“END-OF-FISCAL-YEAR” REPORT

Speech Recognition:
Acoustic-Phonetic Knowledge
Acquisition and Representation

Office of Naval Research
Contract N00014-82-K-0727

Covering the Period
1 October 1986 – 30 September 1987

Submitted by:
Victor W. Zue

September 24, 1987

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Research Laboratory of Electronics
Cambridge, Massachusetts 02139
"End-of-Fiscal Year" Letter

A. Description of Scientific Research Goals

Our long-term research goal is the development and implementation of speaker-independent continuous speech recognition systems. It is our conviction that the proper utilization of speech-specific knowledge is essential for such advanced systems. Our research is thus directed toward the acquisition of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms.

B. Significant Results in the Last Year:

• We continued our investigation into the contextual variations of speech sounds, emphasizing on the role of the syllable in these variations. Our analysis revealed that the acoustic realization of a stop depends greatly on its position within a syllable. In order to represent and utilize this information in speech recognition, we have adopted a hierarchical syllable description that enables us to specify the constraints in terms of an immediate constituent grammar.

• We developed a featured-based framework for phonetic recognition, and implemented a recognition system for semivowels in American English. The recognition process is divided into two stages, detection and classification. Recognition accuracy ranging from 78 to 95% were obtained across different contexts and speakers.

• We continued our efforts to capture the knowledge used by human spectrogram readers and to incorporate it into an expert system. Our emphasis has been on establishing human performance benchmarks, both for auditory perception and spectrogram reading experiments. The results indicate that listeners can correctly identify stops in various environments with accuracy ranging from 85 to 97%. Performance of the spectrogram readers is 10 to 15% lower.

• We refined our system for extracting visual objects from speech spectrograms, using a combination of directional and non-directional edge detectors. Our evaluations of the effectiveness of such representations show that spectrogram readers can recognize speech sounds from such impoverished representations with high accuracy. Also, the recognition system using only the information contained in the objects can achieve comparable performance to that realized using a conventional signal representation. Finally, speech resynthesized from the visual objects is highly intelligible.

• We explored several models of the refractory effect of auditory nerve fibers - that is, the fiber's inability to fire twice in rapid succession. A significant outcome of this study is that the effect contributes a nonlinearity which operates like an automatic gain control. Our tentative conclusion is that an enhancing nonlinearity has evolved in the cochlea so as to nearly counterbalance the compressive refractory effect.
• We began work on a spelling recognition task that, taking the 26 letters of the English alphabet as its vocabulary, would recognize continuously spoken letters in the context of spelled words. Our lexical analysis reveals that strong sequential constraints exist for letter strings. Listening and spectrogram reading performances were found to be quite high (98% vs. 91%). For those letter pairs that were found to be confusable by humans, we were able to find acoustic parameters that can reliably disambiguate them.

C. Plans for Next Year’s Research:

• We will continue to quantify the effect of context on the acoustic realization of phonemes using larger constituent units such as syllables. In addition, we will develop a grammar to describe the relationship between phonemes and acoustic segments, and a parser that will make use of such a grammar for phonetic recognition and lexical access.

• We will begin a study to quantify the effect of various factors, including speaking rate, on the temporal structure of speech, and to develop a durational model that takes these factors into account.

• We will explore alternative phonetic recognition and lexical access strategies using neural nets, and also compare neural net approaches to stochastic modelling approaches such as hidden Markov modelling.

• We will extend and refine our experimental phonetic recognition system based on an expert system that mimics a spectrogram reader. Declarative knowledge for stops in singletons and selected clusters will be embodied in the system.

• We will begin to explore a speech recognition strategy based on distinctive feature theory. We will place our emphasis on identifying and implementing acoustic property detectors for some of the important distinctive features, and on determining lexical access strategies based on the distinctive features.

• We will explore alternative language modelling strategies that embed traditional linguistic descriptions into a stochastic framework, so that more habitable grammars can be developed for speech understanding.

D. List of Presentations: Please see enclosure 2.

E. List of Technical Reports: NONE.

F. List of Publications: Please see enclosure 2.

G. List of Honors/Awards: NONE.
H. Participants:

Principal Investigator
Victor W. Zue

Research Staff
Dennis Klatt
David Kaufman
Niels Lauritzen
Michael Phillips
Stephanie Seneff

Graduate Students
Nancy Daly (S.M. degree granted June, 1987)
Susan Dubois
Carol Espy-Wilson (Ph.D. degree granted June, 1987)
James Glass
Rob Kassel
Lori Lamel
Hong Leung
John Pitrelli
Mark Randolph
Timothy Wilson (S.M. degree granted June, 1987)

Undergraduate Students
Charles Jankowski
Amy Lim
Hirak Mitra
Andrew Shaw
Sean Tierney (S.B. degree granted June 1987)
David Whitney

I. Other Sponsored Research:

- Title: Acoustic-Phonetics Based Speech Recognition
 Sponsor: Naval Electronic Systems Command (DARPA)
 Amount: $2,018,533.00

- Title: Speech Database Development
 Sponsor: Naval Electronic Systems Command (DARPA)
 Amount: $501,194.00
Title: Tools for Speech Analysis and Research
Sponsor: Space and Naval Warfare Systems Command (DARPA)
Amount: $641,526.00

J. Computer Net Address: zue%speech@mc.lcs.mit.edu
List of Publications/Reports/Presentations

1. Papers Published in Refereed Journals and Conference Proceedings:

Theses:

2. Theses:

3. Presentations/

 a. Invited

 b. Contributed

4. Books (and sections thereof)

Enclosure (2)
<table>
<thead>
<tr>
<th>Name of Person Receiving Award</th>
<th>Recipient's Institution</th>
<th>Name of Award</th>
<th>Sponsor of Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Papers Submitted to Refereed Journals (and not yet published): 1
Papers Published in Conference Proceedings: 3
Books (and sections thereof) Submitted for Publication: 0
Books (and sections thereof) Published: 0
Patents Filed: 0
Patents Granted: 0
Invited Presentations at Topical or Scientific/Technical Society Conferences: 3
Contributed Presentations at Topical or Scientific/Technical Society Conferences: 0
Honors/Awards/Prizes: 0
Temes: 2
Number of Graduate Students: 9
Number of Post Docs: 1

Enclosure (4)
<table>
<thead>
<tr>
<th>Name</th>
<th>DODAAD Code</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Information Sciences Division</td>
<td>N00014</td>
<td>(1)</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative Contracting Officer E19-628</td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge, Massachusetts 02139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>N00173</td>
<td>(1)</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Code 2627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>S47031</td>
<td>(12)</td>
</tr>
<tr>
<td>Bldg. 5, Cameron Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
END
Feb.
1988
DTIC