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dimensional solids containing cracks. A singular displacement field analogous
to the two-dimensional Bueckner field is derived for a planar rectilinear crack
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1 INTRODUCTION

The application of the principles of fracture mechanics to the safe and

economic design of engineering structures, which may develop cracks in service,

requires that the stress intensity factors of the cracks be known. In any

analysis a complicated structure must usually be modelled as a three-dimensional

body in which several boundaries interact with the crack tip. The stress inten-

sity factor will now vary with position on the crack front and cannot be accu-

rately represented by a two-dimensional model. It is therefore necessary to

develop efficient, accurate and economic methods for determining stress intensity

factors in three-dimensional cracked bodies.

Techniques based on weight functions are efficient since once known they

can be used to find the stress intensity factor for any arbitrary loading from

a simple summation or integration. Weight functions for three-dimensional sym-

metrical crack problems have been determined1 using the finite element method

(FEM). In this work it was observed that for three-dimensional problems the

boundary element method (BEM) may lead to faster solutions because of the

reduction in the number of elements that would be possible. The BEM has been

used 2 to obtain stress intensity factors for a semi-elliptical crack subjected

to a polynomial distribution of tractions over the crack surfaces.

Recently it has been shown 3 that an application of Betti's theorem allows

the stress intensity factor, for arbitrary applied stresses, to be derived

efficiently and economically from certain 'weight functions'. These weight

functions are derived from the boundary displacements of the body, resulting

from point forces applied near the tip of the crack; the crack-tip region is

modelled by a Bueckner singular field 4 . This approach was developed for two-

dimensional bodies containing cracks where it was shown that a boundary method

has considerable advantages over domain methods 5 ; these advantages will be

greater in modelling three-dimensional bodies. The use of a Bueckner singular

field in the determination of weight functions reduces the number of boundary

integrations needed in the BEM calculations.

In the present application to three-dimensional cracked bodies a singular

displacement field, analogous to the two-dimensional Bueckner field, is derived

from the analysis 6 for a planar, rectilinear crack subjected to equal and opposite

localised forces on the crack surface. The singular displacement field is then

prescribed over a small cylindrical cavity along the crack front and the BEM is

P used to obtain weight functions. The advantages of the method are demonstrated

for an edge-cracked rectangular bar by calculating the stress intensity factors
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are calculated, from the weight functions, at points on the crack front for

uniform normal tractions on the ends of the bar. Even for relatively coarse

meshes the results are in good agreement with those determined from other

methods.

2 FORMULATION OF METHOD

For an elastic body Betti's reciprocal theorem can be written as

fu*t*ds= f t*ds * (1)

s g

where t*, u* are the seif-equilibriated tractions and displacement field,

respectively, corresponding to one state (state 1) of loading and t , u are

those corresponding to another independent state (state 2) of loading. The

choice of (t,u*) and (t*,u*) are arbitrary except that they must separately

satisfy the equations of equilibrium, the compatibility conditions within the

body and the boundary conditions on the body.

It is assumed that state I corresponds to the desired solution of a crack

in the body whose surface is subjected to a set of self-equilibriated tractions

t The leading terms in the general expansion of displacements near the crack

tip can be obtained from Sih and Liebowitz 7 in the form

U1 (1 + V) ( LK KI cos()[(I - 2v) + sin2 (2)+ KII sin(-[2(l - v) + cos

E. (1+v)i 21 2e~ 28

u2 E (Lr) IKI sin(2-)[2(l - v) - cos 2(2 - K,, cos-) [(I - 2v) - sin 2

u 1 2 (1 + K) JiII sin(• ...... (2)

where uj (j - 1,2,3) are the respective local displacements in the local xi

coordinate directions parallel to the normal, the binormal and the tangent to

the crack. That is the displacement vector u for state I can be written

-- u x +u x + u x3 (3)
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where x. are the local unit vectors in the xj directions (j = 1,2,3). The

coordinates (r,e) are local cylindrical polar coordinates in the xI, x2  plane,

centred on the crack front at x = 0 . The stress intensity factor KN
3%

(N - I,11,III) corresponds to the opening, sliding and tearing modes respec-

tively; E and v are the elastic modulus and Poisson's ratio respectively.

Since the only loading to be considered in state 2 is on the crack surface, it

is convenient to simplify equation (2) to obtain the displacement components on

the crack surfaces e = ±7 at a distance x behind the crack front. These

are given from equation (2) by

x 2(1 - v2) Kl (4)
u2 = E

2(1 - v2 ) K11  (5)

Ul E KI 11(5

u3 - E KIII(6

The state 2 is taken to be that corresponding to a solution of a body

containing a crack which is subjected to pairs of concentrated symmetrical

forces located on the crack surfaces near the crack tip as shown in Fig 1. The

tractions t* are represented in terms of point forces in each of the three

orthogonal directions and are given by the vector P - Plx 1 + P2 x2 + P3x3 where

Pj(j = 1,2,3) are the magnitudes of the point force in the xj directions.

For point forces located at x= -c, x= 3  0 the traction vector t

can be written as

6( =6( +c)P , (7)

where 6 xi + represents the Dirac delta function. Substituting equations (3)

and (7) in equation (1) gives

, P1KI + P2I + PKIII =-- . *ds 8

PIK1 + P2KI + (I - v) 7- - d (8)
00vY
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Thus the stress intensity factor KN for any mode (N = l,11,111) can be

determined independently by making P. corresponding to that mode non-zero, and

all other P zero. The displacements u will be those, on the surface S

corresponding to P. acting on the crack near the tip. Following Bueckner's
J,

suggestion for two-dimensional fields, the components of u are called weight

functions, since the integral in equation (8) represents a weighted average of

the tractions over the surface S . Because u* depends only on the displace-

ments on the surface of the cracked body, it follows that a boundary method of

analysis, such as the BEM, should be a more efficient procedure than a domain

method. The boundary integral equation to be solved is

c+ij Cx')u ju(d') + f T(xX)U (x))ds(x) ds(x ) , (9)

S S

where uj, t are general displacements and tractions (i,j = 1,2,3) respec-

tively on the boundary S , Uij(x,x') and Tij(x ,') are the Kelvin's fundamen-
tal solution in an infinite elastic (uncracked) body and cij is a known

constant.

In order to determine u* it is necessary to solve the boundary integral

equation (9) for the cracked body subjected to state 2 loading; for which

equation (9) becomes

cj( *')u(W) + T (x,x' *(x)ds(x) U (x,x')t*(x)ds(x) (10)clj 'uj ' + ij _- )u f = ij __ _

S SO

where the surface integral on the right-hand side of equation (10) is over a
small near-tip region S only, since tJ are zero everywhere except on S

0 1 S0

Thus the computing time to evaluate the right-hand side integral is less since

the number of elements on S is much less than the total number of elements

on S •

3 STRAIGHT FRONTED CRACK: MODE I

Equations (8) and (9) are now applied to the determination of weight

functions and opening mode stress intensity factors for a straight-fronted

planar crack. For this case P = P = 0 in equation (8). The traction t
1 3

now becomes the applied force P2 " In order to avoid numerical difficulties

mmmmm ii



7

due to the resulting singular field, this force is modelled by taking S0  to

be a cylindrical cavity of radius r0 centred on the crack front with a displace-

ment field vj prescribed over its surface.

This avoids numerical difficulties due to the singular field resulting

from P2  and, if r0  is small enough, adequately represents the presence of

the force P2  near the crack tip. The displacement field is taken to be that

for a semi-infinite planar crack subjected to forces perpendicular to the crack

surface and has been derived from the general solutions given by Kassir and
6

Sih The displacement field on a cylindrical surface r = r0  near the crack

line may be written, using the equation (3) in the Appendix, with

i- 3/2) 2u Rv2O = p /r0 , Zo = x3/ro and R= limP/ra ir ,as
c O

1 3/2 sie n 2) 4 cos ev = -u o  (1 - 2v)r 0  A - (%p P0 +  PO

uo ~0 I oj

v3=-uf (i-2P 0  2&B -n~-0(

P0

Equation (10) is solved for uj o S and tj on S O for a body

subjected to the displacement conditions on the cylindrical cavity given by
equation (11). Te opening mode stress intensity factor is given from

equation (8) by

K 3" 3/2 J Uds , (12)
4(1 - 0)(lr 0) 32

I 0

where qu i u,/u 0 is the norflised weight function for the body and t are

1 0

the applied tractions for which K is to be determined.

C

eqain()b
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4 SOLUTION STABILITY

It is necessary to choose an optimum value for the radius r. which must

be sufficiently small to represent adequately the concentrated forces near the

crack front but not so small that the cavity cannot be modelled without using an

excessive number of boundary elements on its surface. The stability of the

solution, as r0  varies, is studied using an edge cracked bar of rectangular

cross-section, thickness t , width b and total length 2h . The bar contains

an edge crack of uniform depth a across the thickness t .

The element distribution on the surface of the bar is shown in Fig 2, for

a = 0.5b, t = 1.5b, h = 1.5b • There are a total of 68 elements, 46 on the rec-

tanglar surfaces and 22 on the cylindrical cavity. The elements on the cavity

were clustered in the vicinity of the origin of the singular field in order to

model accurately the rapid variation of the field in that region. Because of

the symmetry of the bar about the crack-line, only half of the configuration

needs to be modelled.

Weight functions were determined from the solution of equation (10). The

stress intensity factor at the mid-point on the crack front was calculated from

equation (12) for a uniform stress applied over the ends of the bar as shown in

Fig 3. The variation of the normalised stress intensity factor K/ aowa with

r /t for 0.003 < r /t < 0.01 is shown in Fig 4.

Results for various values of t/a and h/a are compared with the known

plane strain value8 which they should approach for large t/a • It can be seen

that the present results differ from the plane strain value by less than 2% for

r /t < 0.006, and for any given configuration the maximum variation is 12% over

the whole range of r /t - For subsequent calculations a value of r /t - 0.004

was chosen.

5 VARIATION OF THE STRESS INTENSITY FACTOR ALONG THE CRACK FRONT

In order to illustrate the versatility of the method developed in this

paper, it is applied to the determination of stress Intensity factors at differ-

ent positions along the crack front for the edge cracked bar shown in Fig 3,

with the same dimensions as given in the previous section. This problem has

also been solved by Raju and Newman 9 using the FEM and by Mendelson and Alam10

using the method of lines (MOL). The boundary element equation (10) is solved

for the weight functions with the coordinate origin of the singular field at

x 3/t = 0.0, 0.15, 0.3, 0.4 and 0.45 - These weight functions are used in

equation (12) with t = ox2 where a is the uniform tensile stress acting
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on the ends of the bar. The resulting normalised stress intensity factor

K I a/ia is shown in Fig 5 as a function of position along the crack front.

These results are compared with those determined by Raju and Newman9: other
10

results show similar trends. Also shown in Fig 5 is the plane strain solution

for the case t = - . This is close to the three-dimensional solution near the

centre of the body but differs significantly in the region x3/t > 0.4 , where

the traction-free boundary conditions on the faces of the bar affect the stress

intensity factor.

The boundary element results were determined using 68 surface elements
9compared with 432 solid elements in the finite element analysis . Thus the BEM

coupled with a singular field, as developed herein, represents a substantial

saving in data preparation and computer storage. Furthermore since the method

produces weight functions, the stress intensity factors along the crack front

can be determined for any symmetrical loading on the body without re-solving the

boundary element equations.

6 CONCLUSIONS

A three-dimensional singular field has been derived and used to model

point forces acting at a crack tip in a boundary element analysis. The tip is

replaced by a cylindrical boundary over which the field acts; an optimum value

is suggested for the radius of the cylinder.

This field combined with the boundary element method can be used to

determine weight functions on all surfaces of a body simultaneously, and hence

the stress intensity factors for arbitrary loadings can be calculated.

This combination is more efficient than the standard boundary element

procedure because it requires less boundary integrations: it also requires much

less data preparation and storage than domain methods. Even with relatively

coarse meshes, accurate values of the stress intensity factor were obtained for

a cracked bar.
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Appendix

DERIVATION OF SINGULAR FIELD

From Ref 6 the displacement field for a semi-infinite planar crack subjec-

ted to opening forces ±P2  perpendicular to the crack are given (see Fig I for

P = 0, j = 1,3 and x . 
= x. j = 1,2,3) by

jj 3

vI (I - 2v) -2 d x  + x  X

v 2 I -2(l - V) flI + x2 afl (A-1)

2 2 2axx2

II

I v f I xfl
v 3  (1 - 2v) - d x 2 + x 2 3x

where

2= 2 tan- sin95 .)]
217 2 [2V 22)

The constants W and v are the shear modulus and Poisson's ratio respec-

tively, (r,e) are the polar coordinates in the xi, x2  plane, p is defined

by

2 2 2 2
p = (x1 + c) + x 2 + x3

and the coordinate system xj j = 1,2,3 has an origin on the crack line with

the x directions parallel to the normal, the binormal and the tangent to the

crack front.

I RI
In the limit as c + 0 , f1  2 - sin

C)

r-
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Appendix

where

R, = lim 112 1
c+O 7T /

and now

2 2 2 2p = xI + x2 + x3

Writing

f -

.r2U

where

g -
2

p

equations (A-I) become

v -- (1 - 2v)A + x ag
2T ax1

_ ag I

2  2(1 - v)g + x2 a (A-2)
V3

vI = - , (1 - 2v)B + x agi ,
V4 2 ax 3

where the derivatives are given by

L Lx 1  - - x ( . + 4 ,ax I ~2p 3  
r

ag I  x 2  ( 4(r-xl)ax 2  3V - -- r,
2 2p vr - x

300

i~~~~x Pi mm 4i i I - am
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The functions A and B are then given by

I x + x2) x l 2 + x_ ) 2x2 .
A 2 Jj £ x2 ) x dx2

and

B = - 2x 3  [X1 + x[(- xj dx 2

(2 2 2)

f xI +x 2 +x 3)

Substitution of xI + x2 = t enables the integrals to be evaluated and

the final expression for the singular field becomes

R r3/2 sin 6 sin() _ 4r o

v I  =(- 2v)A - +

- R Vf-22(1 - )r sin(.) r' 2 [ 4r(1-cos )]}v 2 I G) . srin2 -6 -r~ co (A-3)

2 " 2 2/7 2 sin(,) rP

3/2

v I RI ~~2v _22 x3r sine6snI~v 3  = - .. (i -2v)B 3
34 IJV2 p

where

A L L sin 0 
+ T cos 00 - x- B

2x3 R

and

x3r3/2( G- cos 0) cos( ) x3

22 45/2 (co 0 + 3 sin 0L

Rp 4R "3
00

+ 3 sin *o - Cos 0JT

2R5I'2 co3
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Appendix

Ir(l + cos 8) + R - 2I 2/r cos o0 cos(-)]
Ir(l + COS 6) + R + 2VF2-r co. 00 Cos(-)

T = tan 0 2

r(1 + cos 8)- RJ

where t a n- ) R = 2 + X 2

e = -- (i) , 2 2'7 7
6 a- (x2) 2 T_2 2

\ I x 1 + x 2 + x 3

H

W0
Wo
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Fig 3
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Fig 3 Edge cracked rectangular bar subjected to uniaxial uniform tensile stress
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Fig 4 Effect of radius r0 on the stress intensity factor at mid-thickness



Fig 5
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