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Abstract

This paper presents a method for real-time scheduling and routing of material
in a flexible manufacturing system (FMS). It extends the earlier scheduling
work of Kimemia and Gershwin. The FMS model includes machines that fail at
random times and stay down for random lengths of time. The new element is the
capability of different machines to perform some of the same operations. The
times that different machines require to perform the same operation may
differ. This paper includes a model, its analysis, a real-time algorithm, and
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e ABSTRACT A limited form of routing flexibility
! This paper presents a meshod for was allowed in the earlier work. Only
:b real-time gcgeduging and rout:;g of mate- identical machig;stcould perfc:: zhelza::
i n iy operation. In that case, a pa ou
‘q 7;;;‘in ;,F:;figéz ::2“:23??::nchZ:§§?n routed to the first available copy. The
st woék ét szem;a.and &ers;;z; ) Th: ;Ms 7 purpose ct'this pa?er is to deal with sys-
. . . P - tems in which machines are not identical,
model includes machines that fail at ran b :
'y : ut where different machines may perform
d dox times and stay down for randem lengths some of the same operations Different
48 of time. The new element is the capabi- . °
- . machines may therefore have overlapping
lity of different machines to perform some
K s A capability, and different machines perfor-
of the same operations. The times that "
A : : . ming the same operation may take different
) different machines require to perform the lengths of time to do it. The routin
B ¢ same operation may differ. This paper problem is therefore to éhoose among 21-
® includes a model, its analysis, a real-
time algorithm, and examples ternate machines for some or all the ope-
e e alg ' ples. rations. A model capable of analyzing
:} 1. INTRODUCTION such issues model is required for the
5 study of certain real systenms.
L Purpose
:.' —uirpose Kimemia and Gershwin (1983) proposed
o) The purpose of this paper is to deve- a routing algorithm to go along with their
' lop an algorithm to calculate real-time scheduling scheme. However, while the
loading and routing decisions for a Flex- scheduling method was effective, the rou-
W ible Manufacturing System (FMS). An algo- tinq_method.wgs not. 1In particular, the
W rithm for calculating loading decisions routing decisions that would have besen
Ky for such systems has been described in calculated by the method suggested there
(X earlier papers (Kimemia and Gershwin, might not be feasible.
;‘, 1983; Gershwin, Akella, and Choong, 1985; Examples
N Akella, Gershwin, and Choong, 1985). An =xamples
‘ algorithm for routing decisions is des- This work was motivated by two actual
- cribed in Maimon and Choong (1985). Here, Flexible Manufacturing Systems, one from
N routing and loading are calculated toge- the electronics industry and one from the
X ther. metal cutting industry.
i .
K As in the earlier papers, the problem We examined a robotic system for the
?: is to decide which part should be dis- assenbly of printed circuit boards (PCB),
' patched n;xt into a sctbgt n;chin:s. . particularly the part of the system where
These machines are capable of performing oddly-shaped components are inserted tc
e 4 work on a set of different part types with the board (such as large electrolytic
x no time lost for setting up. Decisions capacitors, switches, and connector
b are made in response to disruptions of the strips).

operation cf the systen caused by machine
failures, and according to the surplus or
backlog for each part type. Whenever a
machine changes state (i.e., fails or is
repaired), a new schedule and a new rou-
ting scheme is calculated via a feedback
lawv.

These components cannot be
inserted with existing dedicated automated
machines (e.g., SIP, DIP, VCD), because of
their variability and special handling and
assembly requirements. However, sonme

types of robots (e.g., Adept, IBM 757S%),
equipped with appropriate fixtures and end
effactar tonls, can nmeet the job require-
To appear in the Proceedings of the 1987 IEEE International
Conference on Robotics and Automation, Raleigh, North Carolina,
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ments (e.g., tolerance better than
0.005"), and are adaptable (programmable)
80 that they can handle different types of
odd components.

As a result, different operations
(insertions of odd component types) can be
performed by different robots, but the
amount of time required for a given opera-
tion depends on the speed of the robot
that performs it. Also, each robot has

different contigurations (e.g., tools) and
inherent capabilities (e.g., accuracy and
repeatability), which results in different
subsets of operations that each rcbect can
handle (with nonempty intersections among
those subsets).

As a consequence, not only does the
input rate of part types into the system
have to be determined, but alsc the deci-
sion of where to send each part for each
operation (among the possibie alternative
robots) has to be made.

Such systems are usually justified
economically only if the production volume
is quite high (e.g., hundreds of thousands
of components inserted per year) and the
variety is high. Because of their flexi-
bility, they are expected to meet demands
that vary in the short term and that re-
quire high utilization. The work presen-
ted here aims to improve system perfor-
mance (e.g., to lead to higher throughput
and reduced WIP while meeting production
demands) .

Another type of manufacturing system
is comprised of conventional and advanced
machining centers. The latter are capable
of performing different operations, with
varied capabilities. For example, some
machining centers can do drilling and
milling operations that otherwise require
two different conventional machines. Also
there are 3- and S5-axis machining centers.
The latter can do more operations than the
former without changing the part fixtu-
ring.

As in an electronic insertion system,
the scheduling and routing problem in a
system of several machining centers is not
only to decide on the input flow rate of
each part type, but also where esach opera-
tion should be done among alternative
machines with different capabilities.

" Literature Survey

In this paper we present a method
that considers, at the same time, two
functions -- short-term scheduling and
routing -- based on a global view of the
system. Many references consider just one

of these functions. For example, Whitt
(1986) presents a method which can be used
just for the local routing decisions.
Although his paper develops generic
queueing methodology, we use his results
to show an example of local routing consi-
derations.

By local routing decisions we refer
to a situation by which a customer (or a
part) has to join one of several queues.
These Queues represent, for example, the
input buffers to workstations. The alter-
native queues are those of the alternative
workstations that can perZorm the next
operation on a part, which has just fi-
nished a particular operation.

Whitt shows that in some cases, the
system average delay is not always mini-
mized by customers joining the queue that
minimizes their own individual expected
delay. This result suggests that deci-
sions should be made only when taking a
global view of the systen.

Routing is traeated in papers by Hahne
(1981), Tsitsiklis (1981), and Seidmann
and Schweitzer (1984). Hahne and Tsitsik-
lis deal with only two choices and ma-
chines whose randomness is due to failure
and repair. Seidmann and Schweitzer have
many choices, but the randomness is due to
variations in processing times. 1In all
cases, the full system is not considered.
Instead, only one decision point is con-
sidered, and decisions are made on a pure-
ly local basis.

By contrast, we consider the whole
system and do not treat local conditions
in detail. This suggests that a hierar-
chical decision policy, in which both
kinds of decisions =-- local and global -~
are made separately, may be appropriate.
The local decisions should be made in a
way that is consistent with the decisions
made on a global basis.

Outline of Paper

Section 2 states the problen. Sec-
tion 3 contains our solution, which is
based on dynamic programming. Section 4
describes some numerical examples and
simulation results. Conclusions and new
research directions are discussed in Sec-
tion S.

2. PROBLEM STATEMENT

Section 1 describes two situations in
which short-term scheduling and routing
decisions are required. 1In this section

we represent such manufacturing systems
with a mathenatical mcdel.
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The input to the problem is the pro-
duction requirements and process data in
the form of process plans and routing
sheets. They specify the operations that
each part type has to go through, together
with a partial precedence relation among
the operations. For each operation, a set
©f alternative machines, and the time for
the operation at each machine, (and ma-
chine reliability) are specified.

We seek a feedback law which deter-
pinos when each part should be released
into the system and which route it should
taxe when it enters. The release time and
the route may be functions of the current
repalr state of each machine as well as
the current production level of each part
type.

Model

The FMS consists of M woerk statiens,
and work station m consists of L, iden-
tically configured machines. A family of
N part types is being produced. The pro-

duction rate of part type n at time t is
u (t) .

Let 4 be the demand rate for type
h parts. This is a rate that is specified
by higher level decision-makers in the
decision hierarchy. We assume here that
it is constant over the time interval of
intere;t. The model is unchanged if it is
deterministic but time-varying, but the
Computation is made more difficult. Re-
quirements are often stated in terms of
production required over some specified
time interval; we convert this to demand
rates.

Let x,(t) be the surplus (if posi-
tive) or backlog (if negative) of type n
parts at time t. It is the difference
between production and demand, and is
given by

d
T~ wo - o, (1

The states of the work stations are
given by ag(t). This is an integer
which indicates the number of machines of
work station m that are operational at
time t. The vector a« is assumed to be
the state of a continuous time Markov
process with rates A, so that

prob [ a(t-6%)=b | a(t)=a ] - A, (2)

Recall that different work stations
may be available for some operations, and
that they perform them at differant
speeds. Routing is the decision of which

work station will perform each operation.

Let ﬁ; be the rate at which

work station m performs operation k on
type n parts. (Since only a few opera-
tions among all those that are possible
are performed on each part type, most of
these variables are 0.) The relationship
betwveen u, and ﬂ; is given

by
u, - § y:, for any k and n, (3)

In this section, we formulate an
optimization problem whose solution is the
optimal set of y* variables as

nm
a function of time. In Section 3, we
describe a subcoptimal solution.

Capacity

The rate of flow of material into the
system is limited by the rate at which
machines can do operations. Each opera-
tion takes a finite amount of time, and no
machine can be busy more that 100% of the
time. A fundamental assumption is that
there is no buffering inside the system.
This reduces the total work in process,
but increases the need for effective rou-
ting and scheduling.

Let 7, be the amount of time that a
machine in work station m requires to do
operation k on a part of type n. The rate
at which machines of that station have to
do such operations has already been de-

fined as ﬂ;.

puring a short interval of length T,
the expected number of operations per-
formed by the machines is yznr. (It is
assumed that the interval is shcrt so that
no repairs or failures take place during
it.) The total amount of time that all of
the machines of station m are performing
operation k on part type n {s y"_'r‘m'r.

The expected total amount of time that the
machines of station m are performing all
operations on all part types is

TIv BT

The total amount of time available on all
the machines of station m is «.T if

a, machines are operational. There-
fore,

SSyr 5 .
-ﬁ-rym nm o

To summarize, the y flow rates must
satisfy the following set of equations and
inequalities:

yL,z oOvk, mn (4)




g}.:y:. m § @y £Or every machine m. (5)
_-S:y:'-?y"torallksx
and all part types n, (s)

where x is the name of the first ope-
ration performed on parts of type n. De-
note by fi(a} the set of all y flow rates
that satisty (4) - (6).

Note that f1{a) is a random set. As
machines fail and are repaired the instan-
taneous capacity changes. The rates that
material flows intc the system must change
as fi(a) changes, as well as in anticipa-
tion of these changes.

Cost Function

We seek a policy that minimizes a
cost of the form

J(%;, ag, 0) =
E [ Ig(x(s))ds X (0)=x,,a(0) =a, ] (7)
e

in which T is the short term period, such
as an eight hour shift and g(-) is a
positive convex function. We assume the
cost function does not reflect true costs,
but instead is chosen to lead to desirable
behavior. Thus, the details of g(.)
are not important. 1In Secticn 3 we de-
scribe an approximation method which uses
only certain features of the cost func-
tion.

Dynanic Programming Formulation

The optimization problem can be writ-
ten:

ninﬁpize J(x;, a5, O)

subject to dynamics given by (1) and (2)
and y € f(e).

Comparison with Kimemia and Gershwin

Kimemia and Gershwin (1983) formu-
lated an optimization problem in terms of
u of equation (3). This formulation is
correct when there are no route choicas
except among identical machines. However,

they assumed that they could ignore (6)
even when route choice existed, and then

_dezernine y from u after solving the prob-

len. This assumption is not correct; the
above formulation is. Without (6), the
choice of routes achieved may not be feas-
ible, and (3) would not necessarily hald.

3. SOLUTION

Following the usual dynamic program-
ming practice, define

J(x, &, t) =

T
%9) t[ I g(x(s))ds
t

This function satisfies the Bellman equa-
tion (Bertsekas, 1976), which takes the
following form:

x(t)-x,c(t)-c]. (8)

. (e oo
° = mip{stxen « (5 vi-a)

+ g% + %)\“J(x. B, t) } . (9)

This equation has the following in-
terpretation: we seek a function J(x,a,t)
such that the values of y(x,a,t) € Q(a(t))
that nminimize the right hand side of (9)
cause that expressicn to be zero. This is
a nonlinear partial differential equation
which we cannot expect to have an analytic
solution. (However, in the case of a
single part type and a single machine,
Akella and Kumar (1986) were able to find
a closed form solution.)

If (9) has a solution, the optimal
control y satisfies the following linear
programming problem. Note that the cost
coefticients are time-varying .

ain 5 (7 12)
subject to (10)
yeQ (o)

It isg important to recognize that
this is a feedback control law since J and
 are functions of x and a¢. The solu-

tion y is therefore a function of x and
ax .

Note that J is positive since it is
the expected value of the integral of g, a
positive quantity. Note also that feed-
back law (10) minimizes

AR AP RA YRS aw

while a is constant. This is because y
appears in (9) only in the same term in
which it appears in (11). If « remains
constant long enough, and there is a y ¢
f(x)) such that (11) is negative, then J
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eventually reaches a minimum. We call the
value of x that produces this minimum the
hedging point and write it xi. If
possible the production rate should remain
at a rate that keeps x at the hedging
point. A positive hedging point serves as
insurance for future disruptions.

After J reaches this minimum, J and x
are both constant. Therefore, at the
ninimum,

Tya-d =0 (12)
and
Hoda,t) =0 (13)

If there is no y € fi(a¢) that satisfies
(12), then J cannot reach a minimum for
finite x. That is, the production lags
behind the demand requirements and x(t)
decreases. This is because too many ma-
chines are currently down to allow produc-
tion to equal demand.

There are reasons to believe that the
solution of linear programming problem
(10) provides a satisfactory scheduling
and routing algerithm even if an approxi-
mate J function is used. This was the
simulation experience reported by Gersh-

win, Akella, and Choong (1985) and Akella,
Gershwin, and Choong (1985).

In addition, it is likely that the
repair and failure processes are not ac-
tually exponential, not actually indepen-
dent of the machine utilizations (as as-
sumed in Section 2), and do not have the
exact A parameters that would be used in
(9) if an exact solution could be calcu-
lated. Also, the g function does not
necessarily represent true costs, but
rather is chosen to cbtain a desired beha-
vior. For these reasons, it would be a
mistake to work very hard to get an exact
J.

Therefore, a reasonable strategy is
to select a J function that has the cor-
rect qualitative properties and that is
easy to calculate and work with. Such a
function is positive and has a minimum at
the hedging point (for every a such that

- the denand is feasible for that «a).

Gershwin, Akella, and Choong (1985) use a
quadratic functioen,

I = ix’h(a)x + b(a)x + c(a).

TuTvTTwTwews

Akella, Maimon, and Gershwin (1987)
demonstrate a technique for calculating a
set of values for A(a), b(a), and c(a),
from a specified g, for a model similar to
the one presented here.

4. EXAMPLES

Example 1l: Three-Machine Systenm

Consider a three-machine system that
makes two part types. Machine 1 can do
operations only on Type 1; Machine 2 can
only work on Type 2: and Machine 3 can do
operations ¢n both. In fact, Machine 3
can do the same operations that Machines 1
and 2 can do. Thus Type 1 parts can go to
Machine 1 or Machine 3 and Type 2 parts
can go to Machine 2 or Machine 3. The
problenm is to decide where to send each of
the parts and how fregquently to send thenm
into the system.

The capacity set Q(a) is given by:

Y, s e (14)
Yy, 5 9 (15)
Thy), + rgy; S ay (16)
Yyr Yo Yyo ¥ 20 (17)

The production surplus and backlog dyna-
mics are:

X = yL + yL - q (18)
)‘cz-ygz-fyiz-dz (19)

If J(x, «, t) is known, then the optimal
routing and scheduling policy y satisfies

Mo () () @0

This is a feedback control law since
the constraint set is a function of a and
the partial derivatives are functions of x
and @. To solve this linear programming
problem, several cases must be considered.
Figqure 1 demonstrates the various regions
of 3J/ax-space that have different
solutions. The regions are indicated, as
well as the values of y; that

are optimal in those regions. Alsc indi-




cated is which of the following conditions
that determine the values.

aJ

Ha > 0 (Regions I and III)
= YL =0, YL =0 ()
%% > 0 (Regions I and II)
= y; = 0, Yi! = 0 . (B)
33% < 0 (Regions II, IV, V, and VI)
Qa,
=y, =3 (©
;axiz < 0 (Regions III, IV, V, and VI)
- 2
2 . %2
=¥, " = (D)
f%: < 0 and 39;‘(7— > 0 (Region II)
= ! = & (E
Y, 7:3 )
3z 3 .
i >0 and ;*1& < 0 (Region III)
oy = -’- (F)

If both derzvatzves are negative

(Regions IV and V), ﬂl and
y; are already determined.
The remaining variables, y& (i =1, 2),
minimize

Yo * 3xzy§3 (21)

subject to (16). The solution is

1 aJ 1 37 :
- < 0 (Region V
{F & -% &8} <o Region W

=yl = ;% and y}, = 0 (G)
2 0 13 i
7% 55 ﬂ,axx > 0 (Region IV)
a
=y = ;ﬁ and y2 = 0. (H)
13

In each of these regions, the control
Y, moves the state x, through the dyna-

mics [ (18) and (19)]. The state moves to
a boundary and then to another region.
However, there is one exception. In both
Regions IV and V the state moves toward
the common boundary, which is given by

{_1_ ,_J_ _L 3..7.} = 0 (Region VI).(I)

If we follow rules (G) and (H), the
state will move back and forth across the
boundary in an unrealistical manner. This
is called chattering. It occurs

because the problem |is singular, and

a remedy is suggestad by Gershwin, Alella,

A vyevma ) aa( vpHvpmd) b Y=o,
1

and Choong (1985). A strategy is found
which, when x reaches Region VI, keeps x
in Region VI. That is, it maintains (I).
It does this by determining y'

which minimizes (21) subject to (16) and
a4 /7M1 2 - 3 -
A& -8} -

This is simplified by assuming that J
is quadratic:

(22)

I = %xf,x(a)x + b(e)Tx + c(a). (23)

Then
g%-- A.X. + A.X. + b,
) 2 d
and

X + A, + b,. (25)

and y is chosen so that

4 -.l.gl. =
ng sxz 1’{3 xl} 0. (26)
then

.',%; (Ayx, + ApX; + b;)

- ',1' (Ayx, + Azx; ¢+ b} =0 (27)
19

Since this is true for more than just
one instant, its first derivative with
respect to t is also 0. That is,

A (A + agx, + b,

- }]1; (A%, + Ak, + b) = o, (28)
or,
* (y +y,-d )#Ah(yu*yn d,)+b.)
n
(29)

B
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From (C) and (D),

A A evrievya o ey hevie ) )
s
-ﬁ[ Au( Gx/"‘h‘*y’u'd: )+Au( dz/?§2+y§3-d2 )#bl )so .(20)

Now (16) (as an equality) and (30)

: 1
are two equations in two unknowns, ¥, and

yg. The solution is

1 ., 1
== A, -7-dx]+alau*au) S AnatAL)
t l (tu * €, ¢

A x .
+— dl—é: ] =d.[A,+A, )+b+b,

ts
A t. (31)
. Y s
s 12 W W
[tia t, th© “]]
and
vy = (e - thy! (32)
2 t§ 3 1Y)y

After x arrives at Region VI, it
stays in Region VI if yL and y; are
given by (C) and (D) and y!, and Yia are

given by (31) and (32).
avoided.

Chattering is

S. CONCLUSIONS

This paper presents an extension to
the earlier Kimemia and Gershwin work to
add a real-time routing calculation to
real-time scheduling. Thus this model can
be used for many more types of manufactu-
ring systems.

Future work will include the develop-
ment of local operational rules which
follow the system routing decisions calcu-
lated here, and extensive simulation ot
various types of industries %o further
demonstrate the use of this work.

~ vrm-tvw"vw'r‘v"r-w:waw;wvw
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Figure 1. Control regicns in %‘% space.
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