
A RAND NOTE

RAND

Evaluating Expert System Tools:
A Framework and Methodology-Workshops

Jeff Rothenberg, Jody Paul, Iris Kameny,
James R. Kipps, Marcy Swenson

July 1987

The research described in this report was sponsored by the Defense Advanced
Research Projects Agency under BAND'S National Defense Research Insti-
tute, a federally funded research and development center supported by the
Office of the Secretary of Defense and the Joint Chiefs of Staff, Contract No.
MDA903-85-C-0030.

The RAND Publication Series: The Report is the principal publication doc-
umenting and transmitting RAND's major research findings and final research
results. The RAND Note reports other outputs of sponsored research for
general distribution. Publications of The RAND Corporation do not neces-
sarily reflect the opinions or policies of the sponsors of RAND research.

Published by The RAND Corporation
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

A RAND NOTE

RAND

N-2603-DARPA

Evaluating Expert System Tools:
A Framework and Methodology-Workshops

Jeff Rothenberg, Jody Paul, Iris Kameny,
James R. Kipps, Marcy Swenson

July 1987

Prepared for
The Defense Advanced Research Projects Agency

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

in -

PREFACE

This Note describes two workshops held at The RAND Corporation in

June and November 1986 in conjunction with a study conducted for the

Information Science and Technology Office of the Defense Advanced

Research Projects Agency (DARPA), under RAND's National Defense Research

Institute (NDRI). The NDRI is a Federally Funded Research and

Development Center sponsored by the Office of the Secretary of Defense.

The study was undertaken to develop criteria for evaluating and

selecting tools used to build expert systems. The Note should be of

interest primarily to decisionmakers concerned with choosing such tools,

i.e., managers of expert system development projects and developers of

expert systems. It should also be of value to developers of expert

system tools and artificial intelligence (AI) researchers investigating

new expert system techniques.

The main results of the study are presented in companion RAND

Report R-3542-DARPA, Evaluating Expert System Tools: A Framework and

Methodology, by J. Rothenberg, J. Paul, I. Kameny, and J. Kipps, July

1987. This work draws heavily on the experience of expert system tool

developers and users. The authors enhanced their own background in the

field by studying and using a number of major tools, and by hosting two

workshops: one for tool developers (representing seven commercial

vendors) and one for tool users (representing over thirty expert system

development projects). The workshops validated and refined the authors

ideas and provided both objective and anecdotal evidence about the state

of current expert system tools and expert system research.

- V

SUMMARY

Expert systems represent a new approach to solving problems with

computers, using programs that explicitly embody human knowledge and

expertise from a given problem domain. The expert system paradigm

emphasizes the rapid generation of prototype systems whose behavior can

be understood and refined by domain experts. Because the expert system

approach differs from traditional software engineering, it has spawned a

new class of tools that can provide considerable leverage in building

expert systems. One of the first steps an expert system developer

usually takes, therefore, is to survey the available tools and decide

which, if any, is most appropriate to the task at hand. However, this

evaluation is a complex task; its cost and the attendant risk of

performing it ineffectively motivate the development of a rational,

reliable strategy for evaluating expert system tools.

The authors have developed a framework of criteria for performing

such evaluations, along with a methodology for tailoring and applying

this framework to particular projects and problems. That work is

described in companion RAND Report R-3542-DARPA, Evaluating Expert

System Tools: A Framework and Methodology. To validate and refine the

ideas presented in that study, and to obtain evidence, both objective

and anecdotal, about the state of current expert system tools and expert

system research and development in general, The RAND Corporation hosted

two workshops in 1986, one for expert system tool developers and one for

expert system tool users. This Note describes the two workshops and

summarizes the discussions and conclusions presented there.

Participants in the tool developers' workshop generally agreed with

the evaluation framework and the proposed criteria, but some felt that

it is premature to attempt to develop evaluation benchmarks that can

directly compare tools with one another. The workshop discussions led

to a shifting and refinement of the evaluation contexts, resulting in

additional criteria relevant to the fielding of expert systems (e.g.,

portability, integrability, and phased installation). Concerns not yet

VI -

being addressed by most tool developers (e.g., software engineering

issues, novice tool user and interface issues) were identified, and it

was recommended that RAND next host a workshop for expert system tool

users, to capture their concerns and perspective.

Prospective participants for the tool users' workshop were asked to

fill out two questionnaires. The first was used to screen and select

appropriate attendees, and the second requested detailed information

about the respondents' current work. The results of the users' workshop

and the questionnaires showed that users generally agree that the tools

are of significant value and that they provide a great advantage over

building expert systems directly in a programming language (such.as

LISP). Most users feel that current tools are well-designed, reasonably

supported, and sufficiently powerful to justify their cost. The most

frequently cited shortcomings of the tools are lack of speed and lack of

explicit control over inferencing capabilities. Concern was also voiced

about the tendency of vendors to release new versions that have not been

rigorously debugged. As expert systems move from the, conceptualizing

and prototyping phases into development and fielding, there will be an

increasingly urgent need for tool integration with information

acquisition and distribution facilities such as database management

systems (DBMSs), communication networks, and sensor input, as well as

with other software and hardware environments and output devices.

- Vll

CONTENTS

PREFACE iii

SUMMARY v

Section
I. TOOL DEVELOPERS' WORKSHOP 1

Overview 1
Summary of Results 3
Fielding and Development 7
Assessment Techniques 15
Novice Users 21
Other Results 27

II. TOOL USERS' WORKSHOP 31
Overview 31
Summary of Results 34
Concerns of New Tool Choosers and Users 60
Wish List 62

Appendix
A. LIST OF PARTICIPANTS 69
B. QUESTIONNAIRES 75
C. BENCHMARKS 93
D. QUESTIONNAIRE RESULTS 115

TOOL DEVELOPERS' WORKSHOP

OVERVIEW

On June 26-27, 1986, a workshop was held for expert system tool

developers at The RAND Corporation in Santa Monica. The participants

were technical representatives from seven expert system tool companies

and RAND researchers (the participants are listed in App. A).

The purpose of the workshop was to make sure the RAND study team

understood the perspective of the tool developers. Although we already

had our initial framework and methodology fairly well defined, to avoid

prejudicing the developers, we presented our ideas only after they had

had a chance to present theirs. We requested that each attendee prepare

a 20-minute presentation giving his own perspective on evaluation. To

give the workshop some common structure, we suggested that these

presentations focus on evaluation contexts (including some background on

each developer's philosophy of product design, support, and customer

relations) and propose high-level evaluation criteria. We also sent the

developers a preliminary description of a sample "benchmark" problem, to

give them time to prepare their own examples for the workshop.

The participants represented several of the most prominent

commercial tool vendors plus a sampling of others. The attendees

provided an excellent cross-section of tools, markets, and target

environments. We took care to insure that the vendors understood what

we were trying to get out of the workshop, so that they would send

appropriate technical people who would leave their salesmanship at home.

The results of this groundwork were highly gratifying: the attendees

were all top-level design personnel with extensive experience in tool

development and broad perspectives on both technical and commercial

issues, and they came prepared to share ideas and solve problems. The

results of the workshop are due in large part to the professionalism of

the attendees and their willingness to work as open-minded system

analysts rather than sales representatives.

Don Waterman of RAND opened the workshop with a reiteration of its

goals. About half of the first day was then spent hearing and

discussing the developers' presentations. This served to establish the

points of view and concentrations of the various companies represented,

as well as to establish a common terminological base for further

interaction.

We then presented our initial tool evaluation framework, organized

around contexts, tool capabilities, metrics, and "methods of evaluation"

(which we now refer to as "assessment techniques"). We also addressed

the use of benchmark problems (miniature applications) to test various

aspects of a tool's representational capabilities and its use in

development.

The participants then broke up into three working groups of four to

five people each. Working Group 1 focused on issues involved in

fielding or deploying expert systems. Working Group 2 addressed

assessment techniques for applying metrics to expert system tools.

Working Group 3 focused on the tool evaluation criteria that would be

appropriate for a "novice" expert system developer (defined as someone

with minimal experience in designing and building expert systems).

The focus and composition of these groups was determined by mutual

interest and choice, moderated by some voluntary "load balancing." The

remainder of the workshop alternated between working group sessions,

feedback sessions to disseminate working group results, and individual

or group "dumps," where ideas and results were permanently recorded in

text files (all participants and groups were provided access to computer

terminals).

In the rest of this section, we present a summary of the most

important results, followed by detailed results of each of the working

groups. We present the working group results as relatively "raw" data

here to give a flavor of the richness and degree of overlap among the

groups; these results are aggregated and analyzed in the summary and

elsewhere in this note. Finally, we discuss other ideas and concepts

that emerged in the developers' presentations and are not covered

explicitly in the working group results.

- 3

SUMMARY OF RESULTS

The workshop was extremely rich in the exchange of ideas and

concepts, as expressed in the results of the working groups. This

section summarizes four areas in which the workshop contributed to our

understanding:

1. Enhancement and validation of our evaluation dimensions and

criteria.

2. Shifting and refinement of our evaluation contexts, resulting

in additional criteria relevant to the fielding of expert

systems.

3. Identification of concerns not yet being addressed by most tool

developers (e.g., software engineering issues, novice tool user

issues, and interface issues).

4. The recommendation that RAND host a future workshop for users

of expert system tools, to capture their concerns and

perspective.

Validation of Evaluation Dimensions and Criteria

For the most part, the tool developers agreed with our evaluation

framework and our proposed criteria. The major results of the workshop

in this area were:

• Application characteristics was added as an explicit evaluation

dimension.

• The tool developers felt that it is premature to attempt to

develop evaluation benchmarks that can directly compare tools

with each other.

• Consensus was reached on a set of potential assessment

techniques to be used for evaluation.

In our original focus on matching a tool to a problem, the

characteristics of the problem were considered to be crucial to the

evaluation process, yet extrinsic to the evaluation framework. The tool

developers felt that the framework for evaluating a tool should include

the characteristics of the application for which it will be used. As a

result, we promoted application characteristics from an extrinsic factor

to an actual dimension of our framework. As the reader will see in the

next section, the tool users at our second workshop did not feel as

strongly about this as the tool developers--perhaps because they were

more interested in general-purpose tools. Also, the larger, more

complete tools currently advertise support for hybrid reasoning and

knowledge representation, and so are projecting themselves as general

tools. While tool users may be reflecting this image, the tool

developers may be more aware of the differences between their tools (or

they may be searching for such differences in the interests of securing

distinct market niches), and so may be more concerned with how these

differences are related to application characteristics.

Many of the tool developers felt that it was still premature to

expect to use any kind of benchmark to compare tools directly with each

other. The reasons for this reluctance were:

• The results of applying small benchmarks will not scale to

large applications, and so may be misleading.

• Many proposed criteria (e.g., ease of learning, ease of use)

are difficult to benchmark.

• The expert system field is still immature and does not have

well-established definitions. This makes tool characteristics

and features difficult to compare across different tools, since

similarly named features of different tools may be functionally

quite different.

• If benchmarks are implemented by a different team for each

tool, the differences among the results are as likely to

reflect differences among the teams as differences among the

tools. (This same problem exists in software engineering when

trying to compare different languages or methodologies by

having a benchmark problem implemented by different groups.)

Nevertheless, it was felt that standard benchmarks implemented and

published by vendors would allow tool users to compare the vendors'

preferred styles and best solutions to the given problems. We note that

this approach would make it impossible to "cheat," since performance or

cleverness bought at the price of clarity or elegance would be apparent

in the published solutions. Furthermore, vendors could propose their

own benchmarks to insure that important features of their tools were

shown to good advantage; vendors would presumably implement those

benchmarks that suited their tools, thereby providing users with

comparisons of comparable capabilities of tools. Implementations of

benchmarks would provide operational definitions of capabilities,

thereby alleviating the problem of terminological confusion among

similarly named features.

The tool developers agreed that a number of other assessment

techniques are also potentially useful for evaluating expert system

tools. The complete list included:

Comparison of a tool to a standard

Interviews

Questionnaires

Benchmark problems

Case studies

Library of expert system efforts

Development of an expert system for tool evaluation

These techniques were further discussed and evaluated by tool users in

our second workshop.

Criteria Relevant to Fielding Expert Systems

The tool developers were in agreement that the ability of a tool to

support deployment of an end-product expert system was critically

important and warranted additional emphasis in our evaluation scheme.

Portability and the ease of integrating an expert system into the

application (or "delivery") environment, given the hardware and software

6 -

constraints imposed by that environment, were seen as particularly

important. This problem is alleviated if the delivery environment is

identical to the development environment. It may also be vital for

tools to support phased installation of an expert system in environments

where live data cannot be interrupted or compromised.

Identification of Concerns Not Yet Being Addressed

It was felt that a number of important issues are not yet being

dealt with by many of the tools, due to the relative immaturity of the

expert system field and the relatively small number of completed,

delivered expert systems. The main areas of concern involved software

engineering, the use of the tools by "novice" users with little

experience in building expert systems, and user interface issues. The

tool developers felt that as expert system technology emerges from its

infancy and loses its innocence, it will become increasingly apparent

that expert systems are "just" another type of software product, like a

database management system (DBMS), that must operate in standard

application, software, and hardware environments and integrate well with

other software tools and capabilities.

The ultimate effectiveness of a fielded system rests squarely on

its execution competence and performance. Reliability and maintainability

loom as major software engineering issues yet to be faced by many of the

existing tools: particularly important here are error handling and recovery

and the ease of maintaining delivered software in the field. Multi-user

application support (including concurrent data access, with the attendant

database management issues) is also seen as a crucial element that is

missing from many existing tools. Finally, the usability and acceptability

of a fielded system depend heavily on its user interface: this implies

that tools should provide support for designing and building powerful

interfaces, as well as allowing a delivered system to be embedded in an

existing interface in the application environment.

Additional tool evaluation criteria were defined that would be

appropriate for a "novice" developing a prototype expert system. It was

felt that one of the major difficulties facing novices is determining

which tool features are required for their particular problem. The

novice therefore needs assistance in classifying problems according to

type (e.g., planning, diagnosis) and in determining which capabilities

and features are needed for solving problems of a given type. (Note,

however, that classifying problems is still an open research issue

(Chandrasekaran, 1986).) Another difficulty facing novices is that of

determining the size or complexity of a problem.

Of particular importance to the novice is the ease with which the

tool can be learned and used. The documentation and training provided

by the vendor must be of high quality and complete, and the tool must be

easy to use. If domain knowledge must be represented in a LISP-like

language, the novice may have difficulty learning the language and using

the tool. Similarly, a novice may have trouble if using a tool requires

dealing directly with the operating system and the language underlying

the tool. Though novices may be domain experts, they may lack

sufficient artificial intelligence (AI) expertise to solve certain

problems appropriately using an expert system tool; in such cases, the

availability of vendor support and consulting become important criteria.

Recommendation to Hold a Tool Users' Workshop

This recommendation by the tool developers led to our holding a

tool users' workshop, described in Sec. II.

FIELDING AND DEVELOPMENT

Workshop participants in Working Group 1 considered the evaluation

issues involved in fielding (i.e., deploying) expert systems. This

included evaluating the deployment process itself (including integration

and interoperability issues) and the execution effectiveness of the

delivered system. A detailed description of the evaluation criteria

discussed is given below under the categories:

Fielding/deployment

Multi-user support

Reliability

Execution

Human interface

Maintenance

8

Fielding/Deployment Criteria

The evaluation criteria relevant to fielding or deployment were

grouped into portability issues, environment constraints (including

hardware and software), transition, and the fielding process itself.

Portability. Given that many expert system development efforts have

a 2- to 3-year deployment horizon, the eventual fielding hardware is

likely to be unknowable at the outset of development. Only in a few

cases can it be assumed that a target expert system will be deployed in

the same environment that is used to develop it. An expert system tool

must therefore support portable deployment. This requires language

portability and interface portability (particularly graphics).

The language used to implement an expert system with a tool need

not be the language in which the tool itself is implemented (though this

is sometimes the case). Many tools define their own languages in which

their users implement the bulk of their expert systems; but some tools

also allow the user to "call out" into some underlying language, for

example to provide access to the underlying system; this "call-out"

language is typically the language in which the tool itself is

implemented, but may be yet another language. Portability requires that

the expert system implementation language and the "call-out" language

(if any) be available in the delivery environment (or at least be cross-

compilable to that environment). Failing this, a tool user must rewrite

code in order to field an expert system after developing it. To further

complicate matters, many tools provide some subset of their development

facilities in the delivery environment (e.g., explanation tracing). In

such cases, the tool itself must also be portable to provide these

facilities as part of the fielded system. This requires the language in

which the tool itself is implemented to be available in the delivery

environment as well. The use of a standard programming language (such

as C, Pascal, Ada,1 or Common LISP) as an implementation language offers

one solution to this problem.

*Ada is a registered trademark of the U.S. government (Ada Joint
Program Office).

In addition to the language issue, there is the thorny problem of

interface portability. Even among standard languages, interface

standards are rare, and those that do exist are often low-level. To

make use of windows, graphics, color, and input devices (such as mice),

an expert system implementer generally has only two choices: either use

the facilities provided by the tool itself (and hope that the tool

vendor will solve the problem of porting these to the desired delivery

environment), or implement special-purpose interface code targeted for

the delivery environment (which may mean sacrificing the ability to try

this interface out in the development environment, if these environments

are incompatible).

Environment Constraints. Environment constraints include both

hardware and software. Hardware considerations include the delivery

cost of hardware per end-user. In some cases, a chosen market and

target price may determine the hardware; in other cases, hardware

requirements may determine the price and therefore the market. Hardware

may also be determined by decree, e.g., for government-furnished

equipment (GFE). The growth potential of the target system depends on

the ability to expand the system over time through network environments

and the ability to take advantage of larger primary and secondary memory

capacities.

The operating system used by the tool (and under which the tool

runs) may exert constraints on an expert system application in the areas

of communication and networking, multi-tasking capability, and the use

of virtual memory. The application environment may also impose

constraints. Government applications may be subject to military

specifications dealing with such things as TEMPEST compliance, hardware,

security, and formal verification. Financial applications may impose

auditing and accountability requirements along with a strong disposition

toward traditional vendors such as IBM. Critical environments such as

nuclear powerplant control may impose severe reliability and

availability constraints.

10 -

The transition from the development system to the installed,

delivered system may require interfacing to a network, to other

software, and to live data. In many environments, this must not cause

interruption of service or unavailability of data and may require phased

delivery in which the expert system is phased in in parallel with

existing procedures, so that no data is lost. Tool support for

performing this transition painlessly and safely is therefore an

important evaluation consideration.

The fielding process becomes easier if the tool can encapsulate

hardware-specific aspects of the application (such as sensor input) and

operating-system-specific aspects of the application (such as

input/output (I/O) and communication capabilities). Fielding is

certainly easier if the hardware, operating system, and implementation

language(s) used for the fielded system are the same as those used for

the development system, but this will not always be the case. Language

issues also include the capability of the tool to encapsulate external

calls by permitting applications to call programs or functions in

another language and tool support to insure that the form of these calls

will port to the delivery environment. If the hardware/software

environments differ from development to delivery, then another important

tool criterion is the ability to translate or cross-compile application

code. This may include procedures within the tool itself and those in

the "call-out" language. The evaluation concern is whether this is done

by the tool, available as a service, or requires hand coding.

Issues in fielding from the development to the delivery environment

also include portability of the development interface, such as whether

both interfaces should be the same and, if not, what should be removed

and what must be recoded (e.g., should debugging aspects be removed? Do

graphics interfaces need to be recoded? Do dynamic rule generation

capabilities need to be removed or disabled?). Another concern is with

limitation of the application size due to the hardware and software

constraints of the delivery environment.

11 -

A final issue is whether fielding can be done by a novice user. If

the tool allows end-users to create expert systems, it is an advantage

if the fielding process is sufficiently automated to allow those users

to field their own expert systems with little or no help. Since expert

system technology is typically aimed at application areas that are not

highly formalized or well understood, expert systems are likely to

require change and evolution even more often than traditional systems

(for which life-cycle costs of enhancement and debugging are already

often greater than 50 percent of total system cost). An expert system

is likely to be under development throughout its entire fielded

lifetime, requiring either "field refinement" or refinement in the

development environment followed by refielding. If refinement requires

cycling back to the development environment, its cost and difficulty

will depend on how well the tool supports the fielding (or refielding)

activity.

Multi-User Support Criteria

Many real-world applications require multi-user access, which in

turn requires support for consistency and synchronization of concurrent

access and contention handling for database (or knowledge-base) updates.

Similarly, tools may need to support multiple views of knowledge bases

to allow different users to see different parts or aspects of a

knowledge base, and to provide different access privileges for different

users.

These kinds of multi-user support may be required by two quite

different sets of users in two different contexts: by multiple tool

users during development of an expert system, or by multiple end-users

interacting with the final expert system. In the former case, the

emphasis is on configuration management, whereas in the latter case it

is on knowledge-base access, but both cases may require concurrency,

contention handling, views, and access privileges. These issues have

not been addressed by most expert systems to date, and few of the

available tools provide solutions to these problems.

- 12

Reliability Criteria

Reliability criteria are general software engineering issues that

include availability, reliability and recovery, error reporting,

validation and verification (V&V), and quality assurance. For all these

issues, the relevant criteria for tool evaluation have to do with the

support a tool provides, that is, how it helps a developer build an

expert system that satisfies these requirements.

Availability (i.e., the percentage of time a system is available

for use) and reliability are requirements of the application environment

and apply to software, databases, and network interfaces as well as

hardware. Recovery requires that a system maintain internal consistency

in the face of hardware failures or inconsistent data or data access.

Error handling requires that a system report errors to end-users in

understandable terms; this must apply both to errors encountered by the

application expert system and to errors encountered by the underlying

tool in cases where the tool is present when running the application.

V&V does not refer to formal verification but rather to insuring that

"the right system gets built in the right way"; to support V&V, a tool

must help an expert system developer build confidence in the design and

implementation as it progresses. Support for quality assurance involves

allowing a tool user to test and retest an expert system application

easily, e.g., by making it easy to build test suites, keep failure

statistics, run load tests, etc.

Execution Criteria

In the (highly nonstandardized) jargon of expert systems,

"execution" usually refers to the execution of the target expert system.

Execution criteria include performance, memory requirements, and

integration capabilities. Performance is usually evaluated in terms of

speed and real-time capability (where speed is a function of size and

complexity). Speed criteria are applicable to rule execution, search

space examination, interface interaction, external calls or

communication, etc. Real-time capability is essentially the ability to

guarantee speed requirements. It was noted that tools which implement

- 13

expert systems in LISP dialects and perform traditional, synchronous

garbage collection may have trouble meeting real-time requirements.

Some newer LISPs, however, perform garbage collection in background,

which should smooth out the associated delays; in addition, it would be

possible to give LISP programmers explicit control over garbage

collection, though this runs counter to the traditional LISP style of

high-level programming.

Memory considerations include primary and secondary memory

requirements and the need to optimize or reconfigure the memory of the

fielded system by removing parts of the development environment (or

paying the overhead of having unused or disabled tool features present

in the fielded system). There are also memory tradeoffs to be

considered between running in compiled or interpretive modes.

Integration capabilities include (1) encapsulating external

interfaces to the operating system, other languages, databases, external

applications, interprocess communication, asynchronous communication,

and physical devices (i.e., defining them as logical devices); (2)

architectural tool support for asynchronous communication (e.g., data-

directed computation) and consistency maintenance (e.g., truth

maintenance); and (3) "embedability"--allowing an application to be

called as a function by other software or to be preempted by other

processes, and generally allowing the delivered expert system to

cooperate with existing software.

Human-Interface Criteria

Human-interface criteria apply both to a tool itself and to the

delivered expert systems built with a tool. They include (1)

"defeatability" (the ability to turn off selected features of the

interface or of the application/tool environment); (2) interface

consistency across various modules or modes within the tool or

application itself and also between the tool or application and other

preexisting interfaces in the user's environment (e.g., editors,

operating system, etc.); (3) support for implementing help,

documentation, and explanation; and (4) interface construction support

(how well the tool supports construction of application system

interfaces).

14

The first three of these are fairly self-explanatory. Interface

construction support should include separability, modularity,

embedability, mixed initiative, menus, commands, multi-tasking/windowing,

and graphics. Separability and modularity allow an interface to be

removed or changed independently of the rest of the supplied environment.

Embedability is concerned with the ability of the target system to be

merged into an existing target environment with an existing interface.

Mixed initiative addresses the tool's support for building interfaces

in which the user and the system share control of the interaction. Menu

capability refers to the tool's support for building flexible menu

interfaces. Command capability refers to the tool's support for building

flexible command interfaces (i.e., providing facilities for parsing,

spelling correction, command completion, etc.). Multi-tasking/windowing

is concerned with the tool's ability to take advantage of existing

multi-tasking windowing environments or to support the creation of

such an environment for a target system. Graphics capability refers

to the tool's support for providing graphic explanation facilities

in the delivery environment and for providing other application-specific

graphics.

Maintenance Criteria

Maintenance is another common software development concern. The

nature of expert systems and the kinds of problems they typically

attempt to solve give maintenance special significance, since these

systems often require continual evolution and refinement, even after

delivery. Relevant tool characteristics include (1) tool-supported

configuration management, consistency maintenance (of application code,

documentation, and explanation), and automated management of trouble

reports and change requests; (2) leverage furnished by the tool for

maintenance of target expert systems; (3) language issues (discussed

previously); and (4) the maintenance process itself.

Maintenance support requires the ability to make the explanation

and "introspection" facilities of an expert system evolve incrementally

to show the internal state of the system (e.g., as a trace of rule

- 15 -

firings), to help expert system developers and end-users understand the

system's behavior. Capabilities to support explanation should allow

different levels of user sophistication to address the different needs

of developers and end-users. In addition, a tool should support modular

code development, including techniques for "information hiding" and for

building procedures and packages.

The maintenance process depends critically on whether maintenance

changes require cycling back to the development environment and

refielding or can be made directly in the delivery environment. The

latter allows easier and quicker evolution or fixing of bugs but

requires that facilities for testing, V&V, quality assurance, etc., be

present in the delivery environment (which is rare). A related concern

is whether maintenance of an expert system can be performed by end-

users themselves (or by applications programmers in the end-user

environment) or requires the services of the knowledge engineers who

originally developed the system.

ASSESSMENT TECHNIQUES

Working Group 2 focused on assessment techniques (which at the time

we called "evaluation methods") for evaluating expert system tools. A

group report was produced as well as individual notes. A short abstract

of each note is given below.

Abstracts of Individual Notes

Richard Fikes wrote on "Methodology for Evaluating the Functional

Capability of Tool Components." In his note, he discusses functional

capability benchmarks, gives an illustrative problem fragment, and

describes how such benchmarks could be used for evaluation. He notes

that certain characteristics such as debugging aids and the degree of

difficulty in learning the tool cannot be tested with these kinds of

benchmarks.

Steve Hardy addressed the issues in the development of expert

systems by programmers and intended his note as a guide for developing

criteria for evaluating expert system shells. He lists four areas of

issues in expert system development and the dimensions over which they

- 16

should be considered. He emphasizes the fact that in developing the

evaluation criteria we must keep the intended user and purpose in mind,

since almost all expert systems to date have been demonstration

prototypes built by AI specialists.

Charles Riese's note included three topics: ideas about assessment

techniques, a discussion of test cases for expert system tool

evaluation, and a discussion of building an expert system to be used in

the evaluation of expert systems.

Don Waterman's note describes different contexts for considering

the tool evaluation problem and looks at important capabilities in each

context and at assessment techniques for evaluating those capabilities.

Group Results

Our own work prior to the workshop had convinced us of the need for

further thought on the subject of assessment techniques, i.e., ways of

actually applying metrics to tools, and we had our own list of potential

techniques, which we introduced into the working groups to stimulate

discussion. Many of these same ideas were broached independently by

other attendees, and several new ones were added. (For example, we

considered the idea of a consultation expert system to advise a

prospective tool user on how to evaluate tools throughout the project;

this idea was also raised by several of the attendees at the workshop.)

In what follows, we do not distinguish which ideas predated the workshop

but simply present them all as "results."

The workshop produced seven potential assessment techniques that

might be used in the evaluation of expert system tools:

Comparing tools to a standard

Conducting user interviews

Asking users to fill out questionnaires

Applying benchmark problems

Performing case studies

Gathering a library of expert system efforts

Developing an expert system tool evaluation consultant

- 17 -

Comparison to a Standard. Using this technique, one would

compare a capability of a. tool with what some standard language (e.g.,

Common LISP) offers, or compare a feature of the tool with similar

features of some ideal tool or of other tools (e.g., forward chaining in

a given tool with forward chaining in ROSIE). This would produce a

comparison of each feature (or capability) of the tool with the

corresponding feature (or capability) of some baseline technology.

This technique presents several problems. The choice of a baseline

is not an easy task in such a young technology. A baseline such as

Common LISP may not be particularly useful for differentiating tools,

since most or all tools would exceed its capabilities by a wide margin,

which would nevertheless be difficult to measure with any precision.

Comparison to an "ideal" tool presents the problem of defining this

ideal.

Comparing tools with one another on the basis of tool

characteristics and features would yield a sort of Consumer Report™

(deemed quite desirable by attendees of the second workshop); but such

comparisons are difficult because characteristics may have the same name

in different tools but be functionally quite different (this may lead to

inadvertently comparing apples and oranges simply because they have both

been named tangerines). A reviewer making such a comparison (and even

moreso, a reader trying to interpret one) would need to have an in-depth

understanding of all the tools being compared.

Interviews. Interviewing people who have completed long-term

development efforts in order to learn from their experience with the

tool(s) they have used is usually done informally by developers shopping

for tools, but is generally limited to an arbitrarily chosen set of tool

users (i.e., personal friends or other developers within the same

organization). To be useful for evaluation, this technique would have

to be applied systematically and objectively, and the results would have

to be made widely available. It would also require continual updating

to include newer and more relevant experiences.

18

User Questionnaires. This technique is analogous to interviewing

tool users but is made more formal by the use of a standard

questionnaire. Information collected from various users of a tool would

be kept in an easily accessible (and continually updated) database. To

be of maximum utility, questionnaires could be completed at several

points during the development of an expert system; this would provide

valuable information on long-term efforts and on how tools support the

overall development process.

Benchmark Problems. Benchmarks are special problems developed to

test the capabilities of an expert system tool. Problems would be

stated in implementation-independent terms and could be solved by

vendors offering expert system tools and/or by prospective tool users.

Solutions for each tool would be published, along with such quantitative

measurements as the time required to implement the solution, the

resulting system size, etc. Solutions would be evaluated primarily on

the basis of style and conceptual clarity, and only secondarily on the

basis of their quantitative measurements. Specific criteria for

evaluating solutions to given benchmarks would be developed iteratively

in the literature, and solutions would attempt to optimize for these

criteria as they evolve.

A small benchmark problem should be capable of solution in hours or

days. It would consist of an informal statement of the desired

capability, a specific problem fragment for testing the capability, and

a description of the role the capability plays in solving this problem.

Small benchmarks could be used to test such things as the expressive

power of representation languages and the execution efficiency of

various programming paradigms.

Benchmarks for testing functional capabilities could be obtained

from tool vendors by asking them to describe what they feel are the most

important capabilities offered by their tools. Each vendor would

explain each capability in terms of the kinds of applications it serves

and would provide a corresponding benchmark problem to test that

capability, along with one or more solutions to that problem using the

vendor's own tool. Each solution would be accompanied by a statement of

19

the criteria that solution attempts to optimize, thereby minimizing the

danger of judging a solution by inappropriate standards. The following

is a skeletal example of a small benchmark problem:

Experts may organize their domain knowledge around taxonomies:
hierarchical structures in which properties of an entire class
can be stated just once and then "inherited" by members of
that class or any subclass.

For example, all squares are rectangles and all rectangles are
geometric figures. The area of any rectangle can be computed
by multiplying its height by its width. The width of a square
equals its height.

Represent this knowledge and use it to compute the area of a
square called "object-22," with a height of 5 meters.
Rectangle height must be a number. Extend the representation
so the system will reject nonnumeric heights for rectangles.

A large benchmark problem is one that can be solved in weeks or

months. It would consist of a detailed description of the problem being

addressed, a checklist of questions to which the implementer must

respond during the development process (such as, "How hard was X to

implement?" or "How long did it take to implement Y?"), and follow-

up interviews to obtain subjective evaluations. An example of a large

benchmark problem, that of locating and diagnosing a spill in a chemical

plant, is presented in detail in Hayes-Roth, Waterman, and Lenat (1983).

As a result of the discussion of benchmarks, we solicited medium-

scale benchmark problem statements from each of the vendors after the

workshop. In order to provide a form and example, we first prepared our

own sample benchmark (given in App. C) and distributed this to the

attendees. In response to this request, we received a single vendor-

generated benchmark proposal (from Radian Corporation), which is also

reproduced in App. C.

Case Studies. A case study is a controlled recording of an expert

system development effort that attempts to capture the relevant aspects

of the tool being used. Unlike a benchmark, it focuses on a real

development effort to solve a real problem, rather than dictating the

problem to be solved, and is therefore not fully controlled. It seeks

- 20

to instrument the development process in a real case, thereby avoiding

the artificiality of an oversimplified problem. It would consist of a

methodology for recording the history of an expert system development

without imposing undue constraints on the developers (who would be

expected to resist any overhead introduced by the instrumentation

process).

A case study would be presented as a description of the problem

being solved, along with a development history that would include both

objective facts (e.g., overall development time, time to reach

particular milestones, number of rules, size of knowledge base) and

subjective factors (e.g., ease of use, naturalness of knowledge

representation, problems encountered, successes obtained). There would

also be post-development interviews. Case studies would be indexed by

application type, domain, and various features of the development

environment to allow prospective tool users to evaluate the

applicability of a given study to their own problem and environment.

Library of Expert System Efforts. This would consist of a library

of information about expert system development efforts, organized into a

database that could be searched to find projects similar to a proposed

project. Such a library would require indexing similar to that proposed

for case studies above; it might, for example, match the "signature" of

the proposed project (i.e., the characteristics of its application and

development domains) against those of items in the library. The library

could contain entries from all other categories of evaluation

techniques: comparisons, interviews, questionnaires, benchmarks, and

case studies, in addition to relevant literature, conference

proceedings, technical papers, etc.

An Expert System for Tool Evaluation. A consultation and

diagnostic expert system could be developed that would take a complete

description of the proposed application as input from its user and

produce as output issues to consider, questions to answer, and

capabilities, features, and metrics that might be useful for evaluation.

This expert system would apply rules based on tool criteria and problem

attributes and access the library of expert system efforts as part of

its knowledge base.

21

NOVICE USERS

Working Group 3 focused on criteria that would be relevant to

choosing an expert system tool for use by "novices" developing a

prototype expert system. In our context, a novice is someone acting as

a knowledge engineer who has no AI expertise. This may be a domain

expert (with or without any computer background) or a "vanilla"

programmer, i.e., one who is competent in some general-purpose

programming language, but is not an AI programmer. (These definitions

of novice and vanilla programmer are not meant to be judgmental; they

are merely convenient jargon for use in this Note.)

The group developed the following set of categories of evaluation

criteria:

Integration and embedding

Application and domain types

Problem scale

Multiple/single user development

Development environment

Tool learnability

Explanation

Cost

Future of the tool

Support

Techniques to help in tool selection

Other issues

Integration and Embedding

These issues are more difficult to assess and address for a

nonprogrammer domain expert than for a vanilla programmer (for whom

there will be some carryover from building traditional systems). The

issues involve accessing existing software packages (e.g., databases,

spread sheets, statistical packages, graphics) for both input and

output. This can be done either from within the tool or by accessing

the tool from within an existing environment that provides access to

22 -

these other packages. In some cases, it may be possible to simulate

this integration within the tool itself, though this may not field well

if the ultimate target environment is different from the development

environment. The crucial criteria here are whether and to what extent a

tool provides "hooks" into applications libraries or into other

programming languages to allow implementing interfaces to other

packages.

Application and Domain Types

Novices need help in understanding which applications and domain

types may require special tool characteristics (such as support for

multiple viewpoints, time sequences, histories, truth maintenance, real-

time access to data, etc). There is currently a great deal of work

going on in the research community to produce canonical

characterizations of problem types, but consensus has not yet been

achieved in this area. In the absence of standard characterizations,

novices must at least be able to access examples of similar applications

that have been developed by other novices (with similar backgrounds and

experience) using the tools under consideration. A library of case

studies and expert system efforts would probably be the most useful aid

here.

Problem Scale

The novice has to be aware of many issues dealing with the scale of

the problem. It is important to understand what problem sizes are

reasonable for particular tools or, conversely, whether a given tool is

adequate to support a given problem. Similarly, it is important to know

whether a proposed application will perform at an acceptable level (with

respect to speed and memory) on the target machine, using a given tool.

If a problem requires building a large knowledge base, the tools to be

considered must allow building and maintaining this knowledge base and

must provide support for modularization (e.g., of code and rulesets). A

related concern involves the ease with which a prototype solution can be

scaled up to a fully developed system, and whether the same structure

and approach will be appropriate for both. The safest course for a

23

novice would probably be to consult case studies and vendor references

to ascertain whether other novices have built similar systems of similar

scale.

Multiple/Single-User Development

Novices working in a multi-user development environment may require

special tool support for knowledge acquisition, identifying

inconsistencies in a knowledge base, reporting system status, and

building expert systems to support multiple end-users. The tool should

make it easy to detect logical inconsistencies and inconsistent use of

symbols in the knowledge base. Where the novice developers are the

domain experts, this translates into a criterion of "knowledge

acquisition" support; in any case, it requires knowledge-base

configuration management to coordinate the activity of multiple

developers. The definition of consistency in the knowledge base may

also depend on whether the tool can support multiple results or

conclusions: if so, novice tool users must be made aware that

unintended inconsistencies may go undetected. Novices who are domain

experts may also have heightened needs for knowledge-base browsing

(e.g., to reconcile differences among multiple experts) and for the

collection and maintenance of development history (particularly for

nonprogrammers).

In addition to the above issues for multiple developers, if the

target application is intended for multiple end-users, the tool may need

to allow concurrency and to control contention; similarly, it may need

to allow alternative views of the knowledge base and support knowledge-

base merging. If the developers are nonprogrammers, their reliance on a

tool's built-in support to solve software engineering problems such as

these will be even greater.

Development Environment

The novice tool user's main concerns with the development

environment will be with responsiveness and the functionality of the

user interface. For novice developers serving in the role of domain

experts, the task of "knowledge acquisition" (i.e., entering knowledge

- 24 -

into the knowledge base) and knowledge representation may require

specialized editing modes or support for various forms of knowledge

entry (e.g., natural language, rules, examples, diagrammatic input,

taxonomies, axioms, equations, assertions). Similarly, explanation,

tracing, and debugging facilities (e.g., the ability to browse through a

trace or to obtain English-like explanations) are crucial for novices,

even seasoned programmers who are not familiar with the expert system

approach. For nonprogrammers, a tool must also provide on-line help

facilities, support for the graphics needed by the application, and a

high-quality user interface which is robust, user-friendly, and

ergonomic.

Novices are likely to be fairly intolerant of slow response. The

development environment should interact quickly with the tool user when

adding knowledge, editing, testing and rerunning with trivial changes,

performing error detection and consistency checking, and loading and

saving knowledge bases.

Tool Learnability

A novice must consider a number of issues related to learning to

use a tool. The primary criterion here is the time it will take to

learn to use the tool in order to become productive, proficient, or

expert, or to be able to solve the problem at hand. To evaluate the

available means to this end, the novice must consider the materials and

support that are available from the tool vendor, e.g., tutorials (both

documented and on-line), documentation, problem/program samples,

training, etc. It is particularly important to determine whether these

are intended only to teach the user to use the tool or to go beyond that

and show how to solve problems.

Explanation

Explanation support must be evaluated with particular care, since

in the absence of such support in a tool, building an explanation

facility for the target expert system may be beyond the reach of most

novices. It is useful for the tool to provide explanation in the

development environment for knowledge-base tracing and debugging; but

25

tools that provide such facilities do not always allow them to be

exported easily into the target delivery environment. The novice must

be careful to avoid such "dead ends" in the development process by

looking ahead to fielding.

For an explanation facility to be useful to novices (both during

development and after delivery), a tool must allow explaining any

conclusion or action (along both "HOW" and "WHY" dimensions) in detail

appropriate for the novice (e.g., presenting its explanations in English

with helpful diagrammatic representations, and supporting the user in

browsing through the explanation). In addition, it should be easy for

the user to request and receive explanations at any time (e.g., during

development, during consultation with the expert system, or after

conclusions have been reached by the expert system).

Cost

Not surprisingly, the group felt that cost often functions as an

initial filter of the tools to be considered. Cost considerations should

begin by examining the startup costs of using a new technique or tool

that is unfamiliar to a novice user. Given the difficulty of evaluating

tools (especially for a novice who has little background on the

subject), the cost of performing an evaluation to select an "optimal"

expert system tool must be weighed against the tool's potential payoff.

Furthermore, the novice must determine whether the cost of solving the

problem using an expert system tool will yield a larger payoff (savings)

than a more conventional solution. This requires evaluating both the

expected cost of the tool (throughout its useful lifetime for the user)

and the cost of the development effort (including maintenance) with and

without the tool.

Future of the Tool

One very important aspect in selecting a tool is understanding the

future growth directions the vendor intends for the tool and the future

of the tool in the user's organization. The novice tool user must

assess the future use of expert system tools in general within the

organization and must consider which other problems the selected tool

- 26

might be used for (including likely changes or extensions to the problem

under consideration). A related issue is how well a tool fits into the

existing computing environment. If the fit is not very good, the future

directions of both the environment and the tools under consideration

should be examined to see if there is likely to be a better fit with

future versions of any of the tools.

The novice must also try to ascertain whether a chosen tool will

allow scaling up a prototype problem solution into a deployable system

appropriate to the expected delivery environment. This involves issues

such as reliability, security, and hardware compatibility. It is

necessary to evaluate the limitations of the tools being considered and

to assess the future of those tools (i.e., does the vendor have plans to

solve important limitations and when?). Finally, it is vital to make

sure that knowledge bases can be preserved as a tool evolves.

Support

The novice tool user must carefully project the kinds of support

that will be needed in the development and deployment phases and

evaluate whether the vendor (or independent consultants) can supply the

required support at an affordable cost. Support includes detailed

documentation, advanced training courses, help with customizing the tool

(or an expert system written with the tool), and help with porting

applications to their target delivery environments.

Techniques to Help in Tool Selection

The novice tool user may utilize case studies to help select a

tool. To be useful to novices, case studies of expert system

developments should be independently conducted studies of real

applications that have been developed by other novice users. They

should include complete development histories (both subjective and

objective), should be indexed by application type and domain over a wide

range of problems, and should contain indications as to which features

of the tool helped or hindered development. Case studies are most

useful if they adhere to a standard methodology for recording and

reporting results.

27 -

Other techniques suggested to help novices in tool selection

include getting help from vendors, expert system courses, etc.; use of

vendor demonstrations to show how a tool can be used by a novice and

what can easily (and possibly) be done using the tool; contacting other

users of a tool for references; and using a feature list as a guideline

to understanding what features relate to solving the problem at hand and

how easy it is to use those features (though this is subject to the

caveats stated previously about comparing dissimilar features).

Other Issues

There remain several issues relevant to novice tool users that do

not fall into the above categories. It is often claimed that one of the

primary benefits of using expert system technology to solve a problem is

that it leads to a better understanding of the problem (and the entire

domain) by forcing knowledge to be structured and represented

explicitly. In some cases, novices may consider this an important

benefit of (and motivation for) using a tool, e.g., to train new domain

experts. They may therefore evaluate a tool partly on the basis of how

well its representation and methodology satisfy this criterion.

Novices should also be concerned with how well (or poorly) a tool

hides the underlying language and environment. If solving the problem

at hand will require escaping to the underlying language or environment,

it is important to evaluate how difficult that will be.

Finally, the novice may be concerned with whether an understanding

of AI techniques (e.g., certainty factors, truth maintenance, meta-

knowledge) is required in order to use a particular tool to good

advantage. In most cases, it will be an added burden for a novice to

learn this extraneous subject matter, though in some cases, learning

about AI may be one of the motivations for using an expert system tool.

OTHER RESULTS

This section presents additional ideas and concepts that emerged

from the briefings given by the developers.

- 28

An interesting and controversial topic offered by Charles Riese

(Radian Corporation) was that the evolution of an expert system should

include the conversion of rule subsets into utility algorithms. An

important tool characteristic would then be the support of an automatic

path that could convert heuristic knowledge into algorithmic knowledge.

Riese also expressed the view that when the expert system represents a

small portion of the entire application, the selection of an expert

system tool should have a correspondingly small influence on hardware

and software decisions.

Steve Hardy (Teknowledge) expressed the view that tool builders

need to treat expert system tools like other software systems (e.g,

DBMSs) and develop a product philosophy that emphasizes good customer

relations. This includes offering in-depth customer support,

understanding the customer's business and how an expert system will fit

into the environment and problem solution, becoming management

consultants as well as software engineers, and offering extensive

training. Proposed future tool characteristics include expressing the

relationships between data in a nonprocedural way; being able to embed

an expert system in a total system to DoD specifications (e.g., as an

Ada implementation with no rotating storage on Mil Spec hardware); the

ability to view a tool as a subroutine from conventional languages; and

the ability to handle tools that are currently separate (such as expert

systems, database management, and statistical packages) as libraries

instead of separate tools.

Richard Fikes (Intellicorp) emphasized that knowledge acquisition

is the bottleneck in the development of expert systems. What is needed

is to let domain experts communicate with the tools in ways that are

natural to them (e.g., taxonomies, logical assertions, structural

models, diagrams, situation-specific decision rules) with a minimal need

for them to reformulate their knowledge. Reasoning needs to be able to

answer multiple types of questions and perform multiple types of tasks.

To do so requires representing knowledge in a task-independent fashion.

29 -

Expert system solutions require using multiple tools that need to be

well integrated with each other and that are capable of integration with

other software (a point made by all the developers).

David Hornig (Carnegie Group) presented the philosophy that the use

of an expert system tool should increase the productivity of application

programmers and that applications written with the tool should run

reasonably well. He expressed goals for the tool developers that

included making tools easy for both experts and beginners to use,

avoiding precipices (that is, being continuously extensible), and being

capable of supporting large systems, while yielding small solutions to

small problems.

Lowell Hawkinson (LISP Machines, Inc.) discussed the usability of

tools, including allowing end-users to maintain knowledge bases, not

requiring the end-user to know LISP or AI, providing user interfaces

that combine natural language and graphics, representing knowledge in a

way that is readable by the user, giving users control over consultation

sessions, and providing high-level domain modeling tools and simulation

facilities. Complete and powerful tools should include learning

capabilities and hierarchical modeling of objects. Application to real-

time problems requires the ability to work on many tasks concurrently, a

built-in ability to handle time, and keeping histories of data and

functions.

Mark Wright (Inference Corporation) discussed the need for data-

directed reasoning (including distributed problem solving and

monitoring) and for rule-based, modifiable programs, opportunistic

problem solving, and dealing with unstructured problems. Representation

capabilities should include reasoning about the search space, multi-

level search spaces, and data-directed negation. Delivery system

characteristics include the need for cheap machines, the ability to

interface to existing systems (e.g., IBM OS written in assembler),

C-based tools, and validation (which he acknowledged as an unsolved

problem).

30 -

Anthony Magliero (Software Architecture & Engineering) discussed

the importance of the operational data-processing setting, the ability

to integrate existing information sources, the ability to operate on

in-place equipment, the use of a prototype as an integral part of

development (rather than as a throwaway), the need for verification and

validation aids, the need to generate runtime packages to operate in

many different environments, the need for multi-user support for a given

body of data and knowledge, the use of abductive reasoning in

explanation, the ability to develop systems based on high-level

descriptions or requirements analysis generated by application

specialists, and the ability to perform nonclassification reasoning by

cons t ruct ing s olut ions.

31

II. TOOL USERS' WORKSHOP

OVERVIEW

On November 3-4, 1986, we held a second workshop at The RAND

Corporation for expert system tool users. Whereas the participants in

the developers1 workshop were technical representatives of commercial

expert system tool vendors, participants in this users' workshop were

selected on the basis of their experience in building expert systems and

choosing expert system tools. Our intention was to bring together a

representative cross-section of expert system tool users to evaluate,

critique, and revise our tool evaluation framework and methodology.

This section summarizes the results of this two-day users'

workshop. We first discuss the participants and summarize the events of

the workshop. Then we discuss the results of the workshop, presenting

both the conclusions drawn from a number of working groups and the

general concerns voiced by participants.

Participants

We sent an announcement of the workshop to over 100 expert system

tool users, and enclosed an initial questionnaire requesting information

about themselves, their projects, and the expert system tools they had

used. (This questionnaire is reproduced in App. B.) We were surprised

by the overwhelming response and interest generated by this initial

inquiry and were forced to turn away a number of users due to logistic

limitations and our desire to keep the workshop small.

We selected 32 participants for the workshop, using the results of

our initial questionnaire. We filtered potential participants on the

basis of the tools they had used, the domains and tasks they had worked

on, the scope and complexity of their projects,.their experience level,

and their affiliation. We sought a cross-section along all these axes,

with a slight bias toward DoD contractors, based on the charter of our

project. Although our 32 participants may not have been a truly

representative sample of expert system tool users, we felt a group of

32

this size would be adequate to provide a diversity of useful insights,

while being small enough to keep the workshop manageable.

The attendees covered a wide range of experiences. Some had used

commercially available tools (ranging from high-end, LISP-machine-based

tools to low-end PC-based tools), while others had built their own "in-

house" tools. They represented many domains, including the military,

aerospace, finance, and manufacturing, and many different types of

tasks, including fault diagnosis, planning, classification, design, and

monitoring. They were involved in a wide range of projects that varied

in terms of development team size, total level of effort (i.e., number

of person-years), system size, and stage of development (e.g.,

prototyping, developing, fielding). Their experience levels also

varied, though to insure some commonality of background, we invited only

users with some programming experience (though not necessarily much AI

experience). They represented both research organizations and

commercial companies.

After winnowing the participants, we sent them a second, more

comprehensive questionnaire (also reproduced in App. B). A list of

participants is given in App. A, and the results of both questionnaires

are discussed in App. D.

Workshop Activities

Jeff Rothenberg of RAND opened the workshop with a presentation of

the project's charter and goals and a discussion of our evaluation

framework and methodology. The results of our developers' workshop were

also discussed, along with their impact on our framework. The

presentation then summarized the results of the first questionnaires

returned by the attendees, to give the participants an overview of who

was present and what their experiences were.

The remainder of the first morning was devoted to the attendees'

completing the second questionnaire (which not all of them had received

prior to the workshop), as well as to having them meet each other and

interact informally.

- 33

The bulk of the workshop was spent with the participants divided

into four working groups of about equal size. The diversity of the

attendees provided an extremely rich interaction and exchange which

produced a great deal of useful insight. Each group included a member

of the RAND project, who recorded what was said and kept the discussion

from ranging too far afield.

During the first afternoon, these groups discussed various

dimensions of our evaluation framework as well as other issues relevant

to expert system tool evaluation. Each group was given copies of all

the completed questionnaires and began by compiling the parts of the

questionnaires pertaining to the dimensions they were discussing, so

that these results could be used to guide the discussion. The groups

broke up in the late afternoon, and a member of each group presented a

summary of the group's results to the full workshop, as discussed in the

summary of results below.

The second morning began with a briefing by Dr. John Marinuzzi from

Los Alamos National Laboratory. He described an AI training facility

and curriculum developed by the Los Alamos Knowledge Systems Laboratory

in conjunction with Sandia National Laboratories to bring staff members

up to speed in AI tools and techniques. He expressed his conviction

that without such support, even an intelligent and highly motivated

scientist is likely to fail in the attempt to become a proficient AI

programmer, because the tools and techniques evolve faster than an

unsupported individual can learn to use them. The Knowledge Systems

Laboratory is an attempt to collect a critical mass of tools and

expertise to be used in training technical staff members in expert

system knowledge engineering.

During the rest of the second day, the participants were divided

into groups according to their applications areas, i.e., aerospace,

finance, military, and commercial applications. On this day, the group

discussions were left open, providing the participants with a forum for

voicing their own opinions and concerns about expert system development

and the tools required for their applications. These discussions

focused on such topics as integration of expert systems into existing

34

environments, concerns of new tool users, definition of the ideal'

expert system tool, and methodologies for building expert systems. Late

in the afternoon, the groups again presented summaries of their

discussions, concluding the workshop.

SUMMARY OF RESULTS

We first present some general issues that the participants

identified, along with those criteria that they felt had the greatest

discriminating value in narrowing the choice of a tool. We then discuss

the results in terms of the five dimensions of our framework, commenting

on various aspects of each dimension.

General Issues

Evaluation Caveats. A number of participants brought up general

issues about evaluation, listed below:

• Who is the evaluator?

• Who will measure and monitor the accuracy of an evaluation to

detect biases?

• Who is the evaluation for?

• Will the evaluations be timely? How will they be kept up to

date?

The preferred choice for an evaluator is a conscientious, impartial

reviewer. In particular, evaluators should be free from biases and

invulnerable to "political" pressures that can make selection a foregone

conclusion and turn evaluation into a sham.

Concerns vary among different user groups, e.g., managers,

technical staff, end-users. To be of value to a certain group, an

evaluation should address that group's concerns without including

superfluous information.

One recommendation (which our project had already taken) was to tie

evaluation to general capabilities rather than to specific tools, so

that evaluation results will not become obsolete too fast.

- 35 -

Discriminating Criteria. Another issue that was raised had to do

with tool selection and ways of pruning the space of tools so that an

evaluation can focus on a small set of tools. The criteria listed below

were considered to be particularly effective for discriminating among

commonly available tools, thus narrowing the set of tools to be

considered:

• Cost

• Availability of tool on required hardware

• Integrability

• Range of applications

The tools to be considered may be quite different, depending on a

project's software budget and other available resources (such as personnel

and computation power). Only a limited set of tools may be available for

a given hardware environment (e.g., LISP machines, mainframes, or PCs).

The need to integrate a tool (or an expert system built using a

tool) with other software or hardware may sharply constrain the choice

of tools. Choosing a tool to build a single simple application is quite

different from choosing one that will be used for a wide range of

applications.

Application Characteristics

The users' workshop resulted in significant expansion and fleshing-

out of those aspects of the application characteristics dimension that

deal with the problem for which a tool is being used. There are many

differences, some subtle, in the requirements for different expert

systems that may make a tool that is well suited for one not very

effective for another. For example, desirable tool characteristics for

a chemical analysis system may differ from those for monitoring a

manufacturing plant. Similarly, a simulation task may have different

requirements from a design task. By examining the problem to be solved,

one can identify capabilities relevant to tool selection. The following

application characteristics were discussed at the workshop:

- 36 -

Problem domain

Problem type

Nature of domain knowledge

Operational constraints

Formal properties of the problem

Problem size

User-machine interaction

Intended user community

System autonomy

Development team characteristics

Problem Domain. The problem domain is the area of knowledge to

which the expert system will be applied. Participants agreed that

grouping problems according to problem domain is helpful. For example,

tools for a mathematical domain need the capability to do arithmetic

processing, while CAD/CAM (Computer Aided Design/Computer Aided Manufac-

acturing) systems require good graphics facilities. These generalizations

are useful in choosing the capabilities to concentrate on in tool

selection, although they are not always relevant. The following list of

problem domains is representative of those enumerated at the workshop:

Aerospace

Agriculture

Business management

CAD/CAM

Chemistry

Computer networking

Earth sciences

Electronics

Engineering

Finance (risk, loan analysis)

Geology

Information management

Law

Maintenance/repair

Manufacturing

Marketing/sales

Mathematics

Medicine

Military science

Physics

Resource management

Risk management

Software engineering

Space technology

Telecommunications

37

Problem Type. Problem type refers to the generic category of

knowledge engineering application (Hayes-Roth, Waterman, and Lenat,

1983) addressed by a particular expert system. Participants agreed that

considering the kind of problem would benefit tool selection by helping

to focus on specific capabilities. For example, an expert system for

monitoring requires a tool with real-time reaction capability, whereas a

simulation system requires a tool that provides temporal representation.

The following problem types were developed at the workshop:

Analysis

Classification

Conceptual modeling

Control

Data fusion

Data tracking

Debugging

Design

Diagnosis

Forecasting

Intelligent database access

Interpretation

Monitoring

Planning

Prediction

Prescription

Repair

Resource allocation

Risk management

Scheduling

Simulation

It is important to note, however, that few of the applications

discussed at the workshop involved only a single problem type: most

were a composite of subtasks involving several different problem types,

making such characterization difficult. In addition, lists like the one

above contain items at many different levels of abstraction (for

example, debugging can be considered a special case of diagnosis,

whereas simulation can involve nearly every other item on the list).

For these reasons, the workshop attendees were skeptical about the

chances of arriving at a meaningful list of problem types that are

independent, primitive, and useful.

Nature of Domain Knowledge. The nature of domain knowledge was

introduced at the workshop as another factor to consider in selecting an

38

appropriate tool. For example, if the knowledge in the application

domain is incomplete, unreliable, or uncertain, the tool may need to

support uncertainty propagation or fuzzy logic. If experts are not

available locally, a tool that can be brought to them may be more

attractive than one that is tied to a stationary mainframe computer.

Domain knowledge characteristics enumerated during the workshop are

shown below:

Knowledge source

Experts

Field data

Algorithms

Literature

Expertise availability

Expense

Location

Willingness

Agreement among experts

Consensus

Resolution of discrepancy

Sufficiency of expertise

Stability of data/knowledge

Incomplete

Unreliable

Uncertain

Frequently updated

Time sensitivity

Operational Constraints. The conditions under which an expert

system is to work (its operational constraints) must also be considered

during tool selection. A system which must run on battery power in the

field has different support requirements from one that will operate in

an air-conditioned office. Such constraints include:

39

Execution speed

System integration and compatibility

Real-time operation

Physical environment (controlled-climate, office, hostile)

Hardware portability

Verification/proof of correctness

The integration issue received special emphasis at the workshop and

is dealt with in depth in a later section.

Formal Properties of the Problem. Formal properties of the

problem account for the relationship between general problem

characteristics and tool features that aid the construction of systems

to attack such problems. A problem that has a strong algorithmic

component in its solution may benefit from a standard programming-

language approach rather than a heuristic one. Some tools are adept

with numbers and formulas, while others have rich, expressive languages

for representing objects and their relationships. The following is a

representative selection of such properties:

• Problem decomposability

• Algorithmic/heuristic

• Symbolic/numeric

Problem Size. The problem-size component covers considerations of

knowledge-base size and complexity. Key issues raised at the workshop

are listed below:

Domain size

Extent of coverage

Coverage depth

Representation granularity

Knowledge base organization

Knowledge base access

40

Prime concerns are whether or not a given tool will handle the target

knowledge base and whether adequate response times will be realizable.

User-Machine Interaction. The nature of user-machine interaction

was perceived as a critical factor in expert system development and

utility. Both the interaction between the system builder and the tool

and between the end-user and the target expert system were considered.

Desirable interface capabilities included graphics, sound, and mouse-

entry. Emphasis was placed on how a finished expert system will appear

to the end-user and (if the tool does not provide an adequate interface)

how much effort the system builder must expend to enhance the interface.

Intended User Community. Potential users of an expert system are

shown in the following list:

Domain expert

Computer-naive professional (with minimal computer experience)

Office clerk

Programmer

AI expert (acting as a knowledge engineer)

Participants felt that the intended user community greatly influences

the interface, especially the explanation facility and knowledge

acquisition facility. The tool needs to provide proper levels of

explanation for all potential end-users as well as for the expert system

developers. The interface should be simple enough to use easily, and

powerful enough so that it is not frustrating.

System Autonomy. The issue of system autonomy is concerned with

the role of the fielded expert system. Two possibilities explored at

the workshop were (1) the use of an expert system as a decision aid and

(2) the creation of an autonomous expert system. Among the issues

discussed were the need for graceful interaction of a decision aid with

users, the need for a decision aid to be able to ask questions clearly,

and the question of how to monitor the performance of an autonomous

expert system.

- 41

Development Team Characteristics. There was a lack of consensus

among the workshop participants about the importance and utility of

development team characteristics for tool selection. One point of view

held that the people involved in building an expert system are part of

the overall environment and that their experiences, strengths, and

weaknesses should be considered in choosing a tool. For example, if key

personnel have experience with a particular tool, some of its

shortcomings may be mitigated by the reduced overhead of not having to

learn a new tool. Similarly, it may be essential to choose a tool that

supports a computer-naive interface for knowledge acquisition from

domain experts, depending on the makeup of the development team.

Another viewpoint was that a development team is often brought together

after a problem is understood rather than as a constraint or

characteristic of the application, and that the team's characteristics

should therefore not be used in tool selection.

Tool Capabilities

In general, the participants agreed with the capabilities and

features we had enumerated prior to the workshop. However, they felt

that an evaluation should consider capabilities only after narrowing

down the set of candidate tools (i.e., after filtering by price,

availability of required hardware, etc.).

Specific capabilities are discussed below with comments, criticisms

and recommendations extracted during the workshop. This is not intended

to be an exhaustive list. The first four capabilities are arranged in

order of relative importance, while the others, about which the group

had mixed feelings, are listed alphabetically.

Knowledge Acquisition. While considered too broad a topic to be

captured by a single capability, knowledge acquisition was perceived by

many to be something that is largely missing in current tools, yet is in

the critical path of future expert system work. It was also suggested

that if and when automated knowledge acquisition becomes a reality, it

may be particularly difficult to measure its quality and effectiveness.

42

Explanation. This capability was ranked high, apparently because

few of the participants felt it was adequately supported by any of the

features of existing tools. There was a desire for multi-level

explanation that varies according to end-user types (e.g., novice to

expert), presentation styles (e.g., textual or graphic), scope and

function (e.g., summary, detailed report, or tutorial), and audience

types (i.e., expert system developer or end-user).

The group also felt it was desirable that explanations be more than

just a summary of actions and inferences: that is, the reasons for

those actions, ideally expressed in terms of a model of the domain,

should also be available. Finally, there was a desire by some to have

program access to the explanation facility, giving target systems better

control over their explanations.

Internal Access. It was felt that a tool should at least provide

an escape to its underlying implementation language. Ideally, it should

also provide access to (and control of) various internal parameters.

While there was concern that such a capability might degrade the

integrity of the tool and that this might greatly complicate porting to

the delivery environment, internal access was seen as critical to a

tool's extensibility.

External Access. This capability was viewed as most important by

those participants whose expert system projects had reached a relatively

high degree of maturity and who were now confronted with the problem of

integrating their systems into an existing computing environment.

Subsidiary capabilities included communicating with external software,

receipt of interrupts from external systems, and warnings for

incompatible access requests.

Arithmetic Processing. This capability was viewed as necessary but

not vital, and less important than handling knowledge. There was

disagreement as to whether supporting features (e.g., arithmetic

operators) should be embedded in the tool if they were already available

through the external access capability.

- 43 -

Certainty Handling. There was some disagreement about exactly

what this capability implies (e.g., ranges vs. discrete points) as well

as about its usefulness. Some users felt that it was important for

diagnosis but meaningless for planning, and some thought it was

generally useless and misleading. There was also a question about why

such a controversial capability should be built into a tool when, using

internal access, a system developer should be able to implement any

preferred style of certainty handling.

Concurrency. This capability was seen to have three aspects

related to performance, problem, and solution, respectively.

Performance aspects focus on features that use concurrency to improve

system speed. Problem aspects focus on situations where a system must

interact with multiple external "real-world" processes simultaneously.

Solution aspects focus on features that enable a system to be written as

interacting, autonomous subsystems. Although there are examples of

tools that attempt to support some of these aspects (e.g., PICON™

supports problem concurrency), concurrency was generally viewed as a

lacking but useful capability for expert system tools.

Consistency Checking. This capability, while desirable,

introduced some questions, such as whether a tool's semantics are domain

dependent or independent, whether actual system performance should be

verified, and whether consistency checking should be performed as a

static or dynamic process. There were also questions about what should

happen when an inconsistency is found, i.e., whether the tool should

automatically correct the error, warn the user, or abort computation.

Development Documentation. It was largely felt that this

capability could be closely coupled to a tool's explanation facility.

While automatic generation of development documentation was seen as a

needed capability, especially for maintenance, there are questions about

its granularity: should it document the entire system as a whole, its

component subsystems, or individual concepts? It was pointed out that

some current tools do not provide even the capability to manually add

comments to rules.

- 44

Inference and Control. Several additional features were

enumerated for this capability, such as event scheduling and message

passing, as well as those control structures supported by conventional

programming languages (e.g., iteration and subroutining). It was also

recommended that those features supported by a tool should have clearly

defined semantics (for example, specifying what type of conflict

resolution is used).

Life Cycle. Although there was not a strong consensus, it was

suggested that a tool's support for target system life cycle be included

as a capability (i.e., tool support for the evolution of a target system

from conception through delivery and maintenance). In addition, it was

pointed out that the ability of a tool to transition from one context

phase to another is extremely important and should be included

explicitly under life-cycle considerations.

Optimization. There was some disagreement as to what this

capability should imply, i.e., should it mean performance optimization?

Space optimization? And what should happen if one impedes the other?

A number of features were recommended for supporting this capability,

including intelligent look-ahead, result caching, rule compilation,

dynamically reordering rules, automatic rule modification, and the

ability to port to fast delivery environments.

Metrics

Our original framework provided a lengthy set of metrics to measure

the quality of particular aspects of an expert system tool. These are

described in detail in our second questionnaire (see App. B), and are

summarized below:

Adequacy

Availability

Breadth

Clarity

Cognitive efficiency

Coherence

Flexibility

Integration

Maintainability

Modularity

Philosophy

Portability

45

Completeness

Congruence

Consistency

Controllability

Cost

Defeatability

Ease of use

Efficiency

Extensibility

Power

Reliability

Responsiveness

Robustness

Scalability

Sophistication

Subsetability/separability

usability

Learnability

We attempted to make the list exhaustive, but the participants felt

that it was too long and that the meaning of many of the metrics

overlapped. On the first day of the workshop, the group discussing this

dimension chose to aggregate the metrics into six "higher-level"

concepts that subsumed the original ones. Though there is still some

overlap and ambiguity in these aggregated metrics, the group felt that

they would be easier to work with, while capturing the same information.

Aggregated Metrics. The six aggregated metrics developed on the

first day of the workshop are:

Cost

Flexibility

Extensibility

Clarity

Efficiency

Vendor Support

Cost. This includes not only the sales price of a tool, but also

its hidden expenses, such as costs of training, integration, etc.

Furthermore, it includes not only monetary cost, but also expenditures

of resources such as time and effort.

Flexibility. This subsumes those metrics that deal with a tool's

power and capabilities: representational power (i.e., basic data

structures and reasoning mechanisms), adequacy to perform a given task

46 -

or tasks, ease of use (i.e., both of the tool and of systems built with

it), and sophistication. It was noted that flexibility may be

antithetical to maintainability.

Extensibility. This deals with applying a tool in ways that are

not directly supported or were unanticipated by the tool's developer.

It includes breadth of applicability, access to system parameters,

defeatability (the ease with which one can override a system parameter

or function), ease of integration, portability, scalability, and

subsetability.

Clarity. This subsumes those metrics that deal with relative ease

or difficulty of understanding the basic operations of a tool: ease of

use and usability (i.e., how much work is involved in doing something),

cognitive efficiency (i.e., how many concepts must be kept in mind to

use the tool), coherence of the tool's features, responsiveness (i.e.,

how the tool responds, rather than how fast), maintainability,

modularity, and learnability.

Efficiency. This encompasses all aspects of a tool's

responsiveness (i.e., how fast it responds) and its utilization of

computational and memory resources. This metric also deals with the

efficiency of the systems built with a tool.

Vendor Support. This consists of the quality of support supplied

by the vendor and subsumes such metrics as vendor philosophy, system

availability, reliability, portability, and robustness.

The Varying Importance of Metrics Over Phases. The group

further examined how the relative importance of these metrics varies

through the phases of an expert system project, i.e.,

Exploration/conceptualization

Prototyping/design

Development/implementation

Fielding/delivery

Operation/maintenance

47

The relative importance of metrics across development phases (see

Fig. 1) is suggestive of the qualitative relationships of importance for

five of the six metrics. The cost metric does not appear on this graph

because, while cost permeates all aspects of evaluation, it behaves

uniquely: cost seems to be of most importance at the transitions from

one phase to the next, where decisions are made to continue with a tool

or switch to a different tool. Leaving cost aside, therefore, we

discuss the behavior of the remaining five metrics in the graph.

Clarity is important throughout the entire life cycle. It starts

high, stays high, and ends high, for different reasons during different

phases. It is important to the beginning user learning the tool, who

must be able to grasp its concepts and representations quickly. It is

also important to the developer, who must be able to apply the tool's

mechanisms effectively, refine an evolving knowledge base and build a

target system that is easily comprehended and verified by domain experts

(during development) and easily understood and used by end-users (after

delivery). Finally, it is important to the maintainer of a target

system, who must be able to understand and modify the existing knowledge

base.

Flexibility, on the other hand, is of most importance during the

initial stages of tool use, starting high and peaking somewhere during

the prototyping phase. As choices for representation and control become

fixed, flexibility decreases in importance, taking on an almost negative

aspect as the need for maintainability rises.

Vendor support has relatively low importance at first, taking the

form of training and coaching; but it rises rather quickly, staying high

throughout the remainder of the life cycle, as the tool user moves out

of the exploration phase and pushes the tool to its limits.

Extensibility is of minor importance until the tool user begins to

fulfill specialized requirements of an application during design and

implementation. Its importance drops during fielding (when system

functionality has presumably stabilized), but it rises again during

maintenance as the delivered system evolves or requires reintegration in

an evolving target environment.

- 48

<D
Vi
to

<x
-p
c <u
E
a o

i—i
0)
>
0)

•o
V.
w
o
j-i
u
*
I/)
o

•H
1-1
-P
0)
E

4-1
o
01
ü
c
to
-p
u
o
a
E

CD
>

PS

60
•H

49

Finally, efficiency remains low through exploration, design, and

development, but ultimately becomes more important than even clarity if

performance requirements become critical.

While this analysis of metrics is by no means definitive, it

illustrates the concerns of the workshop participants that metrics be

consolidated into a manageable set of concepts that are easily grasped.

It also shows that the importance of these concepts varies through the

life cycle of an expert system tool, making tool selection highly

dependent upon the use (or uses) to which a tool will be put.

Assessment Techniques

Assessment techniques suggested in our original framework are shown

below.

Comparisons

between tools

between a tool and a baseline

between a tool and an ideal tool

Benchmarks

small benchmarks

large benchmarks

Case studies

Library of expert system efforts

Interviews

Questionnaires

An expert system for expert system evaluation

The working group that dealt with assessment techniques questioned

a number of these, refined others, and added a new one (which it dubbed

the "Rolodex"™ approach).

While all the techniques were considered to be of some value, the

group doubted that the anticipated benefits of comparison with a

baseline or ideal tool standard and large benchmarks would outweigh the

costs of implementing these approaches (however, see the comparison

between tools, below, for further justification of these techniques).

- 50

The techniques are discussed next in order of the importance

accorded them by the workshop participants.

Comparison Between Tools. The users felt that a "Consumer

Report"™ style comparison between tools would be the most beneficial

assessment technique, since evaluation is generally motivated by the

need to make a selection, for which a comparison of choices is

particularly useful.

The point was raised, however, that there is no standard definition

for many of the features and capabilities found in expert system tools.

Two tools may claim to provide a forward-chaining capability, but their

definitions (and implementations) of this capability may vary widely.

In addition, a vendor may implement a crude form of some capability

simply to be able to say that it is supported, even if it is not

integrated into the system. To combat this, the comparison must supply

a set of standard definitions and discuss the ways in which the features

and capabilities of an expert system tool differ from this standard.

For example, "goal-directed reasoning" might be defined as a capability

for deriving a series of actions sufficient to achieve a stated goal;

"backward-chaining" might then be defined as a feature that allows rules

to be used to perform goal-directed reasoning. In this way, the report

could indicate to what extent a tool has a certain capability and how it

compares to a similar capability of another tool.

Comparisons between a baseline tool and an ideal tool were both

felt to be impractical and unrevealing. For instance, most tools would

so far exceed a baseline such as Common LISP that comparison would not

be meaningful, while defining a standard, "ideal" tool that would keep

up with advances in technology and be acceptable to everyone would

present a major problem. However, we note that the realistic

implementation of a Consumer Report comparison, as discussed above,

requires standard definitions of capabilities, which may be equivalent

to defining a baseline or ideal tool.

Small Benchmarks. A suite of small benchmarks was perceived as

being helpful in testing a tool's capabilities, though there were some

questions about how benchmarks could be implemented effectively. In

particular, concerns about benchmarks included:

- 51

1. Each benchmark should test a certain capability and demonstrate

how that capability integrates with the system as a whole.

2. A benchmark problem should, at least at an intuitive level,

scale up to larger problems.

3. There should be benchmarks to test standard software

engineering needs, including integration, reliability, and

efficiency.

Despite the potential value of benchmarks, there were additional

concerns over who would define benchmark problems and who would solve

them. Obviously, the effort would need to be monitored by a group that

was unbiased and conscientious. One suggestion was to have the tool

vendors themselves define benchmark problems. Another suggestion was

that the small "system teasers" often published in various trade

journals could serve as an existing source of benchmarks.

Since each benchmark problem would have to be solved for every tool

being evaluated, the number of solutions would tax an individual

evaluator. Further, unless the implementers were already AI experts,

their own performance might improve over time, producing better and

better solutions with each successive tool. Alternatively, while

allowing the tool developers to solve the benchmarks might deliver the

most elegant solutions for each, it would not guarantee the most

straightforward or revealing solutions. Finally, allowing different

people to solve different benchmarks for different tools is problematic

because variations in programming ability might introduce more variance

than the tool characteristics themselves. It was felt that the best

solution for this dilemma might be to use a combination of these

approaches and compare their results. (For further discussion of

benchmarks, see Validation of Evaluation Dimensions and Criteria, pp.

3-5.)

The majority of participants felt that large benchmarks would tend

to be domain-specific. That is, the domain-dependent details of a large

benchmark might make its relevance for different problems difficult to

see. Furthermore, it was felt that if small benchmarks were scalable,

large benchmarks might be superfluous.

52

A Knowledge-Based System for Tool Evaluation. It was felt that

an expert system for aiding at least in preliminary evaluations of

expert system tools would be helpful as a means of filtering through

large amounts of initial data. Such a system could be used for either

of two tasks:

1. Given a problem description, the system would identify those

metrics that would be important for tool evaluation.

2. Given the metrics that are most important to the user, the

system would recommend a tool.

Task 1 was generally considered to be infeasible at this time,

since it would involve describing a problem to an expert system.

However, Task 2 was considered tractable. Two approaches to building

such a system were suggested: either as an automated tool for compiling

data collected by other assessment techniques, or as a standard expert

system application, drawing on the expertise of tool users with

experience in selecting tools.

The first of these approaches to Task 2 was considered feasible,

though it was noted that it depends heavily on the maturity of the other

assessment techniques. The second approach was considered intractable

for reasons similar to those that led to the rejection of Task 1: many

users felt that the decision processes involved were so complex that

this would again amount to describing the problem to the system, and

that current "expert" users (including themselves) were not proficient

enough at tool selection to be considered experts.

As an aside, one of the working groups on the second day of the

workshop developed some evaluation scenarios as an exercise, feeling

that if the group members could agree in most cases, this would imply

that they were all using a common set of rules about evaluation. (Even

if these rules could not yet be articulated, their implied existence

would suggest the feasibility of knowledge-based tool evaluation.) The

group did tend to agree on the evaluation process and results, which

suggests that there is a pool of expertise that could be encoded. On

53 -

the other hand, one participant related that students at an in-house AI

training school had tried a similar task as an exercise and were

unsuccessful, suggesting that this approach be pursued with caution.

The Rolodex™ Technique. A new approach to tool selection and

evaluation that was suggested and received considerable interest at the

workshop was one that was dubbed the "Rolodex" technique. The essence

of this technique is that users should consult their personal or

professional address books (files of business cards, etc.) and talk with

someone who has used the tool.

The advantage of this approach is that people normally tend to

interpret written recommendations with considerable skepticism (even

those written by someone they know) and often prefer direct human

interaction. It was asserted that this is the way consumers tend to buy

first-time purchases (for example, consumers will call a friend and ask,

"What kind of VCR do you have? Do you like it? Why?"). This gives

them direct, personal input from someone they know and trust as well as

the ability to interact and ask specific questions. The group felt that

many users selecting an expert system tool do the same thing: they call

business associates (or people they have met at conferences, etc.) and

ask about their experiences with such tools.

Although concerns for privacy might prevent this from becoming a

formal assessment technique, it should be acknowledged as a technique

that people are likely to use in conjunction with other techniques.

Case Studies. While there was not a great deal of enthusiasm

among the workshop attendees for using case studies as an assessment

technique for evaluation, there was some discussion of possible kinds of

case studies. In particular, it was noted that case studies of the tool

selection process itself might be useful, as well as case studies of

expert system development efforts that use tools.

However, there was general concern that such studies would quickly

become outdated, and that they might produce too much data for practical

decisionmaking. Because after-the-fact questionnaires tend to overlook

errors and problems encountered during a project, the recommended

approach to performing case studies was to make them external and

progressive. That is, a development team would be visited at intervals

54 -

and asked questions that would (among other things) attempt to identify

progress and pitfalls. It was noted that one problem with this

technique is that many of the most interesting projects are secret or

proprietary, and hence cannot be studied externally.

Other Techniques. The attendees felt that the other techniques

(i.e., a library of system efforts, interviews, and questionnaires) were

so problem-specific that they would not be worth the time required to

develop and implement them. The general consensus was that such time

and money would be better spent on the other techniques. We note,

however, that the results of the two questionnaires we sent to the

attendees revealed some interesting insights which were purchased at the

relatively low price of designing, mailing, and reviewing these textual

instruments, without the need to purchase hardware or software or to

write code.

Contexts

For purposes of evaluation, the context dimension accounts for the

phase or phases of system development for which the tool will be used.

Ideally, a single tool would be usable in all contexts, but a different

tool might be used at each phase. We note that our breakdown of phases

is somewhat different from the standard decomposition of the phases of

expert system development (Waterman, 1986a).

Participants in our users' workshop elaborated this dimension,

unifying it with the stages of expert system development:

• Conceptualization

• Prototyping

• Development

• Operation/fielding

Conceptualization. The conceptualization context encompasses the

identification, conceptualization, and formalization phases of expert

system development. A tool may be used as a structured formalism to aid

in the design of the expert system and to support the development team

in becoming familiar with the domain. The tool can help in decomposing

55 -

the problem, identifying and organizing key concepts, and identifying

the scope of the problem.

Prototyping. The prototype context is concerned with the use of a

tool in prototyping an expert system. This context emphasizes the

tool's facilities for guiding rapid development, eliciting different

approaches and representations, and quickly trying alternative

implementations.

Development. This context considers the tool as it is used to

develop an expert system targeted ultimately for fielding. The tool's

suitability for software development, including its debugging facilities

and configuration control, are emphasized here.

Operation/Fielding. The operation/fielding context recognizes the

effect that a tool has on the delivery of an expert system to its

community of end-users and the performance and interface capabilities of

that system. The emphasis in this context is on the tool's facilities

for porting from the development environment to the delivery environment

and its performance, maintenance, and support characteristics in the

delivery environment.

The working groups agreed that in addition to being useful at each

of these phases of development, a tool must also ease the transition

from one context to the next. For instance, a tool that allows its

debugging features to be turned off and its interface to be easily

enhanced aids the developer's task when the expert system makes the

transition from development to operation/fielding. The extent to which

a tool supports these transitions was felt to be important by all

participants.

Integration

A great deal of interest and concern was expressed at the workshop

over issues involved with integrating expert systems with other software

and hardware. Expert systems have evolved from special-purpose,

standalone systems that accommodate AI expert users into multi-user

systems that need to interact with on-line databases, be embedded in

other programs, receive information from sensors, and use their results

to control other hardware.

56

Many workshop participants had run into problems getting their

tools to integrate with other computer systems or databases, and all

agreed that substantial improvements are necessary. A few were

designing extremely large expert systems that needed to handle billions

of transactions per day. These developers encountered several

integration problems, including accessing very large databases,

integrating into a system that supports hundreds or thousands of

concurrent users at remote terminals, and interfacing with huge

mainframe computers. They were frustrated by the difficulty of

accomplishing these tasks, due partly to the fact that the tools were

not designed with integration in mind and the internals of the tools

were not easily accessible.

Tool Support for integration. Users discussed how much

responsibility tool vendors should have for making their tools

integrable. Several alternatives were discussed at the workshop:

• Standard applications

• Standard interface

• Internal access

• Interface management tools

Standard Applications. In the standard-application approach, a

vendor chooses some popular standard systems (such as dBase-II™ of

Ashton-Tate, Inc., or Britton-Lee Intelligent Database Machine™ and

provides interfaces to them. This may satisfy some users for a limited

time, but there will always be other software or hardware that will

resist integration with the tool. The choice of a tool may therefore be

dictated by which tools offer the required interfaces.

Standard Interface. The standard-interface approach requires

agreement among vendors to standardize their interfaces, similar to the

open-system architecture. The attendees felt that this was a promising

alternative, but a distant goal due to the difficulty of getting large

groups to form a consensus. Nevertheless, participants felt that the

success of the ISO standard-communication protocols was an encouraging

example, and that this approach should be pursued.

57 -

Internal Access. For the internal-access approach, the vendors

would explain how to access their tools' internals so that users could

write their own interfaces. This was also perceived as a positive step

in the right direction. At least it would provide tool users with a way

to interface with external hardware and software. Interfaces written by

users might be included in future versions of the tools or put in the

public domain. Of course, in cases where vendors do not take over such

interfaces, users must support and maintain them themselves; this may

require continual revision of these locally developed interfaces to

adapt to new vendor software releases.

Interface Management Tools. Finally, the vendors could offer tools

to users to help write their own interfaces, i.e., an interface-

management -tools approach. This was appealing to most users and was

perceived as having great potential value. Such tools would allow users

to write whatever interfaces they needed, without grappling with the

details of the tool's implementation.

Kinds of Integration. Integration is perceived as an urgent need,

independent of which alternative is chosen by a vendor. Participants

felt that the next generation of tools should address a number of

integration issues, a selection of which are shown in the following

list. A brief synopsis and examples of each were developed at the

workshop.

Information acquisition and distribution

Database management systems

Communications

Data input

Multi-user

Environments

Software systems

Hardware systems

Output devices

Temporal

Distributed

Concurrent

Real-time

- 58 -

Information Acquisition and Distribution

Database Management Systems. Many applications require that the

expert system access knowledge from outside sources, because the

knowledge must be updated, changed, or shared. If an external database

already exists, it may be inappropriate to reproduce the data as a local

knowledge base; translating an external database into a local knowledge

base may even be impossible due to storage limitations of the expert

system tool. Similarly, it may be impractical to include certain kinds

of externally represented information, such as maps or weather data, in

an expert system's knowledge base.

Communications. The expert system may need to communicate with

other computers over communication networks, perhaps to update the

knowledge base. System results may be sent over a modem to a remote

location. For example, an expert system that plans flight paths for

airplanes may send the airplanes their orders directly.

Data Input. Expert systems should be able to take advantage of

sensors and other data-collection devices, such as vision systems, and

exploit the edge they provide over entering information by hand or

indirectly. For example, an expert system at a bank might be able to

read information from bank checks.

Multi-User. This may be especially important if an expert system

is linked to a central database. For example, a credit card approval

expert system has to deal with stores dialing in for approval, new

credit account entries, and updates to the database.

Environments

Software Systems. It is often necessary to link an expert system

with other software. The expert system's results may be used by another

program, or some other program may trigger the execution of an expert

system. For instance, an expert system to monitor a spacecraft must

interface with the spacecraft's other control systems.

- 59 -

Hardware Systems. Fielding a mass-distributed expert system on

development hardware may be prohibitively expensive. Expensive

equipment may be necessary for expert system design and prototyping,

e.g., to provide graphic knowledge-base tracing and debugging, but the

target expert system may need to be ported to a small computer or one

that is more mobile (e.g., for use in an airplane) and may not require

graphics or other support features.

Output Devices. The effectiveness of an expert system depends

greatly on the nature of its communication with the end-user. It may

exploit a graphical display to convey ideas more quickly than text by

using windows, graphics devices, or printers.

Temporal

Distributed. A single expert system may not have the power to

attack a whole problem. In this case, the problem can be split among

several systems which communicate and cooperate with one another. For

example, an aircraft design problem might be partitioned into the design

of the fuselage, the engines, and the interior. Each system would need

to communicate with the others to assure that all pieces would fit

together and maintain conceptual homogeneity.

Concurrent. For some problems, no single machine has the computing

power needed to provide a reasonable response time. Many alternatives

may be explored simultaneously to improve performance. For instance, an

expert system trying to devise a battle plan may test several

prospective plans at the same time, selecting the most successful one

when a choice becomes necessary.

Real-Time. Certain kinds of expertise must be applied in real-

time, either due to a crisis situation (such as in an intensive care

unit monitoring system) or because a slower response to a large quantity

of queries would result in an unacceptable backlog (as with a passenger

reservation system).

60

CONCERNS OF NEW TOOL CHOOSERS AND USERS

Another area of particular interest at the users' workshop was the

situation faced by users selecting or using a tool for the first time.

Many companies are just beginning to become involved with expert system

technology. A user faced with selecting a tool for the first time has

limited experience to draw on; a user who is receiving an initial

introduction to using an expert system tool has needs that differ,

sometimes substantially, from those of users with more experience. The

tools must address these needs as well.

Workshop attendees who were at the stage of initial tool selection

felt that it would be very helpful to read a consolidation of different

opinions of people who had used the tools. These users felt that any

information they could find would be worth spending the time to read.

In contrast, those who had substantial experience with expert systems

felt that such information would be of limited utility and perhaps not

worth the investment in time. A useful analogy might be someone trying

to sail a boat for the first time: the novice would want calm

conditions, a working boat, and the best possible teacher. These types

of requirements apply to a first-time expert system tool user too.

Participants felt it was important to bring these issues to light even

though they are primarily common sense. The following two contrasting

anecdotes from the workshop point out key considerations about tool

users' needs and the differences between those of new and experienced

users:

One user had just bought a tool and had the misfortune of
buying it when a new release had just come out. He had spent
quite a while trying to learn to use the tool and was
frustrated because he was never sure whether the problems he
encountered were due to his own confusion, or whether the new
version of the tool was still "buggy." He saw the vendor's
dilemma too: if the vendor had offered him only the old
version, he might not have bought it, since some of the
capabilities required by his project were available only in
the new version. But since the vendor had sold him the new
version, he saw the vendor as unreliable, and he experienced
frustration using the tool.

61 -

Another user had been using a tool for a while and had
received the new version of that tool. He had some problems
with the new tool, so he called the vendor. The vendor was
immediately available to talk to him on the phone, and
together they determined that there was a bug in the new
version of the tool. The user had a new, patched version
within two days. He was very satisfied with the vendor and
did not mind having to help debug the tool as long as he got
such quick response and support.

There was general agreement on a set of things that every new user

needs:

• Working version (minimal bugs)

• Training course from vendor

• Immediate reinforcement

The workshop participants felt it was imperative that the version

of the tool used for learning be one without bugs. Someone just

learning to use a software package cannot distinguish between his own

errors and possible bugs in the software. Sometimes only the very

latest and therefore somewhat error-prone version has the features

needed to write a particular application, but even in this situation it

was deemed better to let the user learn about the tool with an earlier,

insufficient version and move to the later, less stable version once the

earlier one has been mastered.

If taking a course to learn a tool provides a significant advantage

over reading the documentation, such courses should be taken whenever

possible. The company involved in the design of a tool has significant

insight about how that tool can best be used, and the chances of

conveying that insight are much better in person. In addition, there is

little chance of users retaining what they have learned in a course if

they are immediately sidetracked onto some unrelated project. Workshop

attendees agreed that if the investment in attending a course has been

made, users should be allowed to set aside several weeks after their

return to consolidate and reinforce what they have learned.

62 -

WISH LIST

In the two-day discussion of tools during the users' workshop, many

participants were overheard saying, "Don't you wish there were a tool

that did X?" Several of the working groups produced their own "wish

lists" of desirable features. Similarly, the questionnaires revealed

many desiderata for expert system tools. This section is a compilation

of these wish lists, reflecting the needs and wants of a representative

sample of tool users. (This is a somewhat random sample of ideas and

does not necessarily represent our own desires or predictions for the

next generation of tools, but we include it for completeness.)

The wishes fell into the following categories:

• Knowledge-base and representational enhancements

• Software engineering aids

• Delivery support

Knowledge-Base and Representational Enhancements

Workshop participants identified the need for a number of

extensions in the areas of knowledge representation and knowledge-base

maintenance:

Higher-level knowledge representation

Multiple relations

Standardized knowledge representation

Models of external entities

Knowledge-acquisition aids

Reusable general knowledge bases

Self-organizing knowledge bases with automatic summary

Automated validation and verification

Retention of test-case data

Change logs

63

Higher-Level Knowledge Representation. Representations such as

rules and frames are sometimes too low-level for very complicated

knowledge bases. A higher-level language written on top of these

constructs would allow high-level knowledge representation. This makes

it easier for experts to understand the knowledge encoded in the

knowledge base and to find inconsistencies or gaps. Similarly, domain-

specific input and output would help experts and developers understand

and change the knowledge by presenting it in a familiar form.

Multiple Relations. Complex expert systems often require multiple

relationships among objects, such as IS-A (type-of), part-of, subset-

of, is-connected-to, etc. Each of these requires a different kind of

associated inference, analogous to "inheritance." (Such inference

mechanisms are often referred to as different kinds of inheritance,

which can be misleading, since inheritance per se pertains to the IS-A

relation.) For example, the part-of relation requires inference for

combining parts into wholes and disaggregating wholes into their parts.

Tools should support these different kinds of inference or facilitate

users' implementing their own.

Standardized Knowledge Representation. Many expert system

applications deal with the same domains. A standard language for

knowledge representation would allow information to be shared among

applications. Similarly, communicating expert systems require a common

language and protocol; this can currently be accomplished only by using

a common tool (or programming language) for both applications. A

standard would allow technology and information to be shared more

easily. The requirements for a standard language include clarity,

conceptual simplicity, and a high level of abstraction.

Models of External Entities. An expert system used in designing

something may be concerned with only a part of the design, but it may

still need to know about the other pieces (e.g., their weights,

capacities, functions, etc). That is, it will require a model of each

external entity in order to design the part. There is frequently a need

to represent such external entities within an expert system, and tools

should provide facilities for this kind of modeling.

64 -

Knowledge-Acquisition Aids. Knowledge acquisition is a major part

of the development of any expert system. If this task could be

simplified, clarified, or aided in any way, it would speed development

and produce better systems. One suggested approach would be for tools

to provide domain-specific knowledge acquisition (e.g., geared to

physics or medicine) or problem-type-specific knowledge acquisition

(e.g., for acquiring planning or diagnostic strategies). It would also

be useful for a knowledge-acquisition mechanism to be able to draw

conclusions from examples or to learn from its own mistakes. This would

be analogous to field training of human experts. Knowledge-base

browsers would also help developers organize or add to knowledge bases.

Reusable General Knowledge Bases. Ultimately, it is desirable to

produce reusable knowledge bases for particular domains. For example, a

general biology knowledge base might be useful across a wide range of

applications. This could be thought of as an AI representation of the

knowledge in a biology textbook; it would save developers the effort of

encoding well-known background knowledge of biology, both for biological

applications and for nonbiological applications that require this

background knowledge.

Self-Organizing Knowledge Bases with Automatic Summary. Users

expressed a desire for tools that would automatically organize their own

knowledge bases, i.e., create catalogs of entries that users could

query, and generate automatic summaries of their knowledge bases (or

selected parts of them) to give an end-user or expert system developer

an overview of the knowledge they contain.

Automated Validation and Verification. As information is added to

a knowledge base, a tool could verify that the new facts are not in

conflict with others already in the knowledge base. If a fact does

conflict, the tool should notify the developer, show which facts

conflict, and allow fixing the discrepancy. If an expert system permits

conflicting knowledge, the tool should still optionally notify the

developer or keep a log of conflicts. A tool might also be able to

check a knowledge base for semantic consistency (as defined by the

user), for example, detecting rules that can never fire.

- 65

Retention of Test-Case Data. A tool should allow for storing test

cases and their solutions as a system is being developed. As the

knowledge base evolves, it can be tested automatically against the

stored test cases to verify its correctness.

Change Logs. A tool should keep records of changes to the

knowledge base, remembering who made the change, when it was made, and

why. If discrepancies arise, developers can ascertain who made the

changes and why and can reconstruct previous states of the knowledge

base when necessary.

Software Engineering Aids

The participants expressed a number of desired extensions that can

be thought of as software engineering aids:

• More explicit control over control

• Better documentation

• Debugging aids

• Quality assurance

More Explicit Control Over Control. Using some tools, the only

way to affect the flow of control of an expert system is by reordering

rules in the knowledge base. It is hard to express intentional

orderings in this way, and adding a rule requires an understanding of

the current ordering and the possible effects of changing it. It would

be preferable in many cases to provide explicit control over this

control flow.

Better Documentation. Tools need formal specifications, semantic

descriptions, and good documentation. Often a tool user needs to

enhance a tool, which is very difficult without complete documentation.

To take full advantage of a tool, a user must have access to all the

necessary information about that tool.

Debugging Aids. Debugging aids should be associated with each of

the tool's features. For example, if the tool offers user-directed

explanation, it should also offer a debugging aid for user-directed

- 66 -

explanation. Since an expert system is a software product, all parts of

it must be fully debugged for it to work properly and reliably.

Quality Assurance. Tool users need to know how rigorously a

product has been tested before it is distributed. If a new version of a

tool is released with possible bugs, this fact should be explained to

users. Ideally, tools should go through test suites to insure that they

have no glaring bugs. Quality assurance testing of this kind would be

highly reassuring to users.

Tool vendors vary in the levels of testing they perform before

releasing a new version of a tool. Users felt that a vendors' policies

toward releasing software with bugs should be made explicit, so that

users will know what to expect. Many users do not mind getting a new

release that is not fully debugged if it has new features that they are

eager to use, provided the vendor is responsive to bug reports and is

willing to work with users to solve problems quickly.

Delivery Support

Workshop participants listed a number of desiderata related to tool

support for delivering finished expert systems:

Modifications for the delivery environment

Assistance in generating efficient systems

Real-time support and first-fit search

Support for integration

Support for human interaction

Ability to selectively watch reasoning processes

Modifications for the Delivery Environment. Certain features of a

tool that are useful during development may not be required in the

delivered expert system. In fact, there may be features of a tool that

should be kept hidden from end-users (e.g., debugging aids, explanations

that use internal representations, or the ability to change the

knowledge base). It should be possible to disable these tool features

when fielding an expert system. If disabling certain features saves

67

significant amounts of time or memory, it may also be useful to allow

disabling them during development.

Assistance in Generating Efficient Systems. Performance is often a

major issue in expert system design. It would be useful for a tool to

provide performance analysis in the development environment to let the

developer know whether it will perform satisfactorily. Such analysis

would indicate the best areas for optimization in the fielded expert

system. It might even be possible to compile into a faster language or

to use more sophisticated optimization techniques prior to fielding.

Real-Time Support and First-Fit Search. Some applications require

that an expert system perform in real-time. Since the necessary

reasoning cannot always take place in the available time, this requires

ways of constraining the inferencing mechanism for timeliness.

Similar mechanisms (i.e., constraining inferencing on the basis of

resource consumption) would allow a form of "first-fit" search in which

a system would reach an uncertain initial conclusion and would proceed

on the basis of this conclusion. Subsequent reasoning could later

replace this initial conclusion with one of greater certainty, in which

case the system would interrupt itself and backtrack using the more

certain conclusion.

Support for Integration. Integration was a major issue throughout

the users' workshop. Participants noted that considerable effort was

required to perform the integration necessary to implement their expert

systems. They felt that tools should support integration with multiple

knowledge sources, DBMSs, sensors, and effectors.

Support for Human Interaction. Most expert systems interact with

human users. Support for user interface design is therefore a crucial

requirement for a tool. For example, explanation should use the natural

vocabulary and terminology of the expected users; this may require

support for text or graphics, depending on the user community. The

level of expertise of the expected users should also be considered:

results must be presented in a way that will be readily apparent and

easily interpreted. Tools should allow building interfaces that exploit

a human's multi-processing capabilities, using a combination of text,

graphics, and sound.

68

Furthermore, tools should support building interfaces that allow

users to choose the level and form of output or explanation they

receive. For example, different users may want different explanations

that show the text of the rules that fired, or the first principles of

those rules, or graphical representations of the tree of rules

considered. Whereas an expert system developer may want to know how the

system arrived at a conclusion, an end-user may want to know why the

conclusion was true in a particular case. Tools should provide (or

allow building) multiple models of users, covering a wide range of end-

users and developers.

Ability to Selectively Watch Reasoning Processes. It is often

useful for an expert system developer or end-user to observe some of the

reasoning that leads an expert system to a particular conclusion. If

the system is being used as an interactive aid, the user may want to see

what leads it to a conclusion before acting on its advice.

- 69 -

Appendix A

LIST OF PARTICIPANTS

EXPERT SYSTEM TOOL DEVELOPERS' WORKSHOP

Richard Fikes
Intellicorp
1975 El Camino Real West
Mountain View, CA 94040-2216

Steve Hardy
Teknowledge
P.O. Box 10119
Palo Alto, CA 94303

Lowell Hawkinson
LISP Machines, Inc.
1000 Massachusetts Ave.
Cambridge, MA 02138

David Hornig
Carnegie Group
650 Commerce Court
Station Square
Pittsburgh, PA 15219

Anthony Magliero
Software Architecture
& Engineering

1600 Wilson Boulevard
Suite 500
Arlington, VA 22209

Steve Pardue
Radian Corporation
8501 Mo-Pac Blvd.
P.O. Box 9948
Austin, TX 78766

Charles Riese
Radian Corporation
8501 Mo-Pac Blvd.
P.O. Box 9948
Austin, TX 78766

Mark Wright
Inference Corporation
5300 West Century Blvd.
7th Floor
Los Angeles, CA 90045

- 70 -

RAND Corporation Participants

Iris Kameny

Jody Paul

Susan Pond

Jeff Rothenberg

Don Waterman

Dean Schlobohm (Consultant)
Greene, Radovsky, Maloney & Share
1 Market Plaza
Spear St., Suite 3200
San Francisco CA 94105

EXPERT SYSTEM TOOL USERS' WORKSHOP

Richard Adler
The MITRE Corporation
Burlington Road
Bedford MA 01730

Scott Austin
Northrop Corp., Anaheim
Electro Mechanical Division
500 East Orangethorpe Ave.
Anaheim CA 92801

Brian Baxter
United Fire & Casualty Life Ins.
118 Second Avenue, S.E.
P.O. Box 4909
Cedar Rapids IA 52407

Kirstie Bellman
The Aerospace Corporation
MS: Ml/102
P.O. Box 92957
Los Angeles CA 90009-2957

Mark Bramlette
Lockheed California Company
Dept. 7253
Building 180, Plant Bl
P.O. Box 551
Burbank CA 91520

- 71

David Buffo
Digital Equipment Corp.
Mail Stop: HL02-3/C10
77 Reed Road
Hudson MA 01749

John Davidson
The MITRE Corporation
1820 Dolley Madison Blvd.
McLean VA 22102

Frank Edden
EATON Corporation
AIL Division
Commack Road
Deer Park NY 11729

Richard Feifer
UCLA Center for the Study of Evaluation
145 Moore Hall
Los Angeles CA 90024

Ken Gilbert
Digital Equipment Corp.
Mail Stop: HL02-3/C10
77 Reed Road
Hudson MA 01749

Brent Hadley
Boeing Military Aircraft Co.
17501 Southcenter Parkway
Tukwila WA 98188

Ted Kitzmiller
Boeing Computer Services
P.O. Box 24346
MS7L-64
Seattle WA 98124

Steven C. Laufman
Battelle Northwest
P.O. Box 999
MS: Math Bldg.
Richland WA 99352

Mike Liebhaber
University of Kansas
1043 Indiana
Lawrence KS 66044

- 72 -

Miguel Marin
Institut de Recherche d' Hydro-Quebec
IRAQ, VARENNES
Quebec JOL 2P0
CANADA

John Marinuzzi
Los Alamos National Laboratory
Knowledge Systems Laboratory (Rm. 17)
1900 Diamond Drive
Los Al-amos NM 87544

Ted Markowitz
American Express Corp.
Systems & Technology
American Express Tower, WFC
New York City NY 10285-4545

John Mitchiner
Sandia National Laboratory
Computer Sciences Department
P.O. Box 5800
Albuquerque NM 87185

Ken Modesitt
California State University
Computer Science Department
18111 Nordhoff St.
Northridge CA 91330

Michael Morrison
Texas Instruments, Inc.
Manager, Knowledge Engineering
Data Systems Group
P.O. Box 2909
MS 2195
Austin TX 78769

Laurie O'Connor
Hughes Aircraft Co.
Member of Technical Staff
Autonomous Systems Section
Artificial Intelligence Center
Research Laboratories
Bldg. 150, M/S A600
23901 Calabasas Road
Calabasas CA 91302

73

Brad Pollock
Cedars-Sinai Medical Center
Department of Cardiology
8700 Beverly Boulevard
Los Angeles CA 90048

Lt. David Rosenberg
Airforce Space Division/CFPF
P.O. Box 92960
Los Angeles AFS
Los Angeles CA 90009-2960

Steve Rosenberg
Hewlett Packard, Palo Alto
1501 Page Mill Rd.
Palo Alto CA 94304

Ron Siemens
Ford Aerospace
1260 Crossman
MS: S37
Sunnyvale CA 94086

Ken Strzepek
University of Colorado
Civil Engineering Department
Campus Box 428
Boulder CO 80309-0428

George Tetterton
General Dynamics
Data Systems Division
P.O. Box 748
Mail Zone 5305
Fort Worth TX 76101

Larry Tieman
American Airlines
P.O. Box 582809, MD 353
4000 North Mingo Road
Tulsa OK 74158-4560

Hao N. Vu
First Interstate Services
Systems Consultant
First Interstate Services Corp.
P.O. Box 935
El Segundo CA 90245

74

Robin Webster
Rockwell
% Anne Stanley
1524 Welldow Lane
Fullerton CA 92631

Howard Weiser
Arthur Andersen & Co.
33 West Monroe Street
Chicago IL 60603

Mark Young
Hughes Aircraft Co.
Radar Systems Group
MS: RE/R11/8003
P.O. Box 92426
Los Angeles CA 90009

RAND Corporation Participants

Iris Kameny

Jim Kipps

Jody Paul

Susan Pond

Jeff Rothenberg

Marcy Swenson

Dean Schlobohm (Consultant)
Greene, Radovsky, Maloney & Share
1 Market Plaza
Spear St., Suite 3200
San Francisco CA 94105

- 75 -

Appendix B

QUESTIONNAIRES

EXPERT SYSTEM TOOL USER QUESTIONNAIRE I

The following questions are intended to characterize your background and
experience using expert system (ES) tools. Please attach your answers
and return this questionnaire before October 1. Your answers can be
informal, but try to make them complete enough to include relevant
context. If you are involved in multiple projects, please provide a
separate set of answers for each. If you prefer you can respond by
electronic mail to jeff@rand-unix.

YOURSELF

1. Please include your name, affiliation and address, phone number and
extension, and electronic mail address (if any).

TARGET TASK, DOMAIN & USERS

2. Within the limits imposed by security or proprietary constraints,
describe your ES task and its intended domain of application.

3. What are the major issues and concerns involved in developing this
application?

4. What was the motivation/justification for applying AI/ES technology to
this task?

Is your ES being developed

o in the line of research?
o as a prototype?
o as an in-house tool?
o for developing custom products?
o as a commercial product?

6. What is the scale of your problem? (If possible, give some approximate
idea of the size of your expected effort, e.g., anticipated person
years, number of rules, size of database, etc.)

- 76

7. Characterize your expected end users (e.g., domain experts? programmers?
computer-naive professionals? non-technical laymen?).

8. How would you characterize your ES task in terms of "standard" AI tasks
such as diagnosis, planning, etc.?

9. Characterize the hardware/software of your development environment
and, if different, your target delivery environment.

DEVELOPMENT TEAM

10. Describe the members of your development team in terms of their
background and ability (i.e., characterize how much experience your
group has had with ES development, ES tools, AI, software engineering,
user-interface design, applications programming, etc.).

11. What is your source of domain expertise?

12. To what extent do you have end users involved in the development effort?

EXPERT SYSTEM TOOLS

13. What ES tool(s) are you using? (If an in-house tool, please describe;
if commercial, name product and vendor.)

14. What other ES tool(s) did you consider?

15. What evaluation criteria were used to select the ES tool(s)?

16. How long did it take to learn to use the ES tool(s) and what difficulties
were encountered along the way?

17. How would you characterize the strengths and weaknesses of the ES tool(s)
for your task?

18. Describe your overall reaction to using ES tool(s) based on your
experience.

- 77

EXPERT SYSTEM TOOL USER QUESTIONNAIRE II

This questionnaire should be read and answered as completely as possible
before the start of the workshop November 3. The questions given here
will form the basis for organizing the first day's sessions. We will
begin the workshop with a presentation and discussion in which we will
resolve any ambiguities that arise as you try to answer these questions.
We will then allow time to revise and refine your answers before
collecting them, copying them and distributing them to the other
attendees for use in working groups. If some of your answers are
proprietary to the extent that they should not be distributed to other
group members, you may want to generate two versions of the
questionnaire: a complete version for use only by RAND project members
and a sanitized" version for use by other attendees.

{name}

The following questions are intended to give us an in-depth look at your
background, to characterize your views about evaluating expert systems,
and to familiarize you with some terminology which will form a
vocabulary for our discussions. We held a workshop June 26-27, 1986,
for commercial expert system (ES) tool developers, and we present here
some of the ideas for ES tool evaluation that arose from that workshop.
Our intent is to share the results of that workshop, and to validate,
refine and extend the ideas that originated there.

The first workshop identified five areas for ES tool evaluation:

1) CONTEXTS (e.g., prototyping an ES, using an ES)

2) PROBLEM CHARACTERIZATION (e.g., domain (medical), type (planning),
complexity)

3) CAPABILITIES (e.g., inference, explanation, knowledge acquisition)

4) METRICS (e.g., cost, flexibility, portability)

5) EVALUATION METHODS (e.g., questionnaires, comparisons,
interviews)

These form 5 dimensions for evaluating an ES tool. Consider the
5-dimensional space in which each point represents the cross product: a
context X a problem X a capability X a metric X a method. For example, using
an expert system X thyroid disorder diagnosis X explanation X flexibility X
comparisons.

- 78 -

The resulting space also has meaningful subspaces, such as context X metric
(e.g., prototyping environment X portability), and capability X metric
(e.g., knowledge acquisition X flexibility).

In this questionnaire, we will ask about your particular ES development
project, discuss each of the 5 dimensions above, and ask some questions
about each one.

YOUR EXPERIENCE WITH EXPERT SYSTEMS TOOLS

The following questions concern the ES you are currently developing,
rather than the tool you are using to develop it. In order to relate the
size of your problem to the size of your effort, we would like to know how
long the effort has been going on, who has been working on it, and how
large the system is.

1. If your answer would differ from that submitted in the first
questionnaire, then please describe your ES task and its intended
domain of application (within the limits imposed by security or
proprietary constraints).

2. Are you biiilding:

- an expert system application?
- an enhanced environment for building expert systems?

3. Is the objective of your ES task to:

- do research?
- develop a prototype?
- develop an in-house product?
- develop a one-off product for a customer?
- develop a commercial product?

4. Which stage of development best describes your ES task at this time?

- experimenting/looking at tools
- prototyping/demonstrating feasibility
- developing
- fielding
- delivering/maintaining

79

If your ES task is to build an ES application, then please fill in the
following table that shows development stages vs. types of people
involved. In the top row, show what percentage of each stage is
complete, and in the remaining rows, fill in the number of full-time
equivalent people that participated in that particular stage of
development. For instance, if one systems analyst worked full-time, and
two systems analysts worked 1/3-time on the development stage, then
put 1.6 in the corresponding box. Add rows as necessary.

TABLE 1 | lwW~?l«'w,,,,y "Dekn-mvwioi fielet wA
£n.Uawjt*»«wr |

V&(x»k Cbwrplete-

_.. L . ..
K*wiola±*c&*j|M<**5

^~H
o—J—

"Project Hu/uaurs

Xbvwojv^ Ex-pc/+$

rrco^ar^miy^

Al "R^o<Afa*vi»vM/5

j

80 -

6. To characterize the size, complexity, and coverage of your ES task,
please fill in the following table, picking the most appropriate
unit(s) of measure for your system. For example, if your ES task has
approximately fifty rules concerning control information, enter 50 in
the upper left box.

TABLE 2

How mucW of ■W*t
system >^:

rotes -^VOLWUÄ ob^ecte beWwiorS Kl'PS UntioV codfi_

CotrWo! inWfWtno^

U&W 'ivcWWe.

dowi<uv\ \nTor*vKmo>^v

S\eld'tw\ e*w>vottwuuj

OCplOMftilOv^i

81

THE FIVE DIMENSIONS FOR ES TOOL EVALUATION

The five dimensions for tool evaluation are: contexts for evaluation,
problem characterization, tool capabilities, metrics, and evaluation
methods.

The questions in this section are about evaluating ES tools in general,
and not the specific ES tool you have used. We are looking for evaluation
criteria that will be universally applicable.

A. CONTEXTS FOR EVALUATION

There are several different ways an ES tool is used. It can be used for
rapid prototyping, for development or for fielding mature systems.

These are some of the relevant contexts for evaluation:

Abstract

the tool as a conceptual framework and a piece of software
implementing that framework, in the absence of any more specific
context. This emphasizes the quality and usability of the tool
and its interface.

Prototyping environment

the tool as used in prototyping an ES. This
emphasizes the tool's facilities for quickly trying alternative
approaches and representations.

Development environment

the tool as used in developing a mature ES.
This emphasizes the tool's suitability for development of software,
including its debugging facilities, configuration control, etc.

Execution/fielding environment

the tool as it affects the delivery
of a finished ES and the performance and interface of that ES.
This emphasizes the tool's facilities for porting from the
development environment to the delivery environment and
for maintenance, support and performance in the delivery
environment.

82

Life cycle of the tool

the tool's usability over an extended
period of time. This emphasizes the ability of the tool
to evolve over time and the support provided by its vendor.

1. Please add contexts that you feel are missing.

2. Do you feel any of the contexts are more or less important than
any others, if so then why?

B. PROBLEM CHARACTERIZATION

Just as one would not evaluate a car without considering where it will be
driven (e.g., in a traffic-ridden city, on sand dunes, or in snow) it
makes no sense to evaluate an ES tool without considering what it will be
used for. We would like to find not only which ES tools are generally
useful, but which types are useful for certain applications, e.g., what
qualities would one look for in an ES tool to use for geological simulation?

Below are four ways of categorizing problems, and for each
categorization, some problem types.

Are there other useful ways of categorizing problems?

Would you add any types for any of the given categories?

1. Problem domain examples:
chemistry mathematics
electronics medical
geological military science
information management physics
legal space technology
manufacturing

Problem types:
classification monitoring
control planning
debugging prediction
design repair
diagnosis simulation
instruction

- 83 -

3. Complexity
Scope
Size

Development team characteristics
AI experience

Knowledge engineers
AI programmers

Computer science background
Programming experience
Domain experts
Number of people

C. CAPABILITIES OF A TOOL

Capability refers to a tool's ability to readily support certain aspects
of its applications. A capability is supported through features. A tool
must have at least one feature for each capability it realizes and a given
feature may support more than one capability.

For example, the capability of shifting gears allows an automobile to
change speed ranges. Two different features that support shifting gears
are manual transmission and automatic transmission. As another example,
the capability of grasping an object allows one to reposition the object.
Two different features that support grasping objects are hands with
opposable thumbs, and magnets.

The following list of capabilities and features was developed in the
first workshop, and we would like your validation and input. Please
edit and comment on the list.

1. Arithmetic processing
Does a tool provide a full range of arithmetic operators and numbers

(e.g., long integers, floating point)?

2. Certainty handling
Does a tool have built-in methods for representing and propagating

certainty?

Can these mechanisms be augmented, modified, or defeated?

Supporting features:
Built-in representation methods like Bayesian, likelihood ratios
Built-in propagation methods
Fuzzy logic

84 -

3. Concurrency
Supporting features:

Distributed processing
Parallel processing

4. Consistency checking
Does a tool check for syntactically correct but internally inconsistent

or implausible knowledge?

Is consistency enforced by a conceptual formalism that doesn t admit
inconsistent knowledge?

Is consistency enforced by built-in mechanisms and checks?

Is consistency enforced by requiring the user to follow certain conventions?

5. Development documentation
Does a tool allow recording assumptions and rationale about the knowledge

during the development process (e.g., annotations on code and data
structures)?

Can this knowledge be interpreted by the system?

6. Explanation
Does a tool have explanation?

Can the explanation mechanism be augmented, modified, defeated?

7. External access
Can a tool directly access external programs, operating systems and

databases during execution?

Can a tool access special hardware (e.g., sensors, effectors)?

8. Inference and control techniques
Supporting features:

Iteration
Recursion
Forward chaining
Backward chaining
Inheritance; multiple hierarchies or lattices
Other relations (such as part/whole, nearby)
Dependency structures and dependency-directed backtracking
Multiple worlds or viewpoints
Demons or triggers

85 -

9. Internal access
Can a tool access the underlying language in which it was programmed

(e.g. Lisp)?

Does this access work consistently in the development and delivery
environments?

10. Knowledge acquisition
Does a tool provide sophisticated run-time acquisition?

Does a tool provide sophisticated acquisition for development? For both
declarative and procedural knowledge?

Does a tool support the acquisition of domain specific reasoning or
control methods?

Does a tool support the acquisition of general reasoning or control
methods, e.g., planning techniques, common sense reasoning?

Does a tool support the acquisition of knowledge needed for explanation?

Does the system have special methods for initializing the knowledge base?

Does a tool derive its own rules directly from the data?

11. Knowledge-base editing
Does a tool have good text editing and formatting?

Does a tool have good structure editing and formatting?

12. Meta-knowledge
Does a tool have meta-knowledge about control?

Does a tool know the limits of its capabilities?

13. Optimization
Supporting features:

Intelligent lookahead
Result caching
Rule compilation

86 -

14. Presentation I/O
How simple, visually effective and efficient is the interface to both

the system builder and the end-user?

How easily can the interface mechanisms be augmented, modified, or
defeated?

Can multiple, overlapping windows be created using the knowledge
engineering language?

Supporting features:
Textual
Graphical
Windowing
Spreadsheet
Forms
Mouse
Light pen
Touch-sensitive screen

15. Representation techniques
Supporting features:

Rules
Frames
Procedures
Logics
Objects
Triggers, demons
Blackboard
Temporal representation
Spatial representation
Simulation
Planning

D. METRICS

Given then capabilities and features we would like to evaluate, and the
contexts to evaluate them in, it would be helpful to have some metrics with
which to measure them. We could just use "great," "OK," and "bad," and say
an ES tool rates "OK" in inference techniques in the delivery environment;
but an "OK" doesn't really give us a very accurate measure. We would like
to be more specific, and say that the inference techniques in the delivery
environment are very flexible, not very powerful, but very efficient.
Different metrics measure different qualities of a tool, expressed in
appropriate units.

87

The following is a list of metrics that seem applicable to evaluating ES
tools. Please add to the list any other metrics that you think are
appropriate for ES tool measurement, and cross out any that you think are
inappropriate.

METRIC

Adequacy

Availability

Breadth

Clarity

Cognitive efficiency

Coherence

Completeness

Congruence

Consistency

Controllability

Cost

defeat ability

Ease of Use

EXAMPLE

of a tool or its feature to a given task
or range of tasks.

in the face of downtime or maintenance
requirements.

applicability to a wide range of tasks,
domains, etc.

of concepts, mechanisms, interface, etc.

number and complexity of concepts,
techniques, special cases, etc. that
a user must keep in mind to use the
system effectively, relative to the
power they provide.

simplicity and generality of tool features
and mechanisms.

with respect to a given task or range of
tasks.

Concepts that are OR SHOULD BE similar
(different) to the intended user should
map to similar (different) things within
a tool.

of features or mechanisms within a tool.

of a tool or its features by its intended
users.

direct costs (hardware & software) and
indirect costs (support, maintenance, etc.)

the ability to override features or functions
of a tool.

a subjective measure, but given in absolute
terms (as opposed to cognitive efficiency
which is relative to power).

88

Efficiency

Extensibility

Flexibility

Integration

Maintainability

Modularity

Philosophy

Portability

Power

Reliability

Responsiveness

Robustness

Scalability

Sophistication

Subsetability/Separability

measured usage of time and memory.

ability to enhance existing capabilities or
features or add new ones.

ease of extensibility, provision of alternative
ways of representing or solving problems, etc.

of features, representations, sub-systems etc.,
both within a tool and with external languages,
existing software, databases, hardware, etc.

ease of access to underlying mechanisms and
support for fixing bugs, changing limits,
modifying built-in behavior.

of representation and control

attitudes, preferences, tradeoffs etc.
embodied in a tool.

of both development and delivery systems;
compatibility of interface, limitations, etc.
across machines.

Overall leverage compared to an underlying
language/system, within the scope of
applicability of a tool. Power is used here
to imply depth rather than breadth.

is a measure of the success with which a tool
conforms to its specifications, i.e., does it
work right all the time?

the speed and appropriateness of a tool's
reaction to the user.

*
the ability of a tool to continue working in
the face of unexpected inputs, hardware or
software failures, malevolent attacks, etc.

the ability to handle both large and small
problems, and especially to allow starting
small and growing without having to redesign.

relative to an underlying language/system or
the state of the art.

Can some parts of the system be used
independently of others? Is it necessary
to learn and "pay for" all of a system's
complexity even to do fairly simple things?

- 89

Usability

Learnability

Any given feature or aspect of a tool can
be evaluated with respect to how usable it
is in practice by real users.

Any given feature or aspect of a tool can
be evaluated with respect to how easy it
is for real users to learn.

E. EVALUATION METHODS1

There are many ways of evaluating something; hotels are rated with stars,
Consumer Reports rates things with big grids of data and movies are rated
by critics, who often just talk subjectively about the films. A
combination of several methods would provide more information, but there
is a threshold after which more information is confusing. We need to
choose the methods which would be most helpful in evaluating ES tools.

Below are some methods of evaluation. For each method, please assign
it a usefulness rating from 1 to 5, 1 being "practically worthless,
and 5 being "highly useful."

1. Comparisons

A. Compare each tool with some sort of "baseline tool.
necessitate choice of a baseline tool.
Rating:

This would

B. Compare each tool with some sort of ideal tool,
necessitate a definition of the ideal tool.
Rating:

This would

C. Compare tools with one another (similar to Consumer Reports, but
more in-depth).
Rating:

1Note that the term "Evaluation Methods" was subsequently changed
to "Assessment Techniques."

- 90

2. Benchmarks

By "benchmarks" we do NOT mean timing tests of standard algorithms, but
rather special problems developed to test the capabilities of an ES tool.
Certain problems would be offered in non-implementation-specific terms, and
would be solved by vendors offering ES tools or by prospective users.
Solutions for each tool would be published, along with the time required to
implement each solution, and the resulting system size, etc. Solutions could
also be evaluated on the basis of style, clarity and conceptual cleanliness.

D. Small benchmark problems can be solved in hours or days,
they consist of an informal statement of the desired capability, a
specific problem fragment for testing the capability, and the role this
capability plays in solving the problem. (For an example of a small
benchmark problem, see attachment A.)
Rating:

E. Large benchmark problems can be solved in weeks or months, they
consist of a detailed description of the problem being addressed, a
checklist of things to which the implementor must respond during the
development process (like how hard was "x" to implement, or how long
did "y" take you), and follow-up interviews to obtain subjective
evaluations. An example of a large benchmark problem is that of locating
and diagnosing a spill in a chemical plant. It is presented in detail in
"Building Expert Systems," (Hayes-Roth, Waterman, and Lenat (eds),
Addison-Wesley, 1983).

F. If you can suggest any applicable small or large benchmarks, please
describe them below.

3. Case Studies

G. Controlled recording of an ES development effort, in an attempt to
capture the relevant aspects of the tool being used.
Rating:

4. Library of Expert System Efforts

H. Information about ES development efforts, organized in a database
that can be searched to find projects similar to a proposed project.
Rating:

5. Interviews

I. Interview people who have completed long-term development efforts.
Rating:

91

6. Questionnaires

J. Collect information from various users of a tool, keep on file in an
accessible location.
Rating:

7. An Expert System for Tool Evaluation

K. Develop an ES that knows about previous efforts and what qualities
were useful for a particular type of application, and can perform
consultation and diagnosis for a potential user about what type of ES
tool would be most useful.
Rating:

- 92

ATTACHMENT A
(of Questionnaire II)

An Example of a Small Benchmark Problem

Experts may organize their domain knowledge around taxonomies,
hierarchical structures in which properties of an entire class can be
stated just once and then "inherited" by members of that class or any
subclass.

For example, all squares are rectangles and all rectangles are geometric
figures. The area of any rectangle can be computed by multiplying its
height by its width. The width of a square equals its height.

Represent this knowledge and use it to compute the area of a square called
"object-22", with a height of five units. Rectangle height must be a
number. Extend the representation so the system will object to
non-numeric heights for rectangles.

- 93 -

Appendix C

BENCHMARKS

SMALL BENCHMARK PROBLEMS

Contributed by Dean Schlobohm

This memo describes what is meant by a "small benchmark" for use in
evaluating expert system tools ("tools"). It also describes potential
capabilities which may be able to be evaluated using small benchmarks.
Finally, it gives two examples of portions of a small benchmark.

I. Description of a Small Benchmark

Each small benchmark would assist in evaluating one or more functional
capabilities of a given a tool. A small benchmark should be able to be
implemented in a given tool within a relatively short period of time,

ranging from a few person-hours to several person-days, not including
the time required to fill out the evaluation questionnaire. Each
benchmark should contain the following:

1. A description of the capability or feature being tested
by the benchmark

2. A description of the type of problems for which the
capability or feature being tested may be important and
why

3. A description of a specific small problem for testing the
capability or feature

4. A checklist and/or a set of questions which the person
implementing the benchmark in a given tool (the "tester)
could use in evaluating the tool with respect to the benchmark

It is assumed that most of these small benchmarks will test just one
capability or feature. If they test more than one, please respond to
(1) and (2) above for each capability or feature being tested.

Each of these will now be discussed in more detail.

A. Capability or feature being tested

This should be a short description of the capability or
feature of a tool which the small benchmark will assist in evaluating.
Since it is expected that some of the benchmarks will be implemented by
a "novice" tester (i.e., a domain expert with little computer knowledge

94

or a programmer with little AI knowledge), the description should be
clear and understandable to such persons.

The description might contain examples of the feature taken
from existing expert systems. These examples should not contain the
actual code since the code could influence how the tester attempts to
implement the benchmark in a given tool.

B. The types of problems for which the capability
or feature being tested may be important and why.

One of the major issues in evaluating tools is the
determination of what capabilities are necessary (important, desireable)
in order to create a commercial expert system of a given type in a given
domain. A "feature list" will be of little use unless a person has a
method for determining which tool features and capabilities are needed
to solve his or her problem.

The types of problems could be: interpretation, prediction,
diagnosis, design, planning, monitoring, debugging, repair, tutorial and
control systems. Other suggested types would be appreciated.

We realize that the above types of problems may be of little
help in matching tools to tasks since most actual problems problems will
contain aspects of several types. We would appreciate your ideas on
whether there is a classification of the types of problems which can be
matched against tool capabilities or features to assist in evaluating
whether a given tool may be effectively used to solve a given problem.

C. A specific small problem for testing the capability or
feature.

The benchmark should be a description of some small problem,
the solution of which could require the use of the capability or feature
being benchmarked. In order not to influence the tester, the problem
must be described in general terms and not in some implementation.

The tester should be required to first attempt to solve the
problem by using an implementation which tests the capability or feature
being benchmarked. However, the tester should be encouraged to also
solve the problem using the method "best" supported by the tool. For
example, although the problem might be designed to test the use of
backtracking in a particular tool it may be more natural (efficient,
etc.) to solve it using some other technique. The tester should be
encouraged to evaluate the tool with respect to both methods.

D. A "checklist" and/or a set of questions which the tester
can use in evaluating the tool with respect to the
benchmark.

95

One of the reasons for using small benchmarks is that the
tester will not have a lot of time to spend implementing them. Thus, to
the extent possible, a checklist should be prepared to assist the tester
in evaluating a given tool with respect to the benchmark. For example,
the checklist could be of the form:

| How would you rate the tool with regard to the following issues? j

Inferior Poor Fair 3ood Excellent |

1 1. The ease with
the benchmark
implemented in

which
could be
the tool

1 2. The naturalnes
representation
tool provided
problem

s of the
the
for the

There should also be a set of questions asking the tester
for his or her overall subjective evaluation of how effective the tool
solved the benchmark problem. Finally, there should be questions
relating to memory, speed, etc. which require objective answers.

Each of these questionnaires should be designed for a
specific benchmark. For example, the questions for evaluating backward
chaining may be different from those for evaluating windowing
capabilities.

It may be appropriate to have a series of questionnaires to
be completed at different times during the implementation of the
benchmark. Alternatively, the tester may be presented with questions
which require them to provide evaluations over time (i.e., keep a diary
of the implementation process).

One of the initial purposes of creating and implementing
small benchmarks is to obtain more knowledge about how to evaluate
knowledge engineering languages. As a result, we expect that some of
the benchmark methods may not be as effective as others at testing the
target capability or feature. Thus, the testers should be presented
with questions which permit them to evaluate whether the benchmark
problem adequately assists in evaluating the capability or feature.

96

The tester should also be given the opportunity to suggest
other methods and/or problems which can be used to evaluate a given
capability or feature. This will allow us to create a larger library of
small benchmarks and other methods to evaluate tools.

II. Potential Capabilities To Be Evaluated

We believe that the following features and capabilities constitute a
partial list of those which can be evaluated (to some degree) by using
small benchmarks:

1. Rules
- Forward chaining
- Backward chaining
- Data driven reasoning
- Blackboard reasoning
- Representation of meta knowledge
- Other inference and control techniques

2. Frames
- Inheritance
- Multiple inheritance

3. Object-oriented programming
- Message passing

4. Certainty handling
- Built-in features
- User creation of alternative methods

5. Explanation capabilities
- Built-in features
- User creation of alternative methods

6. End-user interfaces
- Menus
- Windows
- Data type checking
- Graphical facilities
- English understanding and generation

7. Arithmetic capabilities
- Floating point arithmetic
- Built-in functions for financial calculations

8. Automatic Knowledge Acquisition
- Induction

9. Debugging facilities
- Tracing
- Graphical representations
- Consistency checking of the knowledge base

97 -

III. One Example of a Small Benchmark

The following is a portion of a small benchmark. It should be noted
that much of the benchmark still needs to be completed.

A. Features Being Tested

This benchmark will help evaluate the tool with respect to the following
features: frame mechanisms and inheritance, windows, menus, English
generation, and the creation of explanations.

B. Type of Problems For Which the Features May Be
Important

The features evaluated in this benchmark are important in solving
problems which require "user friendly" interfaces. Also, problems which
are hierarchical in nature can usually be more easily represented in
frame systems.

C. The Problem

Many expert systems require the capability of providing explanation to
end-users. Furthermore, knowledge in many domains is hierarchical in
nature. In order to test these features (among others), please solve
the following problem in your tool:

You are to create a program which will be able to explain various
predetermined terms and concepts in text that is presented to the end-
user. The knowledge should be stored in the following hierarchy:

TRUST

1
REVOCABLE
TRUST

1
IRREVOCABLE

TRUST

1
1

1
BYPASS
TRUST

1
1

1
MARITAL

DEDUCTION
TRUST

1

1
ALL INCOME

TRUST

1
SPRINKLING

TRUST

1
QTIP
TRUST

98

The following information should be stored with each of the elements in
the hierarchy.

BYPASS TRUST

1. Explanation -- "A bypass trust is established for
NAME-OF-SPOUSE so that the property in the trust will not
be taxed in NAME-OF-SPOUSE*s estate."

2. Explainable terms -- PROPERTY, ESTATE

IRREVOCABLE TRUST

1. Explanation -- "The trustor retains no power to amend or revoke
the trust."

2. Explainable terms -- TRUSTOR

In the above, NAME-OF-SPOUSE is a variable which should be filled in
with the actual spouse's name at run time.

The explanations should be of the form:

EXPLANATION MENU

SPRINKLING TRUST
ALL INCOME TRUST
IRREVOCABLE TRUST <==
PROPERTY
ESTATE

RETURN
CHANGE LEVEL
CONTINUE

EXPLANATION OF BYPASS TRUST

A bypass trust is an irrevocable trust. A
bypass trust is established for Mary Jones so
that the property in the trust will not be taxed
in Mary Jones' estate.

Examples of a bypass trust are:

all income trust
sprinkling trust

- 99 -

I EXPLANATION OF BYPASS TRUST

EXPLANATION MENU |

MARTIAL DEDUCTION
TRUST

TRUST <=
TRUSTOR

RETURN
CHANGE LEVEL
CONTINUE

EXPLANATION OF IRREVOCABLE TRUST

An irrevocable trust is a trust. The trustor
retains no power to amend or revoke the trust.

Examples of an irrevocable trust are:

bypass trust
marital deduction trust

In the above, the examples and the sentences, "A bypass trust is an
irrevocable trust." and "An irrevocable trust is a trust." should be
generated from the frame hierarchy. Only explanations unique to a
given concept should be stored with that concept. Also, the name Mary
Jones should be retrieved from a representation of the Client's spouse
and inserted in the text just before presenting the explanation.

Selections from the Explanation Menu should be able to be made either
by using a mouse or some keyboard input.

While the above problem suggests the use of a frame representation, you
should also solve the problem in the manner best suited to the tool you
are testing. You must not, however, use only "canned" text.

- 100 -

D. The Questionnaire

How would you rate the tool with regard to the following issues?

Inferior Poor Fair Good Excellent

1. The ease with which
the knowledge hier-
archy was implemented
in the tool

2. The naturalness of the
representation the
tool provided for the
problem

3. The speak/efficiency of
the end-user interface

Please elaborate:

4. The effectiveness of the
benchmark problem as set
forth above in testing
the tool's ability to
create user friendly
interfaces

Please elaborate:

5. How long did it take you to represent
the trust hierarchy? (in person-hours
of effort)

6. How long did it take you to create the
overlapping windows? (in person-hours
of effort)

Do you have a problem which could be used
to evaluate a tool's ability to represent
hierarchical knowledge? Is so, please
describe.

- 101 -

IV. A Second Example of a Small Benchmark

A. Features Being Tested

This benchmark will help evaluate the tool with respect to the
following features: frame mechanisms and inheritance, use of default
reasoning, and the ability to deal with inconsistent data.

B. Type of Problems For Which the Features May Be Important

The features evaluated in this benchmark may be important in
problems which are hierarchical in nature and may contain inconsistent
data.

C. The Problem

In this benchmark, you are to add certain facts to a knowledge
base and then ask questions about the knowledge. Please use the
representation most suitable for the tool you are testing.

Add
Add
Add

Ask

Add

Ask

Add

Ask

Add

Ask

Add

Trucks are vehicles.
Big red trucks are trucks.
Tl is a big red truck.

Is Tl a vehicle?

All big red trucks have color red.

What is the color of Tl?

All trucks have at least 4 wheels.

Does Tl have wheels?

All vehicles have exactly one color.

Does Tl have color black?

Tl has color green. (Inconsistent)
(Note: This should be disallowed.)

Retract: All vehicles have exactly one color.

Ask

Add

Ask

Add

Ask

What is the color of Tl?

The weight of big red trucks is typically 5000 pounds.

What is the weight of Tl?

The weight of Tl is 7000 pounds.

What is the weight of Tl?

102 -

D. The Questionnaire

How would you rate the tool with regard to the following issues?

Inferior Poor Fair Good Excellent

1. The naturalness of the
representation the
tool provided for the
problem

Please elaborate:

2. The adequacy of the tool
in warning you of the
addition of inconsistent
knowledge

Please elaborate:

The capability provided
by the tool for browsing
through the knowledge
base

Please elaborate:

The effectiveness of the
benchmark problem as set
forth above in testing
the tool's ability to
represent hierarchical
knowledge

Please elaborate:

5. Do you have a problem which could be used
to evaluate a tool's ability to represent
knowledge? If so, please describe.

- 103 -

SMALL BENCHMARK ON AIDS TO KNOWLEDGE ACQUISITION

Contributed by Radian Corporation

A. Description of the Feature

This benchmark can be used to evaluate expert system tools with respect
to the aids they provide for knowledge acquisition.

B. Types of Problems

Aids to knowledge acquisition are important for any problem in which
there is a large amount of rule-based knowledge.

C. The Problem

In this exercise you are to build up a knowledge base by adding pieces
of information consecutively. The ultimate goal is to produce a system
which can classify any closed four-sided figure (with no sides
intersecting) correctly and specifically.

The information is presented in two forms. Declarative statements are
embedded in bold in the instructions. Examples of four-sided figures
are presented in picture form.

BEGINNING ASSUMPTIONS

Closed 4-sided figures with no sides intersecting
Definitions

parallelogram - four sides with opposite sides parallel
right - having at least one right angle
quadrilateral - four sides

1. GETTING STARTED

Here is a list of attributes or properties considered relevant to the
classification of four-sided figures.

a. whether all four sides are equal in length (equilateral)
b. the number of opposite sides which are parallel
c. the presence of a right angle
d. the presence of an interior angle of > 180 degrees
e. whether all interior angles are equal

- 104 -

Examples of
Four-Sided

Figures

Rhombus

a = b = c = d (All sides equal)
allb, blld (4 sides parallel)

Rhomboid

a = c, b=d, a4=b
alle, blld

d

a=c, b=d, a*b
alle, blld
90° angle

a

L

c

Rectangle

b

a=£b4=c^d

Concave Trapezium

Square

a

d

a=b=c=d
alle, blld
90° angle

L

c

b

- 105

Enter:

An equilateral parallelogram is a rhombus A non-equilateral
parallelogram is a rhomboid

Can you create an executable system? If so, does the system ask about
both properties (a and b) before naming the figure? Given the limited
world so far, does it name it correctly?

2. CONTRADICTORY OR UNSPECIFIC INFORMATION

Enter:

A square is an equilateral paralellogram

While the sentence is true, it is also true that a further property
distinguishes a square from a rhombus, namely the presence of a right
angle. The same attribute values, equlilateral and all sides parallel,
now lead to different clas sifications, a rhombus and a square.

A tool can handle this in one of several ways. It may make you clarify
the situation before letting you create an executable, it may wait until
run-time to inform you, or it may never inform you. If you can run the
system with just these rules, try to classify a rhombus and then a square.
Does it always tell you the figure is a rhombus? a square? both? either?
Is the classification wrong, right, or lacking in specificity?

Amend the information by adding the attribute of "rightness" (attribute
c). Enter:

An equilateral right parallelogram is a square
A non-equilateral right parallelogram is a rectangle

Once you have added this information, test the system's behavior for all
the figures defined so far. How does it perform? Was it easy to add the
attribute?

3. SUBSETS AND SUPERSETS

Change the information on rhomboids:

A rhomboid may or may not have a right angle

Again, while the sentence is true, it is the property of "rightness" which
distinguishes rectangles from rhomboids. Different values of an

106 -

attribute, the presence and absence of a right angle, now lead to the same
classification, a rhomboid.

Again, a tool can tell you that the rectangle is a subset of the rhomboid
(or the rhomboid is a superset of the rectangle) before run-time, during
run-time, or never at all. If you can run the system, does it correctly
and specifically classify a rectangle? a rhomboid?

Change the information to:

A rhomboid does not have a right angle (or it is a rectangle)

If you can run the system now, does it perform correctly? Was it easy to
change the information? Is there a way to look at the rules in a compact
form?

4. INCOMPLETE INFORMATION

Enter:

A quadrilateral with 2 parallel sides is a trapezoid

As yet there is no information to classify a figure with no parallel
sides. Is this discovered before or during run-time, or never? If never,
what happens when you try to classify a figure with no parallel sides?

Enter:

A quadrilateral with no parallel sides is a trapezium

How does this change the system's performance?

5. GENERALIZATION

a. Discarding necessary attributes

Enter:

A trapezium with an interior angle of > 180 degrees is a concave
trapezium

If you can run the system, does it correctly identify a trapezium without
an interior angle > 180 degrees? Does the tool provide any way to check
your information for completeness (to make sure the system does not give
an answer for something you have not yet specified)?

107 -

Enter:

A trapezium without an interior angle of > 180 degrees is a convex
trapezium

You should now have all the information necessary to correctly classify
any four-sided figure. If there is a way to look at the representation,
is it compact? understandable? How does the system perform?

b. Discarding unnecessary attributes

In complex problem domains, the necessary attributes are not always known.
The 5th attribute (whether all interior angles are equal) is unnecessary
to solve the problem, but let us assume that fact is unknown.

Add the attribute for each of the 7 rules. Can you create an executable
system? Has the new information changed or complicated the execution, or
has that attribute been discarded as redundant? If you can look at a
representation of the knowledge, has it changed?

DUPLICATING INFORMATION

Add one of the rules again. When does the tool inform you that you have
already added the information?

7. CONCLUSION

While the classification of a four-sided figure would probably not be
regarded as critical, some expert systems will make critical decisions.
Does the tool give you any way to trace all the possible paths that can
lead to a given conclusion?

- 108 -

D. Questionnaire

How would you rate the tool with respect to the following issues?

Inferior Poor Fair Good Excellent N/A
Ease of solving
the problem with
the tool

Please elaborate:

Ease of acquiring
new knowledge

Please elaborate:

Ease of refining
knowledge

Please elaborate:

The understandability
of the representation

Please elaborate:

Consistency checking
of facts
of the relations
between facts

Please elaborate:

Insuring completeness
(Covering the entire
problem space, i.e.
all possible combina-
tions of attributes)

Please elaborate:

Efficiency/speed of
execution.

Inferior Poor Fair Good Excellent N/A

- 109

Can the tool show you a concise representation of the information
you put in? Could an expert readily understand it? Could an
expert learn from it?

How long did it take you to solve the problem?

How effective was the benchmark in evaluating the feature? Can
you think of a better problem or method for evaluation?

Background of evaluator.

Are you used to working with computers and software?
How familiar are you with AI products and concepts?
How well did you know the tool before trying to solve the
problem?

110

Benchmark on aids to knowledge acquisition.
Radian Corporation's solution to the problem of correctly classifying
certain four-sided figures.

»/

MODULE: quad

DECLARATIONS:
[INTENT: "name\the 4-sided figure\"
CHILD: eq_sides

par_side
one_90
gt_180

STATE: classify
ACTIONS:

rhombus
rhomboid
square
rectangle
trapezoid
trapezium_cv
trapezium_cx

[advise "This figure is a RHOMBUS."]
[advise "This figure is a RHOMBOID."]
[advise "This figure is a SQUARE."]
[advise "This figure is a RECTANGLE."]
[advise "This figure is a TRAPEZOID."]
[advise "This figure is a CONCAVE TRAPEZIUM."]
[advise "This figure is a CONVEX TRAPEZIUM."]

/•
otherwise [(advise "UNSPECIFIED COMBINATION OF PROPERTIES"
(used to ensure completeness in part 5)

GOAL);

CONDITIONS
all_sides. _eq [eq_sides] { equal not_equal }
num_sides. _par [par_side] { 0 2 4}
one_90 [one_90] { present absent }
gt_180 [gt_180] { present absent }

EXAMPLES:
equal 4 absent - => (rhombus,GOAL)
not_equal 4 absent - => (rhomboid,GOAL)
equal 4 present - => (square,GOAL)
not_equal 4 present - => (rectangle,GOAL)
- 2 - - => (trapezoid,GOAL)
- 0 - present => (trapezium_cv,GOAL)
- 0 - absent => (trapezium_cx,GOAL)

Ill

MODULE: quad.eq_s ides

DECLARATIONS:
[SILENT: "\the lengths of all 4 sides\are"
OUT: string result]

STATE: only
ACTIONS:

yes ["equal" -> result]
no ["not_equal" -> result]

CONDITIONS:
all_sides_eq

[ask "Are all 4 sides equal in length?" "yes no"] { yes no }

EXAMPLES:
yes => (yes, GOAL)
no => (no, GOAL)

MODULE: quad.par_side

DECLARATIONS:
[SILENT: "\the number of opposite sides parallel\"
OUT: string result]

STATE: only
ACTIONS:

zero ["0" -> result]
two ["2" -> result]
four ["4" -> result]

CONDITIONS:
num_sides_par

[ask "How many sides have opposite sides which are parallel?" "0 2 4"]
{024}

EXAMPLES:
0 => (zero, GOAL)
2 => (two, GOAL)
4 => (four, GOAL)

112 -

MODULE: quad.one_90

DECLARATIONS:
[SILENT: "determine if\a 90 degree angle\"
OUT: string result]

STATE: only
ACTIONS:

yes ["present" -> result]
no ["absent" -> result]

CONDITIONS:
one_90 [ask "Is there a 90 degree angle?" "yes no"] { yes no }

EXAMPLES:
yes => (yes, GOAL)
no => (no, GOAL)

MODULE: quad.gt_180

DECLARATIONS:
[SILENT: "determine if\an interior angle > 180 degrees\"
OUT: string result]

STATE: only
ACTIONS:

yes ["present" -> result]
no ["absent" -> result]

CONDITIONS:
gt_180

[ask "Is there an interior angle > 180 degrees?" "yes no"] { yes no >

EXAMPLES:
yes => (yes, GOAL)
no => (no, GOAL)

113 -

MODULE: quad
INTENT: "name\the 4-sided figure\"
CHILD: eq_sides

par_side
one_90
gt_180

STATE: classify
IF (par_side) IS

"0" : IF (gt_180) IS
"present" : (advise "This figure is a CONCAVE TRAPEZIUM.", GOAL)
ELSE (advise "This figure is a CONVEX TRAPEZIUM.", GOAL)

"2" : (advise "This figure is a TRAPEZOID.", GOAL)
ELSE IF (eq_sides) IS

"equal" : IF (one_90) IS
"present" : (advise "This figure is a SQUARE.", GOAL)
ELSE (advise "This figure is a RHOMBUS.", GOAL)

ELSE IF (one_90) IS
"present" : (advise "This figure is a RECTANGLE.", GOAL)
ELSE (advise "This figure is a RHOMBOID.", GOAL)

GOAL OF quad

(1st sample run)

How many sides have opposite sides which are parallel? [0 2 4] 4
Are all 4 sides equal in length? [yes no] y
Is there a 90 degree angle? [yes no] n

Advice: This figure is a RHOMBUS.

(RETURN continues) why

Since a 90 degree angle is absent
when the lengths of all 4 sides are equal
and the number of opposite sides parallel is 4
it is necessary to advise 'This figure is a RHOMBUS.'
in order to name the 4-sided figure

At <quad>
c)ontinue e)laborate h)elp : c

- 114

(2nd sample run)

How many sides have opposite sides which are parallel? [0 2 4] 4
Are all 4 sides equal in length? [yes no] n
Is there a 90 degree angle? [yes no] y

Advice: This figure is a RECTANGLE.

(RETURN continues) why

Since a 90 degree angle is present
when the lengths of all 4 sides are not_equal
and the number of opposite sides parallel is 4
it is necessary to advise 'This figure is a RECTANGLE.'
in order to name the 4-sided figure

At <quad>
c)ontinue e)laborate h)elp : c

J..LJ.J.J..I.J, ^^J~^^^^^^^^^^^^^^^*1*^^^^JU^^^^^^*U^^^^^^^^^^^^^^J*^^^^^^^^^^^^^-j-

(3rd sample run)

How many sides have opposite sides which are parallel? [0 2 4] 0
Is there an interior angle > 180 degrees? [yes no] y

Advice: This figure is a CONCAVE TRAPEZIUM.

(RETURN continues) why

~'~Vw'wV '■■,--j,--,v--' »■'--'- ■, I* ■■■'■■*-,*,,■ '- '■■'..*.I»I !«■ »--'■.'■■'■■*i ■' I'II'II'I '■■»II'II*. *■■!-«,,»-*--'--*--* '--'--*--v-'--'--t-y--'--vv--t--VV-^-7V^^

Since an interior angle > 180 degrees is present
when the number of opposite sides parallel is 0
it is necessary to advise 'This figure is a CONCAVE TRAPEZIUM.1

in order to name the 4-sided figure

At <quad>
c)ontinue e)laborate h)elp : c

- 115 -

Appendix D

QUESTIONNAIRE RESULTS

SUMMARY OF QUESTION 2, QUESTIONNAIRE I

"Within the limits imposed by security or proprietary constraints,
describe your ES task and its intended domain of application."

Commercial

Trader's assistant for analysis in a commodities area
Analysis of data from monitoring electricity usage in

residential and commercial buildings
Underwriting system for personal lines of insurance
Network management, and banking and financial applications
Financial advisor for businesses in automotive industry
Monitor and analyze structure of public utility properties
Diagnose events in high-voltage transmission lines

- Tax planning and securities trading

Computer Science

- Provide an environment for prototyping expert system
applications

- Aid in design of hardware and software
- Generate and analyze system requirements specifications and

high-level design model
- Convey knowledge gained about selecting expert system tools
- Configure computer components
- Develop a knowledge base for automatic test generation

Environmental

- Land and water management
- Multiple reservoir operation
- Hazardous waste management

Manufacturing

- Manufacture and testing of product
- Diagnose electronic malfunctions for Bl-B aircraft

avionics systems
- Test space shuttle main engine
- Develop tools for real-time and instrumentation use
- Implement a parts database to generate bills of materials

- 116 -

Medicine

- Diagnose arterial disease

Military Science

- Design and diagnose complex electro-mechanical systems
- Target identification from electronic sensor data
- Resource allocation in airborne radar sensor management
- Simultaneous examination of multiple courses of action
- Intelligent vehicle control for autonomous underwater

vehicle
- Electromagnetic emission control system
- Electromagnetic signal exploitation system
- Reason about terrain maps
- Assist maintenance technician for Bl-B aircraft

Space Technology

- Space vehicle system design: collection and organization
of knowledge about missions, communication
satellites, and antennas

- Command verification for free flying inspection robot
- Satellite diagnosis, fault isolation, and network control
- Configure remote satellite tracking stations

Teaching

- Instruct students in the theory and practice of using
AI tools

117 -

SUMMARY OF QUESTION 3, QUESTIONNAIRE I

"What are the major issues and concerns involved
in developing this application?"

The number preceding each category indicates how many people mentioned
it as an issue or concern.

13 knowledge representation

- dealing with a constantly changing knowledge base
- flexibility
- developing knowledge manipulation tools to replace

inference engine
- knowledge base structure
- model library of system templates
- discrete event simulation
- uncertainty handling
- viewing historic decisions
- developing a model-based expert system
- representing alternative plans/actions
- horizontal and vertical depth

delivery/fielding

delivery vehicle
maintenance/update
establishing standards methods for validation
expandability
safety

domain/problem

determining if there is sufficient human expertise
forming a consensus among experts who disagree
impact of expert system on domain
who will train new experts?
dwindling expertise
monitor domain for shifts in environment
developing project focus
dealing with problem complexity
distributed/cooperated problem solving
teaching/learning AI techniques

8 integration

- with other hardware/software
- portability
- multiple rulebases

118

8 control

- dynamic replarming
- system autonomy
- concurrent/distributed systems
- concurrent/distributed users
- static/dynamic analysis

8 user interface

- different knowledge representation models for
different users

- educating the user/maintainer
- how to display knowledge so it won't interfere

with creativity
- explanation
- simplicity
- highly visual
- user acceptance of results

5 knowledge acquisition

- identifying flawed assumptions
- developing knowledge acquisition tools

4 very large systems

- knowledge bases
- databases
- rule bases
- multiple users

4 performance

- real-time
- computational speed

3 reliability/consistency

2 cost/development time

The following chart shows the distribution of the issues over people's
responses. Each column represents one person's response.

119 -

^M

■■

^M

^H

Ml

c
o
Co
*■«

C o
to o
i_
Q.
0)
i_

0)
O)

■o o

o
c

2»

O)

©

©

2.

E
0)
-Q
O
i_
Q.
C
«
E o

CO

c
o

1-

O)
©

CO

o
c
o o

CO

©
Ü
(0 •»—
1-

a> *^
c
i_
a>
W
3

JO

C
o
*-•

"5
KT
O
(0
<D
o>

■o
©

o
c

2,

co
E
©

"55
>»
0)
a>
i_
re
>.
k_
0) >

3,

o a
c
(0
E
i_
o r
<D
Q.

>>

S
.2
ö

©
E
*■> c
0)
E
Q.
O
o
>

•*—
tn
o u

- 120

t/3
E c—
P
4) ü

■i-i

C
■H

00
J* c

t/3 •H
CD r;

+-> c
CD

F i—1
G a

-P
t/3 * fh ta
t/3 ■H

UJ
CC

4-> n ©
S-J r; t/1 —
0) 60 c

< a CB 0

z
X •H Q.
a> ■a t/3

03

o I-I t/3 P
3 ca

h-
00

0

o

in

tu a> 3 0
-) N t/3 t/3

o •H
I-I t/3

(-1
0)

a) ^ A
00 o C0 a)

ai ■P ^
z. i-i o
o cd i—i

w
H u - c
00 3 •ö o
UJ n I-I t/3

-> >, TO 03

a X!
■a
c a

.—1 ca 0)
LL 3 ■p i-i

O 0
2

1/3
c

> •* U-4 3
ff 0 0 <—i

< H-< O
Ü

>
2 j=

3 CD
00 M

■

■ ■

■
■ ■ ■■ ■■

■
tari

.2?
'55
o
c
O)
(0

T-

C
E
c
eo
Q.

"S5
>»
<o
c
ca

5
e

'55
o

ö)
c
o
E
o
E

c
o
«
ü

"55
tn
ca
ü

o
o

a>
c
a>

a>

•
c
a>
g>

o

c
o
i
a>
i_
a
a>

c
o
I
'E

o

O)
c
!E o
«
E
c
i_
0)
4-*
(0
Q.

C
o
o

Q.

C
o
ü
o
a>
tn

C
o

3
E

"5j

c

o
n
o> <-<

c
o

15
>

- 121

Ml
C

•H
W
3

3
— O

UJ
DC

a;
a

<
ro en

V z-^. o
z 7i

o r-* c
0 h

(- 0

(/> *J w
UJ E —
D 0 0
a V.

>> a
ro CO a.
r—

4J a)
1-4 c Z O 0

O
CO

0

4->

+J
a
a)

ÜJ !0 w
-) _— c
a S u

LL tl
O £

> 5
DC i-H

< 0
o

? „n
Z) 0

ro
(A w

_J ■
B ■1 i| [| ■ ■

B

■
■

BB

■1 B

UJ
m ce

<

(O

Ö

o
(A
3
O

i
C

o
(0
CO
2 o
3

CO

0.
co

P9

s

CO

+

«
3
(A
C
o
Ü
"to
c o
£ o
Q.

CM

£
TO
i_ o
0)
O)
TJ
a>
5
o
c

CM

in
CO
a.
O

CM

o
2 a.

CM

CO
z
DC
O
Ü
<

CO
Q
<

UJ a
CO
UJ

CO
>-
CO
X
UJ

c
as
»-
X

UJ

oc
=>
C5

CO
CO o
DC

CO a.
<
>

- 122 -

SUMMARY OF QUESTION 15, QUESTIONNAIRE I

"What evaluation criteria were used to select the tools?"

The number preceding each group of criteria represents how many used
those criteria to select a tool.

13 representational structure/flexibility/expressiveness
(rules, frames, schemes, semantic nets, methods,
object oriented, syntax, uncertainty handling)

9 cost

9 speed/performance/efficiency/power/capacity

8 interface with end user (ability to customize,
hide internals, graphics, natural language)

7 flexibility/modifiability/expandability

7 interface with developer (aids, documentation,
on-line help, learnability)

6 inference/control mechanism (forward/backward
chaining, blackboards, demons, active values)

6 support training available

5 portability/ability to upload to mainframe

5 underlying language available

4 ease of use

4 explanation capability/hypothetical reasoning

4 familiarity/liked by engineers

4 hardware/software required

4 integration capability (database, test data)

4 maturity/reliability/robustness of product/vendor

2 availability of tool in-house

2 truth/database maintenance

1 compiled/interpreted language

1 rapid prototyping ability

123

■
mu ■ ■■

MM

■■

■■ ■■ H PB ■ ■■

■_■ ■ ■■■■ ■H
■

■ ■■ ■■ ■ m iB(

■- ■U
1—

c q

c
V) o
Q.
O

ST

(0 o o
o
5 o
Q.

0)
O
Q.
W

0)
5—

JO

o
u
Co r
0)
c
w
fl>
w
3
i

73
C
0>

to

0) u
(0 r
c
l_
0)
a
o

"05
>
a>

■c
O
Q. a.
3
<0
k.
o
•a c
CD >

CO r
o
Q.

O
o>
(0
3
O)
c

O) c
~ o
■o c
3

a>
CO
3

•»-
O
0>
CO
CO

ö
v.

c
o o
©
u
c
a>
i-
a> «*-
c

c o
(0 c «
a.
X
0)

>•

.2
1
«2

£

o
(0
0)
k,
(a

k.
(0

c
o
(0
k.
o>
a>
c

3 *rf
CO

E
k.
O

"O c o >
♦3 o
3

■o o
Q.

«

>
(0
o>
(0
3
o
£

i
C

o
c
CO
c
©
c
'5
E
£
3
k.

© *-•
a>
k.
Q.
k.
<D *->
C

©

a
E o u

(0
O) c
a >. *•> o
o
k.
a

a
CO

124 -

SUMMARY OF QUESTION 16, QUESTIONNAIRE

"How long did it take to learn to use the ES tool(s) and what
difficulties were encountered along the way?"

A few weeks: (six responses)

Learning syntax and the inference mechanism was not a problem,
but teaching effective use was. Non-AI programmers tend to write
procedural code (bad), and have a difficult transition period.

Knowledge engineers were previously trained; some differences
were encountered with software version updates and run-time
system.

Training is done over a week period with follow-on consultation
as the project progresses; it is often difficult to articulate
to the newer staff the rationale behind a particular approach.

Poor documentation and some system failure.

One month:
(six reponses)

Working through tutorials; no major problems.

One month after five-day training class; had trouble getting
rules to fire, minor syntactic and naming conventions were
confusing.

One month to proficiency. The programmer was familiar with
other versions of Prolog; we were working with a beta release,
so there were some bugs, and the documentation was
incomplete/incorrect.

One month to become fluent and productive.

Preliminary system built five weeks after purchase of tool;
interface was full screen, with multiple windows and interaction
graphics. Knowledge was converted from a previous system.

- 125

Two months:
(four responses)

Six weeks; difficulties were hardware related.

Six weeks for non-programmer engineers; software bugs in new
tools.

Two weeks to become a novice; six weeks to become knowledgeable;
three months to become an expert.

Two months to feel comfortable.

A few months:
(three responses)

Initially a few months, but still learning.

Three months for a knowledge engineer.

Learning process took place over long period of time; learning
depends on experience with similar tools; one should expect
three or four months to go beyond superficial use.

Several months:
(five responses)

Months; bugs in hardware, lack of expert users to help.

Knowledge engineers were familiar with tool; two weeks
training, several months experience, an eternity to learn to
apply well.

Several months to become proficient; initial documentation was
poor--now it is better.

Six months until comfortable; there were hardware/software
problems; we didn't send anyone to the training course, which
was a big mistake.

Still in the process.

126 -

SUMMARY OF QUESTION 17, QUESTIONNAIRE I

"How would you characterize the strengths and weaknesses of the
expert systems tool(s) for your task?

Strengths:

The number preceding each strength indicates how many people mentioned
it as a strength.

6 utility as a prototyping tool / development environment

5 flexibility

5 powerful representation methods: rules/frames/schemes

3 well-designed/straightforward syntax

2 capacity

2 ease of use

2 good/simple inference mechanisms

2 portability

2 speed

2 support for user interface development

2 viewpoints

adaptability

allows for modular development

automatic inverse relations

availability of underlying language

built-in meta-information

can upload to mainframe

cardinality constraints

can compile to improve performance

documentation

efficiency

extensibility

hypothetical reasoning

integration

no Lisp required

127 -

no knowledge engineers required--normal engineers

can enhance/maintain system

rule induction algorithm

truth maintenance

user-defined relations

value class checking

we11-designed development tools

Weaknesses:

The number preceding each weakness indicates how many people
mentioned it as a weakness.

4 unfriendly error messages/no support for error analysis

3 user interface simplistic/poor

3 speed/performance insufficient

3 representation not flexible enough

3 the more powerful a tool, the more difficult

to use/inflexible it is

2 explanation not available/poor

2 inference methods weak/not flexible enough

blackboard capabilities poor

bugs

can't check consistency of rule class

can't make an autonomous system

can't test potential impact of new knowledge

cost of education

designed for small, specific tasks--do not support

facilities/creative approaches

documentation confusing

graphics could be improved

inability to support features available

incompatibility

- 128

lacks a general belief system

less useful if logic is ill-defined

limited control of program execution flow

no access to external routines

no uncertainty handling

no user-defined relations

planning systems need a higher-level language for

expressing goals and actions

tedious to obtain hardcopy rule output for documentation

too generic

worlds concept not developed

SUMMARY OF QUESTION 18, QUESTIONNAIRE I

"Describe your overall reaction to using expert
system tool(s) based on your experience."

Most of the response was positive:

"A very good tool, but hard to learn well. Tool is still
evolving and needs a lot of functions."

"We did not use a commercial tool."

"it's nice to have a well equipped toolbox before you walk
into the garage and open the hood."

"Development of an expert system without a good tool package
would be difficult. Only when an application has unusual
constraints would I want to try this."

"There is no perfect tool. The most appropriate tool must be
selected for a specific job. Often the ability of the tool is
dependent on the skill of the developer."

"Enthusiastic."

- 129 -

"Tools are useful as a quick approach, but because of their
weaknesses, routines must be developed in Lisp/Prolog and then
linked in."

"Now that the tool's rule language is well integrated with the
frame langauge, the tool could be more useful to us."

"Expert system tools have allowed us to develop applications
that could not be developed using traditional approaches;
however, the tools are still primitive, and will not be mature
for several years."

"We are very pleased with the tool and the support."

"We have just begun to appreciate the potential impact an
expert system can have on our company. The development has
taken longer than anticipated, but our overall reaction is
very positive."

"Tools need better ergonomics and intelligence.

'No consistent development methodology. Good for rapid proto-
typing. Cannot handle large knowledge bases in a timely fashion.

"Expert system tools are useful for rapid prototypes, but
there are many cases where the tools do not meet system
requirements (integration, performance, knowledge
representation). Need an underlying language."

"Expert system tools are useful for rapid prototyping, but
there are many cases where these tools do not meet system
requirements such as integration, speed, and knowledge
representation."

"Need access to another language."

"No consistent development methodology. Good for rapid
prototyping. Cannot handle large knowledge bases in a timely
fashion."

130

"Having been involved in the development of in-house tools, I
feel the use of a commercial shell will provide a big
advantage. Attention no longer not be focused on irrelevant
software development."

"Excellent for the problem at hand. It is very good for a
domain expert to understand what an expert system is, what it
can do for him, and how it can help in solving his problem.
I/O and graphics are difficult to handle."

"Very favorable for prototyping, especially for our limited
time and staff."

"I have yet to find a useful general purpose tool. Most are
oriented to their prototyping application if not the domain
itself. There is a lack of representational richness."

"Positive; we plan to purchase different tools for different
problems

Extremely positive; the tool provides interfaces with other
routines, and induction very nice for example-based inputs."

"Better for programmer productivity-overall rapid prototyping.
More difficult to integrate into overall application."

"Tools are critical in the development of real knowledge systems.
Delivery may require recoding, but it is worth it to derive the
developmental power of any of the top expert system tools."

"Although personal computer expert system development tools
are still immature compared to tools that run on Lisp
machines, within the next 1-3 years, the tools will overcome
these weaknesses."

"The tools are extremely valuable. In many cases the knowledge
engineer doesn't have time to learn Lisp, but can learn a
shell quickly. Very valuable for prototyping."

"Better than no tools, but there is an urgent need for high
level tools for specific classes of application."

- 131

SUMMARY OF EXPERIENCE QUESTION 2, QUESTIONNAIRE II

Are you building:

an expert system application?

an enhanced environment for building expert systems?

- 132 -

SUMMARY OF EXPERIENCE QUESTION 3, QUESTIONNAIRE II

Is the objective of your expert system task to:

(some responded in more than one category)

- do research?

- develop a prototype?

- develop an in-house product?

- develop a one-off product for a customer?

- develop a commercial product?

- teach people how to build an ES?

10 research

18

14

prototype

in-house product

customer product

commercial product

teaching

133

SUMMARY OF EXPERIENCE QUESTION 4, QUESTIONNAIRE II

Which stage of development best describes your expert system

task at this time?

- experimenting/looking at tools

- prototyping/demonstrating feasibility

- developing

- fielding

- delivering/maintaining

experimenting

18

13

fielding

maintaining

prototyping

developing

- 134 -

SUMMARY OF CONTEXTS FOR EVALUATION QUESTION 2,
QUESTIONNAIRE II

These are some of the relevant contexts for evaluation:

- abstract

- prototyping environment

- development environment

- execution/fielding environment

- life cycle of the tool

Do you feel any of the contexts are more or less important

than any others, and if so then why?

Here is a graph showing the responses. Each bar shows how

many people thought that particular context was one of the

most important.

8 prototyping environment

execution/fielding environment

development environment

life cycle of tool

abstract

135

SUMMARY OF PROBLEM CHARACTERIZATION QUESTION 1,
QUESTIONNAIRE II

"Below are four ways of categorizing problems, and for each
categorization, some problem types. Are there any other

useful ways of categorizing problems?

Here are the other categorizations that were proposed:

domain inference

The type of inferencing/reasoning required in the domain. Are decisions

made from data (backward chaining) or from hypotheses (forward

chaining)?

domain modelability

We can divide domains into those that can be readily modeled, and those

that can't. Physical systems are readily modeled, such as electrical,

chemical, math, and physics, whereas medical and financial areas are not

easily modeled.

effect of the ES on organization

- influence on structural change

- influence on users

- resource commitment

expected end users

- domain expert

- lay person

- knowledge engineer

- computer professional

136 -

fielding requirements

- static/dynamic

- real-time

- probabilistic

- stochastic

- deterministic

maintenance team

- engineering experience

- number of people

- programming experience

system autonomy

Will the finished expert system be an autonomous system, or will it act as

a consultant?

137

SUMMARY OF PROBLEM CHARACTERIZATION QUESTION 2,
QUESTIONNAIRE II

"Below are four ways of categorizing problems, and for each
categorization, some problem types. Would you add any types

for any of the given categories?"

Problem domains: Additions:

chemistry
electronics
geological
information management
legal
manufactur ing
mathematics
medical
military science
physics
space technology

aerospace
business management
CAD
CAM
computer networking
engineering
finance
maintenance/repair
marketing/sales
resource management
risk management
software engineering
systems
telecommunications

Problem types:

classification
control
debugging
design
diagnosis
instruction
monitoring
planning
prediction
repair
simulation

Additions:

analysis
conceptual modeling/thinking
control
data fusion/reduction
data tracking
forecasting
intelligent access to

information
integration
interfaces
interpretation
managing
prescription
scheduling

- 138 -

Complexity:

scope

Additions:

breadth
control required
depth
deterministic
ease of maintenance
epistomology/formal properties
isolated vs. cooperating with

other expert systems
number of concurrent users
number of levels of structure

chart
number of modules
probabilistic
rate of change of domain

knowledge
readability
real-time requirements
representation difficulties

of problem
static vs. dynamic
stochastic
volatility of knowledge base
we11-understood

Development team characteristics:

AI experience
knowledge engineers
AI programmers

computer science background
domain experts
number of people
programming experience

Additions:

creativity
knowledge acquisition skills
modeling expertise
other background (in

linguistics, logic, math,
physics, psychology,
philosophy)

user interface experience
perception management (user,

expert, management)

139 -

SUMMARY OF EVALUATION METHODS QUESTION 1, QUESTIONNAIRE II

For each evaluation method, please assign a usefulness
rating from 1 to 5, 1 being "practically worthless" and 5

being "highly useful."

The ratings were averaged for each category, resulting in this graph:

4.2

3.8

3.7

3.6

3.6

3.3

3.3

3.1

2.9

2.7

 comparisons with other tools

- large benchmarks

- library of expert system efforts

interviews

small benchmarks

— case studies

— questionnaires

— expert system for tool evaluation

comparisons with ideal tool

comparisons with "baseline" tool

RAND/N-2603-DARPA

