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" DEBRIS CHARGE STATES IN HANE AND
t IN THE NRL LASER EXPERIMENT

I. Introduction

It is reasonably well established that the charge state, z, of HANE

: debris drops from very high values to 2z close to 1 on disassembly time
" scales. Both observations and disassembly calculations suggest this
:i result. A calculation by Clark and Jacobs at NRL(I) estimates that the
. charge state drops to z ~1 by the time the burst has expanded to ~ 200
é meters radius, at which point the charge state 1is frozen in. That is, by
:: this time the density has dropped to the point that recombination is too
:' slow to be important and, further, future temperature decreases will not be
* sufficient to increase the recombination coefficient enough to offset the
{' density decrease.
:5 At the Naval Research Laboratory a laser target experiment, PHAROS
! II(Z), has been designed and operated to model on a reduced scale some of
:“ the physics occuring in an actual HANE. Simulations of the laser
Eﬂ experiment using a hydro-chemistry-radiation code HANEX(3) predict very
0
:; high charge states (z ~ 10) for the laser experiment in the forward moving
;a debris, which persist, at least, until interaction with the background gas
?E becomes important. We have identified two critical differences between the
:S laser experiment and the HANE event that are responsible for the disparity
e .
) in the results:
3 | —

; (1) a failure in density scaling in the adiabatic expansion phase, and
f (2) a difference 1in scaled times for the deposition of the

laser/nuclear energy, during disassembly.
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The laser experiment was designed to scale relative to HANE in the

following way,(a)
6
ty = 10 t
L 6
Iy = 10 £y
n, = 10_6n
H ™ L ()
M 1 12
g =107
12
EH=1O EL

vhere t, r, n, M, and E are respectively time, expansion radius, background
density, debris mass, and energy for HANE (H) and the laser experiment (L).
It follows from Eq. 1, that 2-body reaction rate time scales should be
related by Ty = 1061:L (since T = (na)_l, where o is the rate coefficient).
In this note, we will show that there is a breakdown in scaling, and
that recombination is much less effective in the laser experiment than it
is in HANE, with the result that the laser debris remains highly charged.
In Section II we will show that during the debris expansion, recombination
times are the same in HANE and in the laser experiment (they do not scale,
as suggested by Eq. 1). Also, "problem time" scales like 104, not 106,
during the expansion, as we will see. In Section III we introduce an
idealized HANE model and an idealized model for the laser experiment to

clarify the essential distinctions. In Section IV we compare these results

with HANEX code calculations and present our conclusions.

II. Scaling and Debris Recombination

To evaluate the importance of recombination (or ionization) in reducing
(increasing) the average charge state of the debris, it is convenient to
introduce the dimensionless parameter, &, the fraction of ions that will

recombine or ionize in a time interval 6t

(2)
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,’ﬂ wvhere 1T = (N «) ~, (N = electron density) 1is the recombination
) e e Y
=
o) (ionization) time. In this discussion wve neglect 3-body recombination,
. !
1)
i which is unimportant at the high temperatures associated with the early
P
1".
03' debris expansion. It is included in our model, however. We choose &t to
Y
A
%, be the time scale for changes in the density and temperature (an expansion
-‘". .
: time scale). Then the expanding plasma charge state will be in equilibrium
!i
&4
ﬁﬁ if & for both recombination and ionization are large. If & becomes less
)
fﬁa than unity the plasma may no longer be in equilibrium. 1In particular, if §
B
N
for rec~ o' nation processes becomes and stays much less than unity, then
‘e
0 . : C . . .
:\? that charge state will be frozen at its existing value, i.e., recombination
;:.. .
o vill not occur.
!.“I
)
' If the debris expansion scaling satisfied Eq. 1, then according to Eq.
I
,5& 2, & for HANE and the laser experiment would be the same. However, this is
B
"\ . . s . .
b ¢ not the case for debris recombination during the early expansion of the
i 4
* debris. Here, the ambient density 1is negligible compared to the debris
-}:. density. Both in the laser experiment and in the HANE the debris density
oo
.*Z starts from the solid state. Thus, debris density is not scaled at all in
t )
o8 the expansion phase; it is the same for HANE and the laser.
QX If the laser experiment were strictly a scaled down HANE (mass scaled
A ]
1 "ﬂ -
y? by 10 12) with the same initial temperature, the time scale for
5' recombination (and ionization), T, would be identical. However, if mass (M)
¥
i scales ~ 1012, and because debris densities are the same, the expansion
s . 1/3 4 . . . '
P 5¢C ~ ~ . in ’
M radius scales ~(M) 10 Since expansion velocities are coinparable
£ 34
i . - .
‘u time (ét) scales ~ 104, also. Then, from Eq. 2, for HANE & -~ 104 times
L
" larger than in a laser experiment size HANE.
.3
\A
-, In the real experiment the temperature of the debris never exceeds 103
< 4
:{ e, while in HANE the temperature 1is greater than 10" eV at early times.
)
i . . . ,
If the laser stayed cooler than in a HANE. increased recombination at lowver
Y,
L
0 remperatures right compensate somewha® {m the F discrepancy. However, in
]
B
{:
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the HANE event, the energy is released and deposited in a time ~ 10—6sec.
In the laser, scaling of problem time by 10—4 implies an appropriate
deposition time ~ 10‘losec, but the actual deposition time is ~ lo_gsec.

Thus, there is a scaling discrepancy of order 10_2. In other words, the

laser energy is deposited over a time period a factor of 102 too long

compared to a HANE. Thus, vhile the HANE debris is expanding

adiabatically, and cooling accordingly, the 1laser debris expands but is
maintained at a high temperature as long as the 1laser Iis on.(3)
Thereafter, the debris expands and cools adiabatically but the temperature
remains higher than in a HANE, at the same densities. This higher
temperature also decreases recombination processes in the laser experiment.

Thus, recombination is less effective in the laser experiment, first,
because of scaling which requires ER(HANE) = IOAER(LASER) and, second,
because the long laser energy deposition time delays cooling. In the next

section we illustrate the result of these effects using simplified models

for the HANE and the laser experiment.

III. Results
The recombination coefficient is made up of 3 parts: radiative
recombination, dielectronic recombination, and 3-body recombination. Their

general dependence with temperature is quite different and explains their

relative importance in different regimes. At intermediate temperatures

dielectronic recombination tends to be larger than radiative and 3-body is

{-.4.«-

unimportant. Dielectronic falls off somewhat faster than radiative

T -3/2
e

-
-

-1 . . .
vs., ~ Te ) with increasing temperature. At lower temperatures

(...
dielectronic drops off exponentially while radiative continues to increase.
At very low temperatures 3-body will dominate even at low densities because

-9/2 (5)

it increases like Te as Te decreases. In Appendix I we present

expressions for each of these rate coefficients.
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Table 1 shows "
of aluminum into a

1 x 10

velocity v

vhere

Assuming adiabatic

typical"

HANE parameters for ideal adiabatic expansion

vacuum. The plasma expands radially at constant

8 cm/sec, according to

n = n(r /R)%; (3)
R = vt

expansion with vy = 5/3,
T = To(ro/R)2 (4)

T, Mo and r, are the temperature, density, and radius when the expansion
begins. 1Included in the Table are temperature (T), debris ion density (n),
TABLE 1
o) (@l (se) (Em) ®3 =R %0 I ’
1.0E+05 1.0E+23 1.0E-06 1.0E+02 O0.0E+00 5.5E+04 ---—- 1.2E+07 13
2.2E+04 1.0E+22 2.2E-06 2.2E+02 O0.0E+00 3.8E+04 ----- 4.0E+06 13
4.6E+03 1.0E+21 4.6E-06 4.6E+02 7.4E+00 2.6E+04 ----—- 6.7E+05 13
1.0E+03 1.0E+20 1.0E-05 1.0E+03 2.3E+00 1.1E+04 2.5E+04 4.7E+04 12
2.2E+02 1.0E+19 2.2E-05 2.2E+03 1.7E+00 2.4E+03 4.5E+04 5.1E+04 10
4.6E+01 1.0E+18 4.6E-05 4.6E+03 2.7E+00 4.5E+02 1.3E+03 5.9E+03 6
1.CE-01 1.0E+17 1.0E-04 1.0E+04 1.9E+01 6.4E+01 5.0E«01 5.6E-01 4
2.2E+00 1.0E+16 2.2E-04 2.2E+04 9.2E+N0 5.3E+D0 9.1E+02 6.5E+01 2
«.6E-01 1.0E+15 4.6E-04 4.6E«04 8.5E.0N 2. 2E-01 2.0E+N1 7.8E-01 1
1.0E-01 1.0E+14 1.0E-03 1.0E+05 4.4FE-D2 2.3E-01 6.3E-06 5.9E-18 1
2.2E-N02 1.0E+13 2.2E-N3 2.2E+05 4.9E+03 1.7E-01 O.0E+00 5.9g-19 1
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time (t), and radial expansion (R). Ve have calculated the parameter, &,
for 3-body recombination (ER3), radiative recombination (ERR), dielectronic
recombination (ERD), and ionization (EI). The last column is the
approximate value of the dominant charge state, z. In the calculation of §
ve have approximated the expansion time scale &t, by the problem time t,
given in the Table. The parameters & are calculated assuming
recombination from z to z - 1 and ionization from z - 1 to z. In a cooling
plasma if at least one of the &’s for recombination is greater than unity
the plasma is in equilibrium and the charge state, z, is determined by the
temperature, T.

At very early times the plasma is in equilibrium and is stripped.
(Dielectronic recombination is not defined for a stripped ion.) As the
adiabatic expansion continues and density and temperature drop, the plasma
remains in equilibrium and the charge state begins to drop. Both
dielectronic recombination and radiative recombination are important.
Eventually, the temperature is sufficiently low that the charge state drops
to z ~ 1 (n ~ 1015cm-3). At this time dielectronic and 3 body
recombination are comparable. As density and temperature are reduced

5cm~3) 3-body recombination begins to dominate. Here, we

further (r < 101
need to stress that we have used a model of an ideal adiabatic expansion.
In the real case, each recombination releases energy, much of which ends up
heating the electrons. Thus, the plasma will no longer cool adiabatically
and the temperature will not drop so precipitously. As the density
continues to decrease below -~ 1015 cm~3, the debris is likely to be frozen
at z close to 1.

The effect of the failure of density scaling during the expansion can

be made clear by scaling the HANE expansion of Table 1 to the size of a

laser experiment. If we maintain the values of temperature and density,




5: but alter t and R by a factor of 10“4, all &'s will be reduced by this
N
E; factor. The &’s will then be at most of order 1. They drop below unity at
e a density ~ 1018cm_3. Thus, the charge state freezes at 10 > z > 6, as the
PO
R
.‘$ plasma falls out of equilibrium. The scaling of &, by itself, prevents
:g( recombination of the plasma down to z ~ 1, as in a HANE.
gth
Now, we consider an idealized laser experiment, shown in Table 2 and
y
éw defined as follows. Starting with the HANE parameters of Table 1, scale
ol
ER time and expansion radius by 10_4. Density drops as in HANE according to a
i
N spherical expansion with constant velocity. Assume, however, that
",
'ﬂ; temperature is maintained at 500 eV to about 5 nsec. Thereafter, it drops
Y
92 adiabatically. The constant high temperature is due to the continued laser
50
£b energy deposition. This provides a rough approximation to a laser
Ih experiment.
30
N TABLE 2
T n t R 3 z
K>, (ev) (cm‘3) (sec) (cm) £R3 ERR ERD I
Iy
!
%ﬁ 5.0E+02 1.0E+21 4.6E-10 4.6E-02 6.1E-02 3.5E+00 7.4E-01 1.6E+02 11
.‘).'.
) 5.0E+02 1.0E+20 1.0E-09 1.0E-01 1.3E-03 7.5E-01 1.6E-01 3.4E+01 11
A
;%3 5.0E+02 1.0E+19 2.2E-09 2.2E-01 2.8E-05 1.6E-01 3.4E-02 7.3E+00 11
"
&: 5.0E+02 1.0E+18 4.6E-09 4.6E-01 6.1E-07 3.5E-02 7.4E-03 1.6E+00 11
l
1.1E+02 1.0E«17 1.0E-08 1.0E+00 3.4E-06 2.7E-02 8.6E-07 7.6E-03 11
:?j 2.3E-01 1.0E+16 2.2E-08 2.2E+00 2.8E-04 2.1E-02 0.0E+00 2.8E-10 11
"2
|:j 5.0E+00 1.0E+15 4.6E-08 4.6E+00 1.8E-02 1.6E-02 O0.0E+00 0.0E+00 11
“~
o
oo 1.1E<00 1.0E+14 1.0E-07 1.0E+01 2.0E-01 1.2E-02 0.0E+00 0.0E+00 11
-dl
';i 2.3E-01 1.0E+13 2.2E-07 2.ZE«01 1.2E+00 ©9.6E-03 (0.0E+00 O0.0E+00 11
‘\'::
i~
p)
'.~:-'
Y
L)
e
:“'» 7
L
s
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h
R 21 -3
\' The first table entry shown 1is for an ion density of 10" cm .
L . . L 21 -3
48 Maximum heating takes place at electron densities ~ 10" cm ~. Although
k7 g
KA
) the laser does not penetrate to higher electron densities thermal
.‘ |

ﬂﬁ conduction maintains the high temperature in the first table entry.

»

[]
j\ From Table 2 the plasma is in equilibrium at a temperature of 500 eV
'

' with z > 11 as the dominant charge state. VWhen the temperature begins to
\: drop, at densities < 1018 cm-3, the §'s for recombination are less than
2 ’ -
'h' unity. The expansion has reduced densities too much to allow for effective
)
)

A recombination at these temperatures. Eventually, when the temperature
ﬁr drops to very low values (< 1 eV) corresponding to a density ~ 1013 cm—3,
[ *

W/ 3~-body recombination would reduce the z value of the debris. Once again,
b . . . .

" in the real 1laser experiment recombination will release energy to the
> electrons, maintaining a higher temperature and suppressing recombination.
o
- Furthermore, in the real laser experiment an ambient background gas will
n.')

o stop the expansion, halting the temperature decline. From that point the
KX operative scaling becomes that of Eq. 1. Ve note, finally, that if in
2; Table 2 we maintained the temperature and density values but scaled t and R
o
f. by a factor of 104, the ¢&’'s would be increased by that factor. Clearly,
A%l

- recombination to lower charge states would rapidly ensue. A HANE size
i

S laser experiment would recombine.

o

2

D

[ IV. Discussion and Conclusion

gl

L Ve compare the above results to a HANEX code simulation of the laser
|.0

h experiment. The state of aluminum target ions without the effects of
¢ background coupling was obtained by running the HANEX code with a
2 background nitrogen density of 10_6 Tory. The target contained 40 cells,

N

" 13 of which blow off the front side. The initial conditions were chosen to ;
> match the series of shots described in the experimental coupling study of

2 “n,

B,

. . R RNt . - < - - ) ” . « AN
B ) f, "W b (ANRXY I p ) t OGO e
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Ripin, et al.(6) The ta:get was 5.6 micron thick aluminum foil. The
laser pulse length was 10 nsec with a full width half maximum of 4 nsec.
The nominal laser energy was 100 joules with 50 joules within a radius of
125 microns. This produced a forward debris mass of 0.2 micrograms in a
cone of half angle 40 degrees. 1In Table 3 we present the time history of a
representative cell with an outward velocity of 5.2 «x 107 cm/sec . For
comparison ERziRR‘&RD+ER3 and EI wvere calculated using the same rates as

used for Table 2. The average charge state, z = Ne/n, is given.

TABLE 3
’ R n Ne T Te &R EI z
(nse.)  (cm) (cm_B) (cm—3) (ev) (ev)
2R -0.002 6.5E+20 7.0E+21 200. 211. 1.0E+02 1.6E+02 10.8
2.An n.002 1.5E+20 1.7E+21 453, 489. 5.5E+00 1.9E+02 11.1

a.cal n.012 5.8E+19 6.5E+20 482. 573. 2.2E+00 1.0E+02 11.2
T 0.026 1.9E+19 2.1E+20 382. 590. 7.9E-01 3.8E+0 11.3

T.044 7.1E+18 8.0E+19 293. 570. 3.3E-01 1.5E+01 11.3

wn
R

1.062 2.5E+18 3.9E+19 235. 550. 1.8E-01 7.8E+00 11.3

in
30

FLULZ 1.097 1.4E+18 1.5E+19 170. 478. 8.6E-02 2.9E+00 11.3
3.0 7.174 3.8E~17 4.3E+18 105. 269. 4.1E-02 4.0E-01 11.3
1o 1.384 5.9E+16 6.6E+17 48. 76. 2.6E-02 8.7E-04 11.2
21.e 1.441 1.6E+15 1.7E-16 6. 7. 3.7E-02 1.1E-24 11.2
Sa. 2.699 2.5E+14 2.8E+15 2 2. 2.2E-01 1.7E-25 11.2
~arly times when the laser pulsze 1is still on. the ion and electron
denc: o fall due *o erpancion hor rhe  wlectyan temperature stays high
Sl herauze the laser  energy 1o heing  obzorbed,  and then, because of
cieccran thermal canduction from the cegion of  tne target that is still
9
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being heated. These effects were accounted for in Table 2 by assuming a
constant temperature of 500 ev during the laser pulse. The debris
expansion velocity is about a factor of 2 smaller than that of Table 2.
This only changes the time scale for expansion by that amount, so Table 3
can be compared directly if time (t) and the &’'s in Table 2 are increased
by a factor of 2. We can see that after the laser is turned off (~ 10
nsec) the forward moving debris expands and cools adiabatically, as in our
models.

The HANEX code 1includes 1laser absorption, radiation transport, time
dependent chemistry, thermal conduction, etc. The agreement between code
results and the simple models presented in Table 2 after the end of the
laser pulse demonstrates that the controlling factors after 10 nsec are, in
fact, adiabatic expansion and the recombination rates we discussed.

In conclusion, the simple model calculations given in Section III
illustrate the essential differences between HANE and the laser experiment:
a low debris charge state in the former and a high charge state in the
latter. The primary effect follows from the breakdown of density scaling
in the early debris expansion. A secondary effect is a result of the long
deposition time of the laser energy, maintaining a higher temperature in
the laser experiment than in a HANE at the same densities, even though at
earliest times HANE temperatures are higher. Ve note that the results are

essentiaily unchanged if we reduce this temperature even by a factor of 2

>
) gF

or 3. Recall, that even a scaled down HANE, in which the temperatures are

LA 1" i

an order of magnitude lower at corresponding densities still resulted in 10

%

>z > 6. That 1is, the primary effect 1is the debris density scaling

o

’

“

hreakdown. Finally, we may ask to what extent charge exchange with an

o
¢« v
- &

a 4 a

ambient background will reduce the debris <harge state. Ve will present

derailed simulation results in a separate report. However, we believe that

O

™, PR Uy O AT W T T 8 0 Ve Wy U Vs 4 g0 R
0 OO IABAR IR ORISR QORI O



at high background density (0.5 - 5. Torr), vhere mixing of debris and
background is 1limited, high charge states will persist. At lower
background density (0.01 - 0.5 Torr) charge exchange may substantially

reduce the charge states.
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Appendix I

The rate coefficients for aluminum used to calculate the E's for Tables 1 and 2

are given by the following expressions:

Recombination z + z - 1:

-n
g = Ap Te

e e 372
*p = ADe [1 + BDe ]/'I‘e
*p3 = nAx(uLRB, “HR3)’ vhere
-27.3 E
8.75 10 N hu
aLRB = T ;/2 z N, MIN [1, Tﬁﬁ?:] (lov temperature)
e
o &)
qHR3 = g—;—IEET;~§77 o (high temperature)
e

Ionization z - 1 » z:

-X
AI X e
“1‘(;HBI) ’

L . 3
Here Te is in ev, the a‘s arve in c¢m

with x = T

/sec and E_ is the ionization energy ot the

z -1 ion in ev. The other constants are given in the following table.
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SCIENCE APPLICATIONS
INTERKNATIONAL CORPORATION
1710 GOCORIDGE DR.
MCLEAN, VA 22102
01CY J. COCKAYNE
gicY =, HYMAN

SRI INTERNATIONAL

333 RAVENSWOOD AVENUE

MENLO PARK, CA 94025
01CY ATTN J. CASPER
01CY ATTN DONALD NEILSON
01CY ATTN ALAN BURNS
01CY ATTN G. SMITH
01CY ATTN R. TSUNODA
J1CY  ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
ND1CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN R. LIVINGSTON
212Y ATTN V. GONZALES
21CY  ATTN D. MCDANIEL

TETHNOLOGY INTZRNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
S17Y  ATTN W.P. BOQUIST
T=w ZEFENGE & SPACE 3Y5 GROUP
CNE SPACE PARK
RZUONDS LBEACH, CA 40278
PR ATTN R. K. PLEBUCH
TELYOATTE S AML.TSCHULER
VoY ATTN T SEE
DI ATTN 2/ STOCKWELL

E N
INTE/1575

VISIDYNE

SOUTH BEDFORD STREET

BURLINGTON, MA 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY

UNIVERSITY OF PLTTSBURCGH
PITISBURGH, PA 15213
C1CY ATTN: N. ZABUSKY







