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Abstract

The purpose of this study was to test the practicality
of the present method of allocating depot maintenance costs
based on the number of flying hours (FH) and primary
authorized aircraft (PAA). The study addressed two basic
research questions: (1) Is it reasonable to assume that
flying hours and primary authorized aircraft are appropriate
variables to use for development of Air Force depot
maintenance cost factors?;f(Z) Can percentage allocations
presently used for FH and PAA be validated through using a.)
regression analysis on fighter and cargo aircraft data, b.)
using goal programming as an alternate modeling technique to
cross check the regression analysis, and c.) a linear
programming formulation as an additional cross check?

The study found that throughout all three statistical

_approaches, FH is the sole significant variable and PAA is
relatively insignificant in explaining cost. Furthermore,
results show allocation percentages should be 100% to the
variable PH. i

Although the use of FH and PAA is "intuitively
appealing” and may seem logical PH dominates in all three
approaches used in this thesis. Based on this research it
appears that it is more appropriate to base depot
maintenance cost allocation entirely on the amount of flying

viii
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hours. The allocation percentages that are currently used
cannot be statistically verified using several programming
methods.

Among the recommendations is that more analysis is
needed to evaluate other cost drivers that are significant
by themselves, when used with PH, or when two or more others
are used together. However, the regression models created
in this study for fighter and cargo aircraft using FH only
are good models. Perhaps consideration should be given to

allocating depot maintenance costs entirely to FH.

ix

f ca e -..-( q' -* .J -’ ..’ - p.' n.. -, ‘.. n'. - -.F ‘-’ '.‘.\-# \’y..*--'\.‘ \..\- .-.. .-‘-\J.',-.\.'.' '."\,'.';-\;'.“:-\.-

N

It

n

_fu'a"'fn'fl

.

l‘l
e

AN N

.. , . -,
L A .'- ","‘- P

\'-

VA RSy

L _s'

g ¥

..
Wt e e

»
4,

LN | l‘
PR
RO

‘e
. »

»
0

\' [} '-;'-;.'.- '-" »

MY

Sy

a _;.‘_-"_.!:-h Y ',.“‘.",



LAY

12016050548 05 ol nl ol

B8 Bt P p ol b 8 9 0 S st el 8 8 808242 A2 08 ' 82 4% A'a 8% A% 3'a 802 AV ats A'2 AYa &Y So ate A AT, ot aly st Aty ab

A PRACTICALITY STUDY OF AIR FORCE

DEPOT MAINTENANCE COST ALLOCATION

I. Introduction

General Issue

Air Porce Regulation (APR) 173-13, USAF Cost and

Planning Pactors, provides standard or expected cost factors

for all Air Porce zircraft in the active inventory. The
purpose of these factors is to provide "timely, accurate,
and commonly used factors for decision making processes"
(11:1). Two prominent areas where these factors are used is
in the budget development cycle and preparing life cycle
cost estimates. The factors are updated at least annually.
Periodic updates are also issued to reflect the latest
factors based on inflation, changing priorities, and
increased data availability.

Aircraft depot maintenance cost factors are one type of
factor included in AFR 173-13 and contain all "elements of
expenditures incurred by the Depot Maintenance Service, Air
Porce Industrial Fund to inspect, repair, overhaul, or
perform other aircraft maintenance not performed at base
level"” (11:3). Aircraft depot maintenance is a significant
element within the operating and support (0&S) phase of the

weapon system life cycle. 1In FY86, total depot maintenance
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costs accounted for 53.5% of Air Force Logistics Command's
(APLC) total maintenance costs (source:APLC/ACB).

Requirements for Cost Factors. Requirements for

operating and support (0&S) cost factors stem from overall
guidance by the Office of the Secretary of Defense (0SD).
General Air PForce depot maintenance cost factor requirements

are found in APFPR 173-4, Aircraft and Missile Depot

Maintenance Cost Pactors, and working level instructions are

detailed in APR 173-13, USAPFP Cost and Planning Factors.

0OSD Guidance. Presently, direction from the 0SD

Cost Analysis Improvement Group (CAIG) requires that cost
estimates be compatible with the Planning, Programming, and
Budgeting System (PPBS). The CAIG, in the Aircraft

Operating and Support Cost Development Guide states that

.+« many of the cost elements from those 0&S
cost analyses should be compatible with approved
Program, Planning and Budgeting System (PPBS)
costs, and can be used to derive the impact of
alternative aircraft choices on programs and
budgets. (25:2-3)

General Air Porce Guidance. APR 173-4, Aircraft

and Missile Depot Maintenance Cost Factors, provides more

specific guidance to be used to develop, report, and publish
depot maintenance cost factors for Air Force aircraft. This
regulation states that these factors consist of

(1) A variable cost that varies directly and linearly
with changes in the operating aircraft inventory.

(2) A variable cost that varies directly and linearly
with changes in the flying hour program. (10:1)

» -y L I )
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Specific Air Force Guidance. Ultimately, HQ =
¥
USAF/ACC is responsible for developing and providing all ;:
USAF cost factors used to estimate operating and support jf
i~
costs or resource requirements (10:1) and is the office of
primary responsibility for AFR 173-13. AFR 173-13 specifies
that g
l£lying hour] PH factors are the variable costs -
per aircraft associated with each category of A
semivariable costs .... [primary authorized N
aircraft] PAA factors are the fixed cost per Y
aircraft associated with each category of P‘
semivariable costs. (11:3) i
HQ USAF/ACC has directed that data from the Weapon System ®
Cost Retrieval System (WSCRS), which is discussed later in ;1
this chapter, be used as the source for developing the depot .
maintenance cost factors published in AFR 173-13 (12:4). v
:l’-
Current Factor Development Procedure. To comply with ;
- -
O0SD and Air Force guidance, depot maintenance costs are E'
assumed to be either inventory (i.e. primary authorized Qf
4
aircraft (PAA)) or usage (i.e. flying hour (FH)) driven o
(12:78). Following this guidance, depot maintenance cost ;
factors are currently developed by first classifying costs {,
kY
into eight categories called work breakdown structures :j
> A
(WBS). Then, the WBS depot maintenance costs are identified Ei
as either being primary authorized aircraft or flying hours =
o
dependent by applying the percentages listed in Table 1. %
The same percentage is applied to the WBS category ,
regardless of the aircraft or Mission, Design, Series (MDS). ]
5:
L%}
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W Finally, depot maintenance cost per PAA and depot

maintenance cost per flying hour factors are computed.

9

§:|

& TABLE 1

-

. AIRCRAFT DEPOT MAINTENANCE COST ALLOCATIONS

b‘ BY WORK BREAKDOWN STRUCTURE (WBS)

i3

|‘| ——————————————————————————————————————————————————————————

B Percent Cost Percent Cost

B Inventory (PAA) Flying Hour (FH)
WBS CATEGORY Related Related

? Aircraft Overhaul 100 0

y Engine Overhaul 0 100

N Engine Accessories 0 100

! Aircraft Accessories 35 65

. Avionics Instrumentation 35 65

N Avionics Communication 35 65

i) Avionics Navigation 35 65

;, Armament 35 65

B2 (12:78)

&

:5 These cost factors for each WBS within a Mission Design

L

:f Series (MDS) (e.g. PFP-16A, C-130H, B-52G) are currently

‘-

. calculated as follows (12:78):

X%

) WBS Depot Maintenance Cost per Aircraft =

B>

% (WBS Variable Cost) * (%) (1]

& PAA

5 WBS Depot Maintenance Cost per Flying Hour =

‘t

y (WBS Variable Cost) * (3) [2)

FH

b

J where: $ = the percent application found in Table 1

N PAA = Primary Authorized Aircraft Inventory

5 FH = Plying Hours

)

x However, the allocation percentages in Table 1 are

)

; unverified. These allocations come from an undated and

Pt 4
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unsigned paper (approximately 1974) found at Headquarters

Air Porce, Directorate of Cost (USAF/ACC). Therefore, in
1985 USAF/ACC requested a study to determine an appropriate
and scientifically verifiable allocation of depot
maintenance costs to primary authorized aircraft and flying
hours by each aircraft WBS.

Prior to this USAF/ACC request, First Lieutenant Roy
Clayton and Mr Ronald Stuewe (1984) used WSCRS depot
maintenance data in a research effort to validate the
process of using flying hours and PAA to allocate costs.
Their analysis concentrated on USAPF attack aircraft data

from 1977 through 1983. They used linear regression on the

WSCRS generated depot maintenance data broken out by WBS at

the fleet level (e.g. bomber, attack, cargo, etc.). Their
effort could not support the present method of allocating
depot maintenance costs by flying hours and PAA (7:74).

In direct response to the 1985 USAF/ACC request, a
thesis completed by Captain Patricia M. Larson (1986) also
addressed the allocation problem and focused on the
percentages in Table 1. However, in an effort to get more
precise data, Larson used the entire WSCRS data base for
each year and a uniqué computer assisted methodology to
creat a "tailored" data base (vs the WSCRS generated depot
maintenance data base as Clayton and Stuewe had used). This

process is explained in more detail in Chapter 2. Using

linear regression on USAF cargo aircraft data, she attempted

ye -
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to create models for each WBS that estimated the proportion
of depot maintenance costs that were inventory related and
the proportion that were flying hour related. The
proportions in Table 1 could not be verified and the models
she developed are only applicable "for estimating depot
maintenance costs and do not provide proportions of depot

maintenance costs to flying hours and PAA" (18:92).

Specific Problem

The specific problem addressed by this thesis is
twofold. Pirst, is it reasonable to assume, based on prior
studies and the work to be done in this thesis, that primary
authorized aircraft (i.e. inventory) and flying hours (i.e.
usage) are appropriate variables to use for factor
development of Air Force depot maintenance cost factors?
That is, are depot maintenance cost per flying hour and
depot maintenance cost per primary authorized aircraft
factors valid?

Second, can percentage allocations similar to those
presented in Table 1 for WBS categories be validated through

using:

a.) regresson analysis on fighter and cargo aircraft
data from a different breakdown of the data system
(i.e. Federal Supply Group (FSG) categories) from
the WSCRS Recoverable Item Distribution Report?

goal programming as an alternate modeling
technique to cross check the regression analysis
used in a.)?

\ . - B - . . - . “ D A T S ) - - - -
\.‘*v.”-,,-.-* LW W W e e e N e o Y .\'\’v‘\\' - ., W T W P W T S L L S A\ Tl Ly
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¢.) a linear programming formulation as an additional “E

cross check on the results from a.) and b.)?

. .
Overview of Research Approach E.
Linear regression was the primary statistical technique §»

used to estimate depot maintenance costs in the Larson and 8
Clayton and Stuewe studies. Neither study showed a ) ng
significant relationship between the dependent variable, Er
depot maintenance cost, and the two independent variables, S
PAA and PH. ;
Charnes, Cooper and Sueyoshi suggest that an i‘
alternative statistical methodology be used to cross-check )
study results when "important issues of policy are being E“
addressed" (6:4). They used goal programming to check the ;
results of an econometric study done on the breakup of the 2]
AT&T system. This research follows their lead and uses goal ;ﬁ;
programming and linear programming as alternate techniques EE
to cross-check regression results. R
The data base that will be used in this research comes i‘

from the WSCRS system, and is called the Recoverable Item ﬁ;
Distribution Report. This report categorizes depot 2
maintenance costs by Federal Supply Group (FSG) vice WBS as Ei
used in the Clayton/Stuewe and Larson theses and is i:
available for each of the years that WSCRS has been in .5
existence. The Recoverable Item Distribution Report was not 3§
S

available when the Clayton/Stuewe study was done and was not i:




used by Larson because of her desire to create a "tailored"
WSCRS data base,

Analyzing data at a lower level than the WBS
categories--that is, at the Federal Supply Group (PSG) cost
level using the same independent variables FH and PAA--was
suggested in the Larson thesis., Because Clayton and Stuewe
found no relationship between WBS and FH and PAA at the
summary level, Larson felt a more detailed data base might
reveal a relationship if any existed. There are several
times as many PSG classifications than the eight WBS
categories. FPor example, this proposed procedure could
yield the following depot maintenance cost allocations for
cargo aircraft:

(theoretical

Pederal Supply allocations of)
Nomenclature FH PAA

Aircraft and airframe
structure components 80% 20%

Tires and tubes 70% 30%

Air conditioner and air
circulation components 35% 65%

(18:22)

This proposed method of analysis is similar to the

analysis approach for this study. Linear regression will be

used to analyze fighter and cargo aircraft data available
from the Recoverable Item Distribution Report.
Additionally, goal programming and linear programming will

be used as cross checks to the findings.




In summary, this thesis will attempt to verify whether
using PAA and FH to allocate depot maintenance costs is
valid and, concurrently, develop depot maintenance cost

factors based on the results obtained.

Background

This section contains reviews of the Air Force three-
level aircraft maintenance system, the Air Force depot
maintenance system, and the management information system
used to collect maintenance cost data.

Levels of Maintenance. There are three types of US Air

Porce aircraft maintenance: organizational, intermediate,
and depot maintenance. Organizational maintenance is the
most basic maintenance and is performed at the base or
organizational level. It includes activities such as
inspecting, servicing, and the replacement of parts, minor
assemblies, etc. Intermediate main;enance is also performed
at the base and consists of more involved activities such as
calibration, repair or replacement of damaged or
unserviceable parts, the manufacture of critical
nonavailable parts, and providing technical assistance to
using organizations. The third level, depot maintenance, is
formally defined by DOD Directive 4151.16 as:

.+« maintenance [activities which) augment stocks

of serviceable material and ... support

Organizational Maintenance and Intermediate

Maintenance activities by use of more extensive

shop facilities, equipment, and personnel of

higher technical skill than are available at the

9
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lower levels of maintenance., 1Its phases normally
consist of inspection, test, repair, modification,
alterations, modernization, conversion, overhaul,
reclamation or rebuilding of parts, assemblies,
subassemblies, components, equipment, end
items,... manufacture of critical nonavailable
parts and providing technical assistance to
intermediate maintenance c-ganizations, using and
other activities.

"In other words, depots are needed when the maintenance
complexity of a repair is beyond the capabilities of flight
line units" (7:15).

Air Force Depot Maintenance System. Air Force depot

maintenance activities are conducted by Air Force Logistics
Command (AFPLC) at five primary locations. A description of
these locations and some of their major assignments follow.
Ogden Air Logistics Center (ALC) is responsible for two
aircraft (F-4 and F-16) and five engine systems (LRS8, LRS9,
LR87, LR91, and RJ43) along with air munitions, and
photographic and reconnaissance equipment. Oklahoma City ALC
does repair work on seven aircraft (e.g. A-7D/K, B-1B, and
B-52), 19 engine systems (e.g. J~57, F-101, and TP-33),
aircraft instruments, and aircraft hydraulic systems.
Sacramento ALC is responsible for 1l aircraft (e.g. A-10, C-
121, EF/F/FB-11l1, P-5, and the ATF) and numerous
communications-electronics equipment. San Antonio ALC's
repair mission focuses on six aircraft (e.g. A-37A/B, C-5,
C-9A, and C-131), 31 engine systems (e.g., J79, J85, TF34,
TF39, and R2000), and electronic support equipment.

Pinally, Warner Robins ALC is assigned three aircraft

10
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systems (C-130, C-141, and P-15), gunnery equipment, and ?.
airborne electronics (source:AF-ALC/XRXP). The aircraft -

o

gy )

maintenance performed at these depots can be organic (i.e. {'
’ U

performed by military or DOD civilian personnel using 53
K

government facilities), contract, or interservice. =N

Weapon System Cost Retrieval System (WSCRS). The data :;7

-~

on the various depot maintenance operations performed by {t
AFPLC are recorded through a detailed network of thirty-one -
o

management information systems. The FSG cost data used for EQ
(%Y

this thesis come from the Weapon System Cost Retrieval ;ﬁ
System (WSCRS) which is one of those data systems. WSCRS is 3

f.:

- the primary system used to report depot maintenance cost o
. 2

data within APLC. WSCRS assembles data through interfacing Q,
primarily with five AFLC data collection systems. These r
X

are: 24
o-\

* %

1. The D041, Recoverible Consumption Requirements 120,

System, which provides WSCRS with nomenclature,
unit prices, number of condemnations, and the =

quantity of all stock items used for each Mission Q;
Design Series (MDS) (e.g. F-16A, C-130H, B-52G). >

--:*

2. The G033J, Past Program Data System, "provides the {:
actual flying hours and inventory months" (l12:7) )

for each MDS. o

3. The H036B, DMS, ASIF COét Accounting Production i}
Report, provides the annual depot maintenance h
costs (12:6-7). A

[

4. The D097, Interchangeability/Substitution (I&S) 3
Data Maintenance System provides parts stock i:

numbers, g

g

’

5. The D160, VAMOSC II--Weapon System Support Cost
System furnishes costs summarized by work

.22

breakdown structure for each MDS. a
-y
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The office of primary responsibility (OPR) for WSCRS is HQ

APLC Directorate of Cost (AFLC/ACC).

N
' Recoverable Item Distribution Report. For this study,
}
&
: an alternative source of data from WSCRS called the
[
Recoverable Item Distribution Report, will be used. The
)
: Recoverable Item Distribution Report is an alternative to
)
i
: Larson's data base, which is a consolidation of the entire
3!
detailed WSCRS data base into WBS categories. This annual
D)
report gives consolidated mission (e.g. cargo, attack,
I bomber, etc.) cost data for each fiscal year categorized by
Y
‘_ Pederal Supply Group (FSG) and Federal Supply Class (PSC).
¢ Examples are shown in Table 2.
-t
l
) TABLE 2
i
EXAMPLES OF FEDERAL SUPPLY GROUP (FSG) CATEGORIES
: Federal Supply
FSG Commodity Classification
¥, 10 Weapons
: 11 Nuclear Ordnance
k. 12 Fire Control Equipment
N 13 Ammunition and Explosives
14 Guided missiles
15 Aircraft & Airframe Structural Components
16 Aircraft Components & Accessories
26 Tires and Tubes
. 28 Engines, Turbines & Components
s 29 Engine Accessories
30 Mechanical Power Transmission Equipment
‘
)
¥
' 12

......
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Presently, there are 78 federal supply groups
subdivided into 617 federal supply classes. For this study,
costs will be evaluated at the group level:

The Pederal Supply Group (FSG) identifies, by
title, the commodity area covered by classes
within the group. Each class covers a relatively
homogeneous area of commodities, in respect to
their physical or performance characteristics, or
in the respect that the items included therin are
such as are usually requisitioned or issued
together, or constitute a related grouping for
suppy management purposes. (8:iii)

.

Scope of Study

1l. Only data from the AFLC WSCRS depot maintenance
cost data base are used in this study. Assumptions and
limitations of this data are included in the Research
Methodology chapter of this study.

2. Only cargo and fighter aircraft data included in
WSCRS will be examined in this study.

3. This study will analyze aircraft depot maintenance

costs at the mission level for the cargo and fighter mission

categories for all aircraft in these mission categories.

Thesis Organization

This thesis is broken down into five chapters. This
first chapter has identified the general and épecific
problem to be addressed in this study. Then, background
information was presented on cost factor requirements and
regulations, and on Air Porce maintenance. This was
followed by a discussion of the AFLC data collection
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systems, and then the scope of the study was discussed. The
second chapter is a review of literature that pertains to
the issues raised in Chapter I. Chapter III is the
methodology and provides the primary approaches to be used
in this thesis for addressing the problem. The fourth
chapter is the analysis and results of the proposed
methodologies. This research concludes with Chapter V which

contains the conclusions and recommendations.
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I1. Literature Review

Overview

This literature review begins with a review of the
three most common cost estimating methods: analogy, grass
roots (or engineering), and parametric methods. Reviewing
these three methods provides an awareness that there are
different techniques for the numerous types of situations
that arise in the cost estimating environment. In the
discussion on the parametric method, cost estimating
relationships (or CERs) are introduced. This is followed in
the next section by a more extensive look at CERs because of
their importance and widespread use in the cost estimating
environment. The ability to identify cost drivers and the
development of CERsS are key to effective cost estimation
efforts.

Next is a definition of cost factors from the National
Estimating Society dictionary, then a section on how cost
factors are developed. The difference between a cost factor
and a CER is presented, followed by a discussion on the use
of cost factors to explain how they fit in to the cost
estimating process.

In the last section, two Air Porce Institute of
Technology theses~-one by Clayton and Stuewe, and one by
Larson--will be reviewed. Through the use of the WSCRS data
base, each of these studies has used a different approach in
attempting to verify the current depot maintenance cost

15
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allocation percentages and depot maintenance cost factor
development using flying hours (FH) and primary authorized

aircraft (PAA).

Cost Estimating Methods

A number of tools and techniques have been developed
for use in estimating weapon system costs. In the past,
characteristics such as weight and thrust have been used to
estimate aircraft airframe and engine costs, respectively.
However, cost estimators have continuously searched for
other aircraft characteristics that (1) will provide
consistently accurate estimates, (2) are logically related
to cost, and (3) can easily be determined prior to actual
design and development, thus allowing for trade-offs between
cost and physical/performance characteristics (17:1).

The three most popular methods currently used for cost
estimating are the analogy method, the grass roots (or
engineered) method, and the parametric method. Determining
the specific method to be used is normally governed by the
time available for the estimating effort, the degree of
system definition at the time of the analysis, the kind and
amount of input available, and the level of detail required
(27:7.3).

These three methods are described in the following !

paragraphs.,

16
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Analogy Method. When using the analogy method, the

cost estimate of the new item is derived from the past costs
of items that have similar or analogous characteristics.
Contractor price quotations or prior prices are tested for
reasonableness and allowances are made using adjustment
factors (e.g. inflation) for the differences between the
proposed item and analogous items. The data used for making
analogous estimates is normally taken from historical
records of recent procurements which include information on
the specification, schedule, and the contracting environment
in which the item was procured (4:6-7).

Applying the analogy method is appropriate when data
from several similar items are available and when estimating
time is limited. There are several disadvantages of this
method. Pirst, the analyst's judgment as to what is an
analogous item must be relied upon (27:7.5). Thus the
analyst must be completely knowledgeable about the system
for which the cost estimate is being prepared. A second
disadvantage is that adjustment factors used to account for
differences are subjective. They are based on the analyst's
judgment regarding the magnitude of the differences between
the proposed item and the analogous past items used for
comparison. PFinally, analogy models tend to have limited
usefulness with reﬁpect to design trade-off applications
because costs are ordinarily computed as a function of

parameters such as mean time between failures and
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maintenance man-hours per flying hour. Costs are not
related directly to performance and design parameters so the
‘Q estimate cannot be used early in the conceptual phase when

¥ trade-offs relating to performance/design parameters are
usually made (4:7).

'b Grass Roots (or Engineered) Method. Cost estimates

. using the grass roots method are based on extensive
knowledge of the system's characteristics. The analyst is
expected to have a detailed knowledge of the system, the
production processes, and the production organization. The
total project cost is the consolidation of estimates from
S each of the lower level components of the system or item
(27:7.5).

The grass roots method is preferred if detailed cost
?E data exists (27:7.6). However, detailed cost information,

especially in DOD procurements, is not usually available

& &

early in the development process which makes this approach

difficult to apply. Normally, by the time detailed

SY Y%

information is available, many decisions have already been
made and the choice among the various initial alternative

systems has been reduced to only a few (4:8). Additionally,

LW,

the grass roots method is generally more costly and time

>

consuming than other available cost estimating techniques.
For example, "one large aerospace firm judges that the use

of this approach [on just an aircraft airframe] requires

b A AP

o o gpl)

more than 4,000 separate estimates"™ (27:7.6).

- -
-

- o
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Parametric Methods. Parametric methods involve using

mathematical techniques (e.g. regression analysis) with

parameters applied to aggregate historical data to develop
an estimate formula (1:3-21). "Through curve-fitting
techniques, system cost is related to a combination of
system parameters such as physical dimensions, weight, °

maximum speed, etc." (4:8). The relationships are expressed

in the form of mathematical equations and are referred to as

cost estimating relationships (CERs are discussed in detail

in the next section of this chapter). For example, in depot

maintenance cost estimating, the dependent variable is cost

while the independent variables might be the parameters

flying hours and primary authorized aircraft.

Pollowing is an explanation of the usefulness of

parametric methods:

If detailed cost data is not available, parametric
cost estimating is preferred over other methods
for at least three reasons: (1) CERS can be
developed and used early in the preliminary design
stages of RDT&E to study the effects of varying
parameters on system cost, thus allowing cost
comparisons of different alternative designs; (2)
the relatioships developed can be used to obtain
preliminary cost estimates before the details of
design or 0&S concepts are certain; (3) they
require less input data than engineered models and
can be more easily used for sensitivity or
parametric analysis. (4:9)

The next section is a discussion on CERs which are the

pasis for the parametric methods commonly used in weapon

system cost estimating.

...........
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Cost Estimating Relationships (CERs)

Future costs can be estimated by using the aggregate,
historical data of similar systems or procedures to develop
cost estimating relationships. Using CERs has been very
useful in estimating costs from a top-down viewpoint. CERs
attempt to define the relationship between the resources
required to produce a system [(or as in this study--to
provide depot maintenance] and the physical, technical,
performance, and/or hybrid characteristics of the system
(20:20). Por example, the costs of a proposed manned bomber
can be estimated by using estimating relationships that
express cost per aircraft as a function of variables
expressing performance or physical characteristics, times
the number of aircraft produced. Following is a general
definition of a CER:

A CER is an equation which attempts to define the

relationship between the resource required to

produce a system and the physical and/or

performance characteristics of the system and/or

the process required to produce the system.

(20:20)

Estimating relationships exist in many different forms

and numerous possible types may be useful to the analyst.

In his book Cost Considerations in Systems Analysis, Fisher

gives several fundamental points of CERs. They are included

here to provide a basic framework for understanding CERS:

l. Estimating relationships are analytic devices
which relate various categories of cost (either in
dollars or physical units) to cost-generating or
explanatory variables.




2. They may take numerous forms, ranging from
informal rules of thumb or simple analogies to
formal mathematical functions derived from
statistical analyses of empirical data.

3. A most important step in the derivation of
estimating relationships is to assemble and refine
the data that constitute the empirical basis of
the relationship to be developed. Typically, the
raw data are at least partially in the wrong
format for analytical purposes, have various
irregularities and inconsistencies, and the like.
Adjustments, therefore, almost always have to be
made to ensure a reasonably consistent and
comparable data base. No degree of sophistication
in the use of advanced mathematical statistics can
compensate very much for a seriously deficient
data base.

4. Given the data base, any of a wide variety of
techniques may be used to derive appropriate
estimating relationships. The range extends all
the way from unaided judgment and simple graphical
procedures through complex statistical techniques.
Here, considerable judgment must be exercised.

The particular method used is strongly related to
the nature of the problem, and particularly to the
nature of the data base., For example, it usually
does not make sense to try to fit a complicated
multivariate function to a data base having a very
small sample size, since it is easy to run out of
degrees of freedom in such cases. Even with a
relatively large data base, one must avoid
mechanically running large numbers of correlation
analyses on the computer to determine that
combination of explanatory variables which
maximizes the correlation coefficient... High
correlation coefficients, in and of themselves, do
not necessarily ensure statistically significant
relationships.

S. Care must also be exercised in the use of
estimating relationships. The user must have a
good understanding of the data base and the
procedures used in deriving the estimating
relationship. Above all, he must exercise care in
extrapolating beyond the range of experience (the
sample) underlying the relationship. Scaling
factors, for example, may have to be taken into
account, especially when--as happens very often--
we are estimating the costs of future equipments
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or activities which a:re different from those of
the past, present, and near future. (13:123-124)

The individual factors which are the basis of a CER are
called the "cost drivers". It is the analyst's decision to
identify which features are to be considered a cost driver.
This process is one of the major tasks to be accomplished in
developing a CER. Some examples of cost drivers are:

Characteristic Cost drivers

Physical weight, volume, length,
number of parts, number of
copies, and density

Technical parameters power requirements, engine
(factors that produce thrust, turbine inlet tem-
performance) perature

Performance flying hours, speed, range,

accuracy, reliability
Hybrid variables thrust to weight ratio, oper-
ating environment, system
mission or function, technology
level vs. state-of-the-art
Once the cost driver(s) (i.e. independent variable(s))
has been selected, a parametric method is applied to
identify the relationship between the driver and how it
impacts cost. For example, in his report "Development of
Parametric Cost Models for Weapon Systems," J.P. Large used
a data base of 14 aircraft engines to explain how three
pParameters (= cost drivers) are related to aircraft engine
cost. Pollowing is the actual equation with an explanation

following:

COST = A + ATIT ~ A3MQT + A4sSaAp
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The As in the equation are the regression coefficients. A;

is the Y intercept of the regression line and will have

meaning if the model includes X=0, otherwise, Aj does not

have any particular meaning as a separate term in the

regression model. Aj, A3, and A4 represent the means of the y
ptobability distribution of cost per unit increase in TIT,
MQT and Spg, respectively (24:33). i

The first independent variable [i.e. TIT] says
that turbine inlet temperature governs engine
performance and dictates engine complexity. The
second says that the development effort required
[MQT) to achieve a specific turbine inlet
temperature reduces with time. The third
stipulates that afterburning engines [Spp] cost
more to develop because of the additional design
and testing required.... Regression analysis was
then used to determine whether the three
hypotheses could be justified, and a useful
parametric cost model was obtained. (16:26)

"l'l
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This simplified discussion of cost estimating methods
and CERs provides the background for understanding the cost
estimating process. Cost factors, which are intertwined
with the cost estimating process and are a type of
parametric estimating methodology are now discussed in

detail.

Cost Factor i Ol

The National Estimating Society (NES) Dictionary
defines a cost factor as:

A cost estimating relationship (CER) in which the

cost is directly proportional to a single

independent variable. A brief arithmetic

expression wherein cost is determined by

application of a factor such as a percent, e.g.,

-
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o
o
23 -
-



)
(.l
;; initial spares percent, general and administrative
N percentage, or a ratio as in pay and allowance
! cost per man per year. (23:41)
M The next section discusses cost factor development for
A
" use in the estimating process.
s
A, . .
Cost Factor Development. A basic assumption of the

Ié development of cost factors is that there is a direct
3
o
: relationship between the cost and the planning factor (e.qg.
)

FH, PAA, etc.). This is normally based on data over a long
..

period of time, for example, POL per flying hour factors.
‘o]
0o Currently, cost factors are being developed by
N collecting data on both the cost, Y, to be esti-
= mated and the planning factor, X, to be used in
i egstimating the cost. The means of both distribu-
3 tions are calculated. The quotient of these two
¢ means, b, is then used as the cost factor. (26:2-
< 3) _
™ Y
= ~== =D
5 X
.
> —
|2 where: Y = mean of the costs
™ X = mean of the planning factor
. This makes it possible to get a cost estimate by simply
a
- multiplying the cost factor (b) by the planning factor (X)
: expressed as the equation:
. Y = bX
b This technique-is valid
¥
? assuming that prior knowledge allows one to make
7 the assumption that the line representing this

relationship does in fact go through the origin.

: In other words, the intercept [a] of the standard
& equation for the straight line,
1 Y = a + bX

L]

is zero. (26:3)
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To clarify the difference between a cost factor and a

CER, Mr Richard Murphy explains that a cost factor is a CER
under certain conditions:

(1) There is a linear relationship, and the

(2) Y intercept goes through 0.

An example of a cost factor and CER is shown in Figure 1:

y
factor
CER
cost
0 X
independent variable
(21)

Pigure 1. Graphical Representation
of a Cost Factor and a CER

Use of Cost Pactors., As discussed in Chapter I, AFR

173-13 contains the cost factors used in the DOD's weapon
system acquisition process and the Planning, Programming, &
Budgeting System (PPBS). These cost factors are the basis
for the procedures that are used to develop the cost
estimates for producing new systems, modifying existing
systems, or supporting systems. Another reason these

factors are important is because Congress and the public
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frequently evaluate how well the DOD is performing by
comparing actual cost to estimated cost.

Cost factors are used as "a statement of the
relationship between two or more related elements that can
be applied in estimating and analyzing future relationships
among similar elements (26:1). Cost factors are valuable in
that they can save large amounts of time in creating an
estimate--"a cost factor makes it possible to estimate a
highly aggregated future cost, e.g. equipment maintenance
costs, without a detailed identification and costing of each
of the specific resource inputs to this future cost" (15:3).
This means that much time is saved in accumulating data and
information by using an aggregated, generalized cost factor.
"In a short period of time, an analyst can estimate future
expenditures that would require days or even longer by
direct measurement of all the elements in the study" (26:1).

Using cost factors can also provide a more accurate and
reliable estimate as compared to direct measurement as long
as the cost factors are developed from a "wide-coverage,
carefully documented, objective, after-the-fact analysis of
representative available data™ (15:3). Direct measurements
are often the result of fragmentary and hastily prepared
data that does not take into consideration all the available
historical information. Additionally, cost factors can be
more accurate when adequate direct measurements of total

life-cycle costs are not available as is true in the
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the physical and performance

characteristics have not been identified in detail.

It is important, though,
every available tool--direct

factoring--that is at his or

for the analyst to make use of
measurement as well as cost

her disposal. If time

constraints permit, one technique can be used to spot-check

the other. However, the analyst, "if confronted with a

choice ... will [frequently]

factors not only reduces the

find that the use of cost

time required to complete an

estimate, but also provides a more reliable, accurate

estimate (15:3).

Depot Maintenance Cost Alloca

tion Studies Using WSCRS

As discussed in Chapter
Retrieval Sygtem (WSCRS) is t
Porce depot maintenance cost
depot maintenance work done a
is the most inclusive and cur
Manual 173-264 explains the u

In the past, cost data c¢
inconsistent from projec
different data sources,

(obligations vs expendit
methods of allocating co
The development of WSCRS
for cost analysts by pro
source of historic cost

retaining the informatio

I, the Weapon System Cost

he primary source of all Air
data. The system monitors

t the Air Logistics Centers and
rent source of data. AFLC
sefulness of WSCRS data:

ollected were often

t to project because of
different cost definitions

ures), and different

sts to weapon systems.
alleviated these problems
viding one consistent
information and by

n in cost data bases for

easy access and timely retrieval. (12:4)

Following are reviews of two

utilized the WSCRS data base.

recent APIT theses that have
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Clayton and Stuewe., In 1984, an Air Porce Institute of

Technology thesis by First Lieutenant Roy Clayton and Mr.
Ron Stuewe (7) addressed the question of how aircraft depot
maintenance costs should be classified. They referenced the
current percentages used in depot maintenance cost
allocation that are found in Table 1. Their study cited
three shortcomings of this allocation:

l. The creation of the current percentages
employed depot maintenance cost data prior to the
establishment of the WSCRS data base, This data
may not represent the costs associated with
present aircraft technology levels.

2. The percentages used are common for all
aircraft in splitting WBS costs, disregarding
differences in aircraft systems. WBS cost
percentages could change with respect to aircraft
mission or type. For example, cargo aircraft
operate continually at a constant performance
level in transporting men and materials, while
fighter aircraft fly less frequently at a
heightened performance level,.

3. The percentages are nonreproducable. Since

the orior rationale for this split cannot be

located, the percentage breakout cannot be

analyzed and/or modified to accommodate changes.

(7:7-8) [(Chapter I includes information that these

allocations came from an undated and unsigned

paper--approximately 1974--found at HQ USAF/ACC.]
Their work attempted to validate the existing breakout by
WBS categories and FH and PAA, or if not valid, to improve
the percentages currently used,

They used the WBS categories for Air Force aircraft as
reported by WSCRS. This data is obtained from the data

gathering system which operates on the Cyber computer system

located at Headquarters AFLC. Annually, each contractor and
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APLC maintenance depot provides a detailed record of

accumulated cost data. This is called feeder information
and "consists of individual cost elements that are
continually tracked and reported by aircraft weapon system
or aircraft components for a given fiscal year"™ (7:18). At
this point the Cyber computer compiles the data (through
interfacing with the five AFLC data collection systems
outlined in Chapter I), adjusts, calculates, and allocates
it into the WSCRS standardized WBS categories shown in Table
1.

Clayton and Stuewe applied multiple linear regression
and delta analysis techniques at both the mission (e.g.
attack) and fleet (e.g. A-7) levels of aggregation. Their
analysis focused on attack aircraft data. The multiple
linear regression results using FH and PAA to explain WBS
costs could not provide conclusive evidence of a strong
relationship (7:42). 1In other words, the independent
variables FH and PAA could not be shown statistically to
drive WBS costs. Another problem that surfaced in their
regression analysis was multicollinearity, that is, a strong
relatiopship between the independent variables FH and PAA.
The delta analysis results of their study also concluded the
lack of a relationship between cost, FH, and PAA.
Additionally, "the detail provided by delta analysis [i.e. a

method analyzing the changes in variables from year to year]
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also demonstrated the strong presence of multicollinearity”

(7:53-54).

' Therefore, Clayton and Stuewe concluded that "each of
, the applied techniques resulted in a weak relationship
between the aircraft variables (flying hours and PAA) and
depot maintenance WBS costs" (7:31). Because of this weak
relationship, they further stated that "any method of

prorating depot maintenance WBS costs to develop cost

]

factors based solely on flying hours and inventory

el §

explanatory variables is not appropriate™ (7:74).
Clayton and Stuewe address the present OSD requirement
to use of PH and PAA as allocation bases despite the weak
! ' relationship. They comment that there is "intuitive appeal”
in selecting flying hours and aircraft inventory as factors
K that influence depot maintenance costs because if there were
/ no aircraft there would be no depot maintenance requirements
and "if the aircraft are not flown, the depot maintenance
requirements would amount to only preservation" (7:79).
Larson. Captain Patricia Larson in her 1986 Air Force
y Institute of Technology thesis also focused on the WBS cost
allocation percentages found in Table 1. Her research
effort was in direct response to the 1985 USAP/ACC request
for a scientifically verifiable allocation of depot \
maintenance costs by FH and PAA. Larson‘prepared a data

base using tapes provided by AFLC/ACC with the entire WSCRS

data base for FY77 through FY85. The AFIT Classroom Support ' b
30 .
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Computer (CSC) was used to develop--through several computer
programs and steps--and provide an "analyst's data base”
(18:29-32). Thus, instead of using the data already
summarized by WSCRS for analysis, required data could be
extracted for the analyst's specific need. Ultimately,
Larson extracted and analyzed cargo aircraft data by fleet
total and WBS categories (not FSG).

Larson applied multiple linear regression techniques to
the cargo aircraft data and results showed that in the cargo
summary data that "the independent variable, flying hours,
appears to be the sole significant variable" (18:57). When
broken out into the WBS categories, regression analysis
showed a relationship between depot maintenance costs and FH
or PAA in only three of the eight categories. As discovered
in the Clayton and Stuewe thesis, no significant basis for
the depot maintenance allocation percentages in Table 1 was
found: "the task of finding appropriate allocations of depot
maintenance costs to flying hours and PAA is not solved"
(18:63).

Her analysis also showed the multicollinearity between
FH and PAA that the Clayton and Stuewe thesis had found.
Ridge regression (a technique used when collinearity is
suspected between two or more independent variables), was
applied to the data in her study. Again, no appropriate
basis for depot maintenance costs to be allocated as in

Table 1 was found.
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Since the beginning of Larson's research, an output

report from the WSCRS system is available that reports depot

maintenance costs in the FSG format she suggested be

This report, called the Recoverable Item

analyzed.

Distribution Report will be the data base used in this

research as discussed in Chapter 1I.

Summarx

This chapter has outlined some important aspects

First, the three most common

concerning cost estimates.

cost estimating methods were introduced to show that there

are several alternatives to the cost analyst when faced with

Cost estimating

a particular estimating environment.

relationships were then discussed in detail to outline the

importance of determining an appropriate cost driver or

drivers in cost estimating. Next, a cost factor was defined

and the process of cost factor development was discussed.

How costs are used was then detailed to explain how they fit

in to the cost estimating process--especially in their

ability to save time in producing an estimate. Finally, two

APIT theses that have evaluated the current requirement to

allocate depot maintenance costs according to specified

variables and percentages were reviewed., Results of these

studies are that the current var.ables (i.e. FH and PAA) and

percentages used do not effectively estimate depot

maintenance costs,

<

Y,

WLV LWL ., v T Wy WY W "."'"f' -(‘:*.'..' c*- .'J'._ ........... A ,’.

" . . 'I*I
Qs i AT, 3 \ %Yy




- A N

T AT ONC SO

III. Research Method

Overview

This section constructs the procedures followed to
test the research questions: 1) is it reasonable to assume
that primary authorized aircraft and flying hours are
appropriate variables to use for development of Air Force
depot maintenance cost factors and, 2) can percentage
allocations similar to those presented in Table 1 for WBS
categories be validated for FSG categories through using
a.) regression analysis on fighter and cargo aircraft data
from the Recoverable Item Distribution Report, b.) using
goal programming as an alternate hodeling technique to
cross checﬁ the reézession analysis used in a.), and c.) a
linear programming formulation as an additional cross check
on the results from a.) and b.).

This analysis uses data from a new WSCRS output report
--the Recoverable Item Distribution Report. As discussed
in Chapter I, the Recoverable Item Distribution Report
gives cost totals by Federal Supply Group categories vice
WBS categories that have been used in the Clayton/Stuewe
and Larson theses. Fighter and cargo aircraft data from
this report will be analyzed. The data will be analyzed
using linear regression, goal programming, and linear
programming techniques. Goal programming and linear
programming will provide an opportunity to cross-check and
further verify results from regression analysis.
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This chapter is structured in the following manner.
First, there will be a discussion of assumptions and
limitations followed by an explanation of the data base.
Next, the procedures used to adjust the depot maintenance
cost data for inflation will be discussed, and finally, the
three analysis procedures used to examine the data are

presented.

Assumptions/Limitations

Data used in the WSCRS--and the Recoverable Item
Distribution Report as an output of WSCRS--includes several
assumptions and limitations which will be explained here,

A more extensive discussion of limitations and constraints
is included in AFLCM 173-264. As mentioned in the scope of
study in Chapter I, only fighter and cargo aircraft data
will be used and the data are examined at the mission
(e.g., attack, cargo, bomber, etc.) level versus the design
(e.g. A-7, C-130, B-52, etc) or series (e.g. A-7D, C-130E,
B-52G, etc) level,

l. Reparable items are sometimes repaired in batches

‘at the depot, instead of individually, because repairing in

batches is more economical. If an item is sent to the
depot in one fiscal year, placed in a batch and fixed the
following fiscal year, its costs are reported in the fiscal
year in which it is repaired instead of the year in which

it malfunctions. Consequently, reported costs may be high

34




in one year and low in another (12:15,76). No research has
been done on the exact impact of batch processing on cost
data. Thus, for this research it is assumed the impact is
the same from year to year and therefore does not impact
the analysis.

2. WSCRS allocates costs which are common to more
than one MDS to each MDS. Thus, an item from a particular
aircraft sent to the depot for repair may not be the same
item that is returned to that aircraft. The costs for
common items repaired are not specifically attributed to a
particular MDS, and must be proportionally allocated.
These allocations are based on FH and PAA. This is of
concern to the validity in using the WSCRS' costs for this
study. Deleting as well as including these costs can skew
the data. Allocations of costs within the fleet will not
affect this study because this study is evaluating the data
at the mission level. For example:

$10,000 in depot maintenance cost is performed on

an air conditioning unit found in the C-5A, C-5B,

C-135A, and C-135B. The allocation of the $19,000

by PAA will not affect this study because the

entire $10,000 will be alocated to cargo.

However, if the air conditioning unit is also used

in the B-52G and B-52H, the allocation by PAA may

skew this study since the $10,000 will be split

between cargo and bomber (aircraft) based on the

number of primary authorized aircraft. (18:27)

3. WSCRS contains actual expenditures vice using
standard costs of all depot maintenance costs. (An
exception is ICS/CLS costs which are the obligations from

the contracts) (12:8).
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4. WSCRS previously used an inventory number
equivalent to total active inventory instead of primary
authorized aircraft (PAA). HQ USAF/ACC directed AFLC/ACC
to change WSCRS to use PAA in July 1984 (5). Using PAA
meets the requirements for developing budget and life cycle
cost factors, and for using the cost factors in cost
studies and the budget process. AFLC/ACC manually
completed this change in June 1986, and is currently
updating the WSCRS historical data base. This study uses

the corrected PAA quantities obtained from HQ AFLC/ACC.

Recoverable Item Distribution Report Data Base

This report is a new WSCRS output report (first issued
in 1985) that is created annually and reports cost data in
then-year dollars. The report has been generated for each
year back to FPY77. Therefore, Recoverable Item
Distribution Report data for ten years, from FY77 through
FY86 are available and analyzed in this research. The data
were obtained from microfiche copies supplied by AFLC/ACC.
Hardcopies were created from the microfiche and data were
transferred to computer manually.

The Recoverable Item Distribution Report is generated
from the WSCRS Detail Data Base which "contains cost
information by fiscal year for each MDS" (12:13). From

this data base "Type "1" and Type "2" records are used,
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Following are definitions of these two data bases and "
paragraph (2) contains a limitation of the data used:

(1) The NSN Records (Type "1") contain depot
maintenance and condemnation exchangeable item
costs identified to a national stock number
(NSN).... These records contain the repair costs
for management of items subject to repair (MISTR)
items.

{2) The PSC Records (Type "2") contain 5
exchangeable item costs identified to an PFSC. o
Depot maintenance repair costs identified to

Technical Order Compliance (TOC) kits, part

numbers, noncataloged, locally purchased, or

locally manufactured items can be identified as

weapon system costs, but they can't be related to

a specific weapon system because of limited cross- .
reference information. Therefore, in preference z
to excluding these costs, the total cost by FSC is
allocated over all applicable weapon systems.
(12:13)

On the report, item quantities and costs are ‘

summarized and displayed by FSC, subtotaled by FSG (a

oo

homogeneous group of related FSCs (2:288)), and totaled for

-

the entire fleet (i.e. fighter, cargo, etc.). For this

research, data in then-year dollars are sxtracted and

PN o 3R 3

indexed to 1986 dollars as described in the following

'
-

section., .
Ly
+ 1

Economic Escalation

U.S. Air Force cost analysis program procedures

@ 7 ALY

require cost data to be escalated using 0SD inflation ]

.o«

indices to account for inflation. AFR 173-2, Cost Analysis

Economic Escalation, provides the rationale for this

S TP

procedure as stated helow:

V-,
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Economic escalation data resulting from inflation
provides the best cost estimate possible for funds
that are to be expended in a particular year,
consistent with the economic assumptions provided
by the OMB to the Office of the Assistant
Secretary of Defense, Comptroller, OASD(C).
Economic escalation indices also make possible
comparisons of costs in different years for the
Air Force cost analysis program, according to AFR
173-1. (9:1)

Therefore, cost data used in this research are
converted to constant FY86 dollars using 0OSD Raw Inflation
Indices as of 29 December 1986. The inflation indices used

are shown in Table 3.

TABLE 3

OPERATIONS AND MAINTENANCE
RAW INFLATION INDICES

- D D D D — D - - D - S T - = - -

Fiscal Year Index
77 .547
78 .590
79 .644
80 .706
81 .790
82 .863
83 .905 ?
84 .940
85 .972
86 1.000

Qe o

Examination of the Data

This section will discuss the three analysis i
procedures--linear regression, goal programming, and linear

programming--that are used in this research.
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Linear Regression. Linear regression procedures are s
. commonly used and well understood in cost estimating. For -
o
this study, regression analysis will provide statistical o=
4
data for analysis. These statistics will provide a basis “:
v
for evaluating the ability of the independent variables FH
»
v
and PAA to predict depot maintenance cost and the validity ﬁ:
-:.~
of the resulting regression models. —~3
Regression analysis is defined as "a statistical tool D
ot
that utilizes the relation between two or more quantitative 5:_
o
variables so that one variable can be predicted from the :5
other or others" (24:23). Least-squares-best-fit K
regression analysis, which is used in this research, fits a Sf
Y
line to the observed data so as to minimize the sum of the ;:
squared deviations between the observed data and the fitted -
.":\
line (24:10). -
: a
For this research, depot maintenance cost categorized ﬁh
by FSG is the dependent variable in the regression model. R
-_"‘ '
The independent variables are pre-determined to be flying :{
.\:x
hours (FH) and primary authorized aircraft (PAA). This is ﬁ
A
per 0SD CAIG guidance, AFR 173-4 and AFR 173-13 as .
explained in Chapter I. .ﬁ?
The linear regression models that will be used to Eff
analyze the data are: ;;n
. N
Independent Vvariable(s) Model Y
(1) FH only: Bgp + B)FH = Cost NS
) (2) PAA only: By + B,PAA = Cost °
(3) FH and PAA: By + BJFH + BpPAA = Cost
r.
~
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where: By Y-intercept of regression line

By = coefficient for FH to be determined by
the regression model

FH = flying hours

By = coefficient for PAA to be determined by
the regression model

PAA = primary authorized aircraft

Cost = depot maintenance cost

Analysis of the regression results will include
examining the model's coefficient of determination (Rz), P
value and associated probability- or p-vaiue (=
significance level), and the t-statistic(s) and p-value(s)
for the model's intercept and independent variable(s)
coefficient(s). These tests will aid in determining the
strength of the model in predicting depot maintenance
costs. Because of the small sample size (10 observations
or less) of each FSG cost, this study will not test for
normality or heteroscedasticity. Each test will now be
explained.

The coefficient of determination (R2) measures how
well the independent variables account for the variations

in the actual cost data. It can be written as:

Explained variance

Total variance

The value of R2 lies between zero and one and the "closer
it is to 1, the greater is ... the degree of linear
association between [the independent variable(s) and

dependent variable]" (24:97). Based on a prior R2 analysis
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performed in an unpublished analysis of Army turboshaft

engine costs (22) and a suggestion by Mr Richard Murphy
(AFIT instructor), for this research, the R2 is considered
significant at the .80 level or higher. This indicates an
effective explanatory ability of the independent
variable(s).

The P-ratio from the analysis of variance table is
also evaluated to determine if the overall estimating model
is statistically significant, That is, this test
determines whether it is probable that all of the model's
coefficients are actually zero. It is reasonable to
conclude that if an P p-value is significant at the 90+%
level of confidence, the overall relationship is
statistically significant. 1In other words, the higher the
calculated F-value is, the better the model may be (24:86-
87, 92-94). )

The t-statistic will also be evaluated to determine if
the particular cost driver (i.e. FH or PAA) is making a
significant contribution to the overall equation. A
coefficient that is not significantly different from zero
will cause that particular variable to drop out of the
model because there is no linear relationship between that
independent variable and the dependent variable (24:67-68).
It would be reasonable to conclude that a variable is
making a significant contribution if its corresponding t-

statistic is significant at the 90+% level of confidence.
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Collinearity will also be tested for. An explanation

of collinearity is that

when independent variables are correlated,... a
regression coefficient does not reflect any
inherent effect of the particular independent
variable on the dependent variable but only a
marginal or partial effect...(24:277)

The three methods that will be used to detect the
presence of multicollinearity are:

1. Nonsignificant results in individual tests {t-

test] on the regression coefficients for important

independent variables,.

2. Large changes in the estimated regression
coefficients when a variable is added or deleted.

3. Estimated regression coefficients with an
algebraic sign that is the opposite of that
expected from theoretical considerations or prior
experience, (24:390)

Allocation Models. The resultant regression model can

be used to develop percentages by FSG for allocating depot
maintenance costs in the following manner. First, if the
"best” model is one that has a single independent variable,
either FH or PAA, then the allocation would be 100% for the
model's independent variable.

Second, if the "best" regression model is one which
includes both PH and PAA (model (3)), then there are two
possible approaches, If the t-test for the intercept in
the regression model is insignificant, the intercept can be
dropped from the model since it can be assumed that the y-
intercept is zero. The following formula can then be used

to determine a percentage allocation:
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(4) PH: —-=-==Ze-emeee PAA: ~—---e-memmmoeo
BiFH + ByPAA BiFH + BPAA
If the y-intercept is significant based on t-test
results, the intercept must be considered in creating
allocations for FH and PAA. This can be done by developing
an additional regression model by "forcing" a new best fit

line through the origin. This new model is:
() B1FH + B,PAA = Cost

Models (3) and (5) provide the same solution at their point
of intersection. Thus, data from model (5) can be used in
equation (4) to determine allocation percentages for those
specific values of FH and PAA at this point of
intersection. Note that these allocation percentages are
valid only for these specific values of FH and PAA.
However, a range of values for the independent variables
where the allocation percentages might be acceptable can be
computed. This can be done by determining a small,
acceptable variance, say 10%, for the dependent variable (=
depot maintenance cost) which then can be translated into a
range of values for the independent variables. A two-
dimensional representation of this concept is shown in

Figure 2.
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. X1 Xy vector
"
‘& Figure 2. Graphical Representation of Original Regression
A Model and "Forced" Zero Intercept Model
L
*
L
4 In summary, regression analysis will be used to
s ¢
L4
:4 provide the data necessary to evaluate FH and PAA's ability
': to predict fighter and cargo depot maintenance costs and
“~
.: correspondingly, develop allocation percentages for depot
)
o maintenance costs. Least squares best fit regression's
. popularity in cost estimating makes it an effective tool
.
o for the purpose of this study. Another mathematical tool--
.
.4 goal programming--will also be used to evaluate the data,
2 and is discussed next.
"4
’q Goal Programming. Goal programming analysis will be
In N
ﬁ used to cross-check results of regression analysis for this
K study. This approach was used in a recent study to
J evaluate another study which recommended the breakup of the
K
! AT&T system:
y
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The goal programming/constrained regressions as
reported in [the evaluation of the study] were, in
fact, undertaken as a methodological cross-check
on the results obtained [in a previous study] and
it was this alternate methodology that led to the
discovery of the data deficiencies, when our
linear programming codes kept reporting "no
solution." (6:6)

Goal programming is described as:

a procedure for handling multiple-objective
situations within the general framework of linear
programming. Each objective is viewed as a
'goal'. Then, given the usual resource
limitations or constraints, the manager attempts
to develop decisions that provide the ‘'best’
solution in terms of coming as close as possible
to reaching all goals. (3:213)

Additionally:

Goal programming greatly enhances the flexibility

of linear programming as it allows the inclusion

of conflicting objectives while still yielding a

solution that is optimal with respect to the

decision maker's specification of goal priorities.

(19:254)

In ordet to perform goal programming modeling for
depot maintenance costs, terminology must be explained and
the model developed. This is accomplished with an
explanation of goal programming terms from the book Linear

Programming in Single- & Multiple-Objective Systems by

James P, Ignizio, and how they relate to the particular
model used in this research:

OBJECTIVE. An objective is a relatively general
statement (in narrative or quantitative terms)
that reflects the desires of the decision maker.
For example, one may wish to "maximize profit" or
"minimize labor turnover™ or "wipe out poverty."
(14:376)
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In this study's model, the objective will be to minimize

-
<

the deviations from yearly depot maintenance cost by FSG. *

An explanation of deviation variables follows,

GOAL DEVIATION. ... The difference between what
we accomplish and what we aspire to is the devia-
tion from our goal. 1In all but trivial problems
+++s We shall encounter deviations from our goals,
Note that a deviation can represent over- as well
: as underachievement of a goal. (14:376) ‘

W‘—‘ﬂ‘(a

- Goal deviations are expressed using "deviation variables."
There are two deviation variables for each of the ten years

of data, a deviation plus variable (d*) and a deviation

o
W minus variable (d~). These represent the over or
‘: underachievement of using FH and PAA as independent
:‘ variables to predict cost.
¥
<,
e GOAL. An objective [or constraint for goal
- programming] in conjunction with an aspiration
\ level is termed a goal. For example, we may wish
N to "achieve at least X units of profit" or "reduce
0 the rate of inflation by Y percent.”" (14:376)
b The goals--or objectives--in a goal programming model are
ﬁ constraints and the objective is to come as close as
U
xﬂ possible to these goals. The goals are targets to be
o )
A attained but with overages and underages permitted.
, Based on these explanations, the general goal
-
:j programming model that is used is shown as follows:
P Minimize: d+77 + d7q7 + d+78 + d77g ... + d+86 + d7gg
o
Y. Subject to: Bg + BjFHy77 + ByPAAy7 - d:77 + d777 = Costyy
o By + BjFH9g + BaPAAj7g - d¥7g + d79g = Costyg
o ) ) : : .
Bg + B)FHgg + ByPAAgg - d+86 + d7gg = Costgg
: 46
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where: Bp = intercept to be determined by the model
B = coefficient for FH to be determined by
the model
FHy7-FHgg = flying hours for each year
B, = coefficient for PAA to be determined by

the model
PAA77-PAAgg = primary authorized aircraft for
each year
Costy7-Costgg = depot maintenance cost for

each year

The results are examined to determine the extent to
which each independent variable was brought into the model
to explain cost. From this analysis, goal programming
results are compared to regression results as to what value
each gave to the coefficient for the independent variables
FH and PAA. For intercept values assigned by goal
programming, a "forced" zero intercept line and a range
will be developed. The procedure for this is the same as
discussed in the regression portion of this chapter. The
coefficients are then changed into percentages using the

following formulas:

Here the "xx" subscript indicates the year for which the
allocation percentages éte being computed. Results are the
percentage allocation of depot maintenance cost per FH and
cost per PAA and these can be compared to regression

results.
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X A third approach--linear programming--will be used to

evaluate the data and is discussed next.

.'C,
fh Linear Programming. Linear programming is defined as
)
1
W "a mathematical programming model in which the objective
"
function and the restrictions on resources can be expressed
-
by as a system of linear equalities and/or inequalities"
R )
gf; (19:26). General linear programming characteristics are
o
discussed in the goal programming section above (e.g.

~

'ﬁ objective and goal) since goal programming is a multi-

X objective extension of linear programming and formulation
.Q

~ is done in a manner similar to linear programming (19:254).
5

§ In the goal programming model discussed above, the

bl

'

; objective is to minimize the deviation variables. In this
)
o0

- case, a more basic approach is used. Cost is the resource
..
k2 that the objective function seeks to minimize. The

‘.

% objective function and constraints of the linear

3

‘ programming model are formulated as shown below:

()

-}
L. s ..

:_ Minimize: BlFHBG + ByPAAgg
15

o Subject to: BjFH77 + ByPAAgq9 >= Costqg

BjFHyg + B2PAA7g >= Costyg

I . . . .

..‘. * L] L] L
a

g" . . . .

ey B1FHgg + ByPAAgs >= Costgg

where: Bj; = coefficient for FH which represents a
cost per FH
o FH797-FHgg = flying hours for each year
P By = coefficient for PAA which represents a
> cost per PAA
; PAA79-PAAgg = primary authorized aircraft for
each year
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Costyy-Costgg = depot maintenmance cost for
each year
Note that the objective function must minimize cost for a
particular year. Thus, FY86 data are used in the objective
function.

Using analysis similar to that for goal ptogrammingy
results are examined to determine the extent to which each
independent variable explains cost. PFrom these results
allocation percentages of PH and PAA will be derived based
on the resulting coefficients. Similar to the goal
programming analysis above, the following formulas are

used.

ByFHgg + BaPAAgg B1FHyyx + ByPAAgg

These percentages will then be compared with regression and
goal programming results of percentage allocations to FH

and PAA.

Conclusion
In conclusion, data from a WSCRS output called the

Recoverable Item Distribution Report is analyzed using

regression, goal programming, and linear programming. The
primary purpose is to attempt to determine the validity of
FH and PAA to predict depot maintenance cost and to develop
cost per PH and cost per PAA allocation percentages.

Regression is used because it is a popular and well
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understood tool in the cost estimating community. Goal
programming and linear programming are used to cross-check
the results obtained in the regression analysis and to

provide an alternate perspective to analyze the data.
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IV. Analysis

This chapter describes the results and analysis of
procedures outlined in the previous chapter. 1Included here
is the data base used, and the results and analysis of
three approaches: linear regression, goal programming, and

linear programming.

Data Base

The depot maintenance cost data used for this study is
taken from the WSCRS output Recoverable Item Distribution
Report. Cost data for ten years, FY77-FY86, were extracted
for the fighter and cargo total category (i.e. total weapon
system) and also for each individual FSG within each of the
fighter and cargo categories, Within the fighter aircraft
category there are 24 individual FSGs, and the cargo
aircraft category contains 28 individual FSGs. Flying hour
(Fd) data comes directly from the Recoverable Item
Distributiqn Report and PAA data comes from AFLC/ACC.

Table 4 contains a sample of the fighter aircraft data
used and Table 5 contains a sample of the data used for
cargo aircraft. Complete data for all FSGs are contained
in Appendices A & B, Data is in raw, or then-year, dollars
on the top half of each page and the same data--converted
to 1986 dollars by using the process described in the
previous chapter--is at the bottom half of each page. To

read these two tables, notice that each fiscal year (FY77-
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FY86) is designated in the far left column and FH, PAA, and
each individual PSG is defined at the top of each column.
Start at the fiscal year of data desired and read across to
the right until intersecting the desired FH, PAA, or FSG
column. FH, PAA or the dollar amount is found at this

intersection.
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Regression Results

Following are the results of the first method used to
analyze the data~-linear regression. The total weapon
system reqgression results are evaluated first followed by
an analysis of the individual FSG statistics.

Total Pighter Weapon System Analysis. The total

fighter weapon system results are shown in Table 6. Column

1 designates the independent variables used for three

models. Below the column headings, row 1 shows results of

5“.“‘ ;

using PH as the only independent variable, row 2 uses PAA e
as the only independent variable, and row 3 shows results 3
of the third model using FH and PAA as independent 3
variables which includes t-test results of the intercept ;

value.

TABLE 6

TOTAL FIGHTER WEAPON SYSTEM REGRESSION STATISTICS

- D - WL wn - . WD - R B e D R T WD i A - D L WD e P W M . W b W -

Indep Prob Prob
var R2 F value > F T-Stat > T
(1) PH .86 48.863 .0001 6.990 .0001
(2) PAA .28 3.054 .1187 1.748 .1187
(3) FH 5.677 .0008
& PAA .87 23.603 .0008 -.791 .4547
INTERCEPT -.239 .8181
5%
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The coefficient of determination, R2, is in column 2.
Recall from Chapter 3 that an R2 >.80 is considered to be
good and indicates that the independent variable(s) are
effective in explaining the variation in the regression
model. Using FH alone (row 1) as an independent variable,
the R2 is .86. PAA alone (row 2) is ineffective as an
explanatory variable with an R2 of .28. However, the R2
for using both FH & PAA (row 3) in the model is .87. The
addition of PAA into the model results in only a .01
increase in explaining the variation from the regression
line. This indicates that PAA is insignificant in
explaining the remaining variation.

Reviewing the P-test, the cost model using both FH &
PAA has a high P value (row 3, column 3) and is
statistically significant with a .0008 level of
significance (row 3, column 4). Furthermore, note that the
total fighter weapon system statistics for the model using
FH only (row 1) as the independent variable are better than
the statistics for the two-variable model. The F-test
shows a higher significance (.0001) and a higher F value
(48.9). So when PAA is added as an independent variable,
these two statistics drop which indicates that PAA is an
insignificant variable to use in predicting cost.

T-test analysis from Table 6, column 6 shows highly
significant results (.0001) for FH in the FH only model

(row 1) and in the model using both FH & PAA (.0008) in row
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3. However, PAA is not significant at the 10% level of
gsignificance (.1187) in the model using only PAA (row 2) or
in row 3 for the model using both FH & PAA (.4547).

The t-test for the intercept (row 3, column 6) shows
up as being insignificantly different from zero (.8181).
Therefore it can be assumed that the intercept is zero.
Tﬁis makes it possible to apply the allocation percentage
formula (4) from Chapter III for the FH and PAA regression
coefficients. However, as is introduced in the next
section, this may not be desirable because PAA is assigned
a negative coefficient which indicates multicollinearity.

Fighter Model Collinearity Analysis. Table 7 contains

the three regression models obtained from the analysis.
Model 1 comes from using FH only as the independent
variable, model 2 uses PAA only, and model 3 uses both FH
and PAA as iﬁdependent variables.

Two methods discussed in Chapter III for detecting
multicollinearity are applied in the analysis of the models
-shown in Table 7. These two methods are: 1) large changes
in the estimated regression coefficients when a variable is
added or deleted, and 2) estimated regression coefficients
with an algebraic sign that is the opposite of that

expected from theoretical considerations or prior

experience (Neter:390).
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TABLE 7

TOTAL FIGHTER WEAPON SYSTEM REGRESSION MODELS

(1) FH only
Pighter
-992,777,174 + 1,941.7(PH) = Depot Maint
Cost
(2) PAA only
Pighter
-2,826,733,813 + 1,057,106.2(PAA) = Depot Maint
Cost
(3) PH and PAA
Pighter
~234,974,271 + 2,136.7(FH) - 285,954 (PAA) = Depot Maint
Cost

The estimated regression coefficient of PAA in model 2
shows a large change when FH is added (model 3). The
coefficient changes from +1,057,106 to a -285,954 (a delta
of 1.3M). This is a large change and can be interpreted as
an indicator of multicollinearity based on the first
method. Also, the negative algebraic sign in model 3 for
the PAA coefficient is not expected based on present depot
maintenance cost allocation considerations. This is
evidence of multicollinearity based on the second method
mentioned above. An even more definitive example of the
large change in estimated regression coefficients is found
in the intercept value of the two variable model (model 3)
to the model using PAA only (model 2). 1In this case, the
value changes from -234,974,271 to -2,826,733,813 (a delta

of over 1200%). Pinally, in the model using both PH and
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PAA, the t-statistic from Table 6 shows up as a negative
number (-.791). This is evidence of multicollinearity.

The conclusion that can be drawn from the regression
results for the total fighter weapon system is that 100% of

the depot maintenance cost should be allocated to flying

hours. The regression model using PH as the sole
independent variable had the best P-statistic of the three
models. The slight increase in R2 for the two-variable
model (model 3) is offset by the presence of multi-
collinearity of PH with PAA. Purthermore, the FH and PAA
model assigns a negative coefficient to PAA which prevents
the development of an allocation percentage to PAA.

Individual Fighter FSG Analysis. The regression

statistics for all the individual fighter PSGs are included
in Appendix C. Table 8 includes the selected fighter FSG
statistics (R2, P-test p-value, and t significance in
columns 3, 4, and 5, respectively) that are discussed in
this section. To read Table 8, column 1 defines the FSG
title and number. Column 2 designates the independent
variable(s) used in the model: row 1 includes statistics
using FH only, row 2 uses PAA only, and row 3 includes data
on the model using both PH and PAA. Column 3, 4, and 5
contain the statistics for the R2, P-test p-value, and t-
test probability.

Only one combined FH and PAA model had an R above

.90--PSG 67-Photographic Equipment (RZ2=.,93). However, the
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SELECTED FIGHTER INDIVIDUAL FSG REGRESSION STATISTICS
2
A (1) (2) (3) (4) (5)
) FSG Title Indep Prob Prob
o & Number var R2 > P > T
s Photo (1) FH .93 .0001  .Q001

. Equip  —-meemmmsmecccmemcmmem e — e
: 67 (2) PAA .44 .0503  .0503
(3) FH .0007

& PAA .93 .0004 .6861

B R | et e i o m o o - e - - = > - - . . . . - - = -
. Comm Dtec (1) FH .79 .0006 .0006
o, & Rad EQP  =—===—=—-mcccmccccecm e m——a
' 58 (2) PAA .12 .3277  .3277
L e i o - - = - = = - - - - - - — = - - - —
. (3) FH .0003
) & PAA .88 .0005 .0461
a . e e N e e e e e m— e S N m G e S e s o - - - .- -
¢ Compnts & (1) PH .81 .0004  .0004
Accsorieg = seeememecceccecccccaccn e e ene

16 (2) PAA .20 .1972  .1972

) (3) FH .0009
& PAA .85 .0014  .2362

; Elec Wire/(l) FH .83 .0003  .0003
’ PWI EQUip =  ==cmmmeemeceecdmmmmeeeeeo
61 (2) PAA .28 .1184 .1184

(3) FH .0019

- & PAA .83 .0019 .5743
4 Engs/Turb (1) FH .80 .0005 .0005
& Compnts  ~-e-memmecccccmccemcmee—eee-

) 28 (2) PAA .23 .1644  .1644
. (3) PH .0019
; & PAA .82 .0024  .3944
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model with PAA as the sole indepent variable (row 2) has an
R2 of .44. Thus, PAA is a relatively insignificant
variable in explaining the amount of variation in the
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regression model for FSG 67 even though its level of
significance is fairly good (.0503 in column 5). In row 3,
when PAA is added to the FH only model, the R2 stays the
same while the p-value of the P-test drops (.0001 to .0004)
from the FH only model (row l). T-test probabilities also
drop indicating PAA's weakness in explaining cost.

Other FSGs with significant R2s (i.e. >.80) when using
both FH and PAA (row 3) as variables in a regression model
are: FSG 58-Communication, Detection & Radio Equipment
(R2=.88), FSG l6-Components & Accessories (R2=.85), FSG 61-
Electric Wire/Power Equipment (R2=,83), and FSG 28-Engines,
Turbines & Components (R2=,82). Within these four FSGs,
however, the R2 for the model with PAA alone (row 2) is
insignificant ranging from .12 in FSG 58 to .28 in FSG 61l.
Meanwhile, the R2 for the FH only models show fairly strong
values ranging from .79 for FSG 58 to .83 for FSG 61. The
model using FH alone (row 1) shows little or no increase
(from a zero to .09 increase in R2) in explanatory
capability as PAA is added to the model. These statistics
are indications that FH is a much stronger variable to use

to predict cost,

FSGs with the highest significance of the F-test
({Table 8, column 4) using both FH and PAA (row 3),
correspond directly with the highest R2s discussed above.
These FSGs and corresponding F-test p-values are: FSG 67-

Photographic Equipment (F-test p-value =,0004), FSG 58-
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Communication, Detection & Radio Equipment (FP-test p-value
=,0005), PSG l6-Components & Accessories (F-test p-value
=,0014), PSG 6l-Electric Wire/Power Equipment (P-test p-
value =,0019), and FSG 28-Engines, Turbines & Components
(P-test p-value =.0024). In each of these PSG analyses,
the significance of FH alone (row 1) is much higher than
PAA alone (row 2). When PAA is added as the second
independent variable, significance is decreased from the FH
only model with one exception in FSG 58 where significance
improves by only .0001.

Results of the t-test (column 5) in these five
individual FSGs show results similar to the P-test with FSG
58 again being only slightly contradictory. PAA is less
significant than FH when each is tested as individual cost
drivers, and both FH and PAA individually become less

significant when they are used together to predict cost.

These results of the RZ, F-test, and T-test, further

indicate--at lower levels of data aggregation--the same
problem of the inability of PAA to predict cost that is
evident in the the total fighter weapon system statistics.
PH is again the sole significant independent variable in
explaining cost in these selected individual FSGs.
Therefore, cost should be allocated 100% to FH.

Results vary in the remaining 19 fighter individual
FSGs evaluated (see Appendix C). However, PAA'S t-test is

generally less significant in the two variable models and

62




the R2 of the PAA only models show less significance that
the R2 for the FH only models. Thus, PH is shown to be the
dominant independent variable.

Total Cargo Weapon System Analysis. Total cargo

weapon system results are shown in Table 9. As in the

fighter analysis above, column 1 designates the independent

variables used for three models. "'Row 1 below the column E
headings shows results of using FH as the only independent .
variable, Row 2 uses PAA as the only independent variable, ;
’
while row 3 contains results of the third model using FH ;
and PAA as independent variables with t-test results of the ;
\
y-intercept. \
)
n
.
TABLE 9 -
TOTAL CARGO WEAPON SYSTEM REGRESSION STATISTICS

(1) (2) (3) (4) (5) {6) '

Indep Prob Prob
var R2 P value > P T-Stat > T X
———————————————————————————————————— N
(1) PH .91 83.813 .0001 9.155 .0001 K
(2) PAA .73 21.814 .0016 4.671 .0016 N

{(3) PH 4.082 .0047
& PAA .92 40.594 .0001 -.827 4355 .
INTERCEPT -6.506 .0003 N
--------------------------------------------------------- \-
N

The RZ (i.e. coefficient of determination) results in

column 2 show a .91 value for using FH only (row 1) in the

model and .73 for using PAA only (row 2) in the model. PAA
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is a weak independent variable since an R2 of >.80 (from
discussion in Chapter 3) is required for an effective
ability to predict cost. However, it is stronger than most
other PAA models developed in this research. When using
both FH and PAA in the model (row 3), the R2 is significant
at .92. However, adding PAA into the FH only (row 1) model
results in the R2 increasing by only .0l1. This is very
similar to behavior of the fighter statistics in that PFH is
the only significant independent variable.

An analysis of the F-test results show the cost model
using both FH & PAA statistically significant with a .0001
level of significance (column 4). However, comparing the
PH only model (row 1) to the two-variable model using FH
and PAA (row 3), the P-value (column 3) decreases from
83.81 to 40.59. This indicates the relative weakness of
PAA as a variable making additional explanatory
contribution to the model.

T-test analysis in Table 9 shows highly significant
results (.0001) for FH in the models using only FH (row 1,
column 6), and in row 3, column 6, when using both FH & PAA
(.0047). However, PAA is not significant (.4355) in the
model using both PH & PAA (row 3, column 6). The t-
statistic in the model using FH and PAA (row 3, column 5)
shows up as a negative jumber (-.827)--as it did in the
fighter statistics~-indicating its relative insignificance

in predicting cost.
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The t-test of the y-intercept (row 3, column 6) shows ;

' up as significant (.0003) and therefore the intercept is £
presumed not to be zero and must be considered in g'
determining allocation percentages. However, multi- E;
collinearity analysis results presented in the next section 4;

indicate problems which inhibit the percentage allocation EE.

process discussed in Chapter III. ii

N>

Cargo Model Collinearity Analysis. The three derived

carqgo regression models are presented in Table 10. Model 1

uses the independent variable FH only, PAA is the only

N

independent variable in model 2, and model 3 uses FH and

PAA. As in the fighter model analysis, the following

e S el e g

methods are used to evaluate collinearity in the cargo

models: (1) large changes in the estimated regression

2.
N
>
coefficients when a variable is added or deleted, and (2) ::
o’
t:
\J'
TABLE 10 T
TOTAL CARGO WEAPON SYSTEM REGRESSION MODELS ;5
.......................................................... S
(1) FH only -
Cargo .2
-1,523,289,849 + 1,943.8(FH) = Depot Maint o
Cost -
(2) PAA only o
Cargo |
-1,389,858,693 + 1,020,430.2(PAA) = Depot Maint o
Cost Y
(3) FPH and PAA -
et ’
cargo p:‘
-1,469,631,928 + 2,394.7(FH) - 284,518(PAA) = Depot Maint N
Cost
65
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estimated regression coefficients with an algebraic sign
that is the opposite of that expected from theoretical
considerations or prior experience (Neter:390).

Similar to fighter results, the estimated regression
coefficient of PAA in model 2 shows a large change when FH
enters in model 3. The coefficient changes from +1,020,430
to a -284,518 (a delta of 1.3M). The large change is an
indication of multicollinearity in cargo data based on
method (1) described above. Again--as in the fighter data-
~-the algebraic sign change of the PAA coefficient when FH
is added to the model is not consistent with present depot
maintenance cost allocation considerations. Thus, there is
additional evidence of collinearity between FH and PAA.The
conclusion drawn from the regression of cargo total weapon
system data indicates 100% of depot maintenance cost should
be allocated to the independent variable FH. Similar to
results using fighter data, the F-statistics of the three
models are best in the regression model using FH only as
the independent variable. The presence of
multicollinearity between FH and PAA offsets the slight
increase in the R2 from the FH only to the FH and PAA
model. The negative coefficient assigned to PAA in the two
variable model prevents a PAA allocation percentage for

depot maintenance cost,
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Individual Cargo FSG Analysis. Regression statistics

for all 28 of the individual cargo FSGs are in Appendix D.
Cargo FSGs selected for analysis in this section are in
Table 11 and is read in the same manner as Table 8. It
include the Rz, the P test p-value, and t significance in
columns 3, 4, and 5, respectively. '

Among the individual FSG breakouts for cargo aircraft,
there are six models using FH and PAA (row 3) where the R2
(column 3) is >.80: FSG 15-Structural Components (R2=,96),
FSG l6-Components and Accessories (R2=.90), FSG 48-Valves
(R2=2.90), FPSG 29-Engine Accessories (R2=.89), FSG 61-
Electric Wire/Power Equipment (R2=.86), and FSG 43-Pumps
and Compressors (R2=.84). In one of these cases--FSG 15-
Structural Components--the R2 for PAA alone is strong
(.88). Of the remaining five two variable models (row 3)
with high R2s, the R2s for PAA only regression models (row
2) are significantly weaker and range from .39 in FSG 61 to
.64 in FSG 48. However, note that for FSG 61 the R2 for
the two variable model is significantly increased when PAA
is added to the FH only model.

The FP-test p-values (column 4) for the two variable
models correspond directly with the R2 results discussed
above. These results are: FSG l15-Structural Components (F-
test p-value =,0001), PSG l6-Components and Accessories (F-

test p-value =.0003), FSG 48-Valves (F-test p-value
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TABLE 11

SELECTED CARGO INDIVIDUAL FSG REGRESSION STATISTICS

D — - - T - - D - - D - — - — D - = TE D WD = A . Ty D D D . - ——

(1) (2) (3) (4) (5)

PSG Title Indep Prob Prob
& Number var R2 > F > 7T
Structrl (1) FH .95 .0001 .0001
compnts = ssecememememececemcmce—dmcaeemeo
15 (2) PAA .88 .0001 .0001
(3) FH .0081

& PAA .96 .0001 . 3346

Compnts & (1) FH .88 .0001 .0001
Accsories =  s------mecmm-cmcemcenmmee—a-
16 (2) PAA .62 .0072 .0072
(3) FH .0027

& PAA .90 .0003 .1233

valves (1) FH .87 - .0001 .0001
48 2 memmmmmecmccmcem e mc e e m e —ne-
(2) PAA .64 .0053 .0053

(3) PH .0040

& PAA .90 .0003 .1914

Engine (1) FH .82 .0003 .0003
Accsories = @ —mmmemmececceccccccccccae—aa-
29 (2) PAA .54 .0148 .0148
(3) PH .0023

& PAA .89 .0004 .0657

Elec Wire/(1l) FH .69 .0028 .0028
Pwr EqQuUip ~=ccccemcmccmcccccmcci e
61 (2) PAA .39 .0533 .0533
(3) FH .0020

& PAA .86 .0011 .0259

Pumps & (1) FH .81 .0004 .0004
CMPrSSL8  =—=—cmcemccccccccccccccneaa———
43 (2) PAA .60 .0089 .0089
(3) FH .0129

& PAA .84 .0015 .2766

. D W G D D D T D D S S D n R G D R D D . - D N - —p M P TS S D W w am S wm em . em -
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=.0003), FSG 29-Engine Accessories (F-test p-value =,0004),

PSG 6l1-Electric Wire/Power Equipment (F-test p-value

=,0011), and FSG 43-Pumps and Compressors (F-test p-value

=,0015). The two variable models' F-test p-value (column !
4) in FSG 15, PSG 16, and FSG 48 show significance (.0001,
.0003, and .0003 respectively), however the best overall
statistics for the single variable models still belong to
FH with the higher R2 in all cases. With one exception, :

the P-test significance is lower for the FH alone model X

(row 1) as compared to the FH and PAA model (row 3) even
though R2 values increased, which points to the weakness of .
PAA to predict cost. The exception, PSG 61, shows a slight
F-test p-value increase from .0028 to .001l, and a ‘
significant increase in R2 values from .69 to .86.

T-test results in column 5 of these six individual
FSGs parallel results of the F-test showing the relative
weakness of PAA in predicting cost. PAA alone is less
significant than FH alone (FSG 15 excluded where they are
equal), and both FH and PAA individually become less
significant (FSG 61 excepted) when they are used together
to predict cost,

Results are not as definitive as shown in the fighter
individual FSG analysis, however, cargo data analysis of
these selected individual FSGs level still show the

relatively stronger variable to be FH. Therefore, it can
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be assumed--because of the high significance of FH--that
costs should be allocated 100% to FH and a model reflecting
percentage allocation is not developed. One exception is
FSG 61l. The statistics for this FSG indicate that data
from the two variable regression model should be used for
allocation percentage computations.

Of the remaining 22 cargo individual FSGs evaluated
(see Appendix D), the RZ in the PAA only models range from
.01 for PSG 10 and .70 for FSG 49. All are insignificant
since an R2 of >.80 (from Chapter III) is required for an
effective ability to predict cost. The F-test p-value for
PAA in the two variable model is only significant in five
of these remaining 22 models. The weakness of PAA as an
independent variable in most of the models makes it
undesirable to attempt an allocation of costs between FH
and PAA. However, for those two variable models which are
significant, the techniques described in Chapter III would
be followed. This is not pursued in this research since so
few PSGs are affected.

Summary of Regression Results. Regression analysis of

fighter and cargo aircraft data from the Recoverable Item
Distribution Report of the WSCRS system gives consistent
indications of the insignificance of PAA as an explanatory
variable and multicollinearity between FH and PAA. Because
of these results, depot maintenance costs cannot be

effectively allocated between FH and PAA. In fact, the
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results of the study indicate that in most cases the depot

maintenance cost should be allocated 100% to FH. These
initial results support the results of Larson's research.
She summarized: "the problem of multicollinearity between
[FH] and PAA exists and affects the model using both [FH]
and PAA (Larson:92)." Even after using an additional
method to account for the multicollinearity (i.e. ridge
regression), Larson's resulting regression models could
"not provide proportions of depot maintenance costs to [FH]
and PAA (Larson:92)."

Next is an analysis using goal programming to
determine if this form of linear programming can provide

allocation percentages.

Goal Programming Results

The results of using fighter and cargo data in a goal
programming formulation are shown in Table 12. Table 12
includes data from both total fighter weapon system (column
1) and total cargo weapon sys-.em (column 2) goal
programming runs. As discussed in Chapter 3, the variable
assigned to the interceptvis By, By is the FH coefficient,
and B; is the PAA coefficient. Additionally, the values
assigned to each deviation plus (d*) and each deviation
minus (d~) variable is shown.

Goal Programming Analysis. An initial review of the

results for the aggregated data for fighter and cargo
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weapon systems shows that the goal programming solution

%
R
Y

-
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includes a positive, non-zero value only for the PH

.

3 coefficient. The fighter PH coefficient has a value of

LAY

o 691.392 and the cargo PH coefficient has a value of

A

426.229. This unexpected 100% allocation to PH prompted

l

0.0

pX the use of two methods in attempts to bring PAA into the

'

L’ models.

X TABLE 12

"o

:; TOTAL WEAPON SYSTEM GOAL PROGRAMMING RESULTS

o

l ————————————————————————————————————————————————————

[ (1) (2)

.. Total fighter weapon Total carqgo weapon

N system results System resul-s

L

P il Dl T bl R

<. Bo = 0 Bo - )

o

: By = 691.392 By, = 426.229

B B = 0 Bz - 2

' d%qy7 = 0 d%yy = )
d=97 = 178,650,320 d~97 = 117,588,756

5 d’78 = 0 d*7g = Y}
d% 79 = 0 d%99 = 9
d:79 = 82,007,365 1779 = 66,395,959

: d%go = 0 449 = )

s d=go = 69,418,106 1739 = 75,998, %4

o: d"al - ] ",j‘ L

: d:al = 319,279,819 1:9; = 15,0k, .k
d"32 = 9 TR ,

, d782 = 2 D P '

:. d-al - 32,6?7,’6'J 3 a, - 1!,":':.‘.1

: a8yt R

.. d-a‘ = 157,019,501 i 9 = ! FEARNAE R

" GOQ‘ . ‘ J d.g‘ . .
0_85 = 1.5,799,8°) 1% 40 (O IR |
4.85 . | ) ",, .
d-g‘ - L()i.l",ll') H 46 - C, . ¢, 0,
1796 B LY S '




The first method used is to scale down the independent
variable PE for each year by a factor of 100. Because PAA
totals for each year were smaller numbers, FH totals may
have dominated the allocation in the goal programming
process. PH totals in each fiscal year are scaled down
(i.e. divided) by one hundred to make the totals more
relatively equal. Additionally, several individual PSGs
within fighter and cargo data wvere tested using the scaled
PH 1ndependent variable 1n an attempt to bring PAA inta the

model. Selection criter,a were based on the resul*s of *he

coefficient of derecrminatinn (R3) and strength of the P-
test p-vaiue nf the regression statis’.,cs (see Appendix 7 &
Dy

Poilowing efe *hese .nd.v/idua. P3Gs, and '"e rwasnn
*hey eere se .9 'ed: !.ghrer PSL 6 was se .o 'ed e a,80
e onLgn RE Se. .8 0 90 and gt P rest w.gn.t. an -
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& Results of this scaled goal programming process are
; found in Appendix E in the same format as Table 12 above.
Eh In the scaled total fighter and total cargo results, goal
5 programmaing simply scaled up the coefficients assigned to
v PH by the same factor that PH was scaled down by (i.e.
:2: 100). The fighter PH coefficient is assigned a coefficient
ET of 69,135.097, and the cargo PH coefficient is assigned a
. coefficient of 42,622.033. Still no coefficient was
a assigned to PAA in the two aggregate models. The results
, of the scaled individual PSG results--fighter PSG 67, FSG
. 66, PSG 58, and cargo PSG 49 (see Appendix E)--are similar
ﬁ in that PR is the only independent variable given a
; coefficient and PAA does not enter the model,

The second method involves analyzing certain FSGs
within the fighter and cargo categories using the RZ
statistic from regression analysis as sole criterion for

, choosing an PSG. Pour PSGs with a higher R2 for PAA than
P4 (see Appendices C & D) are singled out for goal
progremming analysis. These four are: fighter PSG 6] wi“h
an R2 ¢o¢ PAA of .51 and an R for PH of .37, fighter FSG

> 66 (PAA R2<. 69 and PH R2<.62), cargo PSG 62 (PAA RZa.64 and
ru Rle.19), and carqgou PSG 70 (PAA R2e.5]1 and PH Rie 4.

Appendix P ~“ontains the resul's 3f 'his s 9ng me'noy

o In the same format as Teble | above., fGoal proqgrame.ng
resu.'®8 f the wo Loy nter st r et P .8 show oot P L
‘he N0, 7 Jaf . 8l ., sayv. yrne § X L ot F ¢ 72 ,, &1, FH
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is given a value of .524452 for its coefficient and the FH
coefficient is assigned a coefficient of 102.985 for PSG
66. However, the two cargo aircraft goal programming runs
did apply a coefficient to PAA. FSG 62 from cargo aircraft
data is assigned the coefficients .,043 for FH and 30.682
for PAA, and cargo PSG 70 is assigned a coefficient to PAA
of 311.509 and no coefficient is assigned to PH.

It is important to note here that this second method
only analyzed data sets within the categories of fighter
and cargo data. However, the total weapon system runs
consistently point to PH as the consistently stronger
independent variable and PAA to be insignificant in
predicting cost.

Summary of Goal Programming. Using goal programming

as a method to cross-check regression analysis results of
fighter and cargo aircraft data from the Recoverable Item
Distribution Report verifies that FPH is the dominant of the
two independent variables i1n predicting cost. Attempts to
bring PAA 1nto the model were unsuccessful at the total
weapnn system level for both fighter and catgo aircraft
data. Additionally, only two of 52 individual PSG
categories-~-cargo rFSG 62 and carq9o PSG 70--were found to
saliocete & coefli 1ent 'y PAA. Goal projramming
consietently allncates costs 1008 ro PH (except for two

individuas PSGues Jegot ilLiwd sbaove ) | The *th,ird mernod, |ineat
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Linear Programming Results

Table 13 shows the results of the linear programming
model using fighter (column 1) and cargo (column 2) total
weapon system data. As discussed in Chapter IlI, the
coefficient assigned to B} is the PH coefficient, and B, 1s
the PAA coefficient. The objective is to minimize cost for

FY86 FH and PAA data.

TABLE 13

TOTAL WEAPON SYSTEM LINEAR PROGRAMMING RESULTS

- - - . T A W D e D 4 WS MR YD WD T WD WR W W AP MR D D WP WD P W Gk D W e R D W A w w e w -

(1) (2)
Total fighter weapon Total cargo weapon
system results system results
B) = 871.610 B) - 525.138
B, = 0 By = 0

- S . W Em . NP Mm WA N M W WP W P M wm h D M M P R N D R M NS e W A wh w W w we m m w w w =

Results show fighter and cargo PH coefficients being
assigned the values 871.610 and $25.138, respectively, and
4 2ero assigned to both PAA coefficients., This equates to
a 1008 allocation to FH and demonstrates that PAA 13 a
relatively weaker variable in allocating dep~t maintenance
cost,

Pour individual FSGs were selected to evaluate If PAA
can be brought 1nto the model. PFiqghter FSG 26 was selected
because PH and PAA show similar capability to predict cost

(both RZs =.49) based on fegression analys.s, Fighter FSG
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66 was chosen because its RZ for PAA alone (.68) is hijher :
than for PH alone (.62). Cargo PSG 62 and rFSG 70 were X
'
evaluated using linear programming because the goal :
programming process assigned a coefficient to PAA--unlike .
)
all the others tested.
Table 14 shows the linear proqQqramming tesults for
these four individual PSGs. Column ]l contains the *wo g
figihter PSG resul’"s and the two cargo FPSG resul's are 1N
column 2.
‘Q
TABLE 1 4
INDIVIDUAL PSG LINEAR PROGRAMMING RESULTS
) (2) ¥
Pighter FPSG26 Carqo rSGée2 .
8; . 3.027875 B, . .4794%) .
.2 - ) '2 - 0
“,
Pighter PSG6ES Caryn PSGT0 .
8, - L3L.0Ls 5, - 991498 ¢
B, - ) B, - )]
in no -ase 13 *he PAA /af.iabie ass: jned s Ja.je for :'9 p
coefficient. Using lineart programaing, Jep:' sain'enan =
costs are allocated 1008 *tu PH. These resulte are furthet
wvidence of PAAS weakness in ptedicting voet .
Summary of Linear Proqramming. As a simplified cross
check of rtegression and Jaa, projramming, 12ing fighter and ',.
carqu aitr-cafr dJara from 'he Rec ogverable [tem Distribution 2
Report, (1neat praojtamm.ng provi ey ot et ver il 8 on ‘:

t oy




Fa e A5

- 1-

e,

that PAA is generally an insignificant variable to use in
predicting depot maintenance cost. PH is the only variable
that is assigned a coefficient in both the aggregate (i.e.
total fighter and cargo weapon system data) and individual
PSG level within the aggregate data. Linear programming

consistently allocates costs 1008 to PH.

su..‘t!

In all three methods used--linear regression, goal
programming, and linear programming--results are
inconclusive for using PH and PAA to allocate depot
maintenance costs. In regression, FH is consistently shown
to be significant and PAA 1s not a statistically
significant variable to use to explain the variation from
the regrtession line. Additionally, the presence of
multicollinearity between PH and PAA results 1n PAA being
assigned a negative -“ocefficient and developing allocation
percentages 1s not feasib,e. The goal and linear
prtogremming @aethuds -onaistently assigned coefficients to
PH only which displayed the strong ability of PH to explain
Jepot maintenance cost. There was little promise shown 1in
the i1ndividual PSG analysis using goal and linear
programming to allocate cost to PAA. The must (Lkely FSGs
wete tested, and only *wo of $2 allocated any cost to the

independent vaeriable PAA.
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In the majority of analysis, FPH is the sole

independent variable to show an effective capability to

[

predict depot maintenance cost. This is interpreted to

mean a 1008 allocation to PH. PAA cannot be statistically

LYYy

proven or methodologically shown to be an effective

variable to use to allocate depot maintenance cost.
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Ef V. Conclusions and Recommendations
W
ﬁ, Overview
‘ﬁ‘ This study addressed two research questions: 1) is it
- reasonable to assume that flying hours and primary
’2 authorized aircraft are appropriate variables to use for
i: development of Air Porce depot maintenance cost factors
a and, 2) can percentage allocations similar to those
§ presented in Table 1 for WBS categories be validated for
S: FPSG categories through using a.) regression analysis on
if fighter and cargo aircraft data from the Recoverable Item
LZ Distribution Report, b.) using goal programming as an
-
ET alternate modeling technique to cross check the regression
o analysis used in a.), and c.) a linear programming
E; formulation as an additional cross check on the results
i from a.) and b.).

Conclusions drawn from the analysis of the data will
g first be presented followed by recommendations for further
;2 study in this area.
 ' Conclusions
;\ Linear Regression. FH and PAA together are not
ﬁ: appropriate variables to use for the development of depot
E maintenance cost factors for cargo and fighter aircraft.
: FH by itself is a qood independent variable based on its
l' consistently high explanatory nature and high F-test
ﬁ significance, PAA is a weak variable and showed little
: 80
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significance in regression analysis. Multicollinearity was
also shown to decrease the effectiveness of a model using
both independent variables. These problems with PAA proved
to decrease the significance of PH whenever FH and PAA were
used together in a model.

Percentage allocations for depot maintenance cost
similar to those in Table 1 could not be validated using
regression. PAA's insignificance, multicollinearity, and
the strength of FH conclude that depot maintenance costs
should be allocated 100% to FH. Two WBS categories--Engine
Overhauls and Engine Accessories--are allocated in this
manner, however, the other six WBS categories are allocated
differently.

Goal Programming. Goal programming--as a cross check

of regression--further verified the strength of FH as an
effective variable to use for depot maintenance cost
allocation. Pfighter and cargo total weapon system results
consistently allocated 1008 of cost to FH. Goal
programming did not bring PAA into the aggregated models.
This verified the regression results that showed that PAA
is a weak independent variable to use in predicting depot
maintenance costs. The majority of results at the FSG
level also allocated costs 100% to FH. Thus the WBS
allocation percentages in Table 1 could not be validated

using goal programming.
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Linear Programming. The additional cross check using

linear programming provided further verification that PAA
is generally an insignificant variable to use in predicting
depot maintenance cost. FH is the only variable that is
assigned a coefficient in both the aggregate (i.e., total
fighter and cargo weapon system data) and individual PSG
level within the aggregate data. Linear programming
consistently allocates costs 100% to FH.

Summary. Throughout all three approaches, except for

a few isolated FSGs, FH is the sole significant variable

and PAA is insignificant in explaining cost. Furthermore,

results show allocation percentages at the aggregate and

FSG level should be 100% to the variable FH. Although the

use of PH and PAA is "intuitively appealing” and may seem

logical, FH dominates in all three approaches used in this

thesis. Based on this research it appears that it is more

appropriate to base fepot maintenance cost allocation

entirely on the number of flying hours.

This research along with Larson's and Clayton &

Stuewe's studies have shown that the allocation percentages

in Table 1 that are currently used cannot be statistically

verified using numerous programming methods.

Recommendations

More analysis of depot maintenance coust Jrivers

besides FH and PAA 1s needed. Only FH and PAA were
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considered in this study to test the practicality of the
present method. There may be other drivers that are
significant by themselves, when used with PH, or when two
or more others are used together.

However, the regression models created for fighter and
cargo aircraft using FH only (Tables 6, 7, 9, and 10) are
good models. The goal programming and linear programming
results also focus on FPH. Perhaps consideration should be

given to allocating depot maintenance costs entirely to FH.

Closing Remarks

This study was the third study to evaluate the present
procedure to allocate depot maintenance cost using FH and
PAA. The cost analysis field and cost collection is
growing and developing. ASs better methods of collection
and more years of data are collected, more and better
analysis can be performed to effectively allocate depot

maintenance costs.
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Fighter Aircraft Data in Then Year
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APPENDIX C: Fighter Individual FSG Regression Statistics
To cread the data in this appendix, column 1 defines
the FSG title and number. Column 2 designates the indepen-
dent variable(s) used in each model. The first row to the
right of the title and number of each PSG includes statis-
tics for the model using flying hours (FH) only, row 2 uses .
primary authorized aircraft (PAA) only, and the third and .
fourth row includes data on the model using both FH & PAA. }
Columns 3, 4, S, 6, and 7 contain the designated statistics A
(i.e. the R-square, F-Value, P-probability (or p-value), t- .
statistic, and the t-probability, respectively). =
.
P
(1) (2) (3) (4) (5) (6) (7) =
FSG Title Indep R Prob Prob “
& Number Var Square P value > F T-Stat > T o
Weapons FH 0.00 0.002 0.9635 -0.047 0.9635 ~
10 PAA 0.00 0.000 0.9835 0.021 0.9835 .
FH -0.076  0.9417 -
& PAA 0.00 0.003 0.9969 0.065 0.9502 Ry
Fire Cont FH 0.19 1.835 0.2126 1.355 0.2126
Equip PAA 0.24 2.487 0.1534 1.577 0.1534
12 FH 0.460 0.6593
& PAA 0.26 1.227 0.3493 0.831 0.4336 :
Guided FH 0.54 9.347 0.0156 3.057 0.0156 D,
Missiles PAA 0.24 2.535 0.1500 1.592 0.1500 4
14 FH 2.128 0.0708 ~
& PAA 0.54 4.092 0.0665 0.052 0.9603 .
Structrl FH 0.75 23.910 0.0012 4.890 0.0012 "]
Compnts PAA 0.19 1.849 0.2110 1.360 0.2110 »
15 FH 4.347 0.0034 -
& PAA 0.78 12.442 0.0050 -0.997 0.3521 -
o
Compnts & FH 0.81 34.396 0.0004 5.865 0.0004 :
Accsories PAA 0.20 1.978 0.1972 1.407 0.1972 ﬁ
16 FH 5.466 0.0009 =~y
& PAA 0.85 19.497 0.0014 -1.296 0.2362 -
Tires & FH 0.49 7.584 0.0249 2.754  0.0249 ~
Tubes PAA 0.49 7.605 0.0248 2.758 0.0248 N
26 FH 1.313  0.2306 N
& PAA 0.59 5.008 0.0447 1.317 0.2292 X

i@ 2




FIGHTER INDIVIDUAL FSG REGRESSION STATISTICS

(1) (2) (3) (4) (5 (6) (7)
FSG Title Indep R Prob Prob g
& Number Var Square F value > F T-Stat >T "
P
Engs/Turb FH 0.80 32.017 0.0005 5.658 0.0005 -
& Compnts PAA 0.23 2.343 0.1644 1.531 0.1644 .
28 FH 4.824 0.0019 :
& PAA 0.82 16.067 0.0024 -0.907 0.3944 }
Engine FH 0.73 21.099 0.0018 4.593 0.0018 3
Accsories PAA 0.25 2.692 0.1395 1.641 0.1395
29 FH 3.526 0.0090
& PAA 0.73 9.488 0.0102 -0.376 0.7183
Mech Pwr FH 0.01 0.046 0.8348 0.215 0.8348
Trns Egip PAA 0.11 1.012 0.3438 -1.006 0.3438
30 FH 1.206 0.2670
& PAA 0.27 1.262 0.3404 -1.571 0.1601
Bearings FH 0.59 11.524 0.0094 3.395 0.0094
31 PAA 0.27 2.894 0.1273 1.701 0.1273
FH 2.357 0.0506
& PAA 0.59 5.047 0.0439 0.068 0.9476
A/C & Circ FH 0.60 12.158 0.0082 -3.487 0.0082 a
Equip PAA 0.13 1.248 0.2964 -1.117 0.2964 "
4] " FH -3.119 0.0169 n
& PAA 0.64 6.168 0.0285 0.821 0.4387
Pumps & FH 0.23 2.388 0.1609 1.545 0.1609
cmprssrs PAA 0.16 1.518 0.253 1.232 0.253 A
43 FH 0.877 0.4097 -
& PAA 0.24 1.121 0.3781 0.344 0.7412 y
Pipe/Hose FH 0.34 4.062 0.0768 2.016 0.0768 )
& Fittngs PAA 0.07 0.597 0.4619 0.773 0.4619
47 FH 1.785 0.1175 X
& PAA 0.36  1.973 0.2092 -0.509 0.6262 N
Valves FH 0.58 10.958 0.0107 3.31 0.0107 :f
48 PAA 0.07 0.618 0.4545 0.786 0.4545
FH 3.568 0.0091
& PAA 0.67 7.125 0.0205 -1.403 0.2035 .
)
Maint/Rpar FH 0.02 0.173 0.6886 -0.416 0.6886 v
Shop Equip PAA 0.02 0.138 0.7203 0.371 0.7203 '
49 FH -0.855 0.4207 »
& PAA 0.11 0.432 0.6653 0.836 0.431 :
95 »
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FIGHTER INDIVIDUAL FSG REGRESSION STATISTICS

(1) (2) (3) (4) (5) (6) (7)
R

cmg vy e W b %

FSG Title Indep Prob Prob
& Number Var Square F value > F T-Stat >T
Hardwre & FH 0.00 0.006 0.9414 -0.076 0.9414
Abrasives PAA 0.06 0.552 0.4787 -0.743 0.4787
53 FH 0.514 0.6228
& PAA 0.10 0.383 0.6953 -0.872 0.4121
Comm Dtec FH 0.79 29.643 0.0006 5.445 0.0006 A
& Rad Eqp PAA 0.12 1.086 0.3277 1.042 0.3277 4
58 FH 6.801 0.0003
& PAA 0.88 26.744 0.0005 -~2.42 0.0461
Elec Eqp FH 0.51 8.282 0.0206 2.878 0.0206
Compnt  PAA 0.02 0.163 0.6974 0.403 0.6974
59 FH 3.931 0.0057
Elec Wire/ FH 0.83 37.711 0.0003 6.141 0.0003
Pwr Equip PAA 0.28 3.058 0.1184 1.749 0.1184
61 FH 4.834 0.0019
& PAA 0.83 17.49 0.0019 -0.589 0.5743
Lghtng FH 0.72 20.812 0.0018 4.562 0.0018
& Lamps PAA 0.39 5.059 0.0546 2.249 0.0546
62 FH 2.98 0.0205

—a_w v m

& PAA 0.73 9.461 0.0102 0.445 0.6701

i\ FARIO

W SRy

Alrm & Sec FH 0.37 4.729 0.0614 2.175 0.0614
Detec Sys PAA 0.51 8.308 0.0204 2.882 0.0204
63 FH 0.738 0.4846
& PAA 0.54 4.19 0.0636 1.633 0.1465
Instmts & FH 0.62 13.144 0.0067 3.625 0.0067
Lab Equip PAA 0.68 17.069 0.0033 4.132 0.0033
66 FH 1.89 0.1006
& PAA 0.79 13.066 0.0043 2.353 0.0509
Photo FH 0.93 89.348 0.0001 9.452 0.0001
Equip PAA 0.44 5.575 0.0503 2.361 0.0503
67 FH 6.431 0.0007

& PAA 0.93 39.531 0.0004 0.424 0.6861 )

Gen Purp FH 0.40 4.576 0.0697 2.139 0.0697 X
ADP Equip PAA 0.00 0.001 0.9797 -0.026 0.9797

70 FH 3.808 0.0089 e

& PAA 0.71 7.252 0.0251 -2.53 0.0447
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APPENDIX D: Cargo Individual FSG Regression Statistics

To read the data in this appendix, column 1 defines
the PSG title and number. Column 2 designates the indepen-
dent variable(s) used in each model. The first row to the
right of the title and number of each FSG includes statis-
tics for the model using flying hours (FH) only, row 2 uses
primary authorized aircraft (PAA) only, and the third and
fourth row includes data on the model using both FH & PAA.
Columns 3, 4, 5, 6, and 7 contain the designated statistics
(i.e. the R-square, F-value, P-probability (or p-value),.t-
statistic, and the t-probability, respectively).

(1) (2) (3) (4) {5) (6) (7)
FSG Title Indep R Prob Prob
& Number Var Square F Value > F T-Stat > 7T
Weapoas FH 0.02 0.153 0.7057 0.391 0.7057

10 PAA 0.01 0.091 0.7704 -0.302 0.7704

FH 2.216 0.0623

& PAA 0.42 2.522 0.1497 -2.195 0.0642

Fire Cont FH 0.00 0.000 0.989 -0.014 0.989
Equip PAA 0.05 0.440 0.5258 0.663 0.5258
12 FH -2.006 0.0849

& PAA 0.40 2.314 0.1692 2.151 0.0685

Guided FH 0.05 0.383 0.5532 0.619 0.5532
Missiles PAA 0.06 0.531 0.487 0.729 0.487
14 FH -0.134 0.8971

& PAA 0.06 0.242 0.7914 0.377 0.7176

Structrl FH 0.95 154.8 0.0001 12.442 0.0001
Compnts  PAA 0.88 56.608 0.0001 7.524 0.0001
15 FH 3.653 0.0081

& PAA 0.96 78.648 0.0001 1.036 0.3346

Compnts & FH 0.88 48.63 0.0001 6.974 0.0001
Accsories PAA 0.62 12.808 0.0072 3.579 0.0072
16 FH 4.516 0.0027

& PAA 0.90 32.132 0.0003 -1.751 0.1233

Tires & FH 0.46 6.818 0.0311 2.611 0.0311
Tubes PAA 0.35 4.304 0.0717 2.075 0.0717
26 FH 1.268 0.2454

& PAA 0.47 3.119 0.1075 -0.384 0.7127

_\':b -'I\f_'-"\’-f. ~‘.'(“-f"..'_ ot T At ~;\v A" : Ii MU T ) E'- E . : -':l



CARGO INDIVIDUAL FSG REGRESSION STATISTICS

(1) (2) (3) (4) (5) (6) (7)

FSG Title Indep R Prob Prob
& Number Var Square F value > F T-Stat >7T
Engs/Turb FH 0.77 27.087 0.0008 5.205 0.0008
& Compnts PAA 0.65 15.016 0.0047 3.875 0.0047

28 FH 1.923 0.0959

& PAA 0.77 11.889 0.0056 -0.132 0.8985

Engine FH 0.82 35.246 0.0003 5.937 0.0003
Accsories PAA 0.54 9.567 0.0148 3.093 0.0148
29 FH 4.683 0.0023

& PAA 0.89 28.26 0.0004 -2.18 0.0657

Mech Pwr FH 0.48 52.764 0.0271 2.699 0.0271
Trns Eqip PAA 0.21 18.764 0.1827 1.459 0.1827
30 FH 3.595 0.0088

& PAA 0.72 9.114 0.0113 -2.491 0.0416

Bearings PH 0.28 3.182 0.1123 -1.784 0.1123
31 PAA 0.39 5.023 0.0553 -2.241 0.0553

FH 0.404 0.6983

& PAA 0.40 2.33 0.1676 -1.159 0.2846

A/C & Circ FH 0.15 1.393 0.2718 1.18 0.2718
Equip PAA 0.04 0.315 0.59 0.561 0.59
41 FH 1.805 0.114

& PAA 0.34 1.832 0.2292 -1.443 0.1922

FPire Pght FH 0.22 2.193 0.1769 1.481 0.1763
Equip PAA 0.24 2,533 0.1501 1.592 0.1501
42 FH 0.067 0.9488

& PAA 0.24 1.111 0.381 0.488 0.6404

Pumps & FH 0.81 34.379 0.0004 5.863 0.0004
Cmprssrs PAA 0.60 11.776 0.0089 3.432 0.0089
43 FH 3.314 0.0129

& PAA 0.84 18.728 0.0015 -1.18 0.2766

Plub/Htng/ FH 0.42 5.834 0.0422 2.415 0.0422
Sanit EQp PAA 0.48 7.438 0.026 2.727 0.026
45 FH 0.043 0.9666

& PAA 0.48 3.256 0.1001 0.902 0.3971

Pipe/Hose FH 0.42 5.76 0.0432 2.4 0.0432
& Pittngs PAA 0.31 3.56 0.0959 1.887 0.0959
47 FH 1,251 0.2512

& PAA 0.43 2.688 0.1361 -0.441 0.6722

98

O ot e T T AT S T O VA A S R VR

......



CARGO INDIVIDUAL FSG REGRESSION STATISTICS

(1) (2) (3) (4) (5) (6) (7)
PSG Title Indep R Prob Prob
& Number Var Square F Value > F T-Stat >T

Valves FH 0.87 52.578 0.0001 7.251 0.0001
48 PAA 0.64 14.363 0.0053 3.79 0.0053
FH 4.198 0.004

& PAA 0.90 30.921 0.0003 -~1.446 0.1914

Maint/Rpar FH 0.67 16.06 0.0039 4.007 0.0039
Shop Equip PAA 0.70 18.462 0.0026  4.297 0.0026
49 FH 0.542 0.6044

& PAA 0.71 8.563 0.0132 1.011 0.3456

Hardwre & FH 0.00 0.000 0.9906 -0.012 0.9906
Abrasives PAA 0.08 0.679 0.4339 -0.824 0.4339
53 FH 2.751 0.0285

& PAA 0.56 4.403 0.0578 -2.967 0.0209

Comm Dtec FH 0.31 3.609 0.094 1.9 0.094
& Rad EqQp PAA 0.33 3.973 0.0814 1.993 0.0814
58 FH 0.195 0.8507

& PAA 0.34 1.767 0.2392 0.509 0.6264

Elec Eqp FH 0.44 6.265 0.0368 2.503 0.0368
Compnt PAA 0.21 2.187 0.1775 1.479 0.1775
59 FH 2.663 0.0323

& PAA 0.61 5.471 0.0371 -1.75 0.1236

Elec Wire/ FH 0.69 18.12 0.0028 4.257 0.0028
Pwr Equip PAA 0.39 5.13 0.0533 2.265 0.0533
61 FH 4.765 0.002

& PAA 0.86 20.877 0.00l1 -2.816 0.0259

Lghtng FH 0.39 5.187 0.0523 2.277 0.0523
& Lamps PAA 0.64 14.231 0.0054 3.772 0.0054
62 FH -1.633 0.1464

& PAA 0.74 9.933 0.009 3.049 0.0816

Alrm & Sec FH 0.59 11.364 0.0098 3.371 0.0098
Detec Sys PAA 0.50 8.071 0.0218 2.841 0.0218
63 FPH 1.198 0.2698

& PAA 0.59 4.973 0.0453 -0.036 0.9721

Instmts & FH 0.35 4.268 0.0727 2.066 0.0727
Lab Equip PAA 0.15 1.465 0.2606 1l.211 0.2606
66 FH 2.326 0.0529

& PAA 0.52 3.842 0.0748 -1.605 0.1525




CARGO INDIVIDUAL FSG REGRESSION STATISTICS

(L) (2) (3) (4) (5) (6) (7)
PSG Title Indep R Prob Prob
& Number Var Square P Value > F T-Stat >T

Photo FH 0.794 0.4024 0.891 0.4024
Equip PAA 0.415 0.54 0.644 0.54
67 FH 0.795 0.4568

& PAA 0.513 0.6229 -0.556 0.5981

Gen Purp FH 5.26 0.0555 2.293 0.0555
ADP Equip PAA 7.188 0.0315 2.681 0.0315
70 FH -0.225 0.8295

& PAA 3.132 0.1171 1.001 0.3555

Food Prep FH 3.263 0.1138 -1.806 0.1138
& Serv Eqp PAA . 4.558 0.0702 -2.135 0.0702
73 FH 0.321 0.7593

& PAA 2.038 0.2111 -0.934 0.3863

Cntnrs & FH 4.298 0.0929 2.073 0.0929
Pkg Sprt PAA . 2.055 0.2111 1.434 0.2111
8l FH 1.348 0.2488

& PAA 2.105 0.2374 -0.644 0.5546
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| APPENDIX E: Scaled Goal Programming Results 7
Total fighter weapon Total cargo weapon b
system results system results !
------------------------------------ (]
Bg = 0 Bg = 0 'o.f
By = 69,135.097 By = 42,622.033 "
B = 0 B = 0 .
d7q7 = -0 777 = 0 s
d~77 = 178,611,428 d=77 = 117,577,570 -
d+78 = 0 d+78 = 0 RS
d-7g = 59,579,642 d-7g = 66,323,669 N
d*79 = 0 d*79 = 0
d=79 = 81,993,709 d=79 = 66,388,715 A
d+ = 0 d+ = 0 o
80 780 =
d:80 = 69,363,121 d+80 = 75,996,106 S
d7g1 = 0 d7g1 = 0 %
d”g1 = 39,217,295 d+81 = 35,255,722 ::_,.
d+82 = 0 d 82 = 0 i
d7g2 = 0 dvg2 = 0 2
+ +
d*g3 = 32,680,663 d*g3 = 83,453,402 v
d”g3 = 0 d7g3 = 0 -3
d*g4 = 157,064,187 d+gy = 103,284,076 o
da- = 0 da- = 0 7
84 84 .
d+35 = 115,838,699 d+85 = 41,924,577
d"gs = 0 d7gs = 0
d+86 = 103,356,346 d+86 = 42,952,071 t:
d7ge = 0 d-gg = 0 e
____________________________________________________ d
A
3
:
3
éi
\
A
b
:u
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SCALED GOAL PROGRAMMING RESULTS

Pighter FSG 67 Fighter FSG 66
results results
Bg = 0 Bg = 0
By = 695.689 By = 10,297.951
Bz = 0 B = 0
%77 = 0
d~77 = 6,813,556
d*7g = 0 d*7g = 20,893,414
d~78 = 0 d”78 = 0
d+79 = 0 at = 0
d-79 =  920,375.7 d=79 = 6,603,695
d*go = 0 d*go = 0
d-gg = 862,951.2 d=go = 11,219,666
d*g) = 0 d*gy = 0
d-g) = 1,085,107 d-g1 = 13,480,320
d*gy = 0 d*gy = 0
d'az = 131,286.7 d-ez = 2,332,965
d*83 = 437,533.1 d+83 = 0
d7g3 = 0 d”g3 = 0
+ +
d 84 = 1,211,750 d 84 = 3,813,290
d7gq = 0 d gy = 0
+ +
d*gs = 615,131.8 d*gg = 10,954,791
d“gs = 0 d”gs = 0
+ +
d*ge = 1,915,371 d*gg = 4,336,963
d”ge = 0 d7ge = 0
102
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SCALED GOAL PROGRAMMING RESULTS

Fighter FSG 58 Cargo FSG 49 ;
results results :
.................................... y
BO = 0 Bo = 0 .
B = 9,686.749 By = 307.146
B = 0 B = 0
a%qy7 = 0 %77 = 0 "
d-77 = 30'472,240 d-77 = 369,799.8 X
d*qg = 0 d*7g = 0 0
d~7g = 26,705,313 d-7g =  444,601.6
d*79 = 0 d*79 = 0
da- = 24,341,345 a- = 440,091.1
79 79
d*go = 0 d*go = 0
d-go = 25,374,302 d=go = 169,145.7
d*gy = 0 d*gy = 0
d7g; = 0 d=g) = 702,418.1
d*gz = 3,030,004 d*gy = 292,561 ~
d”g2 = 0 d”g2 = 0
d+83 = 0 d+83 = 98,872.948 :
d-g3 = 4,831,925 d-g3 = 0 ‘
d*gy = 13,109,936 d*gy =  489,991.2
d’g4 = 0 d”gq = 0
d+85 = 8,496,864 d+85 = 0
d”gs = 0 d7gs = 0 \
d+35 = 10,503,289 d+86 = 392,025.9 A
d'as = 0 d-86 = 0 4
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APPENDIX F:

Individual FSG Goal Programming Results

Fighter FSG 63

L \J‘.‘I \-' ..! ._J\. <

results

524452

0

0
113,780.6
217,678.4
0

0
76,850.633
0

0

0
110,780.9
0
112,104.8
80,742.735
0
127,231.5
0

188,628

0

0
7,329.106

e e
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Pighter FSG 66

results
Bo = 0
B = 102.985
B = 0
d%y7 = 0
d'77 = 6,818,893
d+78 = 20,888,011
da- = 0
d+78 . 0
79
d:79 = 6,605,288
d7go = 0
d:ao = 11,227,464
d g1 = 0
d:.el = 13,489,194
d g2 = 0
d:az = 2,332,501
d-83 = 0
d+84 = 3,810'135
d-84 = 0
d+85 = 10,949,507
da- = 0
d+85 = 4,336,239
86 ’ ’
d-as = 0
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INDIVIDUAL FSG GOAL PROGRAMMING RESULTS
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Cargo FSG 62

results
0
.043024
30.682094
0
0
39,527.703
0
0
62,397.153
0
21,112.072
0
29,378.567
0
31,943.736
0
0
85,350.173
0
251,874.8
0
396,602.9
0
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Cargo PSG 70

results
0
0
311.509
0
94,732.160
0
34,716.402
0
0
0
123,358.7
0
250,201
32,588.458
0
118,652.2
0
468,266
0
410,077.1
0
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results show allocation percentages should be 1008 to the
variable FH.

Although the use of FH and PAA is "intuitively
appealing"” and may seem logical, PH dominates in all three
approaches used in this thesis. Based on this research it
appears that it is more appropriate to base depot
maintenance cost allocation entirely on the amount of
flying hours. The allocation percentages that are
currently used cannot be statistically verified using
several programming methods.

Among the recommendations is that more analysis is
needed to evaluate other cost drivers that are significant
by themselves, when used with FH, or when two or more
others are used together. However, the regression models
created in this study for fighter and cargo aircraft using
FH only are good models. Perhaps consideration should be
given to allocating depot maintenance costs entirely to FH.
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