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, Deterministic Equivalent for a Continuous

Linear-convex Stochastic Control Problem
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N ABSTRACT

: N

)

3 I

N -We consider a finite horizon control model with additive input. There are two convex
@ functions which describe the running and the terminal costs within the system. The cost ofor
- input is proportional to input and can take both positive and negative values. It is shown

00F

that there exists a deterministic control problem whose optimal cost is the same as the one

in the stochastic control problem. The optimal policy in the stochastic problem consists of

keeping the process as close to the optimal deterministic trajectory as possible.
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P 1. Introduction and Statement of Problem

f‘

K We consider a stochastic linear system with additive "noise” and additive input which is
$ under our control. The controlled process is described by a stochastic differential equation
0
- dz(t) = az(t)dt + odw(t) + dv(t),

: (1.1)
e z(0) = z.

S

. Here z(t) ¢ R! represents the coordinate of the system, 0 > 0 and « are constants, w(t)
% is a standard Wiener process on (0, ¥, %, P) and v(t) is #-adapted process of bounded
T4

% variation.

W The running cost is described by a function g(z,t) and the terminal cost by the function
o G(z). A constant ¢ > O represents a unit cost of input. The objective is to find

3 r

-~ min E{/ g(z(t),t)dt + cv(T) + G(z(T))} (1.2)

0

A

N
- where minimum is taken over all ¥,-adapted processes v of finite expected variation.
VB

"~

Parallel to the above stochastic problem, we consider a deterministic control problem

%
b dy(t) = ay(t)dt + dU(t)

.; (1.3)

y(0) = =.

i with an objective to find

"i
) : T

* min( [ 9(u(0) 0t + eU(T) + G(u(T)) (1.4
. 0

>

>

o

It will be shown that there exists an optimal path y*(-) such that, whatever is the initial
state, the optimal policy consists of following this path exerting minimal control necessary

for that.

PRI R
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In stochastic problem the optimal policy looks similar to the deterministic one. It is r
necessary to follow y*(-) as close as possible. The optimal policy, however, in this case does
not exist, because the control which forces a Brownian motion into a deterministic path is

of unbounded variation.

We will also consider deterministic and stochastic problems with bounded control rates.

In these problems U is subject to

Ut) = /otu(s)ds with [u(s)] < M. (1.5)

It will be shown that when M — oo the optimal cost in these problems converges to the
optimal cost of the original problem. The optimal control is bang-bang that is u is equal

to either +M or — M.

9 It is interesting to contrast our results with the discrete-time analog of this problem
treated in Bes and Sethi [1987]. While in both cases, it is possible to obtain equivalent deter-
ministic problems there are certain important differences between them. In the descrete-time
case, the optimal feedback control can be explicitly constructed from the optimal control

of the equivalent deterministic problem and the optimal state trajectory arising from the

PP T WV R U

feedback control is not deterministic in general. In the continuous-time case, on the other

hand, the optimal state trajectory is deterministic in general and there exists no optimal

policy yielding that trajectory.

The paper is structured as follows. In Section 2 we study the deterministic problems
and find the equation for the optimal path y*(-). We show that the optimal cost of the
bounded control rate problem converges to the optimal cost (1.4). In Section 3 we prove
that the optimal cost (1.2) is equal to that of (1.4) and we construct an e-optimal policy by

keeping the controlled process within a narrow strip around y*(-) and reflecting it at the

boundaries of the strip.
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2. Deterministic model.

We start with a controlled process governed by the following equation

y(it)=z+ /: ay(s)ds+U(t), O0<Lt<T (2.1)

Here « is a constant and U(t),t < T is a right continuous process of bounded variation.

We denote the set of all such processes by A.

Let G(z) be a nonnegative continuously differentiable strictly convex function such that

G.(z) = 00 as |z| — oo. (2.2)

Let g(z,t) be a twice continuously differentiable function of two arguments such that

there exist constants ¢;,c2 > 0 such that

9%g(z,t)
< =7 2.3
l f— axz ] ( )
d%g(z,1)
W < ey (2.4)
With each UeA we associate a cost funtional
T
L(U) = / o(y(t), )t + G(y(T)) + cU(T) (2.5)
0
The objective is to find
v(z) = mmJ () (2.6)

and U* such that

.y '{‘. };’,"f' “\l‘i 1"-, oy -,- ', l, /\,- \ .' ~ ... . -‘-_r’. o .‘f. xf f , d'..w'\.-\." "o “-\-.' ,:_.1._'.'-'.- .
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v(z) = J(U*) (2.7)

Let y(t) be any trajectory given by (2.1). Consider it as a continuous contour Y in a
two dimensional plane R2? = (y,t) (If y(s) # y(s—) then we connect the points (y(s—),s)
and (y(s),s) with a segment). Then, using (2.1) for representing U(t),

J(U) = /Y(g(y,t) — cay)dt + cL dy + cz + G(y(T)). (2.8)

Let U; and U, be two control functional which yield trajectories y, and y, such that
y1(T) = y2(T). Assume for a moment that y,(t) > y2(t) for all t < T and let S be a
closed region formed by the contours Y; and Y. Then, by virtue of (2.8)

Jo(Uy) = Jo(Us) = ]( (9(y,t) — cay)dt + f cdy = / / %wt) _ patay.  (29)

(The last equality in (2.9) is due to Green's formula. Note that § stands for the integral
taken in the countercloclwise direction). Formula (2.9) suggests the equation for the optimal

trajectory.

Denote §(s) to be as a function for which

22 (4(s), ) = ca (2.10)

By virtue of (2.3) formula (2.10) uniquely determines §(s) for each s. In view of (2.4)

|d17(8)| _ |329(y(8),8)/629(9(3),8)‘

ds 9zt a2 | Sl (2.11)

In the remainder of this section we will prove that §j(s) determined by (2.10) represents the

optimal trajectory.
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(2.12) Theorem. Let §(0) be determined by (2.10) and let a be the (unique) solution of

G'(a) =c. (2.13)

Then the optimal control U* is given by the formula

Us(t) =4(t) —z - /0: af(s)ds + 1,=7(a — §(t)). (2.14)

The optimal trajectory y* is then

v (1) = {g(t), ift <T, (2.15)

a, ift="T.

Proof. First notice that the strict convexity of G and (2.2) implies existence and

uniqueness of the solution of (2.13). Also, a simple calculation shows that (2.15) follows

from (2.14).

Note that the policy U* moves the controlled process instantaneously from z to §(0),
y

then follows the trajectory j(-), and at the moment T moves the process instantaneously

to point a.

Consider the contour Y* associated with the trajectory y* (to be specific we assume
z < 9(0) and a < §(T))

'

Y*={(y,t) :y=9(t),0<t <T}U{(y,t) : t =0,z < y < §(0)}

U{(y,tlit=T,a <y < §(T)}

The contour Y* consists of the graph of the function § and two segments one connecting

the initial point z and §(0), the second connecting a and §(T).

Let U be any other control and y be the corresponding trajectory. Suppose y(T) # a.

Consider
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Ul(t) = U(t) + 11=T(a' - y(T))

Then

Jz(U) = Je(U1) = G(y(T)) - G(e) - ¢(y(T) — a) (2.16)

In view of (2.13) and stric convexity of G, the right hand side of (2.16) is strictly positive.

Therefore we may consider only those controls U and the corresponding trajectories y for

which

y(T) = a. (2.17)

Let Y be the contour associated with y. This contour consists of the graph of the func-
tion y(-) and the vertical segments counnecting the discontinuities of this graph (including

the segment connection z with y(0)). Using (2.8), we can write

J(U) = L(U*) = /Y[(g(y,t) — cay)dt + cdy]

- Y.[(g(y,t) — cay)dt + cdy] (2.18)

=/Y(g(y,t)—cay)dt—/w(g(y,t) — cay)dt

The last equality in (2.18) is due to the fact that [, cdy = [, cdy = ¢(a — z).

Assume that there exist k > 1 and 0 = tg < t2 < ... < t; = T such that y(t;—) <
y*(t;) < y(t:) and y*(s) — y(s) does not change sign on (t;_y,t;),i = 1,2,...,k. The
latter means that contours Y and Y* have intersection at the points (y*(t;),t;) and on any
interval (t;_y,t;) the graph of the function y(-) does not intersect the graph of the function
y*(:) so it is located above (or below) the graph of y*(-). (The case in which k is infinite

is considered similarly.)
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Let the set of integers I (the set I2) be the set of all 1 for which y(s) > y*(s)(y(s) <
y*(s)) for s € (t;-1,%). Let 3S; be a closed loop formed by Y* n (R x [ti=1,t5]) and the
part of Y N(R x [t;—1,%;]) which lies above (below) of Y*N(R x [t;—y,2;)) if s € I (if i € I).
Note that if y(t;—1—) = y(t;-1) and y(t:—) = y(t;) then 3S; = (Y UY*)N(R X [t;—1,t]).
Let S; be the set enclosed by 35;.

Using (2.18), we can write

L0 =50 == 2§ (olont) - con)et

tely

(2.19)

+) }[6 5 (9(y,1) — cay)dt

sely

Using Green’s formula we transform (2.19) into

3 / 5 %’f—zﬁ — cadydt ~ ) / / | %ﬂ — cadydt. (2.20)

el sela

In view of (2.3) %% is an increasing function of z, hence Qg_{(,;iﬁ > ca for all y > §(t). Since
y > §(t) for every (y,t) € S; such that tel, and 0 <t < T, we get nonnegativity of every
integrand in the first sum in (2.20). Likewise every integrand in the second sum in (2.20) is

nonpositive. The later implies

which proves the theorem. \

(2.21) Corollary. The optimal cost v(z) is given by the formula

T T

g(4(t),t)dt ~ / caf(t)dt

4]

v(z) = ¢(a — z) + G(a) +/

0

Let Axrr be the set of all U €A subject to (1.5). Denote

.......
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vm(z) = sup J(U)
Uefnre
¢
It is obvious that vp(z) is an increasing function of M and vy,(z) < v(z).

.

Ve Let

A

.
- M min{t : z + Mt = §(t)}, if z < §(0),

' 17 | min{t: 2 — Mt = §(t)}, if z> §(0),

> M [max{tia+ (T~ )M =4(t)}, ifa<y(T),

N 2 max{t:a— (T —t)M = §(t)}, ifa> §(T).

» Let N be such that for each M > N

8

] M < Téhl.

»

N

~

= Let Ny = amax(|§(t)|,0 <t < T) + ¢;/c2, where ¢;,c2 are given by (2.3), (2.4). For

. any M > N; VN put
& M sign (§(0) - z), ift<r]M,

; up(t) = ﬂ{Liitﬁ-—ozg)(t), ifrM<t<tM,
s M sign (a—g(T), frM<t<T.
\ 4
&\

\ By virtue of (2.11)

N .

; Unils) = / u(s)ds € An

0
|

7 It is easy to see that 7 — 0 and 7 — T as M — oco. Hence 1
* \
" 8

U4

‘

ﬂ
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1(0n) =cla - z) + Gla) + | " (a0, 0a

1

T1 T
+/ g(z:tMt,t)dt+/ glat M(T —t),t)dt
0 T

2

- /:, caj(t)dt — v(z).

1

The latter shows

vM(z) > v(z) as M — oo.

3. Stochastic case.

Let V stand for the set of all % -adapted processes v with

E{|v|(T)} < co (3.1)

where |v| stand for the variation of the process v(-). For each v € V we define the process

z(-) satisfying the following equation

z(t) =z + /0 az(s)ds + ow(t) + v(t), (3.2)

where 0 > 0, a is the same as in section 2 and w(t) is a standard Wiener process adapted

to 7. With each v e V is associated the following cost

T
J.(v) = E{/ g(z(t),1)dt + G(z(T)) + cu(T)}. (3.3)
0
Similarly, we define
F(z) = in‘t; Jz(v). (3.4)
Let Vs stand for all v ¢ V such that
9
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y(t) = /otn(s)ds, n(s)] <M forall 0<s<T, (3.5)

and

| Fym(z) = ulcr\lft;‘ Jz(v). (3.6)

(3.7) Theorem. For every z

F(z) 2 v(z) (38)
Fu(z) > var(z) (3.9)

Proof. For v eV put
U,(t) = E{v(t)} (3.10)

By virtue of (3.1) the right hand side of (3.10) is finite. Alsoif 0=ty <t; <... <t =T,
then

k k

YoIUL(8) = Un(tima)l = 3 |E{w(t:) — v(tima)}]

=1 i=1

<ZE{IV —wltie)l} S IE{YII(t) - l(ti-a) | = EQwI(T)}-

This shows that |U,|(T) is finite. Let z(t) be given by (3.2). Let y,(t) satisfies (2.7)
with U = U,. It is obvious that y,(t) = E{z(t)}. By Jensen’s inequality E{g(z(t),t)} >
9(y.(t),t) and E{G(z(T)} > G(y.(T)), therefore

T
J(v) = /0 E{g(=(t), )}dt + E{G(2(T)} + E{ow(T)}

+cE{v(T)} .11)

T
> / o{u (8), )dt + C(y,(T)) + U, (T)

=Jz(Uy)

10
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Inequality (3.11) implies (3.8). The proof of (3.9) is similar.

Let §(t) be the function defined by (2.10) and let a be given by (2.13). Without loss
of generality we can assume z < §(0) and a < y(T). Fix € > 0. Let y;(t) and y2(t) be

three times continuously differentiable functions such that

g(t) —e<wn(t) <Y(t) Sw2(t) S G(t) +6, if e<t<T ¢, (3.12)

vi(0) =a—-¢, y2(0)=a+te, (3.13)

y1,2(t) = ¥1,2(0) + t(y1,2(e) —y1,2(0)) if, 0<t<e, (3.14)
n({T)=a-¢ y(T)=a+e, (3.15)

yi.2(t) =y12(T — &) + (T = t)(y1.2(T) —y1.2(T —¢€)), if T-e<t<T. (3.16)

The graphs of y;(t) and y2(t) form a "tube” of the width not exceeding 2e. This tube
encloses the initial point z, the endpoint a, and on the interval (¢,T — ¢€) it contains the
graph of §(t). Construction of such functions y;(-) and y,(-) is rather elementary and we

omit it.

Let k,(t)eV be a functional such that

z(t) =z + /t aze(s)ds + ow(t) + k. (t},0<t < T, (3.17)
vi(t) < z.(t) <yzt) forall 0<t<T, (3.18)
elt) = / s oy (ze(s))dlk](s) - / Lyatey(Ze(s))dlkel(5) (3.19)

The functional k,(-) is the so called solution of the Skorokhod problem for the Brownian
motion with drift az and diffusion o. Its effect results in reflection of the Brownian motion
from the time dependent boundaries y;(-) and y2(-). The existence of such a functional

follows easily from Lions and Sznitman [1984].

(3.20) Theorem. As e — 0




--------

Jz(ke) — v(z).

Proof. Let D = max(|a|,|z|,sup{|§(s)],0 < s<T})+1 and let

= max |g(y,t)],
|<It<T

6= o t
eaheal Sy e S0 — 92 1),
0<t<T

61 =l maix< |G(y) — G(a)].

Then

T
Je(ke) = E /0 o(ze(s),8)ds} + B{G(ze(T)} + cE{ke(T)} = Iy + Lo + b

Consider

T i
- / 6(3(s), s)ds| < |E / o(ze(5),8)ds]
T
+|/ g(3(s), s ds[+|E/T g(z,(s),s)ds|+/_ g(9(s), s)ds| (3.22)

T—-¢
+E{[ l0(ze(s), s)ds — g(i(s), s)Ids)

In view of (3.12)-(3.16) and (3.18), |z.(s)| < D if € < 1. Therefore, each of the four terms
in the right hand side of (3.22) does not exceed Ne. Applying (3.18) to the integrand in J
the last term of (3.22), we see that it does not exceed §. Therefore, (3.22) does not exceed
4Ne + Té. Since § — 0 as € — 0, the right hand side of (3.22) converges to 0.

By virtue of (3.15) and (3.18), |z,(T) — a| < €. Thus,

|[I — G(a)] < 6; =+ 0 as € — oo. (3.23)

12
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e Formula (3.17) shows

:

1)

T

0 E{k,(T)} = E{z.(T)} - 2 - E{ / aze(s)ds). (3.24)
. 0

K. Formula (3.15) and (3.18) show that the first term in the right hand side of (3.24)
o converges to a. Likewise, using (3.12)-(3.16) and (3.18), one can show that the last term in
.3 the right hand side of (3.24) converges to fOT ajj(s)ds. Therefore (3.24) converges to U*(T).
:N This fact along with (3.23) and the convergence of (3.22) to zero proves (3.21).

(3.25) Corollary. F(x) = v(x).

, ~oroary

4
) The proof follows from Theorem (3.7) and Theorem (3.20).

¥
L

- Let y:(t) and y2(t) satisfy (3.12)-(3.16). Consider the process z¢ ar(s) defined by the
% following stochastic differential equation
e dze m(t) =azenm(t)dt + Mg, 1)<y (e) 9t
K \'
:. —Mlz"M(tpy,(t)dt +odw(t),
.:: :l:"M(O) = ZI.

N

y Let

~

2

2 (s M, ifz,m(s) <yi(s),

Ne,M\S) = .

5 oM M, if z.p(s) > ya2(s).

Y

o and v, pm(t) = f(: ne.m(s)ds. It is obvious that v, a € Vs and z, as is the solution of (3.2)
A with v = v, ar. Simple calculations show that

A

M

.E Jz(vem) — Jz(ke) as M — co.

- This implies

.

5 13
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Fp(z) - v(z) as M — 00

(3.26) Remark. Although we have identified trajectory y*(-) which is optimal for both
deterministic and stochastic cases, there is no optimal policy in the latter case. Any func-

tional which keeps Brownian motion "stuck” to a deterministic trajectory has a.s. infinite

variation on any finile interval.
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