt + G(x(T)) + cil(T)} (3.3)

Similarly, we define

F(x) =inf J-,(V). (3.4)

Let VM stand for all v i V such that

9



,( (s =s, q), s)1 _ M for a 0 a T, (3.5)

and

FM(x) = inf J(v). (3.6)

(3.7) Theorem. For every x

F(z) >v() (3.8)
FmJx )  vM~x )  (3.9)

Proof. For vc V put

U,(t) E{L'(t)} (3.10)

By virtue of (3.1) the right hand side of (3.10) is finite. Also if 0 = to < t < ... < tk = T,

then

k k

Z u.,(t1) - U.(t1 -j)j = j IE{v(t,)- (ti_,)}l
S.i=l i~l

k k

< Z]E{z/(t1 ) - i'(t1.i)I} 5 IE 10'(t 1) - lL'(t 3i)} = E{jvl(T)}.
i=1 ~

This shows that IUI(T) is finite. Let x(t) be given by (3.2). Let y,(t) satisfies (2.7)

with U = U,. It is obvious that yL, (t) = E{x(t)}. By Jensen's inequality E{g(x(t),t)} >

g(y , (t),t) and E{G(z(T)} > G(y , (T)), therefore

J (V,) = 10 E{g(z(t),t)}dt + E{G(x(T)} + E{orw(T)}

+cE{v(T)} (3.11)

> g(y , (t), t)dt + G(y,(T)) + cU , (T)

10
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Inequality (3.11) implies (3.8). The proof of (3.9) is similar.

Let j(t) be the function defined by (2.10) and let a be given by (2.13). Without loss

of generality we can assume z < 0(0) and a < y(T). Fix c > 0. Let y1 (t) and y2 (t) be

three times continuously differentiable functions such that

<(- Y1 <5 Y2t _< t _(t) <5 C(t ) + C, if c < t < T - c, (3.12)

y(O) =a - , Y2(0) = a + c, (3.13)

y,, 2 (t) = Y1,2 (0) + t(y, 2 (C) - y1,2(O)) if , 0 < t < C, (3.14)

yI(T) = a -e, y2 (T)=a+c, (3.15)

y1, 2 (t) = y,, 2 (T - c) + (T - t)(yI. 2 (T) - yj, 2 (T - c)), if T - c < t < T. (3.16)

The graphs of y, (t) and y2 (t) form a "tube" of the width not exceeding 2e. This tube

encloses the initial point x, the endpoint a, and on the interval (c, T - E) it contains the

graph of (t). Construction of such functions y,(-) and Y2(') is rather elementary and we

omit it.

Let k,(t)cV be a functional such that

x,(t) = x + j a z,(s)ds + aw(t) + k,(t),0 < t < T, (3.17)

y( I x,( Xt) ! Y2(t) for all 0 < t < T, (3.18)/t t
k,(t) = o1,()(x,(s))djkI(s) - 1,(.)(x.(s))djk I(s) (3.19)

The functional k,(.) is the so called solution of the Skorokhod problem for the Brownian

motion with drift ax and diffusion a. Its effect results in reflection of the Brownian motion

from the time dependent boundaries yi(.) and Y2(-). The existence of such a functional

follows easily from Lions and Sznitman [1984].

(3.20) Theorem. As E - 0
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J=Ck) -*v~x ) .  (3.21)

-. Proof. Let D max(al, jzI,sup{lo(s)1,o < s < T}) + 1 and let

N N= max jg(y,t)1,
1 <D"." O_<t<T

6 = max 1g(zI,t) - 9(X2,t),
.is , I X2 <D,I i -a 215&

O<t<T

b, = max IG() - G(a)l.
tv-al :

Then

J. (ks) = E g(zs(s),s)ds} + E{G(x,(T))} + cE{k(T)} 11 + 12 + 13.

Consider

I,- g ( (s),s)dsl_ IE g(z,(s),s)ds

+ g((s),s)dsj + IEJ g(x(s),s)dsI + J g((P(s),s)dsI (3.22)

+E{j jg(x. (s), s) ds - g ( (s), s) Ids}

In view of (3.12)-(3.16) and (3.18), Ix,(s)l_ D if c < 1. Therefore, each of the four terms

in the right hand side of (3.22) does not exceed Ne. Applying (3.18) to the integrand in

the last term of (3.22), we see that it does not exceed b. Therefore, (3.22) does not exceed

4Nc + Tb. Since b --i 0 as E -- 0, the right hand side of (3.22) converges to 0.

By virtue of (3.15) and (3.18), Iz,(T) - al <c . Thus,

112 - C(a)I < b, - o as c -oo. (3.23)

12
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Formula (3.17) shows

E{k,(T)} = E{x,(T)}[ - x - E 1 x~~s1(3.24)

Formula (3.15) and (3.18) show that the first term in the right hand side of (3.24)

converges to a. Likewise, using (3.12)-(3.16) and (3.18), one can show that the last term in

the right hand side of (3.24) converges to fo ag(s)ds. Therefore (3.24) converges to U*(T).

This fact along with (3.23) and the convergence of (3.22) to zero proves (3.21).

(3.25) Corollary. F(x) = v(x).

The proof follows from Theorem (3.7) and Theorem (3.20).

Let yi(t) and y2 (t) satisfy (3.12)-(3.16). Consider the process x,.M(s) defined by the

following stochastic differential equation

dx,,M(t) =ax,,M(t)dt + MI1,,,M(t)<yl(t)dt

-M1l,.,(t)>Y2 (t)dt + cdw(t),

Zsrm (0) = X

Let

7 ~(s) = M, if X,,M(S) < wIs),

-M, if X,,M(S) > Y2 (S).

and V,,M(t) = fo l,,M(,s)ds. It is obvious that v,,m c VM and X,,M is the solution of (3.2)

with v = v,,M. Simple calculations show that
-.

".. J.(v,.m) - J.(k,) as M -o co.

This implies

13
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5,'m F(x) --+ v (x) as M -- + oo

(3.26) Remark. Although we have identified trajectory y* (-) which is optimal for both

deterministic and stochastic cases, there is no optimal policy in the latter case. Any func-

tional which keeps Brownian motion "stuck" to a deterministic trajectory has a.s. infinite

variation on any finite interval.

14
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