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ABSTRACT

A one-dimensional analysis of the fluid pumping action resulting from the
meshing of spur gears was performed by writing a computer algorithm. Two
separate analyses were conducted; one using incompressible and the other
using compressible flow theory. The incompressible flow calculations correspond
to heavily lubricated gears whereas the compressible flow calculations are
representative of lightly lubricated jears. The analysis demonstrated that the
velocity of the discharged fluid reached high velocities for both cases. The high
meshing rate of the teeth along with the small discharge area is the cause for
the high fluid velocities. Certain geometric design variables of the gears were
seen to affect the peak velocities for each case. The variables most significantly
affecting the peak velocity appear to be the drive ratio and the face width. The
high velocities may contribute to the noise generated during meshing of gear
teeth due to the jet noise as a result of the high velocity jets impinging on the

enclosures surrounding the gears and the formation of shock waves at the exit

plane of the teeth.
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Chapter 1

INTRODUCTION

Smooth, quiet running gears are desirable in many applications. Much has
been done to identify possible sources of noise in gears. It is recognized that the
gear meshing action is one of the most important sources of noise in high speed
machinery. Meshing noise is generated by the nonuniform transfer of torque
between gears due to geometric defects in tooth profiles, gear shaft vibrations,
and bending of the teeth under load [1]. A considerable amount of work has
been done and is currently in progress to predict and lower the effects of these
sources. Ishida and Matsuda [2] studied the effect of friction noise on gears
by examining pitch circle impulse noise simulated by two disks. The same
authors also studied gear noise due to surface roughness [3]. Fukama et al.[4]
analyzed noise mechanisms of axial and radial vibration in spur gears. Badgley

[5] computed the flow of vibration energy within a gear drive train as a method to
N b

understand the noise problem and the technology needed to alleviate it. Laskin
[6] showed a procedure to predict gear noise by computing the mechanical energy
from the sinusoidal displacement and dynamic tooth force and then determined
the fraction of energy radiated in the form of acoustic energy. These studies have
focused primarily on the physical contact between the meshing gears as a source
of noise. One possible source of noise, which has not been thoroughly analyzed,
is the ﬁgw of air and lubricant from between meshing gear teeth. During a high
speed mesh, the time duration of the arc of approach and recession can take on the
order of 100 microseconds. During this cycle, the air and lubricant is compressed

and pumped out at high speeds between the teeth and the ends. See Figure 1.1.

The result of the pumping action is noise and possibly thermal failures. If the
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Figure 1.1 Air and Lubricant Flow. Air and lubricant are compressed
and pumped out from between the teeth
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air velocity between the teeth should reach sonic levels, a shcck wave can form
which emanates noise. Drago (1] mentions this problem for high speed gears with
very wide face-widths. Rosen [7] presented air flow noise as part of an overall
examination of gear noise sources. In his report, he computed the velocity of air
flow in spur gears using incompressible flow theory. By drawing curves of the
meshing volume and discharge area with respect to mesh position, he generated
a graphical representation of the velocity, v = d—V;(ﬁ, where A is the discharge
areaand dV / d? is the time rate of volume change. His analytical resultsindicate
the air velocity approaches sonic levels for a particular gear operating at 20,000
RPM and this corresponded to the experimental result of a sudden rise in noise.
Dudley recognized the thermal complications associated with fluid being expelled
between meshing teeth. He attributes overheating failures of gear box and gear
teeth to high-speed air flow between teeth. For high-speed gears, the gear teeth
act like blades on a centrifugal compressor which heat up due to the friction with
the surrounding air. Further heating is caused by the pumping air each time a
gear meshes. Typical thermal failures are softening of teeth, scoring or pitting
due to oil-film breakdown on overheated teeth, local overloading of teeth due to
thermal distortion of tooth-contact pattern, misalignment of gears and bearings
from distortion of the casing, and failure of bearings due to overheating. To
prevent problemns of this nature, Dudley recommends not using spur and straight
bevel teeth when the pitch line velocity exceeds 10,000 fpm, because they do
the poorest job of expelling air efficiently. As a guide to designers, he also lists
typical axial meshing velocities for helical gears and the corresponding severity of
thermal problems resulting from air flow [8]. Buckingham [9] notes that excessive
oil at the tooth mesh creates heating problems from the high discharge rate of

oil at the mesl:. Smith mentions that noise can occur if oil is trapped in the

roots of meshing spur gear teeth of high face width. If oil cannot escape through
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the ends of the teeth, high pressure develops and it forces the gears apart. The
pressurized oil shoots outward against the gear casing resulting in vibrations [10].

The purpose of this thesis was to assess the magnitude of the fluid velucity
that results from meshing spur gear teeth and to determine whether it reaches
levels capable of causing noise. The fluid velocity was analyzed by assuming one-
diraensional flow and applying incompressible and compressible flow theories.
It is expected that this worl: will form the basis for future experimental and
theoretical analysis of the fluid pumping problem. Eventually, this work should
lead to a better understanding of the hydrodynamics associated with the meshing
action and permit the prediction of conditions causing noise and tooth failures.
Predictive knowledge can aid designers in making more quantified decisions on
choice of geometry and pitch line velocity.

A brief description of the tooth geometry, the meshing action, air flow induced
noise, and formation of a shock wave is given. For gears to run smoothly and
transmit power effectively, the ratio of the angular velocity of the driving gear
compared to the driven must remain constant. The law of gearing states that
the lines of action at every point of contact must pass through the pitch point.
The involute profile is used as a tooth profile because its shape satisfies these
requirements [11]. The inv.lute profile is generated by unwinding a string from
the circumference of a circle. See Figure 1.2. Definitions for the parts of a gear
tooth are shown in Figure 1.3. The diametral pitch is the number of teeth on
a gear per inch of pitch diameter. The pitch cizcle diameter is defined by the
number of teeth divided by the diametral pitch. The addendum is the radial
distance from the pitch circle to the top of the gears. The dedendum is the
radial distance from the pitch circle to the bottom land. The base circle is the

point where the involute profile begins.




——— -

Figure 1.2 Generation of an Involute. The involute profile is generated
by nwinding a taut string from the circumference of a circle.
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Figure 1.3 Spur Gear Teeth Terminology.
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The meshing action (Figure 1.4) is split into two parts; the approach and
the recession. The arc of approach begins with the initial contact of the driving
gear, T at the tooth tip of the driven, T, (solid lines). The contact slides up
to the pitch point where the approach ends (dashed lines). The arc of recession
begins at the pitch point (solid lines) and ends when the tip of the driving gear
loses contact with the driven gear (dashed lines). All of the contact points fall
along the pressure line.

Air flow noise results from three sources: monopole, dipole, and q\_xa.drupole.
A monopole source occurs when air is interrupted at a regular rate. An example
is a siren. A dipole source is one in which a moving stream strikes a solid object
and a quadrupole source is a result of a gas jetl. An example of dipole noise is
the aerodynamic noise generated by fan‘ﬁ;i;:novin_g thivugh air. Quadrupole
sources ol noise arise from a gas jet [12]. Gas jet noise is distributed downstream
from the nozzle with high frequencies near the nczzle and lower frequencies
downstream. When the critical pressure for a gas jet is reached, the jet is choked
and a shock formation occurs which is an additional source of noise [13]. The
motion of high speed gears probably gives rise to dipole and quadrupole sources
of ioise. The dipole source is a result of the gear teeth acting as blades moving
through air and the quadrupole source is due to the jet stream of air exhausted
from between meshing teeth. Calculations in this thesis have shown that for
particular geometries and pitch line velocities, the jet velocities can reach sonic
levels.

Shock waves reprweni rapid changes in the velocity and pressure of the flow
and are modeled as a discontinuity [14]. Shocks are formed when compression
waves become steeper and form a discontinuity. In the particular case of meshing
gears, when the pressure in the mesh region increases enough for the pressure

ratio, pressur~ inside divided by ambient, to reach the critical ratio the jet
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Figure 1.4 Arc of Approach and Recession. The arc of approach and
recession are shown for the driving tooth, Ty, and
the driven tooth, T». The solid lines indicate the beginning
of the arc and the dashed lines the end of the arc.
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becomes choked. The flow expands downstream from the nozzle at supersonic
velocity and a shock is formed outside the nozzle.

Chapter 2 examines incompressible flow for the meshing spur gear teeth in
a stationary rack and gear using a one-dimensional flow model. This model is
most appropriate for heavily lubricated gears in which the composition of the
fluid trapped between the gear teeth is the lubrication oil. The assumption of
an ideal fluid allows the fluid to be considered frictionless and incompressible.
The equation for incompressible velocity is derived by applying the continuity
equation to a control volume. The remainder of the chapter explains the
evaluation of the fluid discharge area and the volume.

A representation of the flow problem for air is presented in Chapter 3 which
accounts for the changes in density. This model assumes the gears are lightly
lubricated with the primary discharged fluid being air. Using this assumption,
the velocity was found to be comparable in magnitude with the local speed of
sound. The compressible velocity equation was developed using the First Law of
Thermodynamics in addition to the continuity equation.

The hydrodynamic action of the meshing gear teeth was simulated by a
computer algorithm. These calculations gave information about the following:
fluid velocity at the exit plane and the temperature, density, and pressure in the

tooth space. The results and discussion are given in Chapter 4. An explanation

of the computer algorithm and a block dilagram is presented in the appendix.




Chapter 2

INCCMPRESSIBLE FLOW THEORY

2.1. Introduction

The expressions which describe the time dependent velocity were developed
based on a one-dimensional model in which the fluid was assumed to be friction-
less and incompressible. Thus, only the continuity equation and expressions for
the relevant geometric parameters are required. The model is based on a contrel
volume defined by the surfaces of the gear teeth and the flow area at the ends of
the gears and the flow area defined by the tip of the engaging tooth and the face
of the corresponding tooth on the driven gear. The analysis began at the angle
of approach when contact first occurs. This approach assumed no flow occurred
before contact. This derivation is appropriate for a stationary rack and gear
and also for a stationary ring and gear. However, for two rotating spur gears an
additional tangential velocity term for the angular rotation of the control volume

should be accounted for by the vector, rw, where r is the pitch radius and w is

the angular velocity.
2.2. Velocity Equation

The velocity equation was derived by first obtaining expressions for the

control volume geometry and then applying the continuity equation to solve

for the fluid velocity.

2.2.1. Control Volume

As the driving gear tooth contacts a pinion tooth, a control volume is formed.
For the calculations, the driven gear was considered the pinion and the driver the

gear, The control surface is described by the boundaries of the involute profiles

of two adjacent pinion teeth, their bottom land, and the profile of the meshing
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gear tooth and the discharge exit area. See Figure 2.1. Note that the control
volume has a variable geometry. The main effort in solving for the velocity was
to obtain an expression for the volume and flow area as a function of the relative

angular position of the meshing gear and pinion teeth.

2.2.2. Continuity

The integral form of the continuity equation states that the time rate of
increase of mass in the control volume is equal to the net rate of mass inflow or

outflow to the control volume.

%/VpdV=-—/Sp'U,-fidS, (2.1)

where p is the density, V is the volume, ¥, is the velocity relative to the
exit plane of the control volume, S is the surface area, and 72 is a unit vector
normal to the surface. Assuming one-dimensional flow, an incompressible fluid

of constant density, p, and flow through a discharge area, A, gives

dv
— = pv dA. 2.2
Canceling p and evaluating the integral gives
dav
— = v,/ A. 2.3
dt T ( )

Solving for the relative velocity gives

1dV (2.4
v, = ——, .
TTAdt
Using the chain rule gives
1dV df
‘UT =", (2.5)
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EXIT PLANE

DRIVEN™S

CONTROL
VOLUME

Figure 2.1 Control Volume. A control volume is formed as the driving tooth
contacts the driven tooth.
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where dV/df is the change in volume with respect to position and df Jdt is
the time rate of change in position. Defining the angular velocity of the gear,

w=df / dt, and substituting into equation 2.5 results in

1dV

Vy = Z-d?w. (2.6)

Dividing both sides by the pitch line velocity, W X Tpi¢ch, gives

vy 1 dv
w X rpitch A X Tpiten df

6r=

(2.7)

This represents the dimensionless velocity escaping through a discharge area, A.

2.3, Geometric Parameters

The two geometric parameters, A and dV / df, depend on tke geometry of
the gears and the position in the mesh cycle. The discharge area, A, was chosen
to have three possible values depending on the path of air flow: area between
teeth, end flow area, and combined flow area. The rate of volume change, dV/d#,
was calculated using a numerical derivative of equation 2.10. The values for the
volume as a function of @ were determined from a 2-D plane area which was
then multiplied by the face width to give a volume. Figure 2.2 summarizes the

variables of the gear geometry used to calculate the discharge area and volume.

2.3.1. Discharge Area

Air escapes from the meshing region by two paths. One path is the direct
discharge between the meshing teeth. The other is flow out the ends of the gear.
See Figure 2.3, The amount of flow through either path depends on the tooth
height and the face width of the gear. In the case of wide gears, the discharge
area between the teeth dominates flow. When the face width is narrow, end flow

dominates. A combination flow results for intermediate face width gears.




14

anZ LT

Figure 2.2 Driving Gear Tooth Geometry.
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END

BETWEEN
TEETH

FLOW

Figure 2.3 Flow Paths for Discharged ¥iuid. Air escapes either through
the ends or between the the teeth.
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To determine the area for discharge between the meshing teeth, the shortest
chord distance between the meshing teeth is calculated and the backlash amount
is added to the chord length. During the approach, chord?2 is defined as the
distance between the involute surface of the upper pinion tooth and the near part
of /the tip of the engaging gear tooth (trailing edge involute, rijny2). See Figure
24 Thus, the area between the teeth for flow is (backlash + chord?2) x
face width. This is not precisely true near the end of the mesh cycle because
the involute portion of the tooth is closer to the meshing tooth than the tip, but
at that time in the mesh the chord is clesed off and the distance is reasonably
represented by the backlash amount. The backlash is the amount the teeth are
cut thinner than the theoretical dimensions. The backlash accommodates any
expansion of the teeth due to temperature effects.

The end flow area for one end equals the control volume divided by the face

width. The total end flow area is twice the single end area and is given by
total end area = 2 x (volume/ face width). (2.8)

The combined area was chosen to be the sum of the area between the meshing

teeth and the end flow with a factor related to the tooth height and face width.

The combined area is given by

' tooth heigh
combined area = between teeth + (end ared X f)( ooth heig t)z,

face width
(2.9)

where f is the percentage of end area used. This equation was chosen as a
possible representation of the distribution. It is based on the idea that the fluid
will tend to seek the shortest path of least resistance. Using the ratio of the

tooth height to the face width resembles the length of path the fluid may travel.
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CHORD 2

DRIVING
DRIVEN

Figure 2.4 Chord Between the Teeth. The shortest chord length between
the teeth was used to calculate the discharge area '

between the teeth.
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2.3.2. Volume
The rate of volume change with respect to position, 8, was calculated by
taking a numerical derivative of equation 2.10. The volume was described
previously as being bounded by two pinion teeth and the meshing gear tooth.
The volume was calculated by multiplying the two-dimensional plane area, Figure

2.5, by the constant face width of the gear.

volume = (2—D planeg,eq) X face width. (2.10)

The 2 — D planegyeq is the sum of the area between two pinion teeth, Bgrea,
minus the area overlapped by the meshing gear tooth, overlapgreq, and minus

the section no longer part of the control volume, excludedgreq. A description

follows for each component of the 2 — D area.

2 — D planegyreq = Barea — overlapares — ezcludedgreq.  (2.11)

The area between two pinion teeth is

a 2 - 2 - toot area
Bypes = T (fap) 7r(rd,,)N N X tooth ’ (2.12)

where NN is the number of teeth and the area of a pinion tooth is given by

equation 2,13. Figure 2.6 gives a description of the limits for the tooth area

calculation.
trep Tap trep Top
toothgreq = j[ /rdrdd: +/ /rdrdqb
r
o "bPEP . 0 rdp (2.13)
—-2/ / rdrdg,
0 Tinv

where trp, is the thickness in radians of the tooth at the base circle of the

pinion, Tjny is an approximation for an involute radius, and Ep represents the
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" QVERLAP AREA

FINVOLUTE TRAILING

EXCLUDED
AREA

2-D PLANE AREA

FINVOLUTE LEADING EDGE

Figure 2.5 2-D Plane arez. The volume was determined by multiplying the
2-D plane area by the gear face width.
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r ¥ “Ep
dp ap /,L—
%% r é
<3 L ‘ —
' X
= ir / Y

bp
Top

Figure 2.6 Area of a Pinion Tooth. Description of angles and radii used
to calculate the area of a pinion toouh.
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arc in radians from the beginning of the tooth profile at the base circle to the

tooth tip [9)].

Jrio—ri T2, —r}
Ep =1 —P _ gretan(—-2F), (2.14)

Evaluating the integrals for t00thgreq gives
h 1 2 2 1 2 2 t
toothgrea = ;(rap — rbp)trbp + E(T"” - "dp) Tbp
3
2 2 2/3 5/3
— [ripEp — ropl5 X Ep+3 /*x EY (2.15)
3
+— x 33 x E1/%).
o 2 )

The area overlapped by the meshing gear tooth, overlapgyreq, is approx-
imated by integrating the area of the gear tooth profile inside the addenduzﬁ
of the pinion. The integrals used depended on tile location of the driving gear
tooth centerline with respect to the x-axis and whether or not the base circle
radius of the gear overlapped the addendum circle of the pinion. See Figure 2.7.
If the base circle radius overlapped the pinion addendum during the mesh, four
sets of integrals resulted: Sets 1 through 4. In the case of the base circle of the
gear not overlar~*- ; the addendum circle of the pinion, only two sets of integrals
resulted: Sets 5 and 6. For the calculation of overlapgyreq, approximations for
the involute profile of the gear and the equation of the pinion addendum circle
were developed.

The involute profiles for the driving gear tooth are the leading side riny1,

and the trailing side, 75,2 see Figure 2.8. The profiles were approximated as

Fins = Togl1 + =(39)"/%) (2.16)

and

Finva = Tog(1 + g(a(trbg — )/, (2.17)




PINION

ADDENDUM

CIRCLE
BASE CIRCLE

RADIUS
c N

\ _

Base circle overiaps addendum. When the base circle of the gear
falls inside the addendum of the pinion, four sets of area integrals are
required.

PINION

ADDENDUM
BASE CIRCLE CIRCLE
RADIUS

"~

Base circle outside of addendura. When the base circle of the gear
remains outside of the pinion addendum, two sets of area integrals are
required.

Figure 2.7 Determining Integral Sets.
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INVOLUTE
PROFILE

Figure 2.8 Involute Profiles. The involute profile approximations, riny;
and r;ny2, and angle ¢.
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The approximations were developed using Buckingham’s [9] vector representation

of ¢. See Figure 2.8.

(2 _ .2
¢ Tinv1 rbg
Tbg
Defining 72 = rfm,l/rgg gives

¢ = /72 — 1 — arctan /72 — 1. - (2.19)

— arctan (2.18)

2 2
Tinvi rbg
rbg

Expressing arctan /72 — 1 as an infinite series and eliminating higher order

terms gives

1 3
¢ = —( r2 — 1) (2.20)
3
and solving for 7jpy, gives
Finvy = Tog(1+ (38)7/%)/2. (2:21)

A binomial expansion and elimination of higher order terms allows even a more

convenient form for integrations.

Finun = Toy(1+ 2(36)/%) (2.2

A comparison of the actual involute to the approximation for one set of gears is
given in Figure 2.9. The other limit of integration,rp,n, is the addendum of the

pinion with respect to the origin of the gear, It is derived in Figure 2.10 by using

a coordinate transformation.

The positions of the gear tooth centerline where 8 is defined from the z —
az1s for the beginning and end points for each set of integrais were designated

respectively as start, and stop, for Set 1 and start, and stop; for Set 2 etc.

When the angle of the centerline of the gear tooth falls between angle start,
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Figure 2.10 Addendum of the Pinior. The addendum of the pinion,
Tpin, USING a coordinate transformation with respect to

ihe center of the driving gear, (0,0).
oo b )
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and stop, integral Set 1 is used. The overlap was calculated by first integrating
the complcte area under the tooth profile and then subtracting the area under
the pinion addendum curve. The tooth profile uses a local coordinate system for
the angle integration d® and the pinion addendum uses a global system df. See

Figure 2.11 for details.

The beginning of Set 1 occurs when the tooth tip of the leading edge contacts

the addendum circle of pinion.

2 2
— Tag = (Tpg + Tpp) ] 1igg

~2rag(Tpg + Tpp) 27qg
where 1, is the thickness of the gear at the addendum circle. Stop, ends the

2
start, = arccos[ = , (2.24)

set when the trailing edge involute enters addendum circle. Figure 2.12 gives

details of angles.

lag ,
stop, = start, — —, (2.25)
The integrals for Set 1 are
C—-X Tinvi D-X ray D Tpin
overlapyres = / / rdrdé + / / rdrdé —/ / rdr d,
B-X 0 C-X ¢ B o
(2.26)

where angle X is from the Z4z;s to the leading edge of the gear, angle B is the
point on the involute profile that intersects the addendum of the pinion, angle

C is the end of the involute profile and angle D is the point of intersection for

the two addendum circles.

Evaluating each integral over its limits gives:
C—=X Tinui 1
[ [ rads=2,[c-x-B-x)
B-X o

+ % x 3%3/% x ((C’ - X)5/3 - (B - X)S/a) (2.27)

; -2% x 32 x ((C - X)/* = (B - X))
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Figure 2.11 Local and Global Angles. The angle § measures
from the x-axis and the angle 4 begins at the edge of the tooth.
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LEADING EDGE

r

The beginning of Set 1 occurs when the )
tooth tip of the leading edge contacts the
addendum of the pinion

TRAILING EDGE
INVOLUTE

Set 1 ends when the trailing edge
involute enters the addendum

circle, rap

SAMPLE INTEGRAL FOR SET 1

Figure 2.12 Integral Set 1.




30

and

D—X Tag 1

/ rdrdg = -r2,[(D - X) = (C - X)] (2.28)

cC-X 0
and

D Tpin 1

/ rdrdd = ~(sin2D — sin2B)(rpg + Tpp)’ + r2p(D = B)

B O

— 2(T'pg + Tpp)Tap
1 Fpgt+ T
[-2- sin D\/l — (BE—PPy24in? D

Tap

1 Tog + 7T
- Esin B\/l - (B2 —PPy25in? B

Tap

(2.29)

1 r Tpg + 7
e (arcsin((u) sin D)

— arcsin((22 TRy o B ]
arcs’m(( rop ) sin ))

The beginning of Set 2 is at the end of Set 1.

start, = stop; . (2.30)

Stop, occurs when the base circle at the leading edge of involute enters the

addendum of pinion. See Figure 2.13.

2 2 2
Tap — Tbg — (Tpg + Tpp) 1t
stop, = arccos[ d b P PP ] -2 E,. (2.31)
The integrals for Set 2
C-X Tinu1 F-X 7Tag

overlaparea = + / / rdrd¢ + / / rdrdd

B-X © cC-X o (2.32)

G—X Tinua G Tpin '

+/ /rdrqu—/ /rdrdo,

F-X 0 B 0
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The beginning of Set 2 occurs l
at the end of Setl

BASE CIRCLE
RADIUS

Set 2 ends when the base \
circle enters the addendum of
the pinion, r

ap

SAMPLE INTEGRAL FOR SET 2

Figure 2.13 Integral Set 2.
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where angles X, B,& C are as defined for Set 1 and angle F' is from the

Z— aZ1S to the start of the trailing edge involute and angle G is the intersection

point for the trailing edge involute and the addendum circle of the pinion.

Evaluating each integral over its limits gives

C—X Tinu 1
rdrdé = Ergg[(c - X)- (B -X)
B-x ©
2.3
+§x32/3x((C—X)s/a—(B—X)S/:") (2:33)
+ 218_ X 34/3 X ((C _ X)7/3 — (B _ X)7/3)]
and
F—-X rag 1
[ rdrdg = =r3 ((F = X) - (C - X)] (2.34)
c-X ©
and
G=X Tinva 1
rdrdg = ~ri, [(treg = (G = X)) = (tryg = (F = X))
FZx ©
+ % x 3*/% x ((trpg — (G — X))*/°
— (trog = (F = X))*/°)
+ % x 33 x ((trog — (G — X))/
— (trog — (F = X))/%)]
(2.35)




33

and

G Tpin
/ rdrdf = l(sin 2G — 5in2B)(rpg + rpp)’ + rap(G — B)
B 0 2
— 2(r'pg + Tpp)Tap

1 Ypg + T
[— sin Gy [1 — ((2—PB)25in2 G

1 Tog T 7
— =sinB,[1 — (FL—EE)25in? B

(2.36)

1 r r +r
— ——P___(arcsin ((_pg PP) sin G)
2 Tpg + Tpp Tap

— arcsin((rp—i:—:—pﬁ) sin B) )] .

Set 3 starts with the ead of Set 2.

starty = stop,. (2.37)

Stops occurs when the base circle at the trailing edge of involute enters the

addendum of pinion. See Figure 2.14.

stops = starl; — lrypg. (2.38)

where Iryg is the thickness of the gear at the base circle in radians. Set 3 has two

cases for its integral sets, Case one the leading edge of the gear tooth is above
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The beginning of Set 3 occurs |
at the end of Set 2

TRAILING EDGE
INVOLUTE

I’ap

BASE CIRCLE RADIUS
\

Set 3 ends wnen the base i
circle at the trailing edge involute

enters the addendum circle, rap

an

= X

XCF G
SAMPLE INTEGRAL FOR SET 3 CASE 1

The edge of the tooth is above
the x-axis

X ap
/ ~ |F o
7

[4 \ g
SAMPLE INTEGRAL FOR SET 3 CASE 2

The edge of the tooth is below
the x-axis

Figure 2.14 Integral Set 3.
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the x-axis and Case two it is below the x-axis. The integrals for calculation are

C—-X Tinunr F=X Traq
overlapareq = / / rdrdo + / / rdrdo
0 0 cC.X o
G—X Tinva
+ / / rdrd¢
F-X 0

case one (2.39)
G Tpin
—/ / rdrdf
X o
case two
G Tpin 0 Tpin
—/ / rdr df —/ / rdrdf,
0 0 X o0

where angles X,C, F, & G have been defined previously. Evaluating each of

the integrals gives

C—X rinn
[ rdrde=-ri[C - X)+ 2 x 30 x (€ - X))
2 5

0 0 (2.40)

3

+ 55 X 343 x ((C - X)7/3)]

F-X Trag 1

/ rdrdg = ~ri[(F - X) - (C - X)) (2.41)

J
c-X ©
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G—-X Tinva

rdrd¢ = %rgg [(trbg — (G - X)) = (tryg — (F — X))
F-X ©
+32/% x % X ((trsg — (G — XN*/®
= (trsg — (F — X))*/°)
+ % x 34/% x ((trpg — (G — X))"/*—

(trsg — (F = X))'/%)]
(2.42)

G Tpin
/ / rdrdf = ~(sin2G — sin2.X)(rpg + Top)? + r2p(G = X)
X o 2
— 2(rpg + Tpp)Tap
[l sin G\/?— (____Tpg * rpp)2 sin? G
2 Tap

1 Tpg + 7
— —sinX,[1 - (2E—PR)2sin2 X
2 Tap

Tog + Top, .
-—(arcsin(( P9 __PP)sin G)
2Tpg + Top Tap

o0t 1o 1 )|

(2.43)

1 714p

- a.rcsin((
Tap

Tpin

~

rdrdo= %(sin 2G)(rpg + rpp)” + 12(G)

O'\.Q

(=]

— 2(Tpg + Tpp)Tap

(2.44)
[% sin G\/I - (MP sin? G

rap

(arcsin((rpg a Tpp) sin G))]

2 rpg + rpp ra.p




0 Tpin
1
/ / rdrdf = —(sin2X)(rpg + pp)’ = 755(X)
X 0

+ 2(rpg + Tpp)Tap

1 Tpg + 1 (2.45) '
[— sin X, [1 — (-BL—FBy25in2 X |
2 rap |
1 r Tpg + 7
+ ——g—p———(arcsin((—p—g——pa) sin X))] .
Set 4 starts at the end of Set 3.
starty = stops;. (2.46)

Set 4 stops when the centerline of the gear tooth reaches the x-axis. See Figure

2.15.
stopy = 0.0. (2.47)
The integrals are
C=X Tinut F—X tag
overlapgrea = / / rdrdo + / f rdrdo
0 0 o
H-X rinva H Tpin
+ / / rdrdé — / / rdrdo (2.48)
F-X o o ©
0 rp.n
—/ rdrdf,

where angles X, C W& F have been defined previously and angle H is the angles
from the = — azis to the trailing edge of the driving tooth. Evaluating each

integral over its limits gives
C—-X Tinu

/ / rdrdo = ing [(C - X) + 32/3 & 3 x ((C — X)s/s)
v ; ® (2.49)

_E_ 4/3 _ 7/3
+ g X3 x ((C — X) )]
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- &

: ! X
The beginniny of Set 4 occurs 1

at the end of Set3

—{'-‘_’/’ - X

Sat 4 ends when the centerline
of the tooth coincides with the x-axis

SAMPLE INTEGRAL FOR SET 4

Figure 2.15 Integral Set 4.
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F-X Tag 1
/ rdrd¢ = Erzg[(F - X) - (C - X)) (2.50)
c-X 0
H=X rinva 1
rdrdé = _rl, [(mg — (H = X)) = (trsg — (F - X))
F-X 0

+3%/3 x % X ((trog — (H — X))3/3
— (trog — (F — X))*/?)
+ 2% % 34/3 % ((trog — (H — X))7/3
= (trog — (F = X))"/?)]

(2.51)
H Tpin 1
f / rdrdf = E(sin 2H)(rpg + rpp)* + 7o, (H)
0
2(rpg + T'pp)Tap
(2.52)
_ Sln H\/i (rpg i rpp 2 ‘“n2 H
Tpg + Tpp ]
+5 rpr + — (a.rcsm((———rap ) sin H))
0 Tpin
/ / rdrdf = ——(SIIIZX)(Tpg + rpp) p(X)
X o
+ 2 rpg + rpp rap
(2.53)
—sz\/7 Tpg+ pp 2sin? X
Tpg + Tpp
2 rpg " rpp (arcsm(( rop ) sin X))]

When the base circle of the gear does not overlap the pinion addendum only

two sets of integrals result: Sets 5 and 6. Set 5 begins when the leading edge of
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the tooth tip enters the addendum circle of the pinion. See Figure 2.16.

2 2 2
Tap — Tag — (Tpg + Top) 1t
a gt
starts = arccos[ . d it ] =29

(2.54)
—27qag(r'pg + T'pp) 2Tqg

Set 5 ends when the trailing edge involute enters the addendum of the pinion.

tag -
stops = starts — —, (2.55)
T—R Tsnvl U R fag

overlaparea = / / rdrd¢ + / / rdrdg¢
(4]

U rpm' (2.56)
-/ / rdrdf,
S

where angle R is from the x-axis to the leading edge of the driving tooth, angle
S to the intersection of the leading involute profile and the addendum of the
pinion, angle T to the end of leading profile, angle V to the beginning of the
trailing edge profile, and angle W to the intersection of the irailing edge profile

and the addendum circle of the pinion. Evaluating each integral gives

T—R Tinv:

/ / rdrde = %rzg[(T—R) ~(S-R)
S—-R ©

+ 32/3 X § x (T — R)sla (S - R)S/a) (2.57)
o 2 5o (@~ B (5 - By

U=R Tayg
/ rdrdg = —rgg (U = R) — (T - R)] (2.58)
0]

T—-R
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The beginning of Set 5 accurs \
when the tooth tip contacts the

«ddendum of the pinion, rap

TRAILING EDGE
INVOWTE, r

r.
% ap
I
Set 5 ends when the trailing \

edge involute enters the addendum
circls, r‘_lp

invy

SAMPLE INTCGRAL FOR SET 5

Figure 2.16 Integral Set 5.




U Tpin

rdrd = -:-(sinZU —sin2S){rpg + rpp)? + 12 (U — )

ra.p

{n
©

— 2(rpg + Tpp)Tap

1 Tpg+ 71
[—sinU\/l— (2L—PPy24in2 J
2 rc‘P

1 Tog 4 7
—Esms\/ (PL-——PPy24in2 S

(2.59)

1 r r +r
e (arcsin((u) sin U)
2 rpg + rp ’) h rap
r +r.
- arcsin((—gs———g) sin S))] .

rap

The beginning of Set 6 starts at the end of Set 5.

starts = stops. (2.60)

Set 6 ends when the centerline of the gear coincides with the x-axis, See Figure

2.17.

stopg = 0.0 . (2.61)
T—R Tinun V—R Tag
overlapgreq = / / rdrdo + / / rdrdeo
S-R 0 T—-R ©
W—R rinva
+ / [ rdr dé
V-R O
for case one (2.62)
W Tpin
- / rdrdf

for case two




Set 6 begins at the end of Set5 = START

Set 6 ends when the TN
canterline of the ‘:oth caincides
with the x-axis

R stTvw |
SAMPLE INTEGRAL FOR SET 6 CASE 1

The edge of the tooth is above
the x-axis

= - ? e e
SAMPLE INTEGRAL FOR SET 6 CASE 2
The edge of the tooth is below
the x-axis

Figure 2.17 Integral Set 6.

43



44

Evaluating each integral gives

T—R tinwn 1
/ rdrdé = Erzg[(:r ~R)— (S - R)
S—-R 0O
+ g x 3*/* x (T — R)*® — (S — R)*/) (2.63)
+ % x 33 % (T - RY/*— (S - R)’/s)]
V—-R Tay 1
/ rdrdg=~ri,[(V - R) - (T - R)] (2.64)
T—-R 0
W—-R finvz 1
rdrdé = -ri, [(trog = (W = R)) = (trog ~ (V = R)
V—R 0
4 g x 3%/% x ((trpy — (W — R))*/?
= (trog = (V = R))*/?)
+ 23—8 x 393 x ((trog — (W — R))"/°
= (treg = (V = R))"/?)]
(2.65)
W Tpin 1
[ rdrdo = >EinaW = sin2R)(rpg + rgp)* + 13p(W — B)
R ©
rpg + rpp ra,p
— sm "V\[ (rpg hs rpp Zsin? W
(2.66)

Tpg + T
——sinR 1—(M)2sin2R
p Tap
1 r,

Tpg + T
(arcsin (( P9 PP sin W)
2 Tpg + rpp rap

- arcsin((rpg hl rpp) sin R))]

Tap
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W Tpin

rdrdf = %(sinZW)(rpg +1pp)? + r?,p(W)

o o
= 2(rpg + Tpp)Tap (267
- 2.67
1 Tyg + 7
[— sinW, /1 — (—LB)25in2 W
1 r Tpg +7
-———ap——(arcsin((-ﬂ—pp) sin W))]
27pg + Tpp Tap
0 Tpin
1
rdrdf = - sin 2R)(rpg + rpp)* — rap(R)
R ©

+ 2(rpg + Tpp)Tap

1 Tpg + 7T " T
[5 sin R\/l — (-B—-PPy25in R

(2.68)

+ 1 Ter (arcsin((m) sin R))] .
2Tpg T Tpp Tap

The area subtracted from the space between two pinion teeth is derived from
the discharge area and is designated as the excludedgree. When the chord
length along the disharge area is known, the area from the exit plane out to the
addendum of the pinion can be calculated. The area above the pinion involute
profile can also be calculated. See Figure 2.18. At the point in the meshing
cycle when the tooth tip of the driving gear is no longer the closest point to the
driven tcoth (see chord 2 description), another approximation is used to compute
the excluded area. A cubic equation is fit using the last area calculated and an

estimation of the final value. The integrals are

P, Tap Ep 7ap
ezcludedana=/ /r drd¢+/ /rdr do
’ PLE _ Fro® (2.69)
—/ / rdrdo.
Py ¢
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EXCLUDED
AREA

[ [} \
PS P4 P6 PCL2
/ TO DASHED LINE

Figure 2.18 Excluded Area. Calculation of the area excluded from
the control volume.
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Evaluating each integral gives
Po Tap )
/ rdrd¢ = EPg(rf,p - P}) (2.70)
o Pp
* Ep Tap X
_/ rdrd¢ = Erip(EP — P) (2.711)
P, 0
Ep rinun

2.72

P 0
3
+ 2ol x (B - )

The total plane area subtracted equals

1
ezludedarea = EPg(rip — P})

‘:‘1‘7"2 (EP - P‘])

9 %P

1

'2'[(Ep — P;) (2.73)
+ % x 3%/3 x (B3/® — Py

+ % x 3% x (EY* — PJ/*).

This chapter has presented a method of solution of incompressible flow of

air between spur gear teeth. Through the use of assumptions, 2 numerical

hange in volume were giver.

representation of the change in discharge area and ¢




Chapter 3

COMPRESSIBLE FLOW THEORY

3.1. Introduction

By taking into account density changes, an approximation of the velocity
for a perfect gas resulting from the meshing of a gear and stationary rack was
developed. To develop the velocity equation, the First Law of Thermodynamics
was applied to relate the fluid properties along a streamline from inside the
control volume, where the velocity is assumed to be low, to the exit plane. To
determine the pressure relationship, the continuity equation was applied to the
control volume.

An ideal gas and one-dimensional flow model with constant entropy and
adiabatic flow was assumed. This gives constant properties for the velocity,
pressure, density, and temperature across the flow area. The assumption of
constant entropy, ds = 0, allows any thermodynamic variable to be found in
terms of any other thermodynamic variable. Isentropic flow can be assumed
because friction effects are small over the short distance of accelerating flow and
heat transfer is small because of the short time intervals. The analysis began at
the angle of approach when contact first cccurs between the driving and driven
teeth. Before contact occurred, it was assumed that the pressure inside the
control volume was the same as the ambient and no flow occurred. The discharge

area evaluation and the volume are the same as the incompressible case and were

described in Chapter 2.
3.2. Velocity Equation

Applying the First Law of Thermodynamics along a streamline.gives the

velocity equation. The pressure relationship of the velocity equation is derived
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by applying continuity to the control volume.

3.2.1. Energy Equation

Applying the First Law of Thermodynamics along a streamline for adiabatic

conditions gives

2 2
?? v
hi + =4 = h, + =%, (3.1)
29, 29

where vy is the velocity inside the control volume, v, is the velocity at the
exit plane, h; and h,. are the enthalpy inside the control volume and at the
exit plane, ¢g. is a dimensional constant, and ¢, is the specific heat at constant

pressure. Rewriting the first law with v; = 0 and h = cpT gives

v'.’.
cpTly = cpTe + 2;c. (3.2)

Solving for the velocity squared at the exit plane gives

Vi = 2g.¢p(Ti — Te) (3.3)
T,
v: = 2g.c,Ti(1 — ﬁ). (3.4)

Dividing both sides of the equation by the pitch line velocity, w X rpg, and

defining ¥, = v¢/(w X rpg) and T = T /T results in

29:.¢pTo0 _Tﬁ
@x 1) r,,g)2T(1 T.-)' (3.5)

~2
v, =

-~ 1~k =
Substituting for T,/T; with the isentropic relationship P *%° where P =

P; / P, and taking the square root of both sides gives

v/29c¢pToo -

T - Py, (3.6)
W X Tpg

i}ez

The pressure variable, P , is evaluated in section 3.2.2. by applying the continuity

equation to the control volume. The temperature, T, is evaluated by using the

isentropic relationship

L By | 3.7
Zl’:_(Pe) . (3.7)
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The other relationship can be written as
P  pik
= =(=)". 5.8
P, Pe (5.8)

3.2.2. Pressure Equation

Writing the continuity equation for the control volume

a - — {
E/‘V pidV + -/;3 peUy - dS = 0. 3-9)

‘where ¥, is the relative velocity to the exit plane, Ps is the density, V is the

volume, and S is the surface of the control volume . For ‘he 1-D case

d
zl—t'(p,'V) + peA’U,- = 0. (3.10)
Expanding the equation gives
dp; av
V= dt' Pt peAv, = 0. (3.11)

Multiplying by p‘_;v gives

Ldpi 1AV peA

dt TVt = (3.12)

Using the isentropic case and making substitutions gives
=v =0. (3.13)

Defining P = P; / Pe and substituting gives

11dP 1dV o A
rpa tva Tt Uy (3-14)

Using the chain rule for d}-)/dt and dV /dt gives

11dPd)  1dVd) 5 . A

kPd0dt TV dodt yor=0 (3.15)

—— e — — ——
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Solving for d.P /d8 gives

ik

il [+P 4V _ pte-ne Ar) (3.16)
V db Vw

The pressure, Pin equation 3.16, was solved using the Runge-Kutta fourth order

formula. The step size, A, was chosen by running the program with a small

step size and then cutting the value in half and running the program again to

compare it to the previous trial step size. When the difference in the results was

small, less than 1%, the step size was set.

Until critical conditions are reached, the conditions at the exit plane must
be equal to the ambient pressure p, = poo and P, = P,. The meshing
teeth can be seen to form a converging nozzle. See Figure 3.1. If P, were larger
than P, the stream would expand laterally upon leaving the nozzle; however,
an increase in area at subsonic speeds would cause the pressure to rise further.
Since P, is the ultimate pressure reached, P, cannot be larger than Pg, (14].
Once the pressure in the cavity divided by the ambient has reached the critical
ratio, the flow becomes choked and remains at Mach 1.

The compressible velocity, equation 3.6, approximates the condition of lightly
lubricated gears where it can be assumed that the fluid is only air. By using this
equation, it can be determined whether the velocity reaches leveis capable of
producing shocks and causing noise. The true velocity should include the effects
of the exit plane moving inward and be accounted for in the energy equation.
By neglecting it, a difference on the order of 5% is introduced. Also, for two

rotating gears the effect of the rotating control volume should be included in the

energy equation.
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DRIVING
GEAR

THROAT

CONVERGING
NOZZLE

Figure 3.1 Converging Nozzle. The meshing gear teeth forming a converging
nozzie.

-



Chapter 4

RESULTS AND DISCUSSION

4.1. Introduction

When the driving gear contacts the driven pinion tooth, fluid begins to flow
out from the volume between the meshing teeth. An estimation of the {uid
velocity relative to the exit plane was obtained by using incompressible and
compressible flow theories. Figures 4.1 thru 4.7 contain incompressible flow
results and Figures 4.8 thru 4.24 have the compressible flow results. Figures
4.25 through 4.27 contain comparisons of incompressible and compressible flow
for each of the assumed discharge areas. The geometric parameters for the
incompressible flow figures are given in Table 1. Table 2 contains the compressible
geometry parameters and Table 3 has the comparison geometries.

It was assumed no flow occurred before the driving tooth contacted the
driven tooth and no thermal expansion of the teeth due to temperature rises.
The percent of mesh axis on the plots indicates the position of the driving
tooth as a percentage of the arc from the initial contact, zero percent mesh,
to full mesh position, 100 percent mesh. The velocity is given as a ratio of
the computed fluid velocity to the pitc! iine velocity. The three discharge areas
for analysis were end flow area, teeth flow area, and combined flow area. The
endflow was chosen to represent the meshing of narrow face width gears. For
this case, the fluid is expected to flow primarily out the end openings of teeth.
The other extreme is wide face gears. A wide face width should tend tc force
the discharged air out between the teeth and was designated teeth flow. The
combined flow uses equation 2.9 to account for a combination of the two flow areas

by using the height of a tooth and the face width. The influence of the geometric

parameters including backlash, diametrzal pitch, drive ratio, and pressure angle
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were analyzed. Changes were made to these parameters and the corresponding
peak velocities were plotted. When examining the effect of the parameters only
flow between the teeth was plotted because it represents the most significant flow
of fluid and the highest rates. In the compressible flow results, the position at
which the flow reached Mach 1 was noted with respect to changes in the design
parameters. Also, for compressible flow, examination of the temaperature and
pressure rises with percentage of mesh angle are shown to give insight to the

thermal conditions in the mesh region.

4.2. Incompressible Flow

An example of the fluid velocities attainable for the lubricant using incom-
pressible flow are shown in Figure 4.1. T'ie mesh simulation was done with an
identical gear and pinion with 31 teeth ar.d a diametral pitch of 8.5 teeth per inch,
a pitch line speed of 150 ft/s, a pressure angle of 22 degrees, and a backlash of
.002 inches. The three curves represent flow out the ends, between the teeth, and
combined flow. The highest rate occurs for the teeth flow, ¥ = 30 corresponding
to a velocity of 4500 ft/s, followed by combined, ¥ = 13 curresponding to 1950
ft/s, and end flow, ¥ = 5 corresponding to 750 ft/s. The peak in velocity
is reached at 48% of the total mesh cycle for all three flows. The flow slows
to almost zero at 70% of the mesh. The velocity is represented by equation 2.7,
vfrw = 1/A X dV /df, where A is the discharge area and dV /d8,is the change
in volume with respect to position. From the equation, it is possible to see that
smaller discharge areas and higher volume changes give larger velocities. Teeth
flow gives the highest velocity rates because it presents the smallest discharge
area. The combined area, equation 2.9, is the next smallest area, then finally the

end area, equation 2.8, is the largest area of the three. The likely cause of the

peak occurring at 48% mesh is the area of discharge has reached its minimum
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value while the rate of volume change zontinues to decrease. The flow slows to
zero near 70% mesh because the change in volume, V' /df, has become almost
negligible.

The influence of varying the backlash on peak velocity between the teeth
values is shown in Figure 4.2. The backlash was varied from .0005 inches to
.004 inches using the same gear and pinion at a pitch line speed of 150 ft/s.
The backlash value was added to the chord length calculated between the two
meshing teeth. The velocity increases with a decrease in backlash. Similar results
are obtained for other gear geometries. By assuming no expansion of the gear
teeth due to local temperature rises, the flow discharge area between the teeth
can be controlled by varying the backlash. Referring to the velocity equation;,
equation 2.7, it can be seen that as the discharge area decreases, the inverse of
the area increases the velocity. If no backlash existed, the discharge area would
become very small as the teeth approach contact giving infinitely large velocity
before it finally closed and stopped the flow.

A linear curve results for changes in pitch line velocity. A curve of peak
velocity values for pitch line speeds ranging from 100 ft/s to 400 ft/s is shown
in Figure 4.3. Even at low pitch line speeds of 100 ft/s, incompressible theory
predicts high velocities for this geometry. The curve is linear because in the
dimensionless velocity equation, equation 2.7, the velocity is only dependant on
current geometry values therefore changes in pitch line speed do not affect the
dimensionless velocity. Similar results are predicted for other geometries.

The diametral pitch is the number of teeth per inch along the pitch circle.
Pitches less than 16 teeth/inch are designated coarse pitch and those greater
than 20 teeth/inch are fine pitch. The effect of varying diametral pitch from 8.5
teath/inch to 24 teeth/inch on the peak velocity of discharged air is éhown in

Figure 4.4. As the diametral pitch changes from coarse pitch to fine pitch, the



61

se9’

-sadueyd yse|yaeq jJo uoljounj e se £)00[A ssajuolsuawi(g ¥ a1nl,

21415

S3IHINI NI HSUTAJUS8
ten° 5g00° 13510 seee” cea”’ siea’ (eo’ S200° ‘a

L _ _ _ | _ | o

1—o2

1—0oF

{—o9

1—eal

—ocl

arl

ALIJ0N3A SS3TMNOISN3WIA




62

“Ky1ooaa aui| Yod ‘sa £)oda dqissardwodu] gy In3dig

S/13 NI ALIJ0N3A 3NIT HILId
99S asy oo asg oag ese eag as1 Qg&&sw

Qoes

o00F

0aes

P09

Qees

008

ALIDJ0T3A SS3NOISNIWIO

1008bL

{eeeal

veoti

BT




63

*SC

-f3190[2A ue saueyd o)d [esjawrelp Jo 332 3YF, F'F aIndi [

ysad jedsrewstiq
5°ec ‘@2 A *S1 m.w_ .@— S°L ‘S

] w =
N - -

A1]D018A SSB|UD|SUBW|p

9]
[y

0}




64
velocity decreases. This is a result of the volume change, daVv / df, Leing greater
for coarse pitch gears. The volume change depends on the size of the meshing
tooth entering the space between the teeth. The size of the teeth depends on
the inverse of the diametral pitch. The addendum is 1/P and the dedendum
is 1.25/P so that a smaller diametral pitch results in larger teeth. Changing
the diametral pitch and holding the number of teeth the same does not change
the total mesh angle but does change the diameter of the gears. Therefore over
the same range of motion a larger tooth causes greater changes in the volume
between the teeth for each increment of motion.

By changing the drive ratio between the gear and pinion tha effect that the
mating gear size has on the fluid velocity can be seen in Figure 4.5. The driving
gear had 31 teeth with a diametral pitch of 8.5 teeth/inch, a backlash of .002
inches at a pitch line speed of 150 ft/s. The smaller the drive ratio the higher
the air velocity. As the drive ratio increases,( increase the number of mating
gear teeth), the total angle of mesh increases. Since the size of the teeth remain
constant, for a larger drive ratio the meshing tooth causes smaller changes in
volume as it passes through the longer cycle.

The peak velocities for pressure angles 20, 22, and 25 degrees are given in
Figure 4.6, Little variation in peak velocily occurs for the three values. This
is primarily due to the small change in tooth size. Changing the pressure angle
makes the base circle smaller for larger pressure angles. The base circle is given
as I'base = T'pitch X COSP where ¢ is the pressure angle.

Changing the percentage of flow distributed between the teeth and ends is

given in Figure 4.7, This change increased the discharge area wnich slowed the

velocity.




65

S9

-fy1o0[oA 2y} uo (read Juyeur
a1y} uj Y309} Jo Joquunu) sdBuBYD OLRI JALIP JO 199 Y], §'F 2Indly

AYIQ INLIYH NI HLIIL JO0 AIGHON
29 mm as S¥ 14 S¢ a2 S¢ ac

St

ST

10¢

18¢

10¢

SE¢

ALIJ0T3A SS3INOISN3WIO




66

ac

14

-uotyerrea 3|due ainssaid o3 anp sadueyd £)0PRA  9'p AInIL ]

$33¥930 NI 3T9NY JANSSIAd
¥e 1 <cT ie ac bl

mW_

{6l

1

Le

1be

ALIJ0T3A SS3TNOISNSKICO




67

- ‘1039®] UOIINQIIISIP MOJJ JO UOIPIUNJ & SB AJII0[PA  L'% arndu g

4 NOLLNATJLSIa KOS
5¢° ¥ S¢° g’ 5¢° e’ S1° e

SQ@°

y = > — u v

al

ALIJ073A SS3TINOISNZWIQ




68

4.3. Compressible Flow

Taking into account the compressibility of air, the meshing action of the
gears compressed and pumped out the air trapped between the meshing teeth.
An example of the velocities for the three flow areas is given in Figure 4.8. An
identical gear and pinion with 31 teeth,.8.5 teeth/.inch a backlash of .002 inches
were meshed at a pitch line velocity of 150 ft/s. The rate of the three flows
gradually increased from zero velocity. The position at which sonic velocities
are reached can be seen by the abrupt change in the velocity curve. The flow
between the teeth was the first to reach Mach 1 at 35% of the mesh cycle. The
combined flow eventually reached Mach 1 at 47% of the mesh cycle and the
endflow did not reach Mach 1. The flow between the teeth gives the highest
velocity, ¥ = 8.3 which corresponds to 1245 ft/s, followed by combined flow,
¥ = 8 which corresponds to 1200 ft/s, and end flow, ¥ = 6 which corresponds
to 900 ft/s. As the mesh begins, the pressure change inside the tooth space
increases. Once Mach 1 is reached, the flow is choked and remains at Mach 1.
Any changes in velocity are due to a local temperature rise. The difference in
flow velocity between the three assumed areas can be attributed to the difference
in discharge areas. A wide set of gears would have the highest velocities because
the flow tends to move out between the teeth instead of the ends.

For the same set of gears and a pitch line speed of 150 fi/s, the effect of
changing the backlash from .0005 inches to .004 inches is shown in Figure 4.9.
Figure 4.10 gives the percent of mesh when the air velocity reaches sonic levels.
As expected, the smaller backlash allows the velocity to reach sonic levels sooner.
Changing the driven gear to 63 teeth and keeping the pitch line velocity at
150 ft/s results in subsonic flow throughout the mesh cycle. Figure 4‘.11 gives

subsonic results for changing backlash. The effects for compressible flow are not
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as dramatic as the incompressible results, Figure 4.2, this is due to one part of
the pressure term, P/V dV /df, being more dominant in equation 3.16.

For a 31 teeth driver and a 63 teeth driven gear with a diametral pitch of
8.5 teeth/inch, the geometry does not produce sonic velocity levels for changes
in pitch line velocity. The effect is seen in Figure 4.12. As the pitch line velocity
increases, the resulting velocity and begins to level off near 1100 ft/s for pitch
line velocities greater than 350 ft/s. The non 'inear response of the peak velocity
is due to the non-linear pressure rise and the % power in the velocity equation.
A sonic case is given in Figure 4.13, the corresponding position at which sonic
was reached is in Figure 4.14. The pressure rise is seen in Figure 4.15. From the
pressure curve, it can be seen that the velocity follows the same form.

The effect of varying the drive ratio by changing the number of teeth in the
driven gear is shown in Figure 4.16. For large drive ratios, the air velocity is
slower. The effect of drive ratio on the position (% mesh) when the air reaches
sonic is given in Figure 4.17. The effect is primarily due to the longer approach
associated with a larger drive ratio. The longer approach reduces the volume
changes with respect to position.

Fixing the number of teeth at 31 and changing the diametral pitch from
8.5 teeth/inch to 24 teeth/inch gave the velocities shown in Figure 4.18. The
effect of changing the diametral pitch on position sonic is given in Figure 4.19.
The smaller the diametral pitch the sooner it reaches sonic. Subsonic geometry
results for changing diametral pitch are shown in Figure 4.20. When keeping the
number of teeth constant, the diametral pitch does not change the total angle
of approach, but does change the diameter of the gear. This means that for the
same angle of approach the difference in velocities is primarily due to the change

in the volume with respect to position, dV/dH. The major factor affecting the

change in volume is the size of the meshing tooth. The tooth size varies inversely
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with the diametral pitch. Smaller diametral pitches result in larger teeth which
cause greater changes in volume for each incremental step.

The effect of changing the pressure angle from 20 to 22 and then 25 degrees
gives the result in Figure 4.21. A slight variation occurs due to the small change
in tooth size for changing pressure angle.

A typical pressure variation for the three flows, end, teeth and combined,
is given in Figure 4.22. The pressure peaks correspond to the peak velocity
position.

Changing the flow distribution by making the endflow area account for a
larger percentage of the total disch=rge area is given in Figure 4.23. As expected,
as greater percentages of the end area are added the discharge area increases and
results in a decrease in peak velocity.

The temperature changes inside the meshing region of the teeth for the three
flow areas is seen in Figure 4.24, Starting at the ambient temperature, 80 F,
the end flow temperature problem rises to 150 F, the teeth flow to 350 F, and
the combined flow problem to 220 F. The energy generated must be dissipated.
A portion of the energy is dissipated in the air-oil mix and the other portion is

absorbed by the gear teeth. If too much energy is absorbed by the teeth thermal

distortion results.
4.4. Comparison of Incompressible and Compressible Flow

Using identical gear and pinion of 31 teeth and 8.5 teeth/inch diametral pitch,
the velocities for incompressible and compressible flow were compared for each
of the assumed discharge flow areas at a pitch line speed of 150 ft/s.

Comparing the end flow in Figure 4.25, the incompressible reaches its peak
at 48% of the mesh cycle. The compressible flow case reaches a peak at

approximately 60 % of the mesh cycle while both have approximately the same
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peak value. The delay in the corapressible peak occurs because of the compressing
of the air and the gradual rise in pressure. Comparing the flow between the teeth,
Figure 4.26, the incompressible peaks at ¥ = 30 and the compressible reaches
Mach 1 at 35 % of the mesh cycle. A direct comparison of peak velocities
for incompressible and compressible flow is not meaningful because once the
compressible velocity reaches Mach 1 it is choked and remains at Mach 1.
Comparing the combined flow in Figure 4.27 the incompressible is again

higher and the compressible reaches sonic levels at 43 degrees.

4.5. Conclusions

A one-dimensional approximation of the air oil flow resulting from the mesh-
ing of spur gear teeth indicates the velocity reaches high rates. Incompressible
theory predicts oil velocities as high as 4500 ft/s depending on the pitch line
speed. Using compressible flow theory, some geometries produce air velocities
high enough to approach and reach the speed of sound, Mach 1, at the exit
plane. If the velocity reaches Mach 1, the conditions may lead to the formation
of a shock wave downstream of the exit plane. Should a shock wave form, noise
is emanated which contributes to the overall noise of the gear mesh.

Since the velocities were shown to depend on a number of different design
parameters—diametral pitch, backlash, pitch line velocity, pressure angle, drive
ratio, and face width—further analysic should be conducted to quantify their
exact effect. This thesis has shown the parameters most significantly affecting
the air velocity appear to be the drive ratio and the face width.

Further considerations of this problem should include an experimental
analysis of the fluid flow. Also, an expansion of the analytical portion of the

problem should include two and three dimensions to determine the flow pattern

for different width gears. The inclusion of the effects two rotating teeth have on
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the velocity, the effect of the moving exit plane, and a mixture of air-oil mist

velocity would make the problem closer to the actual system.
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APPENDIX

COMPUTER ALGORITHM GUIDE AND A FLOW CHART

1. PROGRAM EXPLANATION

The computer algorithm approximates the velocity for flow beiween meshing
gear teeth by assuming incompressible and compressible flow theories. For each
case, three flow areas were used: end flow, teeth flow, and combined flow. The
program was written in Fortran i 7 on the Data General Eclipse system. It is run

interactively by specifying the data file and the output listfile.

2. MAIN TROGRAM

The main program reads and echoes the input information. The driven
teeth were considered the pinion and the gear was the driver. The first
subroutine called is SUBROUTINE GEOCAL, which computes the gear and
pinion geometry. For the chosen set ¢f gear geometries, the intial contact
(starting position gear tooth centerline) is computed. The centerline position
is incremented in a DO LOOP by the chosen step size. The program stops when
full mesh position is reached.

The subroutine to compute the incompressible velocity is SUBROUTINE
INCOMPRESSIBLE. The value for the gear centerline position, its absolute
value, and the step size is transferred to the subroutine. Values for the three
flow area velccities are returned.

For compressible flow computations, SUBROUTINE COMPRESSIBLE is
called to compute the pressure, velocity, temperature, and Mach # for each of

the three flow areas. The position of the gear centerline and the size of the step

are sent into the subroutine.
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The computed values are written to the listfile (default unit=12) at the
desired frequency controlled through the input file. The position at which Mach 1

is reached is also written onto the listfile,

3. SUBROUTINE AREA

This subroutine is called by SUBROUTINES INCOMPRESSIBLE and
COMPRESSIBLE, it computes the area between the meshing teeth, AIR2,
by first determining the chord length between the teeth, CHORDZ2, and then
multiplying by the constant face width. The chord is computed by locating the
trailing tip of the driving tooth and computing the arc to the driven tooth. The

backlash amcunt is added in the incompressible and compressible subroutines.

4. SUBROUTINE GEOCAL

This subroutine uses the standard AGMA and USASI tooth systems for spur

gears, The computed radii and tooth widths are written to the output listfile.

5. SUBROUTINE DERIVATIVE

This subroutine computes the change in volume with respect to position,
dV /df. 1t uses the forward difference method for the derivative at the starting
position and the remaining derivatives are computed by the central difference

method. It calls the SUBROUTINE VOLUME.

6. SUBROUTINE COMPRESSIBLE
This subroutine computes the pressure, temperature, velocity, and mach

number for the three flow areas by assuming compressible flow. It is appropriate

for lightly lubricated gears where the primary discharged fluid is air. It uses the

Runge-Kutta fourth order formula to solve the change in pressure with respect
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to position, dP/df. The subroutine calls SUBROUTINE RHS to compute the

intermediate values of the function for the Runge-Kutta method. The formula is
1 1.,
Yj+1 = Y5 + AL (Y5 85) + "f(y,-+L,t,-+1)
1
+ gf(y_g.i.li J+l) + f(y3+1! J+1)]
where At
Yiey = Y5 + 5 fW5t)
At
Viry =¥+ 5 f W tiey)
y;+1 =Yy + Atf(y;:-‘ 7t1+§-)

The intermediate values y;-‘_*_l, y;-‘:}_, and yj+1 must be computed in the order
2 2

given since they are interdependent {15].
7. SUBROUTINE RHS

This subroutine computes the right hand side of the pressure equation

for the three flow areas. It calls SUBROUTINES AREA, VOLUME, AND
DERIVATIVE.

8. SUBROUTINE INCOMPRESSIBLE

This subroutine computes the velocity for the three flow areas by assuming
an incompressible fluid. This case is appropriate for heavily lubricated gears.

SUBROUTINES AREA and VOLUME are called.

9. SUBROUTINE BISEC

This subroutine determines the root of an equation that falls within the given
limits. It is called by the SUBROUTINE VOLUME to determine the point where

the involute portion of the driving gear intersects the addendum circle of the

pinion.
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10. SUBROUTINE VOLUME

This subroutine computes the volume of space between the driver and the
driven teeth. The subroutine is broken up into various integral sets to compute
the area of the driving gear that overlaps into the meshing region. This area
is used to determine the two-dimensional plane area which is multiplied by the

constant face width to give a volume. SUBROUTINES BISEC and SUBTRACT

are called.
11. SUBROUTINE APPROX

This subroutine determines the end and beginning points for the cubic
fit to the approximation for the area to subtract when the SUBROUTINE
SUBTRACT method is no longer valid. The cubic fit used was f(z) =

Qo + Q1T + Q2Z° + agzl.
12. SUBROUTINE SUBTRACT

This subroutine computes the amount of area to be excluded from the 2-D

plane area when determining the volume.

13. LISTFILE

The input data is echoed first followed by the computed gear and pinion
geometry. The remainder of the output consists of the computed velocities.
The first column ic e percent mesh position. The incompressible flow columns
are designated INC E, INC T, INC C and the compressible flow columns are
COMP E, COMP T, COMP C and MACH E, MACH T, MACH C where E

corresponds to end flow, T for teeth flow, and C for combined flow.
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The following variables are read free format one per line into the program:

number of gear teeth

pitch of the gear

pressure angle of the gear in degrees

pressure angle of the pinion in degrees

pitch of the pinion

number of pinion teeth

coarse or fine pitch gear (coarse=1,fine=2)
coarse or fine pitch pinion (coarse=1,fine=2)
the maximum iterations in the bisec routine
the convergence criterion for bisection

face width of gear in inches

face width of pinion in inches

convergence criterion for derivative calculations
density of air in lby, / ft

pressure of the ambient [b f / in?

dimensional gravitational constant in lby,in/lbssec?
pitch line velocity fi / s

ratio of specific heats

increment of change Af in degrees

total number of loops executed

counter for printing results

the number of iterations between write statements

backlash in inches



Read input data file

Echo data

|

Call Subroutine GEOCAL

for the gear and pinion

geometry calculations _

Initialize Pressure, Temperature

and Velocity conditions

Do loop

to increment the position

of the driving gear

Call Subroutine INCOMPRESSIBLE
to compute velocity for the three
flow areas-endflow,teeth flow,
and combined flow

return with values

L

Call Subroutine COMPRESSIBLE
return with velocities, pressures,
temperatures, and mach numbers

for the three flow areas

’

continue

A

stop and end

100
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