AN ALGORITHM FOR DETECTING CHANGES IN BATTLE SCENARIA

Submitted to:
Director
National Research Laboratory
Washington, D. C. 20375
Attention: Code 2627

Submitted by:
P. P. Kazakos
Professor
R. K. Bansal
Graduate Assistant

Report No. UVA/525415/EE88/109
October 1987

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

SCHOOL OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA 22901
A Technical Report
Grant No. N00014-86-K-0742
September 1, 1986 - August 31, 1988

AN ALGORITHM FOR DETECTING CHANGES
IN BATTLE SCENARIAS

Submitted to:
Director
National Research Laboratory
Washington, D.C. 20375
Attention: Code 2627

Submitted by:
P. P. Kazakos
Professor
R. K. Bansal
Graduate Assistant

Department of Electrical Engineering
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Report No. UVA/525415/EE88/109
Copy No. ___
October 1987
We propose an algorithm for the speedy detection of change in battle scenario. The algorithm is sequential, numerically efficient, and asymptotically optimal, and can be either deployed in an automated fashion or can be implemented by trained human subjects.

Abstract

We propose an algorithm for detecting changes in battle scenarios. The algorithm is sequential, numerically efficient, and asymptotically optimal, and can be deployed either in an automated fashion or can be implemented by trained human subjects.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. The Algorithm</td>
<td>1</td>
</tr>
<tr>
<td>III. Example</td>
<td>2</td>
</tr>
<tr>
<td>IV. Conclusions</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
</tbody>
</table>
I. Introduction

In distributed tactical decision making, commanders make decisions based on data generated by their local territory as well as on decisions and information communicated to them by other commanders. The timely aspect of the decisions is controlled by the rate with which the commanders receive data, which is in turn controlled by the deployed transmission algorithms, (such as those in [31 and [14]). The accuracy of the decisions, on the other hand, depends heavily on the way that the decision makers perceive their environment. This perception corresponds to a number of alternative models, where the latter are a priori developed based on the various battle scenarios. Each such model is associated with an appropriate decision mode. Furthermore, a model (or battle scenario) may shift to another such model, at a random time. In the event of such a shift, it is thus crucial that the commander be alerted, for adaptation to the appropriate decision mode. In this paper, we describe an algorithm which can be deployed in an automatic fashion; to alert the commanders about changes in battle scenario.

II. The Algorithm

Each battle scenario is modelled by a stochastic process. Let the various battle scenarios be indexed, say from 1 to M. Then, the ith battle scenario is represented by a distribution \(F_i(x_1, \ldots, x_n,...) \), where \(x_1, \ldots, x_n,... \) are the data outputs observed. Let us assume that the above distributions possess density functions, and let then \(f_i(x_n \mid x_1,\ldots, x_{n-1}) \) denote the density of the datum \(x_n \), given the data \(x_1, \ldots, x_{n-1} \), and given that the ith battle scenario is present.

Let the jth battle scenario be known to be present at time zero. Our objective is to decide if a change in this scenario occurs, and if the answer is yes, then to decide what is the new scenario. Furthermore, if a change does occur, we wish to decide affirmatively as soon from the instant of its occurrence as possible. Let us define,

\[
\delta_{ij}(x_1, \ldots, x_{n+1}) = \log \frac{f_i(x_n \mid x_1, \ldots, x_{n-1})}{f_j(x_n \mid x_1, \ldots, x_{n-1})}
\]

\(T_{ij}^{(n)} \) such that,

\[
T_{ij}^{(0)} = 0
\]

\[
T_{ij}^{(n+1)} = \max(0, T_{ij}^{(n)} + \delta_{ij}(x_1, \ldots, x_{n+1}))
\]

A set \(\{\delta_{ij}, 1 \leq i \leq M\} \) of positive thresholds, where \(\delta_{ij} \) is associated with the sequence \(\{T_{ij}^{(n)}, n \geq 1\} \)

The thresholds \(\{\delta_{ij}, 1 \leq i \leq M\} \) are determined a priori based on false alarm and correct decision criteria. The algorithmic decision is then as follows:

Decide that scenario j shifted to scenario k, the first time \(n \), such that \(T_{ij}^{(n)} \geq \delta_{kj} \), while for each i different than k, the value \(T_{ij}^{(n)} \) is still below its threshold \(\delta_{ij} \).
The above algorithm is clearly sequential, and numerically very efficient. Furthermore, as proven in [1], it is also asymptotically optimal; that is, there is no other algorithm that can detect a change in model faster than the above algorithm. In addition, if there is lack of confidence in some of the observed data or ambiguity in the models of the battle scenario, then the algorithm can be easily modified, to basically maintain its performance characteristics, (see [2]).

III. Example

Let the observed data be binary and independent, and let us consider two scenarios, I and II. Let it also be known that under scenario I, a bit has value 1 with probability \(p \), and has value 0 with probability \(1-p \). Let it also be known that under scenario II, a bit has value 1 with probability \(q \), and has value 0 with probability \(1-q \). Let scenario I be initially present, and let \(x_1, x_2, \ldots \) denote the observed binary sequence. Then, for detecting a change to scenario II, the algorithm easily reduces as follows:

Select some threshold \(\delta \) positive.

Set \(T_0 = 0 \) and \(T_n = \max(0, T_{n-1} + x_n + \frac{\log \frac{1-q}{1-p}}{\log \frac{q(1-p)}{p(1-q)}}) \).

Decide that scenario I shifted to scenario II, the first time \(n \) such that \(T_n \geq \delta \).

Here, we will study the nonasymptotic performance of the algorithm. In particular, given the threshold, \(\delta \), we will analyze the false alarm and the power characteristics induced by the algorithm. Let us define.

\[P_{f,\delta}(n) \text{: The probability that the threshold, } \delta, \text{ is first crossed, at the time instant, } n, \text{ under the condition that the } p \text{ to } q \text{ change actually occurred just after the datum } x_r. \] (4)

The probabilities, \(\{P_{f,\delta}(n); n \geq 1\} \), represent then a false alarm set, while the probabilities, \(\{P_{0,\delta}(n); n \geq 1\} \), represent a power set. Indeed, the former probabilities show how probable is the crossing of the threshold, at different time instants, \(n \), when the \(p \) to \(q \) change never occurs. The latter probabilities correspond, instead, to threshold crossings, at different time instants, \(n \), when the "alarming" parameter-\(q \), process is active, since after time zero. We note that when the threshold, \(\delta \), is finite, it is eventually crossed with probability one, even when the \(p \) to \(q \) change never occurs. The false alarm curves, \(\{P_{f,\delta}(n); n \geq 1\} \), and the power curves, \(\{P_{0,\delta}(n); n \geq 1\} \), can be only computed numerically. For efficiency in such computations, we apply an approximation. In particular, we approximate the constant, \(\frac{\log \frac{1-q}{1-p}}{\log \frac{q(1-p)}{p(1-q)}} \), by the ratio of two integers. That is, we write,
\[
\log \frac{1-q}{1-p} = \log \frac{q(1-p)}{p(1-q)} - \frac{l}{s}
\]

; where \(l < s\), and \(l\) and \(s\) are both natural numbers.

Then, we write the algorithm in the following equivalent form, where, without lack in generality, the threshold, \(t\), in the latter is a natural number.

Select the threshold, \(t\). Decide the change has occurred, at the first time, \(n\), such that:

\[
T'_0 = 0, \quad T'_n = \max(0, T'_{n-1} + y_n)
\]

\[
y_n = s \cdot x_n - l
\]

Clearly, the updating step, \(y_n\), in (7) is an integer. It is equal to \(-l\), when \(x_n = 0\), and it is equal to \(s - l > 0\), when \(x_n = 1\). Let us denote by, \(P_{r,t}(n)\), the probability in (4), as applied to the modified algorithm in (6) and (7). It is then possible to obtain recursive expressions for the computation of the probabilities, \(\{P_{r,t}(n); n \geq 1\}\), via a Markov chain formulation. The key element in the latter formulation is the probability, \(P_{r,t}(n,j)\), that \(T'(x^k) < t, \forall k < n\) and \(T'(x^n) = j\), given that the \(p\) to \(q\) change occurs just after the datum, \(x_r\). Indeed, we find,

\begin{enumerate}
 \item If, \(t - 1 \geq s > l + 1\):

\[
P_{r,t}(n,0) = (1-v) \sum_{i=0}^{l} P_{r,t}(n-1, i)
\]

\[
P_{r,t}(n,j) = (1-v) P_{r,t}(n-1, j+l) \quad ; \quad 1 \leq j < s - l
\]

\[
P_{r,t}(n,j) = (1-v) P_{r,t}(n-1, j+l) + v P_{r,t}(n-1, j-s + l); \quad s - l \leq j \leq t - l - l
\]

\[
P_{r,t}(n,j) = v P_{r,t}(n-1, j-s+l); \quad t - l - l < j \leq t - 1
\]

\item If, \(t - 1 \geq s = l + 1\):

\[
P_{r,t}(n,0) = (1-v) \sum_{i=0}^{l} P_{r,t}(n-1, i)
\]

\[
P_{r,t}(n,j) = (1-v) P_{r,t}(n-1, j+l) + v P_{r,t}(n-1, j-l) \quad ; \quad 1 \leq j \leq t - l - l
\]

\[
P_{r,t}(n,j) = v P_{r,t}(n-1, j-l); \quad t - l - l < j \leq t - 1
\]
\end{enumerate}
where,

\[v = \begin{cases}
 p & \text{if } n \leq r \\
 q & \text{if } n > r
\end{cases} \]

(10)

\[P_{r,t}(n) = v \sum_{j=t+s+1}^{t-1} P_{r,t}(n-1, j); \quad t-1 \geq s \geq t+1 \]

(11)

The recursive expressions in (8) and (9) allow for the efficient computation of the probability, \(P_{r,t}(n) \) in (11), for every \(r \), and every \(n \).

The false alarm probabilities, \(\{P_{\infty,t}(n) \geq 1\} \), and the power probabilities, \(\{P_{0,t}(n) \geq 1\} \), evolve as a special case of the probabilities, \(\{P_{r,t}(n)\} \), and they can be also computed recursively then. Let us now define the following two quantities.

\[\alpha(p,q,n,t) = \sum_{i=0}^{r} P_{\infty,t}(i) \]

(12)

\[\beta(p,q,n,t) = \sum_{i=0}^{n} P_{0,t}(i) \]

(13)

The quantities, \(\alpha(p,q,n,t) \) and \(\beta(p,q,n,t) \), are the probabilities that the threshold, \(t \), is crossed by the algorithm in (6) and (7), before or at the time instant, \(n \), given that all the data are respectively generated by the p-parameter and the q-parameter process. Thus, \(\alpha(p,q,n,t) \) and \(\beta(p,q,n,t) \) are respectively the false alarm curve and the power curve induced by the algorithm in (6) and (7). Those two curves represent the nonasymptotic performance of the algorithm. We computed those curves for \(p = 0.1 \) and \(q = 0.05 \), and for various choices of the threshold, \(\delta \). In our computations, we applied the rational approximations represented by expression (5) and the algorithm in (6) and (7), and we used the recursions in (8) ad (9). Our results are shown in Figure 1. From this figure, the powerful nonasymptotic characteristics of the algorithm are evident. For relatively small sample sizes, it simultaneously attains both low false alarm and high power. The choice of the threshold, \(\delta \), will be determined from the specific false alarm and power requirements, and it will depend on where the emphasis (power versus false alarm) is placed. When the probabilities, \(p \) and \(q \), are further apart from each other, than the pair, \(p = 0.1 \) and \(q = 0.05 \), then the false alarm and the power curves are drawn further apart, than those in Figure 1. The performance characteristics of the algorithm are then further improved. Studies similar to those in this example can be performed, when dependent binary data structures are instead considered, (see [5]), or when Gaussian data are present.
Figure 1
IV. CONCLUSIONS

In this paper, we exhibited a simple sequential algorithm which we have previously fully analyzed, (see [1] and [2]), and which can be deployed to detect changes in battle scenarios. The algorithm can be implemented in an automated fashion. At the same time, it would be interesting to see how closely can trained human subjects approximate the algorithmic operations and how fast can they react to the algorithmic alerts. We propose that experiments along those lines be performed by the researchers on human factors, within the DTDM program.
REFERENCES

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>Director</td>
<td>National Research Laboratory, Washington, D.C. 20375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attention: Code 2627</td>
</tr>
<tr>
<td>7</td>
<td>Dr. R. N. Madan</td>
<td>Electronics Division, Code 1114SE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Office of Naval Research, 800 N. Quincy Street, Arlington, VA 22217-5000</td>
</tr>
<tr>
<td>8</td>
<td>Mr. James G. Smith</td>
<td>Office of Naval Research, Code 1241</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 N. Quincy Street, Arlington, VA 22217-5000</td>
</tr>
<tr>
<td>9</td>
<td>Mr. Michael Georgiopoulos</td>
<td>EECS Department, University of Central Florida, Orlando, FL 32816</td>
</tr>
<tr>
<td>10</td>
<td>Professor Mike Athans</td>
<td>MIT, Bldg. 35, Cambridge, MA 02139</td>
</tr>
<tr>
<td>11</td>
<td>Professor A. Ephremides</td>
<td>Electrical Engineering Dept., University of Maryland, College Park, MD 20742</td>
</tr>
<tr>
<td>12</td>
<td>Dr. Dave Castanon</td>
<td>ALPHATECH, Inc., 2 Burlington Executive Center, 111 Middlesex Turnpike, Burlington, MA 01803-4901</td>
</tr>
<tr>
<td>13</td>
<td>Dr. John P. Lehoczky</td>
<td>Dept. of Statistics, Carnegie Mellon University, Schenley Park, Pittsburgh, PA 15213-3890</td>
</tr>
<tr>
<td>14</td>
<td>Professor Alex Levis</td>
<td>MIT, Bldg. 35, Cambridge, MA 02139</td>
</tr>
</tbody>
</table>

(Continued on Next Page)
Dr. Harold L. Hawkins
Manager, Perceptual Sciences
Code 1142
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Dr. G. Malecki
Office of Naval Research
Code 1142
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. David Kleinman
ESE Dept., U-157
The University of Connecticut
STORRS, CT 06268

Defense Technical Information Center, S47031
Bldg. 5, Cameron Station
Alexandria, VA 22314

P. Kizakos, EE

R. J. Matauch, EE

E. H. Pancake, Clark Hall

SEAS Publications Files

Office of Naval Research Resident
Representative
818 Connecticut Ave, N.W.
Eighth Floor
Washington, D.C. 20006
Attention: Mr. Michael McCracken
Administrative Contracting Officer

*Send Cover Letter Only

JO#0459:rsr
UNIVERSITY OF VIRGINIA
School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer Science. Within these disciplines there are well equipped laboratories for conducting highly specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student enrollment of about 16,400), also offers professional degrees under the schools of Architecture, Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engineering research program. The School of Engineering and Applied Science is an integral part of this University community which provides opportunities for interdisciplinary work in pursuit of the basic goals of education, research, and public service.
END
DATE
FILMED
FEB.
1988