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THE CHOICE OF LEARNING STRATEGY
IN AN AUTONOMOUS SYSTEM

1. INTRODUCTION

Although the blessoming of the field of machine learning is a relatively new development within
artificial intelligence, it is apparent from the literature that there exists a wide variety in the type of
learning strategies. Most researchers choose to concentrate in depth on a single strategy; e.g., how to
inductively form concepts from data, how to modify ruies based on feedback, how to extract
problem-solving macros from experience, or how to create analogies then learn from them. Each
method has its advantages. However, an agent that has no teacher to provide strict guidance, that has
limited computational resources, and that is situated in a relatively complex environment is left with
the problem of choosing appropriate learning strategies. Intelligent robots and autonomous vehicles
that interact with their environment to achieve goals, for example, need to address the issue of strat-
egy selection. Choosing a learning strategy involves heuristic techniques, i.e., there is no single,
correct learning method for all situations. A system that can use constraints to guide the strategy
selection process is better equipped to learn autonomously.

This report discusses the repertoire of known learning strategies and available sources of con-
straints to aid in the choice of strategies. Section 2 categorizes the strategies along five different
dimensions. Example implementations of these strategies, taken from the literature, are given where
appropriate. Section 3 iists and explains some important sources of constraints on strategy choice,
with examples of some learning systems that use them. Since these constraints interact and their
interaction affects the learning process, Section 4 discusses some of these interactions. Finally, exist-
ing machine learning systems that involve the use of multiple learning strategies are discussed in Sec-
tion 5. Since work in the areas of multistrategy systems and systems that use numerous contextual
and other constraints is in its infancy, this report does not present or propose complete solutions.
Rather, the intention is to present an overview of the problem and related machine learning research.

2. LEARNING STRATEGIES
Learning strategies usually involve some type of inference. Based on this inference, these

strategies may be categorized either by the search space that they delineate or else by their means of
traversing this space. The dimensions along which we categorize learning strategies include the

L

) nature of the modification (which defines the search space), as well as the type of inference tech-

g nique, the explanatory nature and direction of the inference, and the autonomy of the learner (which

] define the means of traversing the search space).

@: . . . .

70 2.1 Dimension 1: Nature of the Modification

j".

o The inferential processes of a learning system perform some type of modification to the state of

P2 the system’s knowledge. The nature of this modification defines the search space of possible resultant

" changes to the system. Either new internal knowledge structures may be created (or incorporated as
is, as in the case of rote learning), or else existing ones may be refined. If new structures are

e created, they must either be declarative or procedural in form.

:'s'l. Manuscript approved May 4, 1987.
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DIANA F. GORDON
2.1.1 New Knowledge

Rote Learning

The method for incorporating knowledge as is (e.g. direct observations or by being told) is
called rote learning. The rote learning strategy has received less attention than other learning
strategies, perhaps because it is considered trivial. Nevertheless, it is not a simple strategy. Rote
learning is learning without any inferences drawn from the input data {Michalski, Carbonell, and
Mitchell, 1983], [Cohen and Feigenbaum, 1982]. Although with rote learning the data remains unal-
tered, some inference is often required to decide where to place the new information. Perhaps a great
deal of inference may be involved in that large portions of the system need to be examined and
adjusted in order to incorporate this new piece of knowledge (see description of reason maintenance
systems later this report).

The earliest example of rote learning, which has since become a classic example, is in Samuel’s
checkers playing program [Samuel, 1963). This program uses the minmax search technique for
searching game trees [Nilsson, 1980]. This technique involves a scoring polynomial composed of
heuristics for scoring board configurations. By using lookahead, and a method of backing up the
values of the scoring polynomials from the lookahead level of the game, a player can select the best
next move to make. Effectiveness of this technique is proportional to both the accuracy of the scor-
ing polynomial and the depth of lookahead used. Therefore, Samuel’s program has an added rote
learning component. By having his system memorize both the board configuration and backed-up
score after minmax has been done, this memorized information can later be retrieved and used, rather
than having to be recomputed. This technique provides the effect of a deeper search without it actu-
ally having been performed. Since the number of board positions that can be saved and searched in a
reasonable amount of space and time is limited, bookkeeping is done on the memorized items. The
checkers playing program catalogues stored board positions for easy retrieval, deletes redundancies,
and discards old records to save room. Samuel’s method of ordering the records is based on fre-
quency of use.

Creation of New Declarative Knowledge

Knowledge can be memorized but it can also be created. One of the most commonly used
strategies for creating new declarative knowledge structures is concept formation. Concept formation
is **the development of a new concept based on observations of instance: .”” Michalski has done much
work in this area. He approaches it both from a standpoint of learning a concept when given exam-
ples structured by a teacher, and also from the standpoint of classifying objects based on attributes
when no instructor is present [Michalski, Carbonell, and Mitchell, 1983]. Michalski's STAR meth-
odology for learning structural descriptions (concepts) from examples, used in programs INDUCE
and AQI11, is a method for searching the space of possible concept descriptions. The algorithm con-
sists of selecting a positive example and its description and creating the most general description that
includes this example and does not include any of the negative examples. If there are positive exam-
ples that this description does not cover then the process is repeated with one of the uncovered exam-
ples. CLUSTER/2, Michalski's program which performs concept learning without teacher guidance,
accepts a random set of objects along with their attributes. It then constructs a hierarchy of classes of
the objects based on similarity of attributes.

The formation of relationship rules is another strategy for creating new, declarative knowledge
structures. Relationship rules that may be formed include causal, temporal, class-property (If B is a
bird, then B flies.). identity, part-whole, categorical (If B is a bird, then B is an animal.). physical
(taller), and predictive. Michalski mentions the formation of class-property rules, which he calls
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descriptive generalizations, but does not treat the subject in depth [Michalski, Carbonell, and
Mitchell, 1983]. Thagard’s program, PI, on the other hand, forms and subsequently uses and refines
class-property rules [Holland, Holyoak, Nisbett, and Thagard, 1986]. In PI, a class-property rule,
which Thagard calls an instance-based generalization, is formed by first searching for classes and
properties that share a common instance. When these pairs are found, provided there are no coun-
terexamples, a rule is formed. The strength of this rule is based on both the number and the variabil-
ity of the instances.

Newly formed, declarative knowledge structures may also be in a very complex form. The for-
mation of theories, explanations, and justifications might require a complex chain of reasoning involv-
ing both learning and problem-solving strategies. Pl models scientific theory formation [Thagard and
Holyoak, 1985]. This program is able to formulate, using a number of learning and problem-solving
strategies, the wave theory of sound. Since this program is an example of multistrategy integration, it
is described in depth later in this report.

Creation of New Procedural Knowledge

In addition to declarative knowledge structures, new structures containing procedural informa-
tion may be developed. The classic Al example is condition-action rules. These are prevalent in
expert systems, and one of the most natural uses for machine learning is the creation of new rules to
augment the knowledge bases of these expert systems.

Another type of procedural data structure that may be formed is a plan. Carbonell [Michalski,
Carbonell. and Mitchell, 1983] creates new plans using analogy. His program solves problems, then
uses a metaheuristic search to adapt the old solution to the new situation to formulate a plan suited to
solve the new problem. Although plan formation from scratch is generally considered problem-
solving, when analogy is used to form a new plan then the old and new plans may be combined to
form a generalized plan, and this involves learning.

2.1.2 Refinement of Existing Knowledge

New knowledge structures that enter a system must somehow be properly incorporated into the
system. and both new and old structures must be adapted over time to suit new and changing cir-
cumstances. Therefore, learning generally involves some form of knowledge refinement. Two tactics
for refining knowledge exist: modifying individual structures of a system, and modifying the system
as a whole.

Modification of Individual Structures

Generalization, or specific-to-general modificrtion, and specialization (also called discrimina-
tion). or general-to-specific modification, are the most widely used strategies for modifying individual
concepts and rules. Mitchell’s candidate elimination algorithm [Michalski, Carbonell, and Mitchell,
1983]. also described in the literature by a similar technique called focusing [Bundy, Silver. and
Plummer. 1985]. exemplifies the use of these two strategies. which often complement cach other.
This algorithm is used for learning concepts and is based on the version space representation. A ver-
sion space of a concept is a specification of its most general and its most specific form known at any
piven time. For example, if the concept is “*bird,”" then the most general form might be "animal
with two legs™™ and the most specific form might be **canary.”” The general and specific boundaries
are sufficient for delineation of a partially learned concept. Training examples narrow the range.
thereby refining the concept description.  Positive training examples raise the specific boundary
whereas negative examples lower the general boundary. When the range converges to a sngle
description (general and specific boundaries coincide), one may be assured that the concept has been
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DIANA F. GORDON

completely learned. The candidate elimination algorithm is used in a program by Mitchell et al.
called LEX.

Another strategy for refining data structures is to modify classification hierarchies. A system
may do this by tacking on excepiions or else by rearranging the hierarchy itself. The former is far
more common. For example, suppose an agent believes that knives are a subclass of eating utensils.
It then observes a knife that does not fit this category. It could either maintain the existing classifica-
tion hierarchy and tack on the new knife as an exception, or it could modify the hierarchy itself to
make knives no longer a subclass of eating utensils.

When an agent’s beliefs and observations contradict, retraction of the original belief is a method
of resolving the conflict. This strategy is rarely useful, though, because it is usually safer to modify
or maintain the belief unless overwhelming evidence is found to the contrary.

Interesting and useful results may sometimes be obtained by combining pieces of existing data
structures to form a single new one. This is the motivation for the crossover operation of genetic
algorithms. Genetic algorithms are algorithms developed by Holland to simulate the biological natural
selection process [Holland, Holyoak, Nisbett, and Thagard, 1986], [Goldberg, 1985]. They consist of
operators that perform reproduction and recombination upon a population of individuals to facilitate
adaptation to a changing environment. The elements of this population may be rules represented as
bit strings or any number of data structures. In classifier systems, which use genetic algorithms, the
individual rules of the population are the parts that get altered. One operation for alteration is the
crossover operation. It consists of taking two individuals and choosing selected portions of both to
form a new offspring. Thagard, in his program PI, adapts this operatur to recombine concepts. He
entitles his operator conceptual combination. Through the use of conflict-resolution rules, Pl is able
to combine two seemingly conflicting (based on their default properties) concepts, such as ‘‘feminist’’
and “‘bank teller,”’ to form a new "‘feminist bankteller’” concept possessing reasonable characteristics.

Modification of Multiple Structures

In the process of learning, an agent may modify its knowledge base as a whole. Grefenstette
and Pettey compare two approaches to genetic algorithms [Grefenstette and Pettey, 1986]. The first is
the classifier system approach, where each structure of the population is a single production rule.
The second is a rule sets approach, for which each structure consists of an entire set of rules that is
evaluated for its fitness and modified as an entity (rules are altered rather than bits). A combination
of the two approaches may prove to be advantageous.

Other approaches to modifying a system as a whole include self-organization and truth mainte-
nance. To incorporate new knowledge, large portions of a system might need to be altered. For
cxample, if rote learning is used to acquire new information, and the new information contradicts
existing information. then internal consistency must be reestablished. This reestablishment of con-
sistency is one of the purposes of a fruth maintenance system. Doyle, the developer of the earliest
truth maintenance system, states that beliefs usually have justifications [Doyle, 1981]. Each proposi-
ton 1n his system either has at least one currently valid reason or has no currently acceptable reasons
(either has no reasons or no currently acceptable ones). The reason for each belief is an ordered pair
consisting of the set of beliefs currently held to be valid and the set of beliefs currently not accepted.
When a contradiction occurs, this truth maintenance system invokes a process called dependency-
directed backtracking to find and remove at least one of the current assumptions to regain con-
saistency. De Kleer has extended Doyle’s truth maintenance process to an assumption-based rather
than justification based one [De Kleer. 1986]. In his assumption-based truth maintenance system,
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each belief is labeled with the sets of assumptions (representing the contexts) under which it holds.
The assumptions are the primitive data from which all other data are derived. In De Kleer’s system,
there is no need for the overall database to be consistent, only a particular context.

2.2 Dimension 2: Type of Inference Technique Involved

Once the type of modification to be made to the knowledge base has been chosen, a system must
select a means of achieving this modification. One way of categorizing such inference techniques is
on the basis of whether or not they are monotonic.

2.2.1 Monotonic Inference

The term monotonic refers to a feature that holds of first-order logic, namely, if A and B are
sets of first-order formulae and w 1s any formula, then if w is valid in the presence of information A,
then w is still valid after B is discovered. Deductive inference preserves the monotonicity of a sys-
tem. Some forms of generalization and specialization may be realized solely through the use of
deductive inference [Michalski, Carbonell, and Mitchell, 1986, Chapter 9], [Mitchell, Keller, Kedar-
Cabelli, 1986].

2.2.2 Nonmonotonic Inference

Although learning can be done using only deduction, most learning also involves leaps of faith.
Induction. analogy, abduction, circumscription, and statistical inferences are some of the possible
inference techniques for making leaps of faith. These techniques may introduce nonmonotonicity into
the system in that the result is drawn from incomplete knowledge and therefore may have to later be
revised as new evidence arises. Learning often consists of a process of forming and revising such
conclusions.

Induction

Inductive inference is the most commonly used nonmonotonic machine learning technique. The
dictionary defines induction as ‘‘the process of reasoning or drawing a conclusion from particular
facts or individual cases’® [Webster, 1983]. Nevertheless, machine learning literature uses the term to
denote the heuristic process of forming and refining knowledge structures based on new information
using incomplete knowledge. Although analogy, abduction, and circumscription may fit the diction-
ary definition of induction as well, they are usually considered to be separate processes. Induction is
often the technique used for rule and concept formation, and also for generalization and specializa-
tion. Michalski [Michalski, Carbonell, and Mitchell, 1983] views inductive learning as a heuristic
search through a space of symbolic descriptions, constrained by background knowledge. The goal
state of this heuristic search, he states, is an inductive assertion that implies the observational state-
ments, satisfies the problem background knowledge, and maximizes a given preference criterion.
Operators for searching this space are generalization, specialization, and reformulation. Michalski
distinguishes between selective and constructive rules for inductive search. If every descriptor in the
generated description is among the descriptors of the initial description, then the rule is seleciive. oth-
erwise it is constructive.

Analogy

Analogy. as applied to problem solving, is a two-step process. Given a target problem and
situation, the steps of analogy consist of finding the most similar source problem solution, adapting it
to fit the current target situation, and (often there is a third step of) generalizing those aspects that
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DIANA F. GORDON

both the source and target solutions share in common. The generalization step performed after an
analogy has been drawn is a form of inductive inference. Winston has researched the use of analogous
precedents for finding solutions to exercises [Winston, 1982], {Winston, 1984]. His program MAC-
BETH takes a story and a precedent and forms causal connections between elements of the precedent
and those of the new story. These causal connections, in the form of links, are then made into a new
rule for future use by the system. Carbonell. as described above, views analogy as a source for plan
formation. Darden applies analogical reasoning to scientific theory or hypothesis formation [Darden,
1983].

Abduction

Another type of nonmonotonic inference used in learning is abduction. This process is useful in
diagnosis. It consists of generating explanations from a given a set of symptoms. Abduction is a leap
of faith in that the resultant explanation is plausible. yet is not necessarily true. Reggia sees the com-
putational implementation of abductive inference as a generalized set covering or parsimonious cover-
ing process [Reggia. 1985]. His domain is medical diagnosis. According to this process. an explana-
tion (consisting of a set of disorders) may be chosen if it can both account for ali the manifestations
present and be parsimonious. Thagard believes abduction plays ‘*a major role in the justification, as
well as the discovery of scientific theories™ [Holland, Holyoak. Nisbett, Thagard. 1986]. When
Thagard’s program PI finds competing explanations for a set of evidence, it selects the best one based
on both consiliency and simphcity. Consthency ““favors one hypothesis over another if what is
explained by the latter 1s a proper subset of what is explained by the former.’” Simplicity favors the
hypothesis that is based on the fewest assumptions {Thagard. in press].

Circumscription

McCarthy [McCarthy, 1980]. [McCarthy, 1986], [Etherington, 1984] has developed an interest-
ing technique for drawing tentative conclusions. McCarthy's technique, called circumscription, is
motivated by the problem of allowing an agent that has limited time for computations to draw conclu-
sions based only on the evidence at hand. without having to consider the myriad of other possibilities.
For example, if a robot’s task is to put out a fire with an extinguisher with which it is equipped. the
robot should not have to consider all potential obstacles to performing its task (such as a defective
extinguisher or a brick that might fall on top of the extinguisher and break it) before acting. If new
evidence is presented. such as a fire extinguisher that actually is defective, the circumscriptive conclu-
sion might need revision. Although revising erroneous circumscriptive conclusions would involve
learning, circumscription currently remains a domain studied by researchers of nonmonotonic logic
rather than machine learning.

Statistical Inference

In addition to the logical techniques for machine learning, there are also statistical techniques.
A reason for using a statistical, or numerical, technique might be to allow formation of beliefs such as
“*Most birds fly.”” Numerical learning methods deal directly with the uncertainty inherent in the new
knowledge structures formed by a learner, as well as the uncertainty of the existing knowledge. Two
popular approaches to dealing with this uncertainty are probability and fuzzy logic [Zadeh. 1983].
One advantage of using probability for non-monotonic reasoning is that it can limit the amount of
inference used. In Ginsberg (1985), an example is given. The motivation is similar to that of cir-
cumscription; namely, to accept a conclusion without consideration of all circumstances that could
prohibit such a conclusion. For instance, suppose we are trying to prove proposition p and proving p
involves proving that proposition ¢ is unlikely. If proving g unlikely would not affect the eventual
probability of p more than some insignificant value, then the system should not bother trying to prove

LR B 4 .Y [N Pl e T
v-fw ?' ,.x RN 'h""'*-' \ N N
i

) \
Wl n h‘ |"‘|‘ LI,

.




f—-m——- L hialidbal Aai o 4 et Aad Bal g s o b b B B b b di b a4 A A 4 4 - "W L aad a4 4

NRL REPORT 9075

the unlikelihood of ¢g. The advantage of fuzzy logic is that it allows derivation of propositions with
quantifiers such as “*most™’ and ‘‘usually.”

2.3 Dimension 3: Explanatory Nature of the Inference

One aspect of learning programs that relates to the monotonic vs nonmonotonic distinction is the
empirical vs analytical distinction. When the rules that are formed and used by a system are shallow
(i.e.. quantitative), thereby requiring large amounts of data, the system is considered empirical.
When a system possesses and uses, and perhaps forms, explanatory structures, then it is considered
analytical. If learning is empirical. then induction and other leaps of faith must be used to form a
conclusion. However, in a purely analytical system, the knowledge of the system is complete enough
to use deductive inference.

There has recently been an increasing interest in a powerful set of analytical techniques for
deductively formulating a new generalization from a single example. The techniques are called
explanation-bused  generalization. They are model-driven, knowledge-intensive methods of rule-
learning that use the technique propagation of constraints. These techniques are motivated by
Dijkstra’s concept of weakest precondition [Dijkstra, 1976]; i.e., backward constraint propagation is
performed upon a rule to derive the weakest possible sufficient rule precondition. Explanation-based
generalization relies heavily on a strong domain theory to constrain the generalization process. From
a single training example. these analytical methods can produce a valid generalization along with a
deductive justification of the generalization. The EBG method [Mitchell, Keller, and Kedar-Cabelli,
1986} is a method that encompasses other explanation-based generalization techniques. It first con-
structs an explanation tree in terms of the domain theory that proves how the training example satis-
fies the goal concept definition (the concept to be learned) and whose leaves satisfy the operationality
criterion (which specifies the language of the target generalization). This method then regresses the
goal concept through this explanation structure to determine a sufficient set of conditions under which
the explanation structure holds, stated in terms that satisfy the operationality criteria. Therefore, the
EBG method is a two-step process. the first step creates explanations separating relevant from
irrclevant example feature values, and the second step ‘‘analyzes this explanation to determine the
particular constraints on these feature values that are sufficient for the explanation structure to apply
in general™™ [Mitchell, Keller, and Kedar-Cabelli, 1986).

2.4 Dimension 4: Direction of Inference

Inference may either be data driven or mode! driven. In data-driven methods, learning is trig-
gered by the data, whereas model-driven systems learn by formulating expectations and subsequently
testing these assumptions. For example, suppose a system is designed to learn about the time of
occurrence of high tide. A data-driven system would probably collect daily observational data corre-
lating times and tide levels and then formulate a conclusion. A model-driven system might use the
theory of gravitational attraction between the earth and the moon to predict high tide. It would then
test these expectations.  If expectations were to conflict with results, the model-driven system would
retine its theory. A system that is both data and model driven is BACON.S. which is described in
Section §.

2.5 Dimension 5: Autonomy of Learner

Another aspect by which one may compare machine learning systems is that of the autonomy of
the learner (also called amount of inference) [Michalski, Carbonell, and Mitchell. 1983] [Michalski.
Carbonell. Mitchell. 1986]. The role of a teacher is to pre-digest and then present material to an
agent in a manner conducive to learning. Without such an instructor, the agent must first transform
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DIANA F GORDON

the input to a useful form before other learning processes can take over. Learning autonomy ranges
from being told by a teacher exactly what the agent needs to know to observation and discovery at the
other end of the scale. Since this report relates to autonomous systems. we only discuss learning by
discovery.

2.5.1 Discovery Systems

Both Lenat and Langley have built discovery systems, and although the aim of both is to do
scientific discovery, their approaches contrast sharply. Lenat’s program AM discovers new domain
concepts. His subsequent program, called EURISKO, not only discovers domain concepts but also
new heuristics [Lenat, 1983]. [Lenat, and Brown, 1984]. EURISKO has an internal agenda of topics
to explore. Rules and concepts are selected for exploration or modification based on how interesting
they are rated by Lenat’s program. EURISKO's basic motivation is to analyze and mutate its own
code in the pursuit of increased worth, a numerical measure of usefulness. Given an initial set of
concepts and heuristics, EURISKO uses its heuristics to seek out and explore interesting patterns for
the purpose of creating new concepts and heuristics, which are themselves open to future modifica-
tion. Although AM and EURISKO’s mutations are largely syntactic ones, these programs have
achieved some surprisingly sophisticated results. For example, from initial set theory concepts and
operators, AM has learned the concept of natura! numbers, as well as advanced number theory con-
cepts such as Goldbach’s conjecture. AM'’s power is largely derived from the fact that the syntax
mirrors the semantics.

Langley’s program BACON, instead of performing creative self-mutations. discovers empirical
laws by detecting regularities in numeric and nominal scientific data [Michalski. Carbonell, and
Mitchell. 1983]. BACON operates within the domain of chemistry. Two laws discovered by
BACON are Ohm’s law and Archimedes' law of displacement.

3. CONSTRAINTS ON STRATEGY CHOICE

An agent capable of more than one of the above learning methods needs to select between them.
Along each of the previously mentioned dimensions, a choice may be made. Factors that influence
this choice of learning strategy can arise from two types of sources: external sources and internal
sources. The external sources include anything originating in the agent's environment, whereas the
internal sources include the learner's goals, background knowledge, and focus of attention.

3.1 External Sources of Constraints

Aspects of the environment of the agent that affect the choice of learning strategy include the
quality . completeness and form of the input as well as whether or not the data is input incrementally.

3.1.1 Qualitv of Input

The quality of the information received by the agent from its cnvironment may range from very
noisy to very reliable. For example, if the agent were a robot. input quality could depend upon the
accuracy of the robot’s sensors. Most machine learning systems to date assume noise-free input.
Only a few researchers, such as Quinlan [Michal-'i, Miichell. and Carbonell, 1986], have tackled the
problem of noisy data. Noisiness of the data could affect the choice of analytical vs empirical tech-
niques and also that of model- vs data-driven techniques. Since empirical meth »ds are less costly than
analytical ones, and since it could be a waste of computational effort to attempt many unsuccessful
analytical inductions on noisy data. empirical methods seem preferable in data-driven learning
situations.  Once the noise has been filtered, analytical methods may be used [Lebowitz, 1986]. In
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DIANA F. GORDON

3.2.1 Background Knowledge
Memories

Consider the following example of memories influencing the choice of learning strategy.
Assume an agent sees 50 birds, and every one of them flies. Such an agent would likely conclude
**All birds fly.”” After seeing a single exception, specialization would be a reasonable strategy; and
the belief could be revised to, “*All birds but this one fly.”’ Alternatively, a more statistical conclu-
sion such as, **Most birds fly,”” might also be plausible. However, if as time progresses 20 more
exceptions arise, a more reasonable strategy would be to retract the original conclusion or else modify
it by postulating the existence of two classes of birds: those that fly and those that do not (reclassifica-
tion strategy). In this example, the number of exceptions encountered has a marked influence upon
the learning strategy choice.

Amount of Knowledge

The amount of domain knowledge available within the system will strongly affect the choice of
deductive vs tentative inference methods. In the face of incomplete knowledge, either internal or
external or both, a system can only rely upon speculative techniques such as empirical, data-driven
learning methods. Analytical techniques may only be used when deeper, more explanatory knowledge
is available. Lack of knowledge can also have a more obvious affect on the learning process. If an
agent has no prior knowledge of a given concept, then it would be impossible for it to refine or aug-
ment knowledge about this concept without first learning about the concept itself. Since new
knowledge builds upon previous knowledge, the amount and nature and organization of existing
knowledge has direct relevance to the type of learning an agent will perform. Mitchell, for example,
purposely restricts the vocabulary given to his system LEX because with a smaller vocabulary, LEX
does not have to deal with a combinatorial explosion of potential results of induction. Utgoff deals
with the ensuing problem of how one might augment the vocabulary of such a system as LEX
[Michalski, Carbonell, Mitchell, 1986]. He calls the vocabulary-related constraints biases and consid-
ers the process of vocabulary extension a form of shift of bias. A system’s knowledge may also bias
it in favor of a particular learning strategy; i.e., an agent that has an elaborate set of heuristics and
other domain knowledge about physical relationships between objects might be more biased toward
learning physical relationships between new objects it encounters than toward learning about other
types of relationships. Thus what an agent knows (or does not know) constrains what it is able to
learn.

3.2.2 Focus of Attention

Another factor influencing an agent’s learning is its focus of attention. If an agent has limited
computational resources, then its attention must be restricted to certain aspects of its environment and
internal knowledge. There are a number of ways in which focus of attention may constrain what is
learned. First, an agent will only be aware of a limited set of external events. Therefore, in addition
to being presented with only a restricted set of stimuli at any time, it may also only be capable of
attending to a subset of these. Furthermore, an agent might also be restricted from accessing all of its
knowledge or all consequences of its knowledge at any one time. An agent that knows all the logical
consequences of its knowledge is considered logically omniscient. Logical omniscience is not very
practical for computationally limited systems. Fagin and Halpern, in their report, ‘‘Belief, Awareness,
and Limited Reasoning,”’ discuss the importance of adopting an approach to dealing with lack of
omniscience ([Fagin and Halpern, 1985]. Using human thought processes as an example of
resource-bounded rumination, they claim people are not aware of everything; they do not always
know the relevant rules; and they do not focus on all issues simultaneously. Drapkin, Miller, and
Perlis have constructed a memory model for real-time default reasoning [Drapkin, Miller, and Perlis,
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% 1985] to model this restricton.  This model has short-term memory (STM), long-term memory ,.;
' (LTM). and intermediate-term memory (ITM). - Their program models “an autonomous system that .
N can act in an ever-changing world. ™ STM represents the system’s current focus of attention. It 1y ‘:
| small teurrently it holds eight beliets, but this can be changed). When STM exceeds its size capacity, ; :
. the excess information flows o ITM . TTM keeps a record of all information that has passed M
I through STM. Intormation may enter STM by observation. from LTM or ITM. or by the use ot the ',
logical rule of inference modus ponens.  Observations such as “bird(Tweety) or Uyvellow(Tweety )™ o
. are supplied to the svstem (to simulate visual input from the external environment). LTM s the loca- :
] tion of the bulk of the system’s knowledge. It is composed of assoctation pairs. where the first ele- \
' ment ot the pair 15 the rrigger. For example. “birdtX)™" may be a trigger associated with the belief ¥
“hird(X) - > tliestX). T When an instantiation of “bird(X0."" such as UbirdiTweety) " 1s in STM then =
“hird(X)" would trigger the other element of the pair, namely, bird(X) - > thes(X).”" to be brought Ky
into STM. On the next inference cycle modus ponens can then be used to inter ““fhiestTweety). ™ t’r
which 1v now put into STM 1t after these additions to STM., 1t 1s oo full, the excess goes into ITM. '
: :
Pl |Holland, Holyoak, Nisbett. and Thagard, 1986]. like the memory maodel. has a focus of !
attention mechanism. The implementation of attention in PL. though. 1s somewhat different than that
. ot the memory model. In Pl there is also a long-term memory, but the equivalent notion to short- :::
. term memory is a message hist of aerve coneepts. rules and problems.  One way in which Thagard™s )
3 message List ditters from the short-termt memory ot Drapkin et al. 1s that rules on the message hst ..:
3 have an associated strength (measure ot past usefulness), whereas n the short-term memory of the :v:
A memory model there are no numerical measures of usefulness: an item s either in or out of the ,
short-term memory. Pl uses the strengths of rules to select those rules that will be fired next. Once !
' a focus of attention mechanism exists within a svstem. it can have great impact upon the type of .
X learning that occurs. It the attention of the system were upon the passing of time. it would be likely $
X to learn temporal relationships: it it were attending to colors, it would probably learn generalizations o~
about colors of certain classes of objects; and if 1ts attention were focused on building a structure o
. trom blocks. then st might learn generalizations about shapes and sizes of blocks that are stackable.
: 3
N 3.2.3 Goals :"
- ;‘i
One of the ways in which attention may be focused is by the presence of goals. These goals ::
; might be problem-solving goals. general goals, or learning goals. SOAR. a project of Laird, Rosen- ;.
bloom, and Newell [Laird, Rosenbloom, and Newell, 1986], uses goals as a means of focusing the .
¥ learning that occurs within the system. The type of learning on which Laird et al. concentrate 1s a g.;:
3 process called chunking.  This process, to be described in greater detail below, 1s a form of ;:c’
', knowledge compilation. SOAR chunks only information that relates to the subgoal-satisfaction pro- ::,.
b cedure qust completed.  Because of this, SOAR learns only information relevant to the problem- W
g solving task. Michalski, in a recent program CLUSTER/S. has added goals to the process of concep- ]
. tual chiesrering [Michalski, Carbonell, and Mitchell. 1986]. This program uses a goal-dependency net- e
X work to constrain the process of concept tormation.  The goals in the network are general goals such i
: as survive " and he healthy and beautiful.”” These high-level goals are then decomposed into more ‘:f
\ speaitic ones. such as drink water™ and “eat lean meat.””  As an example. given a system goal of n
] survive, which breaks down into subgoals of avoiding explosive and  flammable  materials, "
! CLUSTER S s able to form more useful classifications of trains carrying various substances than -
X those 1t would have discovered without the aid of such a goal hierarchy. Such a hierarchy of goals \‘:,
: could also impact the choice of learning strategy. [ an agent devoid of relevant goals encounters 97 &f
r grey and 3 brown tocks in a bin, it would be reasonable for the agent to draw a statistical conclusion )
‘ such as, ““Most of the blocks in this bin are gray. " If, instead. the first thing that the agent notices is ::;;
that the brown rocks explode. and it has a survive goal, then it might be more reasonable in light of
this goal to induce a class-property relationship about the explosive quality of brown rocks. It is 3;:,
' advantageous for a system to have, in addition to general goals, knowledge of its own learning goals. 0
' N
. s
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DIANA F. GORDON

To give the LEX system (described above) this advantage, Keller has added contextual meta-
knowledge to Mitchell's program, LEX [Keller, 1986]. This contextual framework makes LEX more
analytical, more responsive o feedback on its behavior, gives it a sense of self-direction for deciding
which concepts are worth learning, and provides it with adaptability. Keller did this by giving his
system, METALEX. knowledge of its own problem-solving procedure, problem-solving goals, and
performance criteria. A learner that knows its learning purpose, such as the improvement of
problem-solving efficiency, also has an advantage in strategy selection. For example, a student study-
ing for an examination under strong time limitations might be better able to use the time wisely if he
or she were aware of both the time limitation and the learning goal of passing the exam. For
instance, if the test expected memorization only, then an aware siudent would be more able to select a
sote learning strategy rather than construction of theories from the text material (which would be both
time consuming and also tangential to the immediate learning goal).

Success or Failure of Goals as Learning Triggers

When environmental feedback fails to meet an agent’s expectations, this is an indication that its
world model needs refining. When the nature of the learning trigger is a conflict between beliefs and
observations, the learning strategies appropriate to employ will not include chunking a successful
problem-solving experience to use in the future. A more appropriate tactic to revise and refine the
world view would be to analyze what went wrong and why it went wrong. On the other hand, if
environmental feedback reinforces the original beliefs, and a sequence of actions was just performed
based on these beliefs, chunking would be an ideal learning strategy to use.

Choice of Learning Task

Another way in which goals may affect learning is in the choice of learning task. For example,
a robot in a factory whose goal is to remove defective parts will probably choose to learn a definition
of the class of parts that are frequently defective. On the other hand, if this factory robot has the goal
of fixturing parts in a machine tool, then a more appropriate learning problem would be to define the
class of fixturable parts.

4. INTERACTION OF CONSTRAINTS

Apparently, an agent’s environment, goals, knowledge, and attention can each serve as a mean-
ingful guide toward contextually appropriate learning. When combined, these constraints form an
even more complete picture of the current situation. However, when combined, the constraints may
tnteract.

In a realistic situation, when an autonomous agent needs to select among learning strategies,
constraints will not be involved in isolation. Instead, many will play a part in influencing the learning
choice at any time. A system that is able to benefit from the full contextual situation will have an
advantage in terms of the learning it will be able to perform. However, when multiple constraints are
simultaneouslv present, there exists potential for interactions. For instance, an agent’s goals may
affect its focus of attention as well as its choice of learning task and learning strategy. Once a goal
has focussed the agent’s attention, though, the object(s) of the agent’s attention might in turn alter the
agent's knowledge and goal. If the agent now has a new goal, then this new goal might redirect the
focus of attention which may then change the subject of the learning. Another influence on the
agent’s focus of attention and learning, besides its goals, is its knowledge.

The preceding set of constraint interactions may be demonstrated by an example. Assume the
agent is a mobile pick-and-place robot on board a ship. This robot is capable of formulating and exe-
cuting plans to achieve either of two goals: ‘‘Transport N object(s) from location X to location Y'*
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r “"Put out fire’’ (the robot possesses a chemical spray that extinguishes fires). If the goals conflict, et
3 the latter will take precedence. As this robot executes plans to achieve its goals, it performs e
. appropriate learning to help it improve its performance in future attempts to achieve the same goal. i
4 The robot is able to detect characteristics of objects such as their quantity, approximate weight, shape. :"'
- size, and whether or not they are burning. Assume the robot is given (by some person or other ¥

.

agent) the goal, “'Transport 10 objects from the front deck of the ship to the stern.”” This goal will

. cause the robot’s attention to be focused on the objects on the front deck. Furthermore. since the . ;
3 goal includes object transportation. learning the class of objects that can be lifted and transported is by
appropriate. For instance. the robot might conclude, **All objects weighing less than 5 pounds can be ,{

lifted and transported.”* Suppose that one of the objects to be transported is burning. Observance of 4

=

’ [N

fire triggers the goal “‘Putr out fire,’’ which takes precedence over the “‘Transport N objects . . .

' goal. While satisfying this new goal, it would be useful for the agent to form a generalization about L,
the characteristics of flammable objects based on the current training example. The form of this gen- A
eralization may depend upon the completeness of the agent’s domain theory about flammability. For '

! instance, if there is no domain theory then the robot might conclude ‘*A flat object can burn.”” If, on ‘,",
the other hand, it has a strong domain theory, then the robot’s attention might be focused upon the

' material of which the object is composed; and the robot might conclude that **An object made of cot- o

3 ton fabric can burn’’ (perhaps using explanation-based learning methods). ;:;_.’

2}

Y . . o

) Apparently, an agent’s goals, knowledge, focus of attention, and learning form a network of ;:.

K interactions as the agent acts and reacts within its environment. The preceding example demonstrates *'a:

| one possible set of interactions, but many other combinations of interactions are possible as well. s

: ::"

. 5. EXISTING MULTISTRATEGY SYSTEMS s,

W : . . . . . «

We now discuss machine learning systems that use multiple learning strategies. These systems ::'

. are reviewed in light of the variety of strategies they use, and also, in light of their use (or lack of B

‘ use) of explicit constraints to limit the choice. Each of the systems discussed uses a unique combina- ;';

L tion of learning strategies: ‘::

4

N e LEX combines generalization and specialization; .':

! iy

¥ 85

e  INDUCE uses various types of generalization; w
oY .?;‘

; . : £

] o BACON.S is both model- and data-driven; .':

] ¥

£

: e  Three systems combine empirical and analytical approaches; ‘1&‘

O

{ e  EURISKO learns multiple types of knowledge structures; and

ple typ g
! JO
. ()
e SOAR, GRAPES and PI possess a variety of learning strategies. SOAR and GRAPES use “:
\ a single learning mechanism, but PI does not. :::
ht
‘ 5.1 LEX !
. . . . . . . .t

b, Mitchell's program LEX [Michalski, Carbonell, and Mitchell, 1983] uses the candidate elimina- :..

o tion algorithm to form the preconditions of condition-action rules. It solves problems within the :‘o.

5 domain of symbolic integration, and its rules recommend the use of operators to solve integration ‘::
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DIANA F. GORDON

problems whenever a precondition of matching an integration pattern is met. An example version
space for a LEX rule would be:

Specific: 3x cos (X)dx — apply OP2

with 4 = 3x and dv = cos (xr)dx,
and
General: f1(x)f2(x)dx — apply OP2

withu = fl(x)and dv= f2(x)dx.

Any heuristic that is more general than the specific boundary and more specific than the general
boundary is plausible. Thus a version space represents all possible versions of a heuristic consistent
with the instances. Initially, the general boundary consists of any preconditions that are required to
use the rule, and the specific boundary is defined by the first positive instance encountered. It
follows that all rules have a beginning form, and this precludes the need for an initial search to
represent the rule. In this way, LEX is able to avoid the complexity of the process of creating a new
data structure. Thereafter, the version space is refined by positive and negative examples. There are
only two allowable learning strategies in the system (since search through the space of hypotheses is
breadth-first). The minimum generalization of the specific boundary necessary to incorporate a new
positive instance, and the minimum specialization of the general boundary necessary to incorporate a
new negative instance are the two strategies. Since the search through the space of hypotheses is
breadth-first, the system need not select among degrees of generalization. Criteria for selecting
between the two strategies is fixed. Negative examples trigger the single allowable method of special-
ization, and positive examples trigger the only allowable method of generalization. Advantages of a
breadth-first approach are its monotonicity and its lack of need to store the instances for further refer-
ence.

5.2 INDUCE

Michalski's program INDUCE [Michalski, Carbonell, and Mitchell, 1983] performs induction
differently than does LEX. Michalski views inductive learning as heuristic search through a space of
symbolic descriptions. A teacher presents INDUCE with a set of observational statements, each
describing an example, along with the information as to whether the example is a positive or negative
example of the concept whose description is to be learned. These initial observational statements
become the start state of the inductive search. The goal state is a description of the class. Strategies
for searching the space of possible descriptions include generalization, specialization, and reformula-
tion. Applied to the domain of conceptual data analysis, INDUCE is able to determine common and
distinguishing properties of cancerous vs normal cells, given initial descriptors of the characteristics
of example cells. Mitchell constrains the induction process in LEX both syntactically, by restricting
the language used. and also by his using the version space method. Michalski's INDUCE uses an
induction process that is less (implicitly) constrained by the design of the system. Michalski adds two
types of explicit constraints to his system. The first is in the form of background information attached
to descriptors of observational data. For example, if the descriptor were *‘color’ or “‘length,”* then
background information might include the domain or type of the descriptor allowable. The second
type of constraint is in the form of preference criteria such as simplicity and putational cost. The
combination of the use of a modified first-order predicate calculus for the descriptions. and the use of
heuristic search to perform the induction allows a wider space of potential choices of inductive con-
clusion. INDUCE is therefore given both semantic background knowledge and syntactic preference
criteria to trim this space. The manner in which this background knowledge will be accessed and
used, and the form it will take, however, is fixed, and is not open to alteration by the program itself.
Neither LEX nor INDUCE is intended to be used for an autonomous agent. The intention in both
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N cases is to present well-designed. nonproblem-specific methods of induction that can be applied to !
problem-solving tasks. Nevertheless, to be used for autonomous. contextually situated agents, it

would be desirable for LEX to have a richer Janguage and INDUCE to have its preference criteria
generated by the svstem.

Wy 5.3 BACON.S )
bl )
>3 An interesting and usetful combination of approaches may be found in BACON.S5, by Langley et
"‘: al. [Langley, Zytkow, Bradshaw,. and Si.mun, 1983]. [Langley. Bradshaw. and Simon, [982]. ‘
K Whereas carlier versions of BACON are strictly data driven, this version has both data driven heuris-
, tics for discovering relationships and expectation-driven heuristics for taking advantage of previous .
5 discoveries to make new ones.  All versions of BACON discover regularities in scientific data within g
,:: the domain of chemistry. The BACON.S system contains “‘four data-driven heuristics for relating
> numeric terms, recursing to higher levels of description, postulating intrinsic properties such as mass
and specific heat. and finding common divisors. BACON.S alse includes expectation-driven strat-
egies tor directing search based on discoveries that the program has already made. These include
i heuristics tor expecting similar forms of laws, reducing the amount of data that must be gathered and
.:: taking advantage of the symmetrical form of some laws.”" [Langley. Bradshaw, and Simon. 1982]. \
.}; Reasoning by analogy in a simple form is also included. Although the criteria tor switching between :
é data- and model-driven techniques is not explicitly stated. it is assumed that expectation-driven {
¥ methods use existing knowledge whenever such knowledge is available. Otherwise. data-driven strat-
- egies must be adopted.  BACON.5 is an empirical system. One way in which Langley et al. would .
::'_: like to improve their system is by adding both analytical techniques and the discovering new analyti- '
ﬁ cal rules to use in these techniques. This would move the BACON series into the realm of qualitative )
:".. scientitic discovery and would increase the noise immunity of the system. )
s
) 5.4 Systems Combining Empirical and Analytical Learning
4
"r: Explanation-based generalization is an effective deductive learning strategy that requires very
:- complete background knowledge. Empirical (also called similarity-based) techniques. such as the can-
e didate elimination algorithm, rely on little or shallow knowledge. Since the amount of an agent’s J
LW background knowledge will probably vary under different circumstances. a robust learner should have
:) a combination of explanation-based and empirical techniques. Contributing researchers in this direc-
’:' tion include Mitchell, Lebowitz, and Kedar-Cabelli. :
4
d )
4 Mitchell discusses a method for combining empirical and analytical learning techniques for :
1,:' learning rules from examples [Mitchell, 1982). His method uses the version spaces representation tor !
P rules described above. With the common language of version spaces. both empirical and analytical
"W techniques continually refine the general and specific boundaries of a version space of a rule until it is
A tully learncd. Explanation-based generalization is intended to precede the similarity-based learning.
- but criteria for deciding when to switch between the technigues is not discussed. :
s:! Lebowitz. on the other hand, describes a method for applying explanation-based learning to the
o results of similarity-based learning to create new causal rules [Lebowitz, 1986]. His svstem uses
o4 similarity-based learning (SBL) when applicable explanation-based learning (EBL) rules are missing b
X or the EBL payoff is not likely to be too high. After SBL has created a number of generalizations of '
& which the system is fairly confident, then EBL is applied to these SBL generalizations.  Lebowitz
‘.\; uses the idea of predictability to focus an otherwise unmanageable (computationally explosive) expla- A
o nation process. Predictability decides what elements are used in the explanation process. To form
- causal rules, it is necessary for his system to distinguish which elements of the SBL genceralizations :
L are causes and which are results.  Predictability recommends calling those features of the generaliza- t
'.t tion that are unique to that generalization predictive; they are most likely to be the causes in a causal X
“ '
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explanation. It is practical to assume that they cause the remaining nonpredictive features. Back-
ward chaining methods find the causal chains that connect the predictive features to the nonpredictive
ones. The second step. that of generalizing the resultant causal explanation chain. is only alluded to
in the paper describing this work.

Kedar-Cabelli has a radically different approach to combining empirical and analytical tech-
niques [Kedar-Cabelli, 1985]. Her system uses the two techniques in different phases of the process
of analogy. It is also notable that for Kedar-Cabelli’s system, context is important.  The context, in
the form of a purpose for the analogy. is explicitly supplied to the system betorchand. Most systems
that use analogy. according to Kedar-Cabelli, analogize between two concepts. Her system instead
analogizes between examples of concepts.  Explanation-based generalization is used to extract those
features of the base example that are relevant to the given purpose. or goal. The resultant explanation
15 then modified to fit the new example.  Afterwards, the two explanations constructed for both the
base and target examples are combined using similarity-based techniques to form a single generaliza-
tion of the goal concept.

5.5 EURISKO

In cach of the systems mentioned so far in this section, the form of knowledge structure created
or retined is of one type. One system that is more varied in terms of the type of modification is
EURISKO by Lenat (1982). EURISKO creates both declarative (concepts) and procedural (heuristics)
knowledge structures, and both creates new structures and refine existing ones.  Various aspects of
concepts and heuristics are also open to modification. For example, the worth measure of both con-
cepts and heuristics may be learned.  Furthermore, multiple strategies such as generalization, speciali-
cation, and analogy are used. EURISKO is an offshoot of an earlier program by Lenat called AM.
AM only learns concepts. The discovery processes of EURISKO are less limited than those of AM
because EURISKO's control structures (heuristics), as well as its concepts, are open to formation and
muoditication.  Both systems have been applied to the domain of mathematics. Other domains to
which FEURISKO has been applied. such as games and circuit design, all share a certain trait in com-
mon. namely, that they are completely formalizable within the machine. For this reason, some of
Lenat’s conclusions do not apply for the scenario of an autonomous agent situated in a complex
environment. The primary way in which EURISKO chooses between strategies ts by metaheuristics.
In complex situations, where information originates externally as well as internally, such heuristics
would be difficult to imagine. For example, if the right-hand side of the heuristic were Use Retrac-
fion, what would the left-hand side look like? One of the most useful ideas implemented 1n
EURISKO, though. is to use the same form (in this case frames) for both the declarative and pro-
cedural knowledge and to make all knowledge structures of the system open to modification by the
svstem atselt. EURISKO also possesses an internal focus of attention mechanism. For EURISKO.,
this 1s implemented as a focus of attention heuristic that “‘recommends pursuing a course of action
simply because 1t's been worked on recently’” [Lenar, 1982]. EURISKO's agenda. or blackboard.
also serves to focus the attention of the program. Learning triggers consist of interestingness heuris-
tics. which comb the knowledge for structures that meet a given set of criteria for interestingness.
EURISKO uses learning triggers as sources of constraints. For example, feedback is used to deter-
mine which type of heuristics to form: **Heuristics that serve as plausible move generators originate
by generalizing from past successes: heuristics that prune away implausible moves originate by gen-
eralizing from past failures™ [Lenat, 1982].

EURISKO is a hybrid system not only from the point of view of the variety in knowledge struc-
tures formed and refined, but also from the point of view of the varying level of autonomy involved
in the one system. In addition to discovery, EURISKO also does rote learning when it fills the exam-
ples category associated with a concept or heuristic.
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5.6 SOAR

SOAR. a project of Laird, Rosenbloom, and Newell, is a program possessing both a general
problem solver and a general learning technique. The goal of the authors of SOAR s 10 Create o
“general learning mechanism,”” which they define to be one ““capable of learming all that needs t be
learned.” The mechanism that they have developed is called chunking |Laird, Rosenbloom  and
Newell, 1986]. The chunking technique is an offshoot of an carlier learning technique which com
piles knowledge into macros [Fikes, Hart, and Nilsson, 1972]. In Fikes et al 's svstem named
STRIPS. a problem-solver is augmented with the capability of forming gencralized plans. These wen
eralized plans, whose problem-specitic constants are replaced by problem-independent parameters. arc
stored 1n a data structure called a triangle 1able and used in subsequent problem-solving  In SOAR.
the experiences ot the problem-solver are codified in the chunks. where a chunk s defined as u
symbol that designates a pattern of other symbols™ and is basically a problem-solving macro. The
theory behind learning in SOAR is that as one practices a skill, chunks are formed that improve per
formance. In terms of the implementation. a chunk is a modified subgoal-satistying procedure
Preconditions tor the chunk are formed from those subgoal preconditions that existed betore the
subgoal was instantiated but that were necessary for subgoal satisfaction.  Actions tor the chunk are
extracted trom subgoal actions that resulted from subgoal satisfaction. ldentifiers of the chunk are
then vartabilized. The major reason that these chunks are applicable in a general way 15 that only
aspects ot the situation that were referenced during problem-solving are stored in the chunks. Chunks
differ from STRIPS triangle tables in that triangle tables are a single data structure containing the
macro.  In SOAR. for each problem-solving operator there is a chunk that causes it to be selected.
Because of this, learning is incremental. In addition to learning operator-selection chunks, SOAR can
also learn chunks that implement the operators. Since transfer between macro-operators exists (some
operators are just symmetric equivalents of others, for instance). the number of macro-operators is
greatly reduced. SOAR does generalization by use of this chunking technique. In addition to gen-
eralization, the authors of SOAR would like the program to be able to do discrimination so it can deal
with overgeneralized chunks {Laird, Rosenbloom, and Newell, 1984]. Although Laird et al. claim
that chunking is general enough to do any kind of learning, a number of other types of learning have
yet to be proven implementable within this technique. Chunking acquires condition-action rules from
goal-based experience. It does not form concepts or various types of relationship ruies: neither does it
consider modification of the system as a whole, as does truth maintenance. fair game.

5.7 GRAPES

Anderson has developed two multistrategy programs, ACT and GRAPES, both described in the
paper. “Knowledge Compilation: The General Learning Mechanism’* [Michalski, Carbonell. and
Mitcheil, 1986]. GRAPES uses a mechanism that is quite similar to chunking. ACT, the predecessor
of GRAPES. incorporates multiple strategies such as analogy, generalization, specialization. and
knowledge compilation, in a single program. These learning strategies are applied to problem-solving
in the domain of creating geometry proofs from both declarative knowledge and practice examples.
Anderson’s newer program, GRAPES, uses his subsequent discovery that the knowledge compilation
technique (which is analogous to chunking) is actually able to do generalization and specialization as
well as the formation of proceduralized macros that it was originally designed to perform.
Anderson’s knowledge compilation consists of two subprocesses: composition, which merges multiple
productions into a single production, and proceduralization. which builds new productions by collaps-
ing the formerly separate processes of information retrieval and production matching. GRAPES con-
structs new LISP functions from the combination of a template and existing LISP function examples.
The problem s hierarchically decomposed into a goal tree. When a new instance is encountered. the
system compares it with the template and uses analogous examples to fill in as needed. Knowledge
compilation is then used to create a new production rule based on a generalization of the experience.
The form of the compilation depends upon the structure of the goal treec. Compiling the process of
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sancng the analogy tesults in the most specific generalization of the two instances. In addition to gen-
vication Anderson uses knowledge compilation for discrimination. The discrimination algorithm
Mveste ol ompaning g new example with previous instances and finding a discriminating characteris-
Pho Concept as discriminated by this characteristic; and  this whole process is compiled.
Vot osupddation s able to amplement both of these strategies, the compilation procedure
wooeds the port ot stratepy chowee. which s the subject of this report.  Anderson considers strategy
pxosing the omain of the problem-solver rather than the learner. According to Anderson, *‘the

Belus Lol Ploness ovcurs as a4 consaious problem-solving effort to find a basis for dealing with a new
o b compilimg the results ot this problem solution, productic. s are formed that will extend to the
Wow edualion IMuchalski. Carbonell, and Mitchell, 1986). Other machine learning researchers,

~ectoas Stichalshy and Carbonelll on the other hand, consider induction and analogy a part of the
cattnng prowess  Hereo learning s intended to include the broader, more inclusive definition, and
Chunkang o knowledge compilation, s considered to be a very general and powerful technique that
My v used o implement o number ot different learning strategies.

In both SOAR ot Laird et al. and GRAPES by Anderson, goals, background knowledge, and
teedback such as success in problem-solving, play a role in constraining that which is chunked. Since
they will only chunk, or compile, what 1s directly related to the problem-solving experience, their
searches are able to be both sufficiently trim and contextually appropriate.

S8 PI

The final system that 15 examined herein is PI, written by Thagard. PI forms scientific theories
by triggening various types of inference in the process of theory construction. The types of inference
that are triggered include deduction, induction (generalization and specialization), abduction, analogy,
and conceptual combination (which is a variant of Holland’s crossover operator, both described
abovey.  PL has rediscovered the wave theory of sound [Thagaird and Holyoak, 1985]. A problem-
solver with a focus-of-attention constraint is at the heart of the system. Attention focus is imple-
mented by the combination of a long-term memory and an active list containing rules, messages
(observations and other propositional facts), concepts, and problems [Holland, Holyoak, Nisbett, and
Thagard. 1986]. Problem-solving begins when the initial conditions and goals are put on the active
list. The process then proceeds by spreading activation, which uses both forward and backward
chaining. The chaining is accomplished by firing the best of those rules on the active list whose con-
cepts are active and then putting the results of the actions back on the list. Rules compete on the basis
of strengtks. which may be altered (or learned) by the system. Rules that have contributed to a suc-
cesstul solution are rewarded by having their strength increased, and those that contributed to an
unsuccessful projection have their strengths decreased as punishment.

At each iteration of PI's problem-solving loop, those conditions that trigger non-monotonic
inferences. such as generalization or analogy, are tested. If active concepts have common instances,
and if the resultant generalization would be agreeable to the agent’s general goals, then PI will form a
class-property rule. Generalization of a rule precondition is triggered if two active rules share a com-
mon action and a common precondition conjunct (syntactic trigger). Specialization is triggered if an
active rule and active instance conflict, and formation of a new concept is triggered by syntacticaily
similar preconditions of two active rules. Therefore, focus of attention (in the form of active status),
goals (by being put on the message list), input (in the form of observations asynchronously put on the
message list), background knowledge (as triggered rules), and feedback (success, failure) are all
involved in constraining the choice of learning strategy. Thus Pl holds much promise as a system not
only useful for scientific discovery but also as a framework for modeling cognitive processing capabil-
ities of an autonomous agent within a complex world. It is, however, only partially developed. Most
potential enhancements to the program lie in two directions. More breadth, depth, and a deeper
understanding of the strategies themselves would be helpful, as well as improved understanding of the
constraints in terms of how they interact in the strategy selection process.
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The first area for improvement, that of developing and refining strategies, has been the major
thrust of research in the field of machine learning. It will no doubt continue to flourish. PI could be
enhanced by the formation of other types of relationship rules such as temporal or predictive rules
based on repetition of events. It might also improve by using a richer repertoire of tactics for dealing
with contradictions. Much human learning occurs as a result of mistakes providing negative feed-
back. PI is able to respond to two types of contradictions: when a projection is unsuccessful, the
rules involved are punished by having their strength reduced. and when an exception is encountered to
a class-property rule such as, ‘*All birds are blue," then specialization is called, which always modi-
fies the rule to make it into a more specialized version, using an unusual property of the exception as
the discriminating conjunct to be added to the rule. Alternative approaches to the latter situation
might consider the degree of unusualness of this property (near miss vs far miss), or the number of
exceptions encountered so far. Additionally, the system should have effective ways of screening
noise.

NRL REPORT 9075

The other direction in which PI may be enhanced is through the study of the constraints them-
selves. For example, both the general and problem-solving goals may form a complex. interacting
network. Currently, these goals are not explicitly interrelated [Thagard, personal communication].

To date. PI has been tested in domains where it is given unrealistic slices of information from
which to draw conclusions so that the program will not waste time searching unproductive paths. As
Thagard states, ““This simulation of course falls well short of capturing the complexity of how
humans might solve the problem. because they operate with a wealth of possibly useful and possibly
misleading information that the program does not have'’ [Holland. Holyoak, Nisbett, and Thagard.
1986]. Adding flexibility, in the sense of improved strategies and a deeper understanding of the role
played by constraints on the strategy choice, might be two ways of increasing PI's ability to handle
messier, more realistic domains.

Although none of the programs described in this section is a complete answer to the design of an
autonomous agent situated in an environment, each has tackled a portion of the problem of combining
muitiple strategies within a single system; and each has had to implement at least some of the preced-
ing constraints to limit the search space involved in the learning process.

6. CONCLUSIONS

Learning involves change in the system’s state of knowledge. The nature of this change and the
nature of the inferential processes involved in instituting such a change may differ. Distinctly dit-
ferent learning strategies may be appropriate as circumstances vary. Clues that help to detine contex-
tual appropriateness may arise from a number of different sources for an autonomous agent. Potential
sources include the nature and timing of environmental input. the agent’s goals and previous
knowledge. the object(s) of its attention, and the degree of match between the agent’s expectations
and 1ts cxperiences.  Such clues may act as guidelines for choosing among the various learning stra-
tegies.

Most machine learning systems to date have implemented a limited number of learning strat-
cgies.  Since the domains in which they have been tested lack the variety and complexity of the real :
world, the need for multiple strategies and multiple constraint sources has been limited. However. in "
order that autonomous agents, such as robots, may cope in less restricted environments, it will be
desirable for them to possess the ability to capitalize upon different situations each in an appropriate !
way.
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