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Ao STATEMENT OF "IHE PROBLEM STUDTED

Boundary-vilue problems for differential and functional differential
equations have been investigated. In case of ordinary differential cquations,
the major concern was proving existence of solutions to nonlincar third-order
boundary-value problems. In the arca of functional differential cquations,
the main thrust wgs in the direction of differential cquations with piccewise
constant argument (EPCA.) ‘The theory of functional differentinl cquations with
continous argument is well developed and has numerous applications in natural
and engineering scicnces. [t was the main purpose of the project to extend
this theory to some classes of differential equations with discontinuous argu-
ment deviations. The investigation of EPCA has been originated earlier in
{1-4]). These equations represent a hybrid of continuous and discrete dynamical
systems and combine propertics of both differential and difference equations.
Hence their importance in control theory and in certain biomedical problems
[5]. All EPCA are closely related to impulse and loaded equations of control
theory and, especially, to difference equations of a discrete argument. Within
intervals of certain length EPCA have the structure of continuous dynamical
systems. Continuity of a solution at a point joining any two consecutive inter-
vals implies recursion relations for the values of the solution at such points.
Therefore, EPCA are intrinsically closer to difference rather than to differ-
ential equations. A typical EPCA is of the form

(1) = f(r,x(t), x(h(t)),
where the argument h(t) has intervals of constancy. In [2] | equations with
h(t) = [t] , h(t) = [t-n], h(t) = t-n[t] have been considered, where [t] desig-
nates the greatest-integer function and n is integer. In 1] | EPCA of advanced

type have been studied, and cquations with both delays and advances of the

argument have been tackled in [0).

- [
H i 4 (R W (AR
NRIOUN TSR A MAIERUEALR S YL IO I 3 N % U I R AP IFOL U A DERENPA IS S o I L N0 DY

e
- P

L Car e

.
“A

l.‘
(Y



The aim of the project was to establish existence-uniqueness theorems for
broad classes of EPCA, obtain significant results on stability and asymptotic
behavior of solutions, conduct a thorough analysis of oscillatory and periodic
properties of solutions to these equations and systems of equations.

B. SUMMARY OF THE MOST IMPORTANT RESULTS

1. The studies conducted according to the project considerably clarified the
place of equations with piecewise constant argument in the generial theory of
functional differential equations. This research shows that all types of EPCA
(retarded, neutral, advanced) share similar characteristics. First of all, it

is natural to pose initial-value and boundary-value problems for such equations
not on an interval but at a number of individual points., Secondly, in ordinary
differential equations with a continuous vector field the solution exists to

the right and left of the initial argument value. For retarded functional
differential equations this is not necessarily the case. Moreover, it appears
that advanced equations, in general, lose their margin of smoothness, and the met-
hod of successive integration shows that after several steps to the right from
the initial interval the solution may even not exist, Howéver, two-sided solutions
do exist for all types of EPCA. Finally, of particular importance was the

study of oscillatory aud periodic solutions to EPCA, since it enabled one to ex-
plore interesting properties which are caused by the deviating argument and which
do not appear in the corresponding ordinary differential equations.

2. Although some oscillatory properties of EPCA were mentioned in (1,2,3] , the
first consistent attempt in this direction was rade in [4]. Recently, new re-
sults on oscillatory and periodic solutions of rctarded EPCA have been discovered

in {7), and of advanced EPCA - in [8] ., Currently, therc are few results on
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the oscillation of linear systems with delay. The first study of oscillatory
properties of linear systcms with piecewise constant argument [t] has becen

initiated in [9]. Paper [4] is concerned with the oscillatory properties of

the equations

fl
=

x,(t) + a (t)x(t)+ p(t)x(ty)
and

x,(t)+a(t)X(t) + q(t)x([t+1]) =0,
where a(t), p(t), and gq(t) are continuous on{0, ©), and {t] is the greatest-
integer function. Sufficient conditions are given under which these equations
have oscillatory solutions. The conditions are the 'best possible' in the
sense that when a,p, and q arc constants the conditions reduce to

p>a/(e®-1) and q<-ae?/(e?-1),
which are necessary and sufficient conditions. Sufficient conditions under
which linear diffcrential-difference equations with several argument deviations
have oscillatory solutions only have been established in [4]) , too. These
theorems generalize the corresponding results obtained in [10-13) . Finally,
oscillatory properties of solutions to linear equations with lincar transformat-
ions of the argument have been also discussed in [4) . Such equations have
been studied earlier in a number of other works, including [14-19].
3. One of the significant achievements of the project was the discovery and
deep investigation of a new type of differential equations with piecewise constant
argument -equations of alternately retarded and advanced type., A comprehensive

study of the equation

x’(t) = ax(t) + bx([t + %))

has been given in [20] . This equation is of considerable interest since the
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argument deviation
T (t) st-[t + %]

changes the sign in each interval (n-%, n+ %), with integer n. Indeed, T (t)< 0
forn - L <t<nand T (t)>0 for nt<n + ', which means that the above cquit ion
is alternately of advanced and retarded type. The function T(t) is periodic .§
of period 1, and T(t) = t for te[-%,s ). We see that the given cquation is )
of advanced type on cach interval[ n -%,n) and is of rctarded type on cach in-
terval (n,n + %). This complicates the asymptotic bchavior of the solutions |, iy
generates two essentially different conditions for oscillations in each inter- ‘

val (n-’;, n+%), and leads to interesting properties of periodic solutions.

Some other equations of alternately retarded and advanced type have been tackled

in [21] . ‘The conclusions of [20] and {21] have been extended to broader classes

]

of EPCA in {22] . Exploration of such extremely interesting cquations of

r
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alternately retarded and advanced argument should be continued.

4. New interesting results on the existence of periodic solutions to lincar
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delay differential equations with piecewise constant deviating argument have

been obtained in [7) . The type of equation studied there is .

x’ (t) +a(t)x(t) + b (t) x ( [t-1]) =0,
where a (t) and b(t) are continuous functions on [0, ») A sufficient condition
is given under which the equation has oscillatory solutions, and this condition
is the "best possible" in the sense that when a and b are constants the condi-
tion reduces to

bas"?/4(e?- 1) ¢

which is a necessary and sufficient condition. In case of constant coefficients

conditions are found under which oscillatory solutions are periodic. Let b0, ;




then every oscillatory solution of the above equation is periodic of period k

if and only if

b = ae?/(¢® 1) and a = -1In (ZCOs—ZigL-g’ 3

where m and k are relatively prime and m= 1,2,..., [(k-1)/4). Let Aps Ay -
LY

be the roots of the equation. i?
ey +—%}— (1-e¥ =0 g

0

0 * 2 1 then every oscil- 3

latory solution is periodic of period 2 if and only if

and let x(0) = ¢ x(-1) = C_q- If b<0 and ¢ = A

-

e
L .

b=-a(e?+1)/e? - 1.

The most important conclusion in [7) is the following: if b>0, then for

Cat

given ¢, and €3 the set of all equations of the above type having periodic

solutions is countable. These results were obtained with the implicit

PR e RS

assumption a 0 . 1f a = 0, then

b = lim aea/(ea -1}y=1,
a~» 0

In this case, the equation
x(t)+x(t-1)=90

has periodic solutions of period 6. R

5. Stability problems for differential equations with certain piece-

wise continuous delays have been explored in [23). Equations considered

are of the form

/ n
x (t) = ax(t) + Ia;x((t - ir] J,
i=0

where a and a; are real constants, and r > 0. The symbol M} denotes

an extension of the usual greatest-integer function and is défined by




[t]r =n, fornr<t<(n+ Nr,n=0,1, 2, ....
That is, [t],. is a step function whose value increases by one when t is
an integral multiple of r. For the case r = 1, this equation was studied
in [2], and it was shown that the zero solution is asymptotically stable
if and only if all roots of a certain associated characteristic polynomial
have moduli less than one. Here an extra parameter r is introduced,

and attention is directed to the way in which stability depends on r, as
well as on the coefficients a, a5 General sufficient conditions for

the stability of the above differential equation and of the equation

x{t) = ax(t) = Bax((t - idr)y),
i=0

for all d, 0 <d < o, are obtained. The "first-order" equation with N=0
.s examined and the stability region in the (a, a,) parameter space is
precisely described. This is compared with the stability region for the
first-order differential-difference equation with constant lag r. The
"second-order' equation with N=1 is also investigated and a set of (a,
a, al) found for which there is asymptotic stability for every positive
r. A general theorem on the stability of equations with piecewise con-
stant delays is presented which is analogous to theorems in (24, 25, 206])

relating to stability of linear differential-difference equations.

Let
by = (" - Dala, (i=1,....N),
b0 =e™ 4+ (e - 1a 1ao ,
£, r, A) ="t L bA" - bp" 1 S

The symbol f(A, r, A) is used to indicate that f is a polynomial in )

{]




whose coefficients depend on r and on the set of numbers A= { @y Apy o - . an}.
It then follows that a necessary and sufficient condition for asymptotic stabi- i

lity of the zero solution x(t) = 0 is that all roots of f(A,r.A) = 0 satisfy

| v ] <1. Letr >0 and assume E
v,
(H) a +igou] < 0. A gé
o
o
Then there exists a maximal interval (O,do), with 0 < do < =, such that all ;:;
roots of f(x,dr,A) lie in |A|<' 1 for d ¢ (0,d), and thereforc the zero :&
solution x(t) = 0 is asymptotically stable. Assume that (Hl) holds and also gi
(H,) £(3,dr,A) # 0, for [x] # 1,0 <d <~ ., Then the given differential f
equation is asymptotically.stable for every positive d. Assume that (H,) ;g
holds and also ;g
i (Hy) flA,dr,A) #0, for A =1, 0<d <1 %
Then the differential equation is asymptotically stable for 0 < d < 1, 25
Precise results were obtained in 23 for the equation ??
x’(t)=ax(t) +ax([t], ), afto .
which can be transformed into %é
y (s) = ray(s) + ra y (s, %i

and then

f(A,r,A) =) -bo.

o

The necessary and sufficient condition of asymptotic stability of the given

e

differential equation is | b | < 1, which can be written as

-

-2a/(ef® - 1) < a+ ac 0.
o
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The function
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F(a) = -a - 2a
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is readily seen to be increasing for a < 0, and decreasing for a > 0, with
F(0) = -2/r. It is asymptotic to -a for a + + @ , and to +a as a > -« , and
lies below those lines. Therefore, the stability region has the appearance
indicated in Fig. 1. We note that if a parameter is varied in such a way that
the line a + ao=.0 is crossed, the root A = b0 crosses + 1, and nonoscillatory
instability arises. If the lower boundary in Fig. 1 is crossed, the root A=bo
crosses -1, and oscillatory instability arises. Observe that as r - 0*, the
stability region expands to cover the region a + a, <0, whereas as r + + »,
the stability region reduces to a quarter plane. In fact, we have the fol-
lowing result., The given differential equation is asymptotically stabe if and
only if -2a/ (era -1)<a+ a < 0. The region of stability in the (a,ao) -plane
decreases as r increases. The region of stability for all delays r, 0<r < =,
is the set

{(a,a) :a<0,aca < lal }
The region in Fig. 1 may be compared with the stability region for the dif-
ferential-difference equation

x’(t) = ax(t) + agx (t - r).
This region is defined by g(a) < a < -a, ac 1/r, where g is a certain function

for which g(0) = #/2r, g(1/r)= -1/r, and g(a) is asymptotic to the line a =a

0
as a + - », This region is similar to that in Fig. 1, but for fixed r does not

extend to the right of a= 1/r.

6. In [27) the study of boundary-value problems for differential equations
with reflection of the argument was initiated for the firt time. This is one

of the important contributions of the project, and the work on such problems was

continued in (28, 29, 30]. Equations with reflection of the argu-




m

ment represent a particular case of differential equations with involutions o

: which were discovercd in [31-34 ). lwportant in their own right, they have %
applications in the investigation of stability of differential-difference
equations [35-39 |, Initial-value problems for equations with involutions
have been considered in numerous pupcr;‘. A survey of results in this

direction was given in [40 ). However, vescarch on boundary-vatue problems

for such equations remains developed nsufticiently, Paper 27 is .

conceriied with existence and uniqueness of solutions of X
yltx) = fix, y(x), y(-x)) ',
with th.e boundary conditions ah
yl-ul =y , v(a) =

[S A

[
"~
]

or aft

Yy (-a) hyi{-a)=0, v {a)+ky(a) =
‘the method usud 15 tie Schawder fixcd pomt theorem in the caee of general ), )
and in the case when tois linear the cquation with reflection is channed to a B
higher-order ordinary differential cquation. (urrently, we are exploring third-
order boundary-value problems for differential equations with reflection of o

a b
o b
the argument, N

- v P
A
-

¥
i

=

Fig. 1. The stability region lies below the line a, +a = 0, and above thqly

e -
-~

. a s
curve ag +a == l;nl(or - 1)
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