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19. as measured by the losses in acetyllysine and glucose in two experiments conducted
three months apart. Reducing capacity and furosine correlated exceedingly well with the
loss in acetyllysine. Both fluorescence and color are not recommended as indicators for
nutritionally available acetyllysine. The acetyllysine-glucose model gave rise to far

less fluorescence and color compared with the earlier lysine-glucose-cellulose model.

These data suggest that there is limited crosslinking in the acetyllysine-glucose-cellulose
model compared with the lysine-glucose-cellulose model.
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’ PREFACE

/

[
> Nutritional Sustainment Modules (NSMs) being developed for the

battlefield conditions of the future (Army 21) require unprecedented energy
density and extraordinary nutrient stability for prolonged periods (possibly
up to one year) without refrigeration.

A recent observatiomtat the U. S. Army Natick RD&E Center (project No.
IL161102AH5203020)’;wnstrated that a compressed food model had increased
oxidative stability of the fat component compared with its corresponding
uncompressed food model. The nutritional quality of the protein component of
foods is readily compromised under certain situations, e.g., intermediate
water activity and the presence of reducing carbohydrates. It was therefore
of interest to determine whether campression would also retard the loss in
protein quality of food models as compared with uncompressed food models.

The present study (Project No. IL1611102AH5203018) was undertaken to
campare the loss in the essential amino acid, lysine, in campressed and
uncampressed acetyllysine-glucose-cellulose models. Additional information
was sought regarding the use of other indicators, such as reducing capacity,
furosine, fluorescence, and color, as a means of rapidly assessing losses in
lysine.  This study was undertaken during January 1985 to January 1987. A
portion of this paper was presented at the Institute of Food Technologists
Convention, June 15-18, 1986, Dallas, Texas.
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INTRODUCTION

Among the many degradative interactions that take place in foods, the
most difficult to arrest are those between proteins and reducing
carbohydrates. This situation is even more aggravated when foods, such as
cambat rations of the futur?a, are required to be stored for extended
periods of time without refrigeration. Even when reducing carbohydrates
are not part of product formulations, hydrolysis of the polysaccharides
and oligosaccharides may occur during processing or during prolonged
storage in the slightly acidic environment of most foods. Before
solutions can be suggested to retard protein degradation, it is necessary
to have a simple working model to assess the reactivity of lysine with
reducing sugars under various optimum and adverse conditions.

It is well recognized that an amine, amino acid or a protein

containing free amino groups can react (Fig. 1) with reducing sugars,

through the Maillard reac:tion.1 The Schiff base initially formed,
cyclizes to the corresponding N-substituted glycosylamine and undergoes an
irreversible Amadori rearremgement1 to form a ketose sugar derivative
{N-substituted l-amino-l-deoxy, 2-ketose), commonly referred to as the
Amadori compound. The Amadori compound is the end product of the initial
stage of the Maillard reaction. The subsequent stages of the reaction
give rise to a variety of fission products, carbonyl campounds,
heterocyclic flavor compounds as well as brown melanoidin pigments.:l

The Amadori compound as well as the carbonyl compounds formed have
specific reducing properties, which make it possible to follow the course
of the reaction. Acid hydrolysis (Fig. 2) of the Amadori campound gives

. . . . L. 2
rise to a unique protein quality indicator compound, furosine.
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A large lag in lipid autooxidation in compressed, compared with

uncompressed, food model systems, indicative of a heneficial effect of
compression was recently observed by Natick researchers (W. L. Porter and
E.D. Black).3 Whether compression has a similar, beneficial effect upon
Maillard degradative losses in the nutritional availability of lysine has

not before been investigated. The specific objectives of this

investigation were 1) to determine the quantitative aspects of lysine
availability in a low-moisture model containing acetyllysine, glucose and
cellulose; and 2) to compare the kinetics of the acetyllysine-glucose
interaction in compressed and uncompressed models.

MATERIALS AND METHODS

Preparation of low moisture acetyllysine-glucose models. Separate

N-@-acetyllysine (Sigma Chemical (».) and glucose (Fisher Certified
Reagent) solutions in highly purified deionized Milli Q water (Millipore
Corp.) were prepared and the necessary volumes (usually 1¢ mL) to provide
5.4 mmoles (1 g) of acetyllysine and 12.2 mmoles (2.2 g) of glucose were
pipetted into several freeze-drying flasks. Dispersions in Milli Q water
containing 14.2 g of cellulose (Sigma 24, microcrystalline cellulose, 98%
purity, <39 ¥ particle size, Sigma Chemical (o.) were then added to each
flask, mixed well and immediately shell frozen in a alcohol-dry ice bath.
The flasks were freeze-dried in a manifold-type freeze-dryer. The dried
powders were mixed well in a blender and a portion was compressed into 2 g
disks (4 mm thick, 25 mm diameter) using an Instron at 5500 psi. The
freeze-dried powders (2 g samples) and the 2 g disks were incubated in
separate glass jar incubators over saturated potassium acetate solution

(uw = J.234) at 63°C in a mechanical convection oven. At periodic
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intervals, samples were withdrawn, cooled, and extracted in 0.05 M

phosphate buffer pH 5.5 and analyzed for color, fluorescence
characteristics, reducing capacity, furosine, glucose and
N-a-acetyllysine.

Assay Procedures

Glucose was assayed by an enzymatic procedure by determining the
reduction of NAD to NADH during phosphorylation of glucose to
glucose-6-~phosphate and its subsequent dehydrogenation to
6-phosphogluconate. Furosine was determined, following 6N HCL acid
hydrolysis, at 280 nm with a Waters uBondapak Cl8 column and elution with
an acetate buffer, pH 4.3.4 Values are expressed as peak area units as
obtained on a Waters Data Module 730 (Millipore Co, Milford, MA). Color

was measured at 410 nm in a Bausch and Lomb spectrophotometer. Reducing

power was measured by the reduction of ferricyanide in acidic pH.5

Values are expressed as milliequivalents of reducing compounds based upon
an ascorbic acid standard. Fluorescence intensity at the optimum
excitation-emission wavelength (350 and 430 nm, respectively) was recorded
with a Perkin Elmer-ilitachi Fluorescence spectrophotometer. Values are
expressed as arbitrary units normalized to a quinine sulfate standard.

For the determination of acetyllysine, a modification of the recent

picotag (Fig. 3) method described by Bidlingmeyer, Cohen and Tarvin6 was
utilized to separate the Amadori compound (bound acetyllysine) from the
parent unreacted acetyllysine. A Waters (Waters Associates, Millipore
E Co., Milford, MA) High Performance Liquid Chromatoqgraphy (HPLC) system,
s
h consisting of model 510 pumps, Waters Intelligent Sample Processor (model
"y
t 710B), 721 System Controller, Kratos Absorbance Detector (Spectraflow 773)
E and a Waters Printer/Plotter/ Integrator (Data Module 730) were used. The
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data for color, reducing capacity, furosine peak areas and fluorescence

have been normalized to 1 mg NAL/ml. at zero time for comparative purposes.

Q
3]
M| pH 910
@-N 2C=5 + NH,- CHR - C = pepuics ————+
S o

1} 1}
QiE%NH-C~NH-CHR—C-pmmr

FIGURE 3.: PREPARATION OF PHENYL1SOTHIOCARBAMYL (PIT(C)
DERIVATIVES USING PHENYLISOTHIOCYANATE.
PEPTIDE (OR AMINO ACID) AND ETHYL ALGOMOL-
TRIETHYLAMINE-WATER (PH 9-10).

RESULTS AND DISCUSSION

Reactivity of N-o-Acetyllysine-Glucose-Cellulose (NAI-GL-CE) Models.

The degradation of N-a-acetyllysine (NAL) due to Maillard reaction with
glucose (GL) in the acetyllysine-glucose-cellulose (NAL~GL~CE) system at
60°C and 8, = 0.23 was followed by monitoring: a) the production of
furosine after acid hydrolysis; b) the increase in reducing capacity; c)
the formation of fluorescent compounds; d) the increase in brown
chromophoric components; e) the loss in NAL; and f) the decrease in GL.
The degradation of NAL and GL suggested an exponential decay, possibly

first order kinetics (Figs. 4 and 5). Rate curves exhibiting exponential

P 3 kb Gy W

increases were observed for reducing power and furosine (Figs. 6 and 7).

The fluorophoric and chromophoric compounds appeared to increase linearly

O

(Figs. 8 and 9), at least until the end of the present experimental

%
o 3

period.

AAAAR BT LT At P

|
o S oA




! B Compressed Disk
O Powder

L *T_!
125 130
.23

";ﬁ 15!152“

FIGURE 4. DEGRADATION OF ACETYLLYSINE IN COMPRESSED AND UNCOMPRESSED

ACETYLLYSINE-GLUCOSE-CELLULOSE MODELS.
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FIGURE S, DeGRADATION OF GLUCOSE IN COMPRESSED AND UNCOMPRESSED

ACETYLLYSINE-GLUCOSE-CELLULOSE MODELS.
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Nutritional availability of acetyllysine due to Maillard reaction.

The data indicated a decrease in NAL of 39% in 4 h at 6¢°C and a water
activity of 8.23. Under a more realistic condition of storage at 40°c,
previous data obtained with a lysine-glucose-cellulose model indicated
that 25% of the lysine was lost in 144 hours at a, = 0.23.7 The

losses at a, = .23 in lysine at the end of 4 hours at 60°C and 40°C

were 70% and 8%, respectively. At 144 hours, the loss in NAL at 60°C

and aw=G.23 was 96%. The moisture content of the NAL-GL-CE system was
2.0% as determined by prolonged dessication over phosphorous pentoxide.
While the compromise of essential amino acids, particularly lysine, due to
Maillard reaction is well known in intermediate moisture foods, it is not
activity conditions. Although the degradation of NAL due to reaction with
GL at 4¢°C and a, = @.23 in 144 hours is not yet established, it is
likely t0 be significant on the basis of comparative data for lysine.

Reproducibility of the NAL-GL reaction in compressed systems. To

assess the reproducibility of the experiment and procedures employed, the
loss of NAL and GL were determined in two totally separate experiments,
conducted three months apart using compressed NAL-GL~CE models. It is
clear from both the glucose and lysine degradation curves (Figs. 1¢ and

11) that the reaction is surprisingly reproducible under these unusual

conditions where the interaction is taking place in the solid state at
very low water activity. Furthermore, the substantial loss of NAL of 83%
in 24 hours at 6¢°C is confirmed.

Effect of compression. This study was undertaken to determine the

effect of compression because of an observation by Natick researchers (W.

L. Porter and E. D. Black)3 of a greatly increased lag period (1@@¢ h) in
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lipid oxidation at 65°C with a compressed model compared with its

corresponding uncompressed model (Fig. 12). The data (Figs. 4, 5, 6, 8,
9) obtained with compressed and uncompressed NAL-GL~CE models using
several different parameters have clearly demonstrated that the rate
curves of the acetyllysine-glucose reaction were essentially the same in
compressed disks as in uncompressed powders. The absence of significant
differences between the two models (compressed and uncompressed) would
also appear to suggest that there is no major problem with respect to

equilibration of the highly compressed system with the water activity of

saturated potassium acetate in the jar. The kinetié’aata on NAL loss in
compressed and uncompressed systems fitted exponential regression lines
with slopes and intercepts matching within 4% and 1%, respectively.
Therefore, these data together with the rate curves indicated that
compression to 5588 psi has neither a beneficial nor a deleterious effect
upon the stability of MAL in the presence of glucose. It may be
tentatively inferred that compression per se may have no deleterious
effect upon the lysine quality of compressed foods, such as dairy bars,
which are important constituents of NSMs.

Correlations between acetyllysine loss and the alterations in other

parameters. The concentration of reducing intermediates correlated almost
rerfectly {(r = 0.999) with the loss in NAL (Fig. 13). Furosine peak areas
also correlated extremely well (r = 0.993) with the loss in NAL (Fig.

14) . There is a poor correlation between fluorescence intensity and the
loss in MAL (Fig. 15). The emission intensity is very weak until almost
85% of the MAL is5 consumed. Hence, fluorescence is not recommended as a

reliable indicator for predicting lysine losses.

12
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The correlation between color and the loss in NAL (Fig. 16) is even
worse than that for fluorescence. There is very little change in
absorbance until about 90% of the NAL is lost. Hence, color, which is
commonly used as a quick assessment of the loss in protein quality by many
food technologists, is an extremely poor indicator. If other interfering
compounds are absent, color and fluorescence may provide an approximate
estimate of lysine quality where the damage is below 60% FEven here, it
should be recognizced that large inaccuracies can result because of
extremely small slopes (Fig. 15 & 16)

Kinetics of the NAL-GL reaction in the solid state. Since the shape

of the rate curve seemed to suggest first order kinetics, semilog plots of
NAL and GL vs, time were obtained. It is evident that a straight-line
relationship is not obtained (Fig. 17) between log (GL) and time. This
suggests that the reaction does not follow first order kinetics. A
similar conclusion was derived from the log (NAL) vs. time curve (Fig.
18). These data confirm previous observations with a

7,8 The halftime values estimated for

lysine-glucose-cellulose system.
various time spans of the present experiment are shown in Table 1. The

t 1/2 estimated from the linear portion of the log (NAL)-time plot gave a
value of 7.5 to 9.5 h which compared well with the estimate from the rate
curve of about 9 h.

As we include more and more data points, the rate constant decreases
and, consequently, the t 1/2 value increases, The regression coefficient
is good only up to the 4th data point (at 24 h, when 92% of NAL had been
exhausted) . The deviation from a linear semilog concentration-time

9,10

relationship has been previously observed by others and by us with

7,8

lysine-glucose mxicls,
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TABLE, 1. First Order Rate Constants and Lstlmated
First Order Half-times of NAL loss at 60°C
TIME NO. OF RATE T 1/2 T 1/2
INTERVAL DATA REGRESSION CONST%NT HR HR
HR POINTS COEFFICIENT (HR ) CQMPUTED OBSERVED
0-13.1 3 ~0.995 0.0928 7.5 9.0
0-24.1 4 ~0.985 0.0730 9.5 9.0
0-48.1 5 -0.954 0.0480 14 9.0
0-100 6 -0.930 0.0295 23 9.0
0-144 7 -0.89¢6 0.0208 33 9.0
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Comparison between lysine-glucose-cellulose and acetyllysine-glucose-

cellulose models. Previous work from this laboratory was focused upon

lysine—glucose models., Because of its single free ¢-amino group, NAL has
been used in the present study and it better represents the complex

protein system in the food than does the lysine-glucose model where both

_____>

& amino groups are free. Under the same experimental conditions of

60°C and a, of 0.23, lysine is exhausted more rapidly (t 1/2 of 1.5 h)

than is NAL (t 1/2 of 9 h). However, the differences in the lysine and
NAL rate curves (Fig. 19) seen are not as vast as in the case of
fluorescence or color (Figs. 20 and 21). In comparison with the NAL
model, the color and fluorescence exhibit a dramatic enhancement in the
lysine model. Lysine has two reactive amino groups unlike NAL, which has
only one similar to the case of peptide-bound lysine in proteins.
Consequently, the enhanced fluorescence and color is most likely due to
greater reactivity and greater degree of cross-linking of free lysine
compared to NAL.

In conclusion, a high degree of compression at 5500 psi failed to
produce accelerating or inhibitory effects upon the NAL-GL reaction. The
reaction at 60°C and a, = 0.23 deviated significantly from first order
kinetics. Both fluorescence and color were dramatically decreased in the
NAL-GL compared with the lysine-GL system, suggesting that cross-linking
was greatly minimized in the NAL~-GL system. Studies under way with
protein-glucose models may present a different picture compared with the
NAL~GL model because of increased molecular size and the presence of
other amino acids, including end amino acids with free amino groups.
Further, amino acids adjacent to lysine residues may not be binlogically

available due to steric hindrance in enzyme catalysis.
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CONCLUSIONS

Compression of a model system, acetyllysine-glucose-cellulose, did not
decrease or increase the reaction between acetyllysine and glucose when
compared with an identical uncompressed model. Hence compressed foods are
not likely to undergo greater loss in protein quality than are
uncompressed foods. As noted, beneficial effect due to compression on
lipid autooxidation was recently demonstrated by Natick researchers (W. L.
Porter and E. D. Black). Thus, significant differences exist between
Maillard reaction and autooxidation in relation to the effect of
compression.

The acetyllysinc-glucose-cellulose system was very reproducible in two
experiments conducted three months apart as measured by losses in
acetyllysine and glucose with time,

Reducing capacity and furosine correlated exceedingly well with the
loss in NAL. Both fluorescence and color are not recommended as reliable
indicators for the loss in NAL because their intensities are extremely low
below 70% loss in NAL. Hence large inaccuracies in data are predictable.

Acetyllysine is less reactive than lysine at 64°C and a, = 8.23.

Hence food proteins in the presence of reducing sugars are likely to be
less reactive than the lysine-glucose system.

The acetyllysine-glucose-cellulose model gave rise to far less
fluorescence and color compared with a lysine-glucose-cellulose model.
These data suggest limited cross-linking in the acetyllysine-glucose-
cellulose models compared with the lysine-glucose-cellulose models.

The loss in acetyllysine in 4 hours at 60°C and a, = 0.23 was 39%.
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i RECOMMENDAT LONS

From this study the following recommendations are made.
" 1. The present findings should be validated using campressed and
o uncompressed dairy products.

2. Experiments should be undertaken to determine the effect of water

N

activity and temperature upon the acetyllysine-glucose-cellulose model. A

long-term study at 40°C would be particularly relevant to the

unrefrigerated storage stability of NSM foods.

PRy

3. Similar studies should be conducted using protein-reducing
K carbohydrate systems.
4. The kinetics of the acetyllysine-glucose reaction should be determined
3 in a homogenous licquid medium to correct for the inherent defects of the
! solid system. Whether the reaction is of a predictable order in solution
or whether the concept of reaction order does not apply to the

NAL~-GL reaction should be established.
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