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I. INTRODUCTION )
t
The concept of accelerating particles using an electromagnetic railgun s
has been pursued for many years. Railguns and their subcomponents are low im-
pedance devices which require a power source capable of producing high currents. -
There are a limited number of sources which can meet these requirements. Among 3
these are rotating machines, which often need constant, careful maintenance :,
and, typically, create a pulse with a long risetime. Capacitors are also able o3
to supply large currents. They are readily available and relatively mainten- A
ance free, They must, however, be used with a pulse forming network to pro- '
tect them from discharging too quickly. This protection is usually in the form ~d
of an internal impedance which limits the minimum discharge time and the peak -3
current delivered from the power source. gp
L
The ARDEC Electromagnetic Launcher Facility, Picatinny Arsenal, Dover, :{
NJ, has five, 50 kilojoule, 10,000 volt, capacitor banks each having a maximum
current rating of 100,000 amperes. This current limit must be observed to pre- by
vent internal damage to the supply. It also makes tnese banks unsuitable for kY
pulsing loads which have an inductance less than one microhenry. One method o
to alleviate this, and achieve protection, is to operate the capacitor bank ~
in conjunction with a pulse transformer. Five coaxial pulse trausformers were ;
designed and built at the University of Texas, Center for Electromechanics, _
Austin, TX.l The ultimate goal of this project was to operate all five pulse S,
transformers, each driven by a capacitor bank, in parallel, to deliver a cur- :
rent pulse of two million amperes to a short section of a composite railgun ~)
barrel. The integrated system of capacitor banks and current step-up pulse ;‘
transformers has been named CAPSTAR. The laboratory set-up of the system is e
shown in the top of Fig. 1. As a means for validating CAPSTAR, a single, sub-
scale pulse transformer was constructed to verify estimates of performance and S
to corroborate the mathematical model. o
The purpose of this paper is to describe the mathematical model we have N
developed, report the verification done with the subscale pulse transformer b'
and CAPSTAR, and present the results from the initial testing of the CAPSTAR .
system. In Sec. Il of this report, we present an equivalent circuit for the N
puise transformer driving an arbitrary load and outline the method we have used o
to solve the equations. In Sec. III, the physical behavior of the pulse trans- ::!
former is dis.ussed. In Secs. IV and V, we show both calculated and measured N
electrical properties for each of the components in the transformer system. "y
Section VI describes a simulation of the performance of both the subscale and
CAPSTAR systems and the last section discusses the output from the simulation >
and expected performance if the CAPSTAR system were used to drive a railgun 2,
armature. v
A
Y
1I. CIRCUIT MODEL !
Consider the equivalent circuit representation for a capacitor driving f,
the primary of a current step up pulse transformer as shown in the lower por- gﬂ
tion of Fig. 1. The secondary winding of the transformer is connected to a ;i
1Pappas, J.A., Driga, M.,D. and Weldon, W.F., "High Current Coaxial Pulse :r
Transformer for Railgun Applications,' Proceedings of the 5th IEEE Pulsed ;
Power Conference, 1985. N
oY
"
1 o]
-‘\
o~
o
<.

A A AR AR



CAPACITOR  PRIMARY PULSE SECONDARY LOAD 5

BANK LEADS X-FORMER LEADS p

W

W

Rbank Lbank Rlead1 Llead1 (MLZ\/ F‘Ieadz Lleadz :

— AL ’

—_— '

1, q

Vo - Lprimary Lsecondary R :
1 \ 12 load :

C /_-\ (crowbar) .
F‘primary Rsecondary load "

R

F

[

&

-3

Figure 1. Photograph of CAPSTAR and Equivalent Circuit for Pulse Transformers. :
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load which comprises an arbitrary inductance and resistance. Summing voltages
around the right and left hand loops by Kirchoff's Law yields:

dIl dI2
vcap N Il(Rbank+R1ead1+Rpri) * TET(Lbank+L1ead1+Lpri) tat M1,2 (1)
and
dI2 dI1
0= IZ(Rsec+R1ead2+Rload) * dt (Lsec+L1ead2+L10ad) * “dt M1,2 ’ (2)

where M; 7 is the mutual inductance between the primary and secondary circuits.
From Eq. 2,

dI - -
T2 Ly Rypg) - WI/d) My
dt L (3)
2tot
where
L2tot = Lsec * LleadZ * Lload
and
R2tot = Rsec * RleadZ * Rload ¢
Substituting into Eq. (1)
A Veap = 1 Riror * M1 o 1o Roroe/Lotor) ”
= ~ ]
dt Lltot = (M%) 2/ Loeoe)
where
L -

1tot = “bank * llead1 * Lpri

and

Ritot = Rbank * Rlead1 * Rpri '

The performance of the circuit may be easily solved numerically by making the
substitution dI/dt ~ = AI/At for small At. The initial conditions Iy = 1> = 0

and VCap = Vcharge are updated by calculating the current charge and the
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capacitor charge. New values for Iy, I, and Vcap are found iteratively by
using Eqs. (3) and (4) with

_ dI
I =1 +-H? (at) (5)
and

Cap = Vcap - IlAt/C . (6)

The time increment, At, was decreased until the output did not change. A
value of 1 ps was found to be acceptable. A short computer code has been writ-
ten to solve Eqs. (3)-(6) and is included in the Appendix.

III. TRANSFORMER BEHAVIOR

The pulse transformers described here, and shown in Fig. 2, are similar
in geometry to a coaxial transmission line. The center conductor, or primary
winding, has radius a, and forms a single continuous helical winding which
passes through holes drilled in both secondary output buss bars. The outer
conductor, or secondary winding, is formed from tubular sections of thickness
{c - b). Each secondary segment end is joined in parallel with buss bar to
form the secondary output buss. This configuration produces a step up in cur-
rent and a step down in voltage from the primary to the secondary side of the
transformer. The ratio of the number of turns in the primary to the single
turn in the secondary can be used to describe transformer performance only in
special cases. Ideally, if the output of the secondary is shorted and the
pulse is relatively short, the ratio of secondary current to primary current
should equal the turns ratio.

Previous attempts to model the inductance and coupling of the CAPSTAR
system and the subscale transformer assumed that the magnetic field was com-
pletely enclosed by the space bounded by the inner wall of the secondary
tubes.? This type of modeling is only applicable for very short time pulses
and a shorted secondary. With the addition of any load inductance the current
ratio I3/I7 is no longer equal to the number of turns, N.

When no load is connected to the transformer, an apparent contradiction
arises in the field strength outside the secondary. The secondary tube can be
made quite thick to prevent magnetic field from the primary penetrating out-
side the tube. If, however, one observes no secondary current when primary

current is changing, opposite flowing eddy currents must occur on the inner :
and outer surfaces of the secondary tubes and field will exist outside the o
secondary even though none has penetrated into the conducting tube wall. 1In :%
tact, significant magnetic fields are observed outside the secondary at times o
too short for field to penetrate the wall thickness of the seccondary tube. For N
the purpose of this report, we will neglect eddy current losses in the second- ﬁi
ary tubes and assume that they are thin walled. o
zlielinski, Alex E., "Design and Testing of a Pulsed Current Transformer," ;;
ARDEC Technical Report ARLCD-TR-85005, April 1985, 5
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A. Circuit Inductances y

The inductive quantities in our mathematical model are sometimes diffi-
cult to measure. For this reason we wish to relate the model parameters to
measureable quantities., From Eq. (1), with the secondary open circuited, the

inductance seen from the primary terminals, Lyc, is equal to the inductance .
of the primary coil, Lpyj. Substituting Eq. (3) into Eq. (1), with the sec- "
ondary short circuited, the inductance seen from the primary terminals, Lg.¢, .
is:
= - M2
Lsc Lpri M 1,2/Lsec ) (8)
Substantially all the flux produced by the secondary links the primary
and the mutual inductance, My 3, is given by the secondary inductance times
N. Substituting in Eq. (8), N
L =1L_. ~-N21L . (9) N
sc pri sec
Rewriting Eq. (9), the secondary inductance may be expressed solely in terms
of measured quantities as
boc ™ Lse 3
S A . (10) :
L
Similarly the coupling constant defined as k = Mj o/ [Lprj Lsec]%: may also :3
be written in terms of measured quantities as: N
[
Y
1 P
k=1 - LSC/LOC]2 . (11) e
9
[
B. Circuit Resistances "
b
For the primary coil, resistance is calculated based on full current pene- M
tration in the winding (DC). This assumption is acceptable because of the
tilamentary nature of the wire winding. The minimum secondary resistance is ;t
calculated from the geometry of the secondary tubes. Again, from Eq. (1), {’
with the secondary open circuited, the resistance seen from the primary ter- -y
minals, Roc, is equal to the resistance of the primary coil, Rprj. Substi- .
tuting kEq. (3) into Ec. (1) with the secondary shorted, the resistance seen b‘
trom the primary terminals, Rge, is: “
Y
0
i
R =R __. + N?R . (12)
sC pri sec

Rewriting in terms of measurcd quantities:
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(13)

Since Roc must always be greater than Rprj, Rgec given in Eq. (13) is
somewhat less than actual value.

Equations (10) and (13) show that the secondary impedances referred to

the primary side of the current step up transformer are reduced by the square
of the turns ratio.

IV. CALCULATED PARAMETERS

A. Circuit Inductances

Shown in Fig. 2 is the geometry used for the pulse transformer. The pri-
mary inductance can be calculated from Ref. 3 as,

Lopg = [-002 7% (R/AXN) N7K;]-[.004 7R N [1.25 - In (Ax/a)]

. (14)
Where R is the mean radius of the helical primary coil, Ax is the spacing be-
tween turns, a is the radius of the primary conductor, and Kj is an end effect
coefficient given in Ref, 3. From the subscale transformer dimensions L =

11.89 pH. pri

In Ref. (1) the inductance seen from the primary terminals with the sec-
ondary shorted was verified to be that of straight coaxial tubes with length
21RN. This is expressed as:

L. = N uy R [.25 + In(b/a)] . (15)

The short circuit inductance calculated from Eq. (15) only includes the

magnetic energy of the coaxial configuration. Hence for the subscale transfor-
mer:

Lo = 1.17 pH.

From Eq. (11), the coupling constant is .949. From Eq. (10) the secondary in-
ductance is 670 nH.

B. Circuit Resistance

The DC resistance for the primary coil was calculated based on the hand-
book value for No. six gauge stranded copper wire as,

R' = 1.29 milliohm/meter

3Grover, F.W., Inductance Calculations, D. Van Nostrand Co., Inc., NYC, 1946,
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Lf giving

4 R . =9,7 milliohms .
: pri

The minimum resistance for the secondary tubes (see Fig. 1)} may be calcu-
lated based on the cross sectional area of conductor which has been penetrated
by current as,

Rope = 2 "R/[0(n(c2-bD)] .

The total for all four tubes in parallel is,

Ry = 335 W2 .

V. MEASURED QUANTITIES

The parameters of interest Lgc, Lges Rge and Rge, are measured as a func-
tion of frequency. These inductances are shown in Fig. 3 while the resistances
are shown in Fig. 4. For peak current times in the 60 to 100 microsecond
range, a frequency of 4000 Hertz was selected to evaluate the inductances.

The corresponding open circuit and short circuit inductances are 12.4 pH and
2.11 pH. The measured short circuit inductance does include, however, the
output buss of the transformer as well as the inductance of a short composed
of a foil. The secondary inductance from Eq. (10) yields 643 nH and the
coupling constant, k, from Eq. (11) is .91.

In considering the resistances, it was best to use the lowest possible
frequency measurement (100 Hertz), The corresponding open circuit and short
circuit resistance are 10,1 milliohms and 13.1 milliohms. The secondary re-
sistance calculated from Eq. (13) yields 188 uQ.

VI. SIMULATION AND MODEL PERFORMANCE

The circuit model was found to be very useful in understanding the per-
formance of the pulse transformers. The quantities used in the model may be
obtained in three different ways: they may be derived from measured quanti-
ties as shown in Sec. III; calculated from physical principals as shown in
Sec. IV; or derived from iterations of parameter variation to best obtain good
agrecement between the experiment and transformer model. Departures are made
from DC values that are consistent with the circuit geometries and current
time dependence.
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A. Subscale Transformer

The first load used to characterize the transformer was a foil short.
The load inductance and resistance were measured on a Hewlett Packard LRC
Bridge (Model 4274A). Since the foil is thin, the values for inductance and
resistance are fairly constant over a wide frequency range. Also, since in-
creasing the load inductance has a major effect on the transformer's perform-
ance, the results obtained with the least amount of secondary inductance would
best characterize the transformer's behavior. The model capacitor power sup-
ply used to pulse the transformer had been characterized previously.? All
values in the model were adjusted until good agreement between simulation and
experimental data were obtained under short circuit conditions. Once the
transformer's output could be predicted with a short circuit load of finite
inductance and resistance, a one turn coil was used as the secondary load.
Again, impedance measurements were made of the load at 4000 Hertz. The simu-
lation was run using the adjusted numbers determined under the shor: circuit
conditions. Figure 5 shows the ratio of primary to secondary currents for
the two different load cases. For the coil load case, the model uses a meas-
ured resistance at a frequency which corresponds to the time for current to
peak (4000 Hertz). From skin depth calculations the current will fully pene-
trate the coil's cross section at 230 microseconds. Since the load coil's
cross sectional dimensions are much greater than the transient skin depth one
expects the coil's resistance to be significantly higher at early times and
much lower at later times. The effect of the high coil resistance (needed to
simulate the experiment at short times) can be seen in Fig. 6. At 150 micro-
seconds the calculated secondary current starts to fall from the experimental
curve. This implies that the load resistance used in the calculation is too
large for that region of time. The code does not take into account the time
dependence of these circuit elements. Table I summarizes the calculated, ex-

perimentally measured and the adjusted parameters used for characterizing the
subscale transformer circuit.

B. CAPSTAR System

The detailed design and construction for the full scale transformers are
presented elsewhere together with some initial test results.! Because of the
confidence in the circuit model and its validation, the CAPSTAR system was
simulated in the same way. The capacitor bank's internal parameters were cal-
culated from experimental data; Lpgpx v 1 pH and Rpgpx ™ 10 milliohms and the
crowbar turn on voltage v -400 v. As in the subscale pulse transformers test-
ing, a short was used initially to evaluate the transformer's parameters.

The inductance and resistance for the secondary common load plate connection

were calculated from the voltage drop and secondary dI/dt traces. This was
also done for the aluminum short load.

Table II shows the adjusted and calculated parameters used for character-
izing CAPSTAR.

Figure 7 shows the amount of magnetic energy transferred to an inductive
load for two configurations: One in which the five capacitor banks are uscd
in parallel and one in which they are used in conjunction with the pulse trans-
formers. The cut-off point for use of CAPSTAR to drive an inductive load to

maximum energy appears to be 240 nH with 10 uR of resistance and, 125 nH with
1000 i of resistance.
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TABLE 1 -~ Subscale Transformer

CALCULATED MEASURED ADJUSTED
Open Circuit Inductance (pH) 11.95 12.4 11.89
Short Circuit Inductance (uH) 1.17 2.11 --
Secondary Inductance (Eq. 10) (nH) 670 643 643
Primary Resistance (mQ) 9.7 10.1 9.7
Secondary Resistance (u2) 335 188 955
Coupling Coefficient (Eq. 11) .949 .91 . 905
Bank Capacitance (pf) -- 1306 1300
Bank Resistance (mQ) -- 36 36
Bank Inductance (nH) -- 440 440
Load Inductance (nH) 4.48 <4.1> |
Load Resistance (uf) 67 (min.) <60.7> 65
*< > Time Averaged
TABLE II - CAPSTAR

Calculated Ad justed
Bank Capacitance (uf) 1100 1050
Bank Inductance (pH) 1.0 1.0
Bank Resistance (mQ) 10 10
Primary Lead Inductance (nH) 7.2 8.0
Primary Lead Resistance (uQ) 19.8 20.0
Primary Inductance (uH) 12.89 12.89
Primary Resistance (mQ) 1.6 1.6
Secondary Inductance (nH) 408.4 375.5
Secondary Resistance (u) 26.0 300.0
Coupling Constant .89 .853
l.oad Plate Inductance (nH) 4.46 [<6.2.] 8.5
lLLoad Plate Resistance () 5.01 [<4.45>] 5.0
Short Load Inductance (nH) 2.0 [<2.94>] 3.0
Short Load Resistance (uf) 4,02 [<5.5>] 5.5

> Time Averaged
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Defining efficiency as the ratio of maximum delivered magnetic energy to stored
electrostatic energy, one finds that CAPSTAR becomes more efficient than the
five capacitor banks separately only for loads less than 75 nH with 10 p@ of
resistance and, 25 nH with 500 pQ of resistance. This is because, with the
pulse transformers and any inductive secondary load, the banks can be operated
at the maximum charge voltage (10 kv) without going over the maximum current
rating (100 kA). This is not the case when the capacitor banks are used sep-

L oty

A

ﬁ. arately. The maximum current rating for use with low inductive loads is
. reached with charge voltages much less than 10 kv.
Y

The goal of the CAPSTAR system was to electromagnetically stress a com-
posite round bore railgun barrel section. One such barrel had a measured time
averaged inductance and resistance gradient of .374 pH/m and 964 uQ/m, respec-
tively.4 Assuming that the inductance gradient has no dependence on the bore
radius, and that the resistance gradient scales as one over the bore radius,
then suitable barrel dimensions can be found to achieve a peak barrel pressure,
Barrels with lengths of at least two bore dimensions are only considered.
Figure 8 illustrates how the barrel length limits the maximum peak pressure
for a given bore diameter. This graph is for the CAPSTAR system at full-rated
voltage. The time for the pressure to reach its peak for the CAPSTAR parame-
ters in Fig. 8 is in the range of 40-100 microseconds. This type of pressure
profile may be more severe than that experienced by a railgun barrel when driv-
ing a railgun armature.

Experimental and calculated data of currents and current ratios with a
barrel load are shown in Figs. 9 through 11, Because of the size of the CAP-
STAR system, the data was not as abundant as that taken on the subscale trans-
former. Only one out of the five capacitor banks was instrumented; measured
quantities included the primary-side voltage (outside the capacitor bank) and
the primary dI/dt. Since the charge voltage on every bank is set by a separ-
ate potentiometer there was some uncertainty in the value of the initial charge
voltage. One way to determine the initial charge voltage is to add the capa-
citor bank's internal impedance drop to the measured peak primary-side voltage.
As a result, there is uncertainty due to the unknown contribution of current
from the remaining four transformers. In the model it was assumed that all
five capacitor banks were charged to the same initial value and each transfor-
mers' secondary output supplied 1/5 the total load current,.

VII. PROJECTED PERFORMANCE WITH RAILGUN LOADS

In addition to modeling the pulse transformer with constant inductive
and resistive secondary loads, it was thought to model the CAPSTAR system with
a variable load such as a railgun with a moving armature. A solid armature
would contribute a smaller loss than a plasma armature, but would have to main-
tain it's mechanical integrity throughout the high secondary current pulse.
The armature used in the simulation is assumed to be solid and lossless. Al-
though this 1s not an attempt to optimize a railgun to a pulse transformer it
Joes provide some insight into currents and velocities attainable. In order
to assess the CAPSTAR power source driving a railgun load, the 5 capacitor

4thoratory Notebook No. LCA 375, ARDEC, Picatinny Arsenal, Dover, NJ,
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banks in parallel are used as a reference point., Since the maximum current
output of each bank is 100,000 amperes, a 1.4 pH inductor with a 20 millisecond
time constant is used to current limit the banks at the maximum charge voltage
of 10,000 volts. This will produce a maximum load current of .5 Megamp. A
12.7 mm square bore, 1 meter long rallgun barrel is used as the secondary load.
The resulting pressure waveforms for both power sources are shown in Fig. 12.
The launch package mass for both configurations is 3 grams. The velocity for
each of these two power sources is shown in Fig. 13. The transformers work
quite well in multiplying the primary current even with a railgun load; how-
ever, the launch structure still has to contain the high peak pressure. For
the load currents that can be produced by CAPSTAR power source an acceptable
bore size that limits the peak pressure to approximately 40,000 psi is 60 mm.
Correspondingly, for the same pressure, the bore size for the S5 parallel banks
is 15 mm. The minimum Lexan launch package mass for the 60 mm bore is roughly
250 grams. The mass was varied around that point and this variation is plotted
against the velocity obtained using both power sources in Fig. 14,

It can be seen that CAPSTAR power source can be best utilized to drive a large
bore railgun. This is solely to limit the bursting pressure to an acceptable
level. Correspondingly, large projectiles can be launched. The heavy launch
mass keeps the load inductance and resistance quite low early in the current
rise. This allows the current ratio to remain close to the number of turns.
After the armature has moved some distance the barrel load inductance (L'z)

and load resistance (R'z + L'v) reduce the coupling. This can be seen in Fig.
15. Similarly, the secondary currents are shown in Fig. 16. Also, shown in
Fig. 16 is a railgun driving a 200 volt drop plasma armature. The velocities
attained are of no consequence for bore size less than 60 mm since it is doubt-
ful whether a barrel could contain the high pressures produced by the CAPSTAR
power source. Since the pressure pulse has a high peak and a relatively short
width, short barrel lengths (300 mm) could be used as a railgun load. Peak to
average accelerations of 4 are obtainable,

VIII. CONCLUSION

We have developed and tested a model for a capacitor driven, air core
pulse transformer. The model has been verified on both the subscale transfor-
mer and with preliminary data from the CAPSTAR system. Knowing the initial
capacitor bank voltage in the CAPSTAR system proved to be the greatest source
of uncertainty in matching the simulation to the experiment. One of the most
significant findings is that the load impedance must be quite small if the
current ratio is expected to approach the turns ratio. For EM launcher com-
ponents the self inductance is often too large for the pulse transformers to
be beneficial. This is evident from the fact that EM launchers generally must
store significant amounts of magnetic field energy in order to perform useful
work. Furthermore, any great effort spent in enclosing the primary in very
thick walled tubing to contain the magnetic field simply makes the transformer
heavier without necessarily improving performance. The equivalent circuit
model does not take into account the eddy current losses in the secondary
tubes. For very high impedance loads we expect these losses to be significant
and should be included in future modeling.
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With the verified transformer model, we have undertaken a brief study ot
the use of pulse transformers directly driving railguns as a load. Our find-
ings show that the transformers are worthwhile only for short times and tor
correspondingly short barrel lengths. The maximum utility of the pulsc trans-
formers appears to be in applying strong magnetic forces to low inductance
structures for very short times. When the power source switchgear or an in-
ternal impedance limits the maximum current, the pulse transformers will pro-
vide much larger peak currents if the load is carefully chosen and the trans-
former losses are acceptable.
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Y L2 DTE GOTO 200U
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N 1D L =LOEC+LL+L2
) o' REM TuTaL PRIMARY RESISTANCE
A 1osu 85=RI+RBANK+RPRI
tigs RuM TOTAL SECONDARY RESISTANCE
P10 dn=AsSEC+RL+R2
T1TL DENOM=LL=(MT2/L6)
rre 18 1=, 0 Then Vosc=1.0\ Goto 1120
Vos =] 1/abs(I1)
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- ) JzL=L1%DT
X Y=/ AP
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