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Factors affecting the stability of energetic materials are not
well understood. Knowledge of these factors is essential for the
predictability and hence the successful applicatiors of energetic
materials as explosives and/or propellants. This in turn involves
study of energetic reactions and reaction parameters. The effects of
lattice defects, particle size, temperature, radiation and mechanical
impact on the initiation and subsequent propagation of solid-state
decomposition reaction have been studied by several researchers.
(refs2l thraugh-3; However, the identification and understanding of
factors governing energetics in these reactions is not achieved as of
yet. This problem in our opinion can be understood in terms of the
microstructure of these materials. This report focuses on the study
of microstructure of energetic materials using novel non-destructive,
non-intrusive x-ray diffraction techniques developed at Brimrose.

The term "micro-structure" is used in the metallurgical sense
meaning "the study of the perfection/imperfection in the crystal
lattice." Conventional as well as novel x-ray diffraction techniques
bave been used to quantify the "micro-structure." The materials cn
which these studies have been carried out include RDX/HMX composites.
Ammonium Perclorate (AP), Aluminum (Al), RDX/Al in PBX, AP/Al in PBX
and AP in HIPB elastameric binders. Work on other materials is also
included for the sake of campleteness.

The reported study is divided into three major categories:
1) Measurement of micro-lattice strains (single crystal)

2) Micro-structural study of various mixtures of energetic
materials aiid/or simulants (polycrystalline aggregates)

3) Evaluation of process induced damage.

The current effort has its major emphasis on the use of real time
quantitative x-ray diffraction techniques for rapid quality control
of crystalline solid propellants. These techniques are non-
destructive and non-contacting ia nature. Presently, the speed of
analysis is limited by the intensity of the x-ray source and the
camputing machinery utilized. All the x-ray techniques discussed in
this report have been successfully implemented in real time (30ms) or
near real time (few seconds). This study has resulted in the
development of an x-ray quality contrcl tool for production
applications and much needed quantitative tool for advanced research
environments.

The Fnase I effort has shown the effect of processing damage on
RDX. Process induced damage modifies the microstructure and hence
the properties of propellants. The Phase I effort has also clearly
highlighted the importance of the incident signal intensity.
Currently this factor predominantly limits the on-line capability of
the system. The Phase II study will overcome this barrier by
incorporating a high intensity x-ray source in the system. 1In
combination with monochromators, 2-D x-ray image detectors
poverful computing machinery. These techniques can then be
implemented in on-line production applications.
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TECHNICAL APPROACH

X-ray diffraction (refs 1 throught 11) has been successfully used
as a Quality Control/Quality Assurance tool for several de.-ades
now. Historically, photographic film was used to record x-ray
diffraction events. These techniques are cunbersome and tedious to
use. Using nuclear track plates (photographic emulsions on glass
plates) the spatial resolution limit of the photographic technique is
in the vicinity of 1-3jum. Digitization of photographic data is very
time consuming. Typically, this is done using photo densitameters to
measure the gray shades in the film. Data thus collected is
digitized by camuters.

The use of electronic detectors to directly record x-ray
diffraction phenomena has become an increasingly attractive
alternative. These detectors range from point counters to
2-dimensional x-ray array detectcois. The current emphasis is on the
2-dimensional real time x-ray imaging system that was pioneered by
Green et. al. (refs 13 through 14) at Johns Hopkins University. This
group of investigators has been successfully utilizing the x-ray
image tube to register real time x-ray diffraction events (ref 15).
Rosemeier et. al. (ref 16) have used the x-ray image tube to study
laser induced microstructural damage. Ananthanarayanan et. al.,
(ref 17} have successfully integrated the x~-ray image tube with an
image processor to obtain digital real time x-ray images. Figure 1
shows a three stage, first generation x-ray image intensifier used by
the above mentioned investigator. Figure 2 depicts the DIXIE
(Digital Intensity X-ray Image Enhancer).

X-ray Diffractometry, Powder Diffraction
‘There are two distinct x-ray diffractametric techniques:
a. Conventional x-ray diffractametry

b. Double crystal x-ray diffractametry (rocking
curve analysis)

Figure 3 shows the x-ray optics and geometry of the conventional
diffractameter. BHere the essential principle is that the specimen
and detector rotate about the diffractameter axis with 6-26 angular
velocity relationship. This coupled rotation minimizes errors due to
change in absorption factors with incidence angle.

The first crystal being the monochromator and the second
crystal (of the "double") is the crystal to be analyzed. In contrast
to conventional diffractometry, here the detector is fixed as the
sample is rocked (oscillated) about the diffractometer axis. Also
known as rocking curve diffractometry, this technique has been used
by several investigators (ref 18) with point counters (ref 19) and
linear position sensitive detectors (ref 20) to study materials and
microstructural morphologies. The detector can be positioned (fixed)
at any two-theta value and the diffraction domain probed by rocking
the specimen about the diffractometer axis.
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Rocking Curve Topography

Rocking curve topography is the implementation of double crystal
diffractometry in 2-dimensions 1i.e., the incident beam is
2-dimensional and the detector used is a 2-dimensional array
detector. Typical incident beam size and diffraction geometry are
illustrated in Figure 4. This technique can be used with:

a. White incident beam
b. Monochromated incident beam (n, -n or n, +n setting)

This study utilizes the former and is called White Rocking Curve
Topography. No attempt is made to monochromate the incident beam. A
0.6 kW conventional Cu x-ray source containing K, . K,, and
Kg components along with same fraction of the Brehmstrahlung was
used as an incident beam. A line source was used to maximize
sampling area. Grazing incidence angle of (1-5°) was used to
irradiate the entire specimen area. The specimen was mounted on a
high precision multi-axis, computer controlled goniometer. This
sample manipulation system allows the probing of the entire
reciprocal space volume to determine and optimize the required
diffraction topographs. There are typically 6 degrees of freedom on
the specimen goniometer. The translation resolution of the actuators
is 0.lum and the angular resolution of the rotary stages is 0.1 arc
sec. The individual actuators are equipped with optical encoders to
minimize, if not eliminate, backlash and other related errors. A
detailed schematic of the entire rocking curve topography system is
depicted in Figure Sa-c.

Same of the pioneering work on rocking curve analysis was done
by Weissmann (ref 21) et. al. at Rutgers University using a linear
position sensitive detector (ref 22). Ananthanarayanan (ref 23) et.
al. at Brimrose Laboratories have significantly enhanced this
technique by successfully integrating a 2-dimensional detector in the
system. Thus, it is now feasible to obtain 2-dimensional rocking
curve topographs (maps), integrated intensity maps and peak shift
maps of 1.5" diameter area in less than 3 secs. The spatial
resolution of this technique is currently 100-150pm and the angular
resolution is fractions of arc seconds. With CCD's (charge couple
devices) the spatial resolution is improved to 20-25pm. The dynamic
range of the existing CCD's is about 16,000:1. The use of quality
control techniques as discussed here will perhaps scme day lead to
CCD's with resolution comparable to those cbtainable with nuclear
track plates.

Rocking curve analysis involves the measurement of the FWHM
(full width at half maxima) of individual Bragg diffraction spots.
By oscillating the analyzed crystal about the diffractometer axis
through its diffracting domain, the entire reciprocal volume can be
recorded. The FWHM measured thus is a function of the local
dislocaticn density. Hersch et. al. (ref 24) showed this relation to
be o = 8°/2b where, 8 - FWHM, 0 = dislocation density, b =
Bergers vector. Dinan et, al. (ref 25) have clearly shown the utility
of the rocking curve technique for the characterization of various
substrates and epitaxial films used in micro-electroanics
applications. These investigators used a point counter in their
experiments.
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In the present study both 1-D and 2-D x~ray sources were used.
‘Topographic images were obtained by scanning the specimen surface
with the 1-D x-ray beam while no such translation was required in the
case of the 2-D x-ray beam and 2-D detector combination.

RESULTS AND DISCUSSIONS
Micro-lattice Strain Measurements

Figure 6 shows the (222) rocking curve analysis fram a NaCl
crystal with a Brinel hardness indentation. This indentation was
made with a 20kg preload. The Bragg peak broadening (perspective
view) shown in Figure 7 clearly depicts the ..slocation morphology
around the indentaticn. The strain anisotropy along the (110)
directions can also be seen. In contrast to the rocking curve half
width map, the peak shift map has little correlation with the
hardness indentation. This is reasonable because the effect of the

indentation on the lattice parameter map (Bragg peak shift map) is
minimal.

Figure 8 depicts the rocking curve topograph fram a ZnCdTe
epitaxy/InSb substrate grown by MBE. This topograph shows dislocation
striations formed either by the growth process and/or by twinning in
the substrate. These striations have definite crystallographic
orientation, Further analysis is required to accurately determine the
origin of this morphology.

The Cd ggZn gsTe layers were grown by MBE on {100} 1Insb
substrate. Camposition of the alloy layers was set by adjusting the
temperatures of two effusion cells, one containing polycrystalline
CdTe, other, elemental 2n. Additional details of substrate surface
preparation and growth conditions are given elsewhere (ref 26).

In conclusion DARC topography technique provides
quantitative information about the micro-lattice strain
inhomogeneities in various crystalline materials. These maps of the
Bragg peak shift, Bragg peak broadening can be translated to
appropriate micro-lattice strain maps. The integrated intensity under
each pixel can also be used to determine epitaxial f£ilm thickness.
The DARC technique is highly amenable to automation and on-line
production applications.

Propellant Mixing & Distribution

Solid Propellant Characterization. During the preliminary
phases of the investigations of pure RDX and HMX, x-ray diffraction
spectra were acquired. Examples of the x-ray spectra of both pure
RDX and pure HMX are shown in Figure 9 along with a typical
production grade sample of RDX. These spectra are unigue to the

phases and the relative intensity of each spectum is indicative of
the amount of the constituent phases.

The method presented here can provide a point by point
determination of several important parameters of a solid propellant
cacing cross section. These include:

a.) relative amounts of RDX, HMX and Al powder=~
b.) particle size.
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By comparison of adjacent regions, this information
can be used to study agglomeration of the individual phases
throughout the cross-section. This information will permit a
thorough analysis of the effect of particle size on the non-uniform
distribution of the solids and their tendency to agglomerate.

The method utilized here is based on the ability to
collect x-ray diffraction spectra on a point by point basis
throughout a large specimen arca and then to be able to correlate
this spectra to the contituents within the smell volume giving rise
to the diffraction event. Thus, there are two main concerns which
this study addresses:

a.) the ability to scan the x-ray probe over a large
specimen area with a spot size in the range of
imm diameter and

b.) the ability to correlate the collected diffracted
spectra with the properties of interest, namely
volume fraction and particle size of the
constituents.

This x-ray method employs a conventional x-ray
diffraction unit modified in several important ways for the current
application. These include the use of a position sensitive detector
(PSD) and 2-D detectors. The use of digital detectors and the
camputer permits a much more rapid analysis than would ordinarily be
expected. The use of a small incident beam and scanning of tha
sample would permit mapping of the important material parameters
throughout the sample with high spatial resolution.

Constituent Phase Analysis

The operating principle of the method is based on the
diffraction spectra of pure RDX and pure HMX shown in Figure 9. As
mentioned previously, these spectra are unique to each phasc and the
intensity of the spectra is roughly proportional to the amount cf the
individual phase. Thus, in a sample representing a mixture of the
two phases, the measurement of the relative intensities of the unique
peaks permits a calculation of the volume fraction. This is shown in
Figure 10, which is a region of the two unique spectra, enlarged for
clarity. Also, shown in this figure are two regions of interest (or
windows). Note that in the first window, centered at about 22° that
the diffraction peak for HMX is quite strong while the peak for RDX
is absent. Similarly, in the second window, centered at about 38°,
the RDX peak is strong while the HMX peak iz absent.

The windows cited above can be easily followed with the aid
of a Position Sensitive Detector (PSD) as the detector 2lement. Such
a device permits the simultaneous observation of a large angular
range. Thus, two windows mentioned above can be easily monitored and
the total diffracted intensity within that window can be deteimined.
Moreover, there is no fundamental restrictinn as to hcw many windows
can be created. Thus, it is possible to create a large number of
windows which can be used to monitor the unique signals coming from
any additional phase, such as powdered aluminum.
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The operating sequence for the above method is shown in
Figure 11. The sample is held stationary while a small, well
collimated x~ray beam impinges on a region lmm diameter. The
resulting x-ray diffraction profile is collected over the full
angular range of the position sensitive detector. When the
diffracted intensity is sufficient for a reliable analysis, the
profiles are transmitted tc the dedicated microcamputer for analysis.
Wnile the data is undergoing analysis, the sample is translated lmm
so that the next region is brought into the incident x-ray beam. The
process is then repeated until all of the sample surface has been
examined.

Real Time Particle Size and Phase Analysis

Laue x~ray diffraction technique has been successfully
used to study thin discs of propellant composites. Using a 2-D x-ray
detector several cdiscs of propellant composites containing RDX, Al,
AP, HMX in elastameric binders (PBX, HIPB) were examined.

These discs were typically 3-5mm in diameter and 0.1-0.5mm
thick. Figures 12 & 13 show the Laue diffraction images obtained
fram various grain size of simulants and actual propellant powder.
These images show the effect of particle size on Laue diffraction
spots (size, distribution and density). Software will be made
available to analyze these images for particle size measurement.

Figure 14 shows the Laue transmission image fraom an Al foil
(Reynold's wrap). Preferred orientation can be observed due to the
mechanical rolling that the Al foil was subjected to. Figure 15
depicts the x-ray pattern from a Al, Cu, Brass & Ni foils. These
patterns are characteristic of each material and clearly show the
poiycrystalline nature with preferrsd orientation or texture due to
mechanical rolling in the case of Al. In a sense, they are the
microstructural "finger prints" of the individual material
(constituent phase). Al & Ni were chosen for this study due to the
high signal/noise ratio available with existing x-ray optics for
these raterials. The limitation for actual propellant was in the
intensity of the x-ray source itself. This limitation can be
overcame by utilizing higher intensity x-ray source (rotating anode,
synchrotron or pulsed x-ray generator).

Process Induced Microstructural Damage

Several samples of production grade RDX/HMX mixtures were
examined using conventicnal diffracrtometry. These results are
depicted in Figure l16a-e and were obtained with Cr radiation
monochramated by a bent crystal graphite monochramator. Production
grade material had similar x-ray diffraction profiles as pure RDX
subjected to mechanical grinding (with a mortor & pestle). One
sample (lot 78), however, was an exception. These "deformation
peaks" have been attributed to stress/strain induced phase
transformation products. Further studies have to be conducted with
other complimentary techniques to establish this hypothesis and will
be a part of continuing investigations.

6
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PHASE I OONCLUSION

Real time x-ray quantitative techniques have been successfully
utilized to characterize single crystals, powder aggregates and
paracrystalline camposites.

Single Crystal Characterization - using DARC x-ray topography,
the surface/sub-surface micro-lattica strain state hag been
quantified. These topographs yield valuable information about the
micro-structure of energetic materials.

Poly-crystalline Aggregates - using real time 2-D x-ray
detectors and high spe=d computers conventional x-ray diffraction
techniques can be phenomenally accellerated. With appropriate x-ray
signal intensity, these tecnniques can easily be adapted to
production oriented environments. Experiments on "free falling"
suvgar particles have been very successfull and pramising.

The current limitation in the analytical tool developed during
the Phase I effort is the incident source energy (0.8kW x-ray
generator). This limitation reduces the signal to noise ratio. &an
obvious solution to this impediment is the use of high intensity
rotating anode x-ray generator. This type of a gensrator typically
can produce an order of magnitude highe:r signal, this allowing
monochromation and consequently improving the overall resolution
(both temporal as well as spatial) of the techniques.

FUTURE DIRECTIONS: NOVEL CONCEPT IN X-RAY POWDER ANALYSIS

Conventional x-ray powder cameras (Deby-Scherrer) comprise of a
point x-ray source and cylindrical film to record the x-ray patterns.
Additionally, the powder sample is rotated about the camerz axis
throughout the exposure time. The rotation is required to bring
various grains into Bragg condition. This film technigue inherently
integrates all the diffraction events over the exposure time
(typically 1-3 hours). The diffraction geometry invclved in the
above case is shown in Figure 17.

The availability of 2-D real time x-ray detector systems
camplemented by enormous camputing power has facilitated a unique and
novel concept in powder analysis. This involves the integration of
real time Laue transmission patterns in polar coordinates. This
integration is tantamount to rotating the specimen about the
transmitted beam direction. However, this integration will require
only one 2-D image (33ms exposure time) as opposed to the several
hours of exposure in the conventional powder technique. A schematic
illustration of this concept is depicted in Figure 18. In addition,
the 2-D detector system will allow the recording and storing of
standard 2-D diffraction patterns in digital or video format. This
opens up a whole new concept in materials data bank. Currently,
standard diffraction patterns of varinus crystalline materials are
stored by the JCPDS (Joint Committee for Powder Diffraction Studies,
Swarthmore, PA). These data are stored in a tabular form and require
enormous storage space for interactive search/match schemes. With
the concept cof 2-D diffraction spectra, the storage can be
accamplished in the video format on a high speed laser disk recorder.
It will also allow the customization and periodic updating of the
data bank according to user specifications and demands.
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Figure 17 Formation of X-ray (Debye-Scherrer) Powder Pattern in a
Cylindrical Camera.
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Figure 18 Improved Real Time Powder Diffraction Technique.
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