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ABSTRACT

This research considers a new realization of digital filters suitable for VLSI

implementation. The method involves delta modulation which provides analog-to-

digital (binary) conversion. The output of a linear system is the convolution of the

input ana the system impulse response. This new digital filter requir s that-both

the input and the impulse response be first converted to bit streams using delta

modulation. These bit streams are then convolved. The result is an analog voltage

which approximates the convolution of the analog functions.

Direct convolution of the bit streams is difficult to realize with electrical cir-

cuits. A greatly simplified system with equivalent performance is a result of this

research. This is called the reduced delta convolution (RDC) system (digital filter).

The performance of the RDC system when used as a convolver and as a correlator

is analyzed and verified by computer simulation. Analyses of the effects of self

noise and external noise are included. Conclusions are that the RDC system has

considerable potential as a digital filter when using integrated circuits. Realization

requires considerably fewer components and simpler connections than other digital

filters. A reason is that there are no multipliers required in the RDC system. The

RDC system requires no synchronization, operates in real time and is easily pro-

grammed. Further, the RDC system has noise performance which is better than

predicted by ordinary filter theory.
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LIST OF SYMBOLS

B: bandwidth of the signal

conv(i . T.): the result of convolution at instant i. T.

corr(i -T.): the result of correlation at instant i. To

Ci: a constant equal to sampling period multiplied by the

step sizes of input signal and the impulse response

Cpg: constant

f. : cutoff frequency

fi : instantaneous frequency

f. : sampling frequency

F : the oversampling ratio = 2-, where W is the signal bandwidth

g : gain factor

G : amplification gain of an amplifier

Gp: prediction gain

he(t) : causal impulse response

h..(t) : staircase representation of the causal impulse response

he,(t) staircase representation with constant step size

hi: the iA bit of h(t)

h.(t) : the stepwise approximation of h(t)

h.(t) : staircase representation with variable step size

h(t) :impulse response

h(t) :the delta modulation version of h(t)

h(t) * z(t): convolution of h(t) and z(t)

Ih(r)A&(jT. - r): the delta convolution (normalized) at time jT.
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,total total current

I[i T.]: increment at instant i T.
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$i :average input signal power

SP :peak signal power
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e2: the quantizer performance factor
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V2 granular noise power

granular noise power when the input to the delta
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:r total quantization noise power

total quantization noise power when the input
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slope overload quantization noise power

slope overload quantization noise power when the input

to the delta modulator is the signal alone

A: prediction error variance
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16

I I 1 1 1 11 1 1, 4 111



LIST OF ACRONYMS

ADC: analog-to-digital converter

BBD: bucket-brigade device

codec: coder/decoder

CCD charge coupled device

de: direct current

DFT: discrete Fourier transform

DM: delta modulation

DMF: digital matched filter

DAC: digital-to-analog converter

FET: field effect transistors

FIR: finite impulse response

Hz: hertz

IC: integrated circuit

IIRL infinite impulse response

LPF: low pass filter

MF: matched filter

op-amp: operational amplifier

pdf: probability density function

PCM: pulse code modulation

RDC: reduced delta convolution

RDC LPF: reduced delta convolution lowpass filter

SNR: signal to noise ratio

SNRI: signal to noise ratio improvement

VLSI: very large scale integrated circuit

XNOR exclusive nor

17



I. INTRODUCTION

This research is concerned with a new realization of digital filters. The method

used involves delta modulation.

We define and discuss digital filters in Chapter Two.

In Chapter Three we briefly explain delta modulation which conveits an analog

signal to a digital (binary) signal. We then introduce a new method of convolution

which is called delta convolution in this report. The two signals to be convolved

are first converted to binary form using delta modulation. Time domain analysis

is used to derive equations of interest and to define the required hardware. An-

alytical examples are presented to show that the results obtrined using the delta

convolution method and conventional methods are similar. We conclude that direct

implementation of the delta convolution method results in a complicated system

(large number of gates and interconnections).

A system which involves two feedback circuits to account for the previous

values involved in delta modulation and convolution is developed in Chapter Four.

We call this the reduced delta convolution (RDC) system. The result is a simple

hardware realization. We define (block diagram) a system which functions as a

convolver (linear filter) and a similar one which is a correlator.

In Chapter Five we introduce a possible circuit to implement the RDC system.

A comparison between the needed hardware and complexity of the RDC system

and a conventional digital matched filter (DMF) is included. The result is that the

RDC system has a simple layout for IC realization and requires less than 10 percent

of the transistors needed for a typical DMF having comparable performance.

18



Simulation results when the RDC system is used as a convolver (lowpass filter)

and a correlator (matched filter) are presented in Chapter Six. The simulation

results include the transfer function of a RDC lowpass filter, the response of the

RDC lowpass filter to two signals, one in the pass band and the other outside

the pass band, and the output of a RDC lowpass filter with a square wave input.

Included also are responses of matched filters to a raised cosine pulse and to a chirp

signal.

Chapter Seven documents the noise characteristics of the RDC system. Op-

timum values of important RDC system parameters are derived. Analyses of self

noise and input noise are presented. A conclusion made is that the RDC system

has noise performance which is better than predicted by ordinary filter theory.

Simulation results for the chirp matched filter and lowpass filter when used in the

presence of additive input noise are shown. Again, the noise performance is better

than predicted by theory. A reason for this is detailed. This chapter also includes a

modification to the RDC method called variable step size RDC. Simulation results

for the variable step size RDC lowpass filter and notch filter are presented.

The results of this research indicate that the VLSI compatible RDC system

may be an attractive means of realizing digital filters. The system requires no

synchronization, has no multipliers and is easily programmable. Other features

include real time operation (no off-line processing) and no limitations on the time

duration of the signal to be represented in matched filter applications.

When compared with other digital filter realizations, the RDC system appears

to require considerably fewer components and simpler connections. Finally, because

of the properties of delta modulation, the RDC system achieves noise performance

which surpasses that predicted by ordinary filter theory.
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H. BACKGROUND

This research is concerned with the realization of linear systems (filters) using

digital technology. Common realizations of digital filters require a large number

of transistors and interconnections. This report describes a new type of digital

filter and documents its advantages and performance. We begin this description

by introducing linear systems.

A. THEORY OF LINEAR FILTERS

A continuous-time or analog signal may be described by a function of time,

say x(t). The response of a linear time-invariant system to x(t) is given by

00 00

(thx )h(t-A)-dA (2.1)
-00 -00

where h(t) is the response of the system at time t to a unit impulse applied at time

t = 0. See Fig. 2.1. The function h(t) is, then, used to represent the linear system.

Linear systems are used as convolvers to realize filters (lowpass, bandpass, notch)

and as correlators (matched filters (MF)).

The right side of Equation 2.1 is commonly called the convolution of two

functions x(t) and h(t) and denoted as x(t) * h(t). From transform theory

Y(f) = X(f) H(f) (2.2)

where Y(f), X(f), and H(f) are respectively the Fourier transforms of y(t), x(t),

and h(t).
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A discrete-time signal is a sequence of numbers {x(i. T,)}, where the integer

i may vary over a finite or an infinite range, and where T, is the sampling interval.

A linear time-invariant discrete-time system can be described by the input-

output relationship

00

y(n.T,)=T,. E x(m.T,).h((n-m).T , )

00=-T,. . : x((n -k) .T,) .h(k-. ) (2.3)

k-00

where x(n. T,) and y(n. T,) are the input and output signals, and h(n. T,) is the

impulse response of the system. That is, h(n. T.) is the response of the system at

n -T. due to a unit sample (unit impulse sample) applied at t = 0. See Fig. 2.2.

The right side of Equation 2.3 is the convolution sum of the two sequences

{z(n. T.)} and { h(n. T.) }. When the sequence { h(n. T) } has only a finite number

of non-zero terms, we say the system has a finite impulse response (FIR). Otherwise,

the system is said to possess an infinite impulse response (IIR). If h(n 7'.) = 0 for

n < 0, we say that the system is causal or physically realizable.

Using z-transforms

Y(z) = H(z) -X(z) (2:4)

where Y(z), H(z), and X(z) are respectively the z- transforms of y(n. T,), h(n. T,)

and z(n. T.).

A large class of linear time-invariant discrete-time systems can also be de-

scribed by the linear constant coefficient difference equation

N L

y(n • T) = E'ak.y((n-k).T,)+ Z' bk.x((n-k).T) (2.5)
k=i k=O

where it is possible to convert Equation (2.5) to an equation of the form of Equation

(2.3) (Kirk and Strum [1]).
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input output

x( n . 5  y( n .T 3)

Fig. 2.2. Representation of linear time-invariant discrete-time system.
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In Equation (2.5), if ak = 0 for all k, then

L

y(nTs) = bkx((n - k). T) (2.6)
k=O

So, the output of the system depends only upon the current and previous values

of the input. This system is called non-recursive.

From these results, we can now consider ways of realizing discrete-time sys-

tems. These realizations are called digital filters. This research is concerned with

a new realization of a digital filter.

B. VARIOUS REALIZATIONS OF LINEAR FILTERS

The unit sample response for the non-recursive system described in Equation

(2.6), is given by
L

h(n . T.) = 1 bk6(n - k). (2.7)
k O

This system is known as a finite-impulse response (FIR) system because we have

a finite number of terms in the unit sample response (Bird [2]).

From Equation (2.7), a FIR digital filter has a transfer function

L

H(z) = bkz - k

which is often implemented as a tapped-delay line and is sometimes called a

transversal filter. (See Fig. 2.3 and Rabiner [3]).

It is important to realize that, while a non-recursive filter must have a FIR,

a FIR filter need not be implemented non-recursively. A recursive implementation

of a FIR filter can be obtained by introducing poles in the transfer function and

then canceling them with extra zeroes (Bird [2]). A new recursive implementation

of a FIR filter, which is called the reduced delta convolution (RDC) method. is

introduced in Chapter Four.
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A transversal filter can have an arbitrary impulse response of finite time dura-

tion and therefore can be used to implement any linear filter. (Any system whose

output is linearly related to the input is a linear filter.) In this sense, a transversal

filter can be thought of as a fundamental building block of linear systems.

In Equation (2.5), if at # 0 for one value at least, then we have an IIR fiter.

In classical signal processing most of the filters are HR systems. These filters

correspond to direct implementation of the filter's rational polynomial transfer

function.

In modern signal processing most filters are FIR systems. These filters corre-

spond to a direct implementation of the filter impulse response approximated with

a finite number of terms. These filters often arise as matched filters for radar and

sonar signals (Kailath [4] and Rabiner [31).

FIR linear filters have several important properties which make them attrac-

tive for digital signal-processing applications. Among these features are simple

design, linear phase and the absence of any stability problems which may occur

in IIR fiters. On the other hand, for the same filter, non-recursive technique uses

more taps and multipliers (Hamming [5], Young [6], McClellan [7], and Whalen

* [8]).

Transversal filters are the popular choice of digital filter when using VLSI. We

consider next various circuit realizations of transversal filters.

C. TRANSVERSAL FILTER REALIZATION

1. Block Diagram

a. Transversal Filter as a Linear Filter

To implement a linear filter using transversal filters, it is sufficient to

choose the tap weights appropriately. From Equations (2.6) and (2.7), if the desired
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impulse response is known, then the transversal filter tap weights are simply the

sample values of the filter impulse response. See Fig. 2.4.

b. Transversal Filter as a Matched Filter/Correlator

Pulse detection in noise differs from analog signal transmission in two

major respects. First, we are usually concerned with determining the presence

or absence of a pulse. Second, we often know the pulse shape in advance, but

not its amplitude or arrival time. The pulse-shape information makes it possible to

design optimum receiving filters for detecting pulses buried in noise having a known

spectral density function. Such optimum filters (correlators) are called matched

filters.

Let z(t), 0 _< t < Td, be a signal to which a filter is to be matched.

The impulse response of the matched filter is defined as (Turin [9] and Turin [10])

b. z(Td-t); 0t<Td
h(t)

10; elsewhere

where the gain factor b is arbitrary and is henceforth taken as unity and Td is the

pulse time duration. The name matched fiter comes from the fact that h(t) has

the same shape as the pulse z(t) with time reversed and shifted by Td seconds.

Fig. 2.5 is a diagram showing the application of a matched filter.

The ratio of peak signal power Sp to average noise power N, at the

output of the MF is given by

No i

where $i and N, are average input signal power and noise power and B is signal

bandwidth. Then

SNRI = S/N* = Td. B (2.8)

where SNRI is the signal-to-noise ratio improvement factor (Horrigan [11]).
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The delay line tape are at delay values It T,

Fig. 2.4. Diagram of a transversal filter aw a linear filter.
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noise

Fig. 2.5. Diagram indicating the application of a matched Mter correlator.
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This important result shows that the filter SNRI is determined only by

the time duration of the pulse and its bandwidth and not by the pulse 'shape'.

Fig. 2.6 shows a transversal filter implementation of a MF, where we can

see that the values of the weights are exactly the same as that given for linear

filters (Fig. 2.5) except that the positions of the weights are reversed.

2. Circuit Realization

In Figures 2.4 and 2.6 the delay needed for the analog signal can be im-

plemented using the following conventional techniques:

* Charge-Transfer devices (CTD's), which include both charge-coupled devices

(CCD's) [12 - 141 and bucket-brigade devices (BBD's) [15, 16], can be used to

delay the analog signals (Butler [17]). When CTD's are used to delay analog

signals, the signal to be delayed is first sampled at a rate greater than twice

the largest significant frequency component of the signal. The analog samples

are then clocked through the CTD shift register. CTD's can achieve hundreds

of milliseconds of delay (Buss [18)).

9 Acoustic delay lines are used as alternatives to CTD's for analog time delay,

but for small values of time delays (< 20psec (Buss [18])).

* Digital shift registers (SR) preceded by analog/digital conversion (ADC) and

followed by digital/analog conversion (DAC) can also be used to delay signals

as shown in Fig. 2.7.

a. Transversal Filters Using CTD's

In order to make a CTD transversal filter, it is necessary to nonde-

structively sample the delay line and to perform the weighted summation. The

sampling is achieved in different ways depending on whether CCD's or BBD's are

used (Buss [18]).
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T d- I

The delay line taps are at delay values - k -T S

Fig. 2.6. Diagrama of a tramsvesal filter as a matched filter.
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Fig. 2.7. Diagram showing realization of time delay of analog signals

using digital circuits.

31



Generally, there are two approaches to implementing programmable

transversal filters using CTD's.

The first is the analog/analog system (Boeshart [19], and Denyer [20]).

Fig. 2.8 shows a block diagram of an analog/analog CTD transversal filter where

analog stores for both input signal and impulse response (reference store) are used

in conjunction with analog multipliers.

The main limitation is that since the weighting coefficients are stored

in the form of charge, they decay due to thermal leakage and must be refreshed

every 10 to 100 ms. The tap weight resolution is limited by the fixed pattern

noise associated with the MOS analog multipliers at each tap. In addition, the tap

weight data that are stored in off-chip digital memory must be converted to an

analog signal before it can be transferred to the on-chip analog reference store.

The other technique is the digital/analog approach (Tiemann [21] and

Tanak [22]) where the weighting coefficients are represented in digital form. See

Fig. 2.9. This requires a multiplying digital-to-analog converter (MDAC) at every

filter point. The MDAC uses MOS transistors that route the output of floating

gate tape to either positive or negative summing buses. As a result of this, a fixed

pattern noise results due to variations in the tapping transistor characteristics along

the length of the array (Gandolfo [23]).

We can summarize the main limitations of transversal filters realized

using CTD's as follows:

o The time duration Td of signals that can be processed using CTD matched

filters is ultimately limited by the storage time of the devices (i.e., the time it

takes a stored charge to be lost due to leakage). Typically the storage time is

of the order of 1 second (Buss [18]).
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Fig. 2.8. Diagra of the analog/analog method of implementing CTD
transversal filter. (a) System. (b) System impulse response.

33



prefilter sampler

Fig.2.9 Digraofthedigtalalgpetd Aao Dmplemnigy

tranaveru-analtog

analo Inpt v -utp4

MM%* MDA "....



e The filter length (i.e., the number of delay stages L) is ultimately limited by

charge transfer inefficiency. Calculations indicate that

L. e < 2 (2.9)

where L is the number of delay stages and e is the charge transfer inefficiency

per point where

e = 10- 3 for early versions of CCD/MOS

and

e = 0.4 x (10)-3 for recent versions

(Creasey [24]).

0 The Nyquist sampling theorem requires that a signal having a bandwidth B

be sampled at a frequency greater than 2B. Combining this requirement with

Equation (2.9) gives the following liditation on the Td. B product (which is a

measure of pulse compression ratio or processing gain) of signals that can be

processed using CTD filters.

Td -B < 1/e. (2.10)

The limitation imposed by Equation (2.10) can be compensated for by selecting

the weighting coefficients to invert the dispersion due to the imperfect charge

transfer. But the dependence of charge transfer efficiency on the signal ampli-

tude makes it impossible to exactly invert this dispersion at all signal levels.
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" The signal bandwidth is limited to less than half the maximum clock frequency

of the filter.

o For CCD's this limitation is ; 20 MHz.

o For BBD's this limitation is f a few Megahertz.

" Another limitation on the CTD transversal filter is the accuracy with which

the weighting coefficients can be determined. For example the transversal

filters using MOSFET analog multipliers suffer from:

o Poor accuracy

o Lack of long-term stability

o Drifts that are found in most MOSFET multipliers

The weighting coefficients can also be realized using a split-electrode structure.

However, because the weighting coefficients are fixed by the split-electrode

structure, such devices are only suitable for applications where a fixed filter

response is required (Haken [25]).

b. Transversal Filters Using Digital Delay

It is possible to use clocked shift registers to provide delay. Then in

Fig. 2.10 the sampled input x(n . T.) is quantized into a number of bits, typically

12 to 16 bits for audio and 6 to 8 bits for video signals.

The digital signals (code words) recirculate in virtual delay lines com-

posed of random access memory (RAM) and are multiplied by the weights which are

stored in programmable read only memory (PROM). Every sampling time period

a new code word enters the RAM where the oldest one is discarded. Using a single

multiplier, the multiplication rate has to be L. f., where L is the fiter length and

f. is the sampling frequency. The large number of multiplications required each

second is the main disadvantage of this scheme (Kailath [4)).
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Fig. 2.11 shows an equivalent scheme which uses L multipliers and

where m, and m2 are the code word lengths of the PCM encoder and micropro-

cessor system respectively. In this scheme the multiplication rate is reduced to

f.. The main disadvantage of this scheme is the increased cost compared with an

equivalent CTD implementation (Terrell [26]).

The next chapter introduces a new approach to the realization of transversal
filters. The circuit that results requires no voltage multipliers which results in

a considerably reduced number of components (transistors) when compared with

CTD and digital delay versions.
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III. DELTA CONVOLUTION

A. INTRODUCTION

This chapter introduces a new method of convolution which is called DELTA

CONVOLUTION in this report. The two signals to be convolved are delta modulated.

B. DELTA MODULATION

Delta modulation (DM) represents an analog waveform with a binary sequence

(bit stream). This analog-to-digital conversion (ADC) is quite different from pulse

code modulation (PCM). PCM involves code words and requires somewhat com-

plex encoders and decoders. Recovering the analog waveform from the code words

requires synchronization. By contrast, DM involves no code words, requires no

timing signals, and uses simple hardware (Roden [27]).

It has been found that analog signals such as speech and video signals gen-

erally have a considerable amount of redundancy; that is, there is a significant

correlation between successive samples when these signals are sampled at a rate

higher than the Nyquist rate. The redundancy in these analog signals makes it

possible to predict a sample value from preceding sample values and to trans-

mit the difference between the actual sample value and the predicted sample

value estimated from the past samples. This results in a technique called DIF-

FERENCE ENCODING. DM is one of the simplest forms of difference encoding

(Ha [28]).
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The idealized DM codec (coder/decoder) is shown in Fig. 3.1. The band

limited output of the LPF is compared by subtraction with the stepwise approx-

imation z.(t). The difference z is passed through a hard limiter whose output

is

(+1) i ( Xb(t) > x.(t)-1 \,j(t) < X.(t)"

The resulting binary output i(t) is applied through an ideal integrator (or accu-

mulator) with a feedback gain factor G to produce z,(t) where

G Ax when using an accumulator (3.1)4'- when using an integrator; T. is the sampling interval

and where

(2 n+ 1T) ~ : T ) ( 2 T){-,1
2 "T,= when using an accumulator (3.2)

f "1(t) . dt when using an integrator

where
- .(t) = . 2n + ;n T. < t < (n + 1). -T. Vn

The decoder for a DM waveform is simply a staircase generator (accumulator)

or an integrator. If a "1" is received the staircase increments positively. If a "0"

is received the staircase increments negatively. The accumulator (or integrator) is

followed by an amplifier having an amplification factor G. The amplifier may be

followed by a low pass filter (LPF) to smooth the staircase output into a continuous

function. A set of waveforms associated with the DM are shown in Fig. 3.2 which

also defines Ax of Equation (3.1).

DM systems are subject to two types of quantization distortion which are gen-

erally referred to as granular quantization noise and slope overload noise. Since
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Fig. 3.1. Block diagram of the delta modulation codec.
(a) Encoder. (b) Decoder.
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z.(t) cannot change by more than Ax units in T. seconds, * is the highest input

signal rate-of-change that the DM codec can follow. We call Al the DM slope-

following capacity and denote it by x'0 . When I-"1I exceeds this quantity, slope

overload occurs and gives rise to the kind of error shown in Fig. 3.3. The granu-

lar noise arises because the DM signal is a discrete-amplitude representation of a

continuous amplitude process (Goodman [29] and Greenstein [30]). Consequently,

gra a noise is always present. Only granular noise occurs when the input is

changing very slowly (, constant).

The key to effective use of delta modulation is the intelligent choice of two

parameters: (1) the step size Ax, and (2) the sampling interval T.. Obviously,

granular noise is reduced by decreasing Ax, but at the expense of a reduced slope-

following capacity, and, hence, greater slope overload noise. In Chapter 7 we

introduce a procedure to choose the optimum step size and sampling interval such

that the total noise obtained from the granular noise and the slope overload noise

is minimized.

C. DELTA CONVOLUTION

The subject of this research is the representation of any lin~ear filter using

DM. Time domain analysis is used to derive equations of interest and to define

the required hardware. In this chapter we pursue the DM equivalent of a linear

filter by direct operation on the convolution integral. This results in a cumbersome

expression and complicated hardware. However, working from this first result, it

is possible to apply two successive modifications which result in a quite simple

equation and a simple hardware structure. These modifications are presented in

Chapter 4.
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Fig. 3.3. Waveforms showing slope oveload and granular noise.
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Assume that h(t) and z(t) are two analog signals where

h(t) = (t)=O; t<O0

Let ha(t) and 1(t) be the delta modulated versions of h(t) and x(t), where h.(t)

and z.(t) are the staircase representations of h(t) and x(t) such that we have no

slope overload (Fig. 3.2). Assume also that

hi =ilA bit of h(t) =h(t) for i T. < t <(i+ 1)T. (3.3)

and

Z= AL bit of i(t)= i(t) fori. T, < t < (i+1) -T. (3.4)

We let hi and xi E {- 1, +1} for all i. Therefore,

j

h.(t) =Ah -ZLhi; jT < t <(j +1) T,, (3.5)
i-C

and

ZI(t) = A: xi~; jT, < t < (j + 1) T, (3.6)
imC

When the sampling rate and step sizes are chosen properly, then, as seen in Fig. 3.2,

Therefore, from Equations (3.6) and (3.7) we will have

where

j = integer part of

In the same manner,

imO
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We now have epesosfor z(t) and h(t) which involve the bits of 1(t) and ha(t).

Now, a linear system (filter) is characterized by its impulse response h(t).

Given an input voltage z(t) and impulse response h(t), the output voltage y(t) can

be written as the convolution of x(t) and h(t). That is,

y(t) = h(t) * z(t) = JM h(r) - (t - r) -dT

A conclusion is that in the time domain, linear filters are completely and uniquely

identified by their impulse response h(t).

The preceding development suggests that x(t) - x.(t) and h(t) ;t, h.(t) and

so we can write

y(t) ft h.(t) * x.(t) =J h.(,r) - .(t - r) -dT (3.10)

-00

Let k = integer part of Then from Equation (3.9)

k
h,(r) = Ah Eh; IT. < r< (k +1) T. (3.11)

P=O

Similarly, from Equation (3.8)

M

i-o

where m = integer part of [1X.But j=integer part of T#] and so

t =j - To+ E1; El is positive and less than T.. (3.13)

But k= integer part of [f]ads
T=k - T.+ E2 ; E2 is positive and less than T.. (3.14)
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From Equations (3.13) and (3.14)

integer part of [-] = integer part of (j - k) T. + (El - E2)

because El and E2 are positive and less than T. So,

the integer part of[--T ] =j - k (3.15)

From Equations (3.12) and (3.15)

j-k
z.(t A -)"- z. z; (j -k)- T, < t -" <(j- k+ 1)- T, (3.16)

i=0

From Equations (3.10), (3.11) and (3.16)

u(t)f [ =Ah -±Ehp] [AZ. :] .dT

-00/LI [Ah -k.p__ hX-A. j-d1 (3.17)

where L, is the time duration of non-zero values of h(t). A duration of L, seconds
corresponds to ni = . bits of h(t).

To

A discrete version of y(t) is formed by replacing the integral in Equation (3.17)

with another summation to obtain

y(t) ::y(U + 11 .TO) =Ax .Ah.-To. - h, [• i = =0,1,2,....
k=O PI rOO-i

y(t) %z y(j. T) = Ax. Ah. To. ft hp] • [ E j = 1,2,3,...

=0 for j < 0 (3.18)

We write y/(t) ft y(j" T) - C, " h(,-)AI(j.- T. - r-) ; - 1,2,3,....( -9
(3.19)

-0 0
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where

C1 = Az. Ah- T

and

where hP and zX E {-,+1}.

We call h(,r)Ai(j T. - r) the delta convolution (normalized) at time jT.. In

this last form, yi(t) can be represented as the sum of appropriate products of ±1.

This result provided the initial motivation for this research because the product

(-1). (±1) can be formed with XNOR gates. This is a considerable hardware

advantage compared with usual digital multipliers (and usual digital filters) which

have to form the product of PCM code words.

As an example of delta convolution, we convolve h(t) with z(t) where h(t) and

x(t) are given in Fig. 3.4. Applying the conventional methods of convolution the

result y,,,, (t) is given in Fig. 3.5 when we let T = 1.

Assume that Ax = Ah = 1. Then, the delta modulation versions of h(t) and

z(t) are given in Fig. 3.6. Applying the delta convolution Equation (3.18),

Y(O) = 0.

The delta convolution when j = 1 (Fig. 3.7) is given by Equation (3.18) as

(T°) = C1. {h(r)&(T, - r)}

= C, • {ho -.o}

= C. {1. 1}

= C, = 1 with our assumptions.
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Fig. 3.4. Waveforms. (a) Impulse response. (b) Input signal.
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Fig. 3.7. The needed products for delta convolution at time T,.
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The delta convolution whenj - 2 (Fig. 3.8) is given by Equation (3.18) as,

y(2T.) = C,. (T)i(2T. -,r)}

= Cl {ho(2xo + xj) + hlxo}

- C 1 11(2 + 1) + 1(1)}

--C1 (4) = 4.

The delta convolution when j =3 (Fig. 3.9) is given by Equation (3.18) as

y(3T.) = C1 . {h(T)k!(3T. -,r)}

= C1 • {ho(3z 0 + 2x, + X2) + hl(2xo + z1 ) + h2 xo}

= C -f{1(3+ 2 + 1) + 1(2 + 1) + 1(1)}

= C, • 10 = 10.

In the same way we can find the result of delta convolution y(t) for all values

of j-Te (Fig. 3.10). It is clear from Figures 3.5 and 3.10 that simulated results of

analog convolution and delta convolution are essentially the same for this example.

Note that the maximum value of the convolution is 344.0 for both simulations.

Theoretically, the maximum value of the convolution is 341.33.

It is possible to expand Equation (3.18) and then create a circuit which forms

y(y.T,) for any h(t).and i(t). This is done in Appendix A. The result is a circuit

having an unacceptably large number of XNOR gates and a large memory. We

present in Chapter 4 a much simplified form of Equation (3.18) which eliminates

the considerable redundancy of mathematical operations inherent in that equation.

The practical result is a simple hardware realization of a circuit to form y(j

TO).
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IV. REDUCED DELTA CONVOLUTION

Implementing Equation (3.18) directly results in a large number of gates and

interconnections as noted in Appendix A. The following reasoning suggests a sim-

pler form may be possible. The delta modulation representation of a function (x(t)

or h(t)) at any time t involves all previous values (history) of the function. The

feedback portion of the delta modulator accounts for this history. Also, the result

at any time t of convolving two functions depends on the history of both functions.

The integral portion of the convolution equation accounts for this history.

When using Equation (3.18) to determine the delta convolution result at time

t = t2 , t3, etc., we essentially involve (calculate) repeatedly the previous history

of both x(t) and h(t) at t2 , t3, etc. This implies considerable redundancy of cal-

culation (hardware) which increases with time. By carrying the history (previous

calculations) forward to the next calculation, the required hardware should be re-

duced. Feedback can be used for this purpose. Indeed, use of one feedback circuit

does reduce the complexity as shown in Appendix B. In this chapter, we develop

from Equation (3.18) a system which involves two feedback circuits to account for

the previous values involved in delta modulation and convolution. We call this the

reduced delta convolution (RDC) system.

The RDC system is a particularly simple implementation of Equation (3.18)

involving only nj gates and two registers the lengths of which are nj and ni + 1

stages where n1 is the number of bits used to represent the system impulse response

h(t). The form of the RDC system can be developed by considering the terms of

Equation (3.18) at times T., 2T. and 32, as follows:
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yT)= C1 [xo -ho] i r [T,,]

y(2T) =C, [ho -(2zo + z1 )+h, .zo]

= 2r [T,,] + r[2T,]

= y (To) + I (2T.]

where

r[22'.] = C1 [ho - zi + hi zol

I [2T.J = r [T', + r2TJ

= I [T] +r [2T.]

I [Ts] = r [T,]

and

y (3Tg) = C1 [ho -(3zo + 2.T + - 2 )+ hi - (2xo + xi) +h 2 Xzo1

= 3r [T.] + 2r [2T.] + r [3T,,]

= Y.(2Ts) + I [=r]

where-

r P3TA = CI - [ho. '-2+ hi -Z1 + h 2 -TO]

I [3T.J = rf[To] +r [2T.1 + r[3T.1

= I [2T.] + r[3T.1

Note that the present value of the output is the previous value plus an in-

crem-Aent I. Fuirther, the present value of I is the previous value plus a residual

r which depends on the present contents of the input register. So, the new data

updates 7 which then updates I which then updates the output. These updates are

accomplished with feedback which involves storage of a discrete voltage as shown in

Fig. 4.1 where y (j -T.) Ps y(t), and clock rate =-.Although Fig. 4.1 has
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been developed using transient or initial values (while the input register is becoming

occupied), it is shown in Appendix B that this same form prevails when the input

register is filled with values of 1(jT.). So, the output of Fig. 4.1 represents the

convolution of z(t) and h(t) when the input register is fully occupied, and the

output is a transient response when the register is not fully occupied (loading and

unloading). This transient behavior is part of any filter realization that uses delay

elements (digital or recursive filters).

A. CIRCUIT REALIZATION OF TRANSVERSAL FILTERS

USING THE RDC METHOD

This section first considers a circuit based on Equation (B. 11) which functions

as a convolver (linear filter) and then a similar circuit which is a correlator. We

show that a convolver or a correlator can be constructed by using two shift registers,

ni XNOR gates, one or two amplifiers, one or two summers and two feedback loops.

We show that by simply reversing the contents of the impulse response register, a

convolver, in essence, becomes a correlator.

1. RDC Transversal Filter as a Convolver

From the preceding discussions and Appendix B, Fig. 4.2 is a diagram

of a system which can be used to implement a RDC transversal filter which is a

convolver.

In the realization of the filter of Fig. 4.2, we show the necessary delays

as consisting of charge-coupled devices (CCD). Not shown in Fig. 4.2 is the clock

of rate , ticks/second used to transport the bit stream through register R. and

used to transport the multilevel voltages through the CCD.
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h 0  h1  ......
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*+A 

It

A 2 (nv 1) n - +1 T
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output

A 3  + A 4

Delay WWI y
AC"nv(O~nI.T S) o tpCCD oe staoe CCD

conv(n , I. T)

Fig. 4.2. RDC transversal filter convolver.
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In Fig. 4.2,

conv(j -T,) =output = y(j T.) - y(t)

Aconv(j .) conv(j -T.) -conv([j- 11J.T,)

iA2conv(j .T,,) A.zconv(j -T.,) - LAconv([j - 11] ,)

In Appendix B, it is shown that

nj -1 
i -1M~convU j T.) = C, . 1:< Ri(i) > - < R (i) > - < R.(ni) > E hi

where < Rh(i) > represents the contents (±1) of cell i of the impulse response reg-

ister, etc., and where < R.(i) > changes with time. So, the value of i.MconvUj 7'8]

depends on the contents of register R_. at time j 7'T.

There are several constants in Fig. 4.2 which are defined as follows:

n21-1

k= amplifier voltage gain = -C,. E h
i=O

k2= amplifier voltage gain = C,

Al, A2-, A3 and A 4 are voltage summers.

2. RDC Transversal Filter as a Correlator.

When the RDC system is used as a correlator, then the content of the

impulse response register is reversed as shown in Chapter 2. Following the same

procedures given in Appendices A and B, the following result is obtained

zA2corr(j - T,) = -CI. { < Rh(i) > -< R,(i + 1) >- < R,(O) > - hi

(4.2)

where
A.2corr(j - T,) A- zAcorr(j - T.) - zAcorr([j - 11 - T,)

corr(j -T.) A- corr(j - T,) - corr([j - 1] - T,)
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and where A2corr(j -T,), Acorr(j. T,) and corr(j T) are the incremental change in

the change of the discrete correlation values, the change in the discrete correlation

values, and the result of correlation at time j • T,.

Fig. 4.3 is a block diagram of a correlator as given in Equation (4.2)

where
nj -1

k3 = C 1  hi = -ki and k4 = -C 1 = -k 2.
i=0

As expected, there is similarity of structure and commonality of hardware

in the realizations of the convolver and correlator. In fact, if the input register is

bidirectional and if the amplifiers become inverting, then a convolver becomes a

correlator and vice versa.

We can draw some conclusions concerning hardware from Fig. 4.2.

a. When h(t) begins and ends at 0 volts, then*

nj -I
E~ hi = 0

i=O

and we will not need the amplifier of gain k, nor the summer A 2 .

b. The needed storage equals (2n, + 1) binary stages or cells and 2 single

stage CCD's.

c. The needed number of binary multipliers (XNOR gates) is nj.

d. The needed number of operational amplifiers is 4.

e. C1 is a scale factor (could be apart from the IC realization of the RDC

system).

f. The same IC can be used as a convolver or a correlator.

• Given h(n' • T,) = 0. We know h,(n • T,) , h(n1 • T,). But
nj -1

h,(n• T,) = Ah. , hi when h(0) = 0. So, when h(n, • T,,) = 0, then
i=O

nt hi = 0, under the condition h(0) = 0,(h,(0) is always 0).
i=0
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We can now identify some important features of the RDC system.

a. Uses digital technology (compatible with VLSI).

b. There are no code words and hence no synchronization requirements.

c. There are no multipliers (XNOR gates accomplish an equivalent function).

d. Real time operation (no off-line processing).

e. Easily programmable to represent impulse response of interest.

f. No limitation on the time duration T of the signal in matched filter

applications.

g. No theoretical limitation on the number of register stages (taps); filter

sections can be easily cascaded using several IC's to realize longer

duration impulse responses.

h. Reduced hardware requirements (complexity) compared with other

FIR filter realizations. An example is provided in Chapter 5.

In Chapter 7, we conclude from simulation results that when used as a matched

fiter or ordinary linear filter, the RDC system has noise performance which is

better than predicted by ordinary filter theory. The reasons for this are explored

in Chapter 7.

This chapter (4) presents a system (block diagram) which realizes an approx-

imation to the convolution integral. The system can be used as a linear filter or

a correlator. The next chapter details the hardware (circuit diagram) required to

realize the RDC system.
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V. HARDWARE REALIZATION OF THE RDC SYSTEM

A. INTRODUCTION

In this chapter we introduce a possible circuit to implement the RDC system.

We also compare the needed hardware and complexity of the RDC system and

a conventional digital matched filter (DMF). We conclude the RDC system has a

simple layout for IC realization and requires less than 10% of the transistors needed

for a typical DMF having comparable performance.

B. CIRCUIT DIAGRAM OF THE RDC SYSTEM

Fig. 5.1 shows a possible circuit having as output A2conv(j • T.) which is

defined in Equation (B.11) and shown in Fig. 4.2. Register R1 contains the bit

sequence representing the delta modulation equivalent of the impulse response of

the filter being realized. Register R: contains (n, + 1) bits of the delta modulation

representation -of the input voltage to be filtered. The XNOR gates produce the

binary products of the contents of register R1 and register R,,. From Equation

(B.11), we need to sum the outputs of the XNOR gates. But, it is difficult to sum

voltages. Therefore, we use field-effect transistors (FET's) as voltage-to-current

converters and then sum currents. Each FET will be in one of two states:

1) Cut off when its gate has a "-1" (or 0) voltage which means zero current

passing through it.

2) Turned on when its gate has a "1" voltage which means I amperes passing

through it.
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All the currents from the FET', enter node B to Arm /w.i. leaving node B.

So, firom Fig. 5.1,

V = rss"l,

or,

V, = r,.I.(n.)

where n. A the number ofbite for which <R&(i)>=<R,(i)>;i=O,1,2,...nj - 1

Let A - n.- number ofbits for which < R(i) >#< Rx(i) >; i = O, 1,2,... n - 1

So, A= n.-(nl-n.)-2n.-n; n,=O,1,2,...n.

As a result of this,

V = 3-I. ( + n); A = -n,-nl +2,...,nj -2,n (5.1)

and,

(V)mas wn7 r3 f*i.

Assume that (V 1).. 5 = 2 4 . Then V, where V i an eternally

spylied constant (dc) voltage. Using this in Equaion (5.1) gives

V =LAI-A+V c, (5.2)
2

Fig. 5.2 shows V, as a function of A.

We can use Equation (5.2) to deine V2 in Fig. 5.1 as oWows

Fig. 5.3 shows -V 2 as a function of A.

Let k, = C (. • ) = constant for the impulse response of interest. From

rig. 5.1

M =-V: - k,. < R.(n,) >

:L A - k < ,(n,) > (5.3)
2
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From Equation (B.11)

nu -1
A2conv(j - T.) =C, . : < Rj,(i) > . < R.(i) > -ki- < R(ni) >

But,

i=0

Therefore, we can write

A2conv(j . T,) = C, . A - k1. < R,(ni) >- (5.4)

From Equations (5.3) and (5.4), we can make V3 = A2conv(j • T.) if we set C, =

2 "

Knowing the step sizes Ax and Ah, the sampling frequency a, and the im-

pulse response register contents and length nj, we can determine the constants C1

and k1 . Knowing nj, C, and choosing a convenient value for I, we can determine

r 3 and V,. We choose VDD in Fig. 5.1 sufficiently larger than (V)ma so that the

current I is constant.

The circuit of Fig. 5.1 has as its output A2conv(j • T,). To find y(j • T,),

the value of convolution, we have to use two feedback circuits as mentioned in

Chapter 4. Fig. 5.4 shows one circuit which provides y(j • T.) when its input is

A2conv(j - T.). The values of rs are arbitrary. From Fig. 5.4,

y(j . T.) = conv(j . To)

= conv((j - 1)- T,) + Aconv(j. T.)
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where

Aconv(j •T.) = Aconv ((j - 1)To) + A2conv(j T.)

and A2conv(j . T°) is given in Equation (5.4).

C. HARDWARE COMPARISON OF THE RDC SYSTEM AND A
TYPICAL DIGITAL MATCHED FILTER (DMF)

We can estimate the hardware requirements of the RDC system using Figures

5.1 and 5.4. There are four different circuits identified in those figures. There is

also a delta modulator which could be part of the system or could be off the chip

when using IC technology.

Assume 6 transistors are needed to realize each stage of a shift register. Then

the RDC circuit requires 6n, transistors for the impulse response register and

6(n, + 1) for the inp it register for a total of 6(2n, + 1) transistors.

Assume each XNOR gate requires 10 transistors. Then the array of gates

requires 10n, transistors.

There are nj field-effect transistors.

Assume 20 transistors are required for each op-amp for a total of 120 transistors.

The total hardware requirements, neglecting resistors and capacitors, is (23ni +

126) transistors plus 2 single stage analog storage elements (CCD's) and possibly

a delta modulator. The hardware (in fact, the circuitry) is the same for the re-

alization of a convolver (lowpass filter, bandpass filter, etc.) as for a correlator

(matched filter).
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A conventional way to implement a DMF is presented by Turin [10] (see Ap-

pendix C). We will compare the hardware required for this DMF with that previ-

ously tabulated for the RDC system.

Assume that the sampling frequencies for the conventional method given by

Turin [10] and the RDC method are 2f,x, and 2. F- f.., respectively, where

f.,g is the maximum frequency component of the band limited version of the

input signal and F is the oversampling ratio. As a result of this

n_ 2. F
T 2

where ni is the register length of the RDC system and L is that of the conventional

DMF register.

We can now list the needed hardware to implement a conventional DMF and

that needed to implement an equivalent RDC filter. The results are in Table

5.1.

If we assume each adder needs only 6 transistors, then the needed transistors

to implement the DMF filter, neglecting the D/A and AID converters and the

amplifiers required are

6(N + M). L + 10M.. N L + 6M. N(L - 1)

where the needed transistors for the RDC system are

23n, + 126 = 23(F L) + 126

Define RT as

the needed transistors when we use RDC method
the needed transistors when we use DMF method
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TABLE 5.1. COMPARISON BETWEEN THE DMF CONVENTIONAL

METHOD AND THE RDC METHOD

Conventional DMF RDC

1. N shift registers having Two shift registers having
N -L binary stages and one 2n, 1 binary stages

-having M -L binary stages

2. M - N -L binary multipliers ni1 binary multipliers
(XNOR gates) (XNOR gates)

3. M -N.- (L - 1) summers 6 operational amplifiers,
each having less than 20
transistors.

4. AID converter Delta modulator

5. DIA converter none required

6. M-- N sets of interconnections ni interconnections
where the number of theme sets
equals to L

For large values of L, then

RT ft23F
6(N +M) +16M -N(5)

A common value for M and N is 8

then RT 23F (5.6)
1120

From Equation (5.6) we conclude that the circuit complexity is equal for F 0z 50.

When L =1000.M =N = 8.and F =4then R= 0.0823.In general. we

conclude that the number of transistors needed to implement the RDC method
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is less than 10% of that needed to implement the conventional DMF filter. In

addition the circuit layout of a conventional DMF method is more complex than

that of the RDC system.
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VI. PERFORMANCE OF THE RDC METHOD

In this chapter we present simulation results which show the transfer function

of a RDC lowpass filter (LPF), the response of a RDC LPF to two signals, one in

the pass band and the other outside the pass band, and the output of a RDC LPF

with a square wave input. Included are responses of filters matched to a raised

cosine pulse and to a chirp signal

A. LOWPASS FILTER PERFORMANCE

1. Transfer Function of the RDC System

Fig. 6.1 is a block diagram of the RDC system used to find the transfer

function when used as a LPF. We assume a LPF cutoff frequency f of 1.0 Hz.

The impulse response h(t) is, then,

sin(2rfct) = 2 sin(21rt)

2,rfct 2rt

where the-corresponding causal impulse response hc(t) together with its staircase

representation h,.(t) are plotted in Fig. 6.2.

We obtain the transfer function by applying to the RDC system the signal

x(t) = A, . sin(27rfit).

Following the transient time, which is dependent upon the register length

n, and the sampling interval T., the output y(t) is

y(t) = A0 ' sin(2rfit + 4,) where 4, ;t 0.

The ratio AL as a function of frequency is taken as the magnitude of the RDC LPFAi

transfer function.
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f f

Fig. 6.1. Block diagram of the system
used to find the RDC LPF transfer function.
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The register length nj depends on T. and Td which is shown in Fig. 6.2. In

fact, nv = 4TA. For a fixed T,, increasing ni permits a more inclusive representation

of the impulse response h(t). In the following, we measure T in terms of the number

of zeroes about the main lobe of hc(t) and included in Td.

Figures 6.3, 6.4, and 6.5 show the magnitude of the transfer function for

the RDC LPF where the number of zeroes of the impulse response are 2, 6, and 8

respectively. As expected, the LPF transfer function "improves" as more zeroes of

h,(t) are included.

Fig. 6.6 shows the magnitude of the transfer function of the RDC LPF

when Td includes 6 zeroes of hc(t) and when rectangular and Hamming windows

are used. We see that the ripple in the transfer function is reduced using the

Hamming window.

When the step size Ah becomes larger than the side lobes of the impulse

response, then the delta modulator considers the side lobes are of equal amplitudes

(see Fig. 6.2). To alleviate this problem we can choose a smaller step size and

increase the sampling rate to maintain the DM slope-following capacity. This

results in increased register length nj. An alternative is use of a variable step size

RDC system which is treated in Chapter 7.
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2. The Outnut of the RDC LPF When the Input is the Sum
of Two Sinusoids. One in the Pass Band and the Other
Outside the Pass Band

Assume that the RDC LPF with fe = 1.0 Hz, has an input

x(t) = 0.5 sin (-.)+ 1.0 sin(wst)

where w, = 21rf, and fi = 1.2Hz.

Figures 6.7 and 6.8 show the input z(t), its staircase representation z.(t), and the

output y(t) of the filter. We see that the 0.4 Hz sinusoid is preserved in the output

while the 1.2 Hz term is suppressed. The RDC system when configured as a LPF

does discriminate (filter) on the basis of frequency.

3. The Outnut of a RDC LPF with a Square Wave Input

Assume f, = 1.0 Hz. Assume the input z(t) is a square wave of frequency

fo = 0.25 Hz, where Fig. 6.9 shows the input z(t) and its staircase representation

z.(t). It is expected that the first and third harmonics of the input will appear in

the output of the LPF and all other harmonics will be suppressed. Further, the

amplitude of the third harmonic should be one third that of the first harmonic

according to the Fourier series representation of the square wave. The simulation

result agrees with this expectation as shown in Fig. 6.10.

Assume that the square wave input has a fundamental frequency of 0.5

Hz. Fig. 6.11 shows that all harmonics are suppressed in the output of the RDC

LPF, as desired.
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B. MATCHED FILTER PERFORMANCE

1. Filter Matched to a Raised Cosine Pulse

Fig. 6.12 shows a block diagram of the system used to simulate the im-

plementation of a filter matched to a raised cosine signal. The impulse response of

the matched filter

z (Td - t)
2 2

where z(t) is the input signal and Td is the time duration. Fig. 6.13 shows the

raised cosine impulse response where A was chosen to be equal to 1.0 volt and

Td = 1.0 second.

Figures 6.14 and 6.15 show the results of correlation when we use the

conventional methods [y,, (t)] and the RDC method [y(t)] with an oversampling

ratio F = 8.0. Note that these results have the same shape. The theoretical

maximum of the correlation is

3 2
3A2T - 1.5

Simulation results give a maximum value of correlation equal to 1.49999 when using

the conventional method and 1.54536 using the RDC method.
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raised cosine signal RDC output

Fig. 6.12. Block diagram of the R.DC matched filter that was simulated.
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TM ChPi or liMrl frequecy modatd signal has been popular in pulse

ssppliatios in the put because it is possible to realize filters matched

to the chirp sigma using aoustic devices. The imtantaneou frequency f,(t) as a

£untiooftime is given in Fig. 6.16 where f(t) = fa , t where Td is the

cdirp pulse time duration. So, the chirp signal (voltage) is then equal

A.n(WIt+ W2 t)P

A block diagram of the system simulated is shown as Fig. 6.17. Figures

6.18, 6.19, and 6.20 show the input signal z(t), the output y, (t) when we use

a conventional method, and the output y(t) of the RDC matched filter. System

parameters used are f, = 0.0 Hz, f 2 = 5.0 Hz, Td = 4.0 seconds, A = 1.0, F=4,

and n = 160.

From Figures 6.19 and 6.20 we observe that the maximum of cv, I(t) is

1.88820 and of w(t) is 1.84669 where the theoretical maximum is 1.8879557. After

the input expires the output is constant (non-zero). This dc offset is explained

in Appendix D. From Equation (D.3) the dc offset is expected to be equal to

*A (total are under h(t)).

Increasing the oversampling ratio F to 32 decreases the dc offset. See

Figures 6.20 and 6.21. This is so because when F increases, Ax decreases to keep

the value o( the slope-following capacity constant. And when Ax decreases, then

from Equation (D.3), the dc offset decreases.

Note that in the case of the raised cosine matched filter, the result of

correlation has no dc offset because the total area under h(t) equals 0 (see Fig.

6.15).
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f M
2

Fig. 6.16. The instantaneous frequency of the chirp signal.

chirp signal RDC otu

Fig. 6.17. A block diagram of the RDC chirp matched filter that was 3ixnulated.
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VII. NOISE PERFORMANCE OF THE RDC SYSTEM

A. INTRODUCTION

A DM converts an analog signal to a binary signal. This implies quantization.

As a result of this and because of noise which may appear on the input, the output

is subject to distortion. We identify two types of distortion and call their causes

self noise and external noise. Self noise is caused by the delta modulation process.

External noise is present at the input to the DM.

In this chapter we consider the effects on the output of the RDC system of

first self noise and then external noise. Simulation results for lowpass filters and

matched filters are presented. The idea of filtering on the basis of the slope of a

voltage is introduced. Also included is the variable step size RDC method used

to overcome a self noise effect on the representation of the impulse response of a

filter.

Self noise is affected by the step size and sampling rate used in DM. Therefore,

before considering self noise, we first establish an optimum step size.

B. OPTIMUM STEP SIZE

In this section we define and derive the optimum step size for use with the

RDC method.

Let z(t) be a zero-mean random input to the two level quantizer shown in Fig.

7.1. (In Fig. 3.1, the hard limiter, amplifier of gain G, and the flip flop can be

replaced by a quantizer in the sense given in Fig. 7.1).
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x OUANTIZER y OW(x

(a)

y

A6X

-AX

(b)

(C)

Fig. 7.1. Two level quantizer. (a) Block diagram. (b) Transfer characteristics.
(c) Example of input pdf.
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Lot ZQ) have a probability density function (pdf ) ps (-) and variance or.. (If

the input x(t) has a nonzero mean, we can subtract it from the input and add it

back after quantization.). The quantizer output y is

r+Az if xE (0,oo0)
Y= QWz -A=fxE(O,0 (7.1)

The.%uantization error go. = x - y is a random variable with pdf p,(. and

variance 0 2 ,whr

-00

B ut, q. = x- Q (z) is a .function of .

So,

F = E q-e _)) 2 px(_)d

-00

= J (T _ (_A)) 2 -p() -d. +J(Z- A T)2 .- p.(x). -
-000

cc00

+ (AX) 2 J px(x) -dx -2AxJ x -pz(x) dx
-000

If p.(x) is symmetric about zero, then

01= a,- 4AxJ x -px(x) -dx +(AX) 2 . (7.2)

We define the optimum step size Ax,,t as that which minimizes o.To find Ax.,g,

form

d(A) =-4! x -p3 (x)-dz + 2Ax=O0
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and soilve for
Axo,, --2o z -p,(x) -dr. (7.3)

Using this value in Equation (7.2) gives

at= a - 2A . + (Az) 2 when Ax (7.4)

and
m ,2 { } = 0- (AXo,,) 2 When A_ = Azo,, (7.5)

If we define a quantizer performance factor E2 as

-2 q1 (7.6)

then, minal { X.t

min {E2} = m I - 1 - (Azo,) 2  (7.7)

where the inverse of E can be considered as a signal to noise ratio.
Table 7.1 lists As-oi for different probability density functions and indicates

the corresponding minimum value of E2. When the input is a sine wave, then the

pdf is an arcsin function and - 0.9 (Jayant [31]). In all simulations this

value of optimum step size was calculated for the applied voltage and then used to

obtain the results.

The value of Azopt is that which minimizes the variance of the difference be-

tween the input and the output of the two-level quantizer. The two-level quantizer

is part of a delta modulator. In fact the DM of Fig. 3.1 is formed by an integrator

or accumulator in a feedback path from the output of a two-level quantizer to its

input. We now have a new variable which is the gain g in the feedback loop. In

the next section, we derive the optimum value of g.
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TABLE 7.1. OPTIMUM STEP SIZE AND MINIMUM VALUE

OF THE QUANTIZER PERFORMANCE FACTOR FOR

DIFFERENT INPUT PDF'S.

pdf ~A~lmin{E 2}

Uniform 0.25

Gaussian 0.363

Laplace 0.5

Gamma 0.6

1. Optimum Gain of DM Feedback LooR

In Fig. 7.2, assume that the accumulator has an inherent 1 bit delay; then,

x.(n -T.) = g -x ([n - 11] T.).

As a result of this

-X, ( T.) = x(n -T.) - z 5 (n - 7T.) = x(n -T.) - g -x Qn - 1]1 T.)

Therefore,

a2 =-02 2 2_qP a(78

where a 2is the variance of the input signal to the quantizer (hard limiter) and p,

is the value of the variance normalized autocorrelation function R,~ ( r) of .rj t) for

Setting =jA = 0 yields the optimum value of g and mm { ua the minimum error

variance.
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Therefore,

i P and min{u,&} (1 - p')or, (7.9)

We see from Equation 7.9 that the error variance is less than the input signal

variance a2. for all non-zero values of Pi. We call 1 a prediction gain Gp.

The maximum value of Gp =maxG p } = m "= i (1-pj) -, (7.10)

Processors of speech and images are often based on long-term autocorre-

lation functions. In general, for speech pi has a value close to 0.9 (Jayant [31]). In

sub-optimal design, Pi is taken as 1 and so g = 1.

The preceding consideration of a two-level quantizer and feedback gain

can now be applied to determine the optimum step size for DM analog-to-binary

conversion.

2. Optimum Step Size for Delta Modulation

From Fig. 7.2 we can define for a DM signal the reconstruction error

r(n. T) as follows

_ fn. -T) = (,. -To) - y(,. 2T.)

where y(n . T.) is*the output of the delta demodulator which is equal to x,(n. T.).

We can prove that the reconstruction error has a minimum variance

min {E} .(1- )
min{a} =min{a,} - (1 E. min{ ) z (7.11)

where we note that the minimization in Equation (7.11) is with respect to Ax and

that this result holds for g Pi (Jayant [31]).

From Equation (7.7) we can say that

-Oe OA (7.12)
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where 8.is. constant which depends on the pdf of the input z(t). Also, from

Equations 7.7 and 7.11

(I Mi 1 2)) (7.13)

So, from Equations (7.12) and (7.13)

AZ.?. z e~( 2  { ) U (7.14)

where mfr{E) < 1, and can be found using Equations (7.3) and (7.7) or Table

7.1 for the pdf of interest.

Hf~ 1~ (which is the case for speech and video signals for sampling

frequencies higher than the Nyquist fr-equency), Equation (7.14) can be rewritten

as foilows

Aot= e 1 s{E} 
5

Then using Equation (7.12),

As-tM rz,= i -;i a. (7.15)

Flor pdf's of many common input signals,

maz{Gp)z =- oF1

(Jayant [31]) where F is the DM oversampling ratio defned in Section V.0.

Let

ma{G1 p12 2  (7.16)

where Cps is a constant. From Equations (7.15) and (7.16)

AX,, 8 = Cas (7.17)

log'



For exaMPle, fr IL sinusoid of frequency fh and amplitude A which is sampled at

f r e q u e n c y f a ( n T . ) = A s i n ( w , . n T . )

Therefore,

R. 8(T ) -A~sin(wi .n -T.) -sin(w1 [n + 11 T

A 2

-2 co(w -T.) -co1~i2n +1) -T.)

A2

2 cos(Wi -TO)

A 2 C o s = 2 O ( 7 .1 8 )
2 fS

and

2

so,

Rzz(R) UP

But
! 2 z4

Therefore,

P1 CO (7)A$ 1 (1)2where F> L

So,

(1-pr2 1 (12( 4 (f2

As a result of this

maxf{Gp) =(1 -p2

From Equation 7.16

1r (7.20)
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Rom Equations (7.17) and (7.20)

Azopt = Tz. (7.21)

But

A
Og 7 --

Therefore,

A -.Af, 4.44 A - 1 _ 2.22 AAx.,, v2f. M . F (7.22)

Having established optimum values of step size and gain for a DM, we now

can use these results to determine values of self noise in the ADC process using

DM.

C. SELF NOISE

Chapter Three identifies two types of self noise: granular (quantization) noise

and slope overload noise.

1.- Granular Noise Power

If jz(t)[ is less than the step size as shown in Fig. 7.3, the granular noise

is given by

e, = Mt) - z(0)

Generally, we have granular noise for all x(t) because of quantization. To

precisely define ef, let us assume that the analog input to the DM modulator x(t)

and the output of the DM receiver are given in Fig. 7.4. Assume also that the

step size Ax and the sampling interval T. are infinitesimal, but with their ratio the

same as the actual system. The output of the DM receiver will then be the smooth

function z..(t) shown in Fig. 7.5.
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We define slope overload noise e.. as the difference between z(t) and z..(t);

the remaining distortion (z°°(t) - z.(t)), is granular noise.

Granular noise e, is essentially uncorrelated with the signal (Peebles [32]

and Protonotarios [33]) and is apprcodmately uniformly distributed (Goodman [29]

and Protonotarios [33]), over the interval (-Axz, Az). See Fig. 7.6.

Therefore,
E(eq) = [AZ des = O,

-As

and the granular noise variance is given by

,2= A (e)2 (_L) deg = (AX) (7.23)

-Az

So, the granular noise power increases as the square of the step size.

2. Slope Overload Noise

In general the slope overload noise is correlated with the message (Peebles

[321). A number of analyses to find the slope overload noise power are introduced

by Protonotarios [33], Zetterberg [34], Rice (with O'Neal) [35], and Abate [36]. All

these results do not either individually or collectively pertain to all slope-following

capacities and input spectra. Greenstein [30] found an expression for slope overload

noise power that is accurate for all slope-following capacities and input spectra of

possible interest for linear delta modulators having Gaussian random inputs.

Let us define the slope overload factor

_ (7.24)

where z' is the slope-following capacity. A highly accurate approximation to the

slope overload noise power ao for linear delta modulators having Gaussian inputs

and for all spectra, that was given by Greenstein [30], is as follows
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-Ax

Fig. 7.3. Mlustation of the case wher Iz(t)I < as.
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x (t)

t

Fig. 7.4 The input signal and tsot staircase representation.
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P( el)

2 Ax

-Ax~ A x e

FI. 7.6. Probability density function of granular noise.
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o o2 [1 + 2.753a + 2.95232] exp(-O.34152)

.exp{f(al - 2.753)s +a 2 [exp(aOs+ a4S 2 )-_1]};O< 8 <4.0 (7.25)

where the expression given by Equation (7.25) predicts a2- with an accuracy of

1 dBor better for .9between 4.0and 6.5. Fors>6.5, a!. is at least .19 dBbeMow

a2.. The variables al, a2, a3, and a4 are determined by the spectrum of the input

(Greenstein [30]). For example, for bandimited white noise

a, = -0.036, a2 = 0.37, a3 = -3.83, and a4 = -5.9.

(See Fig. 7.7.) From this section and section VUI.C.1 we can draw an error variance

curve for DM (See Fig. 7.8.), where

a:0~ + 0,, (7.26)

Note that as Ax falls below the value Ax,t, the distortion increases more rapidly

than when Ax takes on values greater than Axopt. We say that the delta modulator

"fits" the signal if Ax = Axopt.

3. Signal to Noise Ratio Improvement (SNRI) Due to Delta

Assume that we have chosen the step size to be equal to Ax,, where we

have as input of the RDC system the signal alone. Then,

#. 3 (.7

where and o2andare the total quantization noise power, the slope overload

noise power and the granular noise power respectively.
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If we have as input noise alone (which has power o2) and the step size is

Azopt then

o , = o o + o (7.28)

where a., o,., and o~q. are the total quantization noise power, the slope overload

noise power, and the granular noise power respectively.

Neglecting the granular noise, which is practically very small compared to

the slope overload noise, the effective noise to the RDC system will be decreased

by ... That is,

the effective input noise power= - = - A) (7.29)

where

A= <1. (7.30)

See Fig. 7.9. From Equations (7.25), (7.29), and (7.30) we can find the input

effective noise power when we have noise as input.

When we have as input to the RDC system the signal as well as noise, the

root mean square value of the slope of the input will increase. From Equation (7.24)

as (f),, increases (where Az and T, are not changed), a decreases. From Fig.

7.7 as . decreases, the slope overload noise power, in this case a,,+ , increases.

Neglecting the granular noise, the output power of the RDC system (neglecting

any SNRI due to matched filtering) is

Therefore,

(SNR) -.. a2

1 (7.31)
1-D
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where

So, the signal to noise ratio improvement due to using delta modulation = _ > 1.

D. THE ERROR IN CONVOLUTION WHEN THE OUTPUT BITS
OF THE DELTA MODULATOR ARE IN ERROR

The DM is an ADC. The bit stream output can be transmitted as a baseband

signal (twisted pair, coaxial cable, or fiber) or as a bandpass signal (modulated

carrier). Errors may occur in transmission.

A known signal at the input to a DM creates a known bit stream. Noise added

to the signal creates a different bit stream. The difference can be considered as bits

in error. The relationship between the noise characteristics and the bits in error is

not generally known.

In this section, we consider the effect on the output of the RDC system of bits

in error. Because there are two feedback circuits in the RDC system, bits in error

on the input affect future values of the output.

From first principles of delta convolution (Appendix A), the error in the con-

volution due to one bit in error is given by

eco =- -2C, .E h, .(n,- i)} (7.32)

= ±e1

where el is a constant for a given h(t) and T..

Assume that we have two bits in error. Then the bits in error can be as follows.

Both can be +1; both can be -1; or they can be of opposite sign. There are

(2) combinations of two l's

121

.. . . . . . . . p ~ ~S A



(2) combinations of a single 1 and a single - 1,

and

( 2) combinations of two - 1's.

where ("n)is the binomial coefficient of m things takcen n at a time.

Therefore the error in convolution will be

2e, with probability 22 4
* 0 with probability ( 4) 2

22 4

and

Q) = 1
-2e, with probability 22 422 -4

Generally, if we have m bits in error and m is even, the error in convolution

is given by
m. el with probability 29n

(m - 2). el with probability 2fm

(m - 4) el with probability i-
2m

2e, with probability 29n

0 with probability 29n

(m - k)el with probability 2

and - m el with probability
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where k in eve number. See Fig. 7.10.

So,

and

OS = 1:(m k) -e1)2 (Mn)(.3
k=nG

where m and k are even numbers.

In the same way, if we have m bits in error, where m is an odd number, the

error in convolution is given by

(m - k). e1 with probability ;I k =0, 2,4,..., 2m

So,

and

E k) ((m- m (734)
2_ &noS

where m is odd and k is even (see Fig. 7.11.). Note that Equations (7.33) and

(7.34) are exactly the same except that m is even in Equation (7.33), and it is

odd in Equation (7.34). Note also that the error in convolution, for a certain error

pattern (where all bits in error have left the first nj stages of R.), is independent

of time.

When the bits in error propagate through the first n1 stages of register R,,

the error in convolution is dependent upon the position of the bits in error and so

it is dependent on time. We want to find the signal to noise ratio at those times

when the bits in error have passed through register R.I. Assume that we have rn

bits in error. Therefore, from Appendix A,
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2

Fig. 7.10. The probability of error in convolution, m even.
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2

-m~~ M3 -1 0 1e

Fig. 7.11. The probability of error in convolution, m odd.
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the output mC, h(nl -i) [ 0 i] + noise at t j - T

where the noise has zero mean and variance given by Equations (7.33) and (7.34).

Therefore,

SNR i)2

2E m-2L ( m- k)2( m t)

F,

2 (735)
29 k=m- M A 2( )

Assume that the probability of a bit in error is Pe. So, the average time period

between two bits in error equals 11. In practice p, < I0 - . As a result of this the
P4

•

expected average time between two bits in error is > 1000T,.

From previous discussions, we know that the effect of a bit that has passed

through register Ri is the same as adding dc voltage to the output. As a result of

this and because the average time period between two bits in error is greater than

1000T,, an ac coupling in the output of the RDC system will tend to cancel the

ILI effect in the output of the bits in error.

E. SIMULATION RESULTS

In this section we present simulation results when the RDC system is used to

implement a chirp matched filter and a linear filter (lowpass filter) when additive

noise is part of the input.
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1. RDC Chirp Matched Filter

The system simulated is shown in block diagram form in Fig. 7.12. The

input noise to the lowpass filter is white noise with zero mean and standard de-

viation adI. The bandwidth of the LPF equals that of the chirp signal, and the

output band limited noise of the LPF has a standard deviation ad 2 , where

x(t) = Asin( T[2) (.36)

f2 = 5.OHz, Td = 4.0 seconds, F = 8, and A = 1.0

When the band limited noise has a standard deviation ad 2 equal to 0.75, the average

results of six computer runs (where each run had a different seed for the random

number generator) are as follows. The maximum value of correlation = 1.641; the

output noise has approximately zero mean and a standard deviation 0.2768 where

the average chirp signal power numerically is 0.472. See Figures 7.13 and 7.14 for

the input and the result of one run. From the given results

(SNR), = 0.72 = -0.762 dB
(0.75) 2

(SNR)o = .641 15.459dB(0.278/=1.5

Therefore, the signal to noise ratio improvement SNRI = 15.459 - (-0.762) =

16.221 dB.

Fig. 7.15 shows the SNRI for different values of ad 2 where theoretically

the SNRI = Td . B, and where Td • B is the pulse duration-bandwidth product

of the chirp pulse. (See Horrigan [111.) Hence, for this example, the theoretical

SNRI = 4(5) == 13dB. So, SNRJ using the RDC method exceeds the maximum

theoretical value by about 3 dB for this case.

Denyer (37] introduced a digital technique called Deltic processing to im-

plement chirp matched filters. We found that the SNRI using the Deltic processing
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Fig. 7.12. Block diagam a( the RDC chirp matched filter that was simulated.
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technique to implement a chirp MF is less than that obtained by the RDC method

by 9dB.

The noise performance of the RDC system can be explained as follows. In

fact, there exists a double match. The first is due to the matching of the filter to

the signal. The second is because the delta modulator step size is adjusted to fit

the input signal so there is no slope overload. When noise is added to the signal,

slope overload occurs and the delta modulator does not always track the signal

plus the noise. This lessens the effect of the noise input.

2. LOWpass Filter

In Fig. 7.16, assume that the LPFs have a cut-off frequency fc equal to

5Hz and that f, equals 2.0 Hz where the input is

i(t) = z(t) + n(t)

where n(t) is zero mean white Gaussian noise with variance = (0.5)2. Assume also

that only 5 zeroes at each side of the main lobe of the imlulse response of the

filters are considered.

Figures 7.17, 7.18, 7.19, and 7.20 show the input i(t), and the outputs

y1 (t),y 2 (t), and y3 (t). Fig. 7.18 shows that the DM acts like a filter because the

step size for the delta modulation process is adjusted to fit the signal. The slope

factor is .9 = 1.0. When noise plus signal are applied to the input of the delta

modulator, the slope factor s decreases leading to slope overload distortion. This

actually reduces the noise effect. In fact, the effective noise power into the RDC

system is less than the input power as derived in Equation (7.29).

We can compare the noise performance of the RDC filter with a conven-

tional LPF by defining
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Fig. 7.16. Block diagram of the system used to simulate the outputs of
the delta demodulator, the RDC LPF, and the

conventional LPF.
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d2 (t) = y2 (,- + t) - z(t)

and

ds(t) = Ys(t) - z(t)

where Tt,. 1 second is the transient time needed to fill the n, stages of the register

R., of the RDC system.

The simulation results show that the average power of d2(t) is equal to

0.01324 where that of ds(t) is equal to 0.01902 which means that the output of the

RDC LPF is closer to the original signal than the output of the conventional LPF.

We then conclude that the "effective" noise into the RDC system is less than the

input noise of the conventional LPF.

Another way to show that the delta modulator is a "slope" filter is to use

the block diagram given in Fig. 7.16 to find rl, r2 , and r3 versus o where

r I= I

t2r2
2r2 =-- ;'T

r3 = 3

and where oj22,q2, and c? are the variances of yi(t), (t), y(t) and i(t) respec-

tively. We consider the case where the input i(t) is white Gaussian noise only and

where the step size of the delta modulator is chosen to fit a sinusoid of amplitude

1 volt and frequency equal to the bandwidth of the LPF which is assumed to be 5

Hz.

Simulation results are summarized in Fig. 7.21 as plots of ri, r2, and r 3

versus a. Note
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" For the RDC LPF, r, and r2 decrease as the variance of the input increases.

This is because an increase in the variance of the input creates additional slope

overload conditions. The delta modulator then acts as a "slope" filter. The

slope of the output of the delta demodulator increases but at a smaller rate.

As a result of this the values of r, and r2 decrease as q2 increases.

" When oui is small compared to the step size, granular noise occurs and so r,

will be greater than r 3 .

The siniulation results verify that the noise performance of the RDC sys-

tem is better than that expected from the theory of linear filters. The reason for

this is that the DM portion of the RDC system filters on the basis of slope as well

as frequency of the applied voltage.

F. USE OF VARIABLE STEP SIZE WITH THE RDC METHOD TO
OVERCOME GRANULAR NOISE OF THE IMPULSE
RESPONSE REPRESENTATION

Assume that we want to represent the impulse response h(t) for a LPF or a

band suppression filter using DM where the step size Ah is constant. For a given

sampling rate, if Ah is appropriate for the main lobe (to prevent slope overload)

then the DM values for all side lobes whose amplitudes are less than the step size

are successive values of +1 and -1. This means that the side lobes are represented

as being constant. On the other hand, if we choose the step size Ah appropriate

for the .ide lobes, the DM cannot track the main lobe without increasing the

sampling frequency. This requires an increase in the number of stages of the two

shift registers R, and R,. One solution is to use different step sizes for different

regions of h(t). We call this the variable step size RDC method.
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1. Implementation of the Variable SteR Size RDC Method

To implement the variable step size RDC method, we first define h(t) in

the range -'T seconds. To make the impulse response causal, shift the time axis

by PI-T. seconds. An example is shown in Fig. 7.22.

Now divide the causal impulse response into M different time intervals so

that in each interval a single step size is appropriate. In Fig. 7.22 M = 5 and,

because of symmetry, the step size for region A equals that of E and the step size

for region B equals that of D. Assume that the M intervals have nl,n2,...,nM

samples and step sizes Ahl, Ah 2 ,... AhM, respectively.

Using the procedure given in Appendices A and B, it is easy to show that
( j -1

A2conv(j "T.) { [< Rjz (i) > " < R ,(i) >1 " Ah

RI +"2 -1

+ E [< Rh(i) >. <A%(i) >1" Ah2
dimn

Ri+fnl+ns-1

+ E [< &(i) >. < R,(i) >1-,h3
i=n lt+n2

.+................................

.+................................
N-I

+ E [< R,(i) >. < R,(i) >1. AhM
i=N -n M

< Rx(N) > .5s1Ax. T, (7.37)

where
M

N = Eni

and
N-i

ks = Ah hi + Ah 2  hi. ..... + Ahm .Z hi
imaO imsn, i=N-nu

= constant for a given impulse response and given step sizes.
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Equation (7.37) can be implemented as shown in Fig. 7.23 where the constant

Az. T can be off the IC chip.

2. Azwlkiat
This section presents simulation results obtained using the variable step

size RDC method to implement a lowpass filter and a band suppression (notch)

filter.

a, Variable Step Size RDC Lowpass Filter -

Assume that the cutoff frequency of the LPF is 1.0 Hz. Figures 7.24,

7.25 and 7.26 show the impulse response and the staircase representations (h,(t)

and hot(t)) when we use variable and constant step sizes and where we take into

consideration 40 zeroes on each side of the main lobe. The number of intervals is

M = 21. Fig. 7.27 shows the resulting transfer function when we use variable step

size. Also shown is the transfer function when a constant step size is used. Using

the variable step size RDC method, the ripple in the transfer function is reduced

and the filter skirts are steeper.

b. Variable Step Size RDC Band Suppression (Notch) Filter

Fig. 7.28 shows the transfer function of a band suppression filter where

f -- 1.0Hz, f. - L6 = 0.5, and A! = 0.375.

and where

iW(f) = Hi(f) - Hb(f)

Figures 7.29, 7.30 and 7.31 show the impulse response and the corresponding stair-

case representation when we use the variable step size and constant step size RDC

method. The number of intervals for the variable step size is M = 17. The transfer

functions obtained are shown in Fig. 7.32.

From Figures 7.27 and 7.32, we can say that the variable step size

RDC method has a better transfer function than that of the constant step size

RDC method.
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Fig. 7.28 A band suppression filter transfer function 14(f) where
H1%(f) = H1(f) - 1Ib(f)
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The RDC system is a new realization of digital filters. The system can be

used as a convolver or as a correlator. The RDC system has a simple layout for IC

realization. When compared with other digital filter realizations, the RDC system

appears to require less hardware and fewer connections. The system requires no

synchronization, has no multipliers and is easily programmable. The RDC system

provides real time operation (no off-line processing). There is no limitation on the

time duration of the signal to be represented in matched filter applications. Simu-

lation results indicate the RDC system achieves noise performance which surpasses

that predicted by the theory of linear filters.

B. RECOMMENDATIONS

It is recommended that a RDC system be fabricated and tested to confihm

simulation results and to provide additional insight into this method of achieving

convolution.

It is also recommended that additional study be done and the results be ex-

tended to include adaptive delta modulation techniques.

Also, studies of other noise reduction methods including additional work on

slope filtering are recommended.
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APPENDIX A

IMPLEMENTATION OF A TRANSVERSAL FILTER
USING DELTA CONVOLUTION

Assume that we want to convolve the analog pulse signals h(t) and x(t) where

ha(t) and i(t) are the delta modulation versions of h(t) and z(t). Assume that h(t)

and i(t) have number of bits n1 and n2 respectively where

ni < n2

Assume also that we have two registers R1, and R,. where R, holds the delta

modulation bits of h(t), and R. holds the delta modulation bits of x(t) which have

to be convolved with the contents of Rt, So, R* has nj memory stages and R. has

n2 stages.

By expanding Equation (3.18) we can write the result of convolution at time

jT. as

Y(t) ftY( -TO) =C 1 . (ho zi+ + + xi...+ E z
j-2 -3 j-f

+h2[ s-0 sG +..+ Ri]
I ~inG m

...................................

+..................................
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which can be rewritten as

,(,) P Y(j T.)= C. (ho [z,_1 + 2zj, 2 + 3x,_3 . ...........................

+ n, • zi-J t + n1 •
i- 0

ir=0

+hl Xj-2 + 2.Ti-3 . ...........................

+ (n, - 1 j_., + (n -) .
i--0

". ..... ...............a.......... e.... t...... ... ..

(A.1)

The products needed to implement Equation (A.1) can be represented as

shown in Fig. A.1. A schematic diagram of a system which provides y(j • T.)

according to Equation (A.1) is shown in Fig. A.2 where f. is the sampling fre-

quency. _

In Fig. A.2 we assume that RI. register stages can have any of three states

-1,0, or +1 and that it is bidirectional. Assume also that we have a logic which

can do the following:

a) During the time periods between even and odd sampling pulses the contents

of register R% move to the right.

b) During the time periods between odd and even sampling pulses the contents

of register A4 mcve to the left.

Register R, has 2n, stages. The first n, stages have to be initialized with the

delta modulation version of h(t) which can be either +1 or -1. The last n, stages

of register R% have to be initialized with zeroes.
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Fig. A.1. Diagram showing the products needed for delta convolution.
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From previous assumptions, during each time period between even and odd

sampling pulses the contents of R, move to the right ni times producing all prod-

ucts needed to find the convolution, and during each time period between odd

and even sampling pulses the contents of RI move to the left nj times producing

all products needed to find the convolution. The contents of the accumulator are

multiplied by the constant C, to produce the convolution.

Some of the disadvantages of this direct implementation of the delta convolu-

tion are

1) By looking at the columns of the XNOR gates of Fig. A.2, we see that

the needed number n3 of binary multipliers (XNOR) gates) is

n3 = n2 +(n 2 - 1) + (n2 - 2)+... +(n 2 - n +1)
n2 n2-ni

fn1 2 + j (n i )2

2

2) The memory required is 2n, + n2 bits.

3)-The high clock rate ni •f. needed to clock Rh.

It is clear that the required number of XNOR gates and the required memory

will be large, especially when n2 is large (which is a practical assumption).
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APPENDIX B

MODIFIED AND REDUCED DELTA CONVOLUTION METHODS

1. Modified Delta Convolution

We will derive the change in the discrete convolution Aconv(i) when the input

register 1? is fully occupied where

Aconv(i) A- cov(i - T.) - pornv([i - 1]. TO) (B.1)

From Equation (3.14), at time t

y(t) -- Y~k Ts) = v (U + nfliP Tv.) = C1*

ho [xj+nR1-1 + 2 ZTj+n 1 -2 + 3 zj~n1 -3 + ..... + (n, -2) - Zj+2 + (i-1

*:,+l + n, .Zzi]
imo

4-h1 . Zj+nL..2 + 2 ZTj+nl -3+... +(n, - 3) -j+2 + (n, - 2)
j

i=0

j

i=0

+ .............................................

+ .............................................

where

k =integer value of [4 + nj i
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and where the needed products can be demonstrated as given in Fig. B.1. Collect-

ing terms gives

y(k -T,) = y (Ui + nflu T.) = Ci. {
+nj -1

+hL -2 1  1)

" h, E xi-(ni~j-1)+hj-( j-1j j

+ (h 2 . E' zi -(n, +j-2 + h2 (n, )-EX

.+ ...................................

+...................................

j -1"

Or

- -7(k T) =Cu.{ (hm [ En~~ zid(fl

+ (:Ti EhL -[n,-I (B.2)
(i=O L=O

At time (k +1) -Tv I
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Fig. B.1. Diagram showing the needed products to find the convolution
at time (j + ni) T,
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y ([k +11-T,) =y ([n, +j + 1].T.) =C,. {
ho , i+1  + 2x~,- + 3-Ti+n,-2 + ..... + (n,1 -2).X+

+(n, -1).z,2 + ni - Z'i
i=OI

+(,- 2) . Xj+2 + (i 1 - 1) i

+ 3 h2 + + -~n (-2 -2) Zn -z)jX
+~

+(ni 3) Xj++ (ni- 2)BE )

Therefore,(B3

y([k + 1] -7T,) =y((na +j + 11.-7T.) = C1 . {

+ (hi. EZz.(n -t+i)] +h1 (..i + [ni - J.xi)

+ h2x-n-~-)+h 2 (x + [ni - 2] - E ))

Or,
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({ + 1 ( s lEhm [E~ (n-3 -+ )]-i.Zhi})

jhiI- -rn- -I)h(B4

=-l.h E xt(1ii.-)]}- ) iEh

~i=i

E h . jz,- a i . n i m ]( [ m= I imO

([ni i -(n+11- n-Zi.E h

C, Ehm zi .(-i j -mh)-n,- j-)
klrno \'= j sn

Ci(.2hm( Z i +(B.5)In Z h

[in=O164



Or,

AcoCv(j + n, + 1) =Z C,- < Rh(m)>.( < R.(Z) > (B.6)

where < R,(i) > mesans the contents of cell i of register k where k can be h or z.

We can see that the change in the discrete convolution is dependent only on

the last n, samples at the input and is independent of all other samples. Also we

can se that all the weights equal unity. The needed binary products to find the

change in the discrete convolution are represented in Fig. B.2.

2. ]Implemetation of a Transversal Filter Using the Modified Doeta

Convolution Method

To inmpeent a transversal filter using Modified Delta Convolution, two

tnilkdo con be used.

a. T irhst Method

In the first mnsthod (Fig. B.3), the needed binary multipliers (XNOR

gates)-n 1 +(n-1)+(n,1 -2)+ ....... + I - A1. t - 4) and the

dd biy stora =2n,.

b. The Second Method

In the second method (Fig. B.4) we willu ue the fact that we need to

perfimm n, binary multiplications only and to store all the needed binary multi-

plications which wee perfomed in the preceding steps. In this case the needed

mambr of binary multipliers f n 1. and the needed storage is as follows:

2 + (n, - 1)+(n, - 2)+......+1 nI+"In' + 1) - ("h+31 Despite the fact

that in the second method the needed hardware is reduced. we still have to use a

number of XNOR gates or a number of binary storage locations proportional to

(nl)2. Because of this we introduce tlh Reduced Delta Convolution method.
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Fig. 13.2. Diagram showing the needed products to find the &=age
in the discrete convolution.
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Fig. BA3 Diagram. showing the first method of implementing
modified delta convolution.
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Fig. B.4 Diagram showing the second method of implementing
modifled delta convolution.
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3. The Reduced Delta Convolution (RDC) system

In this section we introduce the reduced delta convolution (R.DC) method

where the needed number of binary multipliers equals the filter length n,~ and the

needed binary storage equals 2n,1 + 1.

Let us define &2conv(k -T.) as follow.

AWconv(k -T.) j Acon(k -T.) - Aconv((k - 11 -T.) (B.T)

where Acnv(k -T.) isthe change in thedisete convolution which isdefined in

Equation (B.1).

We now find A2conv(k -T,) when the input register is fully occupied. At

time t where

we know that

Aconv(k -T.) = Acv ( + niJT) CI

ho [z,+n 1 .- 1 + Z,+nt -2 + Zj,ai-3 ...... + ZjI + Z)]

+ h, Xn -,31 . 2 + Zj+nt -3 + ..... + Z,-I + zJ

.+..................................

.+....................... ..........
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Mmd

Awmw([k + 11T.) m dxnv(j + n, + 11J.T) =Ci.

+ ~ ~ ~ + a... + +

Frcm Equatiom (B.7), (B.8), and (B.9) we have

Mcm (k +iI T) m acmy(Ik&+1 I-TO) - Amv(k TI)

42wnv (U + n + 1 T) cmnv (U + n, + 1I*T) - acm (U+ n, I T.)

= C,. {AIIsa+% + hAils+ns -I + 2s),, -3 +

+ h. 1Z+ -5 [Z) -] (5.10

whiccberePresentd by Fig. B-5, Rfsrring to Fig. B-5 and Equation(B. 10).,

than { Ut-1

42conv(U j +1) -T,) wC1  2:<R()> e$
two

IFi. Equation (B.1),

A.cOnv((j + ni + 11j. T.) - conv(b + nil T.) + Aconv(( + nt, + 1. 7'T.) (B-12)
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md frma Eqtastios (3.7),

Ioconv([j + n, + 1]. T.) Iconv(D +Il I, -T.) + 2cont'(1 + It I+ I] T.)

(B -13)

wheeAcont'(( + n 1 + 11 -T-) is giVen In' Equation I B.11) and where at

time t =-0. eonv(0) =-0.

Squatie (B. 11). (B. 12), and (B. 13) define what we call the reduced-delta

ooiwolution (RDC) sytem. See Fig. 4.2.
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APPENDIX C

A CONVENTIONAL MATCHED FILTER

Fig. C.1 shows a block diagram of a matched filter where

Y(t) h('r) -w(t - T)dT

0

where x(t) is the signal to which the matched filter is matched and Ti is its time

duration.

The first apprdmatio involves writing a sampled-data form of Equation

(C.1). See Equation (3.15).

L-Iw. To" - =L-i"* Wk-, (C.2)
Wm0

where

Y a v(j T),wj WU- j T.), and z, = z(j.)

The sampling rate = * must exceed the Nyquist rate. L is the number of samples

and o T, in Equation (C.1) equals L. T..

The smples., and w, are now represnted by binary words having elements

I or 0 idniied by z' and w' where

=, .2,W w,= t 2-% (C.3)
mamO amO

were z' and w, ' {o,}1).
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fig. C.1. mo~ck diagram a( a matched filter.
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We now approadmate the sum in Equation (C.2) by truncating zi to M digits

and wi to N digits. As a result of this

y ft TsE. 2- ( + n) •Mi - (C.4)

mWO uOO I
Correlating the mtA- digits of the binary words of the samples of x(-) with

the nik digits of the binary words of the samples of w(.) gives the digital corre-

lator (m, n) given in Fig. C.2. At each sample time the most recent sample's

n*k digit enters the left most stage of the nik on-line shift register. The mik dig-

its of the sample z are permanently stored in the stages of the reference shift

register. But, each sample w. has M bits and each sample z has N bits. So,

to obtain Yk we have to perform M • N digital correlations, where the results

of correlation are weighted by the factor T. • 2- ( m+n). We use one reference

shift register, which has M. L binary stages, for all the M N digital correla-

tos.

Fig. C.3 shows a block diagram of the DMF for arbitrary N and L but with

M equals to 1 because a block diagram for arbitrary M, N and L showing all inter-

connections is cumbersome. In Fig. C.3, for convenience, the gain factor T. called

for in Equation (5.8) has been left out of the weights 2- (m+ n) , so the output in

fact is I.
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rw. C. lock diagam ofa DMF iw arbitrary N and L, where M =1.
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APPENDIX D

DC OFFSET LEVEL

After the input expires, the zero voltage input to the delta modulator will be

represented by a successive positive and negative pulses about zero. From Equation

(3.18) the output of the convolver equals

y(t) -,, y(j -T,) = Ax.- Ah.- T h, • ki,: t i -ii-rE xl1 1,2,3....

But the input signal delta modulation pulses xi have successive positive and neg-

ative values. Therefore,

j-k-i flor-1 for j-k=odd (D.1)

EI - t for j-k=even
i=O

From Equation 3.11

k
h(") ,. ho(r")=-Ah- Eh.; k.o< r< (k + 1). ,(D.2)

p=O

Therefore, the output level at a given sample time j - T, when j is odd (k even)

T" E h(k " T.)) (± A x )

T \ evenhk. )
k=o

At r. wxads later, j will be even (k odd) and so the dc offset value is

\:wo
(h dd hkT)
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Because T. is suml when we use DM, then we can expect that the distortion

will be coatant and apprommately equal to

+ x(total ame under h(t)) (D.3)

since T, h(k.-T.) isaprx ey half thearea of h(t).
#A odd of even
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