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I. INTRODUCTION

In this article we consider annular liquid propellant guns (see Figure

1). The regenerative piston surrounds a central rod. As the piston begins to

move, it opens up a small annular vent between the piston and the bolt. The

bolt is tapered, so the vent opening becomes gradually larger. There is a

long straight section where the vent area is constant, and finally a back

taper to slow down the piston.

The transducer block (crosshatched area) is mounted on Belleville springs

(not shown). A set of pins, going through a spacer, actually connect the

block and the springs. When the piston begins to move, it pushes back the

liquid and the transducer block. Eventually, the block hits against the

spacer. Very little injection takes place before the transducer block stops

moving. The springs allow the piston to move past the 0-ring and over the

front taper in the bolt.

The liquid jet then enters the combustion chamber at high speed. The jet

may stay in contact with the center bolt or separate from it. After some

delay, the jet breaks up into droplets. The droplets formed may break up

further or coalese. The propellant will eventually ignite, and may burn as

individual droplets or as an envelope flame. Gas recirculation will further

affect the spray combustion. It is possible that the time scale is too short

for droplets to form, and the jet may form slugs of liquid or other irregular

shapes. Also, there is a crash ring immediately in front of the center

bolt. This will effect how the jet breaks up and combusts.

The fluid flows from the combustion chamber into the gun tube. For

liquid guns, there is typically a large area change between the chamber and

the tube.

Regenerative liquid propellant gun codes 2- 5 involve a number of

simplifying assumptions. As the codes consider only lumped parameter or at

p most one-dimensional regions, higher dimensional effects are ignored. Besides

this, there are three major areas of uncertainty. First is the injection of

the liquid propellant through the piston into the combustion chamber. This is

1
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approximated as steady state Bernoulli flow. The various possible loss terms

(entrance losses, frictional losses, inertial effects, etc.) are lumped into

the discharge coefficient. This is treated as an adjustable parameter, and

varied 80 as to obtain the desired chamber pressure.

Second is the liquid accumulation in the combustion chamber. For lack of

further information, we usually assume that the liquid combusts instanta-

neously when it enters the combustion chamber, although simple droplet burning

models are also available.

Last, there is the fluid flow from the combustion chamber into the gun

tube. This flow is approximated by steady state Bernoulli or isentropic flow,

again with an adjustable discharge coefficient to take into account unknown

loss terms. This coefficient is normally set equal to one.

At the BRL we have a 30mm regenerative liquid propellant gun. 6  A set of

experimental measurements has been made on this fixture. 7  These include the

liquid reservoir pressure, the combustion chamber pressure, the piston travel,

and the projectile velocity. More recent firings include three pressure

measurements in the gun tube (3.81, 50.80, and 241.30 cm. downbore). The

pressure traces have been filtered to remove the acoustic oscillations. A

number of cases have been measured for the 2/3 charge (about 230 g) and the

1/3 charge. The gun has not yet been fired with a full charge.

The reproducibility of the 1/3 charge firings is not good, so this data

is not considered here. We do not have any 2/3 charge cases where all the

data was recorded successfully. In this article we consider the data from

round 8, where the muzzle pressures were not recorded, and round 53, where th2

liquid pressure was not successfully recorded. our goal is to obtain

information about the three processes discussed above.

11. NOTATION

In this article, A represents area, E energy, e internal energy, M mass,

p pressure, T temperature, V volume, and v velocity. Subscript 1 represents

3



the liquid reservoir, 3 the combustion chamber, and 4 the gun tube. Regioln 2

(intermediate chamber) does not exist for this fixture. A subscript L

represents a liquid property, and a subscript G a gas property. For a

complete description, see the List of Symbols.

III. DESCRIPTION OF THE TEXT FIXTURE

Working from the engineering drawings, - have made a scale model drawing

of the liquid reservoir (see Figure 2). The combustion chamber side of the

piston and bolt have been slightly simplified. The reservoir is initially

sealed by an O-ring.

According to the drawings, the transducer block should initially be

exactly at the end of the back taper. However, when the test fixture is

assembled, the block is observed to be about 1/8 of an inch in front of this

point. So the piston stroke, instead of the designed 6.8 cm., is about

6.4 cm. The computed propellant mass is 232 g. A measurement of the

propellant needed to fill the reservoir gives a value of 227 g., which is

reasonable agreement.
8

Another measurement 8 shows that the block can move back about 0.5 cm.

before hitting a spacer. When the block stops moving, the momentum of the

piston causes a rapid pressure rise in the liquid. However, this is observed

to occur after the piston has moved approximately 0.6 cm. So I assume that as

the block moves back the 0.5 cm, the piston moves 0.6 cm. This causes a small

amount of liquid to be injected into the chamber. Figure 3 shows the

reservoir after the block has bottomed out. The piston has cleared the O-ring

and is over the beginning of the front taper.

The volume of the combustion chamber may be computed. However, a crash

ring is inserted into the chamber to protect against damage to the fixture if

the piston reverses. This crash ring is complex in shape. So I use a

measured value6 of 95 cc as the initial chamber volume. For the lumped

parameter modeling, the volume is the only quantity required. The shape of

the combustion chamber is irrelevant.

4
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There is a grease dyke between the piston and the wall of the chamber

(except at the front) that helps support the piston. The pressure in the

grease is only slightly higher than the combustion chamber pressure during the

firing cycle. So in computing the hydraulic difference (combustion side area

over liquid side area) the grease area is not included.

Other important numerical values are given in Table 1. Terms are defined

in the List of Symbols.

TABLE 1. Fixture measurement.

A - 33.778

1
A - 45.508
3

Ag a .666g

Ah - 10.475 A3 -_Ah A

Hydraulic difference - ---- -1.475~A1 -A h

Sma x = 6.436 1 h

V1 initial = 162.44

V3 initial = 95.0

Pi initial = 7.0

P3 initial - 17.0

Mps = 2138.

M . = 287.1

The liquid reservoir is pre-pressurized to 7.0 MPa. The primer will

pressurize the combustion chamber to about 17 MPa. I do not attempt to model

the details of the primer combustion.

*7
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IV. PROPELLANT

The propellant used is HAN1846. The relevant properties are given in

Table 2.

TABLE 2.

Property Reference

Po " 1.43 9

el a 4035.5 9

y - 1.2226 9

cv - 1.6348 9

c - 1.9987

b - .667 9

KI - 5350. 10

K2 a 9.11 10

A- 1.64 11

B - .103 11

The equation of state of the liquid is derived assuming that the fluid is

isothermal. The result is

K 1/K2
0L P O p (1)

W '



The linear burning rate was measured for a gelled propellant for pressures

less than 100 MPa. The form of the equation is

linear burning rate -Ap B (2)

The actual burning rate is the surface area times the linear burning rate.

There is some evidence that there is a break in the burning rate expression

around 100 MPa, and that the exponent becomes much larger. For this paper, I

will simply extrapolate the measured rate.

V. EXPERIMENTAL DATA

Figure 4 shows the measured chamber pressure and liquid pressure for

round 8. All the data considered has been filtered to remove the high

frequency oscillations. The time zero is taken to be the point where the

Belleville springs bottom out.

The igniter raises the pressure in the combustion chamber. This moves

back the piston, the liquid, and the transducer block. The liquid pressure

rises very slowly. At time zero, the block hits, and the momentum of the

piston compresses the suddenly trapped liquid. Since the liquid is nearly

Incompressible, a small volume change leads to a large pressure change. This

large pressure accelerates the liquid, and injection causes to pressure to

undershoot. The liquid pressure oscillations gradually die out. As the

piston nears the end of its stroke, the pressure measurement breaks up.

The piston travel is also measured (Figure 5). I am assuming that the

first 0.5 cm of piston travel correspond to the block motion. The last 6.4 cm

(taken to be positive) comprise the actual injection stroke. The velocity of

the piston will also be required. In the previous paper, II used a finite

difference approximation to obtain the velocity. The time difference had to

be fairly large because of the noise in the signal. This lead to a loss of

resolution. In this paper I fit the data by a parabolic spline. After some

"S 9
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experimentation, I used one parabola for each 0.5 ms. The parabolas are

joined at the knots so that the entire curve is continuous and smooth. First

and second time derivatives can be taken analytically. Figure 5 also shows

the derived piston velocity. This is a linear piecewise function.

For the projectile, the velocity has been recorded using radar. However,

this trace is normally accurate only for the middle part of the travel, where

the slope of the velocity is fairly constant. To obtain the projectile

travel, I fit this section of the curve with two parabolas (see Figure 6).

The knot point is where the chamber pressure reaches its maximum. I can then

extrapolate in both directions. The projectile travel is now easily obtained

by numerical integration.

The projectile has a nominal shot start pressure of 68 MPa. Extra-

polating the projectile travel back to zero, I normally obtain a value of shot

start pressure between 65 and 70 MPa.

The projectile is seated in the gun tube by hammering. Looking at the

raw interferometer data, the projectile seems to move slightly before it is

firmly lodged in place. The experimental data is not detailed enough to

determine this quantitatively. So I assume that the projectile does not move

at all until the pressure reaches 68 MPa.

For Round 8, the gun tube pressures were not recorded. So I also

consider Round 53. In this case, the liquid pressure was not successfully

recorded, so it is approximated as the chamber pressure times the hydraulic

difference. Figure 7 compares the chamber pressures for the two rounds. For

Round 53, the spray appears to ignite more rapidly. Also, the behavior near

the maximum pressure is quite different. The shape of the pressure curve for

Round 8 is more typical.

VI. DATA ANALYSIS

In the gun code, the mass flux through the piston is assumed to obey the

steady state Bernoulli liw

12
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mass flux = CD Av V 2g 0P (P 1 - P3 )  (3)

where CD is the discharge coefficient, Av is the vent area, g0 is a conversicn

constant, PI is the liquid density, p, is the liquid pressure, and p3 is the

combustion chamber pressure.

From the experiment, the pressures and vent area are known. The liquid

density can be computed from the equation of state, and the liquid mass in the

reservoir is just density times volume. The liquid reservoir mass is fit by

cubic splines. The time derivative of this mass can then be taken

analytically, and equals the mass flux into the combustion chamber. The

discharge coefficient can now be determined.

Results are given in Figure 8. The values are plotted versus the piston

travel to make comparisons easier. The early noise is due to the liquid

pressure oscillations from the Belleville springs. The discharge coefficient

then increases relatively slowly to a more or less steady value. For Round

53, the discharge coefficient becomes larger. This is due to the differences

in the chamber pressures for the two rounds. The curves are similar to the

results in the previous BRL report. The changes are due to a more accurate

accounting for the motion of the Belleville springs and the more accurate

method for approximating time derivatives. Because the problem is transient,

the discharge coefficient may be greater than one.

It is also possible to compute the liquid accumulation, using

conservation of mass and energy. At any given time, we know how much liquid

is still in the reservoir. The balance of the original charge is in the

combustion chamber/gun tube. We assume that when the liquid combusts, it

immediately releases all of its chemical energy. The total energy in the

system must equal the chemical energy in the liquid, the internal energy in

the gas, and the kinetic energy of the piston, the projectile, and the gas.

Energy loss terms (heat loss to the tube, air shock, frictional resistance,

etc.) are ignored.

15
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The tube pressure is assumed tu nat is y a -., ; ... . i ,1z.r ut ion.

The throat pressure is set equal to the pressure at the first gun tube

pressure transducer (3.81 cm from the throat). If the gun tube pressure has

not been recorded, I use the chamber pressure.

From the piston travel and projectile travel, the volumes of the

combustion chamber and the gun tube are computed. Also, the kinetic energy of

the piston, the kinetic energy of the projectile, and the kinetic energy of

the fluid in the tube (assuming a Lagrange distribution) can be calculated.

The liquid density can be calculated from the equation of state.

We can now set up eleven equations involving the combustion chamber/gan

tube; total energy, total mass, volume of chamber and tube, internal energy of

the gas (Noble-Abel equation) for chamber and tube, liquid density for chamber

and tube, gas density for chamber and tube, and average tube pressure.

Unfortunately, there are thirteen unknowns; liquid mass, gas mass, liquid

volume, gas volume, gas density, and gas internal energy for both chamber and

gun tube, and average tube pressure. Additional assumptions are necessary. I

assume that the liquid is evenly distributed in the chamber/tube, and that the

internal energy of the gas is the same in the chamber and the gun tube.

Details of the equations are in Appendix A.

Results are given in Figure 9. There is a significant liquid accumu-

lation, and large amounts of liquid remain until late in the firing cycle.

The results should be accurate at early times. Round 53 shows larger

accumulation because the gun tube pressure has been recorded. This pressure

is less than the chamber pressure, which I am using for Round 8, and so the

gun tube gas has less energy. The above analysis ignores any loss terms (such

as heat loss to the gun tube walls), and assumes that the fluid in the

combustion chamber is stagnant (no kinetic energy). So there is either

significant liquid accumulation, or there are important loss terms not usually

taken into account.

One possible source of error is the water purge of the system. Before

the liquid reservoir is filled and prepressurized, the system is purged with

water. This may contaminate the propellant. For a similar GE test fixture,

17
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the liquid in the reservoir is s t imated to be as auch "s 5" water (by

13volume).

To check on the possible effect of water contamination, I also ran the

code assuming 5% water. This was done by changing the initial density of the

fluid and its chemical energy. Results are shown in Figure 10. The change is

relatively minor.

Heat loss has also been ignored in the above analysis. In gun codes, a

heat loss of 5% of the total energy of the system is typical, primarily

occuring in the gun tube. This level of heat loss would give results similar

to the assumption of 5% water contamination.

Additional information can be obtained concerning the burning rate.

Assume that the liquid accumulation is in the form of uniform size droplets.

The diameter dS of the droplets is chosen to be the Sauter mean diameter.

This is the diameter that preserves the surface area of the original

accumulation. Then

burning rate = ML3 (6/d) Ap 3 B + ML4 (6 /dS) AP4 B (4)

where ML3 is the liquid in the chamber and ML4 is the liquid in the tube. The

burning rate is equal to the rate of change of the mass of the gas. Again

fitting the total gas mass by splines, the Sauter mean diameter can be

calculated (see Figure 11). For early times, the diameter is large,

indicating rapid liquid accumulation and slow burning. The diameter then

drops rapidly, indicating that the liquid is burning much more efficiently.

The liquid accumulation still remains high, but this is due to the rapid

influx of propellant from the liquid reservoir. The drop diameter increases

late in the cycle. This may actually reflect less efficient combustion, or it

may just reflect inaccuracies in the burning rate.

Finally, the mass flux into the gun tube is assumed to be isentropic

flow.
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mass flux =

CTA4p 3  2g {b(p 3 - Pth ) + c pTth(P3/P- I} (5)

where CT is the discharge coefficient, A4 is the area of the gun tube, b is

the covolume of the gas, cp is the specific heat of the gas, Tth is the

temperature in the gun tube throat, and y is the ratio of specific heats. The

mass flux is the rate of change of the mass in the tube. So CT can be

computed, and is shown in Figure 12. This result is less accurate than the

previous discharge coefficient, since the pressure difference between the

chamber and the gun tube is relatively small. If Bernoulli flow is assumed

instead of isentropic flow, the results are similar.

VII. COMPARISONS

Now we will see what effect the above results have on our use of the gun

code. First the code 5 is run with the usual assumptions. That is, the

discharge coefficient is constant with respect to time and the value is chosen

to match the desired chamber pressure. The liquid is assumed to burn

instantaneously upon entering the combustion chamber (zero liquid

accumulation). The discharge coefficient into the gun tube is one. A simple

model for air shock and heat loss to the gun tube is included. The pressure

distribution in the gun tube is approximated by a modified Lagrange

distribution, which takes into account the non-zero fluid velocity at the

throat of the tube.

Next, the code is run using the experimental values derived above (for

Round 8). The discharge coefficient into the gun tube is read in as a

function of piston travel. The liquid injected into the combustion chamber is

assumed to form droplets. All the droplets have the same diameter, but this

varies with piston travel. Since Round 53 was somewhat different from Round

8, the discharge coefficient into the gun tube will be considered separately.

This was only computed for Round 53, and is considered to be less accurate

than the other two parameters. For the runs below, this discharge coefficient
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is set uniformly equal to one. For the purposes of comparison, all the graphs

are translated in the time direction so that the chamber pressures reach the

shot start pressure (68 MPa) at the same time.

The results for chamber pressure are given in Figure 13. The model using

the experimental values reproduces the shape of the pressure curve reasonably

well. It it less accurate at early times, since there is no Belleville spring

model or primer combustion model in the gun code. It is also less accurate at

very late times, when the inverse code is less accurate. The maximum chamber

pressure is slightly off, but there was no attempt made to vary the parameters

4to match this pressure. The simpler model shows a much more rapid pressure

*rise.

Figure 14 shows the piston travel. The simpler model shows the piston

moving slower, since the chamber pressure falls off earlier. In fact, the

projectile exits the muzzle before all the liquid is injected.

The projectile velocity is given in Figure 15. The more complicated

model shows reasonable agreement.

Figure 16 and 17 show the gun tube pressures. The models give a pressure

rise that is later in time than the experimental results. In the models, a

shot start pressure of 68 MPa is assumed. This appears to be a good estimate,

but in practice the projectile moves a short distance before it is seated

firmly. The experimental data indicates that the projectile is already at the

first pressure transducer (3.81 cm downbore) when the pressure reaches 68 MPa.

The muzzle velocity for the first model is 1010 m/s and for the second is

1099 m/s. The experimental muzzle velocity is between 1000 and 1020 m/s. Thp

higher velocity for the more complicated model reflects the higher chamber

pressure. Also, there are probably additional loss terms not included in thp

model.

I ran the gun code adding the experimental values for the discharge

coefficient into the gun tube (Round 53). The only noticeable result was that

the maximum chamber pressure rose 12 MPa. The gun tube pressures and

24
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projectile velocity were practically unchanged. The injection into the gun

tube seems to be controlled primarily by the projectile motion. If a smaller

discharge coefficient is chosen, the chamber pressure increases sufficiently

to sustain about the same injection rate.

In addition, I ran the gun code using the values derived from Round 53

instead of Round 8. The results were qualitatively very similar. The

predicted chamber pressure fell 15 MPa, and the second peak in the chamber

pressure curve was flattened out. The predicted muzzle velocity decreased by

28 in/s.

VIII. TRANSIENT INJECTION MODELS

It seems reasonable to try to explain the discharge coefficients as due

to transient behavior. This involves setting up an unsteady equation fot the

* mass flux.

I assume that the flow in the liquid reservoir is isothermal. In

- conservation form, the quasi two-dimensional mass and momentum equations are

a(pA) a
ii -- 5-(pvA) (6)at ax

a(PvA) -a- (Pv2A) - gA 2p(7
at ax o ax

where v is the liquid velocity and A is the cross sectional area. The

coordinate system is fixed with respect to the piston. This is convenient

since the division between the liquid reservoir and the combustion chamber is

defined by the front corner of the piston. I want to approximate the momentum

equation while retaining the simple lumped parameter model.
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The assumption I make is that the space dexivative ut the mass

flux pvA is zero. From the experimental data, this gradient is in fact quite

small. Then taking the momentum equation, and integratiag from the back wall

of the liquid reservoir to the orifice exit, one obtains

a(pvA) (V 2_v2 )
at [0.5 V +g(Pl-P 3 )J/fdx/A (8)

where VpS is the piston velocity and v3 is the injection velocity of the

fluid. The integral of the inverse of the area is approximated assuming a

slightly simplified piston shape.

The above form ignores loss terms. To take this into effect, I multiply

the pressure term by a constant discharge coefficient squared.

I implemented this model into the gun code, and ran the code using the

experimentally derived Sauter mean diameters and the new transient mass flux

model (CD = 0.958). Given the resulting mass flux, corresponding steady state

discharge coefficients can be derived. Figure 18 shows the comparison with

the experimental discharge coefficients. While the new model shows the

qualitative behavior of a time delay in the rise to steady state discharge

coefficients, the rise time is much too rapid.

The difficulty follows from the form of the equations. At the beginning,

the mass flux is well below steady state values. Since the liquia cannot be

injected through the piston, it is compressed, leading to a rapid pressure

rise. But a relatively small pressure difference leads to a very large

increase in the mass flux time derivative. Because of this feedback with the

piston motion, the approach to steady state is very rapid.

Work is now going on with higher dimensional models to try to understand

this procedure better.
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IX. CONCLUSIONS

We have demonstrated the change in the discharge coefficient during the

firing cycle and the accumulation of liquid in the combustion chamber. Both

of these effects are important in resolving the details of the firing cycle.

But if the proper maximum chamber pressure is achieved, the effect on muzzle

velocity is relatively minor.

Attempts have been made to predict the injection into the combustion

chamber, instead of using experimentally derived values. While the behavior

can be qualitatively predicted, the quantitative behavior cannot be

reproduced.
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LIST OF SYMBOLS

A area of liquid reservoir, cm
2

A3  area of combustion chamber, cm
2

A4  area of the gun tube, cm
2

A area of the grease dyke, cm
2

Ah area of the piston hole, cm
2

AV  vent area between piston and bolt, cm
2

3b covolume of the gas, cm /g

c V specific heat at constant volume, joules/g-K

Cp specific heat at constant pressure, joules/g-K

CD discharge coefficient into the combustion chamber

CT  discharge coefficient into the gun tube

dS Sauter mean diameter for the droplet distribution, cm

EK4 kinetic energy of the fluid in the tube, joules

E34 total energy in the combustion chamber/gun tube, joules

E kinetic energy of the piston, joules

Ep kinetic energy of the projectile, joules

Et total energy in the gun system, joules

e 1 chemical energy of the liquid, joules/g

e 3  internal energy of the gas in the chamber, joules/g

e 4  internal energy of the gas in the tube, joules/g

90 converrion constant, 107 g/s 2 -cm-MPa

K I  bulk modulus of the liquid at zero pressure, MPa

K2  derivative of the bulk modulus

ML3  mass of the liquid in the combustion chamber, g

MG3  mass of the gas in the combustion chamber, g

M3  total mass in the combustion chamber, g
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ML4  mass of the liquid in the gun tube, g P

4 mass of the gas in the gun tube, g

ft4  total mass in the gun tube, g

M mass of the liquid in the combustion chamber/gun tube, g
L34

MG34 mass of the gas in the combustion chamber/gun tube, g

M total mass in the combustion chamber/gun tube, g
34

M mass of the piston, g0ps

Mpj mass of the projectile, g

P1  pressure in the liquid reservoir, MPa

P3  pressure in the combustion chamber, MPa

P4  average pressure in the gun tube, MPa

Pth pressure at the gun tube throat, MPa

Smax maximum piston travel, cm

T3  temperature in the combustion chamber, K

T 4  average temperature.in the gun tube, K

Tth temperature at the gun tube throat, K

VI  volume of the liquid reservoir, cm3

V3  volume of the combustion chamber, cm
3

VL3 volume of the liquid in the combustion chamber, cm3

VG3  volume of the gas in the combustion chamber, cm3

V4  volume of the gun tube, cm3 "

VL4 volume of the liquid in the gun tube, cm3 .

L33

VG4 volume of the gas in the gun tube, cm3  "

V4

VG34 volume of the gas in the combustion chamber/gun tube, cm3

VG3 volume of the gsithcobtonhaergun tube, cm
3

V total volume of the combustion chamber/gun tube, cm3

343

v velocity of the piston, cm/s
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v p velocity of the projectile, cm/s

v3  injection velocity of the fluid into the chamber, cm/s

y ratio of specific heats

P density of the liquid at atmospheric pressure, g/cm
3

0

P1  density of the liquid in the reservoir, g/cm3

L3 density of the liquid in the combustion chamber, g/cm 3

OG3 density of the gas in the combustion chamber, g/cm
3

G33
P L4 density of the liquid in the gun tube, g/cm

3

pG4  density of the gas in the gun tube, g/cm 3
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Ai iLND IX A

The properties of the fluid in the combustion chamber/gun tube are found

using conservation of mass and energy. At any given time, the mass of the

liquid remaining in the reservoir is known. Assuming the reservoir liquid is

isothermal, we also know its chemical energy. Our basic assumption is that

the system is adiabatic. That is, all loss terms are ignored (such as heat

loss to the gun tube). So we can compute the total mass and energy of the

combustion chamber/gun tube. A secondary assumption is that the liquid

combusrs completely. That is, when the liquid burns, it turns immediately

into final products and releases all its chemical energy.

The set of equations is total energy:

E3 4 Se1 (KL3 + ML 4 ) + e3 MG 3 + e4 MG 4  (Al)

total mass:

M34 M3 MG3 + %L4 + MG4

volumes:

V3  VL3 +VG3 (A3)

4 L4 G4 (A4)

internal energy (Noble-Able equation):

4 1 "
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e = c T = 3 (1 - b pG3)/[G3 (y - 1)1 (A5)

e4 " cv T4 - P4 (1-b PG4)/PG4(Y - 1)] (A6)

average gun tube pressure (Lagrange distribution):

P4 = Pth [1 + M4 /(3M p)]/[1 + H4 /(2M pj (A7)

and densities:

L ML3/VL3  (A8)

0 G3 = M G3/VG3 (A9)

PIA = M IA/VI.L4 (AI)

= ( AIOI)

MG4/VG4(All)

The thirteen unknowns are P4, ML3 ' MG3 ' ML4 ' MG4' VL3 ' VG3 ' VL4 ' VG4 '

0L3 , PG3 , p4, and p,,.To solve the equations, I assume that the liquid is

evenly distributed in the combustion chamber/gun tube, that is:

ML4 ' ML3 V4 /V 3  (A12)

Finally, I assume that the internal energy of the gas is the same in the

combustion chamber and the gun tube, that is:
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e 3 = e4  (Al3)

Since the specific heat is taken to be constant, this means that the

temperature is the same. This is consistent with Bernoulli flow, but not with

isentropic flow. However, in running the gun code, the temperature difference

between the combustLon chamber and the throat is usually ao larger than

lOOK. Until temperature measurements are made, this is the best assumption

that I can make.

The above equations are actually solved using an iterative procedure. To

start with, the mass terms are estimated. The total mass M34 is known. I

assume that the fraction of the total mass for each mass term is the same as

for the previous rime step. For time zero, there is no liquid accumulation,

so the starting point is easily calculated. Then the following equations are

solved in the given order.

Kinetic energy of the gas in the gun tube (Lagrange distribution):

EK4 = 0.5 M4 vpj 3g°  (A14)

total energy in the combustion chamber/gun tube: S

E 34 E e 1 M4 1 E - E pi E K4(A15)E34 = t 1 e I -ps - pj - K4(A5"

S

internal energy of the gas

e3  e4 = [E34 - L ML341 Mc3 4  (AI6)
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W- -wv MW --. .. w.

average gun tube pressure

P4 Ptb 1 1 + M4/3 M P]/ [ + M4/2 Mpj (A7)

average gun tube liquid density:

K2 INK2
1"A 0 K P4

gas densities:

G3 = p 3/ [e3 (y - 1) • p3 b] (A19)

= p4/[e4 (y - 1) + p4 bI (A20)

volumes:

VLW = MW3/PL 3  (A21)

VIA = L4/PL4  (A22)

VG3  V3 - VL3 (A23)

VG4 = 4 - L4 (A24)
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and finally new values for the masses:

MG3 P3G3 3 (A25)

HG4 = PG4 VG4 (A26)

ML3 - ML3 4 V3 / V34 (A27)

1L4 = ML34 V4 V34 (A28)

The process is repeated until convergence is obtained. Since for any

time step only minor changes occur, this has not been observed to take more

than a maximum of twenty iterations. After going through all the data points

in order, all the quantities needed to compute the mass accumulation and the

discharge coeffici nt into the gun tube are available.
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