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I. INTRODUCTION

Candidate liquid propellants are composed of aqueous nitrate salts, the

major ingredient being hydroxylammonium nitrate. The high solubility of these
salts in water allows production of a liquid with sufficient energy content

for use as a propellant. Moreover these concentrated salts remain a stable
liquid over environmental temperatures exceeding -50 to +500 C.

Macroscopic transport properties such as viscosity and conductivity are

of importance in the engineering design of a liquid propellant gun system.
Since present theories cannot predict the behavior of these concentrated salt
solutions, the properties must be directly measured. In the interest of
advancing the understanding of the structure of solutions of HAN, as well as

providing a data base, we have been performing Raman spectral measurements on
HAN as a function of solute concentration. In an earlier BRL report1 the
experimental technique and some Raman spectra of aqueous HAN were presented.
The HA+ cation, NOi anion and H20 solvent species were all uniquely identified
from their characteristic spectral signatures. This continuing study focuses

on the vibrational modes of NO which have proven extremely useful as a

spectroscopic probe of the solution structure. The interactions of the
nitrate ion with its surroundings can slightly alter the normal mode
vibrational frequencies and is, thus, a sensitive indicator of structural

change. Correct interpretations of these vibrational variations can provide

information about macroscopic phenomena.

The nitrate ion has six normal modes of vibration, five of which are
Raman active; two of these are degenerate. The v4 (E') degenerate mode and

the v1 (A') symmetric stretch mode were more closely investigated to determine
changes in vibrational frequencies as a function of concentration. Much of
this study was performed to determine whether a case could be made for ion-

pairing by analogy with published Raman spectra of other aqueous salts.

Many combinations of ions and solvent molecules with a net charge equal
to zero can be envisioned, but the two simplest and most discussed forms are
the contact-ion-pair and the solvent-separated-ion-pair. In the strict sense

the difference between an undissociated molecule and an ion-pair is that the
molecule consists of a number of atoms held together by covalent electronic

bonds, whereas the ion-pair is held together entirely by electrostatic Coulomb
forces and neither cation nor anion lose their identity. This definition
works well for an alkali metal-halide salt. However, when applying the

definition to salts such as aqueous HAN where the cation, anion, and solvent
molecule can all form hydrogen bonds, the forces involved in ion-pairing can
be much more complex.

In 1926, Bjerrum 2 defined the concept of an ion-pair in terms of an
interionic distance at which the electrostatic binding energy equals 2kT.

That is,

IZlZ 2 Ie
2

2ckT

where a cation and anion which are separated by a distance 4b are considered

paired and longer separations considered free. ZI and Z2 are the valences of

* 7



the cation and anion, e is the electrostatic charge, e is the dielectric
constant, k is the Boltzmann constant, and T is the absolute temperature.
This is certainly a simplified approximation of ion-pairing for the case at
hand; nonetheless, some qualitative trends may be determined. For instance,
it is known that the dielectric constant of the solvent governs the magnitude
of all electrostatic interactions, and, as will be shown, greatly influences
ion-pairing.3 The Bjerrum equation also indicates that ion-pairing is favored
as the temperature is lowered. Frost and James have observed this trend for
aqueous sodium nitrate solutions, and we have made some measurements on
aqueous HAN which is consistent with this trend. It is also well known
experimentally that multivalent ions are more apt to ion-pair, but our
discussions here will concern only monovalent ions.

II. EXPERIMENTAL

The experimental setup is essentially the same as that discussed in Ref.
1, with a few minor alterations. For the data presented here, the 514.5 nm
line of an Ar+ laser was the source of excitation. Moderate resolution Raman
spectra (6 cm- I FWHM) were obtained with a 1/4 m spectrograph-intensified
reticon array combination. The spectrograph has a 100 micron entrance slit
and a 2400 groove/mm grating. The detector in this configuration could
observe about 20 nm of Raman spectra simultaneously. Data from the detector
were accumulated by a computer for storage and analysis.

Nominal 13 M aqueous HAN solutions were obtained from Klein of the BRL
(dilute aqueous HAN solutions were produced via electrolysis of nitric acid by
Southwest Analytical Chemicals, Inc., and then concentrated by solvent
stripping under vacuum) and diluted with distilled water to produce some of
the less concentrated solutions used in this study. Solid HAN samples were
prepared by removing the water from 13 M HAN under vacuum at room temperature.
The solid formed was quickly transferred to a spectrophotometer cell and
sealed with a rubber finger. At this point the solid had rough irregular
surfaces. The sample in the cell was then gently warmed until it liquified.
After the sample cooled back to room temperature, it resolidified with a
smooth surface usable for spectroscopic studies.

III. RESULTS AND DISCUSSION

Raman spectra of the v, (At) symmetric stretch mode of N03 occurring in
3.0, 7.0, 11, 13, and 15 M aqueous HAN solutions aye shown in Figure 1. The
spectral region displayed is about 900 to 1200 cm StokeT shifted from the
laser excitation lineI Both the vI (Ai) peak at 1048 cm- and a N-OH
vibration at 1010 cm-  can be observed in this region. Some of the
characteristics of the spectra are listed in Table 1. On this scale, both
peaks in Figure 1 appear symmetric for all the concentrations studied. The v,
(Al) peak position shifts to slightly higher frequencies as the HAN
concentration is increased and the linewidth of this transition increases with
increasing concentration. This finite linewidth, aside from the instrument
function, physically corresponds to a situation where all the anions (NO-) in
solution do not have exactly the same environment giving rise to a vibrational
frequency distribution around a mean frequency value. This environment can
also change with time giving a fluctuating vibrational frequency. The
environment surrounding the NO changes from about eight water molecules per

8
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ion at 3 M to about 0.3 water molecules per ion at 15 M. This change from
largely ion-water interactions to anion-cation interactions is responsible for
the frequency shift and broadening of the linewidth. Because of these changes
in position and linewidth the "apparent" symmetric shape of the v, (Aj) Raman
mode could be the result of several symmetric peaks of slightly different mean
frequency values where the amplitude of these peaks change as the environment
around the NO3 changes. Various cation-anion pairing entities have been
assigned to deconvolutions of the Raman modes of NO.

Table 1. Spectral Characteristics of the v1 (A') and v4 (E') NO3
Vibrational Modes as a Function of Concentration for Aqueous RAN Solutions

v (A) v, (Aj) v4  WE) V4 W '

Linewidth Integrated Linewidth Integrated
Concentration vI (Aj) Peak (FWHMj* Intensity V4 (12) Peak (FWHM?* Intensity

Mlo.ar Position cm -  cm Arb. Position cm -  cm Arb.

3 1046.8 8.2 1.14 721.7 18.0 0.87
7 1047.1 9.5 2.63 723.3 19.0 2.17
11 1047.7 10.6 4.14 724.1 19.6 3.56
13 1048.0, 11.0 4.87 725.0 20.3 4.25
15 1048.3 12.0 5.69 725.0 + +

SOLID HAN 1047 <5 ---- 727.5 (11

*The spectral resolution is given as full width at half maximum.
+A large fluorescence signal obscured these results.

Using published results as an analogy, some conclusions about aqueous RAN
can be drawn. Literature data on spectral characteristics of some monovalent
aqueous salts, together with this work for aqueous HAN, are c9ntained in Table
2. It can be seen that all the alkali metal solutions listed4,5,6 exhibit an
increase in Raman frequency and linewidth with increasing concentration. This
is true to a lesser extent with K+, but the saturation limits of K+ in water
prevented a pro er comparison at higher concentration. From Table 2 it is
seen that NH3OH exhibits behavior similar to the alkali metal cations and not
NH. One might first think that NH+ is more like NH3OH since both cations
have the ability to form hydrogen bonds. However, Vollmar5 concluded from his
studies that there is similar hydrogen bonding between NO3 and either NH4 or
H20 and thus, the environment, as seen by NO3, is not changing as the solute
concentration changes.

Many structures have been postulated from curve resolving the vI (A,)
mode of NO3. For aqueous salt solutions, such as NaNO 3, which exhibit
frequency and linewidth changes with changing concentration Frost and James4

have resolved the curve into four principal components. These are: a free
aquated N0 at 1048 cm- , a folvent-separated-ion-pair at 1050 cm- I a
contact-ion-pair at 1052 cm and larger ion aggregates at 1070 cm-1 . By
expanding the frequency scale for the vl (A') mode as shown in Figure 2, the
peak frequency and linewidth differences between 3 and 13 M HAN solutions can

9
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clearly be observed. A least squares procedure was used as an attempt to fit
the 13 M curve with two symmetric curves, however, this did not provide any
improvement over a single symmetric curve fit. It is still possible that the

13 M curve may be a sum of comp nents, but the resolution of the data does not

seem to warrant that type of analysis at this point.

Table 2. Comparison of the Spectral Characteristics of the v, (At) Mode

of NO3 in Aqueous HAN With Published Results for Some Other Aqueous
Monovalent Salt Solutions

v, (A|) v, (A')

Concentration Peak Position Linewidth

Cation Molar cm-1  cm-' References

Li+  0.85 1048.45 11.68 6
8.51 1052.07 14.77 6

0.40 14.8 7
10.0 18.1 7
1.0 1048.2 Increases by -70% over

10.0 1051.9 this range 4

Na+  0.70 1048.9 11.60 6

7.04 1052.07 13.15 6
0.56 15.0 7

7.00 15.8 7
1.0 1048.4 Increased by -40% over
8.0 1051.1 this range 4

K+  0.26 1048.41 11.52 6
2.58 1049.22 11.60 6

0.5 1048.2 Increases by -4% over
2.75 1049.1 this range 4

NH+ 1.00 1048.0 11.56 6
9.98 1048.0 11.68 6

1.00 1047.6 Essentially constant over

10.00 1047.8 this range 4
NH30H+ 3.0 1046.8 8.2 This Work

11 1047.7 10.6 This Work

15 1048.3 12.0 This Work

In much more dilute aqueous HAN solutions (about 140 water molecules per
ion), it is found that solvation is preferrld over ion-pairing. This result

follows from analogy with the data of Janz. He demonstrated this behavior
with AgNO 3 dissolved in various mixtures of water and acetonitrile. With

AgNOi dissolyed in water, the v, (A ) band of N03 exhibits one symmetric peak
at -1046 cm- . When AgNO3 is dissolved in acetonitrile the v1 A1 ) band

becomes quite asymmetric and can be resolved into two symmetric peaks centered

at 1041 and 1038 cm- . Dissolving AgNO3 into various mixtures of these
solvents cause the rylative proportions of these peaks to change. Janz
assigns the 1041 cm- peak to aquated or free NO and the 1038 cm-1 peak to

10



contact-ion-pairs. In this work, we obtained the Raman spectrum of AgNO 3  "

dissolved in CH3 CN and compared it with the spectra of HAN dissolved in H2 0
and then CH3CN. Figure 3 contains a comparison among: (a) -0.2 M aqueous
HAN, (b) -0.2 M AgNO3 dissolved in CH3CN, and (c) -0.2 M HAN dissolved in
CH3 CN. From Table 1 the vI (Al) mode of N03 is found to occur at 1046.8 cm-

for 3 M aqueous HAN. Using this frequency for 0.2 M aqueous HAN, values of

1036.5 and 1039.8 cm are estimated for the double peaked band of Figure 3b.
When HAN is dissolved in CH3CN, the v, (A ) band shifts to about the same
position as AgNO 3 in CH3 CN. The shapes of the bands, Figures 3b and 3c, are

different, but both are distinctly asymmetric indicating multiple NO-
entities. No ion-pairing behavior is exhibited for HAN or AgNO 3 with a H20

solvent. Consequently, we conclude that aquated ions are favored over ion-
pairs with the highly polar water solvent which is in accord with Bjerrum's

criteria. Nevertheless, the concentrations of interest, around 11 M for
propellant applications, are such that there are insufficient water molecules
for complete aquation.

Before leaving the symmetric stretch vibration of NO, a contrast between

13 M aqueous HAN and solid HAN is made in Figure 4. Immediately apparent is
the narrowing of the linewidth of the solid HAN vibrational modes. The

linewidth decreases from 11 cm-1 to values less than 5 cm-1 when HAN
solidifies. An apparent shift to lower frequencies also occurs upon

solidification, see Table I. Only approximate values for the solid data are
given because they appeared time dependent. Experimental spectra were

gathered on solid HAN over three consecutive days, and the linewidth was
observed to narrow with time. Linewidths typically narrow substantially when

changing from liquid to solid phase as the orientational dynamics are frozen
out. This decrease in linewidth with time is speculated to be the solid

changing from an amorphous to crystalline state. The laser excitation source
provides some heating of the sample which could promote this process. More

will be said about the solid in the discussion of the v 4 (E') mode of NO3 .

The degenerate in-plane bending mode of N03 has also been investigated

for various concentrations and temperatures; these results are displayed in

Figures 5 and 6, and Table 1. This v4 (E') mode is Raman active only, and
extensively referred to in the literature as a diagnostic for the
determination of contact-ion-pairing. Unfortunately, the data reported are of

only fair-quality for the following reason. The v (E') mode is about a
factor of ten weaker than the v (A') mode which in itself does not cause

difficulty. However a laser induced fluorescence impurity signal (to be
discussed in more detail later) comprising about 50% of the total v4 (E')
signal caused the signal-to-noise ratio for this Raman mode to be poor.
Nonetheless, we can still distinctly see (Table 1) that both the linewidth and

peak position increase with increasing HAN concentration, similar to the

behavior of the v1 (Al) mode. With this quality of data, small asymmetries,
indicative of any contact-ion-pairing, cannot be unambiguously determined.

The type of behavior reported in the literature for the v4 (E') band of NO3
is that a band around 717 cm-1 occurs for either aquated NO3 or solvent-
separated-ion-pairs and another band around 740 cm- is reported to occur for

contact-ion-pairing. Several Raman spectra for the V 4 (E') mode in 13 M
aqueous HAN, see Figure 6, have been obtained over a temperature range from
-50 to 22°C. The curve peaking at 725 cm- 1 is for room temperature (22C) and

this mode shifts to higher frequency as the temperature is decreased. An
increase of 4.4 cm-1 is observed for a temperature decrease of 72°C. The

11
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-50°C curve appears somewhat asymmetric, however, it was felt that the data is
not sufficiently precise to attempt a deconvolution. It is interesting to
note that Bjerrum's contact-ion-pairing distance criteria increases with
decreasing temperature, and the center frequency of the v 4 (E') mode moves in
the direction of the reported contact-ion-pair frequency as the temperature is
decreased. Our results for this Raman mode are consistent with the presence
of aquated ions, solvent-separated-ion-pairs, and a small amount of contact
ion-pairing existing in the concentration range studied.

Dramatic time dependent changes were observed to occur in the 4 E')
Raman mode for the solid HAN that we produced. A Raman spectrum of 13 M HAN
is contrasted with three spectra of solid HAN taken on three consecutive days
after preparation, see Figure 7. Here again the linewidth decreases upon
solidification, however, the frequency increases upon solidification contrary
to the behavior of the v1 (A) mode. From day 1 to 3 the linewidth decreased
and two or more bands appeared with center frequencies around 724 and
730 cm- 1. Fifer's 9 Fourier transform infrared studies of solid HAN also show
two NO3 bands appearing at the same frequencies. Again the explanation
offered for the time dependence is changing from an amorphous to a crystalline
state.

As a consistency check on the experimental data for the v1 (A) and 4

E') Raman bands, their integrated intensities were obtained as a function of
concentration and the results are shown in Table 1 and plotted in Figure 8.
The proper linear behavior is demonstrated and a straight line extrapolation
of the v1 (A ) data passes through the origin as required, however, the v4
(E') extrapolation does not. Improper subtraction of the laser induced

fluorescence impurity background is probably responsible for this variation.

This laser induced fluorescence background was observed to vary
substantially for three different lots of aqueous HAN solutions studied, as
can be observed in the low resolution Raman spectra of 13 M aqueous HAN shown
in Figure 9. The fluorescence contribution, ranging from about 40% (bottom
spectra) to over 90% of the total signal, can seriously impair spectroscopic
probing. Several other tests have been performed to characterize the nature
of this impurity. As seen by eye it is apparent titat the degree of yellowing
of the solution is proportional to the amount of impurity. Two absorption
spectra, Figure 10, are shown for the 13 M aqueous HAN solutions that produced
the bottom and top Raman spectra of Figure 9. The large absorption at
wavelengths less than 350 nm is due to the nitrate ions, but in addition,
there is a substantial broad structureless absorption extending to wavelengths
beyond 550 nm, and this absorption must come from impurities. Since the
absorption spectrum appeared structureless, tests for possible microbe
contamination were performed. Microscope examination and culturing on several
media, however, gave negative results. NO2 has been suggested as a possible
decomposition product which could be consistent with these observations. To
date, experiments to detect trace amounts of this species have not been

attempted. Any substantial amounts of NO2 should lead to rapid sample
decomposition, and this is not observed. The yellowish samples exist for many

months without appreciable decomposition.

12
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IV. SUMMARY

From Raman investigations on the nitrate anion existing in aqueous HAN

solutions and a comparison with published results for other monovalent aqueous
salt solutions, some general structural characteristics of aqueous HAN have
been determined. In dilute HAN solutions, solvated ions are favored over
contact-ion-pairs. This phenomena is observed, in general, for monovalent

salts when the solvent has a large dielectric constant such as water. As the
concentration of HAN is increased, complete solvation or aquation is no longer
possible. At such concentrations, solvent-separated-ion-pairs and contact-

ion-pairs can exist. The entities do not exist in isolation since the

concentration of solute is such that there are other ions in the near
vicinity. Becaise of the influence of many ions on each other, the Raman
spectral perturbations can be less than for isolated contact-ion-pairs as one
would have in systems where the solvent has a low dielectric constant.

Lastly, an impurity causing laser induced fluorescence signals has been
partially characterized. This impurity is not associated with any appreciable

decomposition of the material; nonetheless, it can seriously degrade certain

spectroscopic observations.
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Figure I. Raman Spectra of the VI (A) Mode of NO Taken for 3, 7,

I, 13, and 15 M Aqueous HAN Solutions. The concentrations are displayed
in order; 3 M being the top spectrum. The vertical line is drawn in to

emphasize the frequency shift.
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Figure 2. Raman Spectra of the vI (AI) Mode of NO3 Taken for 3 and
13 M Aqueous HAN. The top spectrum is 3 M. The frequency scale has

been expanded about threefold from that of Figure 1.
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Figure 3. Raman Spectra of the vI (Al) Mode of N0 Taken for "-0.2
HAN Dissolved in CH3CN (Top Spectrum), -0.2 M AgNO3 Dissolved in CH3CN

(Middle Spectrum), and -0.2 M Aqueous HAN (Bottom Spectrum)
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Figure 5. Raman Spectra of the v4 (E') Mode of NO3 Taken for 3, 7, I,
and 13 M Aqueous HAN Solutions. The concentrations are displayed in
order; 3 M being the top spectrum. The vertical line is drawn in to

emphasize the frequency shift.
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Figure 9. Raman Spectra for 13 M Aqueous HAN Solutions Showing the

Effect of a Fluorescence Impurity. Maximum impurity is in the top

spectrum, decreasing downward.
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