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1. INTRODUCTION

The flowing medium in a gun tube typically is a mixture of a compressible gas and burning
solid propellant grains. Details of the flow are important for weapons development, but only
bulk properties can be routinely measured, such as the trajectory of the projectile, the pressure
history at a fixed station, the heating inside the gun tube, etc. Therefore, a need exists for a
detailed mathematical model of interior ballistics two-phase flows, and an algorithm to solve
the correspondingequations.

The three-dimensional mathematical model is developed carefully in Reference [1]. Refer-
ences [2] and [3] are shorter versions of Reference [1]. This two-phase model is based on
instantaneous, finite volume, weighted averaging, and consists of nonlinear partial differential
equations, constitutive laws for the averaged variables, and correlations for the interphase
terms. The transient phenomena included in this model are: the convection of the phases
driven by gas phase pressure, gas phase viscous stresses, turbulence, intergranular stresses, inter-
phase drag, and interphase mass transfer due to burning of the solid grains; the change of
energy in the gas due to convection, pressure, laminar and turbulence dissipation, conduction,
and interphase heat transfer; and the change of the geometry and number of the burning grains.
These phenomena occur within the volume defined by the gun tube and the base of an
accelerating projectile. The motion of the projectile and the two-phase flow field are coupled
via the gas pressure exerted on the projectile’s base.

This model is specialized to the case of axial symmetry of the flow within the tube. Refer-
ence [1] lists all the differential equations, constitutive laws and correlations. This axial sym-
metric model and numerical scheme are encoded in the DELTA computer code. The purpose
of this paper is to describe in some detail the numerical algorithm (Section 2), and to present
some validating computer runs of the combined model and algorithm ‘Section 3).

Previous multi-dimensional, multi-phase work applied to interior ballistics includes that from
Paul Gough Associates, Inc. [4-5], and Scientific Research Associates, Inc. [6-7). Gough’s work
addresses the inviscid flow during the ballistic cycle, i.e. the average gas phase viscous stresses,
heat conduction, and turbulence are excluded. Thus, the phenomenology of pressure waves
inside a gun tube is modeled primarily in Gough’s work. Scientific Research Associates con-
sidered the viscous flow phenomena, i.e. the development of boundary layers inside a gun tube.
The work reported here resembles that of Scientific Research Associates; however, the model is
somewhat different (the governing equations, choice of dependent variable, some correlations)
and numerical algorithm has been modified. Differences and similarities in the models are
addressedin detail in Reference [1], and in the algorithm in Section 2 of this paper.
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2. ALGORITHM

2.1 Governing Equations

The governing equations are a set of nonlinear partial differential equations which are first
order in time and second order in the two spatial coordinates. The rationale for the specific
form of the equationsis given in Reference[1]. The general form is

yl = G(r’z’t’ y’yr* yZ’ yﬂ’ ny’ yZZ)’ (21)

where the independent variables of time, radial coordinate and axial coordinate are denoted by
t,r, z, respectively. The vector of dependent variables is denoted by y, and the partial deriva-
tives of y with respect to the spatial and temporal coordinates are denoted by subscripts. The
components of the vector y can be the radial, circumferential (swirl), axial components of the
gas phase velocity («,v,w), respectively; the radial, circumferential (swirl), axial components of
the solid phase velocity (u",v",w"), respectively; the gas phase specific entropy s ; the loga-
rithm of gas phase pressureq ; the regression distance of the solid phase d” ; the number of
particlesm " ; the particle surface temperature T* ; and two variables to define the turbulence
in the flow field. Thus, dependingon the simulation, the number of dependent variables change
from a minimum of four to a maximum of thirteen. For the case of an one-phase, laminar
flow simulation with swirl, the dependent vector y has five components, u, v, w, s and q. For
the case of a two-phase, turbulent flow simulation with ignition and burning of the solid phase,
the dependent vector y has nine components,u, w,u", w",s,q,d", m", T*. This assumes the
absence of swirl and an algebraic turbulence model (i.e. the turbulence properties are
described only by algebraic relations). The components of the vector G are nonlinear functions
which can depend on the variablesr, z, ¢, y, ¥,, ¥;, ¥rrs Yrz» ¥z

The spatial domain is a confined volume within a tube bounded in length by a stationary
wall (the gun breech) and the base of an accelerating projectile. The radius of the tube can
depend on the axial position from the breech which is denoted by z;. The radial coordinate
varies from the axis of symmetry to the tube wall. The radial positions of the axis and wall are
denoted by r, and r,, (z), respectively. The axial coordinate varies from the breech to the base
of the projectile. The axial position of the breech and projectile base may have a radial depen-
dence which is denoted by zg (r) and z, (r), respectively.

The projectile is assumed to move as a rigid body. The unsteady projectile motion is
governed by the following equations:

wp = M s (22)
dt
2
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aw, (t)
—L =m,wc{ ,f p(r ,t)yrdr - F - E - Ig}, (23)

0 |?
mAUG - mp + Im rw(z ) } ) (2.4)
-y
Vp (r, t) =W, (t) ORH , (25)

where w,, v,, m, denote the axial velocity, circumferential velocity and mass of the projectile,
respectively. The forces that retard the motion of the projectile are those due to air resistance,
friction between the projectile and tube wall, and gas leakage around the projectile, and are
denoted by F,, F, and E, respectively. These retarding forces are assumed to be known func-
tions. If the tube is rifled, an additional phenomenon is present which causes the projectile to
rotate, and its mass to be effectively increased via equation (2.4). In this case the angle of
rifling 6, is nonzero, and the moment of inertia of the projectile 7,, must be given. Because
the pressurep is determined from the solution of governing equations of the flow field, which
depends on the value of w,, equations (2.1) - (2.5) represent a coupled system with a moving

boundary.

2.2 Numerical Algorithm

We want to compute by finite difference approximations the transient values of the vari-
ables which describe the fluid dynamics of the flow in the region confined by the inner tube
wall, breech, and moving projectile. One way to calculate in this expanding computational
region is by an “accordion” type grid in the axial direction, i.e. the first and last axial grid
points are attached to the breech and projectile, respectively, and the mesh expands as the pro-
jectile accelerates down the tube. Thus, the physical grid moves in accordance with the projec-
tile motion. With regard to the spatial finite difference approximation, the goal is to obtain an
accurate approximationto the actual physical happening. It can be shown that the finite differ-
ence approximationsto the physical variables in the physical mesh are the same whether one
directly differences on the physical grid, or one differences on a transformed grid and then
transforms back to the physical grid. Higher accuracy in a transformed space is not meaningful
if it is lost in the transformation back to the physical space. Furthermore, our physical grids
will be orthogonal or nearly orthogonal. Thus, we choose to compute finite difference approxi-
mations to spatial derivatives on the physical grid. An additional advantage of our method is
that the governing equations need not be transformed, and thus are simpler to understand and
change in the computer code.
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The finite differencing of the time derivativescan be of two generic types: implicit or expli-
cit (See Reference [8]). The principal advantage of an implicit scheme is its superior stability
properties compared to an explicit scheme. For convection-diffusion type problems like those
given by equation (2.1), an explicit finite difference method has two stability conditions, the
Courant-Friedrichs-Lewy condition and the viscous stability limits. In one dimension, these
condition are:

At = CFL—2%_ (2.6)
c +w

At = VSL-£(Ax)? ,
2p

where Ax is the spatial mesh increment, ¢ is the sound speed, w is the gas velocity,  is the
viscosity and p is the density. The constants CFL and VSL are less than or equal to one. For
simulations which involve boundary layers, small grid sizes are necessary. Thus, for this type of
simulation, the time step (the size of At) must be proportional to the square of the smallest
grid increment for an explicit scheme. On the other hand, most implicit schemes have no
corresponding stability conditions, and significantly larger time steps based on accuracy con-
siderations rather than stability can be used. The basic disadvantage of implicit algorithms is
that they tend to be more complicated than explicit schemes, and thus more difficult to under-
stand and implement. In particular, applying a standard implicit scheme to system of equations
(2.1), we obtain a nonlinear system of algebraic equationsin the variables at the new time level.
This system can be quite large and complex because it possesses an equation for each depen-
dent variable and for each grid point in the two-dimensional computational mesh. These equa-
tions are coupled via the spatial derivatives. Iterative methods are the most common solution
procedure, but they can be quite complex and time-consuming for such a general system. To
mitigate these undesirable characteristics, we apply a method developed in References [9-11].
A salient feature of this method is the temporal linearization of the nonlinear terms to within
the local truncation error of the finite difference approximation of the time derivative. The
resulting system can then be representedin a matrix equation,

Ay” = b 2.7

where y” is the vector of unknown dependent variables at the new time level, and A and b are
the matrix and vector of values at the known time level, respectively. Furthermore, the matrix
A can be structured if we decompose the time-differenced equation of (2.1) into two systems of
equations, each of which involves the spatial derivatives of the unknown variable in only one
coordinate direction. This decomposition or splitting is done so that the error incurred is of the
order of the local temporal truncation error, and so that the decomposed or split equations still
form a consistent approximation to equation (2.1). When centered differences are used to
approximate the spatial derivatives, tridiagonal matrices are obtained. Because we are dealing
with a system of equations, the matrices are block tridiagonal where the size of the blocks is

K A T N N St I N, I O N




equal to the number of dependent variables. This method of splitting the implicitly differenced
equations is called an Alternating Direction Implicit (ADI) scheme (see Reference [8]).
Because we have also linearized the equations, we shall refer to this method as a linearized
ADI scheme.

This general linearized ADI scheme is applied to the instantaneous, finite-volume, weighted,
averaged equations of interior ballistics with several unique features: The algorithm is derived
for a moving coordinate system, and has no mass source due to the motion of the grid. The ele-
ments of the matrices derived by the linearization process are obtained directly by numerical
differentiationwhich bypasses the tedious and error prone task of analytically deriving each ele-
ment, and the subsequent coding of these complex expressions. The spatial differencing is per-
formed directly on nonuniform distributed grids.

2.2.1 Algorithm for Non-Boundary, Non-Center-Line Points

We derive the numerical scheme for the system of equations (2.1) on a moving coordi-
nate system; i.e., the coordinates of the spatial grid system varies in time. We let the super-
scripts n denote the new time level and ¢ the current time level. The change in the j* coordi-
nate position of a spatial coordinatex from level ¢ to n is denoted by

a

or

— P €
ij_xj X; [

] (" -t°) = O(Ar), t<t" <", (28)

where At =" ~ ¢ . A Taylor expansion of y” = y(r", z", ") about the current values at
(r€,z%,t%)is

n o _ ¢ a!c__At ay¢ dy° 9
y y+at +azAz+arAr (2.9)
[4
+ 1| A2 42800203 4 2arardXS
2 2 ot oz atd

[4 c c
+ 2ArAz%:-‘/a7 + %ZYZ—NZ + %2’2—1322 +O(Ar,
r z

By adding (1 — B) times (2.9) and S times a similar expansion to (2.9) of y¢ expanded about
y”, and noting that y" — y© = O(At),2" -z = O(At), andr” — r° = O(At), we obtain
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y" - BAt G ﬂA’[ar] ﬂAz{az] (2.10)
P -1 e -
=y° + (1-9)At G° + (1 ﬂ)Ar[a, + (1 ﬂ)&[az]
+ (8- 1o(ard) + Ep(ar), 2<A<1.0,

where Er (At3) denotes the neglected truncation error of O(At3). For a stationary grid
Ar = Az = 0, we obtain the standard Crank-Nicolson scheme for integration parameter § = 1

and the standard fully implicit scheme for 8 = 1.0. Equation (2.10) is a nonlinear system of
equations in y” because G” is a nonlinear function. To make (2.10) a system of linear equa-
tions, we linearize G” via a Taylor expansion about the current leve}, i.e.

4

4G | At + E (A0 2.11)

n . ¢
6" =6+ &

\Y4
3G
ot

aG

[+ C
= G¢ + At + Ar + iG—]Az

74

+ D¢ Ay + DR* Ay, + DZ° Ay,

+ DRR® Ay,, + DRZ° Ay,, + DZZ¢ Ay,,

+ Ep (A,

where E;; (At?) denotes the neglected linearization error of O(At?2). The Jacobian type
matrices are denoted by D, DR, DZ, DRR, DRZ, DZZ, are evaluated at the current time
level, and are defined as

3G, |° aG; ¢ aG; \|°
Di= |—=|,DRi= |— |, -, DZZf = |—|. 2.12)
! [ayi } ! [ay'/ ] ! [ayfz; ! (

Upon substituting (2.11) into (2.10), we obtain the following linear system of equations in y”"
after algebraic manipulation:

¢
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n

W 8y
y ﬂArar

+ Az [%zl

n
+ At |D°y* + DR® [%‘L
r

+ DZ° [-‘?-‘L]
0z

Ak 2 |" a2y |”
+DRR® (25| +DRZ° 5o | 42zt | 213)
[4 c [4 [4
=y°¢ - ﬂ ﬂ € u¢ ¢ |8y ¢ |9y
v - B lar [ar + Az [az +at Dy + DR || 4Dz [az

(4
¢ |2 ¢ |2
+ DRR [8r2] + DRZ [8raz

"+ pzze [iz-‘/-]c

< ¢ c
+ [ar + Az [az + At G + At |At [at + Ar [ar
3G |’ '
+az | 221 |+ (8- 3) 0(af) + Er(Ar) + Ey(Ard).

The neglected linearization error E;; is now O(A¢t3) because G* was multiplied by At in
(2.10). Thus, the linearization process does not alter the order of the temporal error.

The values y°, r¢, z€, ¢, r*, 2", ¢" are all known before the start of the integration routine
to determine the values of y”. Thus, the right hand side of (2.13) is a known vector. The left
hand side of (2.13) can be written as a matrix with known values times a vector of unknowns,
y”. Thus, (2.13) has the form of (2.7). The matrix A interconnectsvalues of y" at a grid point
to all the values of its spatial neighbors via the first and second spatial partial derivatives at

n
level n. If the term 3‘3—;’;] were absent from the left hand side of (2.13), we could decom-
pose (2.13) into two matrix equations which are highly structured and easily solvable while still
retaining only two time levels of the dependent variable vector, i.e. y” and y¢. To this end, we
linearize the mixed derivative at the n level about the current level and retain only the leading
term:
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,:| a n a c
' —?L = ——ZL E At). .
Z?-ﬁ [araz ] [3raz T Era(ar) (2.14)
Ve,
;:: Substituting (2.14) into (2.13), we obtain after some algebraic manipulations
l‘.
% [1- sor+n) |y = [1- pO+D9) |y* + Ly* (2.150)
o
- = (8~ 2)0(A) + Er(AL’) + Ey(AP) + E 4 (A1),
3‘
' %
where the operators are defined as follows:
R)
ny r 3 Nk 3 k 82 k
. D = — ¢+ DR |— ¢ |=— .
’ = Ar > + At |D° + [ar + DRR arZ] , (2.15b)
" \
Cal
W -
ot s k 5 k 2 k
u Df=nAz |- ¢ £ ) A
x A % + At |(DZ % + DZZ [822 , (2.15¢)
o"
.’: ) ( 3 < P c
N Ly =ar | &L Az | &L t G° :
4 y ar + 5 + At G (2.15d)
.. \ Py
M\ )
\ G aG oG
. At | At |— _— -—
$ + 8 ot +Ar[3r + [az]
o7
v
%

¥ The symbol I represents the identity matrix, and the superscript k can be either n or c.
’ The “lagging” of the mixed derivative (2.14) increased the error of the approximation to
0 O (A t?) for any value of the integration parameter 8, but we gain a structured matrix.

\,

We can decompose (2.15a) along coordinate directions in the following manner:

; [l - ﬂD,”]y’ - [l - ﬂD,‘]y‘ +Ly°, (2.16)
P
1 [t-Dr]y" = [x- D]y + (' - y°). 217)
4
:E Equation (2.16) constitutes the radial sweep of this Alternating Direction Implicit method
R because it involves only spatial derivatives in the radial direction at the new time level. One
. solves this equation for each fixed axial index and for radial indices varying from the axis of
: 8
2
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0 symmetry to the gun tube wall. When three point centered spatial finite differences are used to
::i. approximate the spatial derivativesin the radial direction, the matrix I — 8D/ is a block tridiag-
S,‘: onal matrix. The size of each block is equal to the number of dependent variables. The

number of block rows is equal to the number of grid points from the axis of symmetry to the
gun tube wall, denoted by JRMX. The block rows from the second grid points to one away
from the wall, namely JRMX -1 is determined by (2.16). The entries of the first and last block
) rows are determined from the conditions imposed at the axis of symmetry and wall, respec-
S- : tively. The right hand side of (2.16) is a known vector because it is evaluated at the current
| time-step. The solution of this equations is the intermediate values of the dependent variables
; y'.

*

‘-;: Equation (2.17) constitutes the axial sweep of this two sweep scheme because it involves
v only the spatial derivativesin the axial direction at the new time level. One solves this equation
for each fixed radial index and for axial indices varying from the breech to the base of the pro-
jectile. The matrix I — Dy is a block tridiagonal matrix when three point centered spatial fin-
ite differences are used to approximate the partial derivativesin the axial direction. The size of
the blocks are the same as in the radial sweep, and the number of block rows is equal to the
N number grids points placed from the breech to the projectile base, denoted by JZMX. Equation
baal (2.17) is used to determine the entries in the block rows from the second point (one after the
breech) to JZMX -1 (one before the projectile base). The entries in the first and last block

- rows are determined from the boundary conditions imposed at the breech and projectile base,

~ respectively. Because the intermediate value y/ is known, the right hand side of (2.17) is
':,‘ known. The solution of (2.17) is the value of the dependent variables at the new time level,
e denoted by yF. The values of the solution vector yF of (2.17) and those of the solution vector
o y" of (2.15) differ by the time error introduced by the splitting (2.16)-(2.17). To determine the
s order of this error, we substitute (2.17) into (2.16) and obtain
&

(- 8D)[(X - BD)Y - (1- BD " +3° | =0~ ADIy* +Ly  (218)
N

5 which simplies to

‘-d

= (I1- 8D, - BD,)y" = (1 - D, - BD,)y° + Ly® — §*D,D,(y" - y°) (2.19)
-

Subtracting (2.15a) from (2.19), have

» (I~ 8D, - BD,)y* ~y") = -FD,D,(y" ~y" +y" - ¥°) (2220)
.

Y

" or
L3 (I- 8D, ~ BD, + FD,D,)(y" - y") = —F"D,D,(y" - ¥°) (2.21)
\.'; We note that the coefficient of yf — y” is O(1), D, and D, are each O(At) and (y" - y°) is
~
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at least O(At). Thus,
' yf =y" + Es(ard), (2.22)

0 that is, y© is equal to y* to within the local truncation error of the scheme.

D Equations (2.16), (2.17) with the definitions (2.15b)-(2.15d) represent the time differenced,
M linearized, ADI scheme. We now turned to the finite difference approximation of the spatial
; derivatives. The standard centered finite difference approximationsto the spatial partial deriva-
tives in the coordinate directionx at the i*® grid point are

: .‘2!;1 hi (% = %-1) hi 1(Vig1 - )

¢ [ax )i N hi_1(h; + hiyy) + h; (B + by ’ (2.23)
.& 2(yl'-1 - y‘) 2()',-_,_1 - y‘.)
[axz i ~ hi_(h; + h;_y) + h; (b +h;_y)’ (2.24)

where h; = x; ., — x;. However, instead of (2.23) we use

& dy; _ (41— Yic1)
: & (h+h_y) (2:25)

\ (See Reference 12). For equally spaced meshes (2.23) and (2.25) are identical. For a nonuni-
form spaced grid, the difference between them can be expressed as

: Lty - h,.)_g% (2.26)

The nonuniform grids that are used in our application have the property that #;_; > h; so that
(2.26) acts as a stabilizing viscous term to the spatial differencing.

To complete the description of the interior point algorithm we discuss the determination of
: the Jacobian type matrices D, DR, DZ, DRR, DZZ defined by (2.12). The obvious way to
: evaluate the elements of these matrices is to manually take the partial derivatives and code
each element. This double procedure is very error prone because the right hand sides of the
equations are extremely complex. If there are NEQ variables, then each element of the vector
G is a function of 6*NEQ + 3 arguments, in general. Furthermore, for two-phase simulations,
the correlations are not fixed, but can vary substantially from simulation to simulation. In these
cases new elements of the matrices would have to be determined and encoded. To avoid this,
one can lag the contribution of these correlations by one time step. This is not totally desirable
because one increases the local truncation error (see the discussion near (2.14)) which can be
large when the correlations add significantly to the flow dynamics in a given time step, e.g,,

Y W YT
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burning of the grains. An alternative to this whole procedure is to determine these matrices

A 3G;
numerically. Consider the determinationof D;; = —— which can be approximated by

E
Dij & [Gi(r’z’ t:)’l»' " ’yj +6v' o vyNEQv yrv' v ’YQ) (227)

- Gi(rz, by, Y =6, YNEQ Y vYa)] /(26),

where § is the pre-determinedincrement. Once these increments are obtained, the elements of
the matrices can be computed trivially by repeated calls to a subroutine which computes the
right hand sides of the equations. A characteristic of the G ’s is that the terms y, and y,
appear at most quadratically, and the terms y,, and y,, appear at most linearly. Thus, by using
centered differences the matrices DR and DZ can be obtained exactly for any value of the
increment. Likewise, using one-side differences the matrices DRR and DZZ can be deter-
mined exactly. In these cases, a large value of the increment can be used to avoid any round
off errors. On the other hand the vector G is a non-algebraic, nonlinear function of the vector
y. In this case one cannot obtain an exact value of the elements of D for any value of the
increment. We have developed a strategy to compute an increment value based on the current
error estimates of G; and y;, that is, to determine D;; a §; is used. The drawback of this
approach is the computing time necessary to evaluate the right hand sides as often as required.

Finally, we address the problem of artificial mass sources induced solely by the motion of a
grid system. The problem was illustrated and resolved in Reference 13. There exists a standard
procedure to determine if mass sources occur in a numerical scheme when the grids are moved.
First one assumes a constant flow field at the current level, secondly one applies the method to
compute the new time level of values on a displaced grid, and finally one determines if these
new values differ from the constant values. Following this procedure, we assume that the flow
field variables are constants which satisfy the partial differential equations, and assume that
Ar =0 and Az = 0. Consequently, all the spatial derivativesat the current time level are zero
and (2.13) reduces to

-8 {Ar V' + Az y? (2.28)
)
+At[D y" + DR y" + DZ y' + DRR y* + DRZ y + DZZ Y/, ]

- B At D y".
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Using the fact that the spatial derivativesat the current level are zero, we add zero to (2.28) in
a convenient form to obtain

A(Y" - ¥) =0, (2.29)

where A is a matrix. If A is nonsingular, then the solution of (2.29) is y” = y°. Thus, no mass
sources exist. The lack of mass sources is due to the form of the equations,i.e. y. = G, and the
algorithm. For a simpler set of equations than the one we are solving, and for a set in a con-
servation form which are transformed to a stationary uniform computational grid, a “Geometric
Conservation Law” is needed to prevent mass sources. (See Reference 13). Our method
automatically avoids this other partial differential equation, and the need to obtain its solution
at every time step.

2.2.2 Algorithm for Points at the Center-Line and at the Solid Surfaces

The method to obtain the new time level of the flow variables along the center-line is dif-
ferent. To maintain the axial symmetry of the flow, the physical conditions on the flow are the
radial and circumferential velocity components for both the gas and particle phases must be
zero, and the first partial derivativeswith respect to the radial direction at the axis of symmetry
of the remaining variables must be zero.

The contribution from the points on the axis of symmetry can be done in at least two ways.
The first and simplest is to directly apply the symmetry conditions. For a radial sweep, the ele-
ments of the first block row of the matrix A and known vector b are the finite difference
approximations of these conditions. The axial sweep along the center-line is performed after
the axial sweeps along interior axial indices. The final values at the center-line are obtained
using the symmetry conditions, and the final axial sweep values of the non-center-line points.
The second way is more complex. Because the center-line is part of the flow field (physicallya
non-boundary), the governing partial differential equations are valid on the axis of symmetry.
One may rewrite these equations with the symmetry conditions imposed in the equations them-
selves, and with the correct limit conditions as the radial coordinate goes to zero. Then, solve
these new equations by exactly the some method as described for non-boundary points.
Although both are coded, the simpler first option is utilized.

The boundary conditions at the solid surfaces such as the breech, tube wall and projectile
base can vary substantially with the particular simulation. This makes a general discussion of
boundary conditions difficult. However, we will discuss some implementations of common
types of boundary conditions. The simple functional form boundary condition y = constant,

and the simple derivative boundary condition % = constant are the most trivial kinds. Their

finite difference approximations are straightforward, if y is a variable computed directly by a
governing partial differential equation, i.e., one of the variables in (2.1). However, if one has a
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n
nonlinear boundary condition of the form f [y]" =0or f [%] = 0, then one must linear-

ize function f in time in the same manner as is any component of the nonlinear vector function
G in (2.1) and (2.11).
Sometimes a nonlinear boundary condition can be reformulated as a linear one. Consider

the adiabatic condition %:- = 0 were T is the temperature and n is the outward normal.

In our method the entropys and pressure function g are computed directly from the governing
partial differential equations. Thus T is a nonlinear function, T = T(s, q). We ordinarily
Q n
on

However, for a Noble-Abel equation of state, we have a simplification. We use the chain rule
to obtain

would expand in a Taylor series in time to obtain a linear function in s" and ¢".

T 3 T 5 | _
[ % on T 5 on =0. (2:30)

Since % = 0, then (2.30) can be written as

aT "

o . 99 5 | _
an+—gqfan =0 231)

as

By noting that the ratio of partial derivatives of temperature is a constant, (2.31) is a linear
function in s” and ¢" Thus, (2.31) can be finite differenced and incorporated directly into the
matrices of the linearized ADI method.

2.2.3 The Order of the Sweeps

The order of the sweeps is mainly a bookkeeping problem, and should not have a large
effect on the solution. We have used the following procedure. First, radial sweeps from the
center-line to the tube wall are performed along constant axial indices to obtain intermediate
values of the variables y using (2.16). The axial index varies from the one after the breech to
the one before the projectile base. Second, axial sweeps from the breech to the projectile base
are performed along constant radial indices to obtain values of the variablesy at the new time
level using (2.17). The radial index varies from the one after the axis of symmetry to the one
before the gun tube wall. Third, the symmetry conditions are applied to determine the new
time level values at all points on the axis of symmetry by using the results of the axial sweep

13
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% are determined by imposing the wall boundary condition using, if necessary, the results of the
\ axial sweep (step two).
e
* We note that the radial sweeps along the breech and projectile are avoided. The justifica-
N\ tion is that in many applications the boundary conditions at the breech and projectile do not
W involve radial derivatives. Consequently, the linearized version of these conditions can be
\:,', expressed without the need for the determination of the intermediate values of the variables.
:'\ Recall that the matrix D (equation (2.12)) was included in the radial sweep. (See equations
b (2.15b) & (2.16)). However, it could have been incorporated into the axial sweep formula.
; (See equations (2.15¢c) & (2.17)). If no radial derivatives exist for the boundary conditions, we
Q) avoid the radial sweep and incorporate the D matrix in the axial sweep formulation. An exam-
_f ple of this type of boundary condition is the gas continuity equation used to determine the
transformed pressureq at the breech for a one-phase, viscous simulation. Imposing the no-slip
conditionsu =v = w = 0 in the continuity equation evaluated at the breech, all radial deriva-
N tives vanish, and the above method is applied directly during the axial sweep where one-sided
W finite differences are used to approximate the spatial derivativesat the breech. If one uses the
b normal velocity equation for the determination of g at the projectile base, for example, some
; radial derivatives remain in the viscous terms. Only by lagging them could one use the above
: approach.
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3. RESULTS

The results of two simulations using the DELTA code are presented in this section. These
particular calculations are selected because they can be compared to independently determined
answers, and thus, give some verification of the code’s accuracy and capabilities. Both cases
involve a one-phase gas expansion in a constant cross-section tube closed at one end by a sta-
tionary surface called the breech, and at the other end by a movable piston called the projectile.
The breech and projectile base are assumed to be flat surfaces. The initial states of the gas are
uniform and quiescent, but the gas pressures are great enough to accelerate the projectile
through the tube. The controlling mechanisms of the expansion flows are the same, namely the
propagation of the rarefaction wave, generated by the projectile displacement, and its reflection
from the breech, then the projectile, and so forth. However, the gas pressure levels differ |
greatly between the simulations, and the subsequent flows are in different regimes. |

TABLE 1. Geometry and Gas Properties for the 150-mm Gun
and Bicen-Whitelaw Experiments

150-mm Gun  Description Bicen-Whitelaw
150.0 Bore Diameter (mm) 76.7
1.698 Initial Projectile Displacement (m ) 0.1773
6.0 Maximum Travel of Projectile () 0.3
50.0 Projectile Mass (kg) 2.54
0.001 Covolume (m3/kg) 0.0
1.22 Ratio of specific heats, v 14
621.09 Initial Pressure (MPa) 0.28
2666.8 Initial Temperature (X) 293.0

The first simulation corresponds to the gas expansion within a 150-mm tube away from the
effects of the tube wall (core-flow) under ballistic conditions. The specifications for this case
are given by the first column of Table 1. The analytic solution of the one-dimensional, inviscid
gas equations governing the flow within this 150-mm tube at certain positions from the breech
and for specified times was obtained by Love and Pidduck. (See Reference [14].) Their solution
is valid under the assumptions of isentropic expansion of each element of gas, of constant covo-
lume, of an even integer value of the ratio (y + 1)/(y — 1) , where v is the ratio of specific
heats, and the frictionless motion of the projectile. The solution is in terms of truncated power
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series, and becomes more complicated as the number of rarefaction wave reflections increase.
For the one-dimensional DELTA calculation, the computational mesh (covering the enclosed
cavity behind the projectile) consisted of four equidistant mesh lines parallel to the axis of sym-
metry and 89 uniformly spaced grid lines orthogonal to the axis of symmetry. To maintain a
one-dimensional simulation for comparison to the Love Pidduck results, the following condi-
tions

_Ow _ 9 _ 99 _
“= ~ ar  or 0

are imposed along both the tube wall and axis of symmetry. The boundary conditions at the
breech and projectile are no-slip velocity and adiabaticwalls. Love and Pidduck developed their
solution with the assumption of an inviscid isentropic flow which allowed them to use a special
form of the Noble-Abel equation of state, namely

1 ! 1 7
P [——n] =P, [——n] = constant,
P Po

where subscript zero indicate their initial values. However, in the DELTA simulation viscous
effects are included and the general form of the Noble-Abel equation of state. However, the
special form of the equation of state used by Love and Pidduck is maintained to within less
than two percent in the DELTA simulations. Thus, the non-isentropic and viscid effects
included in the general framework of DELTA are minor for this one-dimensionalflow, and the
comparison of the analytic solution and numerical results is reasonable.

The comparison of the pressure histories at the projectile base is given in Figure 1. The
change in slope in the pressure curve is due to the first reflection of the rarefaction wave at the
projectile base. The magnitude of the slope discontinuity of the pressure curve decreases with
time due to the equilibration of the pressures during the gas expansion. Another slope change
exists theoretically at 7.137ms, although it cannot be detected even in the graph of the analyti-
cal results. Figure 2 is similar to Figure 1 except that the pressures at the breech are com-
pared. The effect of the first arrival of the wave at the breech is more obvious in both solu-
tions.

Figures 3 and 4 show comparisons of the histories of the projectile velocity and projectile
displacement from the breech, respectively. The large values of the tangent to the curve in Fig-
ure 3 indicate the extreme acceleration the projectile experiences. The agreement of the results
show that the numerical solution of the partial differential equations governing the gas moticn
using the DELTA algorithm is correctly coupled to the proper solution of the projectile motion.
Comparisons of the pressure profiles from the breech to the projectile at specified times arc
given in Figures 5 and 6. The ranges of pressure values on the ordinate are the smallest possi-
ble to provide accurate comparisons. Figure 5 shows a comparison of the pressure values at
2.898ms, that is, after the rarefaction wave has been reflected from the breech, then the
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projectile base, and is approximately halfway between them. The DELTA calculation differs by
0.6% at most from the analytic solution values. The slope discontinuity is smeared out in the
numerical calculation. Figure 6 shows the pressure profiles at 10.23ms which is near tube-exit
time of the projectile. The maximum discrepancy between the two results is approximately
1.2%. Because the analytic solution is a truncated power series solution, it is difficult to deter-
mine which values are more accurate.

N N

s - s

Next we compare a DELTA simulation with time-resolved measurements of the axial velo-
city field inside a tube behind a slowly accelerating projectile obtained by laser-Doppler
anemometry. The experiment was performed at Imperial College, London under funding by
* European Research Office of the Army and The Ballistic Research Laboratory, and is reported
' in Reference [15]. This experiment is important to the development of DELTA because it pro-
_ vides the first transient, two-dimensional measurements of a quantity to which the results of a
;‘ DELTA simulation can be compared. The schematic of the apparatus is ¢ ven in Figure 7.

Nitrogen is the gas, and the other characteristic of the cxperiment are given in the second
X column of Table 1.

Py

o

\ Three important conclusions of this study are: The maximum intensity level of the tur-
bulence was approximately four percent which implies a very low level of turbulence, the tube

¥ wall boundary layer remained laminar, and the heat transfer to the tube wall was minimal.
: Consequently, a laminar flow simulation with adiabatic walls should approximate this experi-
:l ment. The two-dimensional computational grid had 33 uniformly distributed points in the axial
: direction, and 19 nonuniformly distributed points in the radial direction. The radial grid was

such that, while 19 points spanned the distance from the axis of symmetry (r = 0) to the wall
N (r = 38.35mm), 12 points were distributed from r = 32mm to the wall and 5 points were dis-
tributed from r = 37.85mm to the wall. The maximum and minimum distance between the
) grid points were 6.5mm and 70um, respectively. Constant values were used for the coeffi-
' cients of viscosity and thermal conductivity of nitrogen, namely, 17.07u(Pa's) and
\ 0.02524W/(m-K), respectively. Because the experimental apparatus was mounted vertically, the

" equation for the projectile motion (2.3) was changed to include its acceleration due to gravity.
. Because the total retarding force (E + F + F, in (2.3)) experienced by the projectile was not

determined by the experiment, no values of these forces could be assigned. Thus, a total
2 retarding force profile versus axial displacement was obtained so that the axial velocity of the

projectile determined by the DELTA code matched the experimental values as shown in Figure
8. Because the projectile velocity values agree, so must the projectile displacement values. Fig-
ure 9 compares the axial velocity profiles along the axis of symmetry at various times. Both the
DELTA and experimental results show a linear profile from the zero value at the breech to the
value of the projectile velocity for each time. The axial velocity histories at 76.7mm from the
breech and at 0.5, 1.0, 2.0, and 3.0mm from the tube wall are compared in Figure 10. The

-
g wh e SR N

X values from the calculation are within the scatter of the experimental data at radial positions of
‘ 1, 2 and 3mm from the wall. However, the discrepancy between the values at the 0.5mm posi-
A tion increases with time. The same quantities are graphed in Figure 11 but at 153.4mm from

. the breech. The comparisonsin Figure 11 show similar behavior to that in Figure 10, but with
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the discrepancy at the 0.5mm position considerably larger. After a discussion with the experi-
mentalists, it was agreed that these most difficult measurements at 0.5mm from the tubte wall
are likely to contain errors and should be redone. We are presently awaiting accurate measure-
ments in the sub-millimeter range. However, the present agreement between the experimental
measures and calculations are encouraging.

4. SUMMARY

The numerical algorithm encoued in the DELTA computer code, and comparisons of its
calculations to an analytic solution and experimental measures are described.

A numerical algorithm to solve the two-dimensional, axisymmetric, unsteady, finite volume,
weighted averaged two-phase equations which govern certain flows inside a gun tube is dis-
cussed. These equations are in their most general form. In particular, when the flow regime is
governed only by convection and pressure forces, this general form automatically gives the solu-
tion of the corresponding inviscid equations. When in the boundary layer regime, this general
form gives without any assumptions, the solution in the boundary layer where viscous forces
dominate. Moreover, this approach naturally provides all the coupling between different
phenomena because only one set of equations, which govern all the phenomena, is solved.
Thus, phenomena that is controlled by basically inviscid flow but exists because of viscous
forces, like the additive particle laden gun tube wall boundary layer which governs heat transfer
to the gun tube, can be studied for the first time without assumptions on the natures of the
core flow or boundary layer, the validity of heat-transfer correlations, and/or the intra-flow cou-
pling between various regimes.

Two examples of calculations with the DELTA code are presented. These computationsare
limited to one-phase expansion flows in an adiabatic tube so to allow comparisons with
independently obtained data. More realistic calculations that involve ballistic environments.
heat transfer to the gun tube wall, and other phenomena are presented in Reference [16).
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The comparison of the histories of the projectile velocity.
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