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NOMENCLATURE

Young's modulus of the test naterial i
Young's modulus in compression of the test material
Young's modulus in tension of the test material

The probability of failure of a compoment

Shear modulus of the beam material

Moment of inertia for a rectangular beam (I = bd3/12)

Moment of inertia for a rectangular beam with 45° chamfered corners
(See Appendix F) ‘

Moment of inertia for a rectangular beam with round corners (See
Appendix F)

Outer span length for & four-point and a three-point loaded beam
Total length of beam

Weibull slope parameter, the "Weibull Modulus'" associated with either
volume or surface sensitive material

General moment applied to beam

Bending moment as a function of x (See Appendix D or E)
General applied force

Forces applied to a beam (See Figure 1)

Effective surface of a beam in bending

Torque associated with beam twisting

Estimated torque when bottoming of the load fixture occurs
(See Appendix C)

Volume of a beam in bending
Effective volume of a beam in bending (See Weibull Analysis)

Volume of a three-point loaded beam (VL = Lbd) in the risk of rupture
ejuation

Half the distance between the inner span and outer span for a four-
point loaded beam, i.e., (L-2)/2 or a=L/2 for a three-point loaded
beam (note aj; = a; = a)

A beam dimension (See Figures 1 and 2)

Beam width (See Figure 1 or 5)

Chamfer of a corner of a beam with 45° chamfers (See Figure 5)
Beam depth (See Figure 1 or 5)

Load eccentricity equal to (a;-a)

Load eccentricity ratio equal to (a;-a)/L

Shift of neutral axis in an initially curved beam
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‘Horizontal shift of contact and load points due to bean bending

'Anticlastic curvature factor (See Appendix A)

Brror in the specimen diemnsions b or d
Error Iin the span lengths & or L

(See Figure 4)

A numerical factor dependent upon b/d (See Appendix C)

Inner span length of a four-point loaded beam (See Figure 1)

Either equal to "a" or L/2 for four-point or three-point beam systems .
Numerical factor {See Equation 18b)

Maximum contact pressure at the load application point

Radius of the corners of the beam (See Fijura 5)

Speed of loading ‘ i
Time of loading

Variable beam distances (See Figure 1lc)

Variable distance (failure site location) on either side of the load
contact point (See Appendix D)

Coordinate axes (See Figure 1)

Can also be displacement or distance from neutral axis a3 defined in
the text

Beam curvature parameters (See Equations 3a and 4a)

A numerical factor associated with the tensile stress caused by load
contact (See Appendix D)

y = v‘3(1-v2)/d2 (See Appendix A)
Strain in the x, y, and z directions
Strain rate

Percent error, defined as [(¢, -o )/u J100. A negative.error indicates
the simple beam equations la Rnd 1b Snderestimate the true stress; a
positive error is an overestimate.

Angle of a plane inclined to x-axis

Angle of a plane inclined to the x-axis at ‘which the principal stress
is maximum

Coefficient of friction

Poisson's ratio

Radius of curvature of a beam due to bending
Contact radius of a support point (See Figure 4)
Contact radius of a load point (See Figure 4)
Initial radius of the curvature of a beam

Bending stress in a beam as defined by simple beam theory or mean
fracture stress

vi




Normal stress (See Appendix C)

Maximum principal stress (See Appendix C)

Scale parameter or characteristic value associated with a Weibull
analysis

Stress in the x direction (along the beam length)

Stress in the z direction (along the beam width)

Shear stress due to torsion (See Appendix C)

Angle of twist along the specimen length (See Figure 3 and Appendix C)
in Radians

Angle of twist between a pair of load and contact points (See Figure 3
and Appendix C) in Radians
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INTRODUCTION

There has been an increase in interest and activity in recent yesrs in both the
research and development of ceramic materials ard their practical application to
engineering structures.

Flexural testing is (and will likely remain) the primary source of uniaxial
strength data, either for quality control or design data purposes. An impediment to
the use of flexural strength data in either application is the lack of standard test
methods and the presence of experimental error in current practices.

In 1973, a tentative unapproved set of standards* was prepared by the Army
Materials and Mechanics Research Center (AMMRC) as it was called at that time, and
distributed to interested ard involved organizations. This set of unofficial stand-
ards, which included such test methods as flexure, tension, creep, stress rupture,
fatigue, and spin testing, was discussed at several meetings of government and in-
dustry representatives. A number of wo.thwhile suggestions evolved. However, it
was apparent that these tentative standards were inadequate and thus not approved.
Recently, however, interest was revived at AMMRC, now called the U.S. Army Materials
Technology Laboratory (MTL), in finalizing standard tests for brittle materials. It
was viewed that the original centative standards, dated 2 April 1973, represented
the ideal goal but were far too inclusive to realistically establish testing require-
ments which would provide valid results at this time. It was decided to concentrate
upon developing a standard method for flexural strength testing.

The objective of this report is to recommend beam test systems such that accu-
rate fracture strength measurements will result when testing brittle materials
within the elastic regime. This report differs from Reference 1 in the following
ways:

1. Discussions of a "Reference Standard" beam system have been deleted in
deference to a different approach adopted in Reference 2.

2. The error table for nonlinear stress has been aliminated because it was
redundant with errors analyzed from "wedging stresses."

3. The twisting error analysis has been reanalyzed as a plane stress condition.

4, Additional analyses, refinements, and corrections to the original work have
been included where appropriate.

No attempt has been made to determine the influence of each error upon the
total error of the system. It is assumed that each error is independent of all the
other error sourcos. Thus, for consistency and simplicity, the total error within
the system is assumed to be the sum of the parts. Errors in flexure testing of
beams are either due to assumptions entailed in simple beam theory, or to sources
arising from external load applications. The sources of error are discussed in the
following sections.

*Military StanJurds, Test Methods for Structural Ceramics, 2 Aprii 1973.

1. BARATTA, F. 1. Requirements for Flexure Testing of Brittle Materiali. U. S. Army Materials and Mechanics Research Center, AMMRC
TR 82-20, April 1982, ADA 113937,
2. U. S. ARMY MIL-STD-1542 (MR). Flexure Testing of High Performance Ceramics at Ainblent Temperature. November 1983,




ERRORS FROM SIMPLE BEAM THEORY ASSUMPTIONS

The rectangular beam configuration is attractive as a strength-test vehicle
because of its simple shape and apparent ease of load application, as well as
analysis and reduction of data. Rods of circular cross section are also used in
beam tests, but usually for spnacialized testing. Because a beam of circular cross
section is not as frequently used as the rectangular beam, only the rectangular
crnss section is exemined in the discussions to follow. Referring to Figures la and
:a for dimensions and applied loads, the simple beam formulas for maximum stress in

lexure are:

oy = 3P(L-2)/2bd? for a four-point beam (1a)

o, = 3PL/ 2bd2 for a three-point beam (1b)

A critical review of simnle beam theory assumptions will yield ranges of geom-
etry ratios by which the theory can be validly applied. These assumptions are
listed below, as well as their associated inferences in terms of an error analysis:

1. Transverse planes perpendicular to the longitudinal axis of the beam remain
plane after the beam is deflected.

2. The modulus of elasticity in tension is equal to the modulus of elasticity
in compression. Also, the beam matarial is isotropic and homogeneous.

3. The maximum deflection must be small compared to the beam depth.

4. The beam must deflect normally under elastic bending stresses but not
through any local collapse or twisting.

5. Stresses in the longitudinal direction are independent of lateral displace-
ments.

Each of the above assumptions is examined in detail, where possible, so that the
required rectangular beam geometry ratios can be determined as a function of the
associated errors.

Assumptions 1 and 2 together imply that stress and strain are proportional to
the distance from the neutral axis, and the stress does not exceed the prrportional
limit of the material. These assumptions disregard the effect of any shearing
resistance and make impossible the use of the flexure formula for curved beams of
large curvature.

Assumption 1 and the above implication suggest that ‘he bending stress is pro-
portional to the distance from the neutral axis to the outer surface of the beam.
This assumption is valid if flexure of the besm could be attained without applying
local forces to the beam. However, practical flexure test systems, such as those
shown in Figures la and 2a, which utilize rour-point and three-point beams, require
direct contact of the fixture to the specimen to apply loads and thus moments to the
specimens. At the point of contact there will be compressive stress in the beam
depth direction resulting in a local variation from linearity in the .snding stress.’

3. TIMOSHENKO, S., and GOODIER, I. N. Theory of [ sticity. 2nd Ed., McGraw-Hilt Book Co., Inc., New York, 1951,
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Because this contribution to bending stress nonlinearity, referred to as wedging
stress," is caused by external load application, it will be discussed further in
detail under the section entitled Errors From External Influences.

An error source that is internal to the beam arises because of the issumption

that the modulus of elasticity in tension is equal to that in compression, By = E.,
Chamlis® has derived in closed form the solution for the tensile bending stress when
By # Ec. After some manipulation of the appropriate formulas,5 the tensile stress
due to bending is given by:

o, = (o, /(1 + (E/EYY/2], 2

for both the four-point and the three-point loaded beams. The resulting percent
error is given in Table 1.

Table 1. ERROR WHEN Ey # E,

Er/Ec % Error  Ep/E; X Error

0.20 +38.2 1.028 ~0.6
0.‘0 *22'5 ‘om ‘1-2

o‘“ ‘lzﬁ 7 ‘ ~°75 'l-ﬂ
o:w *5.6 ‘-‘o ‘2.‘
0.90 +2.6 118 <3.5
0.925 +1.9 1.20 -4.6
OIM ’1'3 ‘c” '605
0.975 +0.6 1.40 -8.4
1.00 0 1.60 -11.7

1.80 -14.6

2.0 -17.2

Although the errors associated with neglecting to account for anisotropy and

nonhomogeneity of the test material are not considered here, they are briefly men-
tioned in the following paragraphs so that the reader will be aware of such possi-
bilities.

If the beam is anisotropic, the bending stress formula is exactly the same as

the elementary theory except that the application of a bending moment can produce
twisting moment. According to Lekhnitskii,® determining the accompanying shear
stress produced by bending a rod of rectangular cross section, having only one plane
of olastic symmetry normal to the axis, is very complicated. ({(Composi:e and crystal
structures are excluded here as test materials.) If the degree of anisotropy for
ceramic material is slight, it may be permissible to assume that the error when
ignoring this effect on the fracture stress will also be small.

Nonhomogeneity of the test material infers variation of the elastic modulus.

It has been observed* that in plates of hot-pressed silicon nitride, the moculus of
elasticity at the surface is several percent different than that of the center. This

*Private discussion with E. M. Lenoe, MTL.

4.
s

6.

TIMOSHENKO, S. Strength of Materials. 3rd Ed., D. Van Nostrand Co., Inc., N.Y., 1958, and Part II, 2nd Ec., D. Van

Nostrand Co,, Inc,, N.Y. 1941.

ﬁllA:lll.lS, C. C. Andalysis of Three-Point-Bend Test for Maierials with Unequal Tension and Compressive Properties. NASA TN D7872,
arch 1974,

LEKHNISTSKlzlbf. G. Theery of Elasticity of an Anisotropic Elastic Bidy. Holden-Day Series in Mathematical Physics, J. L. Brandstatter,

ed., 1963, p. X




is also an area in whigh further analysis will be required to assess the error appli-
cable to four-point and three-point locded beams when the modulus of- elasticity
varies through the “cam thickness.

If 4 rectangular beam has initial ctrvature p., the error can be determined
from an analysis pro-ided by Tiwoshenko.* The general bending stress Oy in a curved
beam due to a pure moment is given by the following: : :

oy = o Oh/bng) . ®
vhere

(d/20.) - (e./p.) .
a = £ *cfc (33)
(eploc)[l - (d/2p )]

e/o, = [(d/0)2/12][1 + (d/p )2/15]. | (3b)

Since the bending stress, according to simple beam theory, is oy = 6Mb/bd2, and
putting cb in the same terms as (3) above, we have:

= ay (M, /bde ), | Q)
where | |

a, = 6(o /d). (4a)

The percent error € for a beam of rectangular cross section and of beam-to-depth
initial curvature p /d resulting in a neutral axis shift of e /0 is:

€ = 1’)0[(ab - ac)/uc]. | (5)

The resulting error for a beam of roctangular cross section bent by a pure moment as
obtained from (5) is given in Table 2 as a function of initial curvature. It is as-
sumed that an analogous analysis applied to a three-point loadei beam would produce
similar results.

The validity of the assumption that the strain is proportional to the distance
from the neutral axis and that stresses are independent of lateral displacements is
dependent upon the ratio of the beam width to its depth. Anticlastic curvature of
rectangular beams or plates with intermediate ratios of b/d can lead to erroneous
results using simple beam theory; see Timoshenko. 7 Of course, if the beam can be
consxdered 1nf1n1te in wicth, like a plate, the correction of the bending stress is
simply® 1/(1 - v2). The question arises as to what ratios of b/d are appropriate
for the application of simple beam theory. Ashwell? examined in detail the anti-
clastic curvature of rectangular beams cnd plates and provided the answer to this

. TIMOSHENKO, S. Letter to the Editor. Mechanical Engineering, v. 45, no. 4, April 1923 p. 259-260.
8 BARATTA, F. 1. When is a Beam a Plate? J. Amer, Cer. Soc., v. 54, no. §, 1981, %
9. ASHWELL, D. G. The Anticlastic Curvature of Rectangular Bmmdﬂam 1. Roy. ,Aero Soc., v. 54, 1950, p. 708-715.




question. The pertinent formulas taken from Reference 9 are given in Appendix A.
These equations were applied to ceramic materials with Poisson's ratio v equal to
0.25 and the ratio of Young's modulus to fracture stress E/o, of 1000 to determine
the percent error* using simple beam theory as a function of b/d which is shown in
Table 3. ’ 3

Table 2, ERROR CAUSED BY Table 3. ERROR CAUSED BY EFFECT
INITIAL BEAM CURVATURE . OF ANTICLASTIC CURVATURE
P./d % Error E/op = 1x103
1 35.1 b/d % Error
2 16.7 1.0 0
3 10.3 15.0 0
4 8.4 20.0. 0.1
10 3.2 30.0 0.6
15 2.2 40.0 1.5
20 1.7 50.0 2.6
40 0.8 100.0 4.7
100 0.3 SOQ.O 5.9
£ =100 [(ab-uc)/uc] ]00:.0 - (-Vz).loos;‘-s.zs%

Note: A1l errors are negative. Note: A1l errors are negative.

If the maximum deflection is not small compared to the beam depth, linear beam
theory cannot be employed without an error. West!? examined large deflections of
three-point loaded beams, and from such results & definitive ratio of beam length-
to-depth can be determined for valid applicaticn of simple beam formulas. Since for
most brittle materials values of E/op, range from approximately 500 to 1000, the
former value was used to compute the percent error because it would yield the largest
error. Aithough the analysis was applied to a three-point loaded beam, the method
was extended to determine errors for four-point loaded beams as wzll. The results
of the calculations using the mentioned analysis!? are presented in Table 4, which
gives errors for four-point and three-point loadéed beams as a function of L/d.

Table 4. ERROR FOR BEAMS WITH LARGE

DEFLECTION
E/ub = 500
L/d Four-Point Three-Point
0 0 0
25 0.1 0.1
$0 0.6 0.4
100 1.4 1.0
150 2.5 1.8
200 4.1 2.9
250 7.0 4.9

Note: All errors are negative.

*Astiwell considered a beam bent by a constant moment analogous to the four-point beam loading case, which should represent a
conservative bound on b/d for the three-point beam, as well.

10. WEST, D. C. Flexure .iting of Plastics. Exp. Mech., v. 21, no. 2, July 1964.




It is implicit in the assumptions given in Reference 10 that the :oads and ,
moments are a&pplied to the beam in an ideal manner with no friction occurring between
the load application points and the beam. Ritter and Wilsonl! have determined a bheam
length-to-depth limit based on the minimization of friction effects when large de-
flections occur. The friction effect considered is thét which g1ves ‘rise to a moment
caused by the slope at the lcad application point. Not considered in the analysis!!
are the effects of friction due to a moment acting out of the neutral plane of the
beam, lateral contraction or extension, and changes in moment arms due to contact
point tangency shift. These factors will be discussed later.

Returning to the results of Reference 11, an inequality for the four-point-
loaded beam which provides a limit is given in the following:

(L/d - /d)/(B/oy) < 0.3 (&)

to insure negligible nonlinear deflections and friction effects. The value of 0.3
was obtained from limiting the slope to less than 15° between the beam in the loaded
and unloaded positions at the outermost support point. If the minimum value of E/o
is chosen to be 500, then we determine that for a four-point loaded beam (6) becomes:

L/d - a/d < 150. (7

It is noted from Table 4 that neglecting beam deflections resulted in greater
error in calculation of bending stress for the four-poiat loaded beam than for the
three-point loaded beam. For conservatism, therefore, it will be assumed that (7)
is applicable to the three-point loaded beam as well, with a/d = 0. Thus (7) becomes

L/d < 150. (8)

It appears that these limits are compatible with those values given in Table 4 such

that reasonable L/d ratios can be choscn that will result in small errors when mini-
mizing deflection.

One of the last requirements, no backling‘of the beam, is easily fulfilled for
ceramic materials with beam dimensions of practical test configurations. The
reader can readily verify this statement by referring to Timoshenko and Gere.l2

Accuracy, which is inferred in the above restrictions, is also dependent upon
the manner of load application, beam geometry, loading fixtures, and surface prepara-
tion. Although specimen size will not affect accuracy except for extremely small
geometries, it will alter the magnitude of the stress level at failure, and this
must also be considered. These subjects are discussed in the following paragraphs,
nd guidelines for specimen geometry and minimization of errors are provided.

First to be considered, however, are the merits of a four-point beam loading
system as compared to the three-point beam loading system.

11. RITTER, J. E,, and WILSON, W. R. D. Friction Effects in Four-Point Bending, ASLE Transactions, v. 18, no. 2, p. 130-134, presented at
the 29th Annull Meeting, April 28-May 2, 1974,

12. TIMOSHENKO, 8., and GERE, J. M. Theory of Elastic Stability. McGraw-Hill Book Co., Inc., New York, 1961.




FOUR-POINT. AND THREE-POINT LOADING

The bending moment, from which the desired fracture stress is computed in an
idealized four-point beam loading system, as shown in Figure la, is comstant, and
there are no horizontal or vertical shear stresses within the inner span. However,
the bending moment in an idealized three-point beam loading system, shown in Fig-
ure 2a, is linearly dependent upon the distance from the nearest support to the
fracture origin, and thus requires an additional distance measurement to determine
the fracture stress. Also, the shear stresses for the three-point beam loading sys-
tem are developed over the full span, thus deviating from the ideally sought uni-
axial stress state present in the four-point beam loading system.

Wedging stresses* occur under all points of load applicaticn during flexure
testing of beams. The effect of the wedging stress occurring st the inner load
points of a four-point beam test is to cause a deviation from the idealized calcu-
lated constant stress at the two local regions. However, if the ratio of half the
distance between the outer span L and inner span %, calied a, to beam depth d is
great enough,* the stress reduction will not only be small but will decay rapidly,
and the stress predicted by simple beam theory will be developed. Yet, the maximum
stress computed by simple beam formula for the three-point beam system is never
attained. The actual maximum stress occurs at a short distance either side of the
center of the load application point, which can cause fracture at these sites,
rather than at the center, according to Rudnick et al.l3 This observation has also
been confirmed by Oh and Finnie,!" where only for a material with no scatter in
strength will the fracture location of a three-point loaded beam be theoretically?
located at the center load point.

Brittle materials are affected by size. Compensation can be realized through
the use of statistical analysis offered by Weibull.l5 Although the four-point beam
system assures a simple stress state which is easier to analyze!S than the more com-
plex biaxial stress state associated with the three-poin®. beam specimen, this will
- be less of a consideration if the beam is designed properly. Nevertheless, the
three-point loaded beam system is preferred when investigating material or process
development, because of smaller specimen size, or when attempting to pinpoint
fracture origin location.¥ On the other hand, the four-point loaded beam is pre-
ferred when determination of strength for design purposes is desired, because the
center span is uniaxially stressed, i.e., no shear stresses exist. It is concluded
that each of these systems is suited for a particular application and each has dif-
ferent advauntages and disadvantages.

Each of these beam systems will be subjected to external influences which will
affect the accuracy of the test results. These external influences, directly or
indirectly caused by the application of loads through the test fixtures, will lead
to either configuration constraints or errors.

*This requirement will be discussed subsequently.
;ln Reference 14, the authors considered only a statistical analysis and ignored wedging stress considerations.
Private communication with R. W. Rice of N. R. L.

13. RUDNICK, H., MARSCHALL, C. W., DUCKWORTH, W. H., and ENRICK, B. R. The Evaluation and Interpretation of Mechanical Prop-
erties of Brittle Materials, AFME TR 67-316, April 1968.

14, OH, H. L., and FINNIE, 1. On the Location of Fracture in Brittle Solids - I, Due to Static Loading. Int. J. of Fracture Mechanics, v. 6,
no. 3, September 1970, p. 287-300.

15. WEIBULL, W. Statistical Theory of Strength of Materials, Royal Swedish Institute for Engineering Res., Proc. no. 151, 1939, p. 145,




'ERRORS FROM EXTERNAL INFLUENCES

The major 1nfiuence on the accurate determination of flexure strength of a beam
in bending arises from the application of load through the fixtures to the specimen.
The idealizations indicated in Figures la and 2a are rarely met, and usually tests
are conducted using a convenient rigid loading head and support member as depicted
in Figures 1b and 2b. The constraints on either the loading fixture or the specimen
and/or errors resulting from such fixture designs are many. Such constraints or
errors, which are discussed in turn, are caused by:

1. eccentric loading

2. span dimensions

3. beam twisting

4. friction

5. contact stresses

6. wedging stresses

7. beam overhang

8. contact point tangency shift

9. specimen preparation

10. load readout

11. specimen dimension measurement
Eccentric Loading

a. Four-Point Loaded Beams

When calculating bending stress by simple beam theory formula for four-point
toaded beams, it is usual to assume that the moment within the inner span & is -con-
stant. However, if a loading head that can only translate is used, as idealized in
Figure 1b, it is impossible to attain this idealized moment condition when

X1 # X3 - Xp313,16 this is shown in Figure lc. The ratio of o /o,, from Appendix B,
is:

Ox/%p = [-——-—lhh———— ] xi1/a . (9
(P2 + P3)/?

The loeds and distances are also shown in Figure 1¢, and a is the value of a; with

perfect load location. The error is magnified by the ratio of xj/a. (0f course, if

P, » P, = P3, which implies exact location of the points of load appiication, there

is no error.) 1In order to estimate the magnitude of such an error it was assumed in

16. HOAGLAND, R. G., MARSCHALL, C. W., and DUCKWORTH, W. H. Reduction of Errors in Ceramic Bend Tests. J. Amer, Cer. Soc.,
v. 9, no. $-6, May-June 1976, p. 189-192. '




Appendix B that the upper two load points in Figure lc were at a fixed distance

X3 - X} = £ and were constrained to translate vertically during loading, and that
the loading head would be located such that x; # x3 - X;. This method of loading,
being the most convenient, is often adopted by many investigators. and . therefore the
resulting error determination is ‘not unrealistic , S

" The analysis was accomplished by simply enforcing the condition that the dis-
placement at x; must be equal to the displacement at x; in the deflection 2quation.

This results in the following relationships between ¢_ and % in terms of the load
eccentricity ratio e/L (see Appendix B for details):

[(e/L + a/L)/(a/L)1[1-(e/L + a/L) - &/L1{(&/L)[2-(e/L + a/L)]-2[1-(e/L + a/L)}?}
3(e/L + a/L)[1- 2/L -(e/L+ a/L)]-(1- 2/L)?

cx/ob=

(10)
where the parameter a defined as (L-2)/2, e defined as (a;-a); and £ and L are shown
in Figure 1

Most workers in the testing field utilize either a 1/3-point (a/L = 1/3 and

/L = 1/3) or a 1/4-point (a/L = 1/4 and &/L = 1/2) loading. Thus by substitution of
these parameters into Equation 10, we obtain:

[3(e/L)+1}(1/3 - e/L)[1/3(5/3 - e/1)-2(2/3 - ¢/L)*]
[3(e/L)+1]1(1/3 - e/L) - 4/9

(11)

(Ox/Ob) /L

n
Wi

. [4(e/L)+1]1(1/4 - e/L)[1/2(7/4 - e/L)-2(3/4 - e/L)?]
~ [3(e/L) + 3/4](1/4 - e/L) - 1/4

The reader is cautioned that for given values of 2/L there exists a limit on
e/L in (10), (11), and (12); that is, if a; is such that either P, or P3 = 0, the
test system changes from four-point to an eccentric three-point loading (see
Appendix B), and the above equations become invalid.

'The error, defined as [(op - 04)/0x]100, was determined from (11) and (12) for
the 1/3-point and 1/4-point loaded geams and is shown in Tables 5 and 6 as a function
of e/L. Only negative values of e/L were considered in (11) and (12) because when
e/l. <0, o op- A negative value of e/L corresponds to the inner load bearing
which is o?fset closer tc the outer load bearing (a; < a). An error of similar
magnltude, but larger and of opposite sign, exists at the other inner load bearing,
which is why Tables 5 and 6 show + values. Tables 5 and 6 show that for correspond-
ing e/L, when a;/L # az/L, the 1/3- p01nt loading system results in lesser error than
the 1/4-point loading system. - Also, in accordance with the above discussion, e/L

in Tables 5 and 6 is limited to a range of +0.0443 and +0.0465. The errors indicated
in these tables can be minimized by designing the loading fixture so that the inner
and outer spans are independently fixed. Also, the inner span should be designed
with accurate location adjustment and allowed to pivot as recommended by Hoagland

et al.l
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Table 5. ERROR DUE TO ECCENTRIC LOAD. APPLICATION Table 6. »»AERROR,DUE.\ T0 ECCENTRIC. LOAD APPLICATION .

FOR A 1/3-FOUR-POINT LOADED BEAM, FOR EITHER A FOR A 1/4-FQUR-POINT LOADED BEAM, FOR EITHER A .
NON-PIVOTING OR PIVOTING LOADING HEAD " NON-PIVOTING OR A PIVOYING LOADING HEAD
When 2/L = 1/3 and a;/L # ay/L . When 2/L =-1/2 and & /L # ay/L
r . NON-PIVOTING  PIVOTING NON-PIVOTING .  PIVOTING
| e/L = +(a,/L - 1/3) + % Error ~ *+ % Error e/L = +{ay/L - 174) =+ % Error + % Error
0.0 0.0 0.0 0.0. 0.0 0.0
0.0010 0.7 0.1 0.00'0 1.0 0.2
0.0019 1.3 0.2 0.0020 2.1 - 0.4
0.0038 2.6 0.4 0.0040 3.8 0.8
| 0.0057 . 3.8 0.6 0.0080 7.1 1.5.
0.0076 4.9 .0.7 0.0120 10.0 2.2
0.0095 6.0 0.9 0.0160 12.6 2.9
0.0114 7.0 1.1 0.0200 14.7 3.6
0.0133 8.1 1.2 0.0240 16.6 4.2
0.0333 16.1 2.6 0.0280 18.3 4.7
0.0433 18.7 3.1 0.0320 19.8 5.3
0.0443 18.9 3.2 0.0340 - 20.8 5.6
0.0400 21.8 6.3
0.0465 22.9 7.0

Many flexure fixtures do permit the loading head to translate and pivot. The
eccentric loading error in this instance will be due to the actual moment being
different from the assumed moment. If the beam deflection is small, the angular
rotation of the loading head can be ignored and the maximum bending stress can be
determined utilizing force and moment equilibrium:.

g 2 ’
X 2e e 2e
o " 1TT taTar . 13

The maximum stress will exist under the inner load bearing which is offset to
give a larger moment arm (a). A similar error (for e/L < 0.01), but larger and of
opposite sign, will exist at the opposite inner load bearing. Substituting for
either 1/3 or 1/4-point loading: :

The latier expression was also derived by Jayatilaka.17 These errors at the
point of maximum stress are also given in Tables 5 and 6 for comparison. It is
evident that a translating and pivoting loading head is preferred to a rigid loading
head because the errors are appreciably less. This finding is consistent with -
recommendations of Hoagland et al.l® o '

17. JAYATILAKA, A. DeS. Fracture of Engineering Brittle Materials. Applied Science Publishers, LTD, London, 1979, p. 187.
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b. Three-Point Loaded Beams

The ratio of L to °b is:

° 2
£eree(t)

The percent error as a function of e/L is given in Table 7. Notice that the percent
errors in Table 7 are always positive, and when the load application point is mis-
placed, such errors are much less than those of equivalent e/L values shown in
Tables 5 and 6 for the four-point loaded beams. Notice also that when +e/L = 0.500,
the error is infinite, i.e., the three-point loading model is no longer valid.

Table 7. ERROR DUE TO ECCENTRIC LOAD
APPLICATION FOR A THREE-POINT
LOADED BEAM

When a,/L # az/L # 1/2
e/l = 1/2 - 4 /L

e/l % Error
0 0

0.025 0.25
0.050 1.0
0.075 2.3
0.100 4.2
0.150 9.9
0.200 19.0
0.250 33.3
0.300 56.3
0.400 177.8
0.450 426.3
0.500 -

Note: All errors are positive.

Span Dimensions
a. Four-Point Loaded Beams

An additional mislocation error may exist if the inner bearing span (%) or the
outer bearing span (L) are not their prescribed values, even if they are properly
centered with respect to each other. This will alter the moment arm (a). Assuming
the inner span is actually & + e  and the outer span is L - egs then the ratio of
o, to o, is:

Q

Z=1-[2e /0 - 0] (16)

b

where e, is the error of the inner and outer span dimensions. A similar error
(for e 7L < 0.01), but of opposite sign exists if the inmer span is % - e, and the
outer gpan is L + e_. Errors are tabulated in Table 8 for the 1/3 and lli-point
loaded beams. The iargest error magnitude, occurring when the outer span is

L - e is reported in these.tables.
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Table 8. ERROR DUE TO WRONG SPANS:

+ % Error A
te /L 1/3-Four-Point 1/4-Four-Point Three-Point
] 0 0 0
0.001 0.3 0.4 0.
0.002 0.6 0.8 0.2
0.005 1.5 2.0 0.5
0.010 .34 4.2 1.0
0.015 4.7 6.4 1.5
0.020 R N | 8.7 2.0
0.02% 8.1 na a6 -
_n_.oso ~17.6 . 8.0 3.

Note: All arrors ara either positive or negative.

b. Three-Point Loaded Beams
A simple analysis shows that if the support span is actually L - e,» then:

°x L-es

——

°b L

an

The error in determining the stress is given in Table 8. If the support span
is L+e,, a similar error occurs but it is slightly less and of opposite sign. A
conparison of Equations 16 and 17 shows that the four-point configuration amplifies

- the span error, whereas the error in computing the stress for a three-point beam is

nearly the same as the sp.n error.
Beam Twisting

A net torque can result fror line loads being nonuniform or nonparallel between
pairs of load contact points or if the cross section of the specimen is skewed over
its length.13,16

Such a skewed condition is shown schem:itically in Figure 3 for a four-point
bending specimen. The error due to twisting has been estimated for plane strain
and plane stress conditions by examining the maximum principal stress due to bending
and torsion and comparing it to the bending stress.l6 "Bottoming" of the specimen
on the fixture was not considered. Bottoming occurs when the bearing rollers contact
the specimen across its full width. For the sake of completeness, bottoming is con-
sidered in the analysis given in Appendix C. The maximum principal stress, assuming
8 plane strain condition, is derived in Reference 1. The plane strain criterion
leads to slightly higher error estimates, but the plane stress criterion is more
appropriate. The plain stress solution is also given in Reference.16; but the
analysis has been extended in this report to incorporate the case where the specimen
bottoms on the fixture.

The maximum principal stress for either a skewed four-point or three-point beam
in bending, considering a plane stress condition, is ‘given by: o '

a%“-ab/z{u (1/3kz) [(nb/2')2 + 9kp2)}1/2 I (18a)

13




vhere g, is the apparent bend strength and &' is either equal to "a" for four-point
bending or equal to L/2 for three-point bending. Also:

n = [3ky(e/o,)/ (1 + VI(&/L)ey + (@/2"4) (-‘,—,—) (16)

where for Case I: n = 1, failure occurs prior to bottoming of the specimen in the
loading fixture, and for Case II: n < 1, failure occurs after bottoming.

},w-—'*i ;th_l v, 7

"\
e —
IP

(a) Side View (b) End View of Specimen.
The applied loads ccntact
the specimen edges due to
the twist.

— E *

//‘ - |

Bearing

(c) End View of Fixture Showing ¢, the Fixture Twist
Anglc Between a Pair of Contact and Load Bearings

Figure 3. Twisting of a four-point bsam spacimen.

The factors k; aul ky, obtained from Reference 3 and given in Table 9, are
numerical values associated with the torsional stress component which are dependent
on the ratio of b/d. The measured angle of twist (or skew angle) along the total
length Ly of the specimen is ¢ (see Figure 3c), and along the {ixture from one sup-
port point to the adjacent loai point is ¢ :

The maximum principal stress as given by (18a) can be utilized to determine the
percen* error for various ratios of n, 2'/b, and b/d. This was accomplished and is
shown in Table 10. Notice that the range of n varies from 0.20 to 1.00. It is
expected that if bottoming d.:s not occur prior to fracture because of an excessive
twist angle, the maximum ratio of n that can be attained is 1.0 and thus the tables
do not accommodate n > 1.0.
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Table 9. k3 AND kp

b/d ky ky
1.0 0.1406  0.208
1.2 0.166 0.219
1.5 0.19% 0.2
2.0 0229 0.248
2.5  0.249 0.258
5.0 0.2 0.201
10,0 0.2 0.312
- 0.333 2.333

Table 10. ERROR OUE TO BEAM TNISTING PLANE STRESS ASSUNPTION®

ve0.28
b/d
%' /b 1.0 1.2 1.5 2.0 2.5 5.
n=0.20 1.0 2.0 2.22 2.00 1.77 1.62 1.27
2.0 0.63 0.57 0.52 0.46 0.42 0.32
2.5 c. 9 0.37 0.33 0.29 0.27 0.21
5.0 0.10 0.09 0.08 0.0? 0.07 0.05
10.0 0.03 0.02 0.02 0.02 0.02 0.01
- 0 0 0 0
n = 0.40 1.0 8.5 7.9 7.18 6.4 5.93 4.75
2.0 2.44 2.22 2.00 . 1.62 .9
2.5 1.59 1.44 1.30 1.15 1.05 0.82
5.0 0.41 0.9 0.33 0.29 0.27 0.2)
10.0 0.10 0.09 0.08 0.07 0.07 0.05
- 0 9 0 ) 0
n = 0.60 1.0 16.20 15.08 13.09 12.63 N.74 9.6)
2.0 5.19 4.73 .2 3.82 3,81 2.78
2.5 3.44 3.13 2.83 2.52 2.3 1.82
5.0 0.9 0.82 0.74 0.65 0.60 0.47
10.0 0.23 0.21 0.19 0.16 0.15 0.12
- 0 0 0 0
n = 0.80 1.0 23.81 22.36 20.87 19.20 18.01 15.00
2.0 8.57 7.87 7.18 T 5.93 4.75
2.5 5.82 5.32 4.83 8 3.95 3.14
5.0 1.59 1.4 1.3 1.15 1.05 0.82
10.0 0.4} 0.3 0.33 0.29 0.2 0.21
- 0 0 0 0 0 0
n=1.0 1.0 30.74 29.12 27.43 25.50 2.1 20.61
2.0 12.32 11.38 10.44 9.42 .72 7.06
2.5 8.57 7.87 7.18 6.4 8.93 475
5.0 2.44 2.22 2.00 1.77 .62 - L.
10.0 0.63 0.57 0.52 0.46 0.42 0.32
- 0 0 o 0 0

Note: A1l errors are negative.
*An error table based upon plain strain conditions is in Reference 1.
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Friction

It has already hYeen shown in Table 4, for the two beam systems considered, that
the error due to deflection will be negligible if L/d < 25. It appears that this
limit is well within an attainable realistic geometry ratio. Therefore, the fric-
tion effect at the 1oad and support points will be minimized with respect to large
deflections. This also iwplies that there will be no effect from friction on the
contact tangency shift. (These factors will be discussed subsequently.) However,
friction will cause a momen: acting nut of the plane of the beam that can not be
ignored. This factor is considered in the following.

When determining bend strength by simple beam theory, it is usual to assume that
the supports and luad roints are frictionless, whereas in fact they are not. The
presence of friction in flexure tests with fixed load and support points gives rise
to couples at such locations as well as axial forces at the neutral axis of the beam.
The net axial force is relatively small and therefore is ignored here. However, if
the moment is not corrected to account for the couple in the determination of flexure
stress, an error will result. Error equations adapted from the results® available
in the literature!6-19 are given below for the four-point and three-point loading
systems:

- u
¢ = 100 (C_/T-—i) (19)

and

€ = 100 (Vi‘«i"—'ﬁ) (20)

Such errors as defined by the above equations can be significent, according to
References 16, 19 and 20. Newnham!? and Weil2? reported that the experimental dif-
ference in failure stress using rigid knife edges as compared to roller-type contact
points was as high as 12% for silicon nitride and 13% for graphite.

Contact Stresses

Loads on bend specimens applied through knife edges or small-diameter rollers
result ir high stresses under these line loads. High compressive contact stresses
can result and cause local crushing. (Also, shear stress near the locality of the
load point can be several times higher than that predicted by beam theory.)

Reference 4 gives equations for determining the contact pressure between a
cylinder (or roller) and a flat surface (see Figure 4) as a function of the applied
load, modulus of each material, and the roller radius. If it can be assumed that
the two waterials are identical and that the allowable becaring pressure or contact
pressure can be as high as twice the bend strength of the material, then limits on
the roller radius for both loading systems will result. For example, from Reference
4 we have:

*Beam width constraint occurs also because of friction transverse {o the beam's long axis. lbm.thhdhct(mﬂcmhm”)h
small and thus not considered here,

18, DUCKVIOR'I'H.VI H., et al. Mechanicei-Property Tests on Ceramic Bodies. WADC TR 52-67, March 1952, p. 67-70.
19. NEWNHAM, R. C. a‘tmcth Tests for Brittie Maserials. Proc. of the British Cer. Soc., no. 25,!‘1 1975, p. 281 293,
20. WEIL, N. A. Studies of Britiie Behaviour of Ceramic Materiel. ASDTR61-628.hnll.Apﬁll 62, p. '38-42.
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Paax * 0.59v/PE/2bp (21)
where p is the maximum concact pressure. (Note that the roller radius can be
either p) or pz.) However, we shall assume that 1 < 20‘} Also for four-point

= (3/2)

loading, o) = 6Pa/bd?, and for three-point loading, 8y PL/bd%. Substituting
of % into (17) and solving for pj;/d we obtain

p1/d > 7.25 d/a for the four-point loaded beam, and (22a)
p1/d > 29.0 d/L for the three-point loaded beanm, (22b)

where it was assumed that E/0, = 1000. Of course, if the specimen and bearing are
made of different materials, knd if B/o, is not 1000, then further calculations are
required to ensure that the ceramic doeSn't locally crush or fracture, or that the
bearing does not permanently flatten.

7 7
L
!
Figure 4. Contact point tangency shift.
--.x
‘M. P
hy

h

e L

Wedging Stresses

Localized contact at the load bearings can cause a more subtle problem, which
is referred to as wedging stresses. The effect of the wedging stress is to provide
a substantial tensile stress contribution at the compressive side of the beam adja-
cent to the load points. A net tensile stress can not be created if d/22' <},
according to Reference 16. More importantly, a tensile stress is added to that
already present due to beam bending at the tensile side of the beam, thereby causing
a deviation from the assumed stress calculated by simple beam theory.

17
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This problem is generally treated in Reference 3 and particular results from
von Kérafn and Seewald?! for a similar situation are used to estimate this error.

An analysis for this error is given in Appendix D.
tions for four- and three-point loaded beams are given in Table 11.

The resulting error determina-

In the calcula-

tion 0i the errors, which are s function of a/d or L/d, as well as x'/d, the com-
puted %), corresponds to the failure site location (x'/d).

Table 11. ERROR OUE TO WEDGING
x'/d*
Loading 0 025 0,25 0375 050 0.7% 1.0 1.50
a. Four-point,

. “c’ -0.5 ‘2\‘ ‘20‘ ’ °"0. “007 ‘013 +
‘.5 ”.l -0-3 ‘1;9 .ll‘ -0-9 '0.5 ‘0-2 0
2.0 *203 -0-2 .15‘ “¢‘ .°u7 .00‘ -0.2 0
3.0 ”‘-s "002 “to ‘007 -0-5 ‘012 -0-‘ 0
‘.0 *‘;‘ -0. ' .°~7 -0.5 ‘013 ‘0-2 . -0.] o
5.0 0.9 -0. 0.6 -0.4 -0.3 =0.1 0 0
6.0 +0.8 -0.1 0.8 -0.4 0.2 0.V 0 0
8.0 *006 ° .00‘ °003 ‘0‘2 ‘0.‘ ° 0

10,0 +0.4 0 =0.3 0.2 <0.1 =0.1 0 0
ls.o "0.3 0 ‘002 -0.] "°|‘ 0 0 °
20.0 +0.2 0 -0.1 -0.1 -0.1 0 0 0
40.0 0.1 0 -0.1 -0.1 0 0 0 0
60.0 +0.1 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0
b. Thrn—poi:t
. +21.6 -2.4 -18.8 -25.4 + + + t
1.§ #3.4 14 104 -10.2 -10.1 + + N
2.0 *9-7 “ .0 ‘7‘2 '5“ ‘5‘3 '5.5 T +
3.0 6.3 -0.7 -4.4 -3.7 -2.7 -1.9 -1.3 t
4.0 7 -0.5 =3.2 -2.6 -1.8 -1.2 ~0.6 =0.1
500 *3‘7 -0-‘ ‘2-5 ‘2-0 “ 0‘ -OCa ‘o;‘ °
6.0 +3.1 -0.3 -0 -1.6 -1 -0.6 -0.3 0
8.0 #2-3 -0-2 "‘ .5 'l -2 '0‘8 '0.‘ '0.2 0
10.0 +.8 -0.2 -1.2 -0.9 -0.6 -0.3 =0.2 0
15.0 +1.2 -0.) -0.8 -0.6 -0.4 -0.2 -0.1 0
20.0 +0.9 0. -0.6 =0.4 -0.3 -0.2 =0.1 0
‘Olo +o.‘ o ‘0'3 .002 -°§‘ 'OI] o °
60.0 +0.3 0 -0.2 =0.1 «0.1 -0.1 0 0

- 0 0 0 0 0 0 0 0

'x' {s the distance on either side of the load contact point where failure occurs.
*Location is at or beyond outer span limit.

Beam Qverhang

The overhangs of the beam must be great enough so that the local stresses at

the beam support points are not amplitied due to beam-end effects.
are dampened out within a distance equal to one beam depth.21

I..r_>_L+2d

beam-end effects are avoided.

These stresses

Thus, by allowing

21. VON M T., and SEEWALD, F. Alhandl Asrodynam, Inst. Tech. Hochechiule, 1946, p. 256.
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Contact Point Tangency Shift

Significant changes in span lengtk can occur in both four-point and.three-point
loading systems if contact radii of support and load points are large compared to -
beam depth. The shift in point of tangency, as shown by h; and hp .in Figure 4, is a
function of the contact radii, specimen thickness, and the ratio of the modulus of
elasticity to the bend strength. For materials that behave elastically, such as
those considered here, the change in tangency point and thus the error arising be-
cause of the change in moment arm from the ideal can be predlcted‘mathematically
for linear cystems. This is accomp11shed and is presented in Appendix E. The
approach was patterned after Westwater?? who corrected for span shortening but
ignored friction at the support points of a three-point loaded beam.*

In Appendix E the formulas are derived for a four-point loaded beam and then
reduced to the special case of a three-point loaded beam. - These results are put in
terms of error functions assuming the simple beam theory is applied without correct-
ing for span shortening, as in the case of the lower support, and span lengthening
between the upper loading points shown in Figure 4.

The errors are determined for four-point loaded beams of 1/3 and 1/4 loading
points as a function of p;/d and p,/d, and the three-point loaded beam as a function
of p3/d only. These errors are given in Table 12, where it was as<umed that
E/o = 1000.

Table 12. % ERROR DUE TO TANGENCY POINT SHIFT
E/op = 1 x 10°

Pa/d
Loading Py/d 1.0 2.0 5.0 10.0
a. Four-point, 1.0 0.3 0.4 0.7 1.2
a/L = 1/3 2.0 0.5 2.6 0.9 1.4
4. 0.9 1.0 1.3 1.8
6.1 1.3 1.4 1.7 2.3
8.2 1.7 1.8 2.1 2.7
10.3 2.1 2.2 2,6 3
b. Four-point, 0.67 0.4 0.6 1.2 2.2
a/L = 1/4 1.35 0.6 0.8 1.4 2.5
2.7 1.0 1.2 1.8 2.9
4.1 1.4 1.6 2,2 3.3
5.5 1.8 2.0 2.6 3.7
6.9 2.2 2.4 3.1 4.1
¢. Three-point, 1.0 0.1 '
a/L = 1/2 2.0 0.2
g:g 8:; Regardless of pa/d value
8.0 0.8
10.0 1.0

Note: A1 errors are positive.

"hcumnnlahu»dcuundneﬂamnappundnumarehﬁbnﬂﬂplbttholunhmnuﬂloudlﬂdng!ncauueoftnngqncyahui Hhmnwnr.ﬁn
beams of smull deflection, the error is negligible,
22. WESTWATER, J. W. Flexure Testing of Plastic Materials. Proc. ASTM, v. 49, 1949,
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Specimen Preparation

The flexure strength of each brittle material is not only supersensitive to the
final surface finish because the maximum tensile stress occurs at the beam surface,
but is also highly sensitive to. pricr finish history. For this reason it is impos-
sible to specify an optimum surface finish procedure for all brittle materials, so
that failure will be due to inherent flaws related to the material or material proc-
essing, rather than an imposed defect resulting from the finish process. Indeed, the
designer or materials developer may not be able to specify a particular finish pro-
cedure. Therefore, rather than attempt to dictate surface finish requirements, it is
suggested that each set of reported test data results be accompanied by surface
finish history and/or material process history, whichever is applicable.

There are, however, several specific recommendations related to surface finish-
ing procedures that can be presented. Corner flaws resulting from chipping or crack-
ing during the grinding operation are sources of low-strength failure. Rounding or
beveling of the corner as depicted in Figure 5 appears to reduce premature failure.?3
Since a chamfer will double the number of edges., thus doubling the source of flaw
locations, rounding is preferred.?* Also, it is important to grind the edges and
flat surfaces?" by a motion parallel to, rather than perpendicular to, the specimen
length. [t is further indicated?3 that finishing of the corner should be comparable
in all aspects to that applied to the beam surfaces.

c

xr(‘ N\l / :450

AN

b . ~ b=

(a) Rectangle with  (b) Rectangle with
Rounded Corners Chamfered Corners

Figure 5. Beam cross section.

bt £ ol

If the corner radii or chamfer is small, the errcr in ignoring the change in
moment of inertia will be negligible. The limiting ratio of corner radii or 45°
chamfer dimension to beam depth can be determined from the error analysis due to
neglectiag the change in moment of inertia given in Appendix F. This error in
determining flexure stress. when reglecting corner radii or 45° chamfer, is given
in Table 13.

23. RICE, R. W. Machining »f Ceramics. Proc. of the Second Army Materials Technology Conference - Ceramics for High Performance
Applications, J. J. Burke, A. E. Gorum, and R. N. Katz, ed., Brook Hill Publishing Company, Chestnut Hlll.‘Macsachusetts, 1974, .

24. RICE, R, W. The Effect of Grinding Direction on the Strength of Ceramics. The Science of Ceramics Machining and Surface Finishing,
S. J. Scheider and ®. W. Rice, ed., NI'S Special Publication 348, Washington, DC, Gevernment Printing Office (SD Catalog No. 13.10:348),
1972, p. 365-376.
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Table 13. % ERROR IN DETERMINING FLEXURE STRESS

a. When neglecting b/d
-corner radii ) — .
r/d 1.0 2.0 . 4.0
0 0 0 0
0.02 0.1 0.1 0o
0.08 0.4 0.2 0.1 '
0.06 " 0.9 0.4 0.2
0.08 1.5 0.8 0.4
0.10 2.4 1.2 0.6
0.15 5.1 2.5 1.3
0.20 8.6 4.3 2.2
b. thn neglecting ¢/d 1.0 2.0 4.0
450 chamfer 0 0 0 0
0.01 0.1 0.1 0.1
0.02 0.2 0.1 0.1
0.03 0.5 0.3 0.1
0.04 0.9 0.5 0.2
0.05 1.4 0.7 0.4
0.06 2.0 1.0 0.5
0.08 3.4 1.7 0.9
0.10 5.2 2.6 1.3

Note: A1l errors are negative.

Load Readout

It is readily apparent that an error in the break load P is identically carried
over as an error in the stress Oy '
Specimen Dimension Measurement

It is further evident that an error in measuring the specimen dimension can also
lead to an error in stress. It is recommended that the cross section dimensions b
and d be measured at the point of failure (to preclude specimen taper effects). Con-
sidering the true specimen dimension to be in error by e, then from BEquations.la or
1b: :

g S
X __bd? .
o, "+ o) @+ em)z for three- or four-point flexure. (24)

b

If n is small relative to b or d:

b)) e

Equation 25 shows that, if the measurement error is expressed as e,/b or ey/d, the
error in stress is magnified. For example, if d = b, then a 1% error in specimen
measurement becomes a 3% error in stress.
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RECOMMENDATIONS FOR FLEXURE TESTING

It is beyond the scope of this report to analytically determine the intersec-
tion of errors to arrive at-a total stress error. Nevertheless, a range of practi-
cal geometry ratios and error tolerances can be specified so that a simple additive
stress error is a few percent at most. The recommendations are summarized in
Table 14 and are discussed below. -

Several of the error sources are negligible for most common test configurations.
These include initial beam curvature, anticlastic curvature, beam overhanrd and large
deflection sources. The error due to nonhomogeneity are largely unknown at th's time.

Many of the errors are independent of the test configuration but shouvld not be
overlooked. Micrometers are readily available that are accurate to within 0.0025 mm
(0.0001"), and these should be used to keep specimen dimension measurement errors to
a few tenths of a percent. Many conventional universal testing machines can easily
read break load to within 0.5%. Corner chamfers shculd not be casually applied to
specimens, particularly ones with small cross sections, since the error can be sig-
nificant. The analysis in this report assumes the chamfers were identical. If they
are not, or if only two chamfers are used, a further error can result due to a shift
in the position of the specimen's neutral axis.

Some of the more important error sources do depend upon the fixture configura-
tion. The 1/3-four-point mode has somewhat less error than the 1/4-four-point mode
for the cases of wrong span and contact tangency shift sources. A greater differ-
ence exists for the eccentric loading source of error. Special care should be taken
to minimize wrong spans or eccentric loading error sources in four-point flexure
since an error in such fixture positioning is magnified as an error of stress.
Three-point loading is much less sensitive to load hearing position error sources
than four-point loading. On the other hand, a three-point loaded beam is adversely
affected by the presence of wedging stresses at the point of maximum stress. These
wedging stresses decay rapidly with distance away from the load bearings and will
have considerably less influence on four-point testing. The bearing friction error
can be of large magnitude for either three- or four-point loading, and it is strong-
ly recommended that the load bearings be mounted such that they are free to rotate.
Twisting error, due to lack of parallelism of fixture bearings or specimen surfaces,
is harder tc predict, because the error is dependent upon many geometry terms as
well as the specimen stiffness. Parallelism requirements are more important for
four-point loading than three-point. For most geometries and materials, parsallelism
limits of better than 1° in the specimen and also the fixtures are needed to keep
the error within 1 percent.

There are two conflicting requirements regarding contact radius at the loading
and support points: the first is that radii must be great enough so that contact or
bearing pressure does not cause local failure of the beam; the second is that the
contact radii be small enough so that the error due to contact point tangency shift
is not great.

Many of the error analyses in this report assumed the ratio of elastic modulus
to bend strength (E/o) was 1000. Values could, in fact, range from 100 to 2500. In
general, the larger E/o, the larger will be the twisting error and load bearing con-
tact stress, but the lesser will be the contact tangency shift and large deflection
eTrors.
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Table 14. ERROR SOURCES AND RECOMMENDATIONS

Recommendations

Error Source Error
, c (%)
Et # E_; Nonhomogeneity & Anisotropy (Table 1) Error depends upon material and -—-
- ¢ on a fabrication process.
Initial Beam Curvature (Table 2) pc/d 2 100 <=0.3%
- Anticlastic Curvature (Table 3) b/d < 15 0
_ Four-Point a/d < 12.5 <=0.1
Large Deflection (Table 4)
Three-Point L/d < 26 <-0.1
Non-Pivoting Hezd e/L < 0.001 <+0.7
1/3 Four-Point | pyyoting iead e/' < 0.002 0.2
Eccentric Load (Tables 5-7) Non-Pivoting Head e/L < 0.001 <410
1/8 Four-Point } piyoting Head  e/L < 0.002 <+0.4
Three-Point e/L < 0.025 <+0,25
1/3 Four--Point eg/L < 0.001 <+0.3
Wrong Span (Table 8) 1/4 Four-Point es/L < 0.001 <+0.4
Three-Point es/L < 0.005 <+0.5
Beam Twisting (Table 10) Minimize o, and 0 << 10 ==
Four-Point Roller bearings which are free —-
Bearing Friction (Egs. 19,20) to roll.
Three-Point Roller bearings for outer supports. .-
Four-Point p1/d > 7.25 d/a
Contact Stress
Three-Point p1/d > 29,0 d/L
Four-Point a/d > 5.0 <+0.9
Wedging Stress (Table 1)
Three-Point L/d > 20 <+0.9
Beam Overhang ly2 L+ ~e-
1/3 Four-Point e1/d £ 2.0 <4+0.5
Contact Point
1/4 Four-Point p1/d £ 1.5 <+0.7
Tangency Shift (Table 12)
Three-Point p1/d £ 5 <+0.5
b/é = 1.0, ¢/d < 0.03 £-0.5
Corner Chamfer (Table 13)
‘b/d = 2.0, c/d < 0.04 £-0.5
. b/d = 1.0, r/d < 0.04 <-0.4
Corner Radius (Table 13)
: b/d = 2.0, r/d < 0.06 <-0.4
Load Readout Measure p accurate to 0.5% <+0.5%
Specimen Dimension Measure e /d accurate to 0.1% <+0.3%
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STRENGTH AS A FUNCTION OF SPECIMEN DIMENSIONS AND SAMPLE SIZE

General

An additional issue is the question of how many specimens should be broken in a
test sequence. Furthermore; it is well known that the size of the specimen can
influence the measured stremgths. In general, the larger the 5pec1men, the weaker
it is likely to be. ' How can strength results generated with one specimen size be

compared to other s1zes? These two questions can be addressed by the we11 known
Weibull ana1y51s 15

Many investigators have used the We1bu11 approach to relate strength levels of
various types of spec1men configurations either on a stressed volume or surface area
basis.25 The reader is cautioned that confirmation of such an analysis or lack
thereof may well depend on a number of factors including the test material. As
examples of such correlat1on and lack of it, Weibull statistical correlation was
justified b{ Davies2S for reaction-bonded silicon nitride but inappropriate for
Lewis' work“® in alumina fabricated by several processes.

A computer program for statistical evaluation of composite materials, applicable
to ceramic materials, is available in Reference 27. This program determines the
desirability of a particular probability density function in predicting fracture
strength of ranked empirical data. The candidate functions include normal, log
normal, and Weibull. Root mean square error results can be tabulated for each
functional comparison. The effects of several different statistical ranklng schemes
can be readily listed in the computer output.

The data mean and standard deviations with corresponding levels of confidence
can be included in the printed results. The Weibull parameters, obtained from the
maximum likelihood method, and corresponding confidence intervals can be obtained
from this program.

Since a Weibull-type analysis is ggllcable in many instances, resulting formu-
las for the simple two-parameter system to determine the risk of rupture for
the four-point and three-point loading systems, are presented below, for the sake of
completeness.

It is worth noting that Weibull analyses of strength data require, as input,
the idealized tensile stress acting upon a specimen, not the stress at the point of
fracture.25 It is for this reason that strength values are pot adjusted in four-
point loading for "out of inner span fractures' (which occasionally occur) or for
fracture away from the middle bearing in three-point.

Volume Sensitive Material

The Weibull two-parameter volume distribution function for the probability of
failure (F) of a uniaxially stressed component is:13:25

25. DAVIES, D. G. S. The Statistical Approach to Engineering Design in Ceramics. Proc. Br. Ceramics Soc., no. 22, 1973, 8 429452,

26. LEWIS, D, IIl. An Experimental Test of Weibull Theory. J. Amer. Cer. Soc., v. 59, no. 11-12, 1976 p. 507-51

27. NEAL, D. M and SPRIGIDIGLIOZZI, L. An Efficient Method for Determining the 'A’and 'B’ Deslgn Allowables. ARO Report 83-2,
Proc, of the ‘l‘wcmy-Bi;hth Conference on the Design of Experiments in Army Research, Development and Testing, 1983,

28. De“séu.voo G. J. Theory and Structural Design Applications of Weibull Statistics. Weltin;houae Astronuclear Laboratory, WANL-TME-
2 197
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Jf \M
F=1- exp [-/ (5‘-’;> dv] (26)

v

where o is the tensile stress acting upon an element dV of the component, o. is the
characteristic strength (a normalizing parameter which has units of stress : volume
raised to 1/M) M is the Weibull modulus, and V is the volume. of the component. In
general, o is a function of location in the component. Equation (26) is often re- .
written for flexure specimens in terms of o, and the equivalent volume Vg (the vol-
ume of a tensile specimen) which, when subjected to the same stress Ops would have
the same probability of failure.25

o

a. M ‘
F=1-exp |- (—-'l) Ve | - 27)
[o]

The equivalent volume is a useful quantity since it permits comparison of the
mean strengths of two different sized components:*

g1 VEZ /M .
— ———— ' ’ : (28)
c2 V!51 '

where ¢; and V.. are the strength and equivalent volume of one component, and o, and
VE2 are for thg other.*

The effective volume of a rectangular beam in four-point flexure is:

1 2a M
Vg =V (2("’“M T "1)) 1-3 i(“m re 1) , (29)

where V is the specimen volume inside the outer span (V = bdL). This formulation
includes the material between the inner and outer bearings. For the case of
1/4-four-point bending:

M+ 2
V., = V| ——5~—1. (30a)
¢ [4<M+ 1)2]

For the case of 1/3-point bending:

M+ 3
v, =v|-Mx3 | (30b)
E [6(M . 1)2]

*Or the strengths at the same probability of failure.
*8Some assumptions are involved in the above analysis; the reader is directed to Reference 25 for details.
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and for a beam stressed in three-point bending:

B [z(sn 1)2] | ~ o

M can be determined by a number of different methods (see References 25, 28-30).

The accuracy by which M can be determined is discussed later under Weibull Parameter
Estimate and Sample Size. Equation 30 shows that a larger volume of material is
effectively stressed in four-point as compared to three-point loading. It is for
this reason that four-point loading is generally preferred. ' ’

Surface Sensitive Material

The Weibull two-parameter surface distribution function for the probability of
failure of a uniaxially stressed component is:15:25

F=1- exp[— -4' (39;)" dS] , | (31)

where the characteristic strength has units of (stress - area raised to 1/M), M is
the Weibull modulus, and integration is performed over the specimen surface, S. If
surface flaws predominate, then the effective surface Sg can be used to compare
mean strengths* between two components:

) 1/M

‘1 [ Sgy

—_—= | =L (32)
0o SEl

The - fective surface area for a four-point loaded beam is:
2
s = (ﬁ-}—l) M + 12+ [28b + as]u + 1) + 204 , (33)

and for three-point it is:

Lb Ld
- 34
E M+l+(“+1)zv (34)

S

Once again, a greater surfaée is exposed to high stress in four-point loading as
compared to three-point, which is why four-point is preferred.

*Or the strengths at the same probability of failure.

29. McLEAN, A, F., and ll"lnSHBR, E.A. Bmatérﬂ;b_’ Dc:l‘n_’ e A.chh i-l"gt;nrmmn Gas Turbine. Ford Motor Company, Contract
DAAG46-71-C0162, Interim Report, -20, August .

30, PALUSZNY, A., and WU, W. Pobabilistic Aspects of Designing with Ceramics. Presentod at the 22nd Annual Gas Turbine Conference
of A.S.M.E., Philadelphia, Pa., March 27-31, 1977.
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Weibull Parameter Estimate and Sample Size

Often, the objective of flexural strength testing is not merely to estimate a
mean strength, but to estimate Weibull distribution parameters such as the Weibull
modulus M, or the characteristic stremgth, o_. The following section discusses
requirements for numbers of specimens in ord®r to obtain reasonable estimates for
these parameters.

Flexure tests on hot-pressed silicon nitride material reported by McLean and
Baker3! show the effect of Weibull slope M for specific component reliability. The
strength requirement for a specific component reliability was decreased 16% by a
reported 20% increase in M from a nominal value of 10, and was increased 27% by a
20% decrease in the slope. ,

Different techniques will produce somewhat different results, according to
McLean and Fisher,2° when estimating the Weibull parameters. Two statistical methods
had been used during preliminary analysis of hot-pressed silicon nitride material
strength data, and results indicated that the estimates of the characteristic value
o, (or scale parameter) were very close while the Weibull slope estimates vary and
thus would yield considerable differences in the component strength requirement.

The following is quoted directly from Reference 29 (except to change reference
and figure numbers appropricte for this report) because it succinctly addresses the
answer to the question of proper sample size: 'The exact confidence intervals for
the parameters are based on the distributions obtained by Monte Carlo methods presented
in Thoman et al.32 It is not unexpected that the uncertainty in the estimation of a
parameter will increase as the sample size decreases. This uncertainty, however, has
rarely been quantified. The width of the confidence intervals for the parameters is
a measure of the uncertainty and aids in the selection of the sample size of a test.
Figures 6 and 7 are drawn from Reference 32 and show the 90% confidence bounds for
the Weibull slope and the characteristic value." (Figure 7 differs from that given
in Reference 29 in that two additional M values were computed and shown.) "The bounds
for the Weibull slope are a function of sample size only, while for the characteristic
value they are a function of both the sample size and the Weibull slope. As can be
seen from the graphs, the error or uncertainty in estimates from small sample sizes
is very large. Important judgements and significant analysis should not be based on
small samples. Sample sizes of at least 30 should be used for all but the most pre-
liminary investigations. An uncertainty of :10% in Weibull slope requires more than
120 samples. This uncertainty is not peculiar to just ceramics, but is intrinsic to
the statistical analysis of data, whether that data be material strength or the life
of some electronic component. The choice of sample size depends on many factors in-
cluding the cost and timing of testing and the degree of conservation which is accept-
able, but erroneous judgements may be made and unacceptable designs pursued if the
sample sizes are too small." : T

31. McLEAN, A, F,, and BAKER, R. R. Brittie Materials Design, High Te ture Gas Twurbine. Ford Motor Company, Contract
DAAG46-71-C-0162, Interim Report, AMMRC CTR 76-31, October 1976,
32. THOMAN, D. R., BAIN, L. J., and ANTLE, C. E. Inferences on the Parameters of Weibull Distribution. Technometrics, v. 11, p. 445460,
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LOADING SPEED

It is well known that speed of losding will often influence the failure stress
of structural ceramic beams. The source of the sensitivity is stress corrosion
phenomena, particularly in the presence of water or water vapor. In general, the
slower the speed of loading, the greiter the opportunity for stress corrosion
pheaomena to weaken the specimen. Thus, fast loading speeds are usually used in
strength tests. _

Most universal testing machines used for flexure testing are constant displace-
ment rate machines, so it is convenient to specify strain rates. The strain rate
for a linearly elastic material is defined as:

€ = (o, /B)/t , . ~ (35)
where t is the time of the applied lvad; but since the speed of loading is s = y/t,
then

o
. b s
e = (—B-) (-);'), (36)

where y is the deflection of the beam and s the constant speed of the testing
machine. This assumes that all of the machine's motion is transmitted to the spec-
imen (i.e., the machine is perfectly 'hard'). The deflection of the inner load
bearings of a four-point loaded beam is: '
2a
AT
Substitution of y into Equation 36 and recognizing that o, = Pad/2I gives:

3L - 4a) . ' (37)

. 3Sd

EEE(-W‘ (38)

For & 1/4-four-point beam:

é-%“z-s-. | (39)

For a 1/3-point beam:

¢ = --—2:"‘92‘ : (40)
L

Using the same approach as above, we obtain the strain rate for three-point beams:

¢ a E‘;-S- (41)
L

29




An alternative approach to designating the loading speed is the stressing rate:
¢ = ¢B - (42)

which is valid for the case of a linearly elastic material. Equations 38 to 41 can
be substitute? into Bquation 42 if stressing rates are specified.

Finally, if the time per test is the limiting concern, then the following is
applicable:

.}

o »

and Equations 38-42 can be used along with the projected bend strength to solve for
t.

(43)

CONCLUSIONS

A variety of sources can lead to errors in determining the flexure strength
when using simple beam theory equations. These sources include assumptions involv-
ing simple beam theory and external influences pertaining to the load application.
Providing that the beam is homogeneous and isotropic, and deflections are relatively
small, then the major sources of error are from external sources. In particular,
the most serious errors arise from load bearing friction, beam twisting, and load
bearing mislocation. Other errors, such as contact point tangency shift, wedging
stresses, neglecting corner chamfers, and load readout errors cannot be neglected
either. Table 14 lists all of the potential error scurces identified in this report
and :makes specific recommendations for specimen and fixture geometries and toler-
ances. The bases for the recommendations are that they be practical, that they
limit the individual errors to approximately one half percent, and that the sum of
the errors be less than a few percent.

Requirements for a minimum number of recommended specimens (30) are presented
in the context of the Weibull two-parameter analysis. This analysis is one of the
simplest possible, and the reader is cautioned that numercus assumptions are entailed
in its use. Even if a more complex function appears to have better applicability
than a Weibull analysis, the requirement for 30 or more specimens should likely re-
main valid.

For convenience, & brief discussion of converting strength of one size speci-
men to another is included. Again, since this analysis is based upon a Weibull two-
parameter approach, the reader is cautioned that numerous assumptions apply and that
more sophisticated analyses may have to be used.

A section on loﬁim speed is also included for convenience to permit quick
assessaent of optimum universal testing machine speeds.
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TABULATIONS OF ERRORS IN CALCULATING FLEXURE STRESS

Unless otherwise stated, the porcont error is determined throughout the text as
X [(o - 6.)/0_]100; where o, = 6M/bd?2 and o_ is more nearly the true bending
stress. Thu§ ﬁegativo error indicates the sfnple beam formulas la and 1b under-
ostimate the true stress; a positive error is an overestimate.
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APPENDIX A. ANTICLASTIC CURVATURE

When a beam is bcni by a moment, it prodices a curvature p along its longitu-
dinal axis; there is also curvature present in the transverse or lateral direc-
tion. This moment is defined by orthodox theory as

M, = (EI/p)B (A-1)

where B is a pnrileter'repreSGntins the effect of restraint of anticlastic curvature
after Ashwell.? Since

ox = Mc/1 = (E1/pl)y8
then

ox = (By/e)8 . (A-2)
where y is the distance from the neutrsl axis.

The 8 for simple beam theory will equal 1.0 and if the beam width to depth is
great, i.e., b/d*»=, the beam can be considered as a plate so that #+1/(1-v¢). It
is worthwhile to know the intermediate values of 8 such that the effect of restraint

of anticlastic curvature on the error can be ascertained when assuming simple beam
theory (B = 1.0) is valid.

Ashwell? has determined B as a function of Poisson's ratio, beam width,
depth, and neutral axis curvature by accounting for anticlastic curvature and
treating the structure as a beam on an elastic foundation. The function 8 and
related terms are repeated here in the following:

1 3 2/3 v
- + £(yb) - F(yb) (A-3)
1-v¢ 2 +yb vbJ;-va ‘
where ' "

4 2

Sgl-v )
Y= >

dzpz

£(yb) = 2(B2+C2)[sinh(yb) + sin(yb)]

+

(B2-C2+2BC) cosh(yb) sin(yb)

K4

(B2-C2-2BC) sinh(yb) cos(yb)
2(B2-C2) (vb),

+

F(vb)

(B+C) sinh(yb/2) cos(yb/2)

(B-C) cosh(yb/2) sin(¥b/2),

'Tohmmb’/n;-.
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]

Ba oV (sinh(yb/Z) cos(yb/2) - cosh(yb/2) sin(yv/2)\ .4
i Js(l-v!) | sinh(yb) + sin(yb) -
C= v sinh(yb/2) cos(yb/?)- coshtyb/Z) siﬁtvﬁ/Z));' :
J3(1-v§) sinh(yb) + sin(yb)

The calculations performed for Table 3 in the text were accomplished in the
follewing manner: ' 3 e e

+

+

Since

4 2 P
Yyb=b §£1:§—23 and p = (E/o)y8, then substituting into the above, -

d2p

ailowing y = d/2, E/o = E/gp =‘1 x 108, and v = 0.25 for ceramic materials, we have;

1

. o o
vb = 57.915 XJ%Q, /) . | (A-4)

By programming (A-3) and presocribing b/d, but first allowing B=1.0, then .
iterating in the computer through (A-4), the relationship between b/d and 8 was
obtained. Once this relationship is known, the percent error, defined as =
[(1-8)/B]100, as a function of b/d is realized. These errors are given in
Table 3 as a function of b/d with E/op = 1000 and v = 0.25. -

APPENDIX B. LOAD MISLOCATION ERROR, LOADING HEAD RIGIDLY ATTACHED
Four-Point Loading

Consider the usual flexure testing setup where the loading head is rigidly
attached to a testing machine, schematically shown in Figure 1lb and idealized in
Figure 1c. The upper loading head, where the inner span £ is fixed, can only
translate in the vertical direction, and the lower support fixture, where the
outer span L is fixed, can be located with reference to the loading head. The
slope and deflection equations between points AB, BC, and CD are as follows:

E1 (dyap/dx) = (P1x2/2) + ¢, ;
(B-1a)
EI yap = (P1x3/6) + c1x + c;
El (dfl ix) = (P1~P3)(x2/2) + Paajx + c3
(B-1b)
EI ypc = (P1-P2) (x3/6) + (Payx2/2) + c3x + ¢y
and
EI (dycp/dx) = (Py-Pp-P3)(x2/2) + Pra;x + P3 (a1#8) x + ¢5 - B-10)
] B‘lc
EI ycp = (P1-P2-P3) (x%/6) + (P2a1x%/2) + P3 (81+8) (x?/2) + csx + cg
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where Py, P, P3, and P, are the losds, x and y are defined as shown in Figure 1,
E is the: Young's modulus of the material, and I is the moment of inertia of the
Cross section of the bean.

Through the use of the various boundary conditions the constants are deter-
‘mined- to be: _ _

¢y = -1/6'{P1(L2aa§) +-(P2/L) [(ay-L)3 + (L+aj)ar?]}

cg =0

c3 = -1/6 {pl(Lz‘azz) + (P2/L) [3a12L - (a2+t)3 + (+ap)ay?]}

cy = P2313/6 '

es = -1/6 {P1L2 + (Pp/L) [a;3+3a;12-L3] + (P3/L) [(a1+8)3 + 3(ay+£) L2-L3]}
cg = P3[(a)+£)3/6] + (P2a;3/6).

In order to determine the distribution of loading between the vertical loads

Py, P, P3, and P,, the final condition of equal deflection must be enforced at
locations: B and C (see Figure lb), which is

(VBC) xua, = (YBC)x=a1+£

Enforcirg the above condition in the second part of" EquatiOn B-1b results in

£/L - (1-ap/L)(2-£/L-2a,/L)
(ay/L)% - (a1/L+£/L)3 + {1 - [1-(%/L)-a,/L}?}(2/L)}.

Utilizing force and moment equilibrium, a further relationship between all four
forces is obtained and given in the following:

Py/Py = -(£/L)2 " . (B-2)

(P,/P / (P1/Py-1 P'/P * a'/L“- 1
Pu/Py = ?y/ 2) (@1/L) + ( 1/P2-1)£/L and Ps/Py = /72 7 %1 (B-3)
- (P1/P2) - 1 + a,/L . 1-a;/L - &/L '

The ratio of the stress at x (oy) to the bending stress (ob) from Reference 16

or Equation 9 in the text, where it is assumed that a; # ajp, is:

Py Xy (B-4)
Pa2+P3 .
2

where a is the value ut a; with perfect load location and x; isvdefined-
as shown in Figure Ic.

By manipulation of (B-2) and (B-3), the factor Py/(P2+ Ps) in (B-4) can be put

into terms of a;/u and £/L. This was accomplished and the results are shown in the

following equation:
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[(2/0L)/@/]A - a/L = /L[ (R/L) (2 ~ 81/L)-2(1 - a3/L)?]
3@/L - UL - /L) - (- a0y

o /op = ; o 5
- N '_.Aj.‘,,.".,;x'(n"l's)' | :

By defining the eccentricity of loading as e/L = a,/L - a/L, Bqﬁatiﬁn ﬁ-ghbecomes:
[(e/L + a/L)/(a/L)1[1-(e/L + a/L)- R/LJ{(L/L)[2-(e/L + 8/L)]- 2[1- (e/L .+ a/1)]?}
3(e/L + a/L)[L - L/L - (e/L + a/L)]~(1= &/L)?

°x/°b =

(B-6)

Calculations of o /oy, were obtained for %/L = 1/3 as well as &/L = .

. X S
allowing §/L to take on negative values only in Equation B-6. Only/négaé£3; 3Z1ucs
were gon51dered because beam failure will occur due to a realistically larger moment
than.1dealized when ignoring eccentricity. These error calculations, although de-
termined by allowing e/L < 0 in Equation B-6, are indicated as te/L in Table 5
for £/L = 1/3 and Table 6 for &/L = 1/2. This simply indicates that the location of the
maximum moment or stress is at x;= a when e/L <0 and at x;= a; + % when e/L > 0.

The reader is cautioned that for each value of %/L there exists a set of limits on
(B-2), (B-3), and (B-S). That is, a; can be such that either P, or P; can equal zero,
because (YBC)x=a; # (YBC)x=a,+s 2and the system changes from four-point to an eccentric
tpree;pgint loading. The limiting values can be determined by allowing P, = 0 in Bqua-
tion B-2,

APPENDIX C. BEAM TWISTING

o :

If line loads are nonuniform or nonparallel between pairs of load contacts,
or if the cross section of the specimen is skewed along its length, as shown in
Figure 3, a net torque will result. The addition of torque gives rise to a max-
imum principal stress due to bending and torsional stresses.l3,16  Failure assumed
to be caused only by bending stress will yield an error. Two cases are consi-
dered: Case I - Failure occurs prior to specimen realignment in the bend fixture
(bottoming), and Case II - Failure occurs at or after bottoming.

Case I

Recalling that the bending stress for a loaded beam is : ‘ ;
ox = Op = 6Mp/bd? _ (C-1)

where My is the measured bending momeut at failure; for a four-poiht'loided beam
Mp = Pa, and for a three-point loaded beam My = PL/4. o

The maximum shear stress due to torsion of a rectangular beam is3

Tyy = Tp,/kebd? | (c-2)
where T, is the torque and equal to Pb for four-j.oint bending and Pb/2 for thrée-
point bending, and k2 is a numerical factor obtained from Reference 3 and is given
in Table 9. This peak shear stress occurs at the specimen surface at the midpoint
of the long edge (dimension b).
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Prior to bottonins. thn nocnal stross is- _ N
o-w/awmun+w/nwmnn+‘sunr ‘%"[ﬂi' (c-3)

on a plane whose normal is in the xz plane and is inclined at- ‘an angle 6 to the x
axis, Since we shall assume a plane strain condition, i.e., €, = 0, then

e, " 0= (I/E)(az-vox) or o, = Vo = vo,

since oy = 0 at the free surface. From Equation C-3:
o = (Qb{Z)Ff;fv? f'(;fv)éosze] + 1xzsin2§{ ; }‘i _ ,.‘  - ;(cf4)
Now % is maximum when

tan20* = 2t . /(0,-0,);
but since

0, = Vo
then

tan2o* = Zr /(l-v)u ' (C-5)
where 6* is the angle of a plane inclined to the axis at which principal stress is

a maximum. Substitution of (C-1) and (C-2) into (C-5) for the condition prior to
bottoming gives:

tan26* = (T /Hb)/[3(1-v)k2], , (c-6)

sin26% = (T,/M)/[(Ty/M,)2 + (3k;)2(1-v) 2112, (c-7)
and

cos28* = [3ky(1-v) 1/ [(T /ub)2 + (3k2)2(1-v)2)V/2, (c-8)
From Equations C-1 and C-2

Tez * Op/2) [(T,/M)/3k,], €-9

and by substitution of the above relationships into (C-4) with some algebraic manip-
ulation, we obtain:

op = (02 [ (ev) + (1/3K) [(Ty/M )2 + 9(1-v)2ky211/2 (C-10)

Mnax

prior to bottoming. The shear stress due to torsion can be ralated to the twist
angle? of the beln through the following relationship:

tyg = (K1/kIGA L0, /LD) + (85/2")] - (c-11)
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where ¢, is the twist .angle along the length of the specimen (see Figure 3b), ¢p is
the twist angle botween a pair of load and contact points relative o ¢¢g (see Figure
3c),. %' is equal to either "a" for four-point beam systems or L/2 for threb-point
beam systems, k; i3 another numerical factor3 given in Table 9, and G = E/2(1+v),
the shear modulus of the material.. . _

Equation (C-2) can be equated to (C- 11) and thus we obta1n~

Ty = [GE/20eW 1bd2 (/L4 + (@/27)4g) N

where ’l’-b is the torque when bottoming occurs. Thus, in order for (C-10) to be

applicabfe, T, must be less than‘rb ,and since Tb'= (b/z')Mb and from (C-1) and
(C-12): e ,

'rbe/'rb = [3kiE/oy (1+v) (b/z')]bdZ[(d/Lr)ebs + (/2%)4g) > 1.0, or

n = (2'/b)[3k1(E/0))/ (1) J[(Q/L 24, + (d/2')¢p) > 1.0 (c-13)
where % is the bending stress at failure according to (C-i).

Note that T = b/2' and fbr four-point loading &' = a; for three-point
loading &' = L/2, thus (C-10) becomes:

o = (0,/2) [ (o) + (/3K [B/412 + 901-)2k,2] 2] | (C-14)
"max l i

with n > 1.0,

Case II

If, however, n < 1.0 then bottoming occurs prior to or at failure and the
following analysis is applicable.

Equations (C-4) and (C-5) are still appropriate but the shear stress is

=T, /kabd2. (C-15)

e

sz

Substitution of v from the above and o

tan20* = (Tb /Mb)/3(1-v)k2.
e

b from (C-1) into (C-5) gives

but from (C-13) Tb = nTb and thus:
e

tan2o* = (nTb/Mb)/S(l-v)kz. (C-16)
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As in Case I, using a like procedure we determine o to be:

n

o = (9,/2) {(1+v) + (1/3k2) [n2(T, /M, )2 . 901-v)2K21/2 1 (C-17)
max g .

with

Cons (3) Bneesamiienge, « @angl <10, (@18

Equation (C-17) is appliéable to both systems since (Ty/M,) = b/2' = b/a for the
four-point beam bending system, and (Tb/Mb),s 2b/L for the three-point system. Thus
(C-17) becomes C I ,

o = (0,/2) t(lw) + (1/3kx) [ (nb/2')2 + 9(1-v)2k,2] 1/2‘ . (C-19)
nmax b s

thicg when n = 1, (C-19) reduces to (C-14).

Finally, the percent error is defined as:

n

€ = [(o.-0 )/o ] 100. _ (C-20)
b Mnax max ' '

Errors were calculated in accordance with (C-20), with v = 0.25 for Case I (n = 0.20,
0.40, 0.60, and 0.80) and Case II (n = 1.0).

If, instead of plane strain (¢, = 0), it had been assumed that a plane stress
(0, = 0) condition applied, then the maximum principal stresses are given by the
same Equations C-10, C-14, C-17, and C-19, but with Poisson's ration v = 0. Equa-
tions C-12, C-13, and C-18 are unchanged however, since G = E/2(1+v). The plane
strain analyses gives a higher error estimate, but the plane stress condition is
closer to the actual case since lateral constraint is negligible. - :

APPENDIX D. WEDGING STRESSES
We allow the stress in the x direction in Figures 1 and 2 to be

ox = op + (2P/bd)Br, (D-1)

where o, is the bending stress, i.e., g, = (6M,/bd2), and 2P/bd is the local
stress, i.e., the so-called wedging stress, and BT is a numerical factor dependent
~on the normalized distarice:x'/(d/2) on either side of the applied load point.3

For convenience the value of Br at the tensile side of the beam as a function
of x'/d is given in Table D-1.

The percent error is defined as:

€= [(o-0y)/0,]1100, (p-2)




and substitution of (D-1) into the_ibove equation jives
€ {‘B'P/[(Gb/ZP/bd)*ﬂ-r]}loo. e (0-3)

Since op = 6My/bd2, then (D-3) becomes:

E "{'Brlcsux/Pd+ar)} 100. N (20

For a four-point loaded beam the bending moment is constant, 1.0.;_Mx = Pa,

and thus equation (D-4) becomes: . I S VR

T = {-BT/[(sa/d) +3T]}1oo. | " (D-5)

From Table D-1 and Equation D-5 above, it is seen that the e:ior is dependent
on 87 or the fracture location, which is the normalized distance x'/d. These
errors have been computed for the four-point loaded beam and presented in Table lla.

For the three-point loaded beam, (b-4) is stil% applicable, but recalling that
My = P/2[(L/2)-x'] and substituting My into (D-4) gives:

T ={-BT/(%(L/d)-%(x'/d)+8T)}100 for x < /2. | (D-6) .

Again, as can be seen by (D-6), the percent error is dependent upon 8¢ and
the normalized fracture location. These percent errors are given in Table 11b.

FUERCY Y Y

Table D-1. WEDGING PARAMETER By - ‘ %

ix'/d BT

0 -0.1332 5
0.125 +0.0137 ]
0.250 +0.0868 ff
0.375 , +0.0640

0.500 +0.0421

0.750 +0.0220

1.000 +0.0095

1.500 +0.00075

APPENDIX E. CONTACT POINT TANGENCY SHIFT
Consider the four-point loaded beam shown in Figure 4. The orizinil-span."a"

.is seen to decrease by the amount (hy+h,) due to rolling or slipping of the beam
on its support and load points. The beam fulfills the condition:* _

*It is realized that a change in the resultant load vectors must give rise to horizontal reactions; but it is sssumed that this effect is small,
* and is thus ignored. :

39




dy2?/dx? = M/EI. : ‘ : C (Bel)
The moments are defined as: o IR o
M= P(x-hp), -0 ¢xs (a-hp)
My = Pla-(hy+h)], (a-h2) < x < L-(a-hj).
'l'he ;Slope. equations are o L 4 -
BI(dy/dx) = P[(x2/2)-h1x] + cl, 'o $xs (a-hl)., and - - _""('a;z)" o
:‘BI(dy/dx) = P[a-(hy+hy)]x + Cy, (a-hp) < x < L-(a-hj). © (E-3)
‘Now when x = a-h,, - | |
C; +P {[(a-h2)2/2] - (a-hz)hl} = P[a-(h1+h2)](a-h2) + Cp, O
C2-Cp = -(P/2) (a-hp)2. | (E-4)

Note also that when x = L/2 and dy/dx = 0 in (E-3),

Co = -Pla-(hy+hp) IL/2. (B-5) ]

After substitution of C, into (E-4) we obtain:

¢y = @72 {(a-h)? - Lla-ysh)]} | (E-6) |

Substitution of th~se constants ‘into the appropriate slope equations gives:
BI(dy/dx) = P[(x2/2)-hyx] + (2/2) {(a-ha)? - Lla-(hysh)]} E-7) |
with 0 < x € (a-hy), and

EI(dy/dx) = Pla-(hy+h2)][x-(L/2)], - (E-8)

with (a-hz) € x < L-(a-hp).

Now when x = ., frc. e geometry dy/dx = -h,/v/P§-h? ~ -h;/p, and when.
x = a-hz, dy/dx = -hz/ SiGng -hz/pz The above relationships are used with (E-7)
and (B»B) md we. o\mui:n o : : '

| 5,/d) = /o) o
| (h1/a)2 - (- ... 'a)2 + (L/a)[1-(hy/a + hy/a)] (E-9)
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1-(g/e) = (1/2){[(L/2-) coumsal

- /T(L72a) + (h;/a) + Az)Z - &4[(hy/8) (L/2a) + ﬂ} - (B-10)
vhere A2 = (B/20,)/ (p2/d). | |

Note that for the thise-point loading case hy = 0. l.ln =2, and P % m nd
(E-9) reduces to: . - Ca

p1/d = [2(hy/L) (B/%)]/[(thllo)-llz. .(B'n)

and the region of validity of (E-10) vanishes.

The percent error is defined as:

T = [(0p-05)/0x]100 = [(My-My)/Mc]100, oF
= {lon/n) + Go/0V/D - /e) - Ba/eI}I00 - ED)

i d min

for four-point loading and .y
r ={(zh1/1.)/[1 - (2h1n.)1}1oo R (B-13)

for three-point loading.

W SRR I

Calculations were performed by the following procochre. It -was assumed that
E/fop = 1 x 10%, and thus A; = (1 x 10%)/(p2/d); then for the 1/3- and 1/4-four-
point loading case a/L = 1/3 and 1/4, numerical values were assigned to pp/d and
hy/a and then h,/a was determined from (B-10). Those numeérical ‘values of hj/a T
and corresponding hy/a were substituted into (E-9) to determine p;/d. This same i
procedure was used for the three-point loading case with h; = 0 and L/a = 2. Once ’
the parameters h1/a, h2/a, p2/d and p)/d are known, percent errors according to
(E-12) for the four-point loading case and (E-13) for the three-point loading case -
can be determined. Such errors are 3iven in Tables 12a-c ,

APPENDIX F. ERROR DUE TO NEGLECTING CHMGE IN I'IHENT OF INERTIA
CAUSED BY CORNER RADII OR CHAMFERS

Corner Radius ' L )
Consider Figure 5a, vhich shows the cross section of & rectsngular bess with.
corner radii r. The true moment of inertia (Ixx)r sbout the centroidal or nsutral
axis x-x is: hezei
1), = b(d-2r)3/12 + (b-2r)r3/6 + (1/2)(b-2r)(d-v)2r

+ 4x%(x/16 - 4/9x) + wr2[d/2 - x(1 - 4/3x))2. (r-1)

BERCEIE - AR 8 P o L . P e -
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Most investigators, however, will neglect the loss of hm'tia vhon culculating tho
bending stress due to. corner. radii and gssume that.I, = = bd /12, sud tho orro: in
stress becomes '

(., ) l
-—1—-- 1‘ 100
[b“(ﬁ-h)’ ¥ 2(be2r)rd » 6(b-2r) (d-1)r2 + 48r% i"e‘ - 5‘;) . mr* H - r (1 -
- 1.0 ] X 100 - (F-2)

45° Chamfer

Now consider Figure Sb, which shows a rectangular beam with 45° corner chufer
c. The true moment of inertia (I ) sbout the x-x axis is:

(Tede = ®d%/12) - (2/9)[c? + (1/2)(34-20)%] , SR A1)
and thus | -
_ -4(:2[(:z + -;- (Sd-zc):I o S -
€ 8 ————b X 100. ‘ (P-4)
. des ) . . Coe .

The. exrors were calculated for various values of d/b as & function of r/d from
(F-2) and c/d from (F-4). These results are shown in Table 13.

.

APPENDIX G. COMPUTER ANALYSIS WORKSHEET

The tables in this report should suffice to permit error determinations. A
computer program is available at MTL to expedite such computations however. NTIL -
win compute the error analysis upon request if the fouoving form is ﬁned out:

completely as possible and mailed to Mr. George Quimn.
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Icpuu win bc kopt conﬁdmtial.

s RREATER: AR e

leo uu concisunt units of measure,: ho.. au dhnueu in !aehn. uluhbtus,

or centimeters, etc. B oAty -
1. Three- or four-point flexure: (circle one) -3 RY &
2. Specimen height (thickness) ."L. . :
3. Specimen width , ~ -
: -{ |~ RS DR
‘4, Specimen total length T
S. Specimen edge chamfer radius or length* (circle one) R L
6. Fixture outer span
7. Fixture inner span (if 4-point)
8. Pixture outer bearing(s), radius
9. PFixture inner bearing(s), radius
10. Precision of the micrometer used to measure
specimen height and width
11. Accuracy of the fixture spans
12. Specimen twist or lack of parallelism of two faces @
13. Fixture twist ® or lack of parallelism of beurings
14. Length of bearing fixtureQ »
15. Accuracy of centering the inner bearing(s) relative
to the outer bearings
16. Do your fixture bearings rotate? Or are they
fixed, sSuch as knife edges? (circle one) rotat ~ fixed
17. Do your fixture bearings articulste to sccommodste =~
specimen twist or warpage? (circle one) : yes . . . mO .
18. Error in measured break load
» Length Specimen Non-
" " J parallelism
Radius (Twist)
/ _ Error
- Chamfer 1 Non-ptnncusn
‘ T , ~ (Twist) Ervor

it
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DEPARTMENT OF THE ARMY
U8, ARMY LABORATORY COMMAND
MATERIALS TECHNOLOGY LABORATORY
WATERTOWN, MASSACHUSETTS 02172:0001

MEPLY TO
ATTENTION OF

SI.CMT~IMA-T 6 May 1988
MEMORANDUM FOR: SEE DISTRIBUTION

SUBJECT: Technical Report MIL TR 87-35, "Errors Asscciated with Flexure
Testing of Brittle Materials"

Errata sheet for subject report:

Page 6, Table 4:

Change E/gp = 500 to E/op = 1000.

Page 13, Equation 18a:

Add parentheses around op/2 (op/2).

Page 14, Equaticn 18b:

Change the quantity (e/g,) to (E/aop).

Page 23, Table 1l4:

* The second line from the bottom of the table; change p to P.

Page 37, Equation C-14:

Change the quantity (b/2')% to (n/2')2.

Page 41, Equation F-1:

Change the quantity =/16 to w/18.

(Dutie Lt

+—Emc DIANE VALERI
DieS—biot— Chief
Publishing & Visual Information Br.

FOR THE COMMANDER:




