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DEBRIS CHARGE STATES IN HANE AND
IN THE NRL LASER EXPERIMENT

I. Introduction

It is reasonably well established that the charge state, z, of HANE

debris drops from very high values to z close to 1 on disassembly time

scales. Both observations and disassembly calculations suggest this

result. A calculation by Clark and Jacobs at NRL (1 ) estimates that the

charge state drops to z - 1 by the time the burst has expanded to - 200

meters radius, at which point the charge state is frozen in. That is, by

this time the density has dropped to the point that recombination is too

slow to be important and, further, future temperature decreases will not be

sufficient to increase the recombination coefficient enough to offset the

density decrease.

At the Naval Research Laboratory a laser target experiment, PHAROS

II , has been designed and operated to model on a reduced scale some of

the physics occuring in an actual HANE. Simulations of the laser

experiment using a hydro-chemistry-radiation code HANEX (3 ) predict very

high charge states (z - 10) for the laser experiment in the forward moving

debris, which persist, at least, until interaction with the background gas

becomes important. We have identified two critical differences between the

laser experiment and the HANE event that are responsible for the disparity

in the results:

(1) a failure in density scaling in the adiabatic expansion phase, and

(2) a difference in scaled times for the deposition of the

laser/nuclear energy, during disassembly.

Manuscript approved July 31. 1997.
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The laser experiment was designed to scale relative to HANE in the

following way,
(4 )

tH = 10 6 tL

r H = 106rL

nH = 10-6nL (1)

M H 10 12M

EH = 10 1

where t, r, n, M, and E are respectively time, expansion radius, background

density, debris mass, and energy for HANE (H) and the laser experiment (L).

It follows from Eq. 1, that 2-body reaction rate time scales should be

related by TH = 106 L (since T = (nt)- , where a is the rate coefficient).

* In this note, we will show that there is a breakdown in scaling, and

that recombination is much less effective in the laser experiment than it

is in HANE, with the result that the laser debris remains highly charged.

In Section II we will show that during the debris expansion, recombination

times are the same in HANE and in the laser experiment (they do not scale,

as suggested by Eq. 1). Also, "problem time" scales like 104 , not 106,

during the expansion, as we will see. In Section III we introduce an

idealized HANE model and an idealized model for the laser experiment to

clarify the essential distinctions. In Section IV we compare these results

with HANEX code calculations and present our conclusions.

II. Scaling and Debris Recombination

To evaluate the importance of recombination (or ionization) in reducing

(increasing) the average charge state of the debris, it is convenient to

introduce the dimensionless parameter, E., the fraction of ions that will

recombine or ionize in a time interval 6t

8t (2)

0 
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where T = (N e  (N e electron density) is the recombination

(ionization) time. In this discussion we neglect 3-body recombination,

which is unimportant at the high temperatures associated with the early

debris expansion. It is included in our model, however. We choose 6t to

be the time scale for changes in the density and temperature (an expansion

time scale). Then the expanding plasma charge state will be in equilibrium

if & for both recombination and ionization are large. If & becomes less

than unity the plasma may no longer be in equilibrium. In particular, if E

for rec- ,, nation processes becomes and stays much less than unity, then

that charge state will be frozen at its existing value, i.e., recombination

will not occur.

If the debris expansion scaling satisfied Eq. 1, then according to Eq.

2, for HANE and the laser experiment would be the same. However, this is

not the case for debris recombination during the early expansion of the

debris. Here, the ambient density is negligible compared to the debris

density. Both in the laser experiment and in the HANE the debris density

starts from the solid state. Thus, debris density is not scaled at all in

the expansion phase; it is the same for HANE and the laser.

If the laser experiment were strictly a scaled down HANE (mass scaled

by 10- 1 2) with the same initial temperature, the time scale for

recombination (and ionization), T, would be identical. However, if mass (M)

12scales - 1 , and because debris densities are the same, the expansion

1/3 4radius scales -(M) ~ 104 . Since expansion velocities are conparable,

time (6t) scales - 10 4 , also. Then, from Eq. 2, for HANE - 104 times

arger than in a laser experiment size HANE.

In the real experiment the temperature of the debris never exceeds 10
3

ci.'. 'vile in HANE the temperature is greater than Vf4 eV at early times.

f 'hP laser stayed cooler than in a HANE. increased recombination at lower

c ! ight rnmpon7atv fri thf, "I 'u repancy. However, in
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the HANE event, the energy is released and deposited in a time - 10- 6sec.

In the laser, scaling of problem time by 10- 4  implies an appropriate
deposition time - 10-1 0 sec, but the actual deposition time is - 10-8sec.

Thus, there is a scaling discrepancy of order 10- 2 . In other words, the

laser energy is deposited over a time period a factor of 102 too long

compared to a HANE. Thus, while the HANE debris is expanding

adiabatically, and cooling accordingly, the laser debris expands but is

maintained at a high temperature as long as the laser is on.( 3 )

Thereafter, the debris expands and cools adiabatically but the temperature

remains higher than in a HANE, at the same densities. This higher

temperature also decreases recombination processes in the laser experiment.

Thus, recombination is less effective in the laser experiment, first,

because of scaling which requires &R(HANE) = 104 &R(LASER) and, second,

because the long laser energy deposition time delays cooling. In the next

section we illustrate the result of these effects using simplified models

for the HANE and the laser experiment.

III. Results

The recombination coefficient is made up of 3 parts: radiative

recombination, dielectronic recombination, and 3-body recombination. Their

general dependence with temperature is quite different and explains their

relative importance in different regimes. At intermediate temperatures

dielectronic recombination tends to be larger than radiative and 3-body is

unimportant. Dielectronic falls off somewhat faster than radiative

(- T e -32vs. ~ T e - ) with increasing temperature. At lower temperatures

dielectronic drops off exponentially while radiative continues to increase.

At very low temperatures 3-body will dominate even at low densities because

t increases like T -9/2 as T decreases.(5 ) In Appendix I we present

expressions for each of these rate coefficients.
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Table 1 shows "typical" HANE parameters for ideal adiabatic expansion

of aluminum into a vacuum. The plasma expands radially at constant

velocity v = 1 x 08cm/sec, according to

n n n(r /R) 3 (3)

where R =vt

Assuming adiabatic expansion with y = 5/3,

T = T 0(r 0/)2(4)

T 0, M and r 0are the temperature, density, and radius when the expansion

begins. Included in the Table are temperature (T), debris ion density (n),

TABLE 1

T n_ t R E. R RD &I z
(ev) (cn (sec) (cm)

l.OE+05 l.OE+23 l.OE-06 1.OE+02 0.OE+00 5.5E+04 --- 1.2E+07 13

2.2E+04 l.OE+22 2.2E-06 2.2E+02 0.OE+00 3.8E+04 --- 4.OE+06 13

4.6E+03 1.OE+21 4.6E-06 4.6E+02 7.4E+00 2.6E+04 --- 6.7E+05 13

61.OE+03 1.OE+20 l.OE-05 l.OE+03 2.3E+.00 l.lE+04 2.5E+04 4.7E+04 12

2.2E+02 l.OE+19 2.2E-05 2.2E+03 1.7E+00 2.4E+03 4.5E+04 5.3E+04 10

6 1~~.6E-01 1.OE+17 .O-4 .E04 1E*1 6E.O .E'1 .- O46EO 1OE18 4.6E-05 4.6E.-03 2.7E'-0 4.5E+~02 1.3E+03 5.9E+03 6

2.2E-00/ 1.OE+16 2.2E-04 2.2E-04 9.2E,00 5.3E-00 9.1E+02 6.5E+01 2

4.6E-nl 1.OE.15 4.6E-04' 4.6E*r)4 8 .57-,r) 2 .E) r 2.flE+fll 7-8E-01 I

1 .()E-01 1. OEl4 I. OE-03 1 . ()E.05 F E-0l (). )F-()6 5. 9E-18 1

2.2E-0J2 1.OE.13 2.2E-0l3 ^2.2E-05 4.Q)E 03 1.7E-0l1 O.OE+OO 5.9E-19 1



time (t), and radial expansion (R). We have calculated the parameter, &,

for 3-body recombination ($R3), radiative recombination ( RR), dielectronic

recombination ( RD), and ionization (&l). The last column is the

approximate value of the dominant charge state, z. In the calculation of &

we have approximated the expansion time scale St, by the problem time t,

given in the Table. The parameters & are calculated assuming

recombination from z to z - 1 and ionization from z - 1 to z. In a cooling

plasma if at least one of the 's for recombination is greater than unity

the plasma is in equilibrium and the charge state, z, is determined by the

temperature, T.

At very early times the plasma is in equilibrium and is stripped.

(Dielectronic recombination is not defined for a stripped ion.) As the

adiabatic expansion continues and density and temperature drop, the plasma

remains in equilibrium and the charge state begins to drop. Both

dielectronic recombination and radiative recombination are important.

Eventually, the temperature is sufficiently low that the charge state drops

to z - 1 (n - lo 5cm- 3). At this time dielectronic and 3 body

recombination are comparable. As density and temperature are reduced

further (r < 015 cm- 3) 3-body recombination begins to dominate. Here, we

need to stress that we have used a model of an ideal adiabatic expansion.

In the real case, each recombination releases energy, much of which ends up

heating the electrons. Thus, the plasma will no longer cool adiabatically

and the temperature will not drop so precipitously. As the density

15 -3
continues to decrease below - 10 cm , the debris is likely to be frozen

at z close to 1.

The effect of the failure of densitv scaling during the expansion can

be made clear by scaling the HANE expansion of Table I to the size of a

laser experiment. If we maintain the values of temperature and density,

6
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but alter t and R by a factor of 10- , all &'s will be reduced by this

factor. The 's will then be at most of order 1. They drop below unity at

a density -10 18cm . Thus, the charge state freezes at 10 > z > 6, as the

plasma falls out of equilibrium. The scaling of &, by itself, prevents

recombination of the plasma down to z - 1, as in a HANE.

Now, we consider an idealized laser experiment, shown in Table 2 and

defined as follows. Starting with the HANE parameters of Table 1, scale

S-4.
time and expansion radius by 10 .Density drops as in HANE according to a

spherical expansion with constant velocity. Assume, however, that

temperature is maintained at 500 eV to about 5 nsec. Thereafter, it drops

adiabatically. The constant high temperature is due to the continued laser

energy deposition. This provides a rough approximation to a laser

experiment.

TABLE 2

T n_ t R R3 RR RD I z
(ev) (cm ) (sec) (cm)

5.0E+02 1.OE4-21 4.6E-10 4.6E-02 6.1E-02 3.5E+00 7.4E-01 1.6E+02 11

5.OE-02 1.OE+20 l.OE-09 l.OE-0l 1-3E-03 7.5E-01 1.6E-01 3.4E+01 11

5.OE.02 1.OE±19 2.2E-09 2.2E-01 2.8E-05 1.6E-01 3.4E-02 7.3E+00 11

5.OE-02 1.OE+18 4.6E-09 4.6E-01 6-1E-07 3.5E-02 7.4E-03 1.6E+00 11

1.1E402 1.OE.17 l.OE-08 1.OE+00 3.4E-06 2-7E-02 8.6E-07 7.6E-03 11

2.3E-O1 1.OE+16 2.2E-08 2.2E+00 2.8E-04 2.1E-02 0.OE+00 2.8E-10 11

5.OE CJ0 1.OE+15 4-6E-08 4.6E400 2.8E-02 1.6E-02 O.0E4O0 O.OE+00 11

1.TE-00) 1.OE-14 I.OE-07 1.OE-O1 2.nE-O1l 1.2E-02 0.OE400 O.OE+00 11

Z.3E-elI 1.OE-13 2.2E-07 2.2E-0 1.E1 9-6E-03 O.OE+0O O.OE+O0 11

7
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21 -3
The first table entry shown is for an ion density of 10 cm

21 -3
' Maximum heating takes place at electron densities - 10 cm . Although

the laser does not penetrate to higher electron densities thermal

conduction maintains the high temperature in the first table entry.

From Table 2 the plasma is in equilibrium at a temperature of 500 eV

with z > 11 as the dominant charge state. When the temperature begins to

18 -3
drop, at densities < 10 cm , the &'s for recombination are less than

unity. The expansion has reduced densities too much to allow for effective

recombination at these temperatures. Eventually, when the temperature

13 -3
drops to very low values (< 1 eV) corresponding to a density - 10 cm

3-body recombination would reduce the z value of the debris. Once again,

in the real laser experiment recombination will release energy to the

* electrons, maintaining a higher temperature and suppressing recombination.

Furthermore, in the real laser experiment an ambient background gas will

stop the expansion, halting the temperature decline. From that point the

operative scaling becomes that of Eq. 1. We note, finally, that if in

Table 2 we maintained the temperature and density values but scaled t and R

by a factor of l04 , the Is would be increased by that factor. Clearly,

recombination to lower charge states would rapidly ensue. A HANE size

laser experiment would recombine.

* IV. Discussion and Conclusion

We compare the above results to a HANEX code simulation of the laser

experiment. The state of aluminum target ions without the effects of

background coupling was obtained by running the HANEX code with a

background nitrogen density of 10- 6 Tori. The target contained 40 cells,

13 of which blow off the front side. The initial conditions were chosen to

match the series of shots described in the experimental coupling study of

8
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(6)-- - -- - -- - -

Ripin, et al. () The tai.get was 5.6 micron thick aluminum foil. The

laser pulse length was 10 nsec with a full width half maximum of 4 nsec.

The nominal laser energy was 100 joules with 50 joules within a radius of

125 microns. This produced a forward debris mass of 0.2 micrograms in a

cone of half angle 40 degrees. In Table 3 we present the time history of a

representative cell vith an outward velocity of 5.2 x 10 7 cm/sec . For

comparison R= RR'.DE.R3 and Iwere calculated using the same rates as

used for Table 2. The average charge state, z N Ne /n, is given.

TABLE 3

R nN eT T e L z

(1! C- (Cm) (cm- 3 (cm- 3 (ev) (ev)

_1-).002 6.5E+20 7.OE±21 200. 211. 1.OE+02 1.6E+02 10.8

3.I .002 1.5E+20 1.7E+21 453. 489. 5.5E+00 1.9E+02 11.1

. '"S .012 5.8E+19 6.5E+20 482. 573. 2.2E+00 1.OE+02 11.2

'106 1.9E-,19 2.lEs20 382. 590. 7.9E-01 3.8E+0 11.3

.QL4 7.1E18 8.OE±19 293. 570. 3.3E-01 1.5E+01 11.3

'-.062 --.5E+18 3-9E-19 235. 550. 1.8E-01 7.8E+00 11.3

g.2 0,.097 1.4E,18 1.5E-19 170. 478. 8.6E-02 2.9E+00 11.3

V.174 3.8E-17 4.3E,18 105. 269. 4.1E-02 4.OE-0l 11.3

) 1 .384. 5.9E 16 6.6E+17 48. 76. 2.6E-02 8.7E-04 11.2

Z4.141 1.E1 .El . 7. 3.7E-02 l.1E-24 11.2

2.. .99 2.5E-14. 2.8E415 2. 2. 2.2E-01 1.7E-25 11.2

0.x<a 1,times --,en the laser pulse is s~till on, the ion and electron

d fall r4,uc 'r xa 1-1i- r ' 1 - -1,n t emTperature stays high

- ~ ~ ~ ~ ~ ~ ~ ( a~~'~a'I u~~ic u. ind thenl, because of

r~''~ Tdra 'ru< i I. fo ', Ifl lu aiget that is sZtill

9



being heated. These effects were accounted for in Table 2 by assuming a

constant temperature of 500 ev during the laser pulse. The debris

expansion velocity is about a factor of 2 smaller than that of Table 2.

This only changes the time scale for expansion by that amount, so Table 3

can be compared directly if time (t) and the &'s in Table 2 are increased

by a factor of 2. We can see that after the laser is turned off (- 10

nsec) the forward moving debris expands and cools adiabatically, as in our

models.

The HANEX code includes laser absorption, radiation transport, time

dependent chemistry, thermal conduction, etc. The agreement between code

results and the simple models presented in Table 2 after the end of the

laser pulse demonstrates that the controlling factors after 10 nsec are, in

fact, adiabatic expansion and the recombination rates we discussed.

In conclusion, the simple model calculations given in Section III

dillustrate the essential differences between HANE and the laser experiment:

a low debris charge state in the former and a high charge state in the

latter. The primary effect follows from the breakdown of density scaling

in the early debris expansion. A secondary effect is a result of the long

deposition time of the laser energy, maintaining a higher temperature in

the laser experiment than in a HANE at the same densities, even though at

earliest times HANE temperatures are higher. We note that the results are

V essentiaily unchanged if we reduce this temperature even by a factor of 2

or 3. Recall, that even a scaled down HANE, in which the temperatures are

an order of magnitude lower at corresponding densities still resulted in 10

z > 6. That is, the primary effect is the debris density scaling

breakdown. Finally, we may ask to vhat extent charge exchange with an

ambient background will reduce the debris charge state. 2e will present

detailed simulation results in a separate report. However. ye believe that

L~j 10



at high background density (0.5 - 5. Torr), where mixing of debris and

background is limited, high charge states will persist. At lower

background density (0.01 - 0.5 Torr) charge exchange may substantially

reduce the charge states.
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.4 AppendixI

The rate coefficients for aluminum used to calculate the &'s for Tables 1 and 2

are given by the following expressions:

Recombination z 4 z - 1:

aRR -AR Te

aRD - A De eT 1i + B D e 1/Te 3/2

*R - AX ("LR 3 , CCR3 ), where

8.75= x 10-2
7 z3  EI

TL R 9/2 LN e MI 1, -1-rT] (low temperature)
e

= cc (high temperature)
~R3 6 x 10 21T 3/2 -1

xe

A I ith x E I
-1-(x B B) e it

Here T eis in ev, the a's are in cin 3 sec and E_ is the ionization energy ot the

*z -1 ion in ev. The other constants are given in the following table.

12
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z A R iA D B D El D E2 DA IB I EI

1 3. 8E- 13 7. 9E-01 9. 6E-10 2. OE-01 2.-OE+00 6. OE-01 2.4E-06 0.0E400 6.-OE-00

2 2. IE-12 6. 9E-01 2. 5E-09 3. OE 01 2. 9E.00 4 .9E+00 2 .BE-07 l.SE-01 1.9E+01

3 3. 7E-12 8. 2E-01 3. 7E-09 0.OE-00 4.l1E+01 0.-OE+00 6. IE-08 2. 3E-02 2.8E+01

4. 8. 7E-12 7. 4E-01 6. 2E-10 1.-4E+01 2. 8E+01 5. 5E+01 8. OE-09 1.4E-01 1. 2E4 02

5 1.6E-11 7. 2E-01 1. 5E-09 1. 1E+00 3. OE+0l 7.7E+01 5. 3E-09 1.3E-01 I .5E+02

6 2.4E-11 7. OE-01 2.6IE-.09 1 .OE.00 3. 1L.01 B. 9E+01 2. 6E- 09 1. IE-01 1. 9E+02

7 3. 3E-l11 6. 9E-01 3. 8E-08 8. OE-01 3. 2E+01 1 .2E+02 1.4E-09 1. 2E-01 2.4E+02

8 4. 9E-11 7.OE-01 2. 2E-U8 1. 6E+01 2.7E.01 1 .5E+02 7 .OE- 1C' 8. 4E-02 2.8E-02

9 6. 5E-1l1 7. 1E-01 4. SE-08 5. 2E+00 3. OE.0l 1. 7E..02 3.6E 10 3. OE-02 3. 3E+02

10 1. 1E-10 8. 6E-01 1. 3E-08 1. 3E+01 1. 8E+01 2. 2E+02 2. 3E-10 2.4E-01 4.OE+02

11 1. 2E-10 8. 3E-01 2. 4E-08 0.OE+00 1. 3r>03 0.OE+00 8. 6E- 11 2. IE-01 4. 4E+02

12 1.8E-10 7.6E-01 7. 9E-09 3.4.E+01 2. 5E+02 1. 2E+03 5. 3E- 11 3. 4E-01 2. 1E+03

1, 2. 4E-l10 7. 5E-01 O.OE-00 0.OE+00 0.CE-00 0.OE.00 2.1IE-1 1 3. 4E-01 2. 3E+03

in the HANEX code (but not i n the calculations of & in Tables 1-3) the

dielectronic recombination rates are reduced to account for density effects. Also,

i.n the code only aH is; used for 3 bod-, recombination because we do not encounter
R3

zodiiocin our high density background ions where aLR3 is important.

3,13
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