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1. Introduction A1 / 7

In recognizing a grasped object or grasp an object stably with a multifingered

robotic hand, tactile sensors mounted on robot fingers have been identified as es-

sential detecting tool. In general, grasp stability has two requirements: sliding

avoidance and excess force avoidance. Hence, it is required that a tactile sensor be

able to detect the nature of the force distribution which exists between the surface

of the grasped object and the robot finger.

Recentl3much work has been devoted to the tactile sensing problem. Several

kinds of/)* tactile sensors have been designed based on electro-optics, piezoresistive,

or piezoelectric properties,etc.. Typically, these sensors are not used to measure the

contact force directly, but to measure the interior strain or stress in an elastic

finger pad. When sharp and rigid objects, e.g. a wedge indentor, indent an elastic

IThis work was supported in part by the National Science Foundation under grant OIR-85-00108
and AFOSR-URI grant AFOSR-87-0073.
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material, very high stress is developed at the contact surface. This stress is reduced

by distance from the contact area, so a fragile sensor would be better protected

within a layer soft material. Another advantage of using an elastic covering is that

the contact area becomes large so that grasp stability may be enhanced and the

features of grasped objects better distinguished.

The goal of this. paper Is to study how a surface force profile may be estimated

from the information on strain or stress distribution detected by tactile sensors.

This problem is referred to as the inverse problem since we can consider the stress

or strain within an elastic material as the response due to surface loading. PThis
inverse problem can be treated as a deconvolution problem or, more generally, as

the problem of solving an operator equation of the first kind. It is of interest to

determine how such an ill-posed problem may be solved using appropriate regular-

ization(Tikhonov 1977). In this paper, we will not consider the effects of the noises

(or suppose the observations have been passed through some kind of filter) and only

pay attention to deriving particular operators, analyzing their properties and using

the Discrete Fourier JTrasform(DFT) approach to solve the associated equations.

In Section 2, we will study a particular model of the elastic material, i.e. the

relation between the surface load and stress or strain beneath the surface. In Section
3, we will investigate an approximate method to solve the inverse problem for some

special cases. In Section 4, we will give some examples and compare the results.

We are collaborating closely with a research group at the Naval Research Lab-

oratory under Dr. M. Peckerer, involved in the fabrication of silicon-based tactile

sensor. We are also comparing our numerical results against analog network solu-0 POPt
tions to the inverse problem of this paper. D0 AB
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2. The model of the elastic material

In this section, we attempt to find the relation between the load profile, which

exists on the surface of a half space of elastic material, and the distribution of the

stress or the strain beneath the surface of that material. To specify the load, we
shall just consider the contact force profile rather than the contact displacement

profile for the following reasons:

" The contact stress is more directly useful for stable grasping.

" There is a complex relation between displacement profile and surface stress

profile. (Phillips and Johnson, 1981)

In this paper, the elastic characteristics of the material are assumed to be ho-

mogeneous and isotropic. In addition, the dimension of the contact area will be
assumed to be infinitely large in a direction, say x, much as a line load. By that as-

sumption, we Just need to analyze two dimensional behavior in a slice perpendicular
to that direction.

From the theory of elasticity( Timoshenko and Goodier, 1951), under above

assumptions about the material, the differential equation of the equilibrium and

the boundary condition for the stress are linear. Consequently, It is possible to

consider the interior stress or strain distribution due to a general contact as the

superposition of those quantities due to a set of line contacts.

We now study the behavior of an infinite homogeneous and isotropic elastic

material under line contact with negligible contact width. For a two dimensional

polem in polar coordinates, the distribution of stress follows a simple radial dis-

tribution. From the theory of elasticity( Timoshenko and Goodier, 1951), for the

concentrated force inclined from the vertical by an angle, a < r/2, we have
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S2Fcoj(O - a)

00

where a, is the radial stress at the point (r, 0), a, is the stress in the plane at (r,G)

normal to the ry]dial stress, r,* is the shearing stress in the r, *-plane, F is the force

per unit length and r is the distance from the point of application. Note that we

have defined the normal stress to be positive when it produces compression. Fig.1.

shows the above variables.

elastic material r

of

a

Fig. 1. Line force on elastic half-plane

Applying the tensor transformation

or = o, eons

we get the stress expression in Cartesian coordinates

4



2Fo= -oa(a - 9)coa'9 (1)

619= 2coF(a - 8)ain2sfrr

where r = VxT+7, coad = z/r, ainD = Y/r. By decomposing F into vertical

component, F, , and tangential component, F , we have

F,F ,a (2)

F,
Cosa - F

Then Eq.(1) can be expressed as

2. = 2z:2 + (zF. + pF,) (3)
= (Z2 + Y 2)'

09- 2) _ (zF. + yF)

We will only consider o since, in y direction, it converges faster than o, as

y --* +oo. Applying the principle of superposition, we have, for a load distributed

along the y-axis,

S(z,P) - J IKr'"(z,y - yo)F,(yo) + K;""(XY - yo)F,(po)Jdyo (4)

where

"(zY) = 2 '
*(Z' + 0")2

5



(x, Y) 2z)y
,r(x2 + Yt)2

for p E R and z E (0, oo). F.(y) and F(y) are the surface stress distributions in

z and y direction, respectively. Fig. 2. shows the K , t"°(z,ya) and Kr"I(z,a') for

z = 1 and z =2.

8.0 xlO-1 5.0 xlO1Ii0
:A /2 A 2it@-

4.0 _ 1.0

0.0 -3.0

-8.0 0.0 8.0 -8.0 0.0 6.0

Fig. 2. Functions of K*"" and K2"1 at z = 1 and z 2

Since many pressure sensors have outputs based on the strain of the sensor ,
which is the fractional change in the linear dimensions of a small cubic volume

element, e.g. electric-resistance strain gauges, we need to find the relations between

the components of stresses and the components of the strains. By Hooke's Law in

the theory of elasticity, we have

C' ffi s-(O, +o.)]

1
', = ji- v(o. + )] (5)
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1+,,= 1o., - i,(o.,, + o,,)I

where E is the modulus of elasticity, v is Poisson's ratio, c ,, and e, are the

components of strains along x, y, z direction, respectively.

Using the plane strain assumption which states that for a line force of infinite

extension on an elastic half-space, the strain in the direction of the line, e., must

be zero by symmetry. Then Eq.(5) becomes

m1

C'= [( - L"')o, - v(V + 1)oC,1 (6)

1 _

I, = -[( - V')or, - V(V + ')or,

From Eq(6), we can get the expression of a. by e. and e.

(= (I - V)C, + V'4iev (7)

where

E=(I + v,)(I - 2L,)i

It should be note that if v=0.5, from Eq.(6), e. = a.= ( -o,). That

means there is not enough information from e. and t. to determine O or a, . In

this paper, when we use the strain distribution in z direction as the only sensed

data to solve the inverse problem, we always assume that v is 0.5. Actually, the

Poisson's ratio of rubberlike materials, which usually are used to cover robot fingers

and tactile sensors, is 0.5 approximately.

We will see in the end of section 4, the surface force profile reconstructed from

stress distribution is more accurate than from strain distribution after they are

truncated.
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Again, using the princij~Ie of superposition for genera! contact, we have

ex LZY [K""-(-, y - yo)Fw (yo) + K2'-(xy - yo)Ft (yo)]dyo (8)

where

K,'"trn(-T9 Yi) = 3*2z - y2
U~E(z2 + y2)2

K.'ren (~y = 3y(z' - y)

2irE(z2 + y2)2

for y E R and x E (0, oo). Fig. 3. shows the KII'I'(x, y) and K2t?"n (z, yt) for x

and x=2.

7.0 X10 ______ 2.0 x 1

6 2  6

3.0 _____ 0.0 Z

-8.0 0.0 6.0 -8.0 0.0 8.0

Fig. 3. Functions of Kr'" and K2'* at z =I and x =2.

In Bake of convenience, we write Eq.(4) and Eq.(8) in the general form as

0(y) =L[K(y - Syo)io) + K2 (it - yo)Fs(yo)]dyO (9)

8



where Y E R. We will indicate that KI, K2 and g are in the form of stress or strain

when it is necessary. In Eq. (9), there is no x dependence since we assume that the

array of tactile sensors is usually mounted on a horizontal plane beneath the surface

of elastic material. Thus, z in Eq.(9) is a constant which expresses the depth of the

sensors from the surface.

9



3. The DFT approach for inverse problem

In this section, a method to solve Eq.(9) approximately will be examined. We

will assume that F(y) is produced by the strip contact, i.e. it satisfies

F. (y) {Fa(y), ifyE[0,02);

S0, oterwise,

where F, (y) is a continuous function defined on [ai, a2] , F, (y) > 0 for y e (a1,02)

and Fi(y) 2: 0 at y = a, and Y = a2, for some finite 01 and 02. Moreover, we will

assume that I ai I< A/2, i = 1,2, where A is the half width of surface of the finger.

We made this assumption because, even for a very narrow force profile, a broad

distribution of stress and strain will be produced. This can be illustrated by Fig.2
and "ig.3 which show the distribution of stress and strain due to line contact when
we let one of F, and Ft be unit impulse function and another be zero. In other

words, for a strip contact, we need the observations which distribute more broadly

than the width of the strip to obtain the surface force profile. About F(y), we wi'l

just consider two special cases which may happen during the grasping process. In
addition, we will assume that the modulus of elasticity, E, is one in the rest of this
paper.

3.1 Surface force profile without tangential component

This situation may happen when a robot hand grasps an object , which lies on

a stable support, to determine if the normal force is large enough to lift the object.

In this case, Eq.(9) becomes

u(Y) = Ki(Y - ))F.(Yo)do Y ER (10)

10



This integral equation is of convolution type, in which g(y) is the observation ob-

tained by sensors, F,(y) is an unknown function, KI(y) is usually called the kernel.

Mathematically, to recover the unknown function, F(y), from the data of g(y)

is referred to as the deconvolution problem or, in general, the problem of solving op-

erator equation of the first kind. This problem is ill-posed in the sense of Hadamard

(1923). Several methods for this problem have been derived which all try to find a

solution by sulplementing the calculations with some extra information, for exam-

ple, generalized inverse and regularization, etc.(Hilgers, 1973).

Next, we will examine a method depending on the Fourier Transform. It is

known that the Fourier Transform of the convolution of K, and F. equals to the

normal multiplication of Fourier Transform of K and F. if

fIl K (y) Idy<ooGoo

and
0J_ I F,(y) I dy < 00

That is,

K f(w) ,(w) = 0(w) (11)

where k (w), t. (w) and O(w) are Fourier Transforms of Ki, F, and g, respectively.

It is clear that if k1 (w) # 0, Vl I < oo and i (w)/kA (w) E L3(-oo,oo), the Eq.(1O)

N can be solved simply as

F.(y)=71(k--J) y E R (12)
k4(w)



Actually, it is easy to check that, for K18ro" and KILEfl given in Eq. (4) and

Eq. (8), their Fourier Transforms are

k~tra(W) =-~j( + zw)WE R

and

Kj' "^(= 1.5xI&&,e-fIwI w E R

1.0 __ _ _ __ _ _ __ _ _ _

.60 -. ----

.40 __ _ __ _ _

.20 .- -- . -_ _

0.0

-5.0 -3.0 -1.0 1.0 3.0 5.0

Fig. 4. The Fourier Transform of KfVl" at x 1.5.

6.0 xO10

4.0 - __

2.0-

0.0 ±

Fig. S. The Fourier Transform of K,"'01 at x 1.5 .
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From Fig.4., we find that if the distribution of stress can be obtained directly

or indirectly by sensors, the inverse problem can be solved by Eq.(12). If we have

to use the distribution of strain, the conditions of Eq.(12) can no be satisfied since

stri" (0) -= 0, (see Fig.5). We will see later that this problem will be solved when

the observation, g(y), is truncated and DFT is applied.

Physically, the continuous expression of g(y) can not be obtained directly, but

only the discrete data of g(y). So, we are forced to apply the Discrete Fourier

Transform to solve the inverse problem approximately.

The discretization of Eq. (10) is

g(y,) = K(y, - yi)F,(y,)Ay, n = 0,±1,±2,... (13)

where A tj = y,+ - y,. If we let Ayj be identical for all i, denoted by A, which

will be called the sampling period, and denote g(yn) by g(n), KI(yn - yh)Ayi by

K1(n - i) and F,(y,) by F(i), then Eq.(13) can be written as

g(n) = F, K,(n - i)F.(i) n = 09±1,±2.... (14)

This is the discrete convolution equation. As we have mentioned before, physi-

cally, it is impossible to get the data of observation, g(n), everywhere. We have to

cut off g(n), at n = -N and Nwhere NA = A. Due to the properties of Kj""(y)

and Kftfa"(y) and the assumption about F(y), if A is large enough, g(N) should

be very small. Then, we can approximate Eq.(14) as

N
g(n)- K,(n - i)F.(i) n = 0,±1±2,...,9N (15)

i=-N

13



1.0 __ _ _ _ _

.60 Y N' _

.60

.40 _ _ _ _

.20_____ _

0.0 x10

-6.0 -3.0 0.0 3.0 6.0

Fig.6 The DFT of K,' m"

6.0 xl1

4.0__ _-_ _ _

2.0-

0.0 X1O

-6.0 -3.0 0.0 3.0 6.0

Fig.7 The DFT of Kr4""

It is well known that the discrete Fourier transform of convolution of K1 (i) and

F,(i) I. the normal multiplication of DFT of them. So, we have

14



i(k) = k1 (k)A(k) k = O,±1,±2,...,±N (16)

where i(k) = g(i)e-, 2lk/2 N+1, j = -#/ , k = O, +,...,±NAs the DFT of

g(), and similar to /i((k) and F.(k). Fig.6 and Fig.7 give the DFT of K81", and

From the theory of digital signal processing (Chen,1979), we know that ,if the

Fourier Transform of a function is almost zero when IwI is greater than the half of the

sampling frequency, 27r/A, it will be equal to the discrete Fourier Transform of that

function times sampling period at w = 2kw/((2N + 1)A) for k = 0, ±1, 2, ...,-±N,

where A is the sampling period. Comparing Fig.4 and Fig.5 with Fig.6 and Fig.7,

we find K11""(y) and KItOi'O(y) are almost satisfied above condition and result.

But, for K * 't , they are different at 0. The reason is that our function is not

periodic and N can not be arbitrary large, i.e. it have to be truncated. This just

give us a chance to apply the DFT to solve the inverse problem.

Applying Inverse Discrete Fourier Transform, the unknown function, F(k), is

1 N
F,(k) = N + K( ) k =0,1 N (17)

In next section, by example, we will find that the reconstructed function pro-

duced by Eq.(17) is very accurate with respect to the designed one. We will also

discuss the effect of truncation and the choice of K1 .

3.2 Surface force profile with constant tangential component

This situation may happen when a robot hand lifts an object which has a

rectangular surface. In order to avoid slipping during grasping, we are Interested in

15



the tangential force on the average, instead of at every point. So, we assume that

t(y , if y E [a,];
0, otherwise,

where c is a constant, and the relation of F(y) and F(y) at the boundary of cone

of friction is estimated by

By assumption of F,,

a2= - a 2F(y) dy (18)

where 1 is the coefficient of static friction. Moreover, we assume that a - a, = a2

since we will need to determine the boundary of the load from g(y). Under above

assumptions, Eq.(9) becomes

g(Y) [K1(s - )F.(yo) + ; K2 (y - yo)/* F.(u)du]dyo (19)

Next, we will discuss how to solve Eq.(19) numerically.

By discretizing Eq.(19) and truncating the observation, we have

N A N N
g(n) = , K(n - i)F,(i) + M- - ( ,  u(i)K2 (n - i))( E F.(k))

im-N iMd...N &=n-N

n =0,±19,...,9±N (20)

in which M is taken such that 2a = 2MA, and u(i) is defined as

( ifor i: iAE[-A a];
1101- 0, otherwise.

16



Applying DFT to Eq.(20), we have

N N N
g(n)w"r = ( KI(n)w-')( F, F,(n)w')

n=-N n=-N n=-N

N N N+ 'U .. F. (n)){ K, (n)w')( u n)w')
N=-N R=-N n=-N

r = O,0 , ±N

where w = -/Ntj =% I/-. When = 0,

sN s-N uN-N 2M + 1)N n-N
g )KIn) F.. (n) + .,,-, -.,., -- K ,,n)_ ( ,,c, F .n))

a=N nu-N nu-N n-N n-

(21)

Since K2 (y) is a odd function, we have

N

E K 2(n) = 0
0=-WV

Therefore, Eq.(21) becomes

N N N

F = F() = g(n))( K (n))-
s--N s--N n-N

Discretizing Eq.(18), we have

C =(22)
2M

Return to Eq.(20), we have

17



M Ng(n) - c K2 x(n - i) = : K x(n - i)F.(i) n = 0, I..±N (23)
1=-Ml i=-N

Denoting left hand side of above equation as G(n), Eq.(23) becomes

N
G(n)= E KI(n-i)F(i) n=0,±1,...±N (24)

i=-N

This is the equation we have solved in above subsection. However, the problem
of this subsection has not solved since we do not know M yet. As we have assumed

before, F(y) and F(i,) have symmetric support, [-a,a]. And we will see in next
section that the algorithm in subsection 3.1 has a very good accuracy. By these

properties, we can find M. The method is shown as follows.

We have known that

0

Then, 10 K, K(y - yio) F.(yo) + K2 (y - yo) Ft(yo) dyo
Then,

g(-)= L K(-y - yo)F.(yo) + K2(-y - yo)F,(yb)dyo

By changing the integral variable and utilizing the odd and even property of

KI(y) and K:(y), we have

g(-Y) = 1: K,(y - yo)F.(- o) - K: (y - tt)F(-yo)dye

Since we assumed that F(y) is a constant, taking the average of g(1) and g(-y),
we have

18



(y = K I(y - yo).(yo)dyo (25)

where 1(y) = [g(v) + g(-y)1/2, A.(y) = IF,(y) + Ft.(-y)]/2.

By the assumption of F(y), &P(y) still have a symmetric support, [-a, a]. There-

fore, applying the DFT to Eq.(25), we can find M by the algorithm in subsection 3.1.

19



4. Examples

In this section we will give some examples for some special load profiles and com-

pare the results which are got from the observations expressed as ;the distribution

of stress and distribution of strain when P = 0.5.

Some parameters are fixed as follows.

* the depth of the sensors, z = 1.5

" the sampling period,& = 0.5

* the modulus of elasticity, E = 1

" the numbers of elements of sensors, 2N + 1 = 121

We will consider two kinds of rigid load: cylinder and rectangle, as shown in

Fig.S.

elastic material elastic materilj

Fig.8 The cylindrical and rectangular indentor

20



From Conway et al. (1966), for cylinder indenting an elastic half-plane, the

surface stress is given by

{ (vra--Y, for y E [-a,a];
o, otherwise,

where a is the half-width of the contact region and P is the force per length; for

rectangular indentor, the stress on the surface is given by

, ( for yE [-a,al;
to, 0otherwise,

For numerical simulation, we will adjust a by a + e for e < 1, since, physically,

F, (a) can not be infinite large.

In following examples, g(y) is produced by the discrete form of Eq.(4) and Eq.(8)

directly. To evaluate the reconstructed surface stress,F,, with respect to designed

one, F, we use the absolute error defined as

I N
e = E IF,(i) -F(i)l. (26)

e 2N +1 (26)

4.1 Cylinder indenting without friction

The distributions of stress and strain at z = 1.5 produced by cylindrical indentor

are given in Fig.9 and Fig.11, respectively, in which the designed surface stresses

are also displayed. Fig.10 and Fg.12 give the surface stress reconstructed from the

observations given in Fig.9 and Fig.11, respectively. For comparing, the designed

surface stresses are displayed again.

21



1.50 xlO__________

1.20 __

I A 2

.900

.600-_

.300 _

0.00 X10 1

-3.0 -1.0 1.0 3.0

Fig.9 1. the designed surface stress; 2. the stress at z =1.5

1.40 x10 1_______

1.10 ___ ~ 0

.900___

.200

.100 P 1 11 1 1 1= I I I I I I I 1- 10 1

-3.0 -1.0 1.0 3.0

Fig.10 1. the designed surface stress; 2. the reconstructed surface stress
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1.00

A2

.700

- .200 Xl1

-3.0 -1.0 1.0 3.0

Fig.11 1. the designed surface stress; 2. the strain at x 1.5

1.40 x10_______________

1.01

.200 -

100 1 LAIXlO

-3.0 -1.0 1.0 3.0

Fig.12 1. the designed surface stress; 2. the reconstructed surface stress
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By Eq. (26), the errors for these two cases are

£srs = 3.93 x10-6 ,e.'a = 4.04 x10-5

4.2 Rectangle indenting without friction

Fig.13-Fig.16 display the same things given in above subsection for rectangular
indenting.

4.0 x 1

2.0 - - - - -- _ _ _ _

0.0 xl

-3.0 -1.0 1.0 3.0
Fig.13 1. the designed surface stress; 2. the stress at z =1.5

4.0 1l _ _ __ _

3.0 __

A2
2.0 L -..-.. _ -_ _

1.0 -_ _ __ _

0.0___

-1.0 * a aaaa aaaxl1

-3.0 -1.0 1.0 3.0
Fig.14 1. the designed surface strew; 2. the reconstructed surface stress
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4.0 x1O

3 1

2.0

1 .0 .... . .................... ......... .......... . . ... .. . ..,. ..... .................. 2

0.0 .. ..

-1.0 jX1

-3.0 -1.0 1.0 3.0

Fig.15 1. the designed surface stress; 2. the strain at z - 1.5

4.0 xlO1
a1

3.0 .. ..... 1 2

2.0

2.0 -.--~-..- U____

0.0 ' I
-1.0 1 0 I , , , I , I , , , I I , , , I I I I , I I , I , xlO

-3.0 -1.0 1.0 3.0

Fig.16 1. the designed surface stress; 2. the reconstructed surface stress
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By Eq.(26), the errors for these two cases are

e'sree = 4.44 x 10-6; est" a"' = 1.06 x 10-4

4.3 Rectangular indenting with constart friction

The distributions of stress and strain at z = 1.5 produced by cylindrical indentor

are given in Fig.17 and Fig.19, respectively, in which the designed surface stresses

in vertical and tangential direction are also displayed. Fig.18 and Fig.20 give the

surface stresses reconstructed from the observations given in Fig.17 and Fig.19,

respectively. For comparing, the designed surface stresses are displayed again.

4.0 x10 -1

0123.0 ...... A

1.0 .......- .--....

0.0 I.

-1 .0 ]I I I.------I---I-. .O

-3.0 -1.0 1.0 3.0

Fig.17 1. the designed vertical surface stress;

2. the designed tangential surface stress;

3. the stress at z = 1.5

26



4.0 X10 1_______

0 1

04
1.0

0 .0 ---_-_-_ _------

-1.0 IIIIII I X1O
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Fig.18 1. the designed vertical surface stress;

2. the reconstructed vertical surface stress
3. the designed tangential surface stress

4. the reconstructed tangential surface stress

4.0 XO10

3.0 A2

2.0 ... . ..... __ V 3

1.0__ _

0.0

-1.0 1 1 1 1 1 1 1 ,XI1 _ __ _ _ __ _ _ __ _ __ _ _ __ _ _

-3.0 -1.0 1.0 3.0
Fig.19 1. the designed vertical surface stress;

2. the designed tangential surface stress; 3. the strain at z =1.5
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Fig.20 1. the designed vertical surface stress;

2. the reconstructed vertical surface stress

3. the designed tangential surface stress

4. the reconstructed tangential surface stress

By Eq.(26), the errors for these two cases are

= 6.21 x 10- ", eCW" = 1.15 x 10- 3

"'"= 2.95 x 10- ', e "'' = 1.45 x 10- 3

where the subscripts v and t are expressed for vertical and tangential component,

respectively.

From above examples, we find that e' 'a" > e'"" for all cases. There are many

sources to produce errors. One of them is that the observation has been truncated.

We have known that the further the point is from the area of surface load, the little

the effect of surface force to strain or stress beneath the surface is. Comparing the

distributions of stress and strain for the same load, e.g. Fig.9 and Fig.11, we find
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that the effect to the strain is broader than the stress. Thus, more information

will be lost when we truncate the observation which is expressed as strain instead

of stress. Above argument can be illustrated by Fig.21 and Fig.22, in which the

number of element of sensors is only 41.

1.40 xlO
1.10 ---- 4--N

A 2
.800 - ._.

.200 ......

100 F - i I I I I I I I I I I'J It 1 1 1 1 1 1 1 1 A- 11111 -1 X

-1.0 -.60 -.20 .20 .60 1.0

Fig.21 the surface stress reconstructed from the distribution of stress at z = 1.5

1.40 xlO1

1.10 ._ •__
A 2

.800

-. 100 xlO

-1.0 -.60 -.20 .20 .60 1.0

Fig.22 the surface stress reconstructed from the distribution of strain at z = 1.5
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6. Discussion

Ina this paper, we described how to express the distribution of stress and strain

as the convolution of the surface stress and relative kernel. We gave the DFT

approach for two special cases. By example, we discussed the effect of truncation

of the observation and the effect of choosing as observation the strain or stress.

As we have mentioned in first section, there are several methods to solve op-

erator equations of first kind. By comparing the DFT approach with one of the

regularization methods of Hilgers(1973), we found that the former has the proper-

ties of higher computing speed and better accuracy. However, if noise with high

frequency is added to the observation, one finds that the DFT method is much

more sensitive to the noise, even when the deviation of the noises is very small.

It should be noted that, for both of these approaches, the analog networks have

been introduced to solve the inverse problem by parallel computation (Poggio,1985;

Peckerer ). This should be of interest in real time control of the robot fingers.

There are several problems that remain to be solved. One in how to reconstruct

the surface stress profile when it has a general tangential distribution. To solve this

problem, more information on the strain or the stress is required. Sensors which

are mounted on two horizontal planes beneath the surface of elastic material may

be helpful for this case. The other problem is how to deal with three dimensional

problem, which is important for physical situations. To solve this problem, a more

complex model of the elastic material should be applied.
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