HEEEEEN
g | [] | [|
M.......
g [| [| 1 [|
HEEEEEN
HEEEEEN
HEEEEEN

[

ol
R
=" 5

LS 4 e

0TI FILE COPy
RATIONALE
FOR THE DESIGN OF THE .

Ada R

. PROGRAMMING LANGUAGE

AD-A187 106

NTIC
: - T T
Jean D. Ichbiah i A ~LECTE i
John G.P. Barnes o 0CT 2 9198738
Robert J. Firth Si 1 e -
Mike Woodger T e
B
HONEYWELL
Systems and Research Center
MN65-2100
. 3660 Technology Drive
TR _ .Minnea_polis,.MN 55418
and
ALSYS

29 Avenue de Versailles
78170 La Celle Saint Cloud
France

R 4dais a regisiered trademark of thé Us. Government, Ada Joint Progfdn't Office

G AN M ant o Mae bidie A m e s v b
e T

S SO ULE R o
e

Approved for pupie rslsuz.) - ;
: !?isfribu?inn Unlimited f e

T = s e v e @ ~ n———

Cop'yrighl’C 1986 - owned by the United .States Government as represented by the Under
Secretarv of Defense, Research and Engineering. All rights reserved. Permission to publish

must he obtained from the Ada Joimt Program Office. OUSDRE/R&AT . The Pomagon.
Wasmngron. D.C. 20301, U.S.A.

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

-.

-

UNCLASSIFIED «.a
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)’

AADAIE

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS

BEFORE COMPLETEING FORM

1. REPORT NUMBER

]2. GOVY ACCESSION NO.

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (andSubtitle) .
Rationale for the Design of the Ada
Programming Language

§. TYPE OF REPORT & PERIOD COVERED
1986

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) .
Jean D. Ichbiah; John G.P.Barnes;

i Robert J.
Firth; and Mike Woodger

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Honeywell Systems and Research Center , NB65-2100, 3660 AREA & WORK UNIT NUMBERS
Technology Dr., Minneapolic, MN 55418, and ALSYS, 29
Ave. de Versallles, 78170 La Celle St. Cloud France

11 ONJRQLLI OFFICE N ND ADDRESS 12. REPORT DATE
U‘fatj(’?n%a!fm 2§r§r}fcet £ Def 1986

nited es Department of Defense
Washington, DC 20301-3081 T3 WOWGER OF PACES

14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 16. SECURLTY CLASS (of thisreport)

Ada Joint Program Office UNCLASSIFIED

15a. gEﬁkeﬁEéF ICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

UNCLASSIFIED

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. if different from Report)

18. SUPPLEMENTARY NOTES

18. KEYWORDS (Continue on reverse side if necessary and identify by block number)

AJPO

Ada Programming language, ANSI/MIL-STD-1815A, Ada Joint Program Office,

20 . ABSTRACT (Continue on reverse side f necessary and .denrtify by blod number)

See Attached.

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-LF-014-660!

UNCLASSIFIED

(L SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

RATIONALE
FOR THE DESIGN OF THE

Ada ®

PROGRAMMING LANGUAGE

Jean D. Ichbiah
John G.P. Barnes
Robert J. Firth
Mike Woodger

i Acgesing £

|

bris crag

AR L —

HONEYWELL LT 1aR !

Systems and Research Center " Uit fen - sa) L :

MNG65-2100 I S

3660 Technology Drive b el LTI

Minneapolis, MN 55418 ! e -

; RN) =

booe o =‘

and | o e

! ['

.{ . . Ve l“ '- 1) - """,'

ALSYS T e .3

29 Avenue de Versailles ') .‘ i

78170 La Celle Saint Cloud A- [‘ , z
France l.-_ — _i o

R 4dais a registered trademark of the U.S. Government, Ada Joint Program Office

Copyright C 1986 owned by the United States Government as represented by the Under

Secretary of Defense. Research and Engineering. All rights reserved. Permission to publish

must be obtained from the Ada Joimt Program Office, OUSDRE(R&AT). The Pentagon.
Washington, D.C. 20301, U.S.A.

Table of Contents -

1 Introduction and Preface

1.1 Goals

1.2 Structure

1.3 Acknowledgements

2 Lexical and Textual Structure -

2.1 Lexical Structure
2.2 Textual Structure

3 Classical Programming -

3.1 Simple Declarations: Variables and Constants
3.2 Declarative Parts - Linear Reading

3.3 Multiple Declarations

34 Names

35 Aggregates

3.6 Expressions

3.7 Statements

3.8 Assignment Statements - The Ada Model of Time
3.9 If Statements

3.10 Short-Circuit Control Forms

3.11 Case Statements

3.12 Loop Statements

]

PO N -

17
18
20
22
23
25
27
27
30
30
31
35

4 Types '

4.1 Introduction 37
4.2 The Concept of Type 40
4.3 Type Equivalence 42
44 Constraints and Subtypes 44
44.1 Constraints 44
4.4.2 Subtypes 45
4.4.3 Evaluation of Constraints 46
4.5 Array Types 48
4.5.1 Slices and Sliding 50
452 Array Aggregates 54
4.5.3 Equivalence and Explicit Conversions 58
4.6 Record Types 61
4.6.1 Equivalence 62
4.6.2 Default Initialization of Record Components 63
4.7 Discriminants 65
4.7.1 Record Types with Variants 65
4.7.2 Discriminant Constraints - Record Subtypes 67
4.7.3 Denoting Components of Variants 68
4.7.4 Initialization of Discriminants 70
4.7.5 Discriminants and Type Composition 72
4.8 Mutability 76
4.8.1 The Case Against Static Mutability 78
48.2 Implementation Considerations 82

5 Numeric Types

5.1 Introduction 85
5.1.1 Floating Point: The Problems 85
5.1.2 Fixed Point: The Problems 86
5.1.3 Overview of Numerics in Ada 88
5.2 The Integer Types 91
5.3 The Real Types 92
53.1 Floating Point Types 94
532 Fixed Point Types 97
533 A Semantic Model for Approximate Computation 102
5.4 Implementation Considerations : 105
5.5 Conclusion 108

v

6 Access Types

6.1

6.2

6.2.1
6.2.2
6.2.3
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7

7 Derived

7.1
7.2
73
7.4
7.5
7.6
7.7
7.8
7.9

Introduction
Overview of the Issues
Conceptual Aspects

Reliability, Efficiency, and Implementation Issues
Goals for a Formulation of Access Types

Presentation of Access Types

Declaration of Access Types and Subtypes

Collections of Dynamically Allocated Objects

Access Variables, Allocators, and Access Constants

Component Selection, Indexed Components, and Value Assignments

Recursive Access Types
Access Objects as Parameters
Storage Management for Access Types

Types -

Introduction

Informal Introduction to Derived Types
Simple Strong Typing

The Explanation of Numeric Types
The Ability to Inherit Literals

The Construction of Private Types
Achieving Transitivity of Visibility
Change of Representation

Conclusion - Achieving Copies in Ada

8 Subprograms

3.1
82
8.2.1
822
8.23
824
8.3
8.4

Subprogram Declarations and Subprogram Bodies

Parameter Modes

Efficiency Issues of Parameter Passing Mechanisms
The Effect of Parameter Passing Mechanisms for Access Types
The Effect of Parameter Passing Mechanisms for Composite Types

The Ada Solution for Parameter Passing
Parameter Passing Notations
Function Subprograms

109
109
109
112
114
115
115
116
117
119
120
122
123

125
126
131
140
140
141
143
146
149

153
154
155
157
158
162
164
166

9 Packages

9.1 Motivation

9.2 Informal Introduction to Packages

9.2.1 Named Collections of Entities

9.2.2 Groups of Related Subprograms

9.2.3 Private Types

9.3 Technical Issues

9.3.1 Visibility Control and Information Hiding

9.3.2 Guaranteeing Software Components

9.3.3 Influence of Separate Compilation on the Design of Packages
9.3.4 Initialization of Packages

9.3.5 Note on Visibility

9.3.6 Availability of the Properties of Types Defined Within Packages
9.3.7 Initialization of Objects of Private Types

9.3.8 Private Types with Discriminants

9.4 Summary and Conclusion

10 Separate Compilation and Libraries

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.3
10.4
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.6

Introduction

Presentation of the Separate Compilation Facility
Bottom-Up Program Development

Hierarchical Procgram Development

Compilation Order

Recompilation Order

Execution of a Main Program

The Pragma ELABORATE

Methodological Impact of Separate Compilation
The Program Library

The Implementation of Separate Compilation
Principle of Separate Compilation

Details of the Actions Performed by the Compiler
Treatment of Package Bodies

Summary of the Information Contained in a Library File
Summary and Conclusion

11 General Program Structure - Visibility and Overloading

11.1
11.2
11.3
11.3.1
11.3.2
11.3.3

Introduction

Program Structure

Visibility Rules

Basic Visibility Model

Naming Conventions: Expanded Names and Use Clauses
Visibility Rules for Record Types

Vi

169
170
171
173
177
180
18]
182
183
184
184
186
187
188
190

191
192
193
196
199
200
202
202
203
204
206
206
207
209
209
210

213
213
216
216
219
221

11.3.4
114

11.4.1
11.4.2
11.4.3
1.5

11.5.1
11.5.2
11.5.3

Renaming

Overloading

Overloading of Operators

Overloading of Names

Overloading of Literals

Overload Resolution

Context of Overload Resolution
Information Used to Resolve Overloading
Ambiguity

12 Generic Units

12.1 Introduction

12.2 Informal Presentation of Generic Units
12.2.1 Generic Formal Parts

12.2.2 Generic Instantiations

12.2.3 Private Types as Generic Formal Types
12.2.4 Other Forms of Generic Formal Types
12.2.5 Default Parameters

12.3 The Use of Generic Units

12.3.1 Examples of Generic Functions

12.3.2 An Example of a Generic Package
12.3.3 A Generic Package with Tasks

12.3.4 A More Complicated Example

124 Rationale for the Formulation of Generic Units
12.4.1 Explicit Instantiation of Generic Units
12.4.2 Generic Formal Parameters; The Contract Model
1243 Default Generic Parameters

13 Tasking

13.1 Introduction

13.2 Presentation of the Tasking Facility
13.2.1 Tasks: Textual Layout

13.2.2 Task Execution

13.2.3 Visibility Rules

13.24 Entries and the Accept Statement
13.2.5 The Select Statement

13.2.6 Timing

13.2.7 Timed and Conditional Communication
13.2.8 Interrupts

13.2.9 Task Types

13.2.10 The Terminate Alternative

13.2.11 Families of Entries and Scheduling
13.3 Rationale for the Design of the Rendezvous Facilities

viI

222
224
224
226
227
230
231
232
234

235
237
237
238
240
241
246
247
247
250
254
256
261
261
263
267

269
270
270
271
275
275
278
285
287
289
289
293
294
303

13.3.1

13.3.2

13.4

Early Primitives
The Rendezvous Concept
Packages and Tasks

14 Exception Handling -

14.1

14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6
14.2.7
14.3

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.4

14.4.1
14.4.2
14.4.3
14.4.4
14.5

14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6

Introduction

Presentation of Exception Handling in Ada
Declaration of Exceptions

Exception Handlers

The Raise Statement

Association of Handlers with Exceptions
Raising the Same Exception Again
Suppressing Checks

Order of Exceptions

Examples

Matrix Inversion

Division

A File Example

A Package Example

Example of Last Wishes

Tasks and Exceptions

Exceptions During Task Activation
Exceptions Raised During Communication Between Task
Abnormal Situations in an Accept Statement
Example of Exceptions in a Rendezvous
Technical Issues

Exceptions Raised During the Elaboration of Declarations
Propagation of an Exception Beyond its Scope
Suppression of Checks

Implementation of Exception Handling

The Case Against Asynchronous Exceptions
Proving Programs with Exceptions

15 Representation Clauses and Machine Dependences

15.1
15.2
153
15.3.1
15.3.2
15.3.3
153.4
15.4
15.4.1

The Separation Principle

Types and Data Representation

Multiple Representations and Change of Representation
A Canonical Example of Changes of Representation
One Type - One Representation Principle

Explicit Type Conversion and Change of Representation
Implementation of Representation Changes

Presentation of the Data Representation Facility
Representation Pragmas

VI

303
306
310

311
312
312
313
314
314
317
317
317
318
318
320
321
322
323
325
325
326
327
329
331
332
332
334
335
336
336

339
340
341
34]
342
343
345
346
346

15.4.2
15.4.3
15.4.4
15.4.5
15.5

15.5.1
15.5.2
15.5.3
15.5.4
15.6

15.6.1
15.6.2
15.6.3
15.6.4
15.7

15.8

Length Clauses

Record Representation Clauses

Address Clauses

Enumeration Representation Clauses

Enumeration Types with Noncontiguous Representations

Assignment and Comparison with Noncontiguous Enumeration Types
Indexing and Case Statements with Noncontiguous Enumeration Types
Iteration Over Noncontiguous Enumeration Types

Character Types

Configuration Specification and Environment Enquiries

The Package System

Pragmas for Configuration Specification

Representation Attributes

Configuration Specification and Conditional Compilation

Interface with Other Languages

Unchecked Conversions

16 Input-Output . -

16.1 Introduction

16.2 Basic Requirements

16.3 Designation of Files

16.3.1 Access Control

16.3.2 Default Files

16.4 Indexed and Sequential Files

16.5 Text Files

16.5.1 Overloading PUT and GET

16.5.2 Generic Treatment of Numeric and Enumeration Types
16.5.3 Use of Default Parameters for Formatting
16.6 Exceptions and Renaming

16.7 Low Level Input-Qutput

16.8 Conclusion

Bibliography

Index

x

346
348
350
350
351
351
352
352
353
354
354
356
356
357
357
360

363
364
365
366
368
369
372
372
3713
374
N
378
379

381

391

-

gl

WAPD SRS NPEGD > PRI TG AR et YL L L

Introduction and Prejace

1. Introduction and Preface

1.1 Goals

This document, the Rationale for the design of the Ada programming language, has evolved
over a number of years.

A first version appeared in 1978 as the Rationale for the Green programming language, and
this was revised in 1979 at the time that Green was finally selected as Ada. The purpose of
these documents was to expfain the motivation for the language design, and to justify and
defend its position against the other competitive languages and the Ironman (later Steelman)
requirements. No corresponding document was written in 1980 when Ada was proposed as a
standard, nor in January 1983 when Ada finally became both an ANSI and Military Standard.
The present version completes and revises a draft issued in January 1984 and which was the
subject of public review,

The goal of these documents has also evolved. The original goal was both motivational and
defensive; a major concern was implementability (in potentially controversial areas such as
overload resolution) especially since there were no compilers then in existence. This last
concern is now substantially reduced since implementability is well demonstrated by a
number of production quality compilers.

Equally the goal is not to document and justify every language design decision: it would be
difficult to replace the archive containing the hundreds of study notes and thousands of
comments produced between 1977 and 1983.

The present goal is thus now more inspirational: to give the reader a feel for the spirit of the
language, the motives behind the key features and to create the basis for understanding how
they fit together both globally as viewed from the outside and in detail as viewed from the
inside; above all to impart an appreciation of the main architectural lines of the language and
its overall philosophy. It is only by knowing this philosophy that a real understandmg for the
detail will be obtained.

\
Sttt itnstnsdennilinate Aot SRS,

2 Ada Rationale .

It is now 1986, and it may well be asked why this ultimate Rationale has taken so long to
emerge. We must admit that the main reason is simply that we have been deeply involved
over the past years in a number of activities aimed at creating an infrastructure that would
ensure the success of the Ada language, - in particular, the development of training material
and compilers. The success of Ada has now relieved that pressure and allowed us to complete
the work started in 1978, and to make available what we hope will be an important addition
to the Ada literature.

1.2 Structure

This document is divided into chapters covering different aspects of the language. Most
chapters correspond to chapters of the Reference Manual. Expressions and statements are
here regrouped in a single chapter, since the subject is fairly classical. Conversely, in view of
the importance of the subjects, special chapters are devoted to numeric types, access types,
and derived types, in addition to the chapter on types. The chapters of the Rationale are
fairly independent (at the cost of some repetition) and can be read in any order.

Most chapters of the Rationale have a common structure, They start with an introduction to
the topic discussed. An informal description of the Ilanguage features follows. This
description is made in terms of examples chosen to reflect the major classes of uses of the
features considered.

We believe that the reader will get the spirit of the language reading these examples. They
should help the development of an intuition for programming style in the Ada language.

A discussion of the technical issues follows, or in some cases is interspersed with the
informal description. Such discussions cover the major design decisions, their justification,
and the interacticns with other aspacts of the language.

1.3 Acknowliedgements

We would tike to take this opportunity to acknowledge the contributions of several others to
the Ada Rationale: Jean-Raymond Abrial, Bernd Krieg-Brueckner, Jean-Claude Heliard,
Henry Ledgard, lan Pyle, Olivier Roubine, Steve Schuman, Stan Vestal, and Brian Wichmann
contributed to the 1978 and 1979 initial versions. Brian Wichmann also contributed to the
1984 draft.

Other significant contributions were derived from the Language Study Notes by Jean-Loup
Gailly and Paul Hilfinger and by comments from the Distinguished Reviewers.

— et e - =

ERRATA

The United States Department of Defense has included this errata sheet to clarify
certain aspects and improve the accuracy of The Rationale for the Design of the
Ada Programming Language as it was delivered to the Ada Joint Program Office by

the authors.

Page
1,

57,
65,
89,
97,
97,
126,
176,

195,
218,
220,

220,

221,

line 3

line 14
line 26
line 7
line 35
line 36
lines 12 to 14

lines'37 to 38

line 31
line 22 to 23

line 1

line 31

line 26

For

Ada programming language,

(8,1,1,1,1)

requires

one negative

above the decimal

below the decimal

2=20;

division declared in the
visible part with two
parameters of type
INTEGER. Hence the integer
literals 3 and 31 are
implicitly converted to

this type and the division
is applied

program
named common

following example:

end P;

variable in

No copyright is claimed in the clarification of the basic document.

Read

Ada Programming Language
(ANSI/MIL-STD-1815A),

(1,1,8,1,1)
require

one extra negative
before the decimal

after the decimal

construction declared
in the visible part
with two parameters,
one of type INTEGER
and one of type
POSITIVE. Hence the
integer literals 3 and
31 are implicitly
converted to the
respective type and
the construction is
applied.

procedure
"named COMMON"

following example:
procedure DEMO is

end P;
begin

en& 6EMO.

object that contains

226,

233,

248,
250,
250,

252,

265,
318,

320,

323,

328,
328,
330,

333,

354,
358,

360, lines 12 to 15

line

line

line
line
line

line

line

line

line

line

line

line

lines 27 to 28

add at top

line

line 3 and 28

20
1"

28
12
19
17

28

20

19
21

5

For

two integers

(LEFT, RIGHT: INTEGER)

(E);
limited private
BOOLEAN

-- default maximum length

X,

SINGULAR: exception;

e o0

function DIVISION (A, B:
REAL) return REAL is

procedure APPLICATION is

SOME_ITEM
out ITEM

when NAME _ERROR=> null;
end;

Read

one integer and one
positive number,

(LEFT: INTEGER; RIGHT:
POSITIVE) ’

E;
limited private;
BOOLEAN;

-- default maximum length

-- where the type REAL is any
-- properly declared real type

X

SINGULAR: exception;
--declaration of
procedures READ and PRINT
used below

function DIVISION (A, B:
REAL) return REAL is

--the type REAL is any
--properly declared real type

with TABLE_MANAGER;
procedure APPLICATION is

THING
in out ITEM

when NAME_ERROR => null;
end;

-- Assume that all that follows 1s in the same
-~ declarative region of some enclosing procedure

this wretched data type

this data type

set system mask set system mask
generic generic
type SOURCE is limited type SOURCE is limited
private; private;
type TARGET is limited type TARGET is limited
private; private;
function function

Page
360, line 15

370, line 6

370, line 11

371. insert after
line 18

371, lines 19 to 20

376 line 26

For | Read
TARGET; A program TARGET;

A program
FILE_MODE . FILE_TYPE
limited; this limited. This

The procedure SET_INDEX sets the current index of the

given file to the index value, which may exceed the current
size of the file. If the given index value exceeds the
current size of the file, item-sized "gaps" will

occur which are undefined items.

index value and SET_INDEX index value. The function
enables it to be set. The SIZE gives the number of

function SIZE gives the items in the file, which
number of items in the file includes both defined and
(defined or undefined). undefined items.

we have “ we have:

RATIONALE
FOR THE DESIGN OF THE

Ada ®

PROGRAMMING LANGUAGE

Jean D. Ichbiah
John G.P. Barnes o
Robert J. Firth
Mike Woodger

HONEYWELL
Systems and Research Center
MN65-2100 Lo ‘
3660 Technology Drive bt
Minneapolis, MN 55418 T

and

1
ALSYS ‘3
29 Avenue de Versailles ' f
78170 La Celle Saint Cloud A-1 | {
France l _" o

R gdais a registered trademark of the U.S. Government, Ada Joint Program Office

|

Copyright C 1986 owned by the United States Government as represented by the Under
Secretary of Defense, Research and Engineering. All rights reserved. Permission to publish

must be obtained from the Ada Joint Program Office, OUSDRE(R&AT), The Pentagon.
Washington, D.C. 20301. U S .A.

Table of Contents :

1 Introduction and Preface

A Goals
2 Structure
3 Acknowledgements

P]

2 I:éxical and Textual Structure *

2.1 Lexical Structure
2.2 Textual Structure

3 Classical Programming -

Simple Declarations: Variables and Constants
Declarative Parts - Linear Reading

Multiple Declarations

Names

Aggregates

Expressions

Statements

Assignment Statements - The Ada Model of Time
If Statements

Short-Circuit Control Forms

Case Statements

Loop Statements

—— = D 00 ~J O\ BN

N - O

1

—

17
18
20
22
23
25
27
27
30
30
31
35

4 ;Types ’

4.1 Introduction 37
4.2 The Concept of Type 40
4.3 Type Equivalence 42
44 Constraints and Subtypes 44
44.] Constraints 44
442 Subtypes 45
4.4.3 Evaluation of Constraints 46
4.5 Array Types 48
4.5.1 Slices and Sliding 50
4.5.2 Array Aggregates 54
453 Equivalence and Explicit Conversions 58
4.6 Record Types 61
4.6.1 Equivalence 62
4.6.2 Default Initialization of Record Components 63
4.7 Discriminants 65
4.7.1 Record Types with Variants 65
4.7.2 Discriminant Constraints - Record Subtypes 67
4.7.3 Denoting Components of Variants 68
4.74 Initialization of Discriminants 70
4.7.5 Discriminants and Type Composition 72
4.8 Mutability 76
4.8.1 The Case Against Static Mutability 78
48.2 Implementation Considerations 82

S Numeric Types "

5.1 Introduction 85
5.1.1 Floating Point: The Problems 85
5.1.2 Fixed Point: The Problems 86
5.1.3 Overview of Numerics in Ada 88
5.2 The Integer Types 9]
5.3 The Real Types 92
5.3.1 Floating Point Types 94
5.3.2 Fixed Point Types 97
533 A Semantic Model for Approximate Computation 102
5.4 Implementation Considerations : 105
5.5 Conclusion 108

w

6 Access Types °

6.1

6.2

6.2.1
6.2.2
6.2.3
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7

Introduction

Overview of the Issues

Conceptual Aspects

Reliability, Efficiency, and Implementation Issues
Goals for a Formulation of Access Types
Presentation of Access Types

Declaration of Access Types and Subtypes
Collections of Dynamicaily Allocated Objects
Access Variables, Allocators, and Access Constants
Component Selection, Indexed Components, and Value Assignments
Recursive Access Types

Access Objects as Parameters

Storage Management for Access Types

7 Derived Types °

7.1
7.2
7.3
7.4
1.5
7.6
1.7
7.8
7.9

Introduction

Informal Introduction to Deriv.d Types
Simple Strong Typing

The Explanation of Numeric Types
The Ability to Inherit Literals

The Construction of Private Types
Achieving Transitivity of Visibility
Change of Representation

Conclusion - sichieving Copies in Ada

8 Subprograms

8.1
8.2
8.2.1
822
8.2.3
8.24
83
8.4

Subprogram Declarations and Subprogram Bodies

Parameter Modes

Efficiency Issues of Parameter Passing Mechanisms

The Effect of Parameter Passing Mechanisms for Access Types
The Effect of Parameter Passing Mechanisms for Composite Types
The Ada Solution for Parameter Passing

Parameter Passing Notations

Function Subprograms

109
109
109
112
114
115
115
116
117
119
120
122
123

125
126
131
140
140
14]
143
146
149

153
154
155
157
158
162
164
166

9 ﬁackages ‘

9.1

9.2

9.2.1
9.2.2
9.2.3
9.3

9.3.1
9.3.2
9.3.3
9.34
9.3.5
9.3.6
93.7
9.3.8
94

Motivation

Informal Introduction to Packages

Named Collections of Entities

Groups of Related Subprograms

Private Types

Technical Issues

Yisibility Control and Information Hiding
Guaranteeing Software Components

Influence of Separate Compilation on the Design of Packages

Initialization of Packages
Note on Visibility

Availability of the Properties of Types Defined Within Packages

Initialization of Objects of Private Types
Private Types with Discriminants
Summary and Conclusion

10 Separate Compilation and Libraries

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.3
10.4
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.6

Introduction

Presentation of the Separate Compilation Facility
Bottom-Up Program Development

Hierarchical Program Development

Compilation Order

Recompilation Order

Execution of a Main Program

The Pragma ELABORATE

Methodological Impact of Separate Compilation
The Program Library

The Implementation of Separate Compilation
Principle of Separate Compilation

Details of the Actions Performed by the Compiler
Treatment of Package Bodies

Summary of the Information Contained in a Library File
Summary and Conclusion

11 General Program Structure - Visibility and Overloading -

11.1
1.2
11.3
11.3.1
11.3.2
11.3.3

Introduction

Program Structure

Visibility Rules

Basic Visibility Model

Naming Conventions: Expanded Names and Use Clauses
Visibility Rules for Record Types

Vi

169
170
171
173
177
180
181
182
183
184
184
186
187
188
190

191
192
193
196
199
202
202
203
204
206
206
207
209
209
210

213
213
216
216
219
221

11.3.4
114

11.4.1
11.4.2
114.3
1.5

11.5.1
11.5.2
11.5.3

Renaming

Overloading

Overloading of Operators

Overloading of Names

Overloading of Literals

Overload Resolution

Context of Overload Resolution
Information Used to Resolve Overloading
Ambiguity

12 Ceneric Units -

12.1 Introduction

12.2 Informal Presentation of Generic Units
12.2.1 Generic Formal Parts

12.2.2 Generic Instantiations

12.23 Private Types as Generic Formal Types
12.2.4 Other Forms of Generic Formal Types
12.2.5 Default Parameters

12.3 The Use of Generic Units

12.3.1 Examples of Generic Functions

12.3.2 An Example of a Generic Package
12.3.3 A Generic Package with Tasks

12.3.4 A More Complicated Example

12.4 Rationale for the Formulation of Generic Units
12.4.1 Explicit Instantiation of Generic Units
12.4.2 Generic Formal Parameters: The Contract Model
12.4.3 Default Generic Parameters

13 Tasking

13.1 Introduction

13.2 Presentation of the Tasking Facility
13.2.1 Tasks: Textual Layout

13.2.2 Task Execution

13.2.3 Visibility Rules

13.2.4 Entries and the Accept Statement
13.2.5 The Select Statement

13.2.6 Timing

13.2.7 Timed and Conditional Communication
13.2.8 Interrupts

13.29 Task Types

13.2.10 The Terminate Alternative

13.2.11 Families of Entries and Scheduling

13.3 Rationale for the Design of the Rendezvous Facilities

Vi

222
224
224
226
227
230
231
232
234

235
237
237
238
240
24]
246
247
247
250
254
256
261
261
263
267

269
270
270
271
275
275
278
285
287
289
289
293
294
303

13.3.1
13.3.2
13.4

Early Primitives
The Rendezvous Concept
Packages and Tasks

14 Exception Handling °

14.1

14.2

14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6
14.2.7
14.3

14.3.1
14.3.2
1433
14.3.4
14.3.5
14.4

14.4.1
14.4.2
14.43
14.4.4
14.5

14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6

Introduction

Presentation of Exception Handling in Ada
Declaration of Exceptions

Exception Handlers

The Raise Statement

Association of Handlers with Exceptions
Raising the Same Exception Again
Suppressing Checks

Order of Exceptions

Examples

Matrix Inversion

Division

A File Example

A Package Example

Example of Last Wishes

Tasks and Exceptions

Exceptions During Task Activation
Exceptions Raised During Communication Between Task
Abnormal Situations in an Accept Statement
Example of Exceptions in a2 Rendezvous
Technical Issues

Exceptions Raised During the Elaboration of Declarations
Propagation of an Exception Beyond its Scope
Suppression of Checks

Implementation of Exception Handling

The Case Against Asynchronous Exceptions
Proving Programs with Exceptions

15 Répresentation Clauses and Machine Dependences -

15.1
15.2
15.3
15.3.1
15.3.2
15.3.3
1534
15.4
15.4.1

The Separation Principle

Types and Data Representation

Multiple Representations and Change of Representation
A Canonical Example of Changes of Representation
One Type - One Representation Principle

Explicit Type Conversion and Change of Representation
Implementation of Representation Changes

Presentation of the Data Representation Facility
Representation Pragmas

Vil

303
306
310

311
312
312
313
314
314
317
317
317
318
318
320
321
322
323
325
325
326
327
329
331
332
332
334
335
336
336

339
340
341
341
342
343
345
346
346

15.4.2
15.4.3
15.4.4
15.4.5
15.5

15.5.1
15.5.2
15.5.3
15.5.4
15.6

15.6.1
15.6.2
15.6.3
15.6.4
15.7

15.8

Length Clauses

Record Representation Clauses

Address Clauses

Enumeration Representation Clauses

Enumeration Types with Noncontiguous Representations

Assignment and Comparison with Noncontiguous Enumeration Types
Indexing and Case Statements with Noncontiguous Enumeration Types
Iteration Over Noncontiguous Enumeration Types

Character Types

Configuration Specification and Environment Enquiries

The Package System

Pragmas for Configuration Specification

Representation Attributes

Configuration Specification and Conditional Compilation

Interface with Other Languages

Unchecked Conversions

16 Input-Output . —

16.1 Introduction

16.2 Basic Requirements

16.3 Designation of Files

16.3.1 Access Control

16.3.2 Default Files

16.4 Indexed and Sequential Files

16.5 Text Files

16.5.1 Overloading PUT and GET

16.5.2 Generic Treatment of Numeric and Enumeration Types
16.5.3 Use of Default Parameters for Formatting
16.6 Exceptions and Renaming

16.7 Low Level Input-Output

16.8 Conclusion

Bibliography

Index

x

346
348
350
350
351
351
352
352
353
354
354
356
356
357
357
360

363
364
365
366
368
369
372
372
373
374
377
378
379

381

391

Introduction and Preface 1

1. Introduction and Preface

1.1 Goals

This document, the Rationale for the design of the Ada programming language, has evolved
over a number of years.

A first version appeared in 1978 as the Rationale for the Green programming language, and
this was revised in 1979 at the time that Green was finally selected as Ada. The purpose of
these documents was to explain the motivation for the language design, and to justify and
defend its position against the other competitive languages and the Ironman (later Steelman)
requirements. No corresponding document was written in 1980 when Ada was proposed as a
standard, nor in January 1983 when Ada finally became both an ANSI and Military Standard.
The present version completes and revises a draft issued in January 1984 and which was the
subject of public review.

The goal of these documents has also evolved. The original goal was both motivational and
defensive; a major concern was implementability (in potentially controversial areas such as
overload resolution) especially since there were no compilers then in existence. This last
concern is now substantially reduced since implementability is well demonstrated by a
number of production quality compilers.

Equally the goal is not to document and justify every language design decision: it would be
difficult to replace the archive containing the hundreds of study notes and thousands of
comments produced between 1977 and 1983.

The present goal is thus now more inspirational: to give the reader a feel for the spirit of the
language, the motives behind the key features and to create the basis for understanding how
they fit together both globally as viewed from the outside and in detail as viewed from the
inside; above all to impart an appreciation of the main architectural lines of the language and
its overall philosophy. It is only by knowing this philosophy that a real understanding for the
detail will be obtained.

2 Ada Rationale

It is now 1986, and it may well be asked why this ultimate Rationale has taken so long to
emerge. We must admit that the main reason is simply that we have been deeply involved
over the past years in a number of activities aimed at creating an infrastructure that would
ensure the success of the Ada language, - in particular, the development of training material
and compilers. The success of Ada has now relieved that pressure and allowed us to complete
the work started in 1978, and to make available what we hope will be an important addition
to the Ada literature.

1.2 Structure

This document is divided into chapters covering different aspects of the language. Most
chapters correspond to chapters of the Reference Manual. Expressions and statements are
here regrouped in a single chapter, since the subject is fairly classical. Conversely, in view of
the importance of the subjects, special chapters are devoted to numeric types, access types,
and derived types, in addition to the chapter on types. The chapters of the Rationale are
fairly independent (at the cost of some repetition) and can be read in any order.

Most chapters of the Rationale have a common structure. They start with an introduction to
the topic discussed. An informal description of the language features follows. This
description is made in terms of examples chosen to reflect the major classes of uses of the
features considered.

We believe that the reader will get the spirit of the language reading these examples. They
should help the development of an intuition for programming style in the Ada language.

A discussion of the technical issues follows, or in some cases is interspersed with the
informal description. Such discussions cover the major design decisions, their justification,
and the interactions with other aspects of the language.

1.3 Acknowledgements

We would like to take this opportunity to acknowledge the contributions of several others to
the Ada Rationale: Jean-Raymond Abrial, Bernd Krieg-Brueckner, Jean-Claude Heliard,
Henry Ledgard, Ian Pyle, Olivier Roubine, Steve Schuman, Stan Vestal, and Brian Wichmann
contributed to the 1978 and 1979 initial versions. Brian Wichmann also contributed to the
1984 draft.

Other significant contributions were derived from the Language Study Notes by Jean-Loup
Gailly and Paul Hilfinger and by comments from the Distinguished Reviewers.

Introduction and Preface 3

We are also indebted to the comments on the 1984 draft from the Ada Europe Review Group
organized by Kit Lester, the comments by Henry Dancy and Vincent Amiot, and the
dedicated technical support of Marion Myers.

The Ada Rationale was developed by Alsys and Honeywell under a contract from the United
States Government (Ada Joint Program Office).

Jean D. Ichbiah
John G.P. Barnes
Robert J. Firth
Mike Woodger

Lexical and Textual Structure 5

2. Lexical and Textual Structure

A program is a text that specifies actions to be performed by a computer.

Programs are written by human programmers, and read by their authors or by other
programmers for checking and maintenance purposes; they are also processed by compilers
and other automatic tools. The need to accommodate these various forms of communication
permeates every level of consideration of a programming language, including the most
immediate levels where we are only concerned with the physical appearance of a program
text.

The lexical and textual structures of a programming language are of course important for
ease of program compilation, and for compilation-time detection of errors. The importance
of lexical and textual structures is even greater for ease of reading and understanding
programs - in particular, for detection of logical errors - and for ease of teaching the
language. We believe that our understanding of programs can be greatly simplified if our
intuition is able to rely on textual forms that convey the logical structure of the program.
This is the justification for giving major consideration to readability and teachability in the
design of lexical and textual structures in Ada; moreover, special attention has been devoted
to structural analogies.

2.1 Lexical Structure

A program is written in characters forming lines on a printed page. The arrangement on the
page is primarily to assist the human reader, and consequently is mainly in free format. The
allowed characters belong to the ISO (ASCII) character set, and the text of a program may
contain both upper case and lower case letters. For portability reasons, it is possible to write
any program in a 56 character subset of the ISO character set.

On a higher level than that of characters, a program is considered to consist of lexical
elements. Both the mechanical compiler and the human interpreter of programs will tend to
work in lexical elements, so it is important that these elements should be clearly specified.
Lexical elements are clearly delimited and may not straddle line boundaries - a restriction
that assists human reading and helps compilers to recover after having detected an error.

6 Ada Rationale

The lexical elements are:

a Identifiers, including those for reserved words and attribute designators
s Single-character delimiters and two-character compound delimiters
s Numeric literals: integer literals and real literals

» Character literals and string literals

Each literal is a lexical element that stands for a value, namely the value /iterally
represented: for example, 10 and 1E] are two integer literals which both stand for the
integer value ten. In addition, a program text can include elements that have no influence on
the meaning of the program but are included as information and guidance for the human
reader or for the compiler. These are:

s« Comments

s Pragmas

Identifiers start with a letter which may be followed by a sequence of letters and digits In
addition, an underline character may appear between two other characters of an identitier.
This underline is significant and plays the role of the space in ordinary prose (but without
breaking the integrity of the identifier). The need for such an underline is seen from good
choices of names such as BYTES_PER__WORD rather than BYTESPERWORD. Furthermore
the significance of the underline makes SPACE_PER_SON a different identifier from
SPACEPERSON or SPACE_PERSON and A_NYLON_GRIP different from
ANY_LONG_RIP.

Reserved words are special identifiers that are reserved for special significance in the
language. There are 63 such words. Many of them play an important role in the definition of
the overall syntax of the major program units of the language, for example:

procedure is begin end

Other reserved words play a syntactic role at a more detailed level, for example:
constant inm out range

Finally, seven of them are used as operators. These are the reserved words

and or xor not abs rem mod

Reserved words other than operators cannot be redeclared, and operators can only be
redeclared as operators and with the same precedence. Hence programmers cannot write
obscure programs by redefining the meaning of words that play an important syntactic role
in the definition of the structure of Ada texts. Similarly, declarations written by
programmers cannot affect overali properties of the syntax, for example, the fact that if two
adjacent lexical elements are identifiers, one of them (at least) must be a reserved word.

Lexical and Textual Structure 7

Special printing of reserved words is recommended for highlighting programs on an
appropriate output device. The method chosen in this book is boldface (and lower case).
Since the language does not distinguish between character fonts, one can envisage methods of
highlighting the reserved words by the use of a different font, such as lower case, italics,
underlining, color, and so on. Clearly, this does not contradict the use of the ISO character
set for program input. On the other hand, for program printouts, it is currently possible to
get excellent renditions via graphical printers, color screens, or photocomposers; and it is
important to exploit this ability in order to enhance the readability of programs.

The identifiers for attribute designators are not treated as reserved words; they are always
preceded by an apostrophe (pronounced prime or tick) and can thus be distinguished from
declared identifiers and reserved words purely on the basis of lexical information. The
identifiers for predefined attribute designators are in fact different from the reserved words,
excepting only DIGITS, DELTA, and RANGE.

Ada uses attributes as environment enquiries and to refer to predefined properties. Other
languages have used functional notation or dot notation for this purpose. These alternative
forms both have the disadvantage of restricting the user’s free choice of names. For example,
if the address of an object were denoted by a function, this function would have to be
overloaded on all data types. Furthermore any user definition of ADDRESS would hide the
predefined one and thus make it unavailable. Similarly, dot notation would prevent
declaration of record components with the same identifier as an attribute designator. Neither
of these consequences is acceptable in light of the fact that the number of attribute
designators can be large, and that some of them may be specific to an implementation. Both
problems are avoided by the Ada notation for attributes.

The choice of identifiers for reserved words and attributes depends primarily on convention.
Preference is given to full English words rather than abbreviations since we believe full
words to be simpler to read. For instance procedure is used rather than proc (in Algol 68)
and constant rather than const (in Pascal). Shorter words are also given preference: for
example access is used in preference to reference, and task is used in preference to process.

The following special characters can be used as single-character delimiters between lexical
elements:

& ' () *+, - ./ <=

Two-character compound delimiters are constructed by juxtaposition of two such characters,
as follows:

> .. ®R x /= >m <= << >> <>

Naturally, in listings of Ada programs, the compound delimiters can be represented following
conventional notations where the corresponding characters exist:

/= as ¢ >= 3§ > <= as <

8 Ada Rationale

Numeric literals are all introduced by an initial digit. A requirement that has long been
recognized when printing numeric tables is for a character to break up long sequences of
digits: in Ada, the underline character serves this purpose. In contrast to identifiers,
underlines in numeric literals do not alter the meaning, so that 12_000 naturally has the
same value as 12000.

A simple sequence of digits is an integer literal written in decimal notation. For other bases
from 2 up to 16, the base is given first and is followed by a sequence of digits enclosed by
sharp characters (#) or by colons (:), the colon being used as replacement character for the
sharp, but only when the sharp is not available. The enclosed digits may include the letters A
to F for bases greater than ten. Thus, the conventional ways of expressing bit patterns in
binary, octal, or hexadecimal are provided.

Real literals must contain a period, which represents the radix point. They may be expressed
in decimal notation or with other bases. Finally, both integer and real literals may include
the letter E followed by an exponent.

Examples of numeric literals are given below:

10 -~ an integer literal

10.0 -~ a real literal

1E3 -~ an integer literal of value 1000
1.5E2 -~ a real literal of value 150.0
2#llll_1111» -~ an integer literal of value 255
2mI#ES -~ an integer literal of value 276

2#1.1111_1111__111=Ell -- a real literal of value 4095.0

Other forms of lexical element are character literals and string literals. A character literal is
formed by enclosing a single character between two apostrophes (') - its value belongs to a
character type. A string literal is formed by enclosing zero or more characters between
double quotes (") - the value of a string literal is a sequence of character values.

String literals (like all lexical elements) are limited to a single line: otherwise for sequences
straddling line boundaries the number of spaces in the string would not be clear since the
end of line is not visibly delimited. Furthermore, the limitation to one line reduces the
consequences of compilation errors arising from the (unintentional) omission of a closing
quote character.

To represent a long sequence of characters, the sequence is split into several string literals,
each on a single line, and connected by the catenation operator (&). Apart from long
sequences, there may be a need to split sequences that contain characters that are not in the
56 basic character subset of ASCII. Examples of catenations of string literals are as follows:

"A long line of printed output which " &
*is continued on the next line of the program.”

"END OF LINE " & ASCIL.CR & ASCILLF & "START OF NEXT LINE"

Lexical and Textual Structure 9

Comments may appear alone on a line or at the end of a line. As an end of line remark, the
comment should appear as an explanation of the preceding text -- hence the use of a double
hyphen (doing duty for a dash) is natural and appropriate, as illustrated by this sentence. For
simplicity, a space is not allowed between the two hyphens. No form of embedded comments
(within a line of text) is provided, as their utility is insufficient to justify the extra
complexity. Single comments that are larger than one line are not provided. Such comments
would require a closing comment delimiter and this would again raise the dangers associated
with the (unintentional) omission of the closing delimiter: entire sections of a program could
be ignored by the compiler without the programmer realizing it, so that the program would
not mean what he thinks. Long comments can be written as a succession of single line
comments, thus combining elegance with safety.

A pragma (from the Greek word meaning action) is used to direct the actions of the
compiler in particular ways, but has no effect on the semantics of a program (in general).
Pragmas are used to control listing, to define an object configuration (for example, the size
of memory), to control features of the code generated (for example, the degree of
optimization or the level of diagnostics), and so on. Such directives are not likely to be
related to the rest of the language in an obvious way. Hence the form taken should not
intrude upon the language, but it should be uniform. Thus, the general form of pragmas is
defined by the language. They start with the reserved word pragma followed by a pragma
identifier, optionally followed by a list of arguments enclosed by parentheses, and terminated
by a semicolon. The overall syntax of the pragma identifier and arguments is similar to that
of a procedure call. Pragmas are allowed at places where a declaration or a statement is
allowed; also at places where other constructs that play the role of declarations (for example
clauses) are allowed. Examples of pragmas are as follows:

pragma LIST(ON); -- listing wanted

pragma INLINE(SET_MASK); -- in line inclusion of call
pragma OPTIMIZE(SPACE);

pragma SUPPRESS(RANGE_CHECK, ON => TABLE),

Some pragmas are defined by the language (see Annex B of the reference manual). It is
expected that other pragmas will be defined by various implementations, in particular for the
programming support environments developed around the Ada language.

2.2 Textual Structure

Above the lexical level, the text of a program is structured as an arrangement of lexical
elements. This structure is described by the Ada syntax in the conventional manner.
However, a number of issues require separate discussion to clarify the decisions taken.

Declarations and statements are always terminated by semicolons - this differs from the
Pascal practice, in which a semicolon is used as a separator. The Ada convention simplifies
the insertion of another declaration or statement: normal layout places the semicolon at the
end of a line and thus, where semicolons are separators, insertion of a line often entails

10 Ada Rationale

changing the previous line as well. This is an argument against separators between items that
are likely to be on separate lines. We want each line to be a complete unit - therefore
including a terminator - so that adding a line does not require changing a previous line.
(Fortran achieves this by having the end of line be a terminator.)

The use of semicolons as terminators aids recovery by the compiler after finding a syntax
error; recovery from omission of the semicolon itself is usually quite simple for the parser.
Finally, comparative analyses of programmer errors have shown the use of semicolon as a
terminator to be less error-prone than its use as a separator [GH 75].

Having dealt with the lines of text themselves, we next consider the two-dimensional
arrangement of lexical elements to form a page. Reading a page of a program normally
proceeds on a line by line basis, at least consciously. But reading and vision are indeed more
complex than is suggested by this purely linear process. While the eye consciously
concentrates on a given point (a given line), peripheral vision is actively at work in a parallel
fashion. This unconscious reading activity provides us with information on the overall
structure of the text - the textual structure - and gradually develops our intuition of what is
coming in subsequent lines, and also our perception of the spatial celationships of different
parts of the text.

A readable textual structure is one that facilitates this parallel decoding activity: readability
is thus improved by suitable paragraphing (layout) of the program text. Tiis facet of
readability has influenced the design of Ada textual structure in several ways. For each of
the major program structures, we have defined a textual structure that reflects the
underlying logical structure (this point will be substantiated later by examples). This textual
structure is given by the recommended paragraphing specified in the Ada reference manual
through the layout of the syntax rules. Finally, the syntax was designed in such a way that
this recommended paragraphing can be produced by very simple mechanical tools, on the
basis of the reserved words alone.

We should therefore expect Ada programs to be paragraphed in a systematic and automatic
manner. This consistency and uniformity of presentation is a significant advantage for
readers, in particular when reading programs written by others. The resulting textual
structure is what will be perceived when looking at a program from a distance, when the
individual details (the individual lexical elements) can no longer be seen distinctly. Even at
this first level of perception, a good program will provide us with some intuition of its
organization into major parts.

Some program structures have simple brackets, for example the loop and eand loop of the
loop statement, and similarly the record and end record of the record type definition. This
simplifies the insertion of additional statements or declarations. Thus, adding a statement to
the Ada if statement

if COUNT < AVERAGE then
INCREASE(COUNT);,
end if;

Lexical and Textual Structure 11

requires a single line insertion;

if COUNT < AVERAGE then
PRINT(COUNT), ~-- added
INCREASE(COUNT);

end if;

Note that the similar transformation of the Pascal if statement

if COUNT < AVERAGE then
INCREASE(COUNT);

would be more cumbersome since it would require more modifications:

if COUNT < AVERAGE then

begin {added)
PRINT(COUNTY); {added)
INCREASE(COUNT) {; deleted)

end; {added)

and forgetting the begin ... end makes the increase of count unconditional!

Several other program constructs exhibit a comb-like structure, which is best illustrated
with the if statement as in the following example:

———— if ... then

elsif ... then

elsif ... then

end if;

This structure is built around four markers: an initial opening marker (if ... then), two
intermediate markers (elsif ... then), and a closing marker (end if). Each of the three major
parts bracketed by two consecutive markers is a sequence of statements that forms one of the
alternatives of the if statement. Thus each major part of the comb structure correspond to a
logical alternative of the if statement. A similar comb structure is exhibited by the case
statement:

AQU ROIToNaIe

case LIGHT is
when GREEN =>

when AMBER =>

———— when RED =>

end case;

Here again the layout defines three major parts of the text, which correspond to the three
logical alternatives of the case statement. Further examples of the comb structure are

procedure P is

begin

exception

end P;

select
or when ... =>
or when ... =>

F— else

L end select;

Lexical and Textual Structure 13

Note that each large-scale comb structure has the terminating reserved word end. For
declarations and statements, this is followed by a reserved word echoing the corresponding
opening marker:

case end case
if end if
loop end loop
record end record
select end select

For named constructs such as subprograms, packages, and task units the name of the
construct may be written after the final end to assist in the recognition of the structure,
something which is quite useful in the case of long program units:

package KEY_MANAGER is

end KEY_MANAGER;

When program constructs are nested, this pairing of opening and closing markers will assist
in reading the program. Special tools used for printing (or displaying) programs may also
print additional vertical lines that further enhance the major structures as in the example
below:

task body CONTROLLER is

egin
loop
select
accept READ ... do

end READ;
or

]
accept WRITE ... do

end WRITE;

end select;

end loop;
end CONTROLLER;

14 Ada Kalionale

Naturally, these structural vertical lines are not part of the input text submitted to an Ada
compiler, any more than are font indications such as the use of boldface for reserved words.
Such enhancing techniques are not superfluous: they have an important role in facilitating the
reading of programs, an important activity in our profession.

In general, language constructs which do not express similar ideas should not look similar.
Thus, unlike Pascal which used a colon in both cases, Ada uses different notations for
statement labels (used by goto statements) and for choices (in case statements). Statement
labels have angle brackets << >> placed around the label identifier; they emphasize that this
is a special point in the program. Conversely, choices express preconditions for executing the
statements that follow. Their form is therefore as follows:

when ... =>

The same form is also used in select statements and exception handlers, since it corresponds
to the same idea of a precondition.

Whenever possible, a uniform notation is used for similar constructs. The clearest example of
this principle is the case structure, which is used for variant parts in records as well as for
case statements. In Ada, both constructs have the same morphology, so as to reflect the
common idea of discrimination among several alternatives: seen from a distance the two
structures are indistinguishable. This should simplify teaching of the language and avoid
programming errors.

Pascal variant parts and case statements, although similar, do not follow our principle. The
contrast is illustrated by an example:

A graphics data structure in Pascal:

type SHAPE = (CIRCLE, TRIANGLE, POINT);,

type FIGURE =

record
X, Y: REAL;
case KIND : SHAPE of
CIRCLE:
(RADIUS : REAL),
TRIANGLE:
(INCLINATION, ANGLE : REAL;
LEFT_SIDE, RIGHT_SIDE : REAL);
POINT:()

end

Lexical and Textual Structure

A case statement in Pascal:

case A.KIND of
CIRCLE:
PRINT(A.RADIUS);
TRIANGLE:
begin
PRINT(A.INCLINATION);
PRINT(A.LEFT_SIDE);
end;
POINT:
end

The equivalent data structure in Ada:

15

PRINT(A.ANGLE),
PRINT(A.RIGHT _SIDE)

type SHAPE is (CIRCLE, TRIANGLE, POINT);

type FIGURE(KIND : SHAPE) is
record
X, Y: REAL;
case KIND is

when CIRCLE =>
RADIUS : REAL;

when TRIANGLE =>
INCLINATION, ANGLE

LEFT_SIDE, RIGHT_SIDE :

when POINT =>
null;
end case;
end record;

The equivalent case statement in Ada:

case ALKIND is
when CIRCLE =>
PRINT(A.RADIUS);
when TRIANGLE =>
PRINT(A.INCLINATION);
PRINT(A.LEFT_SIDE);
when POINT =>
null;
end case;

: REAL;

REAL;

PRINT(A.ANGLE);
PRINT(A.RIGHT_SIDE),

In Ada, the structural analogy between the declarative case structure (the variant part) and
the case statement should assist the human reader and help in learning the language. The
approach will also simplify pretty-printing of programs by mechanical tools which need not
be able to distinguish the two (semantically different) versions of the case structure, namely
variant parts and case statements.

A similar structural analogy exists between the case statement, the select statement, and
exception handlers. Other structural analogies, which are adequately reflected by the syntax,
are shown by the textual structure of functions, procedures, package bodies, task bodies, and
blocks. In each case the syntax defines three major logical parts (a declarative part, a
sequence of statements, and exception handlers) that are reflected by the textual structure

function F ... Is ————— procedure P ... is declare
————— begin —— begin begin
——— exception f——— exception — exception
--————— end F; ‘———— end P; end,;

———— package body P is ~——— task body T is
begin ———— begin
exception [—— exception

——— end P; t————end T,

and similarly for package and task specifications

———— package P is task T is

-—————end P;

end T;

These structural analogies have been used quite systematically. They should develop a feeling
of familiarity for the reader and simplify the teaching of the Ada language.

Classical Programming 17

3. Classical Programming

Programs achieve actions by executing statements. These may contain expressions that are
formulas defining the computation of values. The major entities involved in a program are
declared by declarations, and the creation of the declared entities is achieved during program
execution by a process that is called the elaboration of declarations.

Declarations, expressions, and statements are fairly classical aspects of most programming
languages. Hence we will limit the discussion to the most prominent points.

3.1 Simple Declarations: Variables and Constants

Variables and constants are declared by the simplest kind of declaration, called an object
declaration; the general form is similar to that used in Pascal but there are some differences.

A delicate balance is necessary in the handling of variables and constants. Reliability and
security demand that the two concepts be clearly separated. On the other hand it is
convenient if a variable declaration can be changed into a constant declaration by a very
simple alteration of the program text. Ada meets these two goals by having two distinct but
related forms of declaration for the two concepts. Thus the following object declaration:

C: constant REAL := 300_000.0;

declares a constant, whereas the following object declaration declares a variable with an
initial value:

SPEED : REAL := C/1500.0;

The adjective constant which appears in the declaration of a constant states that the value of
this object must not be altered after its initialization. By writing this adjective, the
programmer expresses his intent in an explicit manner and requests the assistance of the
compiler in forbidding attempts to alter the value - whether by accident, by mistake, or
deliberately.

15 “Add Ranonare

Following Algol 68 however, the adjective constant does not mean that the initial value must
be known at compilation time (that is, in Ada terminology, the initial value expression need
not be static).

For example, a function to determine whether a given integer number is prime may declare
an upper bound oa divisors:

function PRIME(X : INTEGER) return BOOLEAN s
UPPER_BOUND : constant INTEGER := INTEGER(SQRT(X));
begin

end PRIME;

and clearly the value of this upperbound, although constant for a given call of the function,
will be computed in terms of the actual parameter of the function, and hence dynamically.

Good programming style in Ada will systematically emphasize constants, even for short texts
where the danger of accidental alterations would be very slight. For example, an Ada
formulation of the classical procedure to exchange the values of two variables will emphasize
the fact that the temporary variable - OLD_LEFT - is indeed a constant:

procedure EXCHANGE(LEFT, RIGHT : in out INTEGER) is
OLD_LEFT : constant INTEGER := LEFT,

begin
LEFT := RIGHT;
RIGHT := OLD_LEFT;

end;

An initialization is required in the case of a constant. For variables it is allowed but not
required. Allowing initialization of a variable in its declaration enables one to ensure that the
initial state of variables is well-defined. Furthermore, this avoids long sequences of
initialization assignment statements, which are divorced from the declarations and hence hard
to locate.

3.2 Declarative Parts - Linear Reading

Object declarations and declarations of other forms are grouped in declarative parts together
with other declarative items such as bodies (of subprograms and packages) and representation
clauses.

The spatial arrangement of declarative items in a declarative part is (almost) free. This means
that constant and variable object declarations, and type and subtype declarations can be
mixed in groupings that best reflect the logical needs of a program.

Classical Programming 19

An Ada program can be read linearly, line by line in a sequential manner, very much in the
same way as we read good English prose. This means that our understanding of a text
progresses line by line (declaration by declaration) and that we can reuse in later lines the
knowledge acquired in earlier lines, as is shown in the following example where each
declaration is made in terms of the one on the previous line:

declare
LENGTH : constant INTEGER := 100;
SQUARE : constant INTEGER := LENGTH*LENGTH,;
subtype AREA is INTEGER range 0 .. SQUARE;,
SURFACE, EXTENT : AREA;

begin

end;

Several rules of the language were designed to serve this purpose of linear reading. For
example, the scope rules allow declarations to appear in the order used above. But they
would not allow the initialization of SQUARE to refer to LENGTH if the declaration of
LENGTH were given after that of SQUARE: the Ada rules forbid forward references: we
can refer only to what we have already read. Other specific rules that support this linear
reading will be seen later, when we discuss subprograms and access types (Chapters 8 and 6).

Reading is linear and so also is elaboration of declarations. During program execution,
declarations are elaborated (that is, they achieve their effect), one by one, in the linear order
in which they appear.

For example, the constant LENGTH and the variable SURFACE do not exist before the
execution of the above block statement. This execution will start by the elaboration of the
four declarations that form the declarative part: one after the other. Thus after elaboration of
the declaration of LENGTH, this constant will exist; but the variable SURFACE will exist
only after the elaboration of its declaration - the last one. Finally, after executing the
statements enclosed by begin and end, all the entities created by the elaboration of the
declarative part will disappear (or at least become unreachable).

The above illustrates the logical model of execution of an Ada program. In this model,
elaboration is a process that takes place dynamically, at run time. This does not, however,
prevent a compiler from using a more static approach - for example, for storage ailocation -
as long as it can guarantee that this implementation technique will yield an effect equivalent
to that of the logical model.

The only limitation imposed by the language on the order of declarative items is that bodies
must appear after simpler declarative items such as object declarations. This rule was devised
to avoid the poor degree of readability that would result from mixing large and small textual
items. In Algol-like languages that allowed this mixing, the occurrence of an isolated variable
between the bodies of two large subprograms was a well-known source of error. Although
good programming practice would avoid such isolated variable declarations, they could still
be generated by faulty uses of a text-editor and cause subtle errors when hiding outer
declarations:

20 T —. —ATd KWonare

declare
X : INTEGER := 0;
begin
declare
-- several procedures
procedure P is -- very long
end P;
X : INTEGER; -- a mistake: not legal Ada
procedure Q s -- also long
end Q;
-- more procedures
begin
X:= 2 -- should modify X ...
end;
if X = 0 then -- but apparently did not!
PUT("SOMETHING STRANGE is HAPPENING");
end if;

end;

With the Ada rules, the declaration of a variable between two procedure bodies is not
allowed and therefore this error will be detected and signaled by the compiler. Note that
these rules do not forbid a local declaration of X hiding the outer one - there may be good
reasons for such a declaration - but the hiding declaration will have to occur before the
bodies and therefore in a portion of text that is easier to inspect than the potentially much
longer text of the sequence of bodies.

3.3 Multiple Declarations

An object declaration may declare more than one object, in which case it is called a multiple
object declaration. For example

DIVISOR, STEP : POSITIVE := §;

is a multiple declaration that declares two variables of subtype POSITIVE which are
initialized with the value of the literal 5. A large number of multiple declarations are of the
above form: the initial value is given by a literal or by a pure expression that delivers the
same value each time it is evaluated. But consider now the multiple declaration;

Classical Programming 21

YESTERDAY, TODAY, TOMORROW : DAY := GET_NEXT_DAY;

where the function GET_NEXT_DAY returns a different day each time it is called. Then
there are two possible interpretations. One of them would be equivalent to:

some_day : constant DAY := GET_NEXT_DAY;

YESTERDAY : DAY := some_day,
TODAY : DAY = some_day;
TOMORROVW : DAY := some_day,

in which case all three variables would have the same value, obtained by the single
evaluation of the function. However, the semantics selected for Ada is different. In fact the
multiple declaration is equivalent to the following sequence of single declarations:

YESTERDAY : DAY := GET_NEXT_DAY;
TODAY : DAY = GET_NEXT_DAY;
TOMORROVW : DAY := GET_NEXT_DAY;

in this order. This means that the function will be called three times and the variables will
therefore be given three successive day values, as one expects in the present example.

Clearly, the two semantics do not differ when the initialization always yields the same value
(the most frequent case). However we have found that when multiple evaluations yield
different values, the most natural semantics is almost always the one involving multiple
evaluations - hence the choice for Ada. Other examples are:

JOHN, PAUL : PERSON_NAME := pew PERSON;
where we certainly want to allocate two new persons, and similarly:

FIRST, SECOND : constant STRING = GET_NEW_TEXT,;

In this last example these two constants may have different values, and they need not even
have the same length. Thus FIRST and SECOND need not even be of the same subtype of
the type STRING. The same situation would also arise with

A, B: STRING(1 .. F) := (others => "%");
if F were a function and the two implied calls of F delivered different values.

In later chapters, when we discuss default expressions for record components and for
parameters, we will see that the Ada semantics requires dynamic evaluation of these default
expressions - as the need arises; this is quite consistent with the semantics of multiple
evaluation selected for multiple declarations.

22 —~Add Ranonare

3.4 Names

A single object declaration associates an identifier with a declared object. The identifier, like
every lexical element, is only a sequence of characters. But by virtue of the declaration, it
becomes possible to use the identifier to refer to the declared object. We say that the
identifier is a name for the object: a name that denotes the object. As we shall see, there are
several forms of name. The simplest form is just an identifier, which is therefore also called
a simple name.

To illustrate other forms of name, consider the following declarations (given in skeletal, but
hopefully self-explanatory form):

type PERSON(SEX : GENDER) is
record
BIRTH : DATE;

SPOUSE: .. ;
end record;

subtype KING is PERSON(SEX => M),

JOHN : KING;
LOUIS : array (1 .. 18) of KING;

The above declarations have defined several simple names: for example JOHN is the simple
name of an object of subtype KING, and LOUIS is the simple name of an array of kings.
Now, starting with simple names, we can form more complex names: a selected component
such as

JOHN.SPOUSE

which denotes a component of the record object that is itself denoted by JOHN; and
similarly an indexed component such as

LOUIS (9)

which denotes a particular component of our array of kings. We can also combine selected
components and indexed components to form yet more complex names such as

LOUIS(15).SPOUSE
but not as in PL/1

LOUIS.SPOUSE(15)

Classical Programming 23

Following Simula (and unlike Pascal), Ada allows function calls to be part of names. For
example we can define a function HEIR as follows:

function HEIR(N : POSITIVE) return KING is
begin ’
if N < 18 then
return LOUIS(N + 1);
else
raise LINEAGE__ERROR;
end if;
end;

Now we can form names such as

HEIR(14).SPOUSE

which include function calls. Note that the function call HEIR(14) delivers a value (not a
variable), so that the above name allows the SPOUSE component to be read, but not updated.

The ability to use function calls in names is especially useful when dealing with data
structures constructed with access types. Thus an algorithm in a tree traversal may include
names such as

NEXT(N).PART

where NEXT(N) delivers an access value, and where PART is a component of the object
designated by the access value. In this case, reading and updating of the component PART
are both possible.

This ability goes some way toward the principle of uniform referents advocated by Ross and
others [Ro 70, GM 75]. Following this principle, Ada uses round brackets rather than square
brackets for denoting array components, thereby unifying the syntax of indexed components
and function calls. In the same spirit, the syntax of selected components is used for
component selection of records, whether the records are statically or dynamically allocated
(see 6.3.4).

3.5 Aggregates

For an array or record type, Ada provides a basic operation that combines component values
into a composite value of the type. This basic operation is expressed by an aggregate and
there are two possible syntaxes for this construct.

The first is the traditional positional notation, in which the composite value is defined by an
ordered sequence of component values: each value is implicitly associated with the
component that has the same position in the array or record.

24 Ada Ralionale

The second - and often preferable - notation provided in Ada is the so-called named
notation, in which the component-value pairings are given explicitly by component
associations of the form

component => value
using the names of the components (in the simplest case).
The examples given below show that named notation is often much more readable than

positional notation, since it allows more explicit formulation of the intent. It is also more
reliable, being insensitive to order and permutation. Consider for example the following type:

type DATE is
record
MONTH : INTEGER range | .. 12;
DAY : INTEGER range | .. 31;
YEAR : INTEGER range | .. 3000;
end record;

Then we can define dates by positional aggregates such as
(12, 4, 1983)

but we can express our intent in a more explicit way if we use named notation as in the
three equivalent aggregates given below:

(MONTH =>]2, DAY => 4, YEAR => 1983) -- the American way
(DAY => 4, MONTH => 12, YEAR => 1983) -- the European way
(YEAR => 1983, MONTH => 12, DAY => 4) -- the ISO way

A reformulation of the type DATE is possible in which an enumeration type is used for
months. In that case a permutation error such as

(4, DECEMBER, 1983)

would be detected by a compiler. In the above all-integer formulation, however, the named
notation is more reliable since the meaning does not rely on order.

Similar possibilities exist for an array type such as
type TABLE is array (1 .. 10) of INTEGER,;
Given the object declaration
T: TABLE;
we can assign to T a positional array aggregate such as

T:= (0,0,0,0,0,0,0,0,0, 0)

Classical Programming 25

But the intent can be made more explicit by writing the aggregate in any of the equivalent
named forms given below

(1..10=> 0)

(TABLE'FIRST .. TABLE'LAST => 0)
(T'FIRST .. T'LAST => 0)
(TABLE'RANGE => 0)

(T'RANGE => 0)

(others => Q)

Other forms of named notation allow the explicit mention of component indexes, as in the
following example

(113151719=>0, 214]6|8]10=>1)

Other examples of aggregates will be presented in Chapter 4 when we discuss overloading
resolution for aggregates.

3.6 Expressions

An expression is a formula that defines the computation of a value by the application of
operators. Six classes of operators exist in Ada. They are listed below in increasing order of
precedence:

logical and or xor

relational = J= < > <= >=
binary adding + - &

unary adding + -

multiplying * / mod rem

highest precedence *%* abs not

When defining levels of precedence it is very important to follow common usage, and we
found six levels to be the minimum number compatible with accepted practice.

Different levels are clearly required for relational, binary adding, unary adding, multiplying,
and exponentiation operators. These levels have a very deep intuitive foundation, going back
to algebra learned at school.

Logical operators must be on a different (and lower) level if expressions such as

TODAY = MON or TODAY = SAT
LOWER_BOUND <= X and X <= UPPER_BOUND

are to be written without parentheses. In the case of a succession of operators with the same
precedence, Ada adopts the traditional rule of binding from left to right. However, the

26 Ada Rationale

syntax recognizes that intuition of logical operators is not as deeply rooted as in the case of
arithmetic operators. For example, consider the following expression (not allowed in Ada)
written in two different ways:

COLD and SUNNY or HUMID
COLD and SUNNY or HUMID

Many programmers are likely to rely on the spacing for their interpretation of such
expressions, whereas nobody would be fooled by misleading spacing in the case of arithmetic
operators

X*Y + Z -- yes
X * Y+Z -- no

For this reason, the syntax requires explicit parentheses in the case of a succession of
different logical operators. For example:

A or (B xor C) -- parentheses required

(A or B) xor C -- parentheses required (not aiways equal to previous expression)
A or (B and C) -- parentheses required

AorBorC -- no need for parentheses

A and B and C -- no need for parentheses

Finally, the precedence of abs is chosen higher than that of multiplying operators so that

abs A *B -- and
abs (A) * B

both mean (abs A) * B. For similar reasons, the precedence of not is higher than that of
logical and relational operators so that

not SUNNY or WARM
is equivalent to

(not SUNNY) or WARM

In practice most expressions are simple. The inconvenience of parentheses should not be
exaggerated, as programmers tend to introduce additional parentheses anyway for readability
purposes (to reassure themseives when in doubt) whether they are required or not.

Classical Programming 27

3.7 Statements

The classical forms for sequential processing are included in Ada: assignment statements,
procedure call statements, if and case statements,.loop statements, and (control) transfer
statements. Less classical control structures, such as the raise statement and the statements
used for tasking, are discussed in later chapters.

It is customary to distinguish simple and compound statements: a simple statement contains
no other statement;, compound statements may include other sequences of statements.

The Ada syntax is such that wherever a single statement may appear, a sequence of several
statements may also appear. This simplifies program modification since insertion of a
statement can be done without the need to insert extra begin and end markers (as was the
case in Algol and Pascal).

A sequence of statements contains at least one statement: an empty sequence is not allowed.
For readability reasons, Ada provides an explicit null statement for situations where other
languages would use (implicit) empty statements. For example, if nothing needs to be done
for a given alternative of a case statement, it is preferable to state this explicitly by a null
statement: :

case TODAY is
when TUE | THU | SAT => null;
when MON | WED |
FRI {SUN => ACTION;
end case;

rather than convey the same impression by an empty statement which could be taken as an
unintentional omission, as in the Pascal formulation given below:

case TODAY of
TUE, THU, SAT : ;
MON, WED,
FRI, SUN: ACTION
end;

3.8 Assignment Statements - The Ada Model of Time

The assignment statement is usually regarded as the simplest of all statements, and we will
use this statement to discuss the Ada model of time flow.

One issue that must be addressed in any language design is the definition of the sequencing
of elementary operations. One extreme corresponds to operational definitions in which this

Ada Rationale

sequencing is defined exhaustively, for all features of the language, and for all possible
elementary operations.

The view adopted in Ada, following the Algol 68 concept of collateral evaluation, uses a
somewhat simpler mental model of sequencing. We consider that time differences only marter
at certain specific points of the program - mainly at the semicolons that terminate statements
and declarations. This means that the sequencing of certain actions that occur between two
consecutive semicolons is not necessarily defined by the language. Consider for example, the
following assignment statements:

OUT_ROW(FLOOR(X)) := IN_ROW(CEIL(Y));
X = SIN(Y)*COS(Y) - TAN(Z),

where we assume OUT_ROW and IN_ROW to be arrays, FLOOR, CEIL to be functions,
and X, Y, Z to be variables. For assignments statements, the Ada reference manual specifies
that the evaluation of the left and right hand sides is done in some order that is not defined
by the language. This means that the language does not define which of FLOOR and CEIL is
called first. Similarly, whereas the precedence rules require the right hand side of the second
assignment to mean

(SIN(Y)*COS(Y)) - TAN(Z)

the rules of expression evaluation leave the order of evaluation of the function calls
undefined. Thus it would be possible for the functions to be called in any of the following
orders:

(1) TAN (2) SIN (3) COS
(1) TAN (2)COS (3)SIN

(1) SIN (2) COS (3) TAN
(1) COS (2) SIN (3) TAN

The only (and partial) order imposed comes from the ordering of statements and from the
logic of operations. Thus the ordering of the two statements requires that a function call
(such as FLOOR) of the first assignment statement occur before a function call (such as SIN)
of the second. Similarly, the logic of operations requires that the multiplication be performed
after the evaluation of its two operands (SIN(Y) and COS(Y)).

The Ada reference manual further specifies (RM 1.6) that if different parts of a given
construct are to be executed in some order that is not defined by the language, then the
construct is incorrect if execution of these parts in a different order would have a different
effect: this kind of error is called an incorrect order dependence.

Classical Programming 29

In terms of programming methodology, this means that we must consider the flow of time to
be given by the sequencing of statements, each simple statement being considered as an
indivisible action. In the above example, the first assignment would be incorrect if its effect
depended on the order of evaluation of FLOOR and CEIL. Should this order actually matter,
then the proper way to write the program would be to give a sequence of assignments that
defines the intended order explicitly. For example:

U := FLOOR(X); -- guarantees that FLOOR
V := CEIL(Y), -- is called before CEIL
OUT_ROW(U) = IN_ROW(V);

Similar considerations apply to expression evaluation. All constituents of an expression (aside
from short-circuit control forms) must be evaluated, although the evaluation order is not
defined for all terms. Hence if an exception is raised by the evaluation of some term, then
this exception cannot be avoided. In this sense an expression such as

A=0 or X/A> 10

although syntactically correct, is not proper since the validity of the right operand of or
depends on the value of the left operand. Whenever there is such a dependence, it should be
made explicit by means of conditional statements, or by short-circuit control forms (see
3.10), in order to emphasize the possibility of incomplete evaluation. For example:

A=0 orelse X/A> 10

Note finally that whenever order is not defined, the reference manual uses the phrase in
some order that is not defined, rather than the phrase in any order. The intent of the chosen
wording is to leave the order undefined but nevertheless require that it be done in some
order, and thus exclude parallel evaluation.

To illustrate this point, consider again the calls of FLOOR and CEIL, and assume that the
values obtained do not depend on whether FLOOR or CEIL is called first. It is nevertheless
possible that parallel evaluation of FLOOR and CEIL will yield a different effect. Thus
FLOOR and CEIL could be memo-functions, which remember past intermediate results (for
efficiency). Should some of these intermediate resuits be used by both FLOOR and CEIL,
then it would be possible for interleaved executions of these functions to deliver different -
and probably incoherent - results.

30 AQU Kanonarte

3.9 If Statements

An if statement is used to select a sequence of statements for execution on the basis of a
condition. The syntax

if condition then
sequence_of __statements
else
sequence_of _statements
end if;

is fairly classical. For nested if statements, the if and end if bracket structure avoids the
dangling else ambiguity that results from not using end if. An if statement containing elsif
alternatives can be used to select among several sequences of statements, depending on
different conditions:

if RAIN then
-- sequence of statements describing
-- what to do when it rains

elsif SUN_SHINE then
-- sequence of statements describing
-- what to do when the sun shines

-- sequence of statements describing
-- what to do for other weather conditions
end if;

Strictly speaking, elsif alternatives are redundant: the corresponding statements can always be
rewritten in the form of nested if statements. However this nesting is generally awkward and
does not convey the correct impression, namely that the alternatives are on the same logical
level, and this is quite apart from the fact that the conditions should be evaluated in the
order in which they appear.

3.10 Short-Circuit Control Forms

The operands of a boolean expression such as A and B can be evaluated in any order.
Depending on the complexity of the term B, it may be more efficient (on some but not all
machines) to evaluate B only when the term A has the value TRUE. This however is an
optimization decision taken by the compiler and it would be incorrect to assume that this
optimization is always done. In other situations we may want to express a conjunction of
conditions where each condition should be evaluated (has meaning) only if the previous
condition is satisfied.

Classical Programming 31

Both of these things may be done with short-circuit control forms such as:

if NUMBER /= 0 and then TOTAL/NUMBER > MEDIAN then

end if;

Clearly it would not be proper to express this condition as a boolean expression using the
and operator, since an exception would be raised if NUMBER were zero and the second
operand were evaluated. Similarly, short-circuit disjunctions can be expressed with or else
clauses as in the following example:

exit when NEXT = null or else NEXT.AGE = 0;

In this case the condition following or else will only be evaluated if the previous condition is
not satisfied.

In Algol 60 one can achieve the effect of short-circuit evaluation only by use of conditional
expressions, since complete evaluation is performed otherwise. This often leads to constructs
that are tedious to follow:

if(if NUMBER = 0 then TRUE else TOTAL/NUMBER > MEDIAN) then ...

Several languages do not define how boolean conditions are to be evaluated. As a
consequence programs based on short-circuit evaluation will not be portable. This clearly
illustrates the need to separate boolean operators from short-circuit control forms.

3.11 Case Statements

A case statement selects for execution one of a number of alternative sequences of
statements: the alternative selected is defined by the value of an expression. Each sequence of
statements is preceded by a list of choices defining the values for which that alternative must
be selected. The main criteria in the design of the case statement are reliability and
generality.

For reliability, the compiler must be given the opportunity to check for the accidental
omission of some alternatives. For that reason, Ada requires that all possible values of the
type of the discriminating expression be provided for in the choices. This rule is weakened if
the discriminating expression is a name whose subtype is static: the choices that must be
provided are then all the values of this subtype. Finally, a qualified expression can be used
to restrict the possible choices, and a final choice others may be used to represent all values
not previously specified.

J& I I TOTIOT”

As an example consider the declarations

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
subtype WORKDAY is DAY range MON .. FRI;
subtype RESTDAY is DAY range SAT .. SUN;

TODAY : DAY,
START : WORKDAY;

With the above declarations all vajues of the type DAY (the type of TODAY) must appear in
one selection, as in

case TODAY Is
when MON | TUE | WED | THU | FRI => WORK;
when SAT | SUN =a> REST;

end case;

This could have been written in the equivalent form

case TODAY is
when MON | TUE | WED | THU | FRI => WORK;
when others => REST;

end case;

If in a given context it is known that the case discriminant belongs to a given subtype, a case
statement with a qualified expression may be used. Only the values of the corresponding
subtype can appear in the selections.

case WORKDAY '(TODAY) is
when MON | WED | FRI => LATE;
when TUE | THU => EARLY;
end case;

Should the value of TODAY not belong to the subtype WORKDAY (for example if TODAY
= SAT), then the exception CONSTRAINT_ERROR would be raised by the evaluation of
the qualified expression. This cannot arise in the following examiple, which uses the fact that
the subtype of START is static:

case START is
when MON | WED | FRI => LATE;
when TUE | THU => EARLY,;
end case;

The other main criterion in the design of case statements is generality: the syntax of
selections should accommodate all situations that are likely to arise, given that the case
discriminant has a discrete type. Hence it should permit ranges as well as lists of values.

Classical Programming 33

Thus the first example above is more likely to be written using ranges:

case TODAY is
when MON .. FRI => WORK;
when SAT .. SUN => REST;
end case;

or (better) using the subtype names:

case TODAY is
when WORKDAY => WORK;
when RESTDAY => REST;
end case;

Such ranges and subtype names are very useful for case choices. They avoid long lists that
can be tedious to read and therefore error-prone.

In many ways a case statement is similar to an array of statements and this is somewhat
reflected in the syntax. For example we may compute the opposite of a given direction by
means of a case statement:

type DIRECTION is (NORTH, WEST, SOUTH, EAST);
COURSE : DIRECTION;

BACK : DIRECTION;

-- a value is given to COURSE

case COURSE is

when NORTH => BACK := SOUTH;
when WEST => BACK := EAST;
when SOUTH => BACK := NORTH;
when EAST => BACK := WEST;

end case;
-- now BACK is the direction opposite to COURSE

Another formulation of this computation uses an array of directions declared as

INVERSE : constant array(DIRECTION) of DIRECTION :=
(NORTH => SOUTH,
WEST => EAST,
SOUTH => NORTH,
EAST => WEST),

and the assignment statement

BACK := INVERSE(COURSE);

As can be seen from the above example, the conceptual similarity is actually reflected in the
similarity of the syntaxes for case statements and for array aggregates.

34 Ada Rationale

A very important diagnostic facility that the compiler should provide is the listing of all
values of the discriminating type that do not appear in the listed choices. For an incomplete
(and therefore incorrect) case statement, the compiler has the information and should provide
it to the programmer. In the absence of this kind of diagnostic, it might be quite difficult
for the programmer to discover missing values for an enumeration type with a large number
of values.

Case statements are conventionally implemented with an implicit transfer table. This table
will generally contain one place for each possible value of the discriminating type. Quite
often however, if some of the alternatives include null statements, the compiler may optimize
the code generated, by using a shorter table and an explicit range check. As an example

case TODAY is
when SAT => SHOP;
when SUN => SLEEP;
when others => null;
end case;

may be compiled to produce code equivalent to

if TODAY in RESTDAY then
case RESTDAY '(TODAY) is -- no check needed
when SAT => SHOP;
when SUN => SLEEP;
end case;
end if;

thus leading to a two-place transfer table. Finally, case statements with very sparse selections
or with ranges as selections can be compiled as equivalent if statements. Thus for our first
example we may have:

if TODAY in WORKDAY then
WORK;

else
REST;

end if;

Classical Programming 35

3.12 Loop Statements

The main form of loop statement allows conditional or unconditional exit statements to
appear anywhere within the sequence of statements enclosed by the brackets loop and end
loop:

loop
READ_CHARACTER(NEXT);
exit when NEXT = ' %!
PRINT_CHARACTER(NEXT);
end loop;

Although this form of loop is quite general, a special form also exists to single out the cases
in which a continuation condition appears at the start of the loop:

while MORE_TO_DO loop
end loop;

Similarly two forms of for loop are provided to iterate over ranges either in normal
(increasing) or in reverse (decreasing) order:

for COUNTER in 1 .. 10 loop --123 .. 910
end loop;
for COUNTER in reverse 1 .. 10loop --1098 .. 21

end loop;

In both cases (unlike Pascal), the loop parameter is local to the loop (which solves the
problem of its value after the loop). It is declared by the Ioop parameter specification of the
for iteration scheme. The following two forms of loop parameter specification are equivalent:

COUNTER in 1 .. 10
COUNTER in INTEGER range | .. 10

A null range - that is, a range whose upper bound is less than its lower bound - specifies
zero iterations. Within the sequence of statements of the loop, the loop parameter is constant
and therefore protected against accidental attempts at modification.

36 Ada Rationale

More complicated forms of loop constructs such as the so-called Zahn's construct (Za 74] and
the related construct provided in Modula were considered in this design but in the end
rejected. As shown in the example below, situations for which such constructs would be used
can be dealt with quite easily with the existing forms.

declare
type CAUSE is (TOO_LOW, NORMAL, TOO_HIGH),
STATE : CAUSE := NORMAL;

begin
for ... loop

STA'I'E = TOO_LOW; exit;

STATE := TOO_HIGH,; exit;

g:I'ATE = TOO_LOW,; exit;
enci"loop;

case STATE is
when TOO_LOW => ..,
when TOO_HIGH => ...
when NORMAL => ...
end case;

end;

The major emphasis in the design of the loop statement has been on simplicity: loops should
have an intuitive meaning and users should not have to consult a reference manual to
understand their meaning. Several studies on the use of programming languages have shown
that the vast majority of loops are very simple. Hence generalities such as the step expression
of Algol 60 should be avoided. The redundancy provided for conditional exits is itself
motivated by readability considerations: loop termination conditions should be marked very
conspicuously. Thus, in the recommended paragraphing,

exit when CONDITION;

is certainly more conspicuous than the equivalent form in which the exit statement is nested
within an if statement

if CONDITION then
exit;
end if;

Guarded commands were also considered for this design and not retained. They have
advantages for the development of program proofs. However, they are not compatible with
other looping constructs with explicit exits. Hence if they had been retained it would have
been to the exclusion of other forms of loop statement, a decision which seemed too drastic.

Types

37

4. Types

4.1 Introduction

The notion of type has graduvally emerged from the past twenty years of the history of
programming languages as the way by which we impose structure on data. A now widely
accepted view of types is that a type characterizes the set of values that objects of the type
may assume, and the set of operations that may be performed on them. This common view is
also taken in the Ada language.

There are several important reasons why it is found desirable to associate a type with
constants and variables:

Factorization of Properties, Maintainability

Knowledge about common properties of objects should be described and collected in
one place and a name should be associated with that description. A type declaration
serves that purpose. Subsequently, the type name may be used to refer to the common
properties in object declarations. This factorization improves program maintainability:
if later a given property is to be changed, then the type declaration will be the only
part of the program text to be affected by the change.

Reliability

Objects with distinct properties should be clearly distinguished in a program, and the
distinction should be enforced by the compiler. Requiring that all objects be typed thus
contributes to program reliability. Experience has shown that a well-written program in
Pascal can be recognized easily by the use made of the typing facility to increase the
reliability, readability, and security of the program.

Abstraction, Hiding of Implementation Details
Abstract or external properties of objects and operations should be separated from

underlying and internal implementation-dependent properties, such as the physical
representation on a specific machine. The abstract properties of an object are the only

38 Ada Ralionale

ones that need to be known for its use. Implementation details should therefore be
hidden from the user. The need for such a separation is particularly strong in the case
of disjoint sections of a program text, produced and maintained by different
programmers, and presumably separately compiled.

Several classical problems are associated with the formulation of a type facility in a
programming language. Some are the subject of ongoing debate among language designers
and users, in particular:

(@) Static versus Dynamic Properties

Should both the static properties - those which are determinable from an analysis of
the program text at compilation time - and the dynamic properties - those which may
depend on the dynamic execution of a program, such as reading from an input device
- be covered by a single notion of type? '

(b) Type Equivalence

Should the language provide some form of equivalence or compatibility among types
with logically related properties?

(¢c) Parameterization

Should the language provide some form of parameterization for types and their
associated properties? Should the evaluation of type parameters be performed at
translation time or should it be deferred until execution time?

The Ada solutions to the above problems are now summarized. A detailed discussion of these
design decisions is given in later sections of this chapter.

(a) Static versus Dynamic Properties

Two notions are distinguished: the notion of type and the notion of subtype. A type
characterizes a distinct set of values and its static properties, such as the applicable
operations.

Constraints may be imposed on named types: for example a range coustraint for a
scalar type, or an index constraint for an array type. In general, constraints define
certain requirements whose satisfaction is to be checked dynamically. A subtype name
serves as an abbreviation for a type name together with a constraint associated with the
type. Several difficulties in the types of Pascal that have been noted by Habermann and
others [Hab 73, WSH 77] are overcome in Ada by the notion of subtype.

(b) Type Equivalence
Each type declaration defines a distinct type. In consequence, each type name denotes a

distinct type. Values of a given type can be assigned only to objects that have this
type. Values of different types cannot be intermixed.

Types 39

In contrast, objects that have different subtypes of the same type are compatible: the
value of an object may be assigned to a variable that has the same type, whether or not
the object and the variable have the same subtype. Constraints are normally checked at
execution time, although in many cases these checks can be done at compilation time,
' in anticipation. '

Certain explicit conversions are allowed between closely related types. Such explicit
conversions are defined among numeric types, among sufficiently similar array types,
and among derived types of the same family. Being explicit, these conversions are safe.
On the other hand, no implicit conversion is possible among user-defined types.

(c) Parameterization

Parameterization at execution time is closely associated with the notion of constraint. In
particular this applies to array and record types:

s An unconstrained array type declaration has unspecified index bounds. These are
subsequently specified by an index constraint for a given array object so that different
array objects of the same type may have different numbers of components. If such an
array is a formal parameter of a subprogram, its bounds are obtained from the actual
parameter for each call.

s A record type may have special components which are called discriminants and whose
values are used at execution time to discriminate among alternative variants of the
record type. For example, the value of a discriminant may be used to determine a
bound of a record component that is itself an array. It is possible to constrain a record
by a discriminant constraint, which imposes (and establishes) certain values for the
discriminants. As in the case of arrays, it is possible to write subprograms of general
utility which operate on records with arbitrary discriminant values.

Parameterization at compilation time is achieved by the very powerful mechanism of
generic units. Whereas parameterization at execution time by index bounds and
discriminants is limited to scalar values, the parameters of generic units can even be
subprograms and types. For exampile, we could model the length of a stack by a
discriminant; but, to allow for different types of elements, we would need to define
stacks within a generic package and have the element type be a generic parameter. We
could then create several instances of the generic package, for example one for stacks
of integers, one for stacks of characters, and so on.

These solutions are detailed in the following sections of this chapter (and, in the case of
generic units, in a later chapter). We first introduce the concept of type by means of the
simplest form - enumeration types - and further use these types for the discussion of type
equivalence and the concepts of constraints and subtypes. We then proceed to a discussion of
array types, record types, and discriminants; and the general problems of type composition.

40 Ada Rationale

4.2 The Concept of Type

Ada provides a capability to define new types. The language construct used to declare a new
type is called a type declaration. Examples of type declarations appear below:

type INT is range -2% %24 _ 2% %24 -- integer type

type SCALE is (LOW, MEDIUM, HIGH); -- enumeration type
type MASS is digits 8 range 0.0 .. 1.0E9; -- floating point type
type VOLT is delta 0.01 range 0.0 .. 1_000.0; -- fixed point type

type LINE is array (1 .. 128) of CHARACTER; -- array type
type PAIR is record X, Y: INTEGER; end record; -- record type
type MY_INT is new INTEGER,; -- derived type
type TEXT is access STRING; ~- access type
type FILE is limited private; -- private type

As stated in the introduction, a type is characterized by a set of values and a set of
operations. To illustrate this we can use enumeration types: in many ways they are the
simplest form of type, yet they are sufficient to discuss the most important aspects. Consider
for example:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
Each of the identifiers thus enumerated is called an enumeration literal and can be viewed as
a (parameterless) function that always delivers the same value. Hence we have a distinct
value for each enumeration literal, and so we have seven values for the type DAY.

Consider now the set of operations that is - implictly - defined by this type declaration. This
set includes

» Equality and inequality: = /=
» Ordering relations: < <= > »>=
s The assignment basic operation: =

e« Other basic operations called attributes. These all start with the type name followed by
an apostrophe ('). They include attributes such as

DAY 'FIRST -- yields MON
DAY'LAST -- yields SUN
and other attributes that are functions with a single parameter; the latter include
DAY 'SUCC -- for example, DAY 'SUCC(MON) = TUE
DAY 'PRED -- for example, DAY'PRED(TUE) = MON
DAY 'POS -- for example, DAY'POS(MON) = 0

DAY 'VAL -- for example, DAY 'VAL(Q) = MON

Types 41

s Finally, the basic operations involved in membership tests (in and not in), and
qualification by the type DAY itself.

Thus the declaration of the type DAY has implicitly defined the above set of values and
operations, and thereby what we are allowed to do with objects and values of type DAY. To
appreciate the contribution of this concept to program reliability consider the interactions of
three important rules in typed languages such as Pascal and Ada:

(a) All objects (variables and constants) must be declared.
(b) The declaration of an object must specify its type.

(¢) Any operation on an object must preserve its type.

It results from the above rules that the type of an object is invariant during program
execution: it is the type given in the object declaration. All properties characterized by the
type are therefore static and must be checked at compilation time by Ada compilers. To
illustrate this point consider the additional declarations:

type DIRECTION is (NORTH, EAST, SOUTH, WEST);
GOAL : DIRECTION;

TODAY : DAY;

START : DAY;

With these declarations, an Ada compiler will accept assignment statements such as

TODAY := MON;
GOAL := WEST;
START := TODAY,;

Consider for example the first one: TODAY is a variable declared to be of type DAY, there
is an assignment operation (:=) defined for this type; assignment to a variable is allowed, but
it réquires a value of the same type: and there is actually a literal MON that yields a value of
type DAY. Using similar simple rules, an Ada compiler must reject each of the following
illegal assignment statements:

TODAY := WEST; -- Illegal: WEST is not a DAY value
TODAY = §; -- Illegal: 5 is not a DAY value
TODAY := TODAY + START; -- lllegal: "+" is not defined for DAYS

In the last case, TODAY and START are both of type DAY but the operation "+" is not
defined for this type and this knowledge allows rejection of the statement.

This example demonstrates that the contribution of enumeration types to the quality of
programs goes far beyond increased readability. We could actually achieve a comparable
degree of readability in languages such as Algol 68, which do not provide enumeration types
(or even in Fortran, using data or parameter statements). The set of Algol 68 declarations
could be as follows

Ada Kalionale

¢ days of the week: ¢

int MON=1, TUE=2, WED=a3, THU=4, FRI=5, SAT=6, SUN=7,
¢ directions: ¢

int NORTH=1, EAST=2, SOUTH=3, WEST=4;

int GOAL, TODAY, START;

thereby allowing the same degree of readability as Ada for statements such as

TODAY = MON;
GOAL = WEST;
START := TODAY;

The real difference is one of reliability. The following statements would all be accepted by
an Algol 68 compiler, whereas they would all be rejected by an Ada compiler in the Ada
formulation:

TODAY := WEST;

TODAY := 8;
TODAY := TODAY + START;
START := 2*GOAL - NORTH + SUN*WEST;

By declaring DAY as an enumeration type we expressed the intent that there be seven
distinct values with well-defined operations. This intent was expressed in a form that permits
a compiler to verify that further uses of days are consistent. Furthermore, in declaring
DIRECTION to be a different type (instead of having a single enumeration type with eleven
values), we have conveyed our intent that days and directions should not be mixed; and
again, we have done so in a form that allows verification at compilation time by an Ada
compiler.

In all cases to be examined in later sections, we will find that types allow the explicit
formulation of certain logical requirements of programs. Explicit formulation allows these
logical requirements to be verified by a mechanical tool - the Ada compiler - thereby
contributing to program reliability.

4.3 Type Equivalence

As stated before, one of the objectives of a type system is to disallow incorrect (in particular
unintentional) mixing of objects of different types. Hence a key issue in the design of a type
system is the formulation of the conditions that must be satisfied by two objects in order
that they have the same type.

Alternative resolutions of this issue of type equivalence have been put forward in a paper by
Welsh, Sneeringer, and Hoare [WSH 77). These are classified into two families, called name
equivalence and structural equivalence.

Types 43

Name equivalence is used in Ada. It is based on the principle that each type declaration
declares a distinct type: hence two type declarations always declare two distinct types, even if
the included type definitions are textually identical. Ccnsequently, for two objects to have
the same type, their declarations must refer to the same type name (whether directly, or
indirectly by a subtype, as we shall see later).

Consider for example the declarations:

type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type COLOUR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK});

TINT : COLOR := BROWN;
SHADE : COLOR := RED;
HUE, SPOT : COLOUR := GREEN;

Then, according to the above stated principle, COLOR and COLOUR are two distinct types;
TINT and SHADE are of the same type (COLOR), HUE and SPOT are of the same type
(COLOUR). Thus the following assignments are legal:

TINT := SHADE;
SPOT := HUE;

On the other hand, SPOT and TINT are of different types, so that the following assignment
is not allowed:

SPOT := TINT; -- Illegal!

Structural equivalence refers to formulations in which some form of equivalence rule is
defined between types on the basis of their structural properties. For example, in the case of
enumeration literals several degrees of structural equivalence would be conceivable: the same
number of literals (unlikely); the same literals, although not necessarily in the same order;
textually identical, including spaces and line breaks and so on. For example COLOR and
COLOUR would be considered as structurally equivalent for all but the last of these
formulations.

We have rejected structural equivalence in order to avoid pattern-matching problems for the
compiler and for the human reader: in the case of enumeration types, this could involve
comparisons of very long lists of identifiers.

We also believe that structural equivalence tends to defeat the purpose of typing. Thus,
objects could be considered as being of the same type because their structures happen to be
identical - by accident - or because they have become identical as a result of textual
modifications performed during program maintenance: in the case of enumeration types,
after deleting or inserting a literal. Such objects could then be mixed unintentionally, without
causing compiler diagnostics, and the error would go undetected.

44 QU IXWITUnuic

Name equivalence is therefore both simpler and safer. If we want several objects to have the
same type, then we must declare the type, thereby giving it a name, and we must
subsequently refer to this name in the declarations of these objects.

Further arguments supporting name equivalence are presented in the sections concerning
arrays (see 4.5.3) and records (see 4.6.1).

4.4 Constraints and Subtypes

So far we have seen that a type characterizes a set of values that may be assumed by objects
of the type, and a set of operations that may be applied to these values and objects. The fact
that an object has a certain type is a static property of the program: it follows directly from
the declaration of the object.

We shall now see how to restrict the values that may be assumed by an object to a subset of
the values of the type. Such a restriction is called a constraint, and it does not affect the set
of applicable operations. A subtype is a type together with an associated constraint. An
object can be declared to have a certain subtype, and this is then a static property of the
object. But in general it will not always be possible to determine statically (at compilation
time) whether or not a value satisfies a constraint and thereby belongs to a corresponding
subtype. Thus constraints and subtypes are concepts that are, in general, related to the
dynamic behavior of programs.

4.4.1 Counstraints

A constraint can be used to restrict the set of values that may be assumed by an object of a
given type, as in the following example:

START : DAY range MON .. WED;
Had we declared the variable START as
START : DAY; -- only on MON, TUE, and WED

then all values of this type would be assignable to START - the comment notwithstanding.
Given the constraint, however, the only assignable values are those in the range MON ..
WED, that is, the values MON, TUE, and WED.

Constraints may be used effectively by compilers for optimization purposes. Their major
purpose, however, is for greater program reliability: a constraint expresses a logical
requirement on our program in an explicit manner, and it therefore opens up the possibility
of reporting violations of this logical requirement, should they ever occur.

Types 45

In principle these violations will be reported at execution time by raising the exception
CONSTRAINT_ERROR. This means that, in general, compilers will generate code that
dynamically checks constraint satisfaction. In practice however, compilers will be able to
report certain potential constraint violations at compilation time. In other situations they will
be in a position to omit a given check, since success has been guaranteed by a prior check.

Examples of assignments are given in the block statement below. The comment static check
refers to situations where the check can be done at compilation time (in anticipation). The
comment dynamic check refers to situations where a check at run time is actually required.

declare
TODAY : DAY;
START : DAY range MON .. WED;

STOP : DAY range MON .. FR];
MID : DAY range WED .. THU;
begin

START := TUE; -
STOP = FRI; -

static check : since TUE is a literal
static check : since FRI is a literal

TODAY

= START; -~ static check : any value is allowed for TODAY
STOP = START; -~ static check : the range of STOP
-~ includes that of START
START := STOP; -~ dynamic check : STOP <= WED
MID = TODAY; -- dynamic check: TODAY in WED .. THU
STOP = MID; -~ static check : the range of MID is
-- included in that of STOP
end;

4.4.2 Subtypes

It is good programming practice to factor out the knowledge of common properties, and this
applies to constraints as well. Assume for example that at several places in a program we
find objects declared with a type and constraint such as

DAY range MON .. FRI

Then it would be better to associate a name with this group and use this name for the
corresponding object declarations. This can be achieved by a subtype declaration (a type
name followed by a constraint is actually called a subtype indication):

subtype WORKDAY is DAY range MON .. FR];

46 ' Ada Rationale

where the name chosen for the subtype is carefully chosen to convey the intent.

The name of a subtype is an abbreviation for the associated type name and constraint. Thus
a subtype declaration does not define a new type, and objects of different subtypes of a
given type are compatible for assignment. In an expression, such objects can be used at any
place where a value of the given type is expected; the constraint on an object need be
checked only upon assignment to the object, as shown in the previous examples.

The advantages of using subtypes are the usual maintainability advantages of any factoring
mechanism. For example, if we want to change the range of workdays, then a single textual
change is needed, namely in the subtype declaration. Without named subtypes, it would be
necessary to inspect all occurrences of the range MON .. FRI in the program, in order to
detect those occurrences where the intent was to use this range for workdays.

We can also define hierarchies of subtypes by constraining other subtypes. Consider for
example the type CHARACTER. In Ada this is a predefined enumeration type whose
enumeration literals are character literals (such enumeration types are called character types).
Now we can define a subtype such as

subtype LETTER is CHARACTER range 'A' .. 'Z"';

for upper-case letters. Subsequently we can define a subtype such as

subtype LAST_11 is LETTER range 'O' .. 'Z';

For this to be correct, the range 'O' .. 'Z"' must be compatible with that of LETTER, that
is, it must be a subinterval of 'A' .. 'Z"'. This is checked, and so an error such as writing
the character 'Q' (the digit zero) instead of the upper-case letter 'O' would be detected -
the character '0' (zero) does not belong to the range 'A ' .. 'Z"'.

4.4.3 Evaluation of Constraints

All the examples presented so far included constraints that can be evaluated statically.
Certain constraints that determine critical space requirements must be known at compilation
time, since space optimization would not be possible in the case of dynamically computed
values. For example, the range of an integer type had better be known statically, in order to
allow the compiler to select the appropriate single-length or double-length machine
instructions.

However, requiring static evaluation in every case would be much too restrictive. The
assertions expressed by range constraints would be too coarse, ranges could not be used as
general loop iteration ranges, and arrays could only be of static size. A balance must be
struck in this respect, and the rules of Ada represent a deliberate choice of when evaluation
must be static.

Types 47

An issue to be considered is the time when the expressions appearing in constraints should be
evaluated. Consider the subtype declaration:

subtype PAST is DAY range MON ., TODAY;

where TODAY is a variable. The rule adopted in Ada is that the bounds of a range
constraint are evaluated when the subtype declaration is elaborated. This means that the
subtype declaration is equivalent to the following sequence:

today_now : constant DAY := TODAY;
subtype PAST is DAY range MON .. today_now;

where today_now represents an identifier £ot used elsewhere. The bounds of the subtype
PAST are denoted by the subtype attributes PAST ' FIRST (same as MON) and PAST'LAST
(same as today_now).

Note that if the bounds of the range are not known at compilation time, the compiler will
often need to generate (implicitly) a descriptor containing the value of the bounds. Hence, to
minimize descriptor overhead, it is important to localize the knowledge about equivalent
constraints in a single subtype declaration and then to use the name of this subtype, instead
of repeating the constraint in several variable declarations.

Note also that, for reliability and maintainability, using a subtype is far better than repeating
the corresponding constraint at various points of the text, since the value of an expression
defining a bound may differ at these points. Thus it is preferable to write:

declare
subtype INDEX is INTEGER range K*M .. K*N;
TABLE : array (INDEX) of FLOAT;

procedure UPDATE(X : INDEX) is

end UPDATE;
begin
for J in INDEX loop
if TABLE(J) < TABLE(INDEX 'LAST) then

end if;
end loop;
end;

rather than to repeat the range K*M .. K*N at various points of the text or to use K*N
directly (for INDEX 'LAST).

In the case of the subprogram UPDATE the language does not even leave us this choice,
since it requires a type or subtype name for subtype indications of formal parameters,

48 Ada Ralionale

4.5 Array Types

An array type declaration specifies the subtype of array components, and the subtype of
index values for each index position. On the other hand, the index bounds are not specified.
This means that the set of array values defined by an array type contains arrays with
different numbers of components. Consider for example the formulation of the predefined
array type STRING:

type STRING is array (POSITIVE range <>) of CHARACTER;

This declaration specifies that values of type STRING are one-dimensional arrays whose
components have the type CHARACTER. It further specifies that the index values must be
positive integers, the subtype POSITIVE being declared as

subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST;

On the other hand, it does not specify which values should be assumed by the index bounds.
This is stressed by the box (<>) in the index subtype definition

POSITIVE range <>

The box symbol (here as elsewhere in the language) stands for something that is to be filled
in later; something that is left unspecified, but only temporarily.

Later on, it will be possible to partition the set of array values into subsets corresponding to
some specific index bounds. Each such subset defines a subtype of the array type. The form
of constraint used to specify the range of index values (and hence the bounds) for a given
index position is called an index constraint. For example;

BUFFER : STRING(1 .. 1000);

This declares the variable BUFFER of type STRING: an index constraint is required in such
a declaration and, in the case considered, it specifies that the lower and upper bounds are the
positive numbers ! and 1000,

We can also declare a subtype, and thus give a name to the subtype indication formed by the
name of the array type followed by an index constraint. Subsequently, we can use the
subtype name in object declarations:

subtype LINE is STRING(1 .. 80);

LEAD : constant LINE := (LINE'RANGE => ' ');
HEADER : LINE := LEAD;

We have used the array attribute LINE'RANGE in the initialization of LEAD: it provides
the index range of the subtype LINE in a symbolic manner, and is therefore easier to
maintain than stating the range literally, as 1 .. 80.

Types : 49

Other examples of array attributes are given below:

BUFFER 'FIRST ~=1

BUFFER 'LAST ~- 1000

BUFFER 'LENGTH -- 1000

LINE'LAST -- 80

LEAD'LAST -- 80 (same as LINE 'LAST)

In some cases we want all declared objects of a given array type to have the same index
bounds. This can be achieved by providing an index constraint directly in the array type
declaration. For example

type SCHEDULE is array (DAY) of BOOLEAN;

This form is actually a contraction of the declaration of an anonymous array type followed
by the declaration of a subtype:

type schedule is array (DAY range <>) of BOOLEAN; -- arbitrary range of days
subtype SCHEDULE is schedule (DAY 'FIRST .. DAY 'LAST); -- always 7 days

This means that SCHEDULE is actually a (constrained) array subtype and all objects that
have this subtype therefore have the same bounds (MON and SUN).

There are two cases in which the subtype of an array object (and hence the bounds) can be
inferred, and therefore is not required to be explicit in the declaration of the object. The
first case is for constants. In a way, constancy is the uitimate form of restriction: whereas an
index constraint freezes the index bounds but not the values of the array components,
everything is invariable in the case of a constant: the component values and hence also the
bounds. Thus a constant declaration such as

MESSAGE : constant STRING := "how many characters?";

is allowed. The implied lower bound is 1 - that js, POSITIVE 'FIRST - and the implied
upper bound is given by the number of characters of the string (which we can subsequently
obtain from the attribute MESSAGE ' LENGTH).

The second case is for formal parameters. We want to provide a subprogram of general
utility that is applicable to any array of a given type, whatever the index bounds. This is
achieved by declaring the formal parameter to have this array type. Then, for each call of
the subprogram, the formal parameter will be constrained by the bounds obtained from the
associated actual parameter. For example a function MIRROR, returning the mirror image of
a string of arbitrary bounds, is defined as follows:

50 - Ada Rationale

function MIRROR(A : STRING) return STRING is
RESULT : STRING(A 'RANGE);
begin
for N in A'RANGE loop
RESULT(N) := A(A'LAST - (N - A'FIRST));
end loop;
return RESULT;
end MIRROR;

For each call, the formal parameter A is constrained by the bounds of the associated actual
parameter. This means that the bounds A'FIRST and A'LAST (and hence the range
A 'RANGE) have well-defined values during a given call. Consider for example:

EGASSEM : constant STRING := MIRROR(MESSAGE);
-- the string "?sretcarahc ynam woh"

then during the call MIRROR(MESSAGE), the value of A'FIRST is MESSAGE ' FIRST; that
of A'LAST is MESSAGE'LAST; and the range A'RANGE is defined by
MESSAGE 'RANGE. These values are invariable for the call considered, but they need not
be the same for different calls.

To complete our discussion of array types we need to mention the set of operations defined
by an array type. Some of, them such as indexing, are fairly classical: indexing the array
BUFFER by the index value N is achieved by BUFFER(N) and refers to the Nth component
of that array (since the lower bound is 1). The discussion given in the following subsections
will concentrate upon features that are less classical: slices and aggregates.

4.5.1 Slices and Sliding

Slices are quite useful for programs that deal with strings and more generally for one-
dimensional arrays. Consider, for example, setting the headline of a given page of a
dictionary. Assuming the headline declared as

HEADLINE : STRING(!1 .. 60) := (others => ' ')

it could later be filled by slice assignments such as

HEADLINE(1 .. 10) := "battle cry”;
HEADLINE(29 .. 32) := " 125%
HEADLINE(46 .. 60) := "Bayeux tapestry”,

Types 51

More realistically, our application would have functions defining the left, middle, and right
sides for a given page number:

function LEFT (N : POSITIVE) return STRING (1 .. 20);
function MID {N : POSITIVE) return STRING (1 .. 4);
function RIGHT (N : POSITIVE) return STRING (1 .. 20);

so that the composition for the page 125 could appear as follows:

HEADLINE(] .. 20) := LEFT(125);
HEADLINE(29 .. 32) := MID(125);
HEADLINE(4! .. 60) := RIGHT(125);

Another way of programming this headline composition is to declare an eight character blank
filler and then use string catenation. So for the current page P:

FILLER : constant STRING(! .. 8) := (others => ' ');

HEADLINE :=» LEFT(P) & FILLER & MID(P) & FILLER & RIGHT(P);

In another part of the program, in which we analyze the header, we may define another
string

PLACE : STRING(! .. 60);
and write the slice assignment

PLACE(1 .. 20) := HEADLINE(4! .. 60);

Finally, we may want to compare a slice to a string literal or to another slice:

if PLACE(1 .. 20) =" BAYEUX TAPESTRY" or
PLACE(] .. 20) = HEADLINE (41 .. 60) then

Having reviewed these typical uses of slices, we now consider what they are and what is
involved in slice assignments and comparisons. Consider first the type of a slice such as

PLACE(41 .. 60)

This type is the same as that of PLACE, that is, the type STRING. Remember that an array
type defines the subtype of the index bounds but not the bounds themselves. Thus STRING
was defined as

type STRING Iis array (POSITIVE range <>) of CHARACTER;

52 Ada Rationale

Consequently PLACE and PLACE(41 .. 60) are both of this type, although they have
different subtypes. The subtype of PLACE is

STRING(! .. 60)
whereas the subtype of

PLACE(4! .. 60)
is

STRING(41 .. 60)

Note that we can have slices even in the case where the array type is anonymous. For
example, given the type SCHEDULE declared in the previous section we can declare

A, B: SCHEDULE;

and then perform slice assignments such as

A(MON .. FRI) = (MON .. FRI => TRUE);
A(SAT ..SUN) := (SAT ..SUN => FALSE);

Similarly we can catenate slices as in

B:= A(WED .. SUN) & A(MON .. TUE);

-- B = (TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE)

In the above cases, slices such as A(MON .. FRI) and A(SAT .. SUN) have the anonymous
type schedule (and this is quite legitimate, as is amply demonstrated by these examples).

Consider next what is involved in an assignment statement such as

PLACE(1 .. 20) := HEADLINE(41 .. 60);

The two objects do have the same type (STRING) but their subtypes are STRING(1 .. 20)
and STRING(41 .. 60) respectively, and are thus different. The assignment is nevertheless
correct: the language rules specify that before assigning HEADLINE(41 .. 60), this array
value undergoes a subtype conversion to the subtype of the left-hand side, that is, to
STRING(I .. 20). This subtype conversion - sometimes called s!iding - is possible only if the
two arrays have the same length (which is true for our example). If the lengths differ, the
subtype conversion fails and the exception CONSTRAINT _ERROR is raised.

Types 53

Sliding is also involved in comparisons such as

PLACE(] .. 20) = HEADLINE(41 .. 60)

so that equality does not require the same subtype (and bounds): it only requires that the
lengths be the same and that matching components be equal - matching components are those
that have the same relative position. If the lengths differ, the two slices are unequal (no
exception is raised).

So far we have given examples of sliding in the case of slices, but subtype conversions are
also involved for array objects that do not have the same bounds. For example, having
declared

BANNER : STRING(101 .. 160);

the following assignment is correct and involves a similar subtype conversion:

BANNER = PLACE,;

To conclude, sliding corresponds to a view of arrays for which the bounds are not part of
array values but rather of array objects. The logical consistency of the model moreover
requires that array bounds be transmitted to formal parameters. The sliding semantics
selected for equality can actually be described in Ada itself:

function "=" (LEFT, RIGHT : STRING) return BOOLEAN is
begin
if LEFT'LENGTH /= RIGHT'LENGTH then
return FALSE;
end if;
for N in LEFT 'RANGE loop
if LEFT(N) /= RIGHT(N + (RIGHT'FIRST - LEFT 'FIRST)) then
return FALSE;
end if;
end loop;
return TRUE;
end;

Sliding actually corresponds to the term (RIGHT 'FIRST - LEFT 'FIRST) in the indexing of
the right array.

Without slices the necessity for a sliding semantics. of assignments would not be as obvious:
after all it would be possible to restrict assignments to cases where the bounds were the
same. Another alternative would have been to consider that sliding is part of the slicing
itself. This would mean, for example, that the lower bound of any string slice is
POSITIVE 'FIRST. However this semantics does not appear very intuitive. Consider for
example the following function:

54 Ada Rationale

function LOCATE(C : CHARACTER; S : STRING) return INTEGER is
begin
for N in S'RANGE loop
if C = S(N) then
return N;
end if;
end loop;
return Q; -- not found
end;

With the Ada semantics of slices we can call this function in the following manner:

LOCATE('X', BUFFER)
LOCATE('*', BUFFER(30 .. 90))
LOCATE('?', BUFFER(100 .. 200))

and so on, and we expect the result, if not zero, to be usable as an index indicating a
position where the character was located in the buffer. Now this relies essentially on the fact
that both the lower and upper bounds of the actual array are passed to the formal array. This
would not be the case if slicing already implied sliding, since all STRING slices would have
a lower bound equal to 1.

4.5.2 Array Aggregates

The syntax of array aggregates allows for named aggregates, aggregates with the choice
others, and positional aggregates. These forms are justified by readability and by
convenience, and also, in the case of positional aggregates, by tradition. Their design had to
take into account certain limitations, inspired either by efficiency or by consistency with
other rules, such as sliding.

The different forms of aggregate are reviewed in what follows. For each form we discuss
what is allowed, and consider the determination of the subtype of the corresponding
aggregates - that is, how to determine the lower and upper bounds. Most examples will
presuppose the following declarations:

Types 55

subtype INDEX is INTEGER range -1 .. +200;
type TABLE is array (INDEX range <>) of INTEGER;

subtype QUINTET is TABLE(O .. 4);
subtype TRIPLE is TABLE(Ql .. 3);

TRIO : TRIPLE;
QUINT : QUINTET;
ROW : TABLE(l .. 50);

procedure DISPLAY (T : TABLE);
procedure TRIANGLE (T : TRIPLE);

Named Aggregates

Named associations are provided for reasons of readability: they make the association
between index values and component values fully explicit. For example:

(1..10=> 0, 11..50=> 25)

The choices being explicit, the lower and upper bounds are fully defined by the smallest and
largest choice values, respectively, so that the subtype of the above aggregate is TABLE(] ..
50), in the present context. Thus for the call

DISPLAY((! .. 10 => 0, 11 .. 50 => 23));

the attributes of the formal parameter T have the corresponding values: T'FIRST = | and
T'LAST = 50.

For assignment statements, sliding applies as usual, and the following assignment is therefore
well-defined:

QUINT == (1..5=> 33);

The limitations imposed on named aggregates are justified by efficiency considerations: the
choices must be static (computable at compilation time), unless the aggregate includes a
single component association, and this component association has a single choice. Thus an
aggregate with a single choice such as

(1..N=> 25)
where N is computed at run time, is allowed. But an aggregate such as
M. N= 25 K. L= 12)

where M, N, K and L are not static is not aliowed, since this would require a rather complex
check at run time that the ranges were adjacent and did not overlap.

ART RTONTTT

The Choice Others

In many cases most components of an array will have the same value and it will be
convenient to obtain the array value by an aggregate of the form:

(..,others => COMMON_VALUE)

The particular case where all components have the same common value is also frequent; in
this case the form of the aggregate reduces to

(others => COMMON__VALUE)

In contrast to the situation encountered with previous named aggregates, the presence of an
others choice implies that no information about the bounds can be derived from the
aggregate itself and this information will therefore have to be obtained from the context. An
aggregate with the choice others will be illegal in a context that does not define the bounds.
For this reason, a call such as:

DISPLAY((others => 25)); -~ illegal

is illegal since no information on the bounds can be obtained from the context; indeed it is
the other way round: since the formal parameter is unconstrained, it expects the bounds to be
supplied by the actual parameter. For similar reasons the comparison

if TRIO = (others => 10) then

is not allowed, since the predefined operator "=", which is implicitly declared by the
declaration of the type TABLE, has the following profile:

function "=" (LEFT, RIGHT : TABLE) return BOOLEAN;

so that the right parameter is of the (unconstrained) array type TABLE, which does not
provide information on the bounds.

For the above reasons an aggregate containing the choice others is only allowed in contexts
where we know the array subtype, whether by declaration or by qualification, as in the
following examples:

TRIANGLE((others => 15)); ~- subtype TRIPLE
DISPLAY(TRIPLE '(others => 21)); ~- qualified: a TRIPLE
DISPLAY(QUINTET'(0 .. | => 5, others => 15)); -- qualified: a QUINTET

For assignment statements, the choice others is also allowed, since the subtype of the variable
on the left-hand side is always known. So we can write:

TRIO := (others => 0);
QUINT := (others => 1);

Types 57

Note that an others choice need not be static, as is shown in the following example:

for Nin 1 .. 4 loop
ROW(10%N .. 12%#N) := (others => 3);
end loop;

Whereas the above aggregate is allowed, an aggregate combining the choice others with other
named associations is not allowed as the right-hand-side expression of an assignment
statement (unless the aggregate is qualified). To understand this restriction, remember that an
array assignment involves sliding of the bounds of the value of the array expression. In
sombination with the choice others this could have led to surprises. Consider for example the
variable:

FIVE : TABLE(2 .. 6);

and the {illegal) assignment statement
FIVE == (3 => 8, others => 1); ~-- illegal

One might expect the resulting value of FIVE to be (8,1,1,1,1), because of the explicit
choice, or perhaps (1,8,1,1,1), because of the lower bound of FIVE. However, before sliding
the subtype of the aggregate would be TABLE(-1 .. 3), with INDEX'FIRST = -] as lower
bound, therefore placing the value 8 in fifth position and with the resulting value (1,1,1,1,8).
The combination of these two degrees of freedom - sliding on the one hand, and others with
other associations cn the other hand - would thus have unintuitive and therefore unreliable
consequences; it is not allowed in Ada.

Note that, as usual, an explicit qualification resolves all doubt, so that the following
assignment is allowed:

FIVE := QUINTET'(3 => 8, others => 1); -- (1,1,1,8,1)
Positional Aggregates

For positional aggregates we again have to consider whether or not the subtype is defined by
the context. Thus for:

TRIANGLE((4, 6, 8)); -
TRIO := (4, 6, 8); -
DISPLAY(TRIPLE '(4, 6, 8)); -

subtype TRIPLE
subtype TRIPLE
qualified: TRIPLE

the subtype is known and therefore defines the bounds. Consider on the other hanc a call
such as

DISPLAY({4, 6, B8));

anere the declaration of the formal parameter is unconstrained: in such a case the lower
. und of the aggregate is (implicitly) taken to be INDEX'FIRST, the lower bound of the
© tev subtyvpe (here - 1).

58 Ada Rationale

4.5.3 Equivalence and Explicit Conversions

Name equivalence, as explained in section 4.3, is used systematically for all types in Ada,
and in particular for array types. As for other types, the main arguments in favor of name
equivalence are simplicity and the desire to avoid unintentional equivalence: It would not be
desirable to treat two arrays as having the same type just because the component type is the
same:

type OPTION_SET is array (OPTION) of BOOLEAN;
type COLOR_SET is array (COLOR) of BOOLEAN;

and (in this case) just because the number of options happens to equal the number of colors.
From a conceptual point of view, these two array types have nothing to do with each other,
apart from their common component type.

On the other hand, the design of Ada recognizes that this safety argument does not apply to
explicit type conversions: being explicit, they are unequivocally intentional and cannot be
just accidental.

Explicit type conversions are clearly desirable among array types that satisfy certain
conditions. To illustrate their need, consider first a package defining sorting operations. It
could appear as:

with MATHS; use MATHS; -- defines REAL

package SORTING is
type VECTOR is array (INTEGER range <>) of REAL;
procedure SORT(X : in out VECTOR);

end SORTING;

For the definition of the type VECTOR the number of decisions to be made was rather
limited: first there was the component type, for which it appeared convenient to use the type
REAL defined in the library package MATHS (along with useful mathematical functions);
then there was the selection of INTEGER as index subtype. Given this limited number of
decisions, it is not unlikely that the same decisions could be made in another package
defined totally independently, say by a different software producer. For example a package
performing table listings could be specified as:

with MATHS; use MATHS;

package LISTING is
type TABLE is array (INTEGER range <>) of REAL;
procedure LIST(X : in TABLE),

end LISTING;

Types 59

These two packages are of general use and hence they would probably be made available as
library packages, so that a user performing both sort and listing operations would naturally
write a procedure such as the one given below:

with MATHS, SORTING, LISTING;
use MATHS, SORTING, LISTING;
procedure APPLICATION is

VYV : VECTOR(] .. 200);

T TABLE(O .. 3000);
begin

&)RT(V);

.I:IST(T);
end";kPPLICATION;

The SORT operation is applicable to vectors and thus to V; similarly the LIST operation is
applicable to tables and thus to T. However, a dilemma would arise for an array that must be
sorted before being listed: should it be declared as a VECTOR or as a TABLE? - neither of
the two would work. Similarly, an array might have been declared as

A : array (1 .. 1000) of REAL;

without knowing in advance whether it would ever be sorted (or listed), and it would be
cumbersome to have to change the declaration of A just because it needed to be sorted in
one part of the program.

For these reasons, explicit conversions are allowed between two array types if both types
have the same component type and the same dimensionality, and if for each dimension the
index types are the same (or convertible to each other: see RM 4.6). Syntactically, an explicit
conversion appears as a call of a function whose name is that of the target type. For
example:

SORT(VECTOR(T));
LIS.'.T.(TABLE(V));

SORT(VECTOR(A)),

Note that conversions are still possible when the constraints on the component type are
different. Consider for example the array types

type CHAR_LINE s array (! .. 120) of CHARACTER;
type TEXT_LINE is array (! .. 120) of CHARACTER range 'A' .. 'Z"';

CL : CHAR_LINE;
TL : TEXT_LINE;

Explicit conversions such as

TL := TEXT_LINE(CL),
CL := CHAR_LINE(TL),

are allowed. The fact that they are explicit warns the user that they may (but need not) be
costly. For example, the conversion of CL to the type TEXT_LINE requires an implicit loop
to check that each component of CL is in the allowed range of characters; on the other hand,
no check is involved for the conversion of TL to the type CHAR _LINE. Similarly, for an in
out parameter that is implemented by reference, an actual parameter that has the form of a
type conversion may require the creation of a copy on the calling side if the compiler has
chosen different representations for the two types.

Array types are the only types for which Ada provides anonymous type definitions.
However, all array objects declared in this manner are of different types, even in the case of
multiple declarations such as

U, V. array (1 .. 12) of INTEGER;

since this multiple declaration has the same meaning as the following succession of single
declarations:

U : array (1 .. 12) of INTEGER;
V : array (1 .. 12) of INTEGER;

Two type definitions imply two distinct types, and thus we cannot assign U to V, although
we could assign a component of U to a component of V since they are both of type
INTEGER. Should we want U and V to be of the same type (and the ability to assign U to

V), the only solution is to name the type and use this type name in the declaration of U and
V:

type DOZEN is array (1 .. 12) of INTEGER;
U : DOZEN;
V : DOZEN;

U:w= V;

Types 61

4.6 Record Types

The basic form of record type is similar to that provided in Pascal: the component
declarations are enclosed by the reserved words record and end record, as in the following
example: '

type DATE is
record
MONTH : MONTH_NAME; -- a suitable enumeration type
DAY : INTEGER range 1 .. 3];

YEAR : INTEGER range 1 .. 3000;
end record;

Here the set of values consists of all ordered triples containing a month, a day, and a year in
this order and having the specified component names MONTH, DAY, YEAR. The set of
operations includes assignment, test for equality, component selection, and aggregate
formation. For example, having declared

TODAY : DATE;

we can select the corresponding year by a selected component
TODAY.YEAR

as in the following assignment
TODAY.YEAR := TODAY.YEAR + |;

Selection of the component YEAR can actually be viewed as achieved by a basic operation
".YEAR" which can be applied in postfix manner to the name of any object of type DATE.
These basic operations are implicitly declared by the record type declaration itself, although
Ada does not allow the explicit declaration of postfix operations such as ".YEAR".

Aggregates have already been discussed in section 3.5: in particular we have seen that Ada
provides both positional aggregates and aggregates in named notation:

(DEC, 12, 1983) -- positional
(DAY => 12, MONTH => DEC, YEAR => 1983) -- named

62 Ada Ralionale

4.6.1 EquivalenceA

Name equivalence is used for record types, as for other types. To emphasize the arguments
against structural equivalence, consider the following record type declarations:

type PAIR is
record
LEFT : INTEGER;
RIGHT : INTEGER;
end record;

type RATIONAL is
record
NUMERATOR : INTEGER;
DENOMINATOR : INTEGER range | .. INTEGER'LAST;
end record;

Several alternative forms of structural equivalence rules can be considered, involving
increasing amounts of checking, especially if the record types have a large number of
components:

(a) Two record types are equivalent if the texts of their type definitions (what appears
after is) are identical (disregarding textual layout such as spaces, new lines, and so on).

{(b) Two record types are equivalent if they have the same number of components, and at
each component position, corresponding components have the same name and are
declared with the same type name.

(c) Same as (b) but the names of corresponding components need not agree, only the type
names. This is a more mathematical point of view, where one considers a record as a
cartesian product.

(d) Same as (b) but the order of components is not significant.

(e) Same as (¢) but the constraints on corresponding components may differ.

(f) Same as (e) but the subtypes must be the same.

(g) Same as (e) but the component types must be equivalent, while their names need not be
identical.

(h) Same as (g) but a type name is also equivalent to the text of the corresponding type
definition (which could even be anonymous).

The types PAIR and RATIONAL given above would be equivalent under all the rules if
their component names were accidentally the same and if the constraint on DENOMINATOR

Types 63

were not expressed in the type declaration. More specifically, under rule (b), PAIR would be
equivalent to

type ANOTHER _PAIR is
record
LEFT, RIGHT : INTEGER;
end record,

Rule (¢) makes sense for a language for which all aggregates are in positional notation. It
complicates the checking by the compiler, since all permutations must be considered.
Conversely, the rule (d) is sensible for a totally non-positional language where components
must always be named in record aggregates. Rule (e) complicates the implementation of
constraints and subtypes for components, since they must be checked for each component on
record or array assignments. Rule (f) cannot be checked statically. Rule (g) requires a
recursive matching algorithm. In addition, rule (h) requires type expansion, and even an
algorithm of cycle reduction in the case of mutually recursive access types.

All these complexities for the implementation - and above all, for the reader - are avoided
in Ada by adopting the simple rule that every declaration declares a distinct type.

4.6.2 Default Initialization of Record Components

Default initialization can be specified for some or for all components of a record. Consider
for example:

type FRACTION is
record
DIVIDEND : INTEGER :=
DIVISOR . POSITIVE =
end record,

0;
l.

Al

The indicated initializations will be performed by the elaboration of the declaration of an
object of type FRACTION, in the absence of explicit initialization. Thus after the
elaboration of

F : FRACTION;
G : FRACTION := (2, 3),

the value of F is well-defined and is equal to (0, 1), whereas the value of G is equal to (2,
3) as specified by the explicit initialization.

04 Add Karnonare

Note that initial values need not be static, as is illustrated here:

type BUFFER(LENGTH : POSITIVE) is

record

POS : NATURAL := 0;

VALUE : STRING(! .. LENGTH) = (1 .. LENGTH => ' '),
end record;

type TRIPLE is
record
A, B, C: PERSON_NAME := new PERSON;
end record;

The following example shows that default initializations (in combination with access types)
can even be used to construct quite elaborate dynamic structures:

type NODE(LEVEL : POSITIVE := |);
type LINK is access NODE;
function BRANCH(N : POSITIVE) return LINK;

type NODE(LEVEL : POSITIVE := 1)is
record
VALUE : ITEM = NULL_ITEM;
LEFT, RIGHT : LINK := BRANCH(LEVEL),
end record;

function BRANCH(N : POSITIVE) return LINK is
begin
if N =] then
return null;
else
return new NODE(N - 1);
end if;
end;

Thus whereas the declaration
TERMINAL : NODE(1);
will create a single node, a declaration such as
TREE : NODE(S);
will lead to the dynamic creation of a complete binary tree with 5 levels (thus including 1

node of level 5, 2 nodes of level 4, 4 nodes of level 3, 8 nodes of level 2, and 16 nodes of
level 1).

Types 65

The previous example is mainly intended to show the power that can be achieved by default
initializations. Clearly more power also creates more danger and an incorrect program could
certainly enter an infinite recursion during the elaboration of declarations.

The main motivation for allowing default initialization is however one of program reliability.
In many applications, it is found desirable to have a consistent initial state for all objects: the
services offered by the program may critically depend on objects being well initialized. To
achieve this, we could of course define an initial value to be used for all declarations, or
provide the users with an initialization procedure to be applied before any other use is made
of objects. The weakness of these approaches lies in the fact that our program would remain
vulnerable to users that do not follow this initialization discipline (whether unintentionally or
not). The only safe solution is therefore to have a default initialization that is invoked
without any reliance on the user.

4.7 Discriminants

The form of record type presented so far corresponds to a pure Cartesian product (as
described by C.A.R. Hoare in Notes on Data Structuring [DDH 72}), aside from the
requirement that components be named. A typical example of such record types is the type
PAIR with two components of type INTEGER: there is no dependence between these
components - any pair of integers will be of type PAIR, so that the set of values of this type
is actually the Cartesian product INTEGER x INTEGER.

There are however composite objects in which there is dependence between components. For
example, in a record describing an attendance list, the length of one component - the table
of attendants - may be given by another component of the record. More generally, the
overall structure of a record, in particular the presence or absence of certain components,
may depend on the value of a specific component.

Because of these dependences, such composite objects cannot be modelled as simple Cartesian
products. Their description will requires the use of special components called discriminants.

4.7.1 Record Types with Variants

A record type with a variant part specifies several alternative variants of the type. The
variant part depends on a special component called a discriminant, and each variant defines
the components that exist for a given value of the discriminant. Consider for example a
formulation of the type PERSON:

66 Ada Rationale .

type GENDER (s (M, F);

type PERSON(SEX : GENDER := F)is

record
AGE : INTEGER range 0 .. 123;
case SEX is

when M => BEARDED : BOOLEAN;
when F => CHILDREN : INTEGER range 0 .. 20;
end case;
end record;

Here the discriminant is the component SEX declared in the discriminant part, immediately
after the name of the type. This special syntax brings out the fact that discriminants are not
ordinary components: it will be possible for other components to depend on discriminants.
Furthermore, as we shall see when presenting packages, this syntax will allow us to declare
private types for which the discriminants are known, while keeping the rest of the type
hidden.

In the record type definition we next encounter the declaration of the component AGE (all
persons have an age), and then the variant part, expressing a dependence on the discriminant
SEX:

case SEX is

end case;

Within the variant part, we next find the two variants - one for each possible value of the
discriminant. For example we find the variant

whea M => BEARDED : BOOLEAN;

that declares the boolean component BEARDED to exist for persons of sex M (only men are
bearded); and similarly, ancther variant that declares the component CHILDREN to exist for
persons of sex F (only women bear children):

when F => CHILDREN : INTEGER range 0 .. 20;

It follows from this description that the set of values of the type PERSON is the union of
disjoint subsets, which correspond to the two possible variants. Thus we have a subset of
values of the form

(SEX => F, AGE => integer_value, CHILDREN => integer_value)
and another subset of values of the form

(SEX => M, AGE => integer value, BEARDED => boolean_value)

Types 67

4.7.2 Discriminant Constraints - Record Subtypes

We have seen that different subsets of values are associated with different variants. Seen in
this light, a subtype of the record type is associated with each of its variants. When declaring
an object, we can actually specify that it may only assume values of a given subtype: this is
achieved by a discriminant constraint that imposes a specific value on the discriminant. Thus
whereas

ANYONE : PERSON;

declares a person of either sex, each of the two following declarations includes a discriminant
constraint and declares an object constrained to one of the two possible subtypes:

HE : PERSON(M), -- positional notation
SHE : PERSON(SEX => F); -- named notation

We can also name the two possible subtypes by means of subtype declarations:

subtype MALE is PERSON(SEX => M),
subtype FEMALE is PERSON(SEX => F);

The compiler may take advantage of the information provided by constraints, when setting
the amount of space to be used for a given record variable. However, as with other forms of
constraint, the main purpose of discriminant constraints is reliability: the requirements
specified by constraints can be checked at execution time, unless it can already be shown at
compilation time that the checks are not needed (either because they would always succeed
or because they would always fail). The possible situations are illustrated below:

declare
ANYONE : PERSON;

HE : MALE; -- equivalent methods of
PETER : PERSON(M); -- declaring males

JOAN : FEMALE;
SHE : FEMALE;

begin
ANYONE := HE; -- No run-time check needed since
-- MALE is a subtype of PERSON
ANYONE := _DAN; -- Similarly no run-time check needed

HE := PETER; -- No run-time check needed: both are males

HE := JOAN; -- Error! Can be reported at compilation time
-- since MALE and FEMALE are disjoint subtypes

SHE := ANYONE; -- check at run time that ANYONE.SEX = F and
-~ raise CONSTRAINT_ERROR if check fails
end;

4.7.3 Denoting Components of Variants

Variants define certain components that exist only for specific values of the discriminant.
Checking the validity of names that denote such dependent components is part of the
security that must be provided by Ada compilers. This implies that a reference to the
component :

ANYONE.BEARDED

is logically equivalent to the following text

if ANYONE.SEX /= M then
raise CONSTRAINT__ERROR;
end if;
ANYONE.BEARDED

We will show in section 4.7.4 that this check can always be done because the language rules
guarantee that discriminants are always initialized. Furthermore direct assignment to a
discriminant

ANYONE.SEX = F; -~ illegal!

is forbidden and will be reiected by the compiler. The only allowed way to change the value
of a discriminant is by assignment to the record as a whole. Thus
ANYONE := (SEX => F, AGE => 13, CHILDREN => 0);

is a whole-record assignment which (legally) sets ANYONE.SEX equal to F. Similarly,
whole-record assignments such as

ANYONE := PETER;
ANYONE := JOAN,;

are legal and each has the effect of establishing a new value for ANYONE.SEX.
Denoting components of constrained records - such as the component JOAN.CHILDREN of

the record JOAN, or the component PETER.BEARDED of the record PETER - is always
secure and never requires any discriminant check at run time since the discriminant value is

Types 69

specified by the constraint and is static. Furthermore the discriminant value is invariable: this
i guaranteed by the constraint checks that are performed before any assignment to these
constrained variables - whether these checks are actually performed at run time or are
anticipated at compilation time.

When denoting dependent components of an unconstrained variable (such as ANYONE),
discriminant checks will usually have to be done at run time - unless they become
unnecessary because of prior explicit or implicit checks. Such explicit discrimination may
take several forms. It can be achieved by an if statement:

iIf ANYONE.SEX = M then
-- No check needed when denoting ANYONE.BEARDED

end if;

or similarly by a case statement:

case ANYONE.SEX is
when M =>
-- No check needed when denoting ANYONE.BEARDED

when F =>
-- No check needed when denoting ANYONE.CHILDREN

end case;

Of course, the check can only be omitted as long as the discriminant is not changed as a
result of a whole record assignment. Consider for example:

case ANYONE.SEX is
when M =>

ANYONE.BEARDED -- occurrence |
ANYONE.BEARDED -- occurrence 2
UPDATE(ANYONE),
ANYONE.BEARDED -- occurrence 3
PRINT(ANYONE);
ANYONE.BEARDED -- occurrence 4
when F =>

end case,

No checks are needed for the first two occurrences. A check is needed for the third
(assuming the mode of the parameter of UPDATE to be in out), but no check is needed for
the fourth occurrence (assuming the mode of the parameter of PRINT to be in).

Note that additional problems exist if a record is shared by two tasks. One task could
perform a whole record assignment (thereby changing the discriminant) while another was
reading a component. We consider this problem to be a danger inherent in the use of shared

70 Ada Rationale

variables rather than a problem concerning the formulation of record types. The tasking
facilities of the language are powerful enough to make unsynchronized access to shared
variables virtually useless. If they are nevertheless used, the appropriate precautions should
be taken by the programmer. On the other hand, we did not believe it right to distort the
semantics of the language just to deal with such possible misuse.

It might be felt that the checking code is a high price to pay. It is, however, essential for
security with variant records. Previous experience with languages such as Simula and Algol
68, which force a similar discrimination of variants, show that these checks are not as
frequent as one might suppose. The parts of the programs that operate on a given variant
tend to be textually discriminated as well as dynamically discriminated. Hence the checks can
be achieved at a rather low cost (see also (We 78]).

One should not underestimate the importance of secure access to components of a variant
part. This is well demonstrated by actual experience on large programs with Pascal compilers
that perform such checks [Ha 77). Further confirmation has been obtained from experience
with large Ada programs - Ada compilers in particular.

4.7.4 Initialization of Discriminants

Discriminants are components of special importance: We have seen that the structure of a
record may depend on the value of a discriminant, and that this value is also critical for
determining whether or not i* is possible to denote a component defined by a corresponding
variant.

For safety reasons therefore, it is essential that discriminants always be initialized; and this is
actually guaranteed by the language rules. Before discussing these rules, let us review two
possible ways of initializing a discriminant. One way of ensuring discriminant initialization is
by a constraint. For example, the elaboration of the constrained declaration

JOAN : PERSON(SEX => F);

initializes the discriminant JOAN.SEX to the value F specified by the constraint (and the
discriminant value is thereafter invariable, because of the constraint). However, as we have
seen earlier, some objects are unconstrained; for example,

ANYONE : PERSON;
For this unconstrained object, the initialization of the discriminant is obtained by smother
device, namely, by means of the default expression specified in the discriminant fasn :
tvype PERSON:

type PERSON(SEX : GENDER = F)is ..

So the elaboration of the declaration of ANYONE evajuates the Jdetauit =xpem
the resulting value (F) to initiahze the discminant ANYONFE ST N

EEEEEEE
T 1 [| [
mlllllll
-, I
EEEEEEE
EEEEEEE
T T 1 [[
1T 1 1 [[
T 1T
EEEEEEE
1T [1 1 [1]
I
ST T [[[
ullllll

L

I
\uu!-—z—_=——5: s we

Types 71

but this value may be changed later, by whole record assignments, since ANYONE is
unconstrained.

Safety of variant records is achieved in Ada by requiring that discriminants be always
initialized in one of the two ways described above.

For a type declared with a discriminant part, the language rules require:

(a) If default expressions are provided for discriminants, then declarations of constrained
and unconstrained objects of the type are both allowed.

(b) In the absence of default expressions, all object declarations must be constrained.

Thus unconstrained declarations are not allowed in the latter case: In the absence of a default
expression, the discriminant value of such objects would be unspecified.

To illustrate these rules, we first introduce a few additional type declarations

type HUMAN(SEX : GENDER) is

record
AGE : INTEGER range 0 .. 123;
case SEX is

when M => BEARDED : BOOLEAN;
when F => CHILDREN : INTEGER range 0 .. 20;
end case;
end record,;

subtype LENGTH is INTEGER range 0 .. 200;

type TEXT(SIZE : LENGTH) is
record
POS : LENGTH := 0;
DATA : STRING(I .. SIZE);
end record;

type LINE(SIZE : LENGTH := 100) is
record
DATA : STRING(! .. SIZE);
end record;

Y£'4 TRW ICTQITUOTIOITC

We may now declare constrained objects, very much in the same way as for the type
PERSON:

JOAN : PERSON(SEX => F); -- must be of sex F
MARIA : HUMAN(SEX => F), ~- must be of sex F
JOHN : HUMAN(SEX => M); ~- must be of sex M
PAUL : HUMAN(M); -- must be of sex M

LARGE : TEXT(SIZE => 130); -- must have 130 characters

SMALL : LINE(SIZE => 20); ~- must have 20 characters
MEDIUM : LINE(80); -- must have 80 characters

In the case of types PERSON and LINE, we may also declare unconstrained objects such as

ANYONE : PERSON; -- Initially: ANYONE.SEX = F
MESSAGE : LINE; -~ Initially: MESSAGE.SIZE = 100
-- but later could vary up to 200 characters

On the other hand, unconstrained object declarations are not allowed for types such as
HUMAN and TEXT, for which there are no default discriminant values:

ILLEGAL : HUMAN; -- Illega)]! What would the sex be?
ERROR : TEXT; -- Illegal! What would the size be?

4.7.5 Discriminants and Type Composition

Ada provides a very general ability to compose types from more elementary types: we can
have arrays of records that contain other arrays and records, and so on to an arbitrary depth.
This type composition ability can be parameterized by means of discriminants. Thus the
language allows two forms of parameterization of the subtype definitions of record
components:

(a) The value of a discriminant may be used to specify a bound in an index constraint for
a record component - the component being an array.

(b) The value of a discriminant may be used in a discriminant constraint for a record
component - the component being again a record.

Types ‘ 73

The first form of parameterization is what we have in the type TEXT:

type TEXT(SIZE : LENGTH) is
record
POS : LENGTH := 0;
DATA : STRING(I .. SIZE);
end record;

Thus the declaration of the component DATA specifies SIZE as the upper bound in the
index constraint for this component. The implication is that when we declare

LARGE : TEXT(SIZE => 130); -~ or, equivalently:
LARGE : TEXT(130); -~ in positional form

then the discriminant value (130) is used to dimension the corresponding string, so that
LARGE.DATA is a string of 130 characters.

The second form of parameterization is illustrated by the following type:

type DUPLEX(DIMENSION : LENGTH) is
record
FIRST : TEXT(SIZE => DIMENSION);
SECOND : TEXT(SIZE => DIMENSION);
end record;

in which the discriminant of the type DUPLEX is itself used to specify the discriminant
values for the first and second components. So when we declare

DISTICH : DUPLEX(40);

the dimension of the type DUPLEX is used to specify the size of the first and second texts,
so that we have two strings of 40 characters.

We have given different names to the discriminants to emphasize the two levels, of type
composition. But this is not necessary, and we could have written

type DUPLEX(SIZE : LENGTH) is
record
FIRST : TEXT(SIZE => SIZE);, -- size of text => size of duplex
SECOND : TEXT(SIZE => SIZE);
end record;

FEARW AV IVTIWNI

or even simply

type DUPLEX(SIZE : LENGTH) is
record
FIRST : TEXT(SIZE),
SECOND : TEXT(SIZE),
end record;

Nothing prevents the composition of types to further levels, and we may for example define
a type such as

type QUAD(SIZE : LENGTH) Is
record
LEFT, RIGHT : DUPLEX(SIZE),
end record;

and so on.

Note that the first form of parameterization (that is, that of an index bound) would not
suffice alone. For example, it would not be satisfactory (in general) to define DUPLEX in
the following manner

type OTHER_DUPLEX(SIZE : LENGTH) is
record
POS_1, POS_2: LENGTH := O0;
FIRST : STRING(1 .. SIZE);
SECOND : STRING(I .. SIZE);
end record;

since operations defined for the type TEXT such as

procedure APPEND(TAIL : in TEXT; TO: in out TEXT) is

begin
TO.DATA(TO.POS + | .. TO.POS + TAIL.POS) := TAIL.DATA(1 .. TAIL.POS),
TO.POS := TO.POS + TAIL.POS;

end;

would not be applicable to components of records of the type OTHER_DUPLEX.

To conclude this presentation of discriminants, it will be interesting to compare this form of
parameterization with the form offered by generic units. [t is certainly possible to define a
generic formulation of the type TEXT, in which the size is a generic parameter. But, as we
shall see, the functionality offered would be quite different. Consider for example:

Types 75

generic
SIZE : POSITIVE;
package TEXT_HANDLING is
type TEXT s
record
POS : NATURAL := 0;
DATA : STRING(I .. SIZE);
end record;

procedure APPEND(TAIL : ia TEXT; TO: in out TEXT);

end TEXT_HANDLING;

We could later create instances of this generic package such as

package TEXT_20 is new TEXT_HANDLING(SIZE => 20),
package TEXT_50 is new TEXT_HANDLING(SIZE => 50);

The main drawback of this formulation is that the types TEXT_20.TEXT and
TEXT_S0.TEXT are now two distinct and completely unrelated types, with the consequence
that we cannot intermix their objects in operations such as APPEND.

What this example shows is that if objects differ only in size, it is better to consider that
they are still objects of the same type, but belonging to different subtypes: this form of
parameterization is therefore better dealt with by discriminant constraints.

Parameterization by generic units is more appropriate if we want to parameterize by types,
or if we are prepared to accept the consequences of the fact that several instances of the
generic unit will create several types. For example, the two forms of parameterization are
used in conjunction in this further formulation of text handling:

generic
MAXIMUM : POSITIVE;
package TEXT_HANDLING is
subtype LENGTH is INTEGER range 0 .. MAXIMUM;

type TEXT(SIZE : LENGTH) is
record
POS : LENGTH = (;
DATA : STRING(I .. SIZE),
end record;

end TEXT_HANDLING;

76 Ada Karnionare

Different instantiations will result in different text types (and in fact the compiler is likely
to use different representations for texts having a maximum of 256 characters and for larger
maximum lengths). For a given maximum length however, we can use discriminant
constraints to represent texts of different lengths, which are nevertheless objects of the same
type.

4.2 Mutability

The term mutability refers to the ability to change the value of a discriminant of a given
record (by a whole record assignment). The problems addressed in this discussion of
mutability are those of efficiency of representation and efficiency of implementation of the
parameter passing rules.

As regards efficiency of representation, consider again our canonical examples of types with
discriminants. Then for unconstrained objects such as

ANYONE : PERSON;
ANYLINE : LINE;

we expect the compiler to reserve enough storage to accommodate the largest possible value
for the type considered. For example, in the case of ANYLINE, 200 characters must be
reserved for the string component ANYLINE.DATA. On the other hand, for constrained
objects such as:

PAUL : PERSON(SEX => M),
JOAN : PERSON(SEX => F),
TITLE : LINE(SIZE => 30);

we expect the compiler to reserve no more space :han is dictated by the corresponding
constraint. Thus in the case of TITLE, just 30 characters are needed for the corresponding
string.

Parameter passing rules for objects of record types do not specify whethe: the effect is to be
achieved by copy or by reference. For example, for an in out parameter the semantics
specifies that both reading and updating of the associated actual parameter are allowed. But
the implementation has freedom to implement parameter passing by copy (for example, for
small objects) or by reference (for exaraple, for large objects): this should not matter for
correct programs, that is, for programs that are not erroneous. The motivation for these rules
is discussed elsewhere (see 8.2), but consider now their interactions with representation and
mutability.

Types 77

Consider for example a procedure to invert a given line (arrange the letters in reverse order)
using the function MIRROR previously defined for strings (see 4.5):

procedure INVERT(L : in out LINE) is
begin

L.DATA := MIRROR(L.DATA);
end,

The formal parameter must have the mode in out, since we update the formal parameter.
This procedure can be used indifferently for constrained or unconstrained objects:

INVERT(TITLE), -- constrained
INVERT(ANYLINE); -- unconstrained

In either case, it does not matter whether the compiler implements parameter passing using

the by-copy or by-reference mechanism, since the procedure does not change the size of the

line. This would remain true if, in INVERT, we had used a whole record assignment such as
L:= (SIZE => L.SIZE, DATA => MIRROR(L.DATA));

But consider now a procedure, such as CHANGE, that performs mutations:

procedure CHANGE(L : in out LINE) is
SAFE : constant LINE := L;

begin
L := (SIZE => 45, DATA => ..); -- (1)
L:= (SIZE => 117, DATA => .. }); --(2)

L := (SIZE => SAFE.SIZE, DATA => MIRROR(SAFE.DATA));
end;

Calls with an unconstrained object such as

CHANGE(ANYLINE);

clearly raise no problem. But consider the treatment of a call with a constrained object, such
as

CHANGE(TITLE);

If the parameter passing semantics were purely by copy, such a call would be acceptable:
before the call the unconstrained formal parameter would be initialized with the value of the
actual parameter TITLE; upon return, the value of the formal parameter would be copied
back into TITLE, and this would work since the discriminant value would be the same upon
return as before the call. However, the important optimization of passing large records by

78 Ada Rationale

reference would not be possible. (Alternatively assignments such as (1) and (2) would require
a local copy.)

The above call will fail with the Ada semantics: the formal parameter is constrained in
exactly the same way as the associated actual parameter. For the formal parameter L, the
language actually provides the attribute

L 'CONSTRAINED

which is TRUE if the associated actual parameter is constrained (such as TITLE), FALSE if
unconstrained (such as ANYLINE). In the case of the procedure CHANGE called with
TITLE as actual parameter, these rules mean that the assignment (1) is incorrect, and will
raise the exception CONSTRAINT_ERROR.

4.8.1 The Case Against Static Mutability

The Ada solution for mutability, as presented above, is dynamic solution, which involves
dynamic transmission of the constrained attribute across subprogram calls. During the course
of the Ada design several solutions that allow compilation-time verification of mutability
were examined. We next review two of these static solutions and the reasons for their
rejection.

One approach to static mutability would be to associate this quality with the type itself: allow
types with objects that are always constrained (never mutable), allow types with objects that
are never constrained (always mutable), but not types with both constrained objects and
unconstrained objects.

With this approach the type PERSON would not be allowed, but we could declare the
following types:

type HUMAN(SEX : GENDER) is -~ immutable: must be constrained
record
AGE : INTEGER range 0 .. 123;
case SEX is
-- as in PERSON
end case;

end record;
-- What follows is not in Ada:

type MUTANT(SEX : GENDER = F)is -- cannot be constrained
mutable record
SELF : HUMAN(SEX);
end record;

Types

79

A constraint is requiréd for each object of type HUMAN. This allows the compiler to
allocate the exact (minimum) space needed for each such object. Furthermore we know that
this space cannot vary, because of the constraint, so that parameter passing by reference can

safely be used for all objects of this type.

Conversely, no constraint would ever be allowed for objects of type MUTANT, so that the
maximum space would be allocated for each such object. Parameter passing by reference

would therefore again be safe.

Whereas this solution allows efficient parameter passing by reference, its drawbacks become
apparent precisely in those situations where we need to have both mutable and immutable
objects. The first drawback is verbosity. Instead of writing the Ada declarations and

statements:

PAUL : PERSON(SEX =>
JOAN : PERSON(SEX =>
ANY : PERSON;

ANY := PAUL;
ANY.AGE

we would have to write:

PAUL : PERSON(SEX =>
JOAN : PERSON(SEX =>
ANY : MUTANT;

ANY = (M, PAUL);
ANY.SELF.AGE

in which the use of mutable objects is complicated by the extra component.

M);
F),

M);
F);

-- constrained
-- constrained
-- mutable

-- constrained
-- constrained
-- mutable

The second - and more important - drawback is in terms of space efficiency. Consider the
formation of any structure that involves objects of a given type with different discriminant
values: for example a genealogy, using another formulation of the type PERSON with an

access type:

80 Adq Karonare

type PERSON__NAME is access PERSON;

type PERSON(SEX : GENDER := F) s
record

FATHER : PERSON_NAME(SEX => M),
MOTHER : PERSON_NAME(SEX => F);
SPOUSE : PERSON_NAME;
SIBLING : PERSON_NAME;

end record;

MARY : PERSON_NAME(F) := new PERSON'(SEX => F, ...);
JACK : PERSON_NAME(M) := new PERSON'(SEX => M, ...);

The above Ada formulation will take advantage of the fact that objects dynamically created
by allocators (see chapter 6) are constrained upon allocation. For example, although the
component SPOUSE is not constrained (and can thus designate an object of either gender), a
given gender must be selected upon allocation, and the allocated object is thereafter
constrained by this value and is immutable:

MARY.SPOUSE := new PERSON'(SEX => M, ...);
JACK.SPOUSE := new PERSON'(SEX => F, ...);

In terms of space efficiency this is optimal: the minimum space is reserved for the object
designated by the SPOUSE component. With the static alternative presently being analyzed,
however, this would not be the case. The component SPOUSE would have to be declared as
follows (assuming the appropriate access type declaration):

SPOUSE : MUTANT_NAME;

so that the allocation for the above example would become:

MARY.SPOUSE := new MUTANT'(..);
JACK.SPOUSE = new MUTANT'(...);

and in both cases we would have to allocate the maximum space.

The Ada formulation therefore allows an important kind of space optimization. It is very
well suited to a quite common situation in the construction of interrelated data structures:
although the discriminant of the object designated by a given variable is not known statically
(as in the case of SPOUSE and SIBLING) it will be very unlikely to change after allocation.
Conversely, the Ada concepts also allow the declaration of a type such as MUTANT in terms
of the type PERSON (the inconvenience is inverted):

Types 8!

type MUTANT is -- cannot be constrained
record
SELF : PERSON; -- unconstrained

end record,

Another approach to static mutability would be to associate the mutable quality with formal
parameters, rather than with types. For example, consider again the type LINE:

type LINE(SIZE : LENGTH := 100) is
record
DATA : STRING(I .. SIZE);
end record,

SPACE : constant CHARACTER = ' !:
Then we could define a procedure as follows

-- The following is not in Ada:

procedure BLANK(L : in out LINE(<>)) is -- not mutable
begin
for Nin 1 .. L.SIZE loop
L.DATA(N) := SPACE;
end loop;
end;

In this hypothetical formulation the subtype indication
LINE(<>) -- not in Ada

would mean that the formal parameter is indeed constrained (and hence immutable) although
the discriminant values are borrowed from the associated actual parameter. Parameter passing
by reference would be quite safe because of the immutability. Conversely, in this
formulation mutability could be indicated by the type mark LINE alone as in

procedure CHANGE(L : in out LINE) is
begin

L := (SIZE => 80, DATA => (1 .. 80 => SPACE));
end;

and would be applicable only to objects that are unconstrained such as
ANYLINE : LINE;

thereby ensuring the safety of by-reference parameter passing in this case as well.

82 Ada Rationale

The major drawback of this approach to static mutability (aside from the additional rules and
notations) is that it would make it impossible to define an operation that performs mutations
in the case of unconstrained objects but not in the case of constrained objects - note that
this is actually what happens for the basic operation (:=) of assignment. Thus:

PAUL : PERSON(SEX => M); -- constrained

JOAN : PERSON(SEX => F); -~ constrained

ANY : PERSON; -- unconstrained: initially SEX = F
ANY = PAUL; -- ™a" mutates

ANY = JOAN; -- "=" mutates again

JOAN = ANY; -- "=" does not mutate

If this property exists for assignment, we are likely to need it also for user-defined
operations, which would not be possible with this static approach to mutability. For example,
it would not be possible to write a procedure COPY that copies the whole line in the case of
unconstrained lines but only the common part in the case of constrained lines. Such a
procedure can be written as follows in Ada:

procedure COPY(SOURCE : in LINE; TARGET : out LINE) is

begin
if TARGET 'CONSTRAINED then
declare
SIZE : LENGTH := TARGET.SIZE;
begin
if SIZE > SOURCE.SIZE then
SIZE := SOURCE.SIZE;
end;
TARGET.DATA(I] .. SIZE) := SOURCE.DATA(! .. SIZE);
end;
else
TARGET := SOURCE;
end if;
end COPY;

4.8.2 Implementation Considerations

The CONSTRAINED attribute may be implemented in a variety of ways. First there are
several cases where we know the objects to be always immutable, so that no run-time
representation of the attribute is ever required (CONSTRAINED is always true). These are:

s Any object whose type is a type with discriminants defined without default
expressions.

Types 83

s Any object designated by an access value: such objects are constrained by the
discriminant value specified for the allocator that creates the object.

When run-time mutability information is needed for a formal parameter, the
CONSTRAINED attribute must be passed (as a descriptor) along with the actual parameter.

Note that the CONSTRAINED attribute cannot be considered as part of the value itself (that
is, as a component). To see this point, consider the following example:

subtype TITLE is LINE(SIZE => 45);
ANYLINE : LINE;

procedure SET(A_LINE : in out LINE) is
begin

end;

procedure PREPARE(A_TITLE : in out TITLE) is

begin

SET(A_TITLE);

end;

ANYLINE := TITLE'(SIZE => 45, DATA => (others => ' '));

PREPARE(ANYLINE);
Then if the CONSTRAINED attribute were considered as a boolean component of the value
of ANYLINE, it would have to be FALSE (and not updated by the assignment of the value

of A_TITLE). However, consider the call SET(A_TITLE) issued from the body of
PREPARE when called with the actual parameter ANYLINE. We must have successively:

ANYLINE 'CONSTRAINED = FALSE -- since ANYLINE is declared as LINE
A_TITLE'CONSTRAINED = TRUE -- since A_TITLE is declared as TITLE
A_LINE'CONSTRAINED = FALSE -- since A_LINE is declared as LINE

But this would not be the case in our example: For a by-reference implementation,
A_TITLE and A_LINE would both refer to ANYLINE; for a by-copy implementation the
value of ANYLINE would be copied to A_TITLE and further to A_LINE; and for either
implementation the attribute would be incorrect within the body of PREPARE, and if
corrected there, within the body of SET.

84

—Add Raronare

Numeric Types 85

5. Numeric Types

5.1 Introduction

The importance of numerical calculations in the use of computers dates from their earliest
days. The floating point hardware of the second generation of machines resulted from the
need to perform fast calculations with approximate representations of numerical data that
varied over a wide range of values. However, in spite of this long history of numerical
computation, the handling of both fixed point and floating point data types is unsatisfactory
in most programming languages.

Fortran is widely used for scientific computation and compilers are available on almost all
machines. Several large packages of numerical routines of a high professional standard, such
as the library of subroutines of the Numerical Algorithms Group (NAG), have been
implemented in Fortran and made available on a wide range of computers. Nevertheless,
numerous defects can easily trap the unwary. For example, when a floating point value is
assigned to an integer variable the value is truncated; this obvious trap is compounded by the
lack of any definition of this effect - the standard does not say whether -3.8 truncates to -3
or to -4, that is, whether the sign is considered after truncation or with it. Moreover Fortran
provides no facilities for fixed point arithmetic, for which there is a particular need on
computers without floating point hardware.

5.1.1 Floating Point: The Problems

The most difficult area is the control of floating point precision, for which no entirely
adequate solution is available. Fortran does not define the accuracy of single precision values.
Consequently, the number of bits in the mantissa of a single precision value can be 48 on
one system and 24 on another; to achieve a given precision, say 30 bits, one would have to
specify single precision on the first system but double precision on the second.

To change the precision for a Fortran 66 program is extremely awkward, and requires a
careful review of the program text: the exponents of floating point literals must be changed,

86 Ada Rationale

all intrinsic functions must be altered, and so on; some functions such as FLOAT have no
double length counterpart. The Numerical Algorithms Group overcame this by an elaborate
text processing package [HF 76). By adopting suitable programming conventions, most of the
changes can be made with a simple text edit, but there is no simple complete solution. For
instance, use of double length throughout is not effective because of its excessive cost,
changing the type by IMPLICIT is not standard Fortran, and in any case IMPLICIT cannot
be used for literals.

Changing precision is much easier for a Fortran 77 program, because many of the problems
identified above have been eliminated. Some problems remain, however: thus it is still not
possible to specify the precision of a type explicitly - say in decimal digits. Moreover the
change from single to double precision is sometimes difficult: for instance single length
COMPLEX is a defined data type but DOUBLE COMPLEX is not. It should be noted that
the proposed standard Fortran 8X attempts to overcome all of these problems, and others,
and in consequence has features similar to those of Ada.

Several languages in the Algol 60 tradition, such as Pascal, Coral 66 and RTL/2, admit only
one floating point data type. In some cases this simple solution meets the users’ requirements
better than Fortran does. The two Algol 60 compilers for the IBM 360 provide a directive to
specify 32 or 64 bit precision - substantially easier to change than the corresponding
precision in Fortran. In essence, unless the declarations can determine different precisions, it
is best to use the same precision for all floating point quantities, and therefore to have only
one floating-point data type in the language.

Control of precision in Algol 68 is by declaration of types real, long real, or even long long
real. Although the precision of real is implementation-dependent, so that declarative changes
to a program may still be needed in order to maintain the required accuracy when moving it
from one implementation to another, these changes are rather easy.

Any language that has user-defined types, and some method of controlling precision, has the
essential mechanism for an effective solution of this problem. It is, of course, imperative that
the programmer use the typing facility in such a way that the floating point declarations can
easily be remapped when a change of precision is needed.

5.1.2 Fixed Point: The Problems

There is also considerable difficulty in formulating a satisfactory fixed point facility. The
Steelman requirements [DoD 78] specify exact fixed point computation:

... fixed point numbers shall be treated as exact numeric values. ... The scale or
step size (i.e., the minimal representable difference between values) of each fixed
point variable must be ... determinable during translation. Scales shall not be
restricted to powers of two.

Nﬁmen’c Types 87

Thus the possible values of a fixed point variable must be integral multiples of a fixed
quantity called the scale. Exact addition and subtraction do not cause problems, but
multiplication and division do.

To illustrate these problems, let us consider the case of calculations on electrical insulation,
using Ohm’s Law: current multiplied by resistance equals voltage. Suppose that we measure
the leakage current to an accuracy of one milliampere, and adopt this as the step size or scale
of a variable LEAKAGE. This means that only whole numbers of milliamperes can be
represented: the value of LEAKAGE will always be an integer L times the scale of 0.001]
amperes. In like fashion we may measure the resistance of the insulation to an accuracy of
1000 ohms, and use a variable RESISTANCE whose value will always be an integer R times
the scale of 1000 ohms, that is, R kilo-ohms.

Now the potential supported by the insulation is the value of LEAKAGE*RESISTANCE,
and because the scale factors happen to cancel it will be LR volts. This is again an integer,
but we cannot simply assign it to a third fixed point variable POTENTIAL having scale
factor one volt, and treat this variable in the same way as the others, because only a subset
of the possible values of POTENTIAL can arise in this way. Thus a given value of
POTENTIAL, say P volts (an integer) cannot be divided by a given value of RESISTANCE,
say R kilo~ohms, to get L milliamperes exactly (which must be an integer) because P/R will
usually not be an integer. In addition there are size problems because single length factors
give a double length product. The Ironman requirements [DoD 77] recognized this, and
required built-in operations for integer and fixed point division with remainder. This would
allow a double length representation of P to be divided by R to yield an integer quotient L1
and integer remainder L2, each single length:

P=R*L] +L2

and it would be in the hands of the programmer to ignore or use L2 as he wished. The
operation would be exact, and L1 could be assigned to LEAKAGE for further use, as a
quantity whose inaccuracy was known.

Cobol apparently meets the Ironman requirements, but only by using decimal scales, which
are not adequate for two reasons. First, this is not necessarily the scaling required by the
application, and secondly, 10 is too coarse for the standard 16-bit minicomputer. A glance at
a Cobol manual will also indicate that explaining the implicit decimal point to the
programmer is not easy.

In view of the difficulty of providing exact fixed point computation to meet the Steelman
requirements, we considered what was really needed by the users. An analysis of actual
applications in many real-time situations revealed that there was a need for cheap
approximate computation. Small but frequently executed computations are performed upon
digital input signals. Simple machines do not have floating point hardware, and emulation of
floating point operations by software or firmware is not fast enough, hence some other
means is required to perform approximate computations rapidly on such machines. To say
that in the future floating point hardware will always be available may not be the answer:
source data input is inevitably captured in fixed point representation, and floating point
representation requires more space. Hence approximate fixed point is better matched than
floating point to the needs of common applications.

88 Ada Rationale

It must be admitted that, as we shall see, programming with fixed point is much more
difficult than with floating point. On the other hand, fixed point is potentially more reliable
because effective numerical error analysis requires tight bounds to be placed upon data
values.

It is concluded that approximate fixed point is generally the most useful arithmetic capability
to provide that will complement integer and floating point facilities. However, Ada fixed
point also provides some exact operations such as addition and subtraction, and these are
invaluable, for example for the manipulation of intervals of time.

5.1.3 Overview of Numerics in Ada

The facility for numerics is based upon the idea that a numeric variable has an abstract
value. The set of values of a numeric type will be a subset of the set of real numbers.
Computation with integers is exact. Computation with fixed point and floating point is
approximate: the former with an absolute bound on the error, the latter with a relative
bound. These approximate types are called the real types since they can be thought of as
approximations to the mathematical concept of the real numbers.

The semantics of each numeric operation is determined by the type of its operands. The
facility for numerics is based upon three types that cannot be named in a program (and
hence are said to be anonymous - no variable of such a type can be declared). These types
are referred to as universal_integer, universal _real, and universal_fixed. Any specific type
in a given implementation is a partial representation of a universal type.

(1) universal _integer
The type universal_integer is an integer type with a range large enough to encompass

every conceivable integer type of the implementation. Integer literals are of type
universal _integer.

(2) universal_real

The type universal_real is a real type with a precision that is high enough to
encompass any implemented real type. Real literals are of type universal _real.

(3) universal _fixed

The type universal _fixed is introduced as the result type of the unscaled fixed point
operations of muitiplication and division to be detailed later. It is essentially a type for
intermediate results. The universal_fixed type has a finer delta than any implemented
fixed point type.

Numeric Types 89

The mapping of these universal types onto the implementation-dependent types is described
below.

(N

(2}

(3)

Integer types.

There is an implementation-dependent type INTEGER, defined in the package
STANDARD. The range of type INTEGER reflects the properties of the underlying
hardware, in that the most efficiently handled integer size is used, with a range
symmetric about zero (apart from possibly one negative value - see RM 3.5.4(7)). It
would have been possible to have designed a language that had no predefined type such
as INTEGER, but this would have meant that in order to obtain a type that would give
as large a range of integer values as possible without losing efficiency, the programmer
would have had to use language facilities that were highly system dependent. So to
avoid this dependence, it is desirable to have a predefined type that maps onto the
integer type that is most efficiently handled by the target computer.

Additionally, an implementation may provide types LONG_INTEGER and
SHORT_INTEGER with larger and smaller ranges than INTEGER. The user can
define an integer type by stating the required range; this defines a subtype of a type
derived from one of these predefined types - the predefined type being suitably
selected by the implementation. The most positive and most negative integer values that
are supported by an implementation are SYSTEM.MAX_INT and SYSTEM.MIN_INT
respectively,

Floating point types

The implementation-defined types FLOAT, LONG_FLOAT (and so on) can be
thought of as copies of the type universal_real but with restricted relative accuracy.
These types are predefined so as to approximate closely to the intrinsic floating-point
types of the target computer. The user may define other floating point types in terms
of these machine types, or simply by stating the required precision; in the latter case
this defines a subtype of a type derived from one of the predefined types - the
predefined type being suitably selected by the implementation.

A hardware floating point representation has two independent parameters - the length
of the mantissa and the range of the exponent. The mantissa length defines the relative
accuracy, and the exponent range defines the range of the floating point values. In
Ada, the user defines a floating point type by stating only the required precision, as a
number of decimal digits; this defines the mantissa length. The language requires each
floating point type to have an exponent range that is workable in relation to its
mantissa length. In this way the two parameters are reduced to one, with a gain in
simplicity for the user.

Fixed point types

In contrast to floating point, a fixed point type has an absolute rather than a relative
accuracy. This absolute bound on the errors is called the delta. The user can define
other fixed point types by specifying the required delta, together with the range of
magnitudes to be encompassed.

90 Ada Rationale

Constants

One finds in many programs several constants that parameterize the particular application.
These constants have no particular type, but may be related one to another; for example the
middle of a line is related to the line length. Number declarations are provided in Ada to
express this. They allow the calculation of specific values having fixed relationships. For
example:

LINE_LENGTH : constant ;= 80;
MID_LINE .. constant := LINE_LENGTH/2;
PI : constant := 3.14159_26536;

RADIANS_PER_DEGREE : constant:= PI/180;

Without this facility, a change to the program to modify a constant would involve a search
for all occurrences of the constant as well as of related constants. This would be both tedious
and risky: for example the constant 40 might or might not be intended to signify half the
line length, and even with a corresponding comment the process would be error prone.

The type of such a named number depends on the primaries used in the expression on the
right; if these yield real values, the type of the constant is universal_real, if they yield
integer values, the type is universal_integer; a mixture of real and integer values gives
universal_real. Thus the first two examples above are of type universal_integer and the
second two are of type universal_real.

A numeric literal is either an integer literal or a real literal. Thus 80 and 2 above are integer
literals because they contain no decimal point, while 3.14159 26536 is a real literal. Within
an expression, a numeric literal will be implicitly converted to the required type determined
by the context - an integer literal to an integer type and a real literal to a real type. For
example, implicit conversion is performed in these cases:

J : INTEGER = 2;
P : INTEGER = 4%*],
A : REAL := REAL(P) - 0.23;

In the second case, because J is of type INTEGER, the integer literal 4 is implicitly
converted to INTEGER as an operand of the multiplication, which yields a product of type
INTEGER. In the last case, the subtraction must deliver a REAL result, so P needs explicit
conversion to the type REAL, but conversion of the real literal 0.23 to REAL is implicit. It
should be noted that no accuracy can be lost by such implicit conversion of numeric literals
- the accuracy required by the target type is always provided.

Numeric Types 91

5.2 The Integer Types

The operations predefined for the integer types are:

Operator Meaning Result Type

+ - identity and negation operand type
+ - addition and subtraction operand type
* multiplication operand type
/ integer division operand type
mod integer modulus operand type
rem remainder on integer division operand type
* & exponentiation operand type
abs absolute value operand type
= /= equality and inequality BOOLEAN

< <= > >= ordering BOOLEAN

New integer subtypes declared by imposing constraints on INTEGER inherit these operations:
relational operators deliver a result of type BOOLEAN; all others deliver a result of the same
type as the operands. Both operands of the binary operators must have the same type,
excepting exponentiation, for which the right operand type is always INTEGER. If system-
defined integer types such as LONG__INTEGER are implemented, then overioadings of the
arithmetic and relational operators are defined for these types in an analogous manner; and
similarly for SHORT_INTEGER, if implemented.

The user can define an integer type by specifying the range to be covered, for example

type PAGE_NUM is range 1 .. 2000;
type MY_INTEGER is range -100_000 .. 100_000;

in which case the implementation will use whichever predefined type just encompasses this
range. Thus MY_INTEGER would be implemented as (a subtype of a type derived from)
LONG_INTEGER on a typical 16-bit minicomputer, but as INTEGER on a machine with
larger word length. Portability of the program is thus assured, in this respect.

Furthermore, a range constraint can be applied to a type to give a subtype. The subtype has
all the operations of the base type, but the value of any variable of the subtype must always
be within the range of the subtype; in general this is checked before assigning a value to the
variable. One would expect compilers to represent subtypes in the same way as types, but in
special cases the compiler may be able to optimize the representation by utilizing the range
constraint. Thus the subtype

subtype SIGN is INTEGER range -1 .. 1;

contains only three values, so that each value could be stored using one byte, or even two
bits.

7972 Ada Rationale

The operations /, mod, and rem require explanation. There is no universal agreement on the
semantics of these operations for negative operand values. Because different machines
perform these operations differently, it is tempting not to define them for negative values.
This is the approach taken in the axiomatic definition of Pascal [HW 73]. The semantics
chosen in the Ada language corresponds to division with truncation toward zero (so (-3)/2 =
-1). This has the advantage that it preserves the identity:

-(A/B) = (-A)/B = A/(-B)
The operations / and rem are related by
A = (A/B)*B + (A rem B)

so that rem provides the remainder on division. As a consequence the sign of the result of
the rem operation is therefore the same as the sign of A (hence A rem 10 can be negative).
Also the absolute value of the result of the rem operation is less than the absolute value of B.

The operation mod on the other hand is defined so that (A mod B) always has the same sign
as B and its absolute value is less than the absolute value of B; subject to these conditions it
must differ from A by an integer multiple of B, that is, for some integer value N it satisfies
the relation

A = B*N + (A mod B)

Integer exponentiation is defined only for nonnegative exponents. Hence, I**(-1) will raise
CONSTRAINT_ERROR as the exponent is not positive. The operation is defined as repeated
multiplication of the left hand operand. The number of multiplications is one less than the
exponent value, so [#%2 = I*] and % %4 = [*]*]*]

The predefined operator abs yields the absolute value of its operand, and is defined for all
numeric types.

5.3 The Real Types

The real types form two classes: floating point types and fixed point types. Both are
approximate and are different forms of approximation to the real numbers of mathematics.
With floating point types, the error in representing a mathematical value is roughly
proportional to its absolute value over a large range. In contrast, the error with a fixed point
value has an absolute bound, so that small values have a correspondingly large relative error.

The real type definition specifies bounds on the permitted error in the representation of
values: the precision for floating point and the delta for fixed point. A floating point type
declaration of the form

Numeric Types 93

type T is digits D;

specifies D significant decimal digits precision. It would perhaps have been more consistent
to specify a bound on the relative error directly, but giving the number of significant
decimal digits is more natural for the user. The use of a range constraint, in the extended
form of declaration

type T is digits D range L .. R;

signifies the construction of a subtype. The check that the values of L and R lie within the
range of the base type is therefore a run-time check, and CONSTRAINT_ERROR is raised
if it fails,

A fixed point type declaration of the form

type T is delta D range L .. R;

specifies the delta D, which is an absolute bound on the permitted error. Here a bound
specified in decimal digits would have been inappropriate, and too coarse, for a binary
machine. In this case the range constraint is not optional since an unbounded range would
imply an infinite number of values; the deciaration is illegal if no predefined base type exists
that accommodates the range and delta.

The predefined operations provided for floating and fixed types differ in detail in order to
reflect correctly the handling of error bounds within a computation. The accuracy constraints
determine parameters to a semantic model for the real types which is used to bound errors
on the predefined operations. This is described below in section 5.3.3.

Attributes

Ada provides three classes of predefined attributes for real types:
(1) those also associated with other scalar types (such as 'FIRST and 'LAST),

(2) those specific to the guaranteed properties of a real type (such as 'DIGITS), and

(3) those associated with machine-dependent properties (such as 'MACHINE_RADIX).

There are several predefined attributes that apply to both classes of real types. For each such
type R, R'FIRST and R'LAST are values of type R that bound all the values of R. The
integer value R'MANTISSA gives the number of binary places for the mantissa (floating
point) or magnitude (fixed point) in the abstract representation for the type. R'SMALL and
R'LARGE are values of type universal_real which are respectively the smallest positive
nonzero value and the largest positive value in the abstract representation.

94 Ada Rationale

§.3.1 Floating Point Types

The following operators are defined for the predefined floating point type FLOAT:

Operator Meaning Result Type

+ - identity and negation operand type

+ - addition and subtraction operand type

* multiplication operand type

/ division operand type

*k exponentiation by an integer type of left operand
= /= equality and inequality BOOLEAN

< <= > >m= ordering BOOLEAN

Both operands of the binary operators +, -, *, / and of the relational operators must have
the same type. If system-defined floating point types such as LONG_FLOAT are
implemented, then overloadings of the arithmetic and relational operators are defined for
these types in an analogous manner,

The operators = and /= could have been excluded because their semantics is of doubtful
validity, since the representation is approximate. Given a precision of 6 digits, then equality
could either mean equality of representation (which would typically be of higher precision)
or equality only to 6 digits. If the former semantics were chosen then equality would be
implementation dependent. Moreover, since some implementations may use a higher precision
for temporary values than for declared objects, it would be possible after the assignment

X:= (Y +2)
to have
X /= (Y +2)

If the latter semantics were chosen, then equality would be computed as approximately equal.
This would lead to the anomaly that equality would no longer be transitive, that is, it would
be possible that

XaYand Y=Zand X /= Z

The decision has been to allow equality since it is defined for all other types. The user must
be aware that the implemented precision is used, that is, the values X and Y are equal only
if their representations are identical, and that in consequence code may not be portable. (The
situation is no better with other languages.)

The exponentiation operation for floating point operands is defined by repeated
multiplication in the same way as with integers. For a negative exponent, the value is the
reciprocal of the value with the positive exponent. The exponent is of type INTEGER.

Numeric Types 95

The predefined attribute R 'DIGITS yields the value (of type universal _integer) that appears
as the accuracy constraint that gives the precision of the type or subtype R.

As explained earlier, the precision of the predefined types FLOAT, LONG_FLOAT, and so
on, is defined by the implementation. The user may define other floating point types directly
in terms of their precision and range, in which case an appropriate one of the predefined
types is selected by the compiler and the user-defined type is a subtype of a type derived
from this predefined type. Alternatively, the user may define types derived from the
predefined types by reducing the precision requirement and constraining the range. Thus in
practice, at the machine level, there will be only one or two implemented precisions. As for
other constraints, the range constraints and the precision reductions are checked by the
compiler.

Defining floating point types directly in terms of their precision and range is preferable for
portability, In this case the types are mapped on the nearest applicable machine implemented
precision. As an example consider the type declarations

type MY_SHORT_FLOAT s digits 6;
type MY_FLOAT is digits §;
type MY_LONG_FLOAT s digits 10;

On a machine for which the implemented precision provides 7 digits for FLOAT and 14 for
LONG_FLOAT these declarations have the same effect as

type MY_SHORT_FLOAT is new FLOAT digits 6;
type MY_FLOAT is new LONG__FLOAT digits 8;
type MY_LONG_FLOAT is new LONG_FLOAT digits 10;

On another machine, for which the implemented precisions provide 8 digits for FLOAT and
16 for LONG_FLOAT, these declarations have the same effect as

type MY_ SHORT_FLOAT is new FLOAT digits 6;
type MY_FLOAT is new FLOAT digits 8§;
type MY_LONG_FLOAT is new LONG_FLCAT digits 10;

If a range constraint is included in the type declaration, then a check is made that the range
inherited from the implemented type will cover the range specified. If the check fails then
CONSTRAINT_ERROR s raised.

To summarize, the language provides a direct and simple mechanism for achieving efficient
use of the available precisions predefined by a given implementation.

06 Ada Rationale

Example.

As an illustration of the direct use of the predefined types FLOAT and LONG_FLOAT,
consider the following typical library function:

function DOT_PRODUCT(X,Y : FLOAT_VECTOR) return FLOAT is
SUM : LONG_FLOAT := 0.0;
begin
for [in X 'RANGE loop
SUM = SUM + LONG_FLOAT(X(I)) * LONG_FLOAT(Y(I));
end loop;
return FLOAT (SUM);
end DOT__PRODUCT;

If the machine has an instruction that forms the double length product from two single
length operands, it is fairly simple for a peephole optimizer to use this instruction in the
inner loop (rather than expand each operand and multiply).

Multiple precisions

If an application requires floating point computation with multiple precisions, then two
means can be used to achieve this: the use of subtypes, and the use of ti-.°s.

(1) Use of Subtypes

To use subtypes, a type must be declared with the largest required precision, for
example

type MY_REAL Iis digits 20;

Then variables or subtypes can be declared:

X : MY_REAL; -- digits 20

Y : MY_REAL digits 15;

subtype SHORT_REAL is MY_REAL digits 10;
Z1, 22, Z3 : SHORT_REAL;

The operations on MY__REAL are defined for all variables with that base type (X, Y,
Z1, Z2, Z3). Hence it is not possible to provide an overloaded SQRT function just for
SHORT_REAL. Similarly, the error analysis is dependent on the operators for the type
MY _REAL.

An optimizing compiler may be able to use single length data representation for each
variable, but this depends on the variables being invisible to other compilation units
and on the ability of the compiler to establish that the semantics will be preserved.

Note that the declaration of Y is also an implicit assertion that the precision of
MY_REAL is at least 15 digits. This could be useful for defensive programming in
large systems. For example, if in a later revision of the program the precision of the
type MY_REAL is reduced by more than 5, then the compiler wiil give a warning

Numeric Types 97

message upon recompilation of the declaration of Y (or at least cause
CONSTRAINT_ERROR to be raised).

(2) Use of Types

To use types, each distinct class of numbers would have a different type, with a
precision appropriate to the task being performed. Security is better than with the use
of subtypes, but all conversions must be explicit. On the other hand, converting the
program for use on another target computer is simple and efficient. This is because
each type is mapped separately using only as much precision as necessary. Of course,
the efficiency is also high for the initial application computer as well, since even a
nonoptimizing compiler will map each type onto the appropriate hardware type.

Both cases above assume that the programs have been written well using named types or
subtypes. Direct use of FLOAT and LONG_FLOAT is absent, so that no assumption has
been made about the precisions of these types. For a discussion of the construction of
mathematical libraries in Ada, and of how one can parameterize with respect to different
precisions, see [SWKW].

5.3.2 Fixed Point Types

The definition of the fixed point types is more difficult, for several reasons. First, the
representation cannot be determined until both the range and delta are known. These two
parameters determine the width required in bits and the position of the decimal (binary)
point. Having determined these, the representation is fixed and the operations can be
defined. The second problem :s5 that the type resulting from multiplication and division is
universal_fixed. Since no operations are available on the type universal_fixed, a product or a
quotient must be explicitly converted to the required type (or subtype).

In a fixed point type declaration, the value following delta, and the two range bounds (which
must be provided) are of any real type but must have a value determined at compilation
time, that is, given by a static expression. In a subtype declaration, the delta value must not
be less than that of the type, and the range constraint values must be within the values of
the type.

To illustrate the representation of fixed point values, consider for example the type
declaration

type F is delta 0.0]1 range -100.0 .. 100.0;

We assume the target machine to be a 16-bit minicomputer using two’s-complement
arithmetic. Assuming that .. length clause has been given for F'SMALL, the implemented
range would use the next power of two above 100 to encompass the stated range, and would
be (-128 .. 127), which needs 7 bits of magnitude (and 1 sign bit) above the decimal point.
Similarly 7 bits are required below the decimal point to give error bound < 0.01. Hence 15
bits are required (sign, 7 above decimal point, 7 below decimal point), leaving one spare bit

98 Ada Rationale

which can conveniently be at the bottom of the word to provide a (fortuitous) guard bit (that
is, precision beyond what is needed).

This representation is clearly the most efficient in terms of space, since F'SMALL is a
power of 2. A different representation is obtained by specifying an arbitrary real number S
for F'SMALL in a length clause

for F'SMALL use S;

In this case each value of the type is an exact integer multiple of S, and the predefined
attribute F'SIZE will tell how many bits are in fact used to store it. S must not exceed
F'DELTA.

The predefined attribute R 'DELTA for a fixed point type or subtype R has a value of type
universal_real which is that given in the accuracy constraint of the type or subtype.

Given two fixed point types F and G (and using I to denote INTEGER) then we have the
following operations:

Operator Meaning Operand Types Result Type
Left Right

+ - identity and negation F F ’

+ - addition and subtraction F F F

* integer multiplication F I F

* integer multiplication I F F

» fixed multiplication F G universal _fixed

/ fixed division F G universal _fixed

/ fixed division by integer F] F

= /= equality and inequality F F BOOLEAN

< <= > >= ordering F F BOOLEAN

Fixed point operators = and /= are permitted for the same reason as for floating point,

Defining the semantics of these cperations in terms of the permitted rounding error requires
care. The basic source of error is the representation of constants and intermediate resuits. If

Numeric Types 99

EPSILON is half the delta of F (that is, EPSILON = F'DELTA/2), then a constant C is
represented by a machine value C1 such that

C - EPSILON < Cl < C + EPSILON
The operations above that yield a result type universal_fixed obey a similar inequality:

X,Y: F

X*Y - EPSILON < F(X*Y)
X/Y - EPSILON < F(X/Y)

< X*Y + EPSILON

< X/Y + EPSILON

where the upper and lower limits are calculated mathematically (and the result is assumed to
lie within the range of F). A value C is representable without error if Cl = C. Computations
with such values are exact, except for division and fixed point multiplication. Note that
integer multiplication is essentially repeated addition, it can overflow but cannot lose
accuracy. Note also that integer multiplication by a floating point value is not permitted,
since this is not equivalent to repeated addition. In this case the integer operand must be
explicitly floated. The user could define this operation if required.

The operztions of fixed multiplication and division are essentially in two parts. First, the
accurate product or quotient is formed (that is, a result of the type universal_fixed is
obtained). Second, the result must be converted before being assigned to any variable or
being used in further computation. This conversion may imply a loss of accuracy due to the
representation in the destination type: since the fixed point operands are essentially just
scaled integers, the accurate product will in fact be another scaled integer, but the accurate
quotient must be treated as a ratio of integers. The operation of fixed division by an integer
operates in an analogous way and is merely provided to avoid excessive explicit type
conversions. A real literal is not allowed as an operand of fixed multiplication or division,
since there is not a unique fixed point type to which to convert it; this situation can be
resolved by an explicit conversion, or better, by using a declared constant - which simplifies
program maintenance.

To understand the computational aspects it is simplest to consider a decimal machine and
model. Take a word as being a sign and three digits (SDDD), and consider the following
declaration

type NORMAL is delta 0.00]1 range -0.999 .. 0.999;

This type requires all of the word with the representation S.DDD (that is, the point next to
the far left of the word). Consider also

type LARGE is delta 10.0 range -800.0 .. 800.0;
This would ordinarily be implemented as (SDDD.), with one guard digit. Finally, consider

type MEDIUM s delta 0.1 range -9.0 .. 9.0;

100 Ada Rationale

This would have the representation (SD.DD) with one guard digit. We can illustrate the use
of these types as follows

X : NORMAL,;
L1,L2 : LARGE;
C : constant MEDIUM := 2.3;

X = 0.3333; -- last digit lost on conversion to NORMAL
-- Now |X ~ 0.3333] <« NORMAL 'DELTA,
-- (mathematically)

X:= X +0.1; -- 0.1 needs no qualification as the left operand
-- specifies the type (NORMAL) of 0.1

X = 2%X; -- Now X = 0.866

X:= X/2; -- equivalent to X := NORMAL(X/2.0), that is,
-- integer division avoids qualification

X := NORMAL(C*X), -- the constant is represented as 2.30
-- The machine evaluates
-- 2.30%0.433 = 0.99590 (six-digit answer) and then
-- rounds the result to 0.996, which is stored in X.
-- Note that rounding is needed (no guard digit for
-- NORMAL).

L1:= 700.0; -- the .0 is necessary: no implicit conversion
-~ of an integer literal to a fixed point type

Ll := LARGE(X*LI); -- calculates 700.0%0.996 = 697.20, rounds to 697.0
-- (assuming the guard digit for LARGE)

L1 := LARGE(X*L1) +Ll; -- conversion is necessary, and serves
-- to emphasize rounding before addition

L2 := LARGE(X*L1) + 100.0; -- conversion is necessary

if L1 > X then -- not legal: L1 and X must have the same type

if L1 > LARGE(L2 * X) then -- legal: explicit conversion

Numeric Types 101

The user can perform accurate computation with fixed point by ensuring that only exactly
representable values are used. In fact, the only source of error is the implied rounding of
constants and conversion (which is necessary for multiplication and division).

Example:

A frequent calculation in some numerical applications is the smoothing of an input sequence
by means of a running average:

OLD_VAL, NEW_VAL: F,

OLD_VAL := 09 * OLD_VAL + 0.1 * NEW_VAL;

To program this in Ada using fixed point, the types of the products and constants on the
right hand side must be specified, that is:

K1 : constant FRACTION := 0.9
K2 : constant FRACTION = 0.1;

OLD_VAL := F(K1 * OLD_VAL) + F(K2 * NEW_VAL),

An error analysis reveals that a small error in the constant K1 will cause a much larger error
in OLD__ VAL after successive iterations (thus a constant value of 10.0 as input converges to
9.09 if 0.9 is replaced by 0.8%9 for K1). This increase in error occurs when the sum of the
two constants is not exactly 1.0. To avoid this cumulative effect, one can omit the larger
constant and write the following:

OLD_VAL := OLD_VAL + F(K2 * (NEW_VAL - OLD_VAL));
Example.

As another illustration of the use of fixed point, consider the following function for
computing the average of an array of components:

type Fis .. -- some fixed point type
type INDEX is range ! .. 100;
type FIXED_ _VECTOR is array (INDEX) of F;

102 Ada Rationale

function AVERAGE(A : FIXED_VECTOR) return F is
NUM_ITEMS : constant INTEGER := INDEX'LAST,
type SUMF is delta F'DELTA
range NUM_ITEMS*F 'FIRST .. NUM_ITEMS*F'LAST,
SUM : SUMF = 0.0;
begin
for I in A 'RANGE loop
SUM = SUM + SUMF(A(]));
end loop;
return F(SUM/NUM_ ITEMS);
end,

Here, the type SUMF has a greater range than F to accommodate the larger potential range
of values. The explicit conversion inside the loop does not lose accuracy, but the final
division potentially will lose accuracy. If type F requires nearly a full word, then the type
SUMF will be double length. It is very difficult to write an algorithm to obtain the average
which avoids double length. Since the size of the array is involved in the type SUMF, this
size must be known at compilation time.

5.3.3 A Semantic Model for Approximate Computation

Programming languages do not coaventionally define the semantics of floating point
arithmetic. However, in Ada, with declarations controlling the accuracy of data types, it is
highly desirable to do so. A proposal of W. S. Brown [Br 78] makes it possible to describe a
model which is both clean in structure and realistic (that is, it describes the actual behavior
of floating point arithmetic units). In this section, a brief overview is given of the model as
needed by the language.

For each type, an abstract representation is defined. The abstract representation of each
nonzero number x takes the form of a sign, a mantissa, and an integer exponent. Thus for
the binary representation we have

X= tm® 2%%n
where

1/2 < m < |
that is, the number is normalized: the most significant binary digit is always 1. For example,
a mantissa of length 3 allows representation of only the following mantissa values (using the

notation for based literals):

2#0.100%, 2#0.101%, 2#0.110#, 2#0.111l»

Numeric Types 103

The relative precision here varies from 1 in 4 to 1 in 7; in general, mantissa length B
guarantees precision of only 1 in 2%*(B-1), although near to | the precision is nearly 1 in
2**B_Hence to guarantee D decimal digits precision requires B to be one more than the
least integer greater than D#*log(10)/10g(2). If for example we declare

type F is digits 6;

then the mantissa will have 21 binary digits, that is, F'MANTISSA = 21. If the smallest
value of the exponent is -84 and the largest is 84 (the values required by Ada in this case -
see below) then

F'SMALL = 2#0.1%e-84
F'LARGE = 2#0.11111_11111_11111_11111_1#e84.

We do not assume that numbers are represented in this fashion, merely that numbers having
the numeric values given above are representable in the machine. Brown now develops
axioms for the representable numbers and the behavior of a machine number that is bounded
by an interval whose endpoints are representable numbers. These axioms allow the use of
higher precision than specified in the declaration, which is essential in Ada, since the
implemented precision will typically be greater than the declared precision.

The Ada version of the Brown model for floating point works as follows:

(1) From the decimal precision specified (F ' DIGITS) the corresponding number of binary
places is determined, being F*MANTISSA.

(2) The model numbers are those with F'MANTISSA binary places and an exponent in the
range

-4*F *MANTISSA .. 4*F 'MANTISSA.

(3) The safe numbers are those with F*MANTISSA binary places and a potentially larger
exponent range limited by the hardware.

The model numbers guarantee workable properties including a reasonable range of values -
their definition is machine-independent: hence the term model. The safe numbers allow one
to exploit the larger exponent range that many machines provide. Safe numbers have the
same properties as model numbers and include the model numbers but their range is
machine-dependent.

For fixed point types, a similar representation is chosen without an exponent. In this case for
the binary representation of each nonzero number x we use:

x= M * small

where M is now an integer, whose length B defines its range | .. 2**(B-1), and small is the
smallest positive representable value (corresponding to M=1). Axioms (not treated by Brown)
can now be given which reflect the exact nature of some operations and the approximate
nature of others. In addition, because of the obvious correspondence between the abstract
representations of all approximate types, conversions can be defined.

104 Ada Rationale

These conversions and some use of subtypes can result in weaker error bounds than those of
the type. Consider:

type F is digits 6; -- 21 bits
X: F;
Y : F digits 5; -- 18 bits

The accuracy constraint in the declaration of Y implies loss of precision in the subtype. Thus
the statement Y := X; allows an implementation to [ose the three least significant binary
digits on the assignment. A subsequent assignment X := Y; will then mean that the last three
bits of X are undefined (that is, the intervai that bounds the value of X is larger than that
given by the type).

Example:
Consider the fixed point type:
type F is delta 0.01 range -100.0 .. 100.0;

To discuss the semantics, we again write model numbers in the form of based numbers, thus:

64 = 2%100_0000.0000 _000#

Then
F'FIRST = -2#110_0100.0000_000# = -100.0
F'LAST = 2#110_0100.0000__000# = 100.0
F'MANTISSA =14
F'SMALL = 1/128 = 2#000__0000.0000_001# = 0.0078125(<0.01)
F'LARGE = 255 + 127/128 = 2#111_1101.1111_111s# = 255.9921875

-- F'DELTA is not a model number
-- F'FIRST and F'LAST are model numbers in this
-- example but this need not always be the case.

Now consider the representation of 2.1, as in the declaration:
Z: F:= 2.1,
The value is bounded by the two consecutive model numbers

2 + 12/128 = 2#000_0010.0001 _100# = 2.09375
2+ 13/128 = 2#000_0010.0001_101# = 2.1015625

of the type F, which therefore define the smallest model interval that bounds Z. On a 20-bit
machine, Z is likely to be represented by the machine value (using the same notation) of

2.10009765625 = 8602/4096 = 2#000_0010.0001__1001_1010#

Numeric Types 105

The error analysis of ordinary computation proceeds similarly. Take:
2= 2Z +20

Here 2.0 is a mode! number (and hence is represented exactly). So as a result, the bounds for
Z are now 4.09375 and 4.1015625. If the operands are not model numbers, then the bounds
for the result of the operation are computed as the closest model numbers that are guaranteed
to enclose all possible results, for all possible values in the model intervals associated with
the operands. Thus after

Z:=27+2Z

we shall get new bounds 8.1875 and 8.203125 for Z, so the model interval associated with Z
has doubled in size.

The logic with fixed point multiplication and division is slightly different. Take
Z:= F(X*Y),

Here X and Y are of any fixed point types, not necessarily type F, but of course Z must be
of type F for the rules for assignment compatibility. The logic of multiplication (and
similarly with division) is as follows. X and Y are computed in the ordinary way, and
associated with each of their values will be a corresponding bounding model interval. The
multiplication is then performed with essentially arbitrarily high precision. One can think of
this intuitively in terms of giving a double length result. This arbitrarily accurate result is
then converted to type F, in consequence some accuracy may well be lost, and in any case a
bounding model interval will be dependent upon the characteristics of the fixed point type F.
This result is then assigned, of course, to the variable Z in this case.

The reason why multiplication and division work in this way, is because the resulting values
cannot be constrained to lie within the same range and delta as of the type of the operands.
Hence it is essential that these operations allow the result to be rescaled. This is done in two
stages: by calculating a result with an essentially arbitrarily high precision, and then by
explicit conversion to a fixed point type.

5.4 Implementation Considerations

Fixed point types can be represented on most machines with one or two machine words.
Implementations should not support fixed point types in excess of this length if credible
performance is required (and cannot be provided). Note that the predefined type
DURATION requires 23 bits of accuracy (plus one sign bit), because the reference manual
requires that intervals of at least twenty milliseconds be accommodated, as well as an interval
of up to a day. Such an implementation would be as efficient in time and space as
conventional assembler coding (assuming a good register allocation algorithm). As with
subranges of integers, tight packing is possible, and this could result in a major advantage
over floating point.

106 Ada Rationale

Good performance depends largely upon the proper specification of the range and delta. For
machines with limited arithmetic shifts, a value in a range that excludes negative values
could have its scale converted by the use of logical shifts. All type conversions with fixed
types could be accomplished with simple arithmetic shifts and masking. All the operations
are likewise straightforward.

With real types there is a problem about the end points of the range with a range constraint.
Ordinarily, such values would be in the set of values permitted. However, a fixed point
range 0.0 .. 1.0 on a two's complement machine would not usually want to include 1.0. To
avoid giving ranges as 0.0 .. 0.999999999, it seems best not to require that nonzero end
values be within the specified range. See the wording in RM 3.5.9(6) for details.

A lazy implementation of numeric types which could be used by a diagnostic compiler is as
follows. Every value is stored in long floating point format together with a flag indicating if
it is integer or real. The long format must be sufficiently long to encompass the longest
integer, fixed point and floating point types supported by the implementation. Operations can
now be applied to these values, the flag being used to ensure that integer results are correctly
rounded to integers (if the floating point hardware does not give integer results from integer
values). This implementation method is clearly inefficient, especially for fixed point types,
which are often used as a method of avoiding expensive floating point. However, it
illustrates the concept of the abstract value and the fact that the operators have the same
meaning for each type.

Although it is theoretically feasible, it is not practical to implement floating point types as
fixed point quantities. This is because of the potentially large dynamic range of floating
point values - a floating point mantissa length B would need smail/ = 2**(-5%B) and hence
fixed point mantissa length 9*B.

With the real types, the language does not specify rounding or truncation, since either choice
could be excessively expensive on some machines. The user can control its effect by
increasing the digits or decreasing the delta in the type declaration, but should note that a
small decrease in the delta could require going from | word to 2 words, with consequent
performance degradation. With multiplication and division, rounding may be required in
order to preserve the relational inequalities. Exact conversion can only occur between integer
types (although many other conversions may not require any rounding). No conversions are
significantly more troublesome than are integer to real and real to integer in (say) Algol 60.

Consider a function ROOT for taking the square root of an argument, where the argument
and the result are of type FRACTION:

type FRACTION is delta D range 0.0 .. 1.0;

By declaring the fixed point quantities X and Y to have a type with larger delta:

type SIXTEEN is delta 16.0*D range 0.0 .. 16.0;
X, Y: SIXTEEN;

Numeric Types | 107

one can then take the square root of X by

Y := SIXTEEN(4 * ROOT(FRACTION (X/16)));

and here the division by 16 is a shift that corresponds to the converse of the FRACTION
type conversion and hence produces no code (assuming reasonable peephole optimization).
(Note that the literals 4 and 16 are integers; real literals would not be allowed here.)

The body of ROOT (for argument range 0.5 to 1) could be:

function ROOT(X : FRACTION) return FRACTION is
HALF : constant FRACTION := 0.5;
APPROX : FRACTION = 0.7; -~ a starting value
begin
while abs(APPROX - FRACTION(X/APPROX)) > FRACTION'DELTA loop
APPROX := FRACTION(HALF * (APPROX + FRACTION(X/APPROX)));
end loop;
return APPROX;
end ROOT;

The machine dependence is largely restricted to the declaration of FRACTION, whose range
relative to the accuracy would reflect the word length of the machine. Note that since the
declared range is 0.0 .. 1.0 the algorithm may give values equal to 1.0 for arguments near 1.0.
This would cause overflow on a twa's complement machine. The check for negative
arguments is implicit in the type definition.

In evaluating an expression at compilation time, the identification of the operators must be
performed. Then expressions involving only literals, constants, other evaluated expressions
and predefined operators can be evaluated. The accuracy of real arithmetic may here be
different from that of the target machine, although both are within that specified in the type
declarations.

The efficient implementation of some mathematical algorithms requires access to the
component parts of a floating point value. For instance, a square root routine typically starts
by estimating a value by dividing the exponent by 2. We therefore need to be able to access
and update the exponent. This can elegantly be done in Ada by the use of a record type and
associated record representation clause defining the internal structure of the floating point
value, and then using UNCHECKED_CONVERSION to convert between the floating point
type and the record type. Such operations are best performed by subprograms in the
mathematical library; in this way the implementation dependent operations can be
encapsulated so that they are hidden from the normal user,

The above example illustrates the essential dilemma between efficiency and portability that
intrudes into certain sensitive areas of numerical computation; there are occasions where the
demands for a very efficient implementation outweigh those for complete portability. The
facilities in Ada enable the non-portable parts to be readily identified and encapsulated so
that a proper balance between the conflicting aims can be obtained.

108 ‘ Ada Rationale

5.5 Conclusion

The aim of the design is to provide the full range of numeric facilities within a secure
system of types. This has been achieved by a combination of two techniques.

Firstly, use is made of the ability in the language to define new types derived from an
existing type, from which the new types inherit properties. The convenience of the derived
type mechanism in Ada is that it provides a simple method of ensuring a high degree of
portability. If the user declares a new type (therefore derived from a machine type), this
type is distinct from other types in the program. This distinction ensures that type
conversions are explicit and that a quite different representation could be used on other
machines.

Secondly, the precision of numerical representation and the bounds on results of computation
are strictly controlled: With the model developed by Brown, it is possible to define an
axiomatic system which gives the minimal properties of approximate computation. These
minimal accuracy properties could be exploited by a diagnostic or program analysis system to
ensure that the algorithm being used is appropriate. The axiomatic system is realistic in the
sense that it can (and must) be applied to existing floating point implementations.

The numeric types available to the programmer are derived from those defined in the
implementation. This guarantees that the efficiency of the resulting code is directly related to
that of the implementation, which, in the case of floating point, could be hardware,
firmware, or software. Fixed point types are not predefined in the standard environment, but
acquire their properties on declaration. However, in terms of code generation these properties
involve little more than what is required for the integers and hence the performance should
be high.

Portability cannot be entirely guaranteed by the language because it is not possible for a
program to be completely isolated from dependence on the underlying hardware. However,
such dependence is limited to the attributes of the predefined numeric types, and properties
of the implemented real types that cannot be derived from the axiomatic system - such as
the radix of the underlying floating point representation.

To conclude, the numeric types in Ada provide facilities clearly needed by the envisaged
applications. A rigorous axiomatic system is available to handle approximate computation.
Most importantly, a good balance between portability and efficiency has been achieved.

Access Types 109

6. Access Types

6.1 Introduction

The notion of access type encompasses the concept of objects that are dynamically created
during the execution of a program. In general, neither the number of such objects, nor their
names, can be fixed in advance.

The inclusion of such a feature in a language raises what are traditionally some of the most
difficult issues in language design, and indeed in programming. Accordingly, the first section

of this chapter is devoted to an overview of these issues. This will serve as background for
an exposition of the approach adopted in Ada.

6.2 Overview of the Issues

The main problems usually encountered with access types fall into two categories:
s Conceptual aspects

a Reliability, efficiency, and implementation.

We first discuss these problems and then define the desirable goals for a formulation of
access types.

6.2.1 Conceptual Aspects

The objects of a program can be classified into two categories: static objects and dynamically
allocated objects.

110 Ada Rationale

Static objects are declared in a program and are containers for values. Each static object has
a simple name that is used to denote either the container or the value, depending on the
context where the name appears. The simple name of a static object is defined by its
declaration. For example, an object declared within a procedure is created by the elaboration
of the object declaration and exists until the end of the procedure. Such objects are said to
be static since their lifetime is determined by the static (textual) structure of the program.

In contrast, the creation of dynamically allocated objects occurs dynamically, by the
execution of so-called allocators, and is not directly related to the program structure. In
general, the number of dynamically allocated objects is not easy to predict and it will not be
possible to define their names by declarations. Hence what is returned by the execution of an
allocator is an internal name - not an identifier - and therefore it cannot be used explicitly
in the text to denote the newly allocated object.

To deal with this problem, one usually defines by declaration a number of indirect names
that may be used to access the different dynamically allocated objects at successive stages of
execution. The internal names of the allocated objects will be the values of these declared
indirect names. For this reason, indirect names are called access objects in Ada and
throughout the remainder of this chapter (they have been called pointers ot reference
variables in other languages). An access object can be a declared variable or a component of
a declared variable (and hence static); but it can also be a component of some dynamically
created object. Internal names are called access values in Ada. To emphasize the difference
between names and internal names, we say that a name denotes an object whereas we say
that an access value designates an object.

Four important consequences follow from the fact that access objects contain internal names:

(a) The same internal name may be contained in several access objects, with the
consequence that they provide access to the same dynamically allocated object.

(b) Access objects may be used to describe relations, in particular, relations that change
over time.

(c) Since the internal name contained in an access variable may vary with successive stages
of the program execution, a given dynamically allocated object may become
inaccessible: A dynamically allocated object is accessible as long as its internal name is
contained by a declared access object, or if its internal name is contained by an access
object that is itself a component of a dynamically allocated object that is still
accessible, and so on.

(d) Since an access object does not contain any internal name prior to its first allocation or
assignment, there must be a special null value corresponding to no internal name (none
in Simula, nil in Algol 68 and Lisp, null in Ada). This value is also required for
describing partial relations.

Sharing and the possibility of inaccessibility are thus two of the classical difficulties of access
types. A third classical difficulty is the well-known problem of dereferencing: Considering
the name of an access object, this name may stand for several different things:

Access Types 111

= The name of the (static) access object.
s The content of the access object (that is, its value: an internal name).

s The content of the dynamically allocated object that is designated by this internal
name.

The first two possibilities (name or content) also exist for static objects. Most languages (Bliss
being an exception) have the same notation in the two cases, and make a distinction by
context. The third possibility, however, only exists for access objects, and the solutions
offered by programming languages are very diverse.

Two issues arise:

s For assignments, it must be clear whether the assignment refers to the access objects
(access assignment), or to the dynamically allocated objects they designate (value
assignment). This distinction is essential and has been treated differently in most
languages.

» For component selection, that is, for denoting a component of a dynamically created
record, there is no possible ambiguity. Nevertheless some languages have chosen to
make dereferencing explicit even in this case.

The diversity of the solutions adopted by several languages is a clear indication of the
conceptual difficulties involved. We illustrate this diversity with the example below, where X
and Y are access variables and AGE is a component of the dynamically allocated record
object (For the Algol 68 formulation, T is assumed to be the mode of the record values; the
Simula example extends the possibilities offered for texts).

language access value component
assignment assignment selection
Simula X:-Y; X =Y, X.AGE
Algol 68 X:=Y; T(X) =Y, X.AGE
Pascal X =Y, X* = Y4, X*.AGE
Ada X=Y; X.all := Y.all; X.AGE

A final conceptual difficulty in defining access types is the notion of constant access objects.
Suppose an access object is declared to be constant. Several alternative interpretations could
be given for such a declaration.

(1) The access value (an internal name) is constant. This means that it always designates
the same dynamically allocated object. The value of the latter, however, could vary.

(2) The access value can vary, but it may only be used to read the components of a
designated object.

112 Ada Rationale

(3) The access value is constant and it may only be used to read the components of the
designated object. Note, however, that we cannot infer that the dynamically allocated
object designated by such a constant is itself constant, since other variables may
designate the same dynamically allocated object.

Some languages, including Mary and Lis, have provided different syntaxes for all three
forms of constant semantics. The first meaning, however, is the one that is most consistent
with what is done for other types. Consider the analogy with an index:

subtype INDEX Is INTEGER range | .. 9;
MEDIAN : coastant INDEX := (INDEX'FIRST + INDEX'LAST)/2;
TABLE : array (INDEX) of COLOR := (others => WHITE);

In this formulation we use the index MEDIAN to refer to the median value of the table:
TABLE(MEDIAN). Now, the fact that MEDIAN is constant only means that we always refer
to this component; it does not mean that assignment to this component is forbidden.

6.2.2 Reliability, Efficiency, and Implementation Issues

When a dynamically allocated object becomes inaccessible, the corresponding space may (at
least theoretically) be reclaimed for other uses without any risk. This operation, classically
called garbage-collection, has been used in languages such as Lisp, Simula, and Algol 68.

Unfortunately, there is no method of garbage collection that is generally suitable to real-time
applications. The method used in most Lisp implementations is to allocate storage
continuously until the available space is exhausted, and then reclaim inaccessible objects by a
complete traversal of all allocated structures. This implies that the execution of an allocator
can suddenly initiate garbage collection, thereby causing a large and unpredictable overhead.
Moreover, as the available storage becomes increasingly fragmented by accessible objects,
garbage collection could be triggered ever more frequently, causing rapid degradation of
performance.

Another method is to maintain reference counts with each allocated object an object is
inaccessible if its reference count is zero. This fails with cyclic structures, where a non-zero
reference count does not necessarily imply accessibility. It also causes implementation
problems, since the reference count of an accessed object must be decremented whenever a
declared access object that designates it passes out of scope - either in the normal course of
execution or as a result of an exception. Access objects are therefore associated with
finalization actions, with all their attendant difficuities. However, even if this method were
fully implemented it would not soive the problem: the unpredictable overhead has merely
been transferred to the deallocation operation.

A third method is to perform garbage collection periodically by a parallel process of lower
priority. Provided the synchronization problems can be solved, this provides the least
unsatisfactory solution for real-time use. Its major defect is that, under conditions where the

Access Types 113

transaction rate is high, the lower-priority processes may become starved, so garbage
collection might not be done often enough to maintain a satisfactory pool of free storage.

For these reasons several languages in the systems programming area (including Lis and
Euclid) try to achieve better control over storage management for dynamically allocated
objects. This means that such languages offer the opportunity to define the workings of
object allocation within the language itself. Similarly they admit an explicit deallocation
statement which can also be defined within the language itself.

Such operations usually cannot be written with the full degree of compilation-time checking
that is provided by types, though the Ada generics facility permits a greater degree of safety
than is found in many other languages. In addition, the availability of explicit deallocation
introduces the possibility of dangling access values: the program might deallocate a
dynamically allocated object that is still accessible by other paths - its internal name still
being contained by other access variables.

Confronted with this dilemma between reliability and efficiency, a possible answer is to
choose reliability and accept the possibility that access types might not be used in programs
that are time-critical. However, there are cases where access types should be used, precisely
because the application considered is time-critical. We illustrate this point with the following
example:

Assume that we need to compute the sum of the elements of a circular list. A formulation
using an array might look as follows:

type INDEX is range ! .. 1000;

type ITEM is
record
SUCC, PRED : INDEX;
CONTENT : INTEGER;
end record;

TABLE : array (INDEX) of ITEM;
HEAD, NEXT : INDEX;
SUM : INTEGER;

The algorithm for adding the contents of the successors of HEAD may be written as a while
loop:

SUM = 0;

NEXT :@= TABLE(HEAD).SUCC;

while NEXT /= HEAD loop
SUM = SUM + TABLE(NEXT).CONTENT,;
NEXT = TABLE(NEXT).SUCC;

end loop;

114 Ada Rationale

Clearly, the above formulation attempts to use index values in order to express relations, and
does not achieve this with quite the elegance and readability offered by access variables. The
main point, however, is that the index computation involved in accessing the array element
TABLE(NEXT) at each iteration may be a drawback, especially on small computers where
multiplication is rather slow.

The alternative formulation with access objects (declarations omitted) is given below:

SUM = 0

NEXT := HEAD.SUCC;

while NEXT /= HEAD loop
SUM := SUM + NEXT.CONTENT;
NEXT := NEXT.SUCC;

end loop;

This solution is more readable - it does not require mention of names such as TABLE that
are irrelevant to the logic of the algorithm - and also more efficient since no index
calculation is involved.

In general, when access varizbles are used, address computations will be done only once, at
the time of dynamic allocation. Thereafter access values can only be assigned to access
objects or used to access the dynamically allocated objects. This however does not involve
address computations. On the other hand, when indices are used, address computations must
be redone for every access.

6.2.3 Goals For a Formulation of Access Types

As shown by the previous example, one of the advantages of access variables is efficiency.
As a consequence we must be able to use them in time-critical applications. In this case,
however, we must provide a form of access variable that does not result in garbage collection
with the associated costs and unpredictability. Naturally this does not exclude the possibility
of more elaborate storage management strategies in applications that are not time-critical.

The needs of efficiency being thus satisfied, it remains that reliability should be a major goal
in the formulation of access types, especially in view of the conceptual difficulties they raise.
Hence 2 safe formulation of access types should have several important properties:

s There must be a null value for access objects: Since null designates no object, any
attempt to denote a component of this nonexistent object should raise the exception
CONSTRAINT_ERROR (the null value cannot be dereferenced). On many computers
checking for such attempts is achievable without any run-time cost if the internal value
of null corresponds to some protected address.

s Access variables should be typed (as in Simula or Pascal) so that one access variable
can designate only objects of one type.

Access Types 115

s There should be a basic operation - the allocator - that dynamically creates an object
and delivers an access value designating this object (its internal name). On the other
hand, there should be no operation for explicit deallocation of a dynamically allocated
object (to avoid dangling access values).

=« There should be a clear distinction between access types and other types. In particular,

there should be no possibility for an access value to designate a static variavle (again,
to avoid dangling access values).

6.3 Presentation of Access Types

The presentation of the properties of access types in Ada. will cover the following topics:
s How to declare access types

= The collection of dynamically allocated objects implied by the declaration of an access
type

s How to declare access variables and constants

s How to allocate a dynamically allocated record object

= Component and value assignments

» Recursive access types

» Subprograms with parameters belonging to an access type

= Storage management for a collection of dynamically allocated objects

6.3.1 Declaration of Access Types and Subtypes

An access variable, like any other variable in Ada, has a type, which is in this case an access
type. The example below shows a declaration of a record type followed by the declaration of
an access type:

116 Ada Rationale

type PERSON(SEX : GENDER := F) is
record
AGE : INTEGER range 0 .. 123;

end record;

type PERSON_NAME is access PERSON;

In this example, PERSON is declared as a record type, and static variables of this type can
be declared as usual. The access type PERSON_NAME is declared as a type whose values
provide access to dynamically allocated record objects of type PERSON.

It is of course possible to copy the value of a dynamically allocated PERSON into a static
variable of this type and vice versa. Note, however, that there is no way for an access
variable of type PERSON_NAME to designate a static variable of type PERSON.

The type of the dynamically allocated objects can be any type. For example it can be an
array type, as in

type ALPHA is access STRING;

It is possible to declare a subtype of an access type, and this will mean that the constraints
defined by the subtype declaration are imposed on the dynamically allocated objects. Thus
the subtype ALPHA__LINE defined below corresponds to dynamically allocated strings of 80
characters:

subtype ALPHA_LINE is ALPHA(1 .. 80);

6.3.2 Collections of Dynamically Allocated Objects

Conceptually it is important to realize that each access type declaration implicitly defines a
collection for dynamically allocated objects. The actual collection will be built during
program execution as allocators are executed. Its lifetime cannot be longer than that of the
program unit in which the access type definition is provided.

Collections in Ada are implicit and cannot be named (unlike those in Lis and Euclid). The
collections associated with different access types are always disjoint, so that dynamicaily
allocated objects designated by access variables that do not have the same type are
guaranteed to be in different collections.

Access Types 117

6.3.3 Access Variables, Allocators, and Access Constants

Access variables are declared in the usual way and may be initialized in their declaration, for
instance with the value of some other previously declared access variable or with the special
value null representing no internal name. For safety reasons, access variables that are not
explicitly initialized are implicitly initialized with this null value. Hence all variables
declared in the example below have this initial value:

YOU, HIM, HER : PERSON_NAME; -- implicit initialization to null
SOMEONE : PERSON_NAME = null; -- explicit initialization to aull

An allocator creates a dynamically allocated object and assigns its internal name to an access
variable:

YOU := new PERSON'(SEX => F, AGE => 30, ...); -- all components, as usual

The above allocator includes a qualified aggregate, with the name of the type of the
dynamically allocated object - the so-called designated type - and with the aggregate
defining the initial value of this object.

The constraints applicable to a dynamically allocated object are established when the
allocator is evaluated and cannot be modified during the lifetime of the dynamically
allocated object. In the case of a dynamically allocated array, this means that the bounds of
such an array cannot be modified. Consider

MESSAGE : ALPHA := new STRING'(] .. 45 => ' ');

It is certainly possible to modify the character values of the string designated by MESSAGE,
but the bounds of this string remain those that are set at allocation time (here 1 and 45).
Similarly, for a type with discriminants, the discriminant values established at allocation time
cannot be modified:

type TEXT(SIZE : LENGTH) is
record
POS : LENGTH := 0
DATA : STRING(1 .. SIZE);
end record;

type TEXT_NAME is access TEXT,
BUFFER : TEXT_NAME;

BUFFER := new TEXT '(SIZE => 50, POS => 0, DATA => (1 .. 50 => "#® 1))

118 Ada Rationale

The discriminant SIZE, once initialized by the allocator, cannot be changed thereafter (not
even by a whole record assignment to the dynamically allocated record object). As a
consequence, only the size actually required by the dynamically allocated object need be
allocated.

Another possibility is to provide a constraint in the allocator without otherwise initializing
the dynamically allocated object. For a discriminant constraint, the corresponding
discriminants are initialized. Examples of such allocators are given below:

MESSAGE := new STRING(! .. 90): -- index constraint
HIM = new PERSON(SEX => M), -- discriminant constraint
BUFFER = pnew TEXT(SIZE => 40); -- discriminant constraint

Declarations of access constants are given in the usual way. The access value (an internal
name) contained by an access constant cannot be changed. Consider, for example, the
constant declarations:

YOU_NOW : constant PERSON_NAME := YOU;

DAY_NAME : constant array (1 .. 7) of ALPHA :=

(new STRING '("MONDAY™),
new STRING '("TUESDAY"),
new STRING '("WEDNESDAY"),
new STRING'("THURSDAY™),
new STRING '("FRIDAY"),
new STRING '("SATURDAY"),
new STRING '("SUNDAY™));

The constant YOU_NOW contains the internal name of the dynamically allocated record
designated by YOU at the time of the initialization. It means that YOU_NOW will always
contain this access value even if YOU is updated at a later time. On the other hand,
components of the person designated by this constant can be modified (aside from the
discriminant) by assignments such as

YOU_NOW.AGE := 3}, -- or indirectly by
YOU.AGE = 31;

Similarly, the array DAY_NAME is a constant array, hence its components are constant
access values obtained from allocators. But this does not mean that the strings designated by
- these constants are themselves constant, and it would not be possible for a compiler to
perform the string allocations statically (at compilation time) unless their invariability can be
deduced on other grounds: for example, if this array were local to a package body in which
it is read but never updated.

Access Types 119

6.3.4 Component Selection, Indexed Components, and Value Assignments

In the previous example, the contents of YOU is the internal name of a dynamically
allocated record object. The usual syntax of component selection is used, as if YOU were the
record object itself (this means that dereferencing is implicit for component selection):

YOU.AGE -- a component that has the type INTEGER
YOU.SEX -- a component that has the type GENDER

Similarly, we can use the normal selection syntax to designate the entire (dynamically
allocated) record object. Thus YOU.all is an object of type PERSON such that the following
conditions are true:

YOU.all.SEX = YOU.SEX
YOU.all.AGE = YOU.AGE

This notation can also appear in an allocator, as in the assignment statement

HER := new PERSON'(YOU.all);

Finally the same notation may be used for value assignments. Remember that if YOU and
HER contain internal names of dynamically allocated record objects, then after the
assignment

YOU := HER;

the two access variables contain the same internal name. In contrast, the value assignment for
copying the value of the dynamically allocated record designated by HER into the
dynamically allocated record designated by YOU - without necessarily altering the access
values - is written

YOU.all := HER.all;

Such value assignments are always possible between dynamically allocated record objects
without variants. With variants, they are legal only if the discriminants of the objects are
identical. This must be checked (usually at execution time), and the exception
CONSTRAINT_ERROR is raised if the check fails.

Indexed components for arrays denoted by access types are written exactly as in the case of
statically denoted arrays (this means that dereferencing is also implicit for indexing). Thus
we can write

MESSAGE(1) = '#!;
MESSAGE(11 .. 16) ;== DAY_NAME(1)(1..6);
MESSAGE(21 .. 27) := "MORNING";

120 Ada Rationale

Note, finally, that the notation X.all, denoting the dynamically allocated object designated by
X, can be used for all dynamically allocated objects, whether they are records, arrays,
scalars, or task objects.

6.3.5 Recursive Access Types

The type of a record component can be an access type. This opens up the possibility of
recursive access types, where a dynamically allocated object in a given collection has
components designating other dynamically allocated objects in the same collection. The
declaration of recursive access types will usually involve an incomplete type declaration. As
an example, consider the following variation of the type PERSON_NAME:

type PERSON(SEX : GENDER := F), -- Incomplete declaration of
-- PERSON)
type PERSON_NAME is access PERSON; -- Access type declaration 2)
type PERSON(SEX : GENDER = F) s -- Full declaration of PERSON (3)
record
AGE : INTEGER range 0 .. 123;

FATHER : PERSON_NAME(SEX => M), -- Component declaration (4)
MOTHER : PERSON_NAME(SEX => F); -- Component declaration &)
SPOUSE : PERSON_NAME; -- Component declaration (6)

end record;

The incomplete declaration allows a linear reading of the example: We first learn about the
existence of a type called PERSON, so that at (2) we can understand what "access PERSON"
means. We then learn what the type PERSON is in full. Without the incomplete declaration
(1), the access type declaration (2) would be illegal. Similarly, we could not reverse the order
of declarations (2) and (3) because then (3) would be illegal: we need to know what a
PERSON_NAME is in order to understand the component declarations at (4), (5), and (6).

Having declared objects of this type, we can establish relations between them, and these
relations can evolve dynamically. For example

HENRY_ VI : PERSON_NAME(M) := new PERSON(SEX => M);
ANNE_BOLEYN : PERSON_NAME(F) := new PERSON(SEX => F);
JANE_SEYMOUR : PERSON_NAME(F) := new PERSON(SEX => F);

HENRY_ VIIL.SPOUSE := ANNE_BOLEYN;
ANNE_BOLEYN.SPOUSE := HENRY_VII]

HENRY__VIIL.SPOUSE ;= JANE_SEYMOUR,;
JANE_SEYMOUR.SPOUSE := HENRY_VIIL

Access Types 121

Note in particular that such recursive structures may include cycles: for example

HENRY__VIIL.SPOUSE.SPOUSE

designates the same object as the access variable

HENRY_VIII
itself.

This kind of recursion in access type declarations may involve more than one access type. In
such cases it is necessary to provide an incomplete declaration for each type whose name is
mentioned before the occurrence of its full declaration. This is shown by the following pair
of access types:

type CAR; -- Incomplete declaration of CAR
type PERSON(SEX : GENDER := F); -- Incomplete declaration of PERSON

type CAR_NAME s access CAR;
type PERSON_NAME is access PERSON;

type CAR is
record
OWNER : PERSON__NAME;
SERIAL_NUMBER : POSITIVE;
end record;

type PERSON(SEX : GENDER := F)is
record

VEHICLE : CAR_NAME;

end record;

122 Ada Rationale

6.3.6 Access Objects as Parameters

Like other variables, access variables can be passed as parameters, and the parameter modes
have their usual meaning. For functions, the parameters must be in parameters (as must all
parameters of functions) but this does not prevent assignment to local access objects. As an
example consider the declarations for the lists of section 6.2.2, above.

type PLACE;
type LIST is access PLACE;

type PLACE is
record
SUCC, PRED : LIST;
CONTENT : ITEM;
end record;

A function CARDINAL that counts the elements in a given circular list can be written as
follows:

function CARDINAL(HEAD : LIST) return NATURAL is
-- The head is not counted as a list element
-- For an empty list, HEAD.SUCC = HEAD.PRED = HEAD

NEXT : ITEM := HEAD.SUCC;
COUNT : NATURAL = 0;
begin
while NEXT /= HEAD loop
NEXT = NEXT.SUCC;
COUNT := COUNT +1;
end loop;
return COUNT;
end;

Moreover, assignment to the object designated by an in parameter, or to a component of that
object, is also permitted.

As an example, consider the procedure given below:

procedure DIVORCE(P : in PERSON_NAME) is
begin

P.SPOUSE.SPOUSE := null;

P.SPOUSE := mnull;
end;

Although P is an in parameter, assignment to P.SPOUSE is permitted.

Access Types 123

6.3.7 Storage Management for Access Types

Unless specified otherwise, the collection of dynamically allocated objects associated with an
access type will be allocated in a global heap and may be garbage-collected in some
implementations. For time-critical applications, however, it is possible to provide a length
clause that specifies an upper bound for the space needed by the collection of a given access
type. This space can then be reserved globally when the length clause is elaborated.
Subsequently, when leaving the innermost block, subprogram, or task that encloses the access
type declaration, the space occupied by the collection may be reclaimed since the contained
objects cannot any .onger be accessible.

for CAR_ NAME 'STORAGE_SIZE use -- no more than 2000 cars
(2000*CAR 'SIZE) / SYSTEM.STORAGE _UNIT;

The expression provided after the reserved word use is the size in storage units of the storage
area tc he reserved for the collection of dynamically allocated cars designated by values of
the tyy CAR_NAME. Given an estimate of the maximum number of cars to be allocated
(here 2000), the size in bits is obtained by multiplying this number by the value of the
attribute CAK 'SIZE; the size in storage units is then obtained by dividing the result by the
size in bits of a storage unit (SYSTEM.STORAGE_UNIT). Note that this storage area does
not limit the storage for persons designated by values of the type PERSON_NAME, in spite
of the fact that each CAR has a ¢. »onent of this type.

A collection for which such a length clause has been given behavcs like a static array as far
as storage allocation is concerned. The objects are allocated within this static storage area by
allocators; and the whole collection can be reclaimed globally under the same conditions as
for an array declared at the place of the access type declaration. The exception
STORAGE_ERROR s raised if the space reserved is insufficient for an allocation.

If we want to ensure that garbage collection is never performed by the run-time systen., the
following pragma must be used

pragma CONTROLLED(CAR_NAME);

Such collections may be allocated either on the stack or on the heap. They have several
advantages. In terms of storage management they have a cost comparable to that of arrays. In
addition they offer both the notational advantages and the addressing efficiency of access
variables. Finally, if an application wants to perform its own deallocation, it can do so by
means of a generic instantiation of a predefined generic library procedure, as follows:

procedure FREE is
new UNCHECKED_DEALLOCATION(OBJECT => CAR, NAME =>
CAR_NAME);

The resulting procedure FREE has a parameter profile corresponding to the following
specification:

procedure FREE(X : in out CAR_NAME),

124 Ada Rationale

The execution of a call such as FREE(MY_CAR); will assign the null value to MY_CAR,
and establish that the storage occupied by the object designated by MY_CAR can be
reclaimed. This form of deallocation is said to be unchecked since no check will then be done
to ensure that there are no dangling accesses to the same object. The use of this form of
deallocation may therefore be justified by efficiency, but it presents some danger, and so
programs that use it must be written with great care.

Derived Types 125

7. Derived Types

7.1 Introduction

The basic mechanisms for defining a new type are by enumeration and by composition from
existing ones; certain operations are automatically introduced by such definitions, for
example the basic operations that are inherent in indexing, component selection, and the
formation of aggregates. Another way of defining a type is by means of a private type
declaration.

A third possibility is provided by the language: A type COPY is said to derive its
characteristics from those of another existing type MODEL if it is declared as

type COPY is new MODEL;
This form of declaration is useful whenever a type is to have the same characteristics as
another type, (and possibly some additional ones). The type MODEL is said to be the parent
type, and COPY is said to be a derived type - derived from the parent type. Although the
derived type COPY and its parent type MODEL have similar characteristics, they are
nevertheless distinct types.

The following topics are some of the major uses of derived types:

s« Simple strong typing

s The explanation of numeric types

» The ability to define new types that have numeric literals
= The construction of private types

s Achieving transitivity of visibility

« Change of representation

126 Ada Rationale

After an informal introduction to derived types, these major uses are discussed in what
follows. It will be shown that all these uses rely on a unique ability, namely the ability to
introduce a distinct type with similar properties.

7.2 Informal Introduction to Derived Types

Given some useful type, the derivation mec anism offers a simple way of creating other
types that are distinct copies of this type. Consider for example the types:

type SCALAR is digits 8;
type COLOR is (VIOLET, INDIGO, BLUE, GREEN, YELLOW, ORANGE, RED);

package METRIC is
type COORDINATE is
record
X : SCALAR := 0;
Y : SCALAR = (;
Z : SCALAR = 0
end record;

function "+" (LEFT, RIGHT : COORDINATE) return COORDINATE;
function "-" (LEFT, RIGHT : COORDINATE) return COORDINATE,

procedure INVERT(A : in out COORDINATE);
end METRIC;

By derivation we can create the following new types:

type MASS is new SCALAR;
type LENGTH is new SCALAR;
type AREA is new SCALAR;

type DYE is new COLOR;
type HUE is new COLOR;
type POINT is new METRIC.COORDINATE;

type FORCE is new METRIC.COORDINATE;
type VECTOR is new METRIC.COORDINATE;

Derived Types 127

The motivation for creating new types that are copies of existing types will be examined in
later sections. For the time being let us review the properties of such types - obtained by
derivation. In each case, the derived type is a copy of its parent type. This has several
implications concerning the type class, the set of values, the applicable operations, and
overloading.

Type Class:

The derived type belongs to the same class as its parent type. Thus DYE is an enumeration
type since COLOR is an enumeration type; similarly, POINT is a record type since
COORDINATE is a record type.

Set of Values:

The set of values of the derived type is a copy of the set of values of its parent type. Thus
we have a set of seven values for the type DYE - exactly as for the parent type COLOR.
There is a one-to-one correspondence between the two sets of values; but these two sets are
nevertheless distinct: it would not be possible to assign a value of type DYE to a variable of
type COLOR.

Basic Operations:

The basic operations for the derived type are as for the parent type. For example, if
component selection is available for the parent type, it is available for the derived type. Thus
selection of the component Y (by dot notation) is available for the type POINT since it is
available for the type COORDINATE; similarly aggregates exist for both types and they use
the same notation.

Attributes:

Attributes are basic operations, so the previous rule applies: If an attribute is available for
the parent type, it is available for the derived type. Thus the attribute FIRST is available for
the type MASS since it is available for the type SCALAR: the attribute FIRST for the type
MASS vyields a value of type MASS; the attribute FIRST for the type SCALAR yields a value
of type SCALAR. The (implicit) declarations of these two attributes are in fact as follows
(this is NOT legal Ada):

function SCALAR 'FIRST return SCALAR; -- for the type SCALAR
function MASS'FIRST return MASS; -- for the type MASS

Implicit Conversions of Numeric Literals:

Implicit conversions of numeric literals are also basic operations. Hence there exists an
implicit conversion of any real literal (such as 1.54) to the type MASS since there exists such
a conversion for the type SCALAR (the parent type of MASS).

128 Ada Rationale

Enumeration Literals:

If a given enumeration literal exists for the parent type, there is a corresponding enumeration
literal - with the same identifier - for the derived type. Thus there is the enumeration literal
INDIGO for the type DYE since there is an enumeration literal INDIGO for the type
COLOR. The (implicit) declarations of these two enumeration literals are in fact as follows:

function INDIGO return COLOR; -- for the type COLOR
function INDIGO return DYE; -- for the type DYE

Thus each literal yields a value of the corresponding type: as we know already there is a
correspondence between the indigo value of COLOR and that of DYE, but they are distinct
values belonging to distinct types.

Predefined Operations:

For each predefined operation of the parent type there is a corresponding predefined
operation of the derived type. For example we have the addition:

function "+" (LEFT, RIGHT : SCALAR) return SCALAR;

for the type SCALAR and hence the corresponding additions for the derived types:

function "+" (LEFT, RIGHT : MASS) return MASS; -- for the type MASS
function "+" (LEFT, RIGHT : LENGTH) return LENGTH; -- for the type LENGTH
function "+" (LEFT, RIGHT : AREA) return AREA; -- for the type AREA

Derivable Operations:

For a type declared in the visible part of a package, each subprogram that has a parameter or
result of the type and is declared within the visible part of this package is derivable. This
means that corresponding operations are derived by the derived type. For example, the
package METRIC defines an addition, a subtraction, and a procedure INVERT for the type
COORDINATE; and hence the corresponding subprograms are derived for the type POINT:

function "+" (LEFT, RIGHT : POINT) return POINT;
function "-" (LEFT, RIGHT : POINT) return POINT;
procedure INVERT(A : in out POINT);

Note that these derived operations are obtained by systematic substitution of the name.of the
derived type for the name of the parent type.

(We will say more about the effect of these derived subprograms after we have presented
explicit conversions.)

Derived Types 129

Explicit Conversions:

The above description shows that a derived type is very much like its parent type. They are
nevertheless distinct types. Thus with the declarations

C : COLOR := INDIGO;
D : DYE ;= VIOLET;
H : HUE = RED;

assignments such as the following are illegal

D = H; -- lllegal: a hue value cannot be assigned to a dye
C = D; -- Illegal: a dye value cannot be assigned to a color

These assignments are not allowed because we are dealing with distinct types and distinct sets
of values. However, there is a one-to-one correspondence between these sets of values and,
for this reason, the language provides explicit conversions between corresponding values. For
example

DYE(H)

is an explicit conversion of the value of H - of type HUE - into the corresponding value of
type DYE: here it will yield the RED value of the type DYE, and so the following
assignment is legal

D := DYE(H);

Type conversions between types that are derived directly or indirectly from each other (or
from a common parent type) usually do not result in any run-time executable code. Such
conversions are also involved (implicitly) in the derivation of a derivable operation. Consider
for example the procedure INVERT:

procedure INVERT(A : in out COORDINATE) is

begin
AX = - AX;
AY = - AY;
AZ = - AZ
end;

and the derivation of the procedure

procedure INVERT(A : in out POINT);

130 Ada Rationale

The effect of this derived operation is obtained by application of the parent procedure, but
conversion of the parameter to the parent type is assumed to take place before the call, and
conversion back to the derived type is assumed to take place after the call. Thus for a
variable P of type POINT, the call

INVERT(P);
has the same effect as

declare
use METRIC;
K : COORDINATE;

begin
K := COORDINATE(P); -- convert to parent type
METRIC.INVERT(K); -- call parent procedure
P := POINT(K); -- convert back to derived type
end;
or simply

METRIC.INVERT(METRIC.COORDINATE(K));
but this form does not show the conversion back.

Here again these conversions usually do not result in any run-time executable code but they
are needed to explain the use of the procedure METRIC.INVERT, which is only applicable
to the type METRIC.COORDINATE.

Overloading considerations:
A final point to consider with derived types is overloading. Derivation creates several
overloaded entities. Thus we have
s Overloaded aggregates. For example, for the types METRIC.COORDINATE and
POINT, the aggregate: (X => 1.0, Y => 2.0, Z => 1.5)

» Overloaded enumeration literals. For example, for the types COLOR, DYE, and HUE,
enumeration literals such as VIOLET, INDIGO, and so on.

s Overloaded subprograms. For example, the procedure INVERT for the types POINT,
FORCE, and METRIC.COORDINATE. Similarly, the operator "+" for these types, for
the type SCALAR, and for the types derived from SCALAR.

As usual, overloaded entities are identified by the context. Thus there is no ambiguity in the
following cases:

C := INDIGO; -- the INDIGO of the type COLOR
D := INDIGO; -- the INDIGO of the type DYE

Derived Types 131

Qualification can be used when the context is not sufficient for the determination of the
meaning of an overloaded construct. For example the following comparison is ambiguous
(and admittedly somewhat pathological):

if(X=>A, Yus B, Z=>C) = (X=>U, Y=V, Z=>W) then -- ambiguous
But this ambiguity can be resolved by qualification of one or of both aggregates:
POINT'(X=> A, Y=>B, Z=>C) = (X=U, Y=>V, Z=>W)
or
POINT' (X => A, Y=>B, Z=>C) = POINT'X=>U, Y=V, Z=VW)
or
(X=>A, Y=>B, Z=>C) = POINT'"X=>U, Y=V, Z=>W)

We next review major classes of use of derived types.

7.3 Simple Strong Typing

Given some useful type, the derivation mechanism offers a simple way of creating other
types that are distinct copies of this type. The usual motivation for such type replication is to
keep the two value spaces well separated and, thus, to achieve a simple form of strong
typing. We illustrate this idea by an example due to Erhard Ploedereder and Helmut
Hummel. Consider a useful type for counting currency:

type CURRENCY s delta 0.01 range 0.0 .. 1.0E6;

and assume that we have forced an exact representation of decimal values by means of the
representation clause:

for CURRENCY 'SMALL use CURRENCY 'DELTA;

From this type we can derive the usual types:

type DOLLAR is new CURRENCY; -- three
type FRANC is new CURRENCY; -- distinct
type MARK is new CURRENCY:; -- types

132 Ada Rationale

The motivation for having these distinct types is well-known to every traveller, namely not
to mix the different currencies. So we could now declare

MY_MONEY, YOUR_MONEY : DOLLAR;
ARGENT : FRANC;
TASCHENGELD : MARK;

and the usual constants

CENT : comstant DOLLAR := 0.01I;
CENTIME : constant FRANC := 0.01;
PFENNIG : constant MARK = 0.01;

By virtue of these declarations, we can write assignments such as

YOUR_MONEY := 1*CENT,
TASCHENGELD := 50*PFENNIG;
MY_MONEY = YOUR_MONEY;

All are legal and this can be checked by an Ada compiler at compilation time. Similarly an
Ada compiler will detect at compilation time any of the following misuses:

ARGENT = YOUR_MONEY; -- Illegal!
MY_MONEY := TASCHENGELD; -- Iliegal!

What this example illustrates is that we have provided type declarations that reflect the
common-sense view that having one “"centime" is not the same as having one "pfennig".
Although both correspond to an abstract value of "0.01", we consider that they belong to
different value spaces. Note that this would not be achieved if we had declared our variables
as

MY_MONEY, YOUR_MONEY, ARGENT, TASCHENGELD : CURRENCY;

since this would allow mixing different currencies in an uncontrolled manner. Distinguishing
the value spaces was also the main reason for having typed constants for CENT, CENTIME,
and PFENNIG. Using a named number such as

ONE_UNIT : coastant = 0.01];

would indeed be misleading in this case: After the assignments

ARGENT ;= ONE_UNIT;
MY_MONEY := ONE_UNIT;

it would be wrong to believe that these two variables have the same value since an implicit
conversion of the universal _real value 0.01 has taken place for each assignment: to the type
FRANC in the case of ARGENT and to the type DOLLAR in the case of MY_MONEY.

Derived Types ’ 133

So we have different currencies but we can exchange them. For example we can assume a
range of conversion rates:

type CONV_RATE is delta 0.0001 range 1.0 .. 2000.0;
-- for converting from the stronger currency
for CONV_RATE 'SMALL use CONV_RATE 'DELTA;

and define the function

function EXCHANGE(A : MARK) return FRANC is
MARK_TO_FRANC : constant CONV_RATE := 3.20;
begin
return FRANC(MARK_TO _FRANC * CURRENCY(A));
end;

and thereafter write
ARGEN1 := EXCHANGE(TASCHENGELD);

which has exactly the intended effect of converting TASCHENGELD from marks to francs
before assigning the result to ARGENT.

Note that the return statement of the function EXCHANGE includes two successive explicit
conversions. First

CURRENCY(A)

yields the number of currency units that correspond to the value of A. Then, after
multiplication by the mark to franc rate, this number is converted to the type FRANC:

FRANC(MARK _TO_FRANC*CURRENCY(A))

Thus if the value of A is equal to 2.0, this means that we have 2.0 marks; the conversion
CURRENCY(A) yields 2.0 units of currency; the multiplication by MARK_TO_FRANC
yields 6.40 0000 units - conceptually units of currency; and the final conversion converts
them into 6.40 francs. We could have written it - equivalently - as

FRANC(MARK_TO_FRANC*A)

but this would fail to show the conversion into the more neutral type CURRENCY as an
important conceptual intermediate step. Each of the above conversions is purely on the
conceptual level - helping to make the intent more explicit -~ but will not result in any run-
time executable code.

Note that we could write this example - without derivation - in the following manner:

type DOLLAR is delta 0.01 range 0.0 .. 1.0E6;
type FRANC is delta 0.0] range 0.0 .. 1.0E6;
type MARK is delta 0.0]1 range 0.0 .. 1.0E6;

134 Ada Rationale

But this formulation would hide the fact that these three types are currencies with the same
delta and range, and for which certain currency-specific functions could be declared, such as
interest;

package FINANCIAL is
type CURRENCY is delta 0.0]1 range 0.0 .. 1.0E6;
for CURRENCY 'SMALL use CURRENCY'DELTA;
type RATE is delta 0.01 range 0.0 .. 10.0;
for RATE 'SMALL use RATE 'DELTA;

function INTEREST(A : CURRENCY; R : RATE) return CURRENCY;
end;
package body FINANCIAL is

function INTEREST(A : CURRENCY; R: RATE) return CURRENCY is
begin

return CURRENCY(A*R);
end;

end FINANCIAL;

With this variation, and assuming the derived types to be declared as follows:

type DOLLAR is new FINANCIAL.CURRENCY;
type FRANC is new FINANCIAL.CURRENCY;
type MARK is new FINANCIAL.CURRENCY;

we can now use the functions INTEREST derived for each of these types from the
corresponding function defined for the common parent type:

MY_MONEY := MY_MONEY + INTEREST(MY_MONEY, 0.10);
ARGENT = ARGENT + INTEREST(MONNAIE, 0.15);

To conclude on this first example, it shows that derived types can be used to achieve
program reliability and readability in quite a simple manner - hence the name simple strong
typing. We will see later in this chapter (and in chapter 13) that generic units can often (but
not always) be used to achieve similar goals. However generic solutions will usually involve
much more machinery and, in consequence, are less likely to be used in simple situations
such as the currency example.

Note also that derivation will allow the construction of hierarchies of derived types. Thus
having the predefined type

type STRING is array(POSITIVE range <>) of CHARACTER;

Derived Types 135

we can derive the types

type LINE is new STRING(I1 .. 140);
type CARD is new STRING(1 .. 80);

Moreover we can further derive the following types

type CONTROL_CARD is new CARD;
type PROGRAM_CARD is new CARD;
type DATA_CARD is new CARD;

These definitions ensure that objects of type LINE are not accidentally mixed with objects
of type CARD. However, they can both be converted to the type STRING by means of
appropriate conversions. Also we have defined three distinct types, derived from the type
CARD, and we can define distinct operations for them. For example we may want to define
certain subprograms that are applicable to control cards but not to program cards, or vice
versa.

From a purist point of view one co .e that the use of derived types in many of these
examples does not achieve total rel: y. For example, with the derivations of SCALAR in

type LENGTH is new SCALAR;
type AREA is new SCALAR;

the multiplication that is derived for LENGTH is the following multiplication, which is not
useful:

function "*" (LEFT, RIGHT : LENGTH) return LENGTH;
However, we can always define - explicitly - the function

function "*" (LEFT, RIGHT : LENGTH) return AREA is
begin

return AREA(SCALAR(LEFT)*SCALAR(RIGHT));
end;

Furthermore, should we fear the misuse of the inherited multiplication, we can always hide
it by the following declaration:

function "*" (LEFT, RIGHT : LENGTH) return LENGTH is
begin

raise DIMENSION _ERROR;
end;

136 Ada Rationale

But in many cases, we will not even bother to introduce such additional definitions: There
are many ways in which we are trying to improve program reliability, and types are but one
of them. The fact that any specific mechanism does not achieve one hundred percent safety
does not mean that this mechanism should be neglected. Thus by declaring the derived type

type MASS is new SCALAR;

we have ensured that masses are not assigned to lengths by accident. However we will leave
it to the programmer to avoid improper uses such as multiplication of masses. Actually,
having written

KILO : constant MASS := 1.0;

LOAD : MASS = 3.0*KILO;
a programmer is not likely to write

LOAD := LOAD*LOAD;

which (although legal in Ada) would not make much sense: the careful choice of names
makes such errors unlikely - and easily detectable by code inspection, whether by the same
or by another programmer.

We have already seen examples in which we were quite willing to have a type declaration be
no more than a first order characterization of the data. Thus when defining dates we did not
bother to take into account short and long months - not to mention leap years: Although such
a formulation would be possible, we felt that the added complexity was not justified. The
same reasoning will often apply to the use of derived types: they provide a simple mechanism
for achieving a first level of safety. Being simple, this mechanism is more likely to be used
than heavier mechanisms. Thus derived types will encourage the use of types for logical
structuring.

We next consider other examples of the use of derived types for simple strong typing. Let us
first review possible derivations of the type COORDINATE defined in the package METRIC
in section 7.2:

type BASE_COORD is new METRIC.COORDINATE;
type LOCAL_COORD is new METRIC.COORDINATE;

By this we achieve some security since coordinates of the two systems cannot be mixed
inadvertently. When changing coordinate systems, an important property of derived types can
be used, namely, the ability to perform explicit conversions. Thus, using the "+" operator
defined on coordinates, we can program a change of base as follows:

Derived Types 137

declare
B, D : BASE_COORD;
L : LOCAL_COORD;
begin

B:= D + BASE_COORD(L);
end;

Another example (due to Etienne Morel) comes from the design of an Ada compiler, using a
software managed virtual memory. A single package is in charge of this management of
virtual addresses:

package VIRTUAL__ADDRESS_MANAGER is
type VIRTUAL_ADDRESS is private;
function ADDRESS(LOCATION : MEMORY_ADDRESS)
return VIRTUAL _ADDRESS;
function ADDRESS(LOCATION : VIRTUAL _ADDRESS)
return MEMORY _ADDRESS;

private
type VIRTUAL_ADDRESS is
record
BASE : SEGMENT;
OFFSET : DISPLACEMENT;
end record;
end VIRTUAL_ADDRESS _MANAGER;

In various parts of the compiler, data structures are accessed by means of virtual addresses.
Type derivation is used as follows:

type SYMBOL_VA is

new VIRTUAL_ADDRESS MANAGER.VIRTUAL_ADDRESS;
type NODE__VA is

new VIRTUAL_ADDRESS_MANAGER.VIRTUAL _ADDRESS;

With derivation, the ADDRESS functions are inherited by these types so that the same
functions, defined in a single package, are used for all these types - this single package
remains the single interface with the virtual memory system. But the most important property
of this solution is the security that is achieved: it is not possible to assign (by mistake) a
SYMBOL__ VA value to a variable whose type is NODE__VA: Although these two types are
conceptually similar (being derived from the same parent), they are nevertheless distinct

types.

Our last example of simple strong typing (due to Robert Firth) illustrates an ability similar to
the Simula hierarchical type composition (although it is admittedly less powerful).

138 Ada Rationale

Let us assume that we have defined a private type CREDIT_CARD and the corresponding
basic operations. We can then derive the types

type PERSONAL_CARD is new CREDIT_CARD;
type BUSINESS_CARD is new CREDIT_CARD;

and then define certain operations on personal_cards but not on business_cards and vice
versa. This enables the definition of a system that has some security against inadvertent
misuse. Clearly it does not cover the case of intentional forgery since explicit conversions are
possible.

The above comment is characteristic of many uses of derived types for simple strong typing:
s The mechanism is very simple to use.

s The protection offered is against inadvertent misuse - heavier mechanisms would be
required against intentional forgery.

The previous forms of strong typing can almost be obtained by the use of generic
instantiation instead of derivation:

generic
package METRIC is
type COORDINATE is

record
X : SCALAR;
Y : SCALAR;
Z: SCALAR;

end record;
end;

package BASE is new METRIC; use BASE;
package LOCAL is new METRIC; use LOCAL;

subtype BASE_ COORD is BASE.COORDINATE;
subtype LOCAL_COORD is LOCAL.COORDINATE;

Generic instantiation almost achieves what is needed but one may regret the need to use a
more elaborate feature of the language: generic program units. In many teaching strategies
this feature would only be encountered at the advanced level. Hence it is not really
satisfactory that the user should be confronted with this degree of difficulty (on top of
verbosity) for such a simple situation.

Derived Types 139

Moreover, the major drawback of the generic solution is that conversions between
BASE__COORD and LOCAL_COORD are not possible, whether explicitly or implicitly, in
the generic formulation. To achieve such conversion would require writing functions such as
the following:

function TO_BASE(A : LOCAL_COORD) return BASE__COORD is
begin

return BASE_COORD'(X => A.X, Y => AY, Z=> A.Z),
end;

This solution is far from satisfactory from a maintenance point of view, since the conversion
has to be expressed by duplication of the structure within the aggregate. In particular, it has
to express the structural correspondence on a component-by-component basis. Any change in
the definition of the type COORDINATE would therefore require revision of the text of
these conversion functions.

The approach taken for conversions is far simpler in the case of derivation: if a type is
derived from another one, then it is immediately known that the two types have the same
structure - by construction. Hence there is no need to detect structural similarity.

Another approach in the case of the type SCALAR would be to copy the type definition.
Thus assuming a range constraint for illustration:

D : constant := 8§;
L : constant := 0.0;
U : constant := 1.0E6;

type SCALAR is digits D range L .. U;

we may just provide identical type definitions:

type MASS is digits D range L .. U;
type LENGTH is digits D range L .. U;

This copying technique works in the case of numeric types, in particular for eaplicit
conversions. However there are methodological objections to the fact that the sameness is
hidden. In order to understand that the two types are similar we have to compare D, L, and
U. But the intention does not appear. Actually there could be situations where these same
constants D, L, and U are used in a third type by accident. Conversely, there are situations
where we want two types to be similar although their range need not be the same.

The superiority of the derivation approach for copying comes from the fact that the
intention is made explicit by naming the parent type, even if the derived type has a different
range:

type VELOCITY is new SCALAR range .. ;

140 Ada Rationale

7.4 The Explanation of Numeric Types

The explanation of numeric types is based on the use of derived types. A type declaration
such as

type REAL is digits 8 range -1.0E30 .. 1.0E30;
is explained as being equivalent to the following succession of declarations

type hidden_real is new predefined _floating point_type;
subtype REAL is hidden_real digits 8 range hidden_real (-1.0E30) ..
hidden_real (1.0E30);

This means that REAL is a subtype of a type hidden_real obtained by copying a predefined
floating point type. The selection of this predefined type is done by the compiler; the type
chosen must support the precision required - here it must have at least 8 digits; furthermore
it must support at least the range required. The fact that this selection is performed by the
compiler ensures portability: the programmer need not know which floating point type is
actually used.

The role played by derivation in this explanation is to provide a distinct replica of the
floating point type. Thus if we write

type MY_REAL is digits 8;

we are sure of getting a new type. In particular this means that REAL and MY _REAL are
distinct types.

The reason to consider REAL as a subtype of hidden_real is that for operations on values of
this type, the compiler may generate code that corresponds to one of the hardware floating
point types: range checks are used for assignments but not for intermediate results in
expressions.

7.5 The Ability to Inherit Literals

With derivation, it is possible to define new types that inherit the implicit conversions of
numeric literals but have different operations.

For example, modulo arithmetic can be declared by means of a type derived from an integer
type. Modulo operations that hide the inherited operations can be declared, yet integer
literals can still be used.

Derived Types 141

7.6 The Construction of Private Types

For the construction of private types, derived types provide an easy and unambiguous way of
distinguishing the operations of the private type from those of the type used for its
representation (that is, the type declared by the full type declaration). The relevant aspects
are: (1) the fact that the parent and the derived type are distinct types; (2) the fact that
explicit conversions between the two types exist.

Consider for example the case where an operation specified for a private type is
implemented in terms of an operation of the type that is used for representing the private
type:

package LOCKSMITH is
type KEY is private;
procedure GET_KEY(K : out KEY);

function "<" (X, Y : KEY) return BOOLEAN;
private
type KEY is new CHARACTER;

end;

The user need not know that keys are implemented as characters, but he is provided with the
operator "<" to order keys. This operator is implemented as the comparison of the
corresponding characters:

package body LOCKSMITH is

function "<" (X, Y: KEY) return BOOLEAN is
begin

return CHARACTER(X) <« CHARACTER(Y);
end;

end LOCKSMITH;

The function first converts the parameters X and Y into characters and then compares them
using character comparison. (Note that X < Y would not work: it would be a recursive call.)

142 Ada Rationale

A more general example of this problem is provided by the following schema

package P is

type T is private;

function F(X :- T) return T;
private

type T is new REP;

-- there exists a function F operating on REP
end P;

In order to implement the function F on T by means of that on REP we first convert the
parameter to the type REP; then convert the result back to type T.

package body P is

function F(X : T) return T is
begin

return T(F(REP(X)));
end;

end;
Without derivation, a solution can be developed using one-component records:

package P is
type T is private;
function F(X : T) return T;
private
type T is
record
VALUE : REP;
end record;
end,

package body P is
function F(X : T) return T is
begin
return T'(VALUE => F(X.VALUE));

end;

end;

Derived Types 143

The function F is applied to the single component of the parameter; then a one-component
aggregate is returned as the function result. The drawback of this solution is its lack of
symmetry. Thus, compare

return T(F(REP(X)));
with
return T'(VALUE => F(X.VALUE));

Instead of the succession of two conversions - to REP and then back to T - we have now the
succession of component selection (X.VALUE) and of aggregate construction T'(VALUE =>

). Note that there are already cases where the language requires one-component records
(for implicit initializations). For the remaining cases, however, the solution with derived
types is more elegant.

7.7 Achieving Transitivity of Visibility

When a derived type is declared, a new type is thereby obtained that is a copy of an existing
parent type. The new type derives some operations from the parent type and these derived
operations are implicitly declared at the point of declaration of the derived type. This ability
to declare a copy of a type can be used to achieve transitivity of visibility. This term will be
explained by the following examples. Consider a generic package

generic

package BASE is
type T is private;

function F(X : T) return T,
function G(X : T) return T;

function H(X : T) return T;

end;

144 Ada Rationale

Consider now an application of this package, and let us assume that we now want to build
higher-level operations on top of those of BASE. This can be achieved as follows:

with BASE;
package HIGHER_LEVEL is
package NEW__BASE is new BASE(...);

type T is new NEW_ BASE.T;
-~ this derived type declaration implicitly declares:

-- function F(X : T) return T;
-~ function G(X : T) return T;

-- function H(X : T) return T;
-- now we declare additional operations on T:
procedure P(X, Y : in out T);

procedure R(X : T);
end;

Consider finally a user procedure

with HIGHER _LEVEL; use HIGHER_LEVEL;
procedure USER is

end;

Within the body of USER the operations directly available on T are the functions F, G, ...,
H, and the procedures P, ... , R. The functions are directly visible, without having to write

use NEW_BASE;

It is in this sense that derivation has achieved transitivity of visibility.

Derived Types 145

To further emphasize the point, consider a nongeneric formulation of the above problem

package BASE is
end;

with BASE;
package HIGHER_LEVEL is
type T is new BASE.T,;
-- implicit declaration of F, G, ... , H

procedure P(X, Y : in out T);

procedure R(X : T);
end;

Because of the transitivity achieved by derivation, the procedure USER does not have to
mention

with BASE; use BASE;
The package BASE can thus be considered as a lower-level package ignored by the user.

Note that the controlled transitivity achieved by derivation would not be obtained by
subtypes. Consider for example:

with BASE; use BASE,;

package HIGHER_LEVEL is
subtype T is BASE.T;
procedure P(X, Y : in out T);

procedure R(X : T);
end;

The effect of the use clause "use BASE;" is not transitive. This means that its effect covers
the package HIGHER_LEVEL itself but not packages that mention HIGHER LEVEL in
their context clause.

146 Ada Rationale

Another alternative for achieving transitivity is to use renaming as shown in the example
below:

with BASE;

package HIGHER_LEVEL is
package NEW__BASE is new BASE(...);
subtype T is NEW_BASE.T;

function F(X : T) return T renames NEW_ BASE.F;
function G(X : T) return T renames NEW__BASE.G;

function H(X : T) return T renames NEW__BASE.H;
procedure P(X, Y : in out T);

procedure R(X : T);
end;

The main disadvantage of this alternative approach is that it involves considerable rewriting
and therefore suffers from the maintenance problems that are inherent in manual copying:
any change in the specification of the operations of the type T would have to be repeated in
the renaming declarations. Hence the renaming alternative is not very appealing.

7.8 Change of Representation

The design of Ada adheres to the principle of a single representation per type, with the
consequence that two types must be declared if there is a need for two different
representations. Again in this situation, derivation is used to produce a second type that is a
logical copy of its parent type, the only difference between the two types being the
representation. Consider for example the parent type:

type PARENT(D : BOOLEAN := TRUE) is
record
A : INTEGER;
case D is
when TRUE =>
U : INTEGER;
YV : INTEGER;
when FALSE =>
W : REAL;
end case;
end record,

Derived Types 147

From a logical point of view, derivation will produce a copy of the parent type:

type COPY is new PARENT;

This means that COPY and PARENT have the same components, including discriminants,
and components that are declared in variants. Having two types, we can specify two
(different) representations; for example:

for PARENT use
record
-- a sparse representation that optimizes
-- efficiency of access to components
end record;

for COPY use
record
-- a compact representation
-- to be stored on secondary storage
end record;

For change of representation we can exploit the fact that the two types are derived from
each other and use explicit conversion:

declare
C: COPY;
P: PARENT;
begin
READ_FROM_ DISK(C);
P := PARENT(C), -- convert to PARENT form
OPERATE_EFFICIENTLY_ON (P);
C := COPY(P); -- convert back to COPY form
WRITE__TO_DISK(C);
end;

or simply:

declare
C: COPY;
begin
READ_FROM__DISK(C),
OPERATE _EFFICIENTLY_ON(PARENT(C));
WRITE_TO_DISK(C);
end;

148 Ada Rationale

Aside from derivation, there is actually no satisfactory way to achieve this change of
representation. Consider for example the alternative of copying (whether manually or with
text editors) the type definition of PARENT when defining the type COPY:

type COPY(D : BOOLEAN := TRUE) is
record
A : INTEGER;
case D is
when TRUE =>
U : INTEGER;
V : INTEGER;
when FALSE =>
W : REAL;
end case;
end record;

To achieve change of representation, we must first realize that the obvious idea -
component-by-component assignment - will not work:

P.D = C.D; -~ Illegal!
P.A = C.A;
case C.D is
when TRUE =>
P.U:= C.U;
P.V:= C.V;
when FALSE =>
P.W:= C.W,;
end case;

This is the equivalent of the code that will be generated by a compiler for the conversion for
change of representation. But it cannot be written directly by the programmer since direct
assignment to a discriminant is not allowed: discriminant values may orly be changed by
whole record assignments. Therefore, the solution to the above problem is to write:

case C.D is
when TRUE =>
P:= (TRUE, C.A, C.V, C.U);
when FALSE =>
P:= (FALSE, C.A, C.W);
end case;

This solution is wordy and again requires a manual copy of the record structure; it is
therefore likely to create errors (such as interchanging U and V above - did you spot it?).
Furthermore, it suffers from the maintenance problems that are inherent in any solution that
requires text duplication. Thus if the type definition is ever extended, corresponding changes

Derived Types 149

need to be performed in the above case statement. Their complexity - and hence the
likelihood of error - will increase with the size of the record type definition.

Note finally that defining the type PARENT in a generic package and creating copies by
generic instantiation is not a solution to our problem: All instantiations would result in types

that have the same representation, and conversions between such types would not be
available.

7.9 Conclusion - Achieving Copies in Ada

Three main classes of entity are found in Ada programs:
(1) Objects

(2) Types

(3) Program units

The last class consists mainly of subprograms and packages. Nominally, it also includes tasks;
although in certain respects tasks are closer to types and objects.

For each class of entity, the language provides a copying mechanism; that is, a mechanism by
which we can create distinct replicas having similar properties:

class of entity replication mechanism
)] objects object declaration
(2) types type derivation
(3) program units generic instantiation

Clearly, there are limits to this analogy since each replication mechanism is adapted to the
class of entities to which it applies.

The replication mechanism offered by generic units is very powerful and can be used to
replicate the contents of program units. Thus in section 7.3 it was shown that some aspects of
type replication (not all, however) could be achieved by generic instantiation of a package
that included the model type.

150 Ada Rationale

The generality of generic units certainly runs against a saying often heard in programming
language design that there should be only one way of doing a given thing. Generic
instantiation can even be used to achieve object replication, but it would be carrying matters
to extremes to conclude from this that no simpler way should be provided. Consider thus

generic

package CREATE is
OBJECT : INTEGER;

end;

and now we can replicate objects by generic instantiation:

package A is new CREATE; -~ creates A.OBJECT
package B is new CREATE; -- creates B.OBJECT
package Z is new CREATE; -- creates Z.OBJECT

But (obviously) replication of objects could be achieved in a simpler manner:

A . IN1WEGER;
B : INTEGER;

Z : INTEGER;

The awkwardness of the above example should be an indication of the limitations of the only
one way princip‘e. (Note also that we are in an inescapable circular situation since both ways
imply an object declaration.) Generic instantiation can be used to replicate objects but it is
not the most natural way. Similarly, although generic instantiation can be used to replicate
types, derivation is a more natural and direct way.

To summarize this point, the design of Ada has provided replication mechanisms for each of
the three main classes of entity: objects, types, and program units. Each of these mechanisms
is adapted to the corresponding class of entity: it provides the natural way of replicating the
corresponding entities. Being specialized, these mechanisms can also take advantage of
specific aspects of the entities concerned. In the case of generic units these specific aspects
correspond to parameterization. In the case of derived types the specific aspects correspond
to the allowed explicit conversions.

Six major situations have been reviewed in which copying a type provides a natural solution
for the problem considered:

s« Simple strong typing
s« Numeric types
s New types inheriting literals

s Construction of private types

Derived Types 151

» Transitivity of visibility

s Change of representation

The common characteristic of the above six situations is that in each of them there is a need
to introduce a type that is a copy of another type. Without derivation, a variety of solutions
and palliatives, most of them only partially satisfactory, would be required to solve these six
problems. Furthermore many of these palliatives would involve manual copying and therefore
raise severe issues of maintenance and configuration control. With derivation a unique - and
elegant - mechanism is used to solve what is inherently a unique problem: the replication of
a type.

n
to

Ada Rationale

Subprograms 153

8. Subprograms

Subprograms can be functions or procedures. The form of these program units is quite
traditional, following from Algol 60. Nevertheless the design of a subprogram facility raises
several issues in terms of the organization of the program text, the definition of the
parameter mechanism, and the nature of functions. These issues are discussed in separate
sections.

8.1 Subprogram Declarations and Subpregram Bodies

The textual presentation of subprogram bodies is largely classical, as shown in the foilowing
example:

procedure PUSH(E : in ELEMENT; S: in out STACK) is
-- local quantities could be declared here
begin
if S.INDEX = S.SIZE then
raise STACK_OVERFLOW;
else
S.INDEX := S.INDEX + |;
S.SPACE(S.INDEX) := E;
end if;
end PUSH;

However, Ada allows the subprogram declaration to be separated from the subprogram body.
For example, the subprogram declaration

procedure PUSH(E : in ELEMENT; S: in out STACK);

may appear grouped with other subprogram, variable, constant, and type declarations in a
given declarative part, while its body may appear later, in the list of bodies of the
declarative part.

154 Ada Rationale

The declaration consists of the subprogram specification followed by a semicolon.

The main reason for permitting such separation is readability. If the body and the
specification appear together (as in Algol 60), the potentially large body is mixed with the
smaller interface specification. The specification provides the information needed to cail the
subprogram; it may be hard for the reader to find, especially when examining a program
with a large number of subprograms spread over several pages of text. In addition, an
isolated variable declaration between two large subprograms is a well-known source of error
in Algol 60 (the neglected variable may hide an outer variable that is in consequence never
used - see 3.2).

These inconveniences are avoided in Ada. All bodies must be grouped at the end of 1
declarative part without any variable declaration in between them. Furthermore the user Is
provided with the ability to regroup subprogram declarations within a small space of text. so
as to provide an immediate overview of all subprograms that are local to a given program
unit The split of the subprogram declaration from its body is merely a convenience for large
subprograms; but it is a necessity for subprograms declared in the visible part of a package,
and for subprograms that are mutually recursive. However, requiring a split in all cases.
including small subprograms, would add only verbosity without compensating advantages In
Ada, the decision to split is therefore left to the programmer, except in the cases just
mentioned where it is necessary.

Although this decision is left to the programmer, no semantic problems are involved since
the information provided by the subprogram declaration is repeated in full in the subprogram
body, and the two specifications must agree.

8.2 Parameter Modes

In a subprogram call, each formal parameter is associated with a corresponding actual
parameter. Actions performed by the subprogram body on a formal parameter will result at
the place of the call in actions on the associated actual parameter: Thus a formal parameter
may permut reading the value of the associated actual parameter, updating this value, or
both. Such reading and updating rights are specified by the mode of the formal parameter.

Three »arameter modes are provided in Ada: they are the modes in, in out, and out. The
properties of formal parameters of each of these modes are sum.narized in the table given
below. The second column indicates the nature of the formal parameter: constant or variable.
The third column indicates the reading and updating rights;

Mode Nature Rights
in Constant Only Reading
in out Variable Both Reading and Updating

out Variable Only Updating

Subprograms 155

This definition of parameter modes offers an abstract view of parameter passing. It can be
expressed as a contract regarding the data flow between the caller and the subprogram:

Mode Regquirement
in The caller must supply a value
in out The caller must supply a value

The subprogram must return a value

out The subprogram must return a value

In principle, two different mechanisms can be used to implement this abstract view of
parameter passing.

The first possibility is parameter passing by copy. At the start of each call, copy the value of
the actual parameter into the associated formal parameter, if the mode is in or in out. Then,
after normal completion of the subprogram body, copy the value of the formal parameter
back into the associated actual parameter, if the mode is in out or out.

The second possibility, called parameter passing by reference, is to arrange that, throughout
the execution of the subprogram call, each reading or updating of the formal parameter is
treated as reading or updating of the associated actual parameter.

The problems associated with each of these mechanisms are reviewed first, and then the Ada
solution is presented.

8.2.1 Efficienacy Issues of Parameter Passing Mechanisms

Which of the two mechanisms of parameter passing (by reference or by copy) is more
efficient depends on the case considered. For large objects, the by-reference mechanism is
often more efficient. On the other hand, for objects that are smaller than the storage units of
the target machine, copy will usually be more efficient. Furthermore copy may be the only
possible mechanism between different addressing spaces in distributed systems.

The problem of reference to smail objects is indeed severe and may be illustrated by the
problem of reading and updating parameters that are boolean components of records.
Although such components have the same type (BOOLEAN) there is no guarantee that they
will always be found in the same bit position within a record.

Achieving parameter passing by reference would then require that, with each boolean formal
parameter, there be an implicit subprogram (a thunk) for reading the value of the
corresponding actual parameter; and similarly, another thunk for updating. This is somewhat
complex and inefficient.

156 Ada Rationale

Some languages, such as Pascal, have tried to avoid the problem by forbidding the association
of a formal reference parameter with an actual that is a component of a packed record or
array; and by adopting otherwise a unique default representation for all small objects: one
addressable storage unit per small object (even for boolean components). The problem with
this solution is that, for all practical purposes, it would force programmers to use
representation clauses in too many cases: the default representation chosen by the compiler
would often be too costly, except on machines with small storage units. Moreover, this
restriction would mean that the legality of a program would depend on the presence or
absence of representation clauses or packing pragmas, which Ada avoids (see Chapter 15).

A further problem arises with parameter passing by reference with respect to the checking of
constraints. To illustrate the problem consider the following declarations:

subtype NATURAL is INTEGER range 0 .. INTEGER 'LAST; -- predefined
SUM : NATURAL := 200;

procedure REDUCE(AMOUNT : in out INTEGER) is
DECREMENT : NATURAL,;

begin
-- compute DECREMENT

AMOUNT = AMOUNT - DECREMENT; -- (1)
if AMOUNT < O then
AMOUNT = 0;
end if;
end;

Now consider the procedure call statement

REDUCE(SUM);

If parameter passing were by reference, it would not be possible to complete the assignment
at (1) in the case where AMOUNT became negative, since it would violate the constraint on
SUM; hence the exception CONSTRAINT_ERROR would have to be raised by this
statement. This, however, would require passing range constraint information as a run-time
descriptor for such procedure calls, in order to allow these constraint checks within the
procedure body. Alternatively, if we assume that the constraint applicable to the formal
parameter is that specified by the subtype of the formal parameter, then by-reference is not
possible and all parameter passing must be by copy.

Subprograms ' 157

8.2.2 The Effect of Parameter Passing Mechanisms for Access Types

A difficulty of a different nature arises for parameter passing by reference in the case of
access types. Consider for example a procedure to delete a given element from a list (see
section 6.3.6):

type PLACE;
type LIST is access PLACE;

type PLACE is

record
sSucCcC : LIST;
PRED : LIST;

CONTENT : ITEM;
end record;

E : LIST;
procedure DELETE(L : in LIST) is
begin
L.SUCC.PRED := L.PRED;
L.PRED.SUCC := L.SUCC;

L.SUCC = pull;
L.PRED = pull;
end;

This is the conventional way of deleting an element from a doubly-linked list, and a call
such as

DELETE(X);

will work regardless of whether parameter passing is achieved by reference or by copy.
Consider however the procedure call

DELETE(E.PRED);

where we assume the list to be in the following state before the call:

place: A B C D E F
successor: B C D E F
predecessor: A B C D E

158 ' Ada Rationale

If parameter passing is by copy, we achieve the desired effect of deleting D (the predecessor
of E) and we obtain the state

place: A B C D E F
successor: B C E null F
predecessor: A B null C E

If parameter passing is by reference, then the formal parameter L will refer to the object
E.PRED. The first assignment will have the expected effect of establishing E.PRED = C. But
this means that the remaining statements will operate on C (rather than D) and will not
achieve what we want: the second assignment will achieve B.SUCC = D; and the last two
assignments will unlink C (rather than D), leaving the list in a state of chaos:

place: A B C D E F
successor: B D null E F .
predecessor: A null C C E

One possible reaction to this example is to consider that parameter passing by reference is
legitimate for access types, and that we are just confronted with an incorrect program. Our
preferred viewpoint is rather to consider that access types are already unique in that the
programmer is permitted explicitly to manipulate references and construct aliases: This is the
purpose of access types, and a programmer using such types is asserting that he wishes to
take control of all references and aliases. Accordingly, the parameter passing should not
generate extra references and aliases of which the programmer i1s unaware; therefore, all
parameter passing for access types should be by copy.

A final problem with parameter passing by reference is that this mechanism will be almost
impossible to achieve (or at least, very costly) on distributed systems and whenever we deal
with systems with multiple address spaces.

8.2.3 The Effect of Parameter Passing Mechanisms for Composite Types

In normal situations the effect of a program does not depend on whether parameter passing
for array and record types is by reference or by copy. The only situations where there might
be a difference in effect correspond to:

s Certain cases in which the execution of a subprogram is abandoned as a result of an
exception.

s Certain cases in which there are multiple access paths to a given variable.

These situations are reviewed below. The subject of multiple access paths is further
subdivided into a discussion of aliasing in sequential programs, and a discussion of shared
variables in parallel programs.

Subprograms 159

Exceptions

If the execution of a subprogram is abandoned as the result of an exception not handled
locally, then the final value of an actual parameter that is associated with a formal parameter
of mode in out may depend on the parameter passing mechanism: If by copy, the final value
will still be the initial value before the call. If by reference, the final value may be this
initial value, or any value assigned to the formal parameter during the execution of the
subprogram (before the exception was raised). In either case, the final value is guaranteed to
have the subtype of the actual parameter.

At the cost of more elaborate run-time treatment of exceptions, it would certainly be
possible to copy back current values in the case of termination by an exception. But this
complication is not worth the effort. Consider for example:

procedure P(X : in out COMPOSITE_TYPE) is

begin
-- (1)
X = ...
--(2)
end ;
P(A);

If the execution of P is abandoned as a result of an exception, then the caller may obtain
information about the nature of the exception by means of appropriate handlers:

begin
P(A),
exception
when ERROR =>
-- the exception raised was ERROR
when CONSTRAINT_ERROR =>
-- the exception raised was CONSTRAINT_ERROR
when others =>
-- the exception raised is other than the above two
end;

On the other hand, the caller does not usually know whether the exception was raised during
(1) or (2) or even during the assignment to the formal parameter X. Consequently the
difference resulting from choosing a reference rather than a copy mechanism is of the same
order as the uncertainty that already exists about the exact point where the exception is
raised. In addition, when a user writes P(A) where the parameter mode is in out (and even
more so if the mode is out), then he expects the value of A to be changed. So it does not
matter much if this value is changed during the call or only at the end. If the user wants to
reuse the previous value of A in the case that P is terminated by an exception, the only
logical way to do so is to assign its value to another variable before the call.

160 Ada Rationale

Note finally that if it is important to guarantee that the initial value is not modified if an
exception is raised, then this is best achieved by the procedure body itself. One possibility is
to compute first whatever needs to be changed but perform the change itself only at the end
of the procedure, so that no change occurs if an exception is raised before the end Another
possible style involves the use of exception handlers for expressing last wishes:

procedure P(X : in out COMPOSITE_TYPE) is
begin

exception
when others =>
-- restore initial value of X
raise;
end,

Aliasing

if aliasing is used then the results may differ between reference implementations and copy
implementations. For example consider

A : STRING(i .. 8) = "AAAAVVVV"
B . STRING(I .. 12) = "111122223333",

procedure MODIFY(S : in out STRINGI is
begin
i S'LENGTH >= 8 then
S(S'FIRST .. S'FIRST + 3) = "-#a_"
S(S'FIRST + 4 .. S'FIRST + 7) = A(l .. 4);
end If;
end,

MODIFY(B); -- leaves B s "-%®%_AAAA3333"
MODIFY(A);

The call of MODIFY for the string B will deliver the expected result. Consider however what
happens when A is passed as actua! parameter. Since A s referred to directly within the
bodv of MODIFY, we now have two possible access paths to A, the second being via the
formal parameter S. In this case of aliasing the effect of the procedure will depend on the
mechanism used for parameter passing: the final value of A will be "-**-AAAA" by value,
and "-*%__%%_" hy reference.

Subprograms ' 161

The same trick could actually be used (facetiously) to discover which mechanism is used for
parameter passing:

MODE : STRING(1 .. 4) = "COPY";
procedure FIND MECHANISM(S : in out STRING) is
begin
MODE := "REF "
if S= "COPY" then
PUT("MECHANISM IS COPY™);
else
PUT("MECHANISM IS REFERENCE");
end if;
end;

FIND _MECHANISM(MODE),
although an implementation is in fact free to use different mechanisms for different calls.

In both examples, the effect obtained by reference is somewhat pathological: In the first
example, normally we would like the first assignment to S not to affect A and the subsequent
assignment to S. So whereas for efficiency reasons we might prefer an implementation by
reference, the copy mechanism provides us with a simpler model for understanding programs
and therefore for developing reliable programs.

Whereas aliasing between a formal parameter and a global variable may reasonably be
assumed to be unintentional, aliasing is not necessarily undesirable. In particular, aliasirg
between formal parameters may in many cases be deliberate. Consider for example 2a
procedure for vector addition

procedure ADD(A : in out VECTOR; B: in VECTOR) is
begin
if A'FIRST = B'FIRST and A'LAST = B'LAST then
for N in A'RANGE loop
A(N) ;= A(N) + B(N);
end loop;
end if;
end;

V: VECTOR(I .. 100) :=

Then for a call such as
ADD(V, V);

although we have a case of aliasing between formal parameters within the body of ADD,
since both A and B refer to V, the effect of the procedure does not depend on whether
reference or copy is used for the implementation of parameter passing.

162 ’ Ada Rationale

To conclude the discussion on this subject it appears that for certain cases of aliasing,
different effects will be obtained for parameter passing by reference and by copy. These
cases, however, represent poor programming practice, and do not provide a sound basis for
deciding language semantics.

Shared Variables

The language rules state that the execution of a program is erroneous if a shared variable that
is updated by a given task between two synchronization points is also read or updated by
another task between these two synchronization points (hence asynchronously). The effect of
such erroneous execution is unpredictable. This indeterminacy will be further revealed by
differences in the parameter passing mechanism. Consider for example

SHARED : COMPOSITE_TYPE; -- a shared variable
procedure LIST(X : ia COMPOSITE _TYPE);

LIST(SHARED);

The code of the procedure LIST will rely on the fact that the formal parameter is constant:
in particular this means that reading a component of the formal parameter at different times
and places within this procedure must always yield the same value. This is obviously
achieved (whether the actual parameter is a shared variable or not) if parameter passing is by
copy. If however parameter passing is by reference, and the actual parameter is a shared
variable asynchronously updated by another task, then this invariability is no longer
guaranteed.

Here again, the indeterminacy is inherent in the asynchronous access to the shared variable:
it is further revealed by differences in parameter passing mechanism, but these differences
are not the primary cause.

8.2.4 The Adz Solution for Parameter Passing

Before describing the parameter passing mechanisms, consider first the interpretation of the
subtype that is declared for a formal parameter.

= In the case of a scalar type, the constraint applicable to the formal parameter is always
that imposed by the subtype of the formal parameter.

» In the case of an array or record type, the constraint ¢ i the formal parameter is
inherited from the corresponding actual parameter (if the declaration of the formal
specifies a constraint, then the actual constraint must be the same).

Subprograms 163

In implementation terms, the above subdivision reflects the fact that run-time descriptors for
constraints are never passed to subprograms in the case of scalar types (see the example
AMOUNT in section 8.2.1). On the other hand the constraint information is always passed in
the case of composite types:

» For arrays, the bounds are passed and can be interrogated within subprograms by
means of array attributes.

s For records with discriminants, the discriminants are part of the value. Furthermore,
the value of the CONSTRAINED attribute is passed.

The allowed mechanisms follow from the above considerations.

(a) For scalar types, and for all modes, all parameter passing must be achieved by copy.
The same treatment applies to access types, for the reasons given in the previous
section.

(b) For record and array types, the language does not specify whether parameter passing is
achieved by reference or by copy. Furthermore, the execution of a program is
erroneous if its effect depends on which mechanism is selected by the implementation.

In normal situations the semantics of a program will not be affected by whether parameter
passing for composite types is implemented by reference or by copying: We have seen that
the indeterminacy resulting from the parameter passing mechanism only matters where there
is already a higher degree of indeterminacy (shared variables and exceptions) and where
aliasing is used to achieve dubious effects: In both cases the language rules therefore state
that the execution of the program is erroneous.

For private types parameter passing is as for the type declared by the corresponding full type
declaration. Finally for task types the mechanism never matters, since a task object always
designates the same task.

During this design we considered, and rejected, several alternatives to this abstract
formulation of the parameter passing modes. For example, an implementation-oriented
formulation of modes could be defined in terms of the mechanisms involved: copy or
reference. However, if the same capabilities are to be offered this leads to yet more modes
(constant by copy, constant by reference, variable by copy before and after, variable by
reference, result by copy, result by reference). Although only a subset of them might be
provided, it is critical for reliability and efficiency to be able to pass an array by reference
and nevertheless deny the right to modify its components. Apart from its complexity, such a
formulation would force the programmer to think in terms of (and be aware of) the
representation of objects, and would therefore compromise portability.

We consider the formulation of the parameter passing modes in, in out, and out in terms of
their abstract behavior to be much simpler and therefore preferable.

164 Ada Rationale

8.3 Parameter Passing Notations

Two notations for parameter passing need to be considered. The usual positional rotation is
almost universal. However, with more than three or four parameters it is hard to follow the
text. Following the Lis language, and common usage in many contro! languages, Ada permits
an alternative notation of parameter passing in which the associations are specified on a
name basis (see also [Fr 77] and [Har 76]). Placing the formal parameter on the left and the
corresponding actual parameter on the right of a parameter association provides more
readable procedure calls. For example;

CREATE(FILE => MY_FILE, NAME => "FINALTEXT.FEB.15");

Where long parameter lists are common and have default values, as in the job control area,
this form of named parameter association provides especially high readability. It may be used
in conjunction with the default value facility available for an in parameter if no exphicit
value is provided within the call. For example, a simulation package may declare the
procedure ACTIVATE as follows:

procedure ACTIVATE (PROCESS : ir PROCESS_NAME;

AFTER : in PROCESS_NAME = NO_PROCESS,
WAIT : in DURATION = 00;
PRIOR : in BOOLEAN = FALSE);

As shown in this declaration, the parameter PROCESS must be provided in all calls (because
no default expression is given). On the other hand the parameters AFTER. WAIT and
PRIOR may be omitted. Thus the two following calls of ACTIVATE are equivalent

ACTIVATE(PROCESS => X, AFTER => NO_PROCESS,
WAIT => 0.0, PRIOR => FALSE);
ACTIVATE(PROCESS => >.);

Clearly in many contexts the order of parameters is either highly conventional (as for
coordinate systems) or immaterial (as in MAX(X,Y)). Hence Ada admits both conventions.
The classical positional notation may be used whenever the programmer feels that named
parameters would add verbosity without any gain in readability.

The two notations may also be combined, with positional parameters appearing first; that 1s,
once naming is used the rest of the call must use naming. This allows the default value
mechanistn to be used even when positional notation is desirable, as in the following
examples from graph plotting and simulation:

Subprograms 165

MOVE_PEN(X1, YI, LINE => THICK);
MOVE_PEN(X2, Y2, PEN => UP);

ACTIVATE(X);
ACTIVATE(X, AFTER => Y);
ACTIVATE(X, WAIT => S0*SECONDS. PRIOR => TRUFE),

As shown 1n this last example, the named notation may be used in conjuncticn with *he
default parameters to provide a high degree of expressivity and readabihitn For the aorivges
primitive 1in Simula. this could only be achieved at the expense of predetfined <\ ntax

Finally the default parameter facihitv can be used in conjunction with overingding “heeoo
allowng further possibilities These are illustrated by the declarations ot PU T n the g
package INTEGER 1O

procedure PUT (FILE im FILE THYPL,
ITEM im NUM,
WIDTH in FIELD = DEFAULT WIDIH
BASE im NUMBER BAaSE = DEFAULLT Basi
procedure PUT (ITEM im NUM
WIDTH in FIRL D = DEEALLTD WIDIH
BASE in NUMBER BasSt = DEEALTT RAaNt

Griven the declarations

F FILE,
N NUM,

we can 1ssue the following procedure calls tor output on the tile t

PUT(F. N, 10, 8); -- width 10, octal base
PUT(F. N, WIDTH => 10, BASE => 8), -- more explicith
PUT(F., N); -- detault wandth, decimal base

We can also issue similar calls for output on the current default output f:le

PUT(N, 10, 8);
PUT(N, WIDTH => 10, BASE => 8);
PUT(N);

166 Ada Rationale

«Werloading and detault parameters are complementary: In theory, we could achieve the
desired flevibility of procedure calls by means of overloading, but this would require a
srocedure declaration for each possible form of call (eight instead of two in the above
svaripler On the other hand default parameters provide a concise - and thereby convenient

tormulation But - as the above example shows - if we want to omit the tirst parameter
without using named asswciabions, this will have to be achieved by overloading.

The example of the two PUT procedures further illustrates that the default expressions need
Aot he statie DEFAULT WIDTH and DEFAULT _BASE are variables. Another example of
‘he dvnamic computation of default expressions is provided by the following procedure
VDMISSION admassion requires a hev, a new one being allocated by default in the absence

+

fan exphivit ane

procedure ADMISSIONIK in KEY NAME = new KEY);

X 4 bunction Subprograms

Ine purpose of 2 tunction 1s to calculate a value. This is the conventional mathematical
mearing of a function Small functions to access complex data structures are an essential
‘pature of structured programming: Not only do they hide irrelevant parts of the data
crudture but they provade a cleaner interface to the outside world.

Aithough the mathematical origin of the function concept is clear, its incorporation into a

crogramming language can lead to several different formulations depending on what

peratsons are allowed on variables. Different levels of restriction can be considered, leading
fitterent concepts of function:

Keading global vaniables s not allowed.
Reading global variables 1s allowed but updating them is not.

. Reading and updating global vanables is allowed.

IThe tirst level corresponds to the mathematical notion of function; there are no implicit
parameters 1n the guise of global variables, and two function calls with the same arguments
alwavs deliver the same result. However the class of <ases in which suck functions can be
used s rather limited.

The second level has interesting mathematical properties that can be used for code
optimization. For example, if F 1s such a function then for evaluation of an expression such
as

F+F

d [| [[| [|
M.....l.
Ay |]
HEEEEEN
HEEEEEN
HEEEEEE
HEEEEEN
g [(][]
HEEEEEE
HEEEEEN
A [[
L1 1 1
]

-

L b
ol

I_
(=
(59

\I‘ |

‘l 1k s f32
b=
!lll!'——?——-_—_% “\“—'—3 .6

|\\\

Subprograms 167

the function need only be called once. However this kind of function would not be allowed
to perform input-output (since this is a side-effect), and instrumentation (by update of a
global counter upon each call) would not be possible.

The third level allows functions such as random number generators or memo functions, which
modify the global environment. Such functions do not have the aforementioned properties. If
for example RANDOM is such a function, then 2*RANDOM is not necessarily equal to
RANDOM + RANDOM.

In an earlier version of Ada - the Green language - we attempted to provide a formulation
of functions that corresponds to thé second level, but experimenting with this concept has
shown that this would exclude many benevolent side-effects. For example, it led to the
imposition of limitations on access variables (since the invocation of an allocator is a kind of
side-effect). Furthermore, checking for functionality could require reconsideration of the
text of separately compiled compilation units.

These conceptual and implementation difficulties led to the present more pragmatic
definition, which corresponds to the third level.

The only limitation imposed in Ada on functions is that the mode of all parameters must be
in: it would not be logical to allow in out or out parameters for functions in a language that
excludes nested assignments within an expression.

This means that optimization of expressions such as F + F will be achieved only when the
compiler can conclude that there are no side-effects that matter.

For multiple calls of functions within an expression, Ada follows an approach of collaterality
as described in section 3.8. This means that the language does not define in which order to
call F, G, and H in an expression such as

F+G+H

The language rules state that this evaluation must be done in some order - that is, not in
parallel - but this order is not defined by the language, so that the meaning of a program for
which this order matters is not defined.

This semantics reflects a pragmatic view of side-effects, once expressed by Brian Higman
[Hi 63}

The plain fact of the matter is (1) that side-effects are sometimes necessary, and (2)
programmers who are irresponsible enough to introduce side-effects unnecessarily will soon
lose the confidence of their colleagues, and rightly so.

168 Ada Rationale

—_———

R

Packages 169

9. Packages

9.1 Motivation

Packages allow the programmer to define groups of logically related items. They cover a
wide variety of uses, ranging from collections of common declarations to groups of
subprograms and encapsulated data types.

The ability to package declared entities - such as variables, types, subprograms, and even
other packages - provides the basis for a powerful structuring tool for complex programs.
Moreover, a package permits clear separation between information that is usable by the rest
of the program, and other information that must remain purely internal to the package. The
internal information is hidden, and thereby protected from deliberate or inadvertent use by
other programmers. This serves not only to localize the effect of internal errors to the
package itself, but also to make it easier to replace one implementation of (the services
offered by) a package by another. Packages are thus an essential tool for program
modularity, supporting program verification and information hiding as advocated by Parnas
[Pa 71].

Facilities for modularization have appeared in many languages. Some of them - such as
Simula, Clu, and Alphard - provide dynamic facilities which may entail large run-time
overhead. The facility provided in Ada is more static - in the spirit of previous solutions
offered in Lis, Euclid, Mesa, and Modula. At the same time it retains the best aspects of
solutions in earlier languages such as Fortran and Jovial.

We shall first discuss packages informally by means of examples, and then go on to discuss a
number of important technical issues addressed during the design of Ada.

e -

170

(1)

()

&)

Ada Rationale

9.2 Informal Introduction to Packages

We recognize three general kinds of modularization that can be achieved by different forms
of package:

Named collections of entities:

Logically related constants, variables, and types, that are to be used in other program
units.

Groups of related subprograms:.

Logically related functions and procedures that share internal data, types, and
subprograms. This form of package corresponds to what is commonly called a software
package. By extension, the same term is used in Ada for all three forms.

Encapsulated data types - Private types:

Definition of new types and associated operations in such a way that the user does not
know (and need not care) how the operations are implemented.

The essential difference between these three forms is in the amount of information hiding
that is provided. The package can be viewed as a wall surrounding the enclosed declarations,
thereby separating them from the rest of the program. One may then imagine a window in
the wall, through which (depending on its size) some or all of the declarations are exposed.
For the three kinds of package we have:

)

(2)

(3)

Named collections of entities:

The package exposes all of its declarations (all declarations can be seen through the
window).

Groups of related subprograms:

The package exposes the declarations of the externally usable subprograms (only these
can be seen through the window) but hides their implementations and the declarations
of the shared internal entities.

Encapsulated Data Types - Private types:

The package exposes the type name and the declarations of applicable operations but

hides all details of structure, representation, and implementation of the operations.
Several related types may be encapsulated in the same package.

There is no critical linguistic difference between these three forms, and intermediate degrees
of hiding exist. However, to present the ideas simply, we shall discuss the three forms
separately with appropriate examples.

Packages 171

9.2.1 Named Collections of Eatities

The most traditional use of named collections of entities is for variables that serve as
communication areas accessed by several program units. As an example, in a simple graphics
application, the following package declaration may be provided:

package PLOTTING_DATA is
PEN_UP: BOOLEAN := TRUE;

CONVERSION_FACTOR,
X_OFFSET, Y_OFFSET,

X_MIN, X_MAX,

Y_MIN, Y_MAX : REAL;

X_VALUE : array(l .. 500) of REAL;
Y_VALUE : array(l .. 500) of REAL;
end PLOTTING_DATA;

The elaboration of this package consists of the elaboration of its constituent variable
declarations. Elaboration takes place in the context where the package declaration appears
textually. Thus, in terms of the lifetime of the constituent variables such as PEN_UP and
Y_VALUE, everything happens as if their declarations were inserted in the place of the
declaration of the package PLOTTING_DATA.

The constituent variables are not, however, automatically visible outside the package: steps
must be taken to render them visible. In any context where the package is itself visible, it is
possible to acquire visibility (by selection) of such a variable by an expanded name, written
with the dot notation. For example, we could write statements such as

PLOTTING_DATA.PEN_UP := TRUE;
PLOTTING _DATA.X_VALUE(10) := PLOTTING_DATA.X_MIN;

In the expanded name PLOTTING_DATA.PEN_UP, the variable PEN_UP is visible by
selection after the dot following PLOTTING_DATA: in this sense the dot notation opens up
the visibility of one variable at a time. It is also possible to acquire direct visibility of all
these variables at once by means of a use clause such as

use PLOTTING_DATA;

172 Ada Rationale

The effect of the use clause is that all variables declared within the package become directly
visible (unless they would conflict with other names already visible). The simple name, and
the meaning, of each variable is then as defined in the package. For example, the previous
statemerts can be rewritten more concisely as follows:

Ceclare

use PLOTTING_DATA;,
begin

PEN_UP := TRUE;

X_VALUE(10) := X_MIN;
end;

This simple form of package corresponds closely to the notion of a named common block in
Fortran. There are however three crucial differences between this use of packages and
Fortran named common blocks:

(1) A package can be declared in anv nested block or program unit (and will of course be
written at a place from which it is visible by all program units that need to use the
encapsulated declarations). By contrast, in Fortran all named common blocks are
effectively global to the main program.

(2) Storage reservation for a package (and hence the start of the lifetime of constituent
variables) need not happen before the elaboration of the package declaration. Thus, for
a pa .kage that is local to a procedure, this storage reservation may be performed when
the procedure is called. By contrast, the storage space for a Fortran named common
block is normally reserved throughout the entire program execution,

(3) The entities declared in a package are defined only once: in the context of the package
declaration. Within the scope of the declaration, it is then possible to acquire visibility
of that entire set of entities, in as many program units as necessary, merely by
mentioning the name of the package in a use clause (even in the case of separately
compiled units). For Fortran named common blocks, on the other hand, the
specification must be replicated in its entirety in each subroutine that needs to use one
of the common declarations. The need to replicate information in this fashion is
generally recognized as a violation of the principles of modularity, as an inconvenience,
and as a potential source of serious error,.

A similar use of named collections of entities is for groups of constants. For example:

package METRIC _CONVERSIONS is
CM_PER_INCH : conmstant := 2.54;
CM_PER_FOOT : constant := 12*CM_PER_INCH;
CM_PER_YARD : constant := 3*CM_PER_FOOT,
KM_PER_MILE : constant = 1.609_344,

end METRIC__CONVERSIONS;

Packages 173

More generally, in a typed language, groups of entities are likely to include logically related
types, along with constants and variables, as shown in the following example:

package WORK_DATA is
type DAY is (MON, TUE, WED, THU, FR], SAT, SUN);
type HOURS_SPENT is delta 0.25 range 0.0 .. 24.0;
type TIME_TABLE is array (DAY) of HOURS_SPENT;

WORK_HOURS: TIME_TABLE;
NORMAL_HOURS : coastant TIME_TABLE :=
(MON .. THU => 8.25, FRI => 7.0, SAT | SUN => 0.0);
end WORK_DATA;

In all three examples we achieve the same effect: the elaboration of the package creates the
corresponding entities (whether they be constants, variables, or types). But these entities are
not automatically externally visible: external visibility is obtained only by an expanded name
(dot notation) or by a use clause. Thus in a context that has a use clause for WORK_DATA
we may declare variables of type HOURS_SPENT, update the array WORK __HOURS, and
read the constant NORMAL_HOURS.

declare
use WORK_DATA;

TODAY : DAY;

HOURS : HOURS_SPENT;
begin

-- compute HOURS and TODAY

if HOURS > NORMAL_HOURS (TODAY) then
HOURS = 2*HOURS - NORMAL _HOURS(TODAY);
end if;
WORK _HOURS (TODAY) := HOURS;
end;

9.2.2 Groups of Related Subprograms

The second major use of packages is for the creation of named groups of related
subprograms. For example, we may want to have a package of mathematical functions (such
as SIN, COS, LOG, and EXP) for the reason that a user needing one of them is very likely
to need the others too. Moreover, the functions may share common subprograms that should
not be directly accessible to the user.

Declaring such functions within a package (say MATH_FUNCTIONS) is certainly preferable
to having them be predefined functions in the standard environment. Thereby, a user who is

174 Ada Rationale

not dealing with numerical computations does not have to refer to MATH_FUNCTIONS,
and his name space - the set of names that must be remembered - will not be congested by
names that are useless to him or restricted by names that he might wish to use differently.

We next consider a package for table management - an example that will enable us to point
out other important possibilities. It is made of two parts: The first part is the package
specification and its structure is as follows:

package TABLE_ MANAGER s
-- the visible part
end TABLE_ MANAGER;

The package specification defines the visible part of the package; that is, the declarations
that become directly visible in a context that has a use clause for TABLE_ MANAGER. In
the present case, this user interface consists of the declaration of the type ITEM and of the
three procedures INSERT (to insert an item into the table), RETRIEVE (to retrieve the first
item from the table), and DISPLAY (to display the current contents of the table), as shown
below:

package TABLE_ MANAGER is
type ITEM is
record
-- the components of each item
end record;

procedure INSERT (NEW_ITEM : in ITEM),
procedure RETRIEVE (FIRST_ITEM : out ITEM);
procedure DISPLAY;

end TABLE_MANAGER;

The second part of the package is the package body. This encloses the hidden part of the
package: none of the entities contained therein is visible outside the package (the only
entities that can be made visible by expanded names or by use clauses are those of the visible
part). The structure of the package body is as follows:

package body TABLE_MANAGER is

-- hidden data and subprogram bodies
begin

-~ statements for initialization
end TABLE_MANAGER;

In the formulation of this package body given below, each item is put in a cell: hence we
have the declaration of a local type called CELL. The table itself is a local variable, called
TABLE and declared as an array of cells. The fact that this declaration is local to the
package body ensures that reading and updating of the table is possible only from within this
body. The table is initialized by the statements at the end of the package body, and its value
can be read and updated by the subprogram bodies that appear within the package body.

Packages ’ 175

Finally the package body contains the bodies of the procedures INSERT, RETRIEVE, and
DISPLAY, as well as two local functions.

package body TABLE__MANAGER is

type CELL is ... ;) -- a local type
subtype INDEX is ... ; -- a local subtype
TABLE : array (INDEX) of CELL,; -- a local variable
function NEXT return INDEX is -- a local function
begin

-- computes the index to the next cell
end;
function STORE(N : ITEM) return CELL is -- a local function
begin

-- returns a cell containing N
end;

procedure INSERT(NEW_ITEM : in ITEM) is
begin

TABLE(NEXT) := STORE(NEW_ITEM);
end;

procedure RETRIEVE(FIRST_ITEM : out ITEM) is
end;
procedure DISPLAY is

end;
begin

-- statements for the initialization of TABLE
end TABLE_MANAGER;

The two parts of a package (the package specification and the package body) are always
distinct. They need not even be textually contiguous, and may indeed be compiled separately.
In this way the contents of a package body are not only hidden logically, but can aiso be
hidden physically (as discussed in section 9.3.3 below).

176 ' Ada Rationale

Another example of a package containing a type declaration and functions defining
operations for this type is a variation of the package RATIONAL NUMBERS given in the
Reference Manual (section 7.3). The specification of this package is as follows:

package RATIONAL _NUMBERS is
type RATIONAL is
record
NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;
end record;

function EQUAL(X, Y: RATIONAL) return BOOLEAN;

function "/" (X : INTEGER; Y : POSITIVE) return RATIONAL,;
-~ to construct a rational number

function "+" (X, Y: RATIONAL) return RATIONAL;
function "-" (X, Y: RATIONAL) return RATIONAL;
function "*" (X, Y: RATIONAL) return RATIONAL;
function "/" (X, Y: RATIONAL) return RATIONAL,;

end;

The type RATIONAL is declared within the visible part of the package. In a context that
contains a use clause for RATIONAL__NUMBERS it is possible to declare variables of type
RATIONAL and to apply the operators "+", "-", "*" "/" and the function EQUAL to them.
The operator "/" with integer arguments allows rational values to be written in the
conventional form. For example:

declare
use RATIONAL_NUMBERS;
A : RATIONAL := 3/31;
B : RATIONAL := 7/100;
C : RATIONAL;

begin
C:= A¥%B;
C:= C+5/17;
end;

Consider for example the initialization of A with 3/31. The "/" operation must be applicable
to integer literals and yield a value of type RATIONAL. The only one to do so is the
division declared in the visible part with two parameters of type INTEGER. Hence the
integer literals 3 and 31 are implicitly converted to this type and the division is applied. The

e

Packages : 177

body of this function will be provided in the package body. For example, it could be written
in the following way, which involves no arithmetic and is exact:

function "/" (X : INTEGER; Y : POSITIVE) return RATIONAL is
begin
return RATIONAL *(NUMERATOR => X;
DENOMINATOR => Y},
end "/";

Note also that a user could also write a rational value directly, as an aggregate:
C:= C + RATIONAL '(NUMERATOR => 5, DENOMINATOR => 15);

Hence, with this formulation, it remains possible to operate directly on the components of a
rational number and to construct rational values as record aggregates. This could be
considered a weakness of the formulation. For instance, the aigorithms used for all the
operations on rational numbers may maintain them in a canonical form (where no further
reduction is possible); but users could create noncanonical rationals by operating directly on
the record components. The third form of package, presented in the next section, deals with
such issues.

9.2.3 Private Types

In the previous examples of packages, we have ensured, by declaring them within the
package body, that entities properly local to a package could not be affected by any outside
program unit; entities were either public (if declared in the visible part) or totally hidden (if
declared in the package body).

Private types cater for situations in which we want the name of a type to be public, but the
knowledge of the internal properties to be available only to the subprogram bodies contained
in the package body. This encapsulation is achieved by declaring the type name (alone)
within the visible part - since the type name is to be available to users of the package - but
at the same time specifying the type to be private; the full definition of the type (showing its
structure) is then provided following the visible part.

As an exampie of the use of private types, consider the following skeleton of the declaration
of an input-output package:

178

Ada Rationale

package SIMPLE 10O is
type FILE_NAME is private;

NO_FILE : constant FILE_ NAME;

procedure CREATE (FILE : out FILE_NAME; NAME : in STRING);

procedure READ (ITEM : out INTEGER; FILE : in FILE_NAME),
procedure WRITE (ITEM : in INTEGER; FILE : in FILE_NAME);
private

type FILE__NAME is new INTEGER range 0 .. 50;
NO_FILE : counstant FILE_ NAME := (;
end SIMPLE _IO;

In the visible part given above, the type FILE_ NAME is declared as private. External to the
package it is possible to declare variables of the type FILE_NAME, but the properties of
objects of this type are kept private. Hence the only things a user can do with file names is
assign them to other file-name variables, compare them for equality, obtain them by calling
the procedure CREATE, or pass them as parameters to the procedures READ and WRITE.

The full definition of the private type FILE_NAME and that of the deferred constant
NO_FILE are given in the private part (the declarations at the end of the package, between
the reserved words private and end). A package body for the above package is sketched
below:

package body SIMPLE IO is
type FILE_DESCRIPTOR is
record

end record;
DIRECTORY : array (FILE_NAME) of FILE_DESCRIPTOR;

procedure CREATE (FILE : out FILE_NAME; NAME : in STRING) is

end;
procedure READ (ITEM : out INTEGER; FILE : in FILE_NAME) is

end ;
procedure WRITE (ITEM : in INTEGER; FILE : in FILE_NAME) is

end;
begin
-- initialization of DIRECTORY and other local objects
end SIMPLE_IO;

T R O R R R R R R R R R R TR EEEEmGm————

Packages 179

Within the body, file names are integers indexing an internal directory which is declared as
an array. However, an external user of the package cannot use this internal information: for
example, an external user cannot perform arithmetic on file names, since the arithmetic
operators for the type FILE_NAME can be used only inside the package.

With the above definition of the type FILE_NAME, it remains possible for users to assign
file names, and also to compare file names for equality and inequality. For the following
variation of the previous package, even these operations are denied:

package SAFE_1O is
type FILE_NAME is limited private;

procedure CREATE (FILE : ia out FILE_ NAME; NAME : in STRING);
procedure CLOSE (FILE : in out FILE_NAME);,

procedure READ (ITEM: out INTEGER; FILE: in FILE_NAME),
procedure WRITE (ITEM : in INTEGER; FILE: in FILE_NAME),
FILE _ERROR : exception;
private
type FILE_INDEX is range 0 .. 50;
NOT_CREATED : constant FILE_INDEX := 0;
type FILE_ NAME is
record
INDEX : FILE_INDEX := NOT_CREATED; ~-- default value
end record;
end SAFE_IO;

Even the operations of assignment and equality comparison are not available for a limited
private type. Therefore, the user of package SAFE_ IO can only:

s Declare variables of type FILE_ NAME.

s Pass these variables as actual parameters to the operations defined by the package
SAFE_10O - the procedures CREATE, CLOSE, READ, and WRITE.

The user can of course define other procedures that operate on objects of type
FILE_NAME, provided the above restrictions are observed. For example, it is possible to
write the following procedure

procedure TRANSFER_ITEM(SOURCE, DESTINATION : in FILE_ NAME) is
ITEM : INTEGER;

begin
READ (ITEM, SOURCE);
WRITE (ITEM, DESTINATION);

end;

180 Ada Rationale

Since neither assignment nor comparison of file names is possible, defining a constant
NO_FILE would not be very useful in this formulation. The only safe way to ensure that
files are always initialized is to provide a default value, as we have done in the full
declaration of FILE_NAME. This allows the package body to control the consistency of all
operations: CREATE can check that the file has not already been created; READ and
WRITE can check that the file has been created; and CLOSE can reset the internal value to
NOT_CREATED. The exception FILE_ERROR can be raised by the body if any of these
checks fails. Note that in this variation of the package, the file parameter mode for
CREATE has been changed to in out, in order to allow this procedure to check whether the
file has already been created, and to avoid overwriting an existing file name.

The prohibition of assignment, in this formulation, is quite essential if we want the package
body to be in full control of active files. Let us assume, for example, that the package body
maintains a count of active files as the difference between the number of (correct) calls of
CREATE and the number of (correct) calls of CLOSE. If assignment were allowed, it would
be possible to call CLOSE twice for the same file value (having copied this value into
another variable), and this count would then not be reliable.

For the more classical examples of encapsulated data types (from the current literature), the

reader is referred to chapter 12 of this document (a generic definition of the type queue) and
to section 12.4 of the Reference Manual (a generic definition of the type stack).

9.3 Technical Issues

The design of packages involves nearly all aspects of the language. The most significant in
this context are

s Visibility control and information hiding

= Relation to separate compilation

» Initialization of packages

» Availability of the properties of types defined within packages
« Initialization of objects of private types.

s Private types with discriminants

Other aspects will be discussed in the chapters on program structure and visibility, tasking,
separate compilation, and generic units.

Packages 181

9.3.1 Visibility Control and Information Hiding

The visibility rules of Algol 60, as embodied in its so-called block structure, are quite
natural for programs of moderate size and have been adopted by most subsequent languages,
including Ada: any declaration is visible throughout the block for which it is given,
including nested inner blocks, unless hidden by declarations local to those blocks. However
this simple structure is insufficient for the reliable construction of large programs since more
precise control over the visibility of declarations is then needed. For example, with the above
rule, a variable that is used by several subprograms must be declared outside their bodies,
although it has no relevance to other parts of the program. This variable will then be visible
to all users of these subprograms, and unprotected from accidental or malicious access.

Packages give the programmer precisely the kind of control needed. The details of the
visibility rules are discussed in chapter 11 on program structure; in this chapter we
concentrate on characteristics that are essential for visibility control and information hiding.

In the definition of a package, the visible part states which declarations are potentially
visible outside the package. (This identifies the window in the above-mentioned wall.) It is
possible for other program units to see whatever is in the visible part; but they do not see it
automatically. Within these program units, this visibility is achieved either by use clauses or
by expanded names written in the form known as dot notation.

Thus visibility of the identifiers declared in the visible part is controlled by the user. Names
declared in the visible part of a package do not spontaneously invade (and pollute) the name
space of the rest of the program. Visibility of the identifiers declared in the package body is
even more tightly controlled: they are visible only within the package body - in particular,
within the body of any subprogram declared in the visible part.

The other essential characteristic of packages in Ada is the textual separation of the interface
- those declarations that are relevant to users of the package - from the implementation. In
an Ada package, these declarations are textually separated from the rest of the text: they
form what is called the visible part of the package. This textual separation is a significant
advantage for readability and for information hiding.

Other languages such as Euclid and Modula have used a formulation based on an export list
that mentions all identifiers that constitute the interface. This means that in order to know
the properties of these identifiers, the human reader must scan through the entire text of the
module to find the declarations of entities listed in the export list. This is a tedious operation
and is, as we shall see, a breach of information hiding principles, since it involves reading
parts of the text that should be of no concern (and should not even be available) to the user.

There are good reasons for hiding the text of a package body from its users. An obvious one
is confidentiality: a software producer supplying the services of a given package may want to
protect his investment by not showing the package implementation (at least, not in source
form). Another reason to hide the text of a package body from its users is to establish the
normal producer-consumer contractual relationship that exists for other commercial products.
It is the package specification that should be considered as the contract between the producer
and the users. The included procedure specifications already form a (minimal) syntactic

182 Ada Rationale

contract, but these may be supplemented by some explanation of their intended effect. In the
present state of the art such explanation must perforce take the form of comments. In the
future, however, it could consist of statements of some more formal specification language
such as Anna [KBL 80].

Letting a user read the implementation would create the danger that he might derive some
additional implicit assumptions from an analysis of the current implementation: assumptions
that are not explicit in the contract. The producer of a package is bound only by the
contract, and is therefore free to deliver later releases of the package that might not satisfy
any such implicit assumptions of the user.

The textual separation between the package specification and the package implementation
provides an easy solution to this problem. The user will be provided with the source text of
the package specification, and no more.

9.3.2 Guaranteeing Software Components

In an industry of scftware components, users are likely to request some guarantee against
malfunction, as is usual for buyers of components in other industries. The problem of
proving software components is certainly not an easy one; but we can show that packages
lead to a reduction in its difficulty. Consider, for example, the above table management
package and the steps that would have to be taken to convince oneself that it was operating
correctly. To begin with we have to define a consistent state for the package: for example,
we can define the table to be consistent if it contains all the items that have been inserted
but not yet retrieved, and only these. We first have to show that the table is consistent
initially: that is, after execution of the initialization statements. Then we have to show that if
the table is consistent before the use of any one of the services offered (the three procedures
promised in the visible part), it will still be consistent after the execution of that procedure.

In order to do this, our analysis need only consider the text of the corresponding procedure:
the table cannot be updated directly from outside the package since it is not visible there.

Without packages, the table would have to be global and we would have no protection against
direct update of the table by users (whether the update is intentional or by accident). The
previous consistency argument would then be considerably more complex since it would be
necessary to inspect the text of all programs that use any of the three procedures and check
that these programs do not directly update the value of the table: The amount of text to be
checked could be an order of magnitude larger than the text of the package itself.

'Vith the package concept - with the separation between the interface and the
implementation; and with the protection of whatever is local to the package body - servicing
software components becomes similar to servicing components in other industries: If a user
reports a malfunction of the operations of a package, we know that we have only to check
within the package to establish the reality and cause of any malfunction (and to make repairs
as needed). The package body effectively acts as a sealed container.

Packages 183

9.3.3 Influence of Separate Compilation on the Design of Packages

The essential role of packages is for logical modularity. In addition, they also play an
important role for the physical modularity that is achieved by separate compilation. These
two aspects of program modularization lead to slightly different (although not conflicting)
requirements.

For logical modularity the interface defined by the visible part of a package is sufficient.
This information is needed for physical modularity too, but the physical interface also
requires the availability of the additional information that is contained in the private part.

This extra information is needed by compilers for the treatment of variables that are
declared in one compilation unit but whose type is a private type declared in a different
compilation unit. The difference essentially concerns storage allocation: knowledge of the
amount of storage needed for such variables is necessary for selecting the machine
instructions used for operations on the variables; this code selection is not a decision that
could be postponed until the program is complete (that is, until linkage editing time).

The reasons for this are found in the architectures of our current computing machines. These
generally provide code abstractions that are bound at execution time, in the form of
subprograms invoked by the call instruction. It is therefore possible to defer the binding of
the bodies of such abstractions until link time, or even later. However, current machines do
not provide similar data abstractions. every instruction that operates on a datum must be
aware of its representation, and that representation must therefor~ have been bound at the
moment the instruction was generated; that is, at compilation time. A more flexible
architecture - evolved perhaps from today’s tagged architectures - would indeed allow data
representation choices to be deferred until link time, or even later.

The declaration of a private type therefore does not in itself provide enough information for
storage allocation and other operations. The full declaration of the type is needed, and so is
any representation clause that the user wants: storage allocation will therefore require the
information provided by the private part. Note that placing this information in the package
body would not be satisfactory since it would create unnecessary dependences of other
compilation units on this body, with the consequence that changes in the algorithms provided
in the body would require recompilation of these other compilation units, even in the
absence of change to the full type declaration.

The one case where full type information can indeed be deferred until the package body is
the case where the private type is implemented as an access type:

package MINIMAL is
type OPAQUE s private;

private
type HIDDEN; -- nothing more required
type OPAQUE is access HIDDEN;

end MINIMAL,;

184 Ada Rationale

In the above example, the full definition of HIDDEN can indeed be deferred until the
package body. The reason, of course, is that nearly all current machines have a wuniform
addressing structure, so that an access value always looks the same regardless of what it is
designating. (The language Modula-2 provides opaque types in essentially the form of this
example.)

To summarize, the logical interface corresponds to the visible part; the physical interface
corresponds to the complete package specification, that is, to both the visible part and the
private part.

As long as a package specification is not changed, the package body that implements it can
be defined and redefined without affecting other units that use this specification as an
interface to the package. Hence it is possible to compile a package body separately from its
package specification.

9.3.4 Initialization of Packages

Each package declaration results in a single package which is created when the declaration is
elaborated. At that time, the space needed for any object declared in the package is
allocated, and any initialization specified in such an object declaration is performed.

More elaborate initializations can be included in the sequence of statements following the
(optional) reserved word begin in the package body, in particular, initializations that require
the execution of statements and not just expressions in object declarations. The execution of
this (optional) sequence of statements completes the elaboration of the package. Any
exceptinn handler provided at the end of these statements applies to exceptions raised during
their execution.

When several copies of a given package are needed, the solution is to use instead a related
form of program unit called a generic package (see Chapter 13). In this case the specification
includes a generic formal part and individual packages (instances of the generic unit) are
created by generic instantiation.

9.3.5 Note on Visibility

If a use clause is provided within a given program unit, it opens up the visibility of the
visible part of each package mentioned by the clause. However this effect i1s not transitive.

R R R R R R EEE I I———————————

Packages 185

Thus, if the clause

use FIRST_LAYER;

is given in the visible part of a package SECOND_LAYER, it does not mean that units
containing the clause

use SECOND_LAYER;

will also see FIRST _LAYER. If we want the above use clause also to provide visibility of
certain entities declared in FIRST_LAYER, then this can often be achieved explicitly, by
renaming declarations. Consider for example

package FIRST_LAYER is
type T is private;
procedure P(X : T);

E : exception;
end FIRST_LAYER;

Suppose row that the package SECOND_LAYER defines additional operations for the type
T in terms of the operations supplied by FIRST_LAYER, and that we want to make T, P,
and E available to all users of the package SECOND_LAYER without an explicit use
FIRST__LAYER clause. This can be achieved as follows:

package SECOND_LAYER is
subtype T is FIRST_LAYER.T;
procedure P(X : T) renames FIRST _LAYER.P;
-- additional operations defined by SECOND_LAYER

E : exception renames FIRST _LAYER.E;
end SECOND_LAYER;

Note that a similar effect can be achieved by making T a derived type instead of a subtype:

type T is new FIRST_LAYER.T;

This latter form could be used if we wanted to prevent operations defined by another
package for objects of type FIRST_LAYER.T from being used at the same time as those
defined by the package SECOND_LAYER: the only operations that may be applied to the
derived type are those inherited from FIRST_LAYER and those defined in
SECOND_LAYER. ’

186 Ada Rationale

9.3.6 Availability of the Properties of Types Defined Within Packages

It is important to define which of the properties of a type declared in the visible part of a
package can be made available outside the package (for example, within another program
unit that mentions the package in a use clause). In Ada the answer to this question is quite
simple: the only available properties are those declared in the visible part.

In the first place, consider the declaration of a type other than a private type, say a record
type. If such a declaration is given in the visible part of a package, then the record type is
potentially available - without restriction - to outside program units. In particular, such units
can declare variables and invoke basic operations of this type (such as component selection
and aggregates) in full knowledge of the data structure specified by the type.

For a type declared as private, on the other hand, the visible part provides only the type
name, and the specification of the subprograms applicable to objects of this type - these are
the only operations applicable to objects of the type, apart from assignment and comparison
for equality and inequality (which are available unless the private type is limited), and
attributes such as 'SIZE and 'ADDRESS (which are always available).

Within a package body the characteristics of a private type are available as if the type were
not private. For example, if the type is a record type, its components can be denoted with
the usual syntax of selected components. Some precautions must be taken when one of the
visible operations of the type is defined in terms of an existing operation with the same
name. As an example consider the skeleton of the package KEY_ MANAGER given in the
Reference Manual (section 7.4.2).

package KEY_MANAGER is
type KEY is private;

function "<" (X,Y : KEY) return BOOLEAN;
private
type KEY is new NATURAL; -- full type definition of KEY

end;
package body KEY_MANAGER is

function "<" (X,Y : KEY) return BOOLEAN is
begin
return INTEGER(X) < INTEGER(Y);
end "<";
end KEY_MANAGER;

Within the package body, the full definition of the type KEY is known. The operation "<"
declared in the visible part is a (perfectly legal) redeclaration of the operation "<" that is

Packages 187

predefined for the type INTEGER (the base type of NATURAL). Thus, with the
declarations

U, V: KEY;
within the body of the package, the relation
U=V
refers to the predefined operation "=" of the type INTEGER, whereas the relation

U<V

refers to the operation "<" defined within the package itself (in this case, of course, it does
not matter since this redefinition is equivalent to the inherited operation). It should be noted
that within the body of the function "<" itself, the relation

X<Y

would be a recursive call of the function “<". Hence conversion must be used to invoke the
operation "<" defined on integers, as shown:

INTEGER(X) < INTEGER(Y)

To summarize, the availability of properties of types declared in a package can be deduced
from purely textual considerations: outside units see only the visible part and consequently
can use only properties defined there; on the other hand, the package body can use all
properties, including those defined by the full type declaration for a private type.

9.3.7 Initialization of Objects of Private Types

The elaboration of an object declaration results in the reservation of space for the
corresponding object, whether the type of the object is private or not. The initialization of
an object whose type is a private type could be achieved in the object declaration itself by
assigning to it the value of a deferred constant or the value returned by a function; for a
limited private type, it couid only be achijeved by a procedure call statement - hence not in
the object declaration. However, there are cases where we want the components of an object
whose type is private to satisfy some invariant as soon as the object is created, although
initialization of other components may not be needed. This is achieved by means of
initialization of record components. Consider the following package declaration:

188 Ada Rationale

package ALL__ABOUT_STACKS is
type STACK is limited private;

procedure PUSH (E: in ELEMENT,; S: in out STACK);
procedure POP (E: out ELEMENT; S: in out STACK);
private
type INDEX is range 0 .. 1000;
type STACK is
record
TOP : INDEX := INDEX'FIRST;
SPACE : array (INDEX) of ELEMENT,;
end record;
end ALL_ ABOUT_STACKS;

For any declaration of an object of type STACK, the component TOP is initialized to the
minimum INDEX value. Thus, the stack invariants are satisfied as soon as the declaration of
a stack object has been elaborated (another example was shown in section 9.2.3 above, with
the initialization of file names in the package SAFE_INPUT_OUTPUT).

9.3.8 Private Types with Discriminants

A final facility provided by Ada combines the concepts of private types and types with
discriminants. This is the ability to define a private type with discriminants. Here is an
example: it is a formulation of the familiar dimensioned units problem inspired by an earlier
formulation due to Paul Hilfinger.

The package DIMENSIONED_UNITS defines a private type that represents a set of
numerical values with physical dimensions. These dimensions are appropriate powers of mass,
length, and time; so each object has a value and a set of indices giving its dimensionality.
Objects may change their values, but they must not change their dimensionality. One possible
solution (presented elsewhere) is to use derived types to separate objects of different
dimensionality; this however does not permit general expressions involving mixed dimensions
to be written, such as

E=M * (Ch*2)

Packages 189

Another solution is to use a private type with discriminants:

package DIMENSIONED _UNITS is
type UNIT(M, L, T: INTEGER) is private;

subtype MASS is UNITM => 1, L = 0, T => 0);
subtype LENGTH is UNIT(MM => 0, L => 1, T => 0);
subtype TIME is UNITM => 0, L=>0, T =>1);
subtype SCALAR is UNIT(0, 0, 0);

KILO : constant MASS;
METER : constant LENGTH;
SECOND : constant TIME;

function "*" (LEFT: FLOAT; RIGHT : UNIT) return UNIT;
function "*" (LEFT, RIGHT : UNIT) return UNIT;
function "/* (LEFT, RIGHT : UNIT) return UNIT;

DIMENSION _ERROR : exception;

private

type UNIT(M, L, T: INTEGER := 0) is

record

V : FLOAT;

end record;
KILO : constant MASS = M=>1, L=>0, T=>0, V= 1.0)
METER : constant LENGTH = M =>0, L=>1, T=>0, V=>1.0)
SECOND : constant TIME = M=>0, L=0, T=>1, V= 1.0);

end DIMENSIONED_UNITS;

The user of this package may then declare entities such as:

subtype VELOCITY is UNIT(M => 0, L=>1, T => -1);
subtype ENERGY is UNITM => 1, L =>2, T => -2);

C: constant VELOCITY := 300_000_000.0 * (METER/SECOND);

function REST_ENERGY(M : MASS) return ENERGY is
begin

return M*C*C;
end;

190 Ada Rationale

The implementation of the package will contain subprogram bodies such as:

function "*" (LEFT, RIGHT : UNIT) return UNIT is
begin
return (M => LEFT.M + RIGHT.M,
L => LEFT.LL + RIGHT.L,
T => LEFT.T + RIGHT.T,
V => LEFT.V * RIGHT.V),
end;

The dimensions must be visible because the user, when declaring an object, must be able to
specify its dimensionality. But the type must be private because the operations must check
the dimensionality of their operands, and so must all be controlled by the package
DIMENSIONED_UNITS.

9.4 Summary and Conclusion

A simple approach was taken for the package facility of Ada. Packages provide the ability to
encapsulate information. When defining a package, the programmer simply states the visitle
information and provides its implementation as a separate text - the package body. The
information contained in a package body is not (directly) available outside the package body.
Thus, packages support information hiding as well as control of visibility.

The package facility is central to the definition of private data types: it provides complete
control over the available operations for such types. Moreover, packages can be separately
compiled and the language also provides a parameterized form of package, called a generic
package.

All of these aspects are in many respects fundamental for program development. Packages
are used to construct libraries containing common pools of data and types, application
packages, and complete systems.

Separate Compilation and Libraries 191

10. Separate Compilation and Libraries

10.1 Introduction

Separate compilation of program units is a practical necessity. Its basic goals are to permit
the separation of large programs into simpler, more manageable parts, and to create libraries
of program units. Separate compilation helps to reduce compilation costs and to simplify the
development and management of program corrections and modifications.

For large projects involving several programmers, separate compilation permits program texts
to be separated physically in a way that reflects the division of work and responsibili..es.
Once the common interface between two parts has been agreed upon and recorded, the two
parts can be developed and compiled separately. The fact that the common interface is a
physically separate text guarantees that separate recompilation of either part does not
invalidate the common interface.

The physical separation of program texts may be viewed as a support facility for the
structured programming concept of refinement. It may also be used to conceal the text of a
subprogram body from users who are only allowed to call the subprogram. Such concealment
may be justified either for reasons of confidentiality or in order to prevent the user from
inferring implicit properties or making assumptions regarding the functioning of the
subprogram. Finally this physical separation facilitates the construction of libraries and
reusable software components.

It is appropriate at this stage to introduce the distinction between independent and separate
compilation (following J.J. Horning). Independent compilation has beesn achieved by most
assembly languages and also by languages such as Fortran and PL/1. Compilation of
individual modules is performed independently in the sense that the modules have no wav of
sharing knowledge of properties defined in other modules.

Independent compilation is usually achieved with a lower level of compile-time checking of
consistency between units than is possible within a single compilation unit. In consequence,
independent compilation came into disrepute and was rejected by safety-minded early tvped
language definitions such as Algol 68 and Pascal. Fast compilation of the complete program
was often advocated by promoters of these languages as a safe alternative to independent

192 Ada Rationale

compilation. However, fast compilation has its limits, and it fails to answer the needs of
confidentiality and libraries.

Separate compilation, on the other hand, reconciles type-checking safety and the pragmatic
reasons for compiling in parts. It is based on the use of a program library which contains a
record of previous compilations of the units that form a program. It has been developed in
the language Sue and in later languages such as Lis, Jossle, Mesa and later extensions of
Pascal and Algol 68. We next discuss its properties in terms of what is provided in Ada.

When a program unit is submitted to the compiler, the compiler also has access to the
program library and is therefore able to perform the same level of checking (in particular
type checking) whether a program is compiled in many parts or as a whole. It is the
existence of the program library that makes the compilation separate but not independent.

Using the general information available in the program library, the compiler will be able to
assist the user in organizing recompilations. In particular, it will be able to display
information about the current state of the compilation of a program that is divided into
several compilation units: which separate program units have been compiled, and which need
to be recompiled because of prior recompilations.

It is thus for reasons of safety and utility that Ada offers a powerful facility for separate
compilation. Two additional criteria have been followed in this design, nam. - simplicity of
use and simplicity of implementation.

Separate compilation teing a user-oriented facility, it should be simple to understand and
use. Consequently it should not introduce other concepts than those required by the nature of
separate compilation. Scope rules and the general form of separately compiled program units
should be similar to those of other program units.

In addition, separate compilation should be implementable simply and efficiently. The

additional work required for separate compilation should stay within reasonable limits, since
one of the goals is to save overall compilation and recompilation time.

10.2 Presentation of the Separate Compilation Facility

A complete program is a collection of compilation units submitted to the compiler
individually or in batches (called compilations). A compilation unit is either a /ibrary unit or
a secondary unit. A library unit can be:

s a package declaration
« a subprogram declaration

s a generic declaration or instantiation

Separate Compilation and Libraries 193

A secondary unit, as the name indicates, is always related to another compilation unit: A
secondary unit can be the body of a library unit -

= a package body
a a subprogram body

» the body of a generic unit

- or, as we shall see later, a secondary unit can be a subunit of another compilation unit (the
latter being either a library unit or another secondary unit).

Each compilation unit may have a context clause at the beginning, containing with clauses
that mention the names of other library units that the compilation unit needs. Thus, although
compilation units can be submitted individually to a compiler, they can depend on each other
- as indicated by with clauses. For this reason the compilation units that form a given
program are said to belong to a program library.

Traditionally, one distinguishes two main styles of program development: top-down (or
hierarchical) program development and bottom-up program development. The separate
compilation facility provided in Ada supports both styles, as well as intermediate forms.

10.2.1 Bottom-Up Program Development

In this style of program development we may have programmers developing libraries of
generally usable packages.

Each generally usable package can be separately compiled and therefore made available in
the program library. The specification and the package body (if any) can both be compilation
units, and they can be submitted either in the same or in different compilations (each
compilation is a succession of compilation units).

Some of these packages do not depend on any outside information, except perhaps that of
the predefined environment (the package STANDARD, which defines types such as
BOOLEAN and INTEGER). The package declarations for METRIC_CONVERSIONS and
WORK _DATA given in Chapter 9 fall into this category.

More generally, packages may depend on information that is defined by other packages of
the program library. For example an application-level input-output package may depend on a
more basic input-output package; similarly a surveying package could depend on this
application-level input-output package and on another package that defines trigonometric
functions.

194 Ada Rationale

As an example of a compilation unit that depends on other library units consider the
following procedure, which presents a (naive) solution of quadratic equations. The
compilation unit starts with the context clause:

with TEXT_IO, REAL_OPERATIONS; use REAL_OPERATIONG;

The with clause specifies that the packages TEXT_IO and REAL_OPERATIONS are both
needed. The use clause for the latter package achieves direct visibility of the entities declared
in its visible part - the type REAL, the (nested) package REAL_ IO, and the function SQRT:

with TEXT_IO, REAL__OPERATIONS; use REAL_OPERATIONS;
procedure QUADRATIC _EQUATION is
A, B, C,D: REAL;

use REAL_IO; -- To see GET and PUT for the type REAL
use TEXT_IO; -~ To see PUT for strings, and NEW_LINE
begin

GET(A); GET(B); GET(C);

D := B%*%*2 - §0*A*C,

if D < 0.0 then
PUT("IMAGINARY ROOTS.");

else
PUT("REAL ROOTS: X! =");
PUT((-B - SQRT(D))/(2.0*A));
PUT (" X2 = ");
PUT((-B + SQRT(D))/(2.0*A)),

end if;

NEW_ LINE;

end QUADRATIC_EQUATION;

Although the programmer who wrote QUADRATIC_EQUATION might think he had
finished at this stage, the complete program includes more than this single procedure. Thus,
it is not going to work unless the program library already contains the packages
REAL_OPERATIONS and TEXT_IiO on which QUADRATIC_EQUATION depends.
Otherwise the function SQRT supplied by the package REAL_OPERATIONS would not be
visible; nor would similarly the procedures GET and PUT supplied by REAL_IO within
REAL_OPERATIONS and by TEXT_IO.

Realizing that this program might be generally usable, the programmer may decide to
encapsulate it within a package, perhaps along with other similar procedures:

s e .

Separate Compilation and Libraries 195

with REAL_OPERATIONS; use REAL_OPERATIONS;
package EQUATION_SOLVER is

procedure QUADRATIC_EQUATION;

procedure LINEAR_EQUATION;

-- other procedures needing real operations

-- in their declaration
end,;

with TEXT_IO;
package body EQUATION_SOLVER is

procedure QUADRATIC__EQUATION is
-~ same text as before
end;

procedure LINEAR_EQUATION is
-~ reads a linear equation, solves it, prints results
end;

end EQUATION_SOLVER;

Note that the context clause for REAL _OPERATIONS is needed for the body as well as for
the declaration of the package EQUATION_SOLVER, but need not be repeated for the
body since the context clause of a package declaration applies also to the corresponding
package body. However, TEXT_1O is needed only by the body, so it would introduce
unwanted dependences to mention it in the context clause of the package declaration.

A program that uses this package is shown below:

with EQUATION_SOLVER; use EQUATION_SOLVER;
procedure EXERCISE is -- solves 10 quadratic equations
begin
forIin 1 .. 10 loop
QUADRATIC_EQUATION;
end loop;
end EXERCISE;

The program EXERCISE need only mention the package EQUATION_SOLVER in its
context clause. It need not (and should not) mention the packages REAL_OPERATIONS and
TEXT_IO, which are actually needed by the package body of EQUATION _SOLVER, since
EXERCISE does not contain direct calls to subprograms defined in either
REAL_OPERATIONS or TEXT_IO.

196 Ada Rationale

Note also that a library unit may be a generic unit. Instances of such generic compilation
units can be obtained as usual:

with DIRECT_IO;
procedure TREAT_ITEMS is
type ITEM is ...
package ITEM_IO is new DIRECT_IO (ELEMENT_TYPE => ITEM),
-- use of the input-output procedures for objects of type ITEM
end TREAT_ITEMS;

Here a use clause for the generic package DIRECT_IO would be illegal; one for the instance
ITEM_IO may appear after the instantiation.

Finally, a library unit may be an instance of another (generic) library unit:

with DIRECT_IO;
package FLOAT_IO is new DIRECT_IO(FLOAT);

10.2.2 Hierarchical Program Development

The other style of program development is called hierarchical or top-down, as used in
programming by stepwise refinement [Wi 71, Wo 72]. The top level provides a formulation of
the program in terms of operations that are to be supplied by the next lower level. Each such
operation is then further defined in terms of operations of another lower level, and so on. In
support of this style of program development, Ada offers the possibility of having
compilation units that are subunits of other compilation units.

We illustrate subunits by means of a variant of the example of section 10.2.1 of the
Reference Manual. Assume that we are developing the procedure TOP in a top-down
fashion. The top level of definition is given by the following compilation unit:

Separate Compilation and Libraries 197

procedure TOP is

type REAL is digits 10;
NEXT : REAL;

procedure TRANSFORM(U : in out REAL);

package TABLE is :
procedure INSERT(X : in REAL);
function FIRST return REAL;
procedure DISPLAY;,

end;

package body TABLE is separate; -- stub of TABLE

procedure TRANSFORM(U : in out REAL) is separate; -- stub of TRANSFORM
begin -- TOP

’?RANSFORM(NEXT);

TABLE.INSERT(NEXT);
TABLE.DISPLAY;

end TOP;

The specifications of the procedure TRANSFORM and of the package TABLE are given as
usual. Hence the statements of TOP can be expressed in terms of these units and can invoke
the procedure TRANSFORM and the subprograms INSERT, FIRST, and DISPLAY that are
defined by the package TABLE. However, the proper body of TRANSFORM (and TABLE)
is separately compiled and is not, therefore, provided as part of the text of TOP. In each
case a body stub has been given at the place where the proper body would appear if it were
not separately compiled. The role of the stub is to inform the compiler that the proper body
is to be found elsewhere - as a separately compiled subunit. Without the stub, the compiler
would issue an error message; with the stub, it is told to expect that sooner or later a subunit
such as the following will be submitted:

separate (TOP) procedure TRANSFORM(U : in out REAL) is
use TABLE;

begin
U = FIRST;

end TRANSFORM;

198 Ada Ranonale

Although separately compiled, TRANSFORM stilf has visibility of the identifiers that are
declared within TOP. For example it sees the type REAL and the package name TABLE.
This dependence is reflected by the presence of

separate(TOP)

at the start of the subunit. This indicates that TOP is the parent unit of the procedure
TRANSFORM; the parent unit is the program unit that contains the stub that announces the
subunit. Similar considerations apply to the separately compiled body of the package TABLE:

separate (TOP) package body TABLE is
-- some local declarations of TABLE followed by

procedure INSERT(X : REAL) is
begin

-- sequence of statements of INSERT
end;

function FIRST return REAL is
begin

-- sequence of statements of FIRST
end;

procedure DISPLAY is separate; -- stub of DISPLAY
end TABLE;

In this case the package body contains the proper bodies of the procedure INSERT and the
function FIRST, but another stub in the case of the procedure DISPLAY, which is thus a
subunit of TABLE:

with TEXT_IO;
separate (TOP.TABLE) procedure DISPLAY s
begin
-- sequence of statements of DISPLAY
end DISPLAY;

Note that the name of the parent unit must be given in full, starting with the ancestor
library unit TOP, in order correctly to identify TABLE. There could be other subunits called
TABLE in the same program library (although not for the same ancestor TOP).

Note also that it is possible to provide a with clause for a subunit, as for any compilation
unit. In this example, assuming that DISPLAY is the only procedure performing input-
output, the dependence on TEXT_IO is conveniently localized to that procedure (instead of
creating a more global dependence at the level of TOP or at that of TABLE).

Subunits can be declared at the outermost level of another unit or subunit. This creates the
possibility of an hierarchy of program subunits depending on a given compilation unit. This

Separate Compilation and Libraries 199

hierarchy is no different from the nesting hierarchy in ordinary program units. In particular,
the visibility rules are the same and a subunit can depend on dynamic information. For
example, consider

separate (TOP) procedure TRANSFORM(U : in out REAL) is
use TABLE;
SQUARE : REAL = U ** 2.
procedure UPDATE is separate;

begin

end TRANSFORM;

Access to the local variable SQUARE is still possible within UPDATE, exactly as if the body
of UPDATE were textually nested at the place of the stub.

separate (TOP.TRANSFORM) procedure UPDATE is
begin

-- access to SQUARE is possible
end UPDATE;

It should be clear that these two methods of introducing compilation units are not mutually
exclusive and can be used in combination. For example, a general purpose package may be
split into subunits in order to facilitate its development, compilation, and subsequent
recompilation.

10.2.3 Compilation Order

Compilation units may be compiled separately, but this does not mean that compilations can
be submitted in an arbitrary order, since units are not independent. In particular we have
seen that the context clause of one unit may mention the name of another unit, and that
some units are subunits of other units. These two forms of dependence and the usual
dependence of a body on the corresponding specification determine a partial ordering of
compilations:

s A compilation unit must be compiled after all units that are named by its context
clause.

s A secondary unit that is a subprogram body or a package body must be compiled after
the library unit that provides the corresponding subprogram specification or package
specification.

s A secondary unit that is a subunit must be compiled after its parent unit.

These rules are rules of common sense and they must be enforced by an Ada Compiler
These order relations are summarized below in the case of the procedures

200 Ada Rationale

QUADRATIC_EQUATION and TOP. The notation "A <-- B" is used to indicate that A
must be compiled before B.

Specification of REAL_OPERATIONS <-- Body of REAL_OPERATIONS
Specification of REAL _OPERATIONS <-- QUADRATIC_EQUATION

Specification of TEXT_IO <-- Body of TEXT_IO
Specification of TEXT_IO <-- QUADRATIC_EQUATION
Specification of TEXT_IO <-- DISPLAY

TOP <-- TABLE <-- DISPLAY
TOP <-- TRANSFORM <«-- UPDATE

It should be clear that these relations only define a partial ordering of compilations. For
example:

s The bodies of the packages REAL_OPERATIONS and TEXT_IO are two secondary
units that can be compiled in either order. Furthermore QUADRATIC EQUATION
can be compiled either before or after either of these secondary units.

s The subunit TABLE can be compiled before or after TRANSFORM, indifferently.
Similarly the relative order of compilation of TABLE with respect to UPDATE, of
TRANSFORM with respect to DISPLAY, and of DISPLAY with respect to UPDATE,
are all undefined.

Of course, in order to execute the program, it is necessary that all compilations be completed:
an Ada compiler or library manager will report an error if this is not the case.

Note that although the body of TRANSFORM includes a use clause that mentions TABLE,
this has no influence on compilation order: the only information that TRANSFORM may
obtain about TABLE is that given by the declaration of TABLE, and this declaration is part
of the (common) parent unit TOP; hence the use clause will not affect the subunit TABLE -
which is a package body. No use clause will ever affect compilation order.

10.2.4 Recompilation Order

Similar considerations apply in the case of recompilation. If we change the definition of
some entity, then any compilation unit that used the previous definition is now obsolete and
must be recompiled.

In principle. this rule could be applied to individual declarations. However, for the sake of
compiler simplicity, Ada compilers are only required to consider that the quantum of change
is the (re)compilation of a whole compilation unit. Thus any change to a package
specification is assumed to affect any compilation unit that mentions this package in a with
clause. Similarly any change to a parent unit is assumed to affect all its subunits. With this

Separate Compilation and Libraries 201

simplifying assumption, the rules defining the need for recompilations follow directly from
the above-defined order relations.

s After recompilation of the declaration of REAL_OPERATIONS the body of
REAL_OPERATIONS and the procedure QUADRATIC_EQUATION must be
recompiled.

» After recompilation of the declaration of TEXT_IO (if that is even possible) the body
of TEXT_IO, the procedure QUADRATIC_EQUATION, and the subunit DISPLAY
must be recompiled.

s The subunit DISPLAY must be recompiled after the recompilation of its parent
TABLE; similarly the subunit UPDATE after recompilation of TRANSFORM:; and all
of TABLE, DISPLAY, TRANSFORM, and UPDATE after recompilation of TOP.

In principle, a compiler that included a librarian facility for source texts could compare the
old text of a compilation unit with the new text and keep track of changes on an individual
basis. Thus it could detect that although a given package specification had been recompiled,
the modification did not actually affect other compilation units that used this package but
did not use the modified part. Such a compiler could then optimize by cutting short the
process and not recompiling those other units - simply marking them as no longer obsolete,
realizing that the recompiled dependent unit would deliver the same results as the previous
one,.

The above optimization is not imposed on all Ada compilers: given the ability separately to
compile a package or subprogram specification and the corresponding body, the simple
strategy (using a compilation unit as quantum) should not in practice require many more
recompilations than strictly necessary.

Note, in this respect, that the language design has carefully avoided unnecessary rextual
dependence. For example, the fact that a context clause is associated with a subunit rather
than with a body stub is quite important. Consider the alternative:

procedure EXAMPLE is
-- The following is not in Ada:

with TEXT_IO; -- Illegal in this position
procedure P(X : INTEGER) is separate;

with REAL _OPERATIONS; -- Illegal in this position
procedure Q(Y : REAL) is separate;

end EXAMPLE;

Assume that in some later revision of this program, TEXT_IO needs to be used also within
the body of Q. Then if context clauses were provided with the stubs as shown, it would be
necessary to modify the stub of Q and hence to recompile the text of the EXAMPLE.

202 Ada Rationale

However since the stub of P is also provided there - this is the textual dependence - a
compiler using the simple strategy would not notice that the stub of P was unmodified, and
would have to recompile P as well.

While we recognize that future compilers might adopt more ambitious schemes, the Ada
design has carefully avoided any feature that would be incompatible with the simple strategy.
Given this careful avoidance of wunnecessary textual dependences the number of
recompilations can be kept quite close to the actual minimum.

10.2.5 Execution of a Main Program

Prior to the execution of a main program such as TOP or QUADRATIC_EQUATION, any
.dbrary unit that is used directly or indirectly by this main program must be elaborated. For
example, the package declarations of TEXT_IO and REAL_OPERATIONS are elaborated
before control is passed to QUADRATIC EQUATlON furthermore, any other library unit
that is used by these packages or by their bodies must also be elaborated before control is
passed to QUADRATIC _EQUATION.

The order of elaboration of these library units is not fully defined but must be consistent
with the partial ordering defined by the dependences.

10.2.6 The Pragma ELABORATE

In most cases, the Ada library manager can choose any elaboration order consistent with the
unit dependences, and the resulting program will always have the same effect. However, in
some cases further control over elaboration order is required. Here is an example.

Suppose we have a package specification PRINT that uses the package SIMPLE IO of
Chapter 9. The spe.ification might look like this:

with SIMPLE _10O; use SIMPLE_[O;
package PRINT is
DATA, RESULTS : FILE_NAME;

end;

and the package body will of course say something like:
CREATE(RESULTS, "Results");

g

Separate Compilation and Libraries 203

This creates the partial orderings

Specification of SIMPLE_IO <-- Body of SIMPLE_IO
Specification of SIMPLE IO <-- Specification of PRINT
Specification of PRINT <-- Body of PRINT

Note that (so far) there is no ordering relation between the body of SIMPLE 10 and the
specification or body of PRINT. However, PRINT calls SIMPLE IO.CREATE. CREATE
presumably changes the local object DIRECTORY in the body of SIMPLE 10. And
DIRECTORY is initialized - set into its first consistent state - by the elaboration of the
body of SIMPLE 1O. For this sequence of events to work, we must elaborate the body of
SIMPLE_ IO before any call of SIMPLE_IO.CREATE.

To express this kind of dependence, Ada introduces the pragma ELABORATE. It may be
used immediately following a context clause, and may take as arguments any of the library
units referred to by the context clause. Its meaning is that the body of the referenced unit
must be elaborated before the elaboration of the referencing unit.

In the case above, the user would write

with SIMPLE_IO;

pragma ELABORATE(SIMPLE_10O);
use SIMPLE_10;

package PRINT is

end,;
This creates a new partial ordering

Body of SIMPLE_IO <-- Specification of PRINT

which ensures that any use of the services of SIMPLE 10 occurs after the state variables
have been initialized. Of course, the program is illegal if no consistent order is possible.

10.3 Methodological Impact of Separate Compilation

The ability to compile separately a package specification and the corresponding package body
has important methodological consequences for program development and maintenance. For
example, it allows a team of programmers to agree upon a common interface and to define it
by one or more package specifications. This being done, the package bodies, and any other
unit that uses the common interface, can be developed in parallel and compiled in an
arbitrary order.

204 Ada Rationale

A package specification contains all the declarations that need to be seen by any unit that
uses the services of the package. The corresponding package body may be modified and
recompiled without the need for recompilation of the units that use the services of the
package. As long as the operations promised by the visible part are correctly achieved, the
user will not be affected by changes to the package body. Another version of the package
body, using a different technique, may be substituted without affecting the user.

This ability to compile a package specification and the corresponding package body
separately is an extension of the idea of encapsulation. Since users are not affected by the
contents of the package body - provided it is correct - there is no need to show them the
source text of the package body: all they need is the corresponding object code.

Separate compilation of package bodies may thus be used to achieve physical hiding. This
will be useful for confidentiality purposes. It will also help to prevent users from reading the
algorithms and inferring implicit properties and making assumptions that might not be
satisfied by later implementations. In this sense, separately compiled package bodies provide
good support for the policy of restricted flow of information advocated by Parnas [PA 71].

10.4 The Program Library

The program units that form a given Ada program are said to belong to what is called a
program library. A program library may contain only the units necessary for a single main
program, but it may also contain the units of several main programs, especially in the case of
related projects. Finally it may contain generally usable packages and the predefined units.

Associated with each program library there must be a file that records information relative to
the compilations that have already been done. In particular, this file must contain symbol
tables for separately compiled package specifications. It must also record compilation dates
and dependence relations between compilation units: this information is used by the compiler
for checking compilation order and for deciding which compilation units are affected by
given recompilations.

When submitting a compilation unit to the compiler, the programmer provides:

a the source text of the compilation unit, and

o the name of the program library to which the unit is to belong.

It is this second item - the program library - that makes the compilation separate but not
independent: The compiler uses the information contained in the program library to perform
type checking across compilation units exactly as it normally would within a single
compilation unit. The effect of the compilation is as usual (the production of listings, object
codes, messages, and so on), but it also results in an update of the program library (an
update of compilation dates, the recording of new or updated symbol tables, and so on).

Separate Compilation and Libraries 205

For each Ada program we consider a single program library. In practice a given program
library will often be formed from components obtained from other program libraries. The
means for transferring components from one library to another are not properly within the
domain of the Ada language but rather within that of its possible support environments [DoD
80). The following facilities are expected:

Library creation

There should be commands for creating the program library of a given program, or of a
given family of programs.

Inclusion of library units

There should be a command to include a unit of one library within another library. This
process is similar to what is traditionaily done for transferring the object code of a software
component; in particular it can imply either making a copy or creating a new access path to
a single (shared) copy. The only difference is that for Ada compilation units the information
transferred includes descriptive information such as symbol tables, compilation dates, and
dependence relations on other software components, and checks are made that no Ada rule is
violated.

After its inclusion, a unit should be indistinguishable from other units of the library.
Inclusion of a given compilation unit may require further inclusion of other compilation
units that are needed by the given unit.

Deletion of library units

Conversely there should be a command to delete a unit from a given library.

Completion check

There should be a command by which a user states that the program is considered to be
complete: all units should have been compiled by that time. The compiler will check that this
is the case and issue appropriate error messages otherwise.

Status checks
There should be commands to display global information about the current state of the
program library: which units have been compiled, which subunits have never been compiled,

which units need to be recompiled, and so on.

Completion and status checks are quite useful since a library may contain obsolete units at
intermediate stages of the program development.

206 Ada Rationale

Since the compiler is able to detect the need for recompilations, it could conceivably do these
automatically upon detection of such a need. However, changes are often done for several
units at the same time. A compiler that performed recompilations after each change might
perform more recompilations than necessary unless it had global knowledge of all changes
submitted.

Assume for example that the specifications of the packages A and B were modified. If all
units that see A were automatically recompiled, then if some of them also see B, they would
be recompiled a second time after the compilation of B.

Hence it is certainly preferable to let the user manage the recompilations. However, this
means that tools for displaying the current status of compilation units of a program should be
provided. Similarly it means that the user should be able to state that a program is complete
and let the compiler check that this is actually the case.

10.5 The Implementation of Separate Compilation

The Ada separate compilation facility can be implemented at a reasonable cost for the simple
strategy where the quantum of change recognized by the compiler is the compilation or
recompilaticn of a single unit. The model described below is similar to the technique used in
compilers for the Lis language.

10.5.1 Principle of Separate Compilation

As mentioned before, the Ada separate compilation facility involves a program library that
records information on compilation units and on dependence relations between them.

The library file associated with the program library can be organized as a collection of
records: one for each compilation unit. If a compilation unit includes declarations that are
potentially visible from other compilation units, the corresponding record must contain a
description of these declarations - commonly called a symbol table. This need arises in the
following cases:

« Any library unitt The symbol table describes the specification of the package,
subprogram, or generic unit.

s Any compilation unit that has subunits: The symbol table describes the declarative
environment of each stub.

Separate Compilation and Libraries 207

These symbol tables are produced and managed by the compiler. For the compilation of a
giver. unit, the compiler must first retrieve the symbol tables that describe the current
context, and then assemble them as appropriate. In other words, the compiler must construct
an integrated symbol table that describes visibility for the compilation unit as if the program
were not split into separate texts.

In order to perform this task it is useful to consider the following forest structure (a
collection of genealogical trees), which reflects the declaration of units and subunits:
(a) Each library unit is a root.

(b) The parent unit of a subunit is the compilation unit that contains the corresponding
body stub.

This structure is necessary for the determination of visibility rules. Hence it must be
recorded in the library file and updated as new body stubs are encountered, and as new units
are compiled.

Finally, for each compilation unit, the list of library units that are mentioned by its context
clause must be kept. The forest structure will help for determining the symbol tables to be
retrieved, for checking the validity of context clauses and for determining the recompilations
that need to be done as a consequence of previous recompilations. Naturally, the compiler
may also use this information to assist the user with recompilations.

To check for required recompilations, the compiler may use a system of time-stamping that

reflects the order in which compilations are submitted: a unique compilation dare is
associated with the symbol table of each compilation unit.

10.5.2 Details of the Actions Performed by the Compiler

The following major actions must be performed during the compilation of a compilation unit:

Determination of the compilation context

The context clause is analyzed and the name of the compilation unit is recognized. Using the
full name of the subunit (given after the reserved word separate), the genealogy of a subunit
can be found: its parent, grandparent, and so on up to the ancestor library unit. A combined
with clause is formed by merging the with clauses of the genealogy.

Checking the validity of the compilation context

Any unit mentioned by a context clause must be a library unit.

The following checks must be performed:

208 Ada Rationale

s In the genealogy, each subunit must have been compiled after its parent.

s Each compilation unit of the genealogy must have been compiled after any library unit
mentioned by its context clause.

e Each library unit mentioned by the combined context clause must still be valid: A
compilation unit is no longer valid if its context clause names a library unit that is no
longer valid or that has been compiled after the compilation unit itself.

Compilation may proceed only if all these checks succeed. Otherwise diagnostics, a list of
required recompilations, and a recommended recompilation order may be printed by the
compiler.

Table loading

The symbol tables of the library units named by the merged with clause may now be
assembled. For a subunit the constitution of the current context also involves nesting the
declarative parts of the units of the genealogy - layer by layer, from the ancestor to the
immediate parent.

This table assembly may involve establishing some links between the individual symbol
tables, since they may refer to each other (for example, an identifier declared in a given
package may be of a type declared in another package).

Update of the forest structure, table unloading

At the end of the compilation of a compilation unit, the date of compilation must be
updated. For a library unit, and for a unit that contains body stubs (and therefore has
subunits), a new symbol table must be stored in the library file in a suitable format. Newly
declared subunits must be entered in the forest. If a new library unit is compiled, a root
must be added to the forest.

The forest structure can be used to mark units that have become invalid as a consequence of
the current compilation and for which recompilation will therefore be needed.

Separate Compilation and Libraries 209

10.5.3 Treatment of Package Bodies

For a given package, the two disjoint units (specification and body) must be viewed as
defining complementary aspects of the same logical entity. Consequently it will be convenient
for the user to have a single object module, and not two. In order to achieve this effect the
code produced during the compilation of the package specification, if any, may be kept in
some intermediate form in the record that is associated with the package in the program
library. Later, when compiling the package body, this initial code may be recovered and the
compilations may proceed as if the two units were concatenated. (The code produced for the
specification must still be retained, in case the body is recompiled.)

10.5.4 Summary of the Information Contained in a Library File

The library file contains a representation of the forest structure discussed above. Each node
of a tree corresponds to a subunit, except the root, which is always a library unit. A node
contains:

» The name of the unit or subunit,

= Its nature: subprogram, package, generic unit, or task unit.

s Its compilation date and that of the associated unit body, if there is one.
s The list of library units mentioned in the context clause.

s A symbol table, if the compilation unit is a library unit and in any case if it includes
body stubs (has subunits).

» Possibly, a boolean component indicating need for recompilation.

The record for a given node is created either when the stub for a subunit is analyzed (and
then initialized in the state recompilation needed), or during compilation in the case of a
library unit. This record is updated during compilations. The record for a subunit may be
deleted from the library file upon recompilation of the parent unit if this unit no longer has
a corresponding body stub.

Each individual symbol table should be kept in a format that simplifies establishment of the
relations between different symbol tables when they are assembled. As an example, consider
the two following packages:

210 Ada Rationale

package D is

type T is ...
end D;
with D;
package E is

use D;

X: T,
end E;

Given the symbol table entry for the declaration of X, it must be possible to find the symbol
table entry for its type T.

If internal references are used to represent such relations, they must be relocated when the
symbol tables are assembled. Methods involving relocation information, or a mapping into
virtual memory can be used to support this table assembly.

Note, finally, that symbol tables may be transferred from the library file of one program to
that of another program. The internal structure adopted for symbol tables should permit this.

10.6 Summary and Conclusion

To summarize the Ada separate compilation facility:

« The compilation units of a program form a program library. Library units can be
declarations of packages, subprograms or generic units, or generic instantiations. The
bodies of library units are separately compiled secondary units.

a Subunits of other compilation units can be defined by means of body stubs. These
subunits are separately compiled.

s The visibility rules applicable to compilation units are the usual visibility rules, as
complemented by with clauses. The order of compilation and recompilation is governed
by these rules.

Separate compilation has been designed as a wuser-oriented facility that supports the
traditional forms of program development. It can be implemented at reasonable cost, as
evidenced by the previous sections and by previous languages supporting a similar separate
compilation facility such as Lis and Mesa. The type rules are enforced across separate units
to the same degree as within a given unit, and the information contained in a program
library can be used to check that the compilation of a given unit does not use information
from other units that have become obsolete in the meantime.

Separate Compilation and Libraries 211

Finally, one of the motivations of separate compilation is the creation of software libraries.
This is supported by Ada. By far the most useful library units should be packages and
generic packages. Ada permits their use with the same degree of safety as for internal units.

It is expected that library packages will be used for the encapsulation of type definitions, for
common constants and data, and for shared declarations. The fact that these library items are
already compiled program units, rather than source texts, offers a degree of safety not found
in languages that provide merely independent compilations.

Other compilation units will be used for the creation of user packages such as input-output
packages, to be found in libraries. The ability to compile a package specification separately
from the corresponding package body provides the possibility of separating the interface of a
package from its implementation. Thus it supports information hiding and reliability to an
extremely high degree.

212 Ada Rationale

e,

General Program Structure - Visibility and Overloading 213

11. General Program Structure - Visibility and Overloading

11.1 Introduction

Central to the definition of Ada is a concern for the general structure of a program, the
rules defining the visibility of identifiers at various points of a program, and the facilities
offered for separate compilation. A major goal in this design was to give the programmer
precise control over his name space: the set of names that he may define and use. It is
important to be able to introduce new names without having to bother about possible
conflicts with existing names. This requires the ability to control the inheritance of names
that are defined in other contexts. As mentioned in chapter 9, the notion of package is
essential to achieve this kind of control. Another goal was to provide the same visibility rules
for all program units, whether they are separately compiled or not.

The subjects of general program structure and visibility rules are connected in many ways -
in particular because of the possibility of nesting program units. They also interact with the
facilities offered for separate compilation. This chapter will discuss program structure and
visibility in that order, and also the related subject of overloading.

11.2 Program Structure

The overall structure of an Ada program text (a compilation unit) is similar to that of an
Algol 60 or Pascal text: it appears as a nested structure of program units - subprograms,
packages, task units, and generic units - and block statements.

Nesting is achieved through declarative parts: A declarative part may contain bodies of
program units, and each of these may in turn contain a declarative part; furthermore, a
sequence of statements may contain a block statement that contains a declarative part.

214 Ada Rationale

A key question in the definition of program structure is that of the purpose of nesting.
Clearly, nesting has been used in Algol 60 and Pascal in relation to visibility. In these
languages, two units are written in the context of the same declarative part if they are to
share the visibility of some common outer :ntities.

Is this, however, the only purpose of nesting? If it were, a logical conclusion would be the
systematic unnesting of units that do not share any common visibility.

We consider this view to be too extreme. Units that do not have any visibility dependence
may nevertheless be maintained together in a nested text structure for the benefit of the
logical exposition of the program. There is an analogy with an encyclopedia, whose material
is organized into nested subjects: It is the knowledge of this organization that enables the
easy retrieval of a given subject.

Systematic unnesting of units that do not share any common visibility would produce a
sequence of small units - not unlike a sequence of Fortran subprograms. Finding a given unit
in such a sequence is difficult unless aided by a directory or by some convention such as
alphabetical ordering. Reading the program may also be difficult since the structure of the
text does not reflect the logical organization and the logical connections.

For these reasons, the ability to nest units has been retained in Ada along with the ability to
control visibility that is afforded by packages and use clauses. Thus an Ada program appears
as a collection of nested declarative regions. A given declarative region may include the
declarations of inner program units, in which case it will also include the bodies of these
program units. Each of these bodies again defines a declarative region which may in turn
declare other inner program units.

In general it is possible to provide the definition of program units - especially packages - in
two textually distinct parts:

(a) the specification, which defines the logical interface (between definition and use) of
the program unit

{b) the body, which describes a particular realization of the specification.

This possibility has far reaching implications, in that it provides a single basis for achieving
several different objectives, notably textual clarity, abstraction, and separate compilation.

We first illustrate this ability in the case of a procedure. Consider for instance the procedure
declaration:

procedure PUSH(E : in ELEMENT,; S: inm out STACK);

This declaration contains the name of the procedure and the specification of the mode and
type of each formal parameter. This is the information needed to specify the interface of
PUSH, both syntactically and semantically, at least with regard to type checking. From this
point of view the declaration conveys all one needs to know in order to call the procedure
PUSH. The declaration could be augmented by comments specifying pre-conditions and post-
conditions and any exception that might be raised by PUSH.

General Program Structure - Visibility and Overloading 215

Obviously, however, this formulation of PUSH is incomplete in that it does not define an
implementation of the procedure. The latter is provided by a procedure body:

procedure PUSH(E : in ELEMENT; S: in out STACK) is
begin
if S.INDEX = S.SIZE then
raise STACK_OVERFLOW;
else
S.INDEX := S.INDEX + 1;
S.SPACE(S.INDEX) := E;
end if;
end PUSH;

These two constructs - the declaration and the body - jointly define the procedure. In cases
where the advantages of separate specification are not essential, the procedure declaration
may be omitted. In any case, the specification of the parameters must always be given in the
body for reasons of readability, and also because of the possibility of overloading: there
could be push procedures for items, integers, and so on.

A similar separation is provided for packages. A package declaration provides the interface
to the user: the visible part. For example, the declaration of a SIMPLE IO package is
provided as follows:

package SIMPLE_IO is
type FILE_ NAME is limited private;
procedure CREATE(FILE : out FILE_NAME),
procedure READ (ELEM : out INTEGER; F: in FILE_NAME),
procedure WRITE (ELEM : in INTEGER; F: in FILE_NAME),
private
type FILE_ NAME is new INTEGER range 0 .. 50;
end SIMPLE__1O;

This declaration provides the user with the specification of the name of a type -
FILE_NAME - and also with the specification of the associated procedures CREATE,
READ, and WRITE. This constitutes the logical interface of the package.

The package implementation is always provided as a textually distinct package body as shown
in the sketch below:

216 Ada Rationale

package body SIMPLE_IO is
type FILE_DESCRIPTOR s
record
-- components of each file descriptor
end record;
DIRECTORY : array (FILE_NAME) of FILE_ DESCRIPTOR;

-- other local constants, variables and subprograms
procedure CREATE(FILE : out FILE_NAME) is

end CREATE;

procedure READ(ELEM : out INTEGER; F: in FILE_NAME) is ... end READ;

procedure WRITE(ELEM : in INTEGER; F: in FILE_NAME) is ... end WRITE;
end SIMPLE _IO;

As in the case of procedures, the package declaration and the package body jointly define
the package considered. For pragmatic reasons (a package declaration is generally much
larger than a procedure declaration), the package body does not repeat the information
contained in the package declaration; furthermore packages cannot be overloaded and so
there is no problem of identification.

A similar separation is also used for task units and for generic units.

11.3 Visibility Rules

The visibility rules provided in Ada combine Algol-like inheritance rules with an ability to
control the set of names that can be used within a given context. This ability follows from
the naming conventions and the facilities offered by packages and use clauses. A renaming
capability is also provided.

We first discuss the basic visibility model, then the naming conventions, use clauses, and
renaming.

11.3.1 Basic Visibility Model

The search for simple and uniform scope rules has led to the adoption of a traditional
approach: an identifier that is declared immediately within a given declarative region is
directly visible within inner (nested) declarative regions.

General Program Structure - Visibility and Overloading 217

The term declarative region in the above rule refers to a portion of the program text which
includes a major group of declarations. For example a declarative region is formed by a
block statement, by a subprogram, or by any other program unit (a package, a task unit, or a
generic unit); similarly a declarative region is formed by a record type declaration. Thus the
basic rule is essentially that of Algol 60. The only extensions to this rule are related to
packages and to separate compilation.

The fundamental reason for selecting this liberal approach is the pragmatic assumption that
names declared together are normally meant to be used together. Consider, for instance, the
skeleton

procedure P is

type Tis ... ; -- type declaration
V: T, -- variable declaration
procedure Q; -- procedure declaration

procedure Q is
begin
end Q;

begin

end P;

It can be assumed that the names T, V and Q are defined in the same context (the
declarative part of P) because they are intended to be used together - here in the sequence
of statements of P. Extending this reasoning to inner program units means for instance that
the names T, V, and possibly Q are also visible within the body of Q, so that this body may
be directly defined in terms of these names. This suggests the assumption that entities
declared in the same context have mutually dependent definitions.

One alternative considered was to designate certain program units such as procedures and
packages as being always closed: Closed units would not automatically inherit the visibility of
outer declarative regions, so that some form of explicit import directive would be required in
order for names declared in outer regions to become visible within closed units. This was
ultimately deemed unacceptable because it led to clutter and to long name lists in many
common cases.

218 Ada Rationale

The following example illustrates the useless redundancy of the directive "sees T, C. L”,
where the procedures P__1 through P_N are obviously meant to work with T, C and L.

-- the following is not an Ada text

package D is
type T is ... ;
C: constant T = .. ;

procedure P_1 (...);
procedure P_2 (...);

procedure P_N(...);
end D;

package body D is
L: T,

-- note: "sees T, C, L" is not legal in Ada

procedure P_1(..) seesT.C, Lis ... end P_1;
procedure P_2(...) seesT,C, L is ... end P_2;

procedure P_N(...) sees T, C, L is ... end P_N;
end D;

Early experience with the Euclid language, in which such an approach was taken, shows that
the danger of long name lists is not to be underestimated. Because of transitivity, Euclid
import lists can get very long. The danger is then - as evidenced by experience with named
common in Fortran programs - that programmers tend to use the same import lists in all
program units, for fear of omitting something. In any case, long name lists are usually
skipped when reading, and this defeats their very purpose. The classical argument developed
by Dijkstra [Di 72], about our inability to deal with a large number of entities at the same
time, also applies to long - and therefore unstructured - name lists.

The only way to avoid this form of text clutter is to make automatic inheritance the default
rule. The argument is that the textual embedding of declarations is already a strong
indication of potential dependence. The systematic inclusion of additional import directives
does not usually provide much information that may usefully be exploited by the transiator,
and it is likely to distract readers - and writers - of programs.

[t was found, moreover, that whether a given syntactic category should be an open scope or
a closed scope was a highly subjective question. The answer may vary from one use to
another, depending on the size of a particular program unit, the depth to which it is nested,
the probability of subsequent recompilation, and so on.

General Program Structure - Visibility and Overloading 219

It seems clear, therefore, that the syntax of the language should not arbitrarily impose a
decision in this regard. For this reason we have adopted the following approach:

e All syntactic constructs that introduce declarations normally inherit the identifiers of
outer (enclosing) contexts.

w A set of declarations can be encapsulated in the visible part of a package: the visibility
of these declarations is then acquired in other contexts by means of use clauses.

11.3.2 Naming Conventions: Expanded Names and Use Clauses

Since classical inheritance of identifiers from outer declarative regions is the default rule,
redeclaration of identifiers is possible, with the effect of hiding the outer definitions within
the inner region.

Some of the difficulties with identifier redeclarations disappear if the names of the
corresponding entities can be written as expanded names: using the dot notation. Consider,
for example, the type T declared immediately within the procedure P above, and assume that
the same identifier were reused for a declaration given within the body of Q. The type name
could still be written as P.T in the inner unit (exploiting the fact that the identifier P is
visible there); this expanded type name may thus be used in qualified expressions and
wherever the need to denote the type arises.

The use of expanded names is also the general rule for denoting an identifier declared within
a package, when outside of the package itself. Thus, outside the package SIMPLE IO, the
identifier CREATE declared in the visible part of this package can be denoted by the
expanded name SIMPLE IO.CREATE, in spite of the fact that CREATE is not directly
visible there.

As an additional syntactic convenience, a use clause may be given in a declarative part. A
use clause mentions the names of one or more packages and its effect is to achieve direct
visibility of any identifier declared in the visible part of one of the packages, exactly as if
the identifier were declared at the place of the package concerned. For a given identifier,
however, this effect is only achieved in the absence of any conflicting identifier. For
example, in a region that includes the use clause

use D, E;

the identifier I is an acceptable abbreviation for D.I provided that this identifier is deciared
in D and is not hidden by an intervening redeclaration of I, and provided also that the
package E does not contain an identifier I in its visible part. In all cases of redeclaration or
conflict, the intended name must be given in full, as an expanded name.

220 Ada Rationale

These rules are illustrated by the following example:

package D is
T, U, V: BOOLEAN;

end D;
-- (1)
procedure P is
--(2)
package E is
B, W, V: INTEGER;
end E;
--(3)
procedure Q is
T, X: REAL;
G
begin
declare
use D, E;
begin

-- the name T means Q.T, not D.T

-~ the name U means D.U

-- the name B means E.B

-- the name W means E.W

-- the name X means Q.X

-- the name V is illegal: it must be written either D.V or E.V

end;
end Q;
begin

end P;

In deciding which names are visible within the sequence of statements of the block statement
we apply the following two-step rule:

(a) First we inherit the names declared in outer regions and not redefined. Thus we inherit
the names D and P, the names E and Q declared within P, and the names T and X
declared within Q.

(b) Then we consider the entities that may be made directly visible by means of use
clauses. In the above example this means the entities that are declared in the visible
parts of D and E. We retain names that appear in only one of these packages and that
do not conflict with a name introduced in the step (a). Hence the names retained here
are U, B, W.

e —

General Program Structure - Visibility and Overloading 221

One consequence of these rules is that the position of use clauses does not matter. Thus the
same effect would be achieved in the above example if the clause "use D;" were given at any
of the points (1), (2), (3), or (4); and the clause "use E;" were given at any of the points (3)
or (4).

Another consequence is that a name that is made directly visible by a use clause cannot hide
another name. This is quite essential for maintainability reasons. Assume, for example, that
the specification of the package D were modified to include the declaration of some new
entity called X. This should normally have no effect on the procedure Q. In particular, the
inner reference to X should retain its previous meaning and should hence mean Q.X both
before and after the modification. (Note that we have only reduced the magnitude of this
general problem, since a later introduction of W within D would conflict with the W of E;
the full solution lies in maintenance tools.)

A similar maintainability argument led us to reject a unique visibility rule; that is, a rule
forbidding redeclaration of identifiers that were already visible. If redefinition of identifiers
were not allowed, the later introduction of some entity named X in the declaration list of P
would force textual modification of an inner procedure such as Q, which should normally be
unaffected by this change.

Note that use clauses may be viewed as one possible form of the import directives mentioned
in section 11.3.1. However, the items listed in use clauses can only be names of packages,
and the risk of long use lists is correspondingly reduced. Naturally, effective modularization
will depend upon the user writing packages in such a way that related definitions are in the
same pa- kages; related definitions will usually be required together.

11.3.3 Visibility Rules for Record Types

A record type definition introduces a new declarative region. Hence component identifiers
may be freely chosen. For each selected component, the visibility of the corresponding
component is opened by the dot that follows the name of the record variable in the selected
component.

As with Pascal, variants within a record do not introduce new declarative regions. Hence the
component names of each variant must be distinct from those of every other variant, even if
they are semantically equivalent as far as the programmer is concerned. The reason for not
introducing a new declarative region with each variant can be seen from the following
example:

222 Ada Rationale

type T(COMPACT : BOOLEAN := TRUE) is
record
case COMPACT is
when TRUE => VALUE : FLOAT;
when FALSE => VALUE: LONG_FLOAT; -- illegal redeclaration
end case;
end record;

R: T,

A selected component such as R.VALUE would have to be treated as a conditional
expression, dependent on the discriminant, possibly delivering results of alternative types.

11.3.4 Renaming

A renaming capability is offered in Ada. As an example consider

declare
L : PERSON renames LEFTMOST__PERSON;
R : PERSON renames TO_BE_PROCESSED(NEXT),
begin
L.AGE = L.AGE + I;
R.AGE = R.AGE - 1;
if L.BIRTH < R.BIRTH then
L.RANK = L.RANK + I;
else
R.RANK := R.RANK + |;
end if;
end;

The renaming declarations of L and R are used to introduce new local names for the outer
variables LEFTMOST_PERSON and TO_BE PROCESSED(NEXT). In the sequence of
statements of the block, L and R may be used as convenient names of the variables that they
denote. Here the renaming facility is used for purposes similar to the Pascal with statement -
as a convenient alternative for frequently used long names. However, components of renamed
records are still denoted with the syntax of record components so they cannot be confused
with variables bearing the same name as the components.

In addition to the notational advantage, such a renaming declaration avoids reevaluating the
access path to the record variable for each component selection, and may allow more
efficient code to be generated.

Renaming declarations are also permitted for subprograms, packages, and exceptions. In
addition, subtype declarations can be used to achieve the effect of renaming for types:

General Program Structure - Visibility and Overloading 223

function "*" (LEFT, RIGHT : YECTOR) return REAL renames DOT__ PRODUCT;
procedure READ(V : out ELEM) renames PROTECTED_VARIABLE.READ;
package TM renames TABLE_MANAGER;

DATA _ERROR : exception renames 10_EXCEPTIONS.DATA_ERROR;

The ability to rename turns out to be very convenient when working with packages that are
developed independently by different groups of programmers. Being independently
developed, such packages may well declare the same identifiers. If later these packages are
both mentioned by a use clause in a given region, it may often be convenient to resolve
name conflicts by renaming rather than by using dot notation whenever these identifiers
appear. For example consider:

package TRAFFIC is
type COLOR is (RED, AMBER, GREEN);

end TRAFFIC;

package WATER_COLORS is
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN);

end WATER _COLORS;

declare
use TRAFFIC, WATER_COLORS;
subtype SIGNAL is TRAFFIC.COLOR;
subtype TINT is WATER_COLORS.COLOR;
LIGHT : SIGNAL;
SHADE : TINT;

begin
end;
The subtypes SIGNAL and TINT effectively rename the corresponding types and are

unambiguous within the block, whereas COLOR would be ambiguous.

Because of the possibility of overloading, it will often suffice to rename conflicting type
names: names of subprograms will in consequence be resolved by the overloading rules. The
renaming facility can also be used to provide a name more appropriate to the context of its
use. For instance, the author of a sort routine may call his version QUICKSORT?2 whereas
SORT may be better (and less cumbersome) throughout the application,

224 Ada Rationale

11.4 Overloading

In Ada, every use of a simple name or operator symbol is understood with reference to an
(explicit or implicit) declaration of the name or symbol. In the case of types, variables, and
constants, at most one such declaration can be visible at any one point in the program. In the
case of subprograms, enumeration literals, and entries, however, several declarations may be
simultaneously visible. An occurrence of a subprogram name, such as PUT or "*", may
therefore refer to one of several simultaneously visible declarations. The name or operator
symbol is then said to be overloaded.

11.4.1 Overloading of Operators

The overloading of operators is a situation familiar also in other languages, and it illustrates
the main reason for the existence of overloading in Ada. Consider, for example:

,J,K : INTEGER;
X,Y,Z : REAL;

It is then possible to write the statements

K = I%J;
Z = X*Y;

in which the operator symbol "*" refers in the first statement to
function "*" (LEFT, RIGHT : INTEGER) return INTEGER;
and in the second statement to

function "*" (LEFT, RIGHT : REAL) return REAL;

The functions that implement integer multiplication and floating multiplication are
represented by the same symbol because they are different implementations of the same
abstract operation: the operation of multiplication.

The overloading of predefined operators has been a feature of programming languages ever
since FORTRAN. But Ada also permits users to define new data types, for example
COMPLEX or RATIONAL. Since much of the power of the language comes from its
extensibility, and since proper use of that extensibility requires that we make as little
distinction as possible between predefined and user-defined types, it is natural that Ada also
permits new operations to be defined, by declaring new overloadings of the operator
symbols. Therefore, since the operation of abstract multiplication applies to complex and
rational numbers, one would expect to see

General Program Structure - Visibility and Overloading 225

function "*" (LEFT, RIGHT : COMPLEX) return COMPLEX;
function "*" (LEFT, RIGHT : RATIONAL) return RATIONAL;

whereby the programmer can mulitiply rational or complex numbers using the familiar
mathematical notation. The ability to coin descriptive names is an important part of good
programming, and it is therefore desirable that a programming language give the programmer
as much freedom as possible in the choice of names. Moreover, the use of familiar notation
in new contexts is a very powerful descriptive tool: it is an example of the principle of
analogy. The ability of an Ada programmer to overload operators upon new types allows the
principle of analogy to be used in programming. Further examples of this principle are:

function "*" (LEFT, RIGHT : VECTOR) return SCALAR,;
function "*" (LEFT, RIGHT : MATRIX) return MATRIX;

In practice, it is unlikely that two quite different overloadings, such as the two declarations
of "*" above, will be defined together. It is more likely that each will be defined in its own
package - in this case, one package might be called VECTOR_OPERATIONS and the other
SCALAR_OPERATIONS. Similarly, rational multiplication might well be defined in a
package

package RATIONAL_ARITHMETIC is
type RATIONAL is private;

function "+" (RIGHT : RATIONAL) return RATIONAL;
function "-" (RIGHT : RATIONAL) return RATIONAL;

function "+" (LEFT, RIGHT : RATIONAL) return RATIONAL;

function "-" (LEFT, RIGHT : RATIONAL) return RATIONAL,;

function "*" (LEFT, RIGHT : RATIONAL) return RATIONAL;

function "/* (LEFT, RIGHT : RATIONAL) return RATIONAL;

function "**" (LEFT: RATIONAL; RIGHT : INTEGER) return RATIONAL;
function "/" (LEFT : INTEGER; RIGHT : POSITIVE) return RATIONAL,;

private

226 Ada Rationale

type RATIONAL is
record
NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;
end record,

end RATIONAL _ARITHMETIC;

In this package, a new type is defined, together with the complete set of applicable
operations. The programmer defining the type is free to use the traditional operator symbols
for the new type, and to give them a meaning analogous to their meaning with other types.
There is no need to worry about other meanings (declarations) that might occur in other
packages defining other types: the Ada overloading facility permits the package
RATIONAL _ARITHMETIC to be defined as an independent software component.

These operations could be used thus:

CM_PER_INCH : constant RATIONAL := 254/100; -- by international decree!
function INCH_TO_CM(INCHES : RATIONAL) return RATIONAL is
begin
return INCHES * CM_PER _INCH;
end;

Note that, by an analysis similar to the one given in section 9.2.2, we can identify the "/"
operation in the expression "254/100" as being the function that takes two integers and yields
a rational result.

11.4.2 Overloading of Names

Severa! languages beside Ada, such as Algol 68, permit operator symbols to be overloaded.
Ada however also permits subprogram names to be overloaded, for exactly the same reasons.
Consider for example

procedure PUT(X : in STRING);
procedure PUT(X : in INTEGER);

This allows a programmer to write

PUT("The value of X is: ");
PUT(X);

General Program Structure - Visibility and Overloading 227

The abstract operation PUT applies indifferently to both strings and integers; it is therefore
appropriate that the same name be used in both cases. Observe that this is in accord with the
conventions of natural language:

"Put the book on the shelf”
"Put the cat out”

which does not have separate words for putting books and putting cats.
Ada does not permit the overloading of variables or constants. This again is in accordance

with traditional habits of thought: we seem far more willing to accept potentially ambiguous
names for operations than for things. Thus, mathematicians typically write

I + I2 -~ integers

X1l + X2 -~ floating-point values
V1 + V2 -~ vectors

Ml + M2 -~ matrices

Zl + 22 -~ complex numbers

where all the addition operations are written "+" but their operand types are distinguished by
a systematic nomenclature. It seems to be a convention of our language that verbs are generic
but nouns are specific; Ada reflects this by permitting operations to be overloaded but -
normally - not operands. Thus, Ada allows (and we find normal)

procedure SERVE(S : SOUP);
procedure SERVE(F : FRUIT); -- permitted overloading

but does not allow (and which we would find abnormal)

OF_THE_DAY : SOUP,;
OF_THE_DAY : FRUIT; -- not a legal overloading!

11.4.3 Overloading of Literals

Literals stand for values. However, in a strongly-typed language, it must be possible to
associate a type with every value, and so in some sense a literal should imply a type. This
creates difficulties in two cases: first, when different values, of different types, by chance
are represented by the same literal; and secondly, when the same conceptual value belongs to
more than one type.

228 Ada Rationale

Enumeration Literals

The first case is called homography: two conceptually different values have the same symbol.
It may be illustrated by

package PALETTE is
type COLOR is (RED, ORANGE, YELLOW, GREEN, ..);
procedure PUT(X : COLOR);

end;

package BOTANY is
type FRUIT is (APPLE, ORANGE, BANANA, KIWI, ...)
procedure PUT(X : FRUIT);

end;

package ORNITHOLOGY is
type APTERON is (MOA, KIWI, OSTRICH, ...);
procedure PUT(X : APTERON);

end;

In no sense is a KIWI fruit the same as the flightless KIWI bird: the homography is an
accident of language.

A programming language should not forbid such homography: it would be unreasonable to
force the author of PALETTE to change the word ORANGE merely because it was a fruit;
and indeed Ada never forbids a programmer from defining a locally unambiguous name. But
it is a separate design decision whether to permit overloading of such names.

Ada permits overloading of enumeration literals; this is in accord with the idea that an
enumeration literal resembles a parameterless function. Hence the following is legal:

with BOTANY, ORNITHOLOGY;

use BOTANY, ORNITHOLOGY;

procedure P is
FRUIT_OF_THE_DAY : FRUIT = KIWI;
BIRD_IN_THE_HAND : APTERON := KIWI;

end;

Resolution is exactly as for parameterless functions: in the above declarations the required
type is evident from the context.

General Program Structure - Visibility and Overloading 229

This rule also permits character literals to be used in more than one type:

type ASCII is(.., YA', 'B', 'C', ..)
type EBCDIC is (.., 'A', 'B' 'C' ..)

AC : ASCI - VYA
EC : EBCDIC = 'B';
Numeric Literals

The numeric literals, however, illustrate the second case. In the following:

X : FLOAT = }.0;
Y : LONG_FLOAT := 1.0;

the two occurrences of "1.0" stand for the same abstract value - unity - but in two different
physical representations, and hence, in Ada, associated with two different types. It would be
possible to view "1.0" as an overloaded literal - overloaded on all real types. Ada however
takes a different view, that we believe corresponds more closely to our intuition. It regards
real literals as being all of one type, the type universal _real, and introduces an implicit
conversion to the required numeric type. The declarations above are therefore interpreted as

X : FLOAT = FLOAT(1.0);
Y : LONG_FLOAT := LONG_FLOAT(1.0);

The alternative view - that the literals should be considered to be overlioaded on all numeric
types - would lead to some anomalies, of which the most annoying would perhaps be that

if 1 <2 then ..

would be ambiguous: would we mean to invoke the "<" of type INTEGER or that of type
LONG_INTEGER? The Ada view avoids such difficulties.

Observe by contrast that, if ASCII and EBCDIC are both visible, then
if 'A' < '0" then ...

will indeed be rejected as ambiguous, and rightly so, since the relation means different
things in ASCII and EBCDIC.

230 Ada Rationale

11.5 Overload Resolution

When an overloaded name or symbol occurs, the language translator must determine which of
several possible definitions is meant. This process is called overload resolution, and it must
naturally rely on information from the context in which the name occurs. In defining the
language, the rules for overload resolution need to be established, and these rules must make
clear two things: ’

s what is the context from which information is to be taken

» what information may be used

As an example of the former question, consider the fragment
for I in MIN(A,B) .. MAX(C,D) loop

and how we might resolve the overloaded function MIN.

(a) consider only the context MIN(A,B); that is, the function and its actual parameter list;

(b) consider the context MIN(A,B) .. MAX(C,D), including the fact that the result types of
the two calls must be the same;

(¢) consider the context for I in MIN(A,B) .. MAX(C,D), including the fact that the
result types must be the same, and must be of a discrete type.

As an example of the latter question, consider a call of CREATE, from the package
SIMPLE_IO of section 9.2.3

CREATE(FILE => OUTFILE, NAME => "Results");

and what information we should use to determine which CREATE is being invoked:

(d) there are two actual parameters
(e) their types are FILE_NAME and STRING
(f) their formal names are FILE and NAME

(g) since "Results" is a string literal, the mode of the NAME parameter must be in

We shall consider these two issues in turn.

General Program Structure - Visibility and Overloading 231

11.5.1 Context of Overlohd Resolution

It might appear that the simplest overload resolution rule is to use everything - all
information from as wide a context as possible ~ to resolve the overloaded reference. This
rule may be simple, but it is not helpful. It requires the human reader to scan arbitrarily
large pieces of text, and to make arbitrarily complex inferences (such as (g) above). We
believe that a better rule is one that makes explicit the task a human reader or a compiler
must perform, and that makes this task as natural for the human reader as possible.

The contexts to be used in overload resolution are given explicitly in RM 8.7. They
correspond, we believe, to the natural program fragments that both writer and reader will
regard as conceptual units. For example, the controlling expression of a for loop is such a
unit; it represents a bounded, ordered iteration over a set of discrete values. Accordingly, the
resolution process considers (a), (b), and (c) above: both bounds of the range, and also the
fact of its discreteness. We can therefore resolve

for F in ORANGE .. KIWI loop
in the way that we believe the human reader would: as an iteration over fruits.

As another example, consider the case statement

case BIRD_IN_THE_HAND is -- (1)
when KIWI => --(2)
-- imagine a lot of text here
when ORANGE => -~ (3)
end case;

The case expression and the values in the case alternatives must of course all have the same
type. However, Ada requires the case expression, on line (1), to be resolved first, before
considering the case arms. This is because, otherwise, the human reader would have to scan
an arbitrarily large amount of text in order to understand the very first line of the case
statement. This would violate our convention (sanctioned by both Ada and natural usage) of
linear readability. With the Ada rule, the reader knows at point (2) that KIWI is an
APTERON, and knows at point (3) that ORANGE is an error.

232 Ada Rationale

11.5.2 Information Used to Resolve Overloading

A more difficult issue is, what information should be taken from the context of resolution?
Since the main purpose of overloading is to allow analogous operations on different types to
be given the same name, resolution clearly must consider type information. The other
information available is the order, names, and modes of the parameters, the presence of
defaults, and the result type.

The rationale behind the Ada position is threefold. First, the rules should be convenient for,
and comprehensible to, the human reader and writer: this must override any consideration of
compiler simplicity. Secondly, the rules should allow natural programming conventions to be
followed with unsurprising results. Thirdly, the information used should be readily
observable in the program text, and not highly implicit.

Overloaded Operations

It seems best to consider first the overloading of operations. The natural use of operator
symbols is in infix notation, where clearly the order of the parameters matters, but the
formal names do not. And Ada therefore uses the one, and not the other. Thus, given

function "-" (LEFT : TIME; RIGHT : DURATION) return TIME;
then an expression such as

MIDNIGHT - 10*MINUTE

is interpreted as subtracting a DURATION from a TIME (assuming the declaration of
MIDNIGHT as a variable of type TIME, and MINUTE as a constant of type DURATION),
but

10*MINUTE - MIDNIGHT
will fail: the operands are in the wrong order.

However, Ada does not permit these overloadings:

function "-" (LEFT, RIGHT : INTEGER) return INTEGER;
function "-" (MINUEND, SUBTRAHEND : INTEGER) return INTEGER;

because, even if we did happen to remember the traditional names of the operands, we
would never use them in an invocation of the "-" operator. The formal names will never be
seen at the point of call, and so cannot be considered in overload resolution.

Since operations are functions, the parameter mode must always be in and so is irrelevant to
the resolution. There remains only the question of the resuit type.

Some languages, such as Algol 68, do not use the result type of an operation to assist in
overioad resolution. This has the advantage that it leads to an implementation of overload

General Program Structure - Visibility and Overloading 233

resolution by a single bottom-up traversal of the expression. But is this admitted convenience
for the compiler writer accompanied by any benefit for the human programmer?

There are few cases in conventional mathematics where an abstract operation may yield two
different types of result, but these cases are significant. One example is the distinction
between scalar product and vector product. It is surely desirable to allow

function "*" (LEFT, RIGHT : VECTOR) return SCALAR;
function "*" (LEFT, RIGHT : VECTOR) return MATRIX;

since otherwise one hapless programmer will have to abandon infix notatién completely, and
the other will have to fight for his monopoly over the "*" symbol.

As another example, consider the rational constructor

function "/" (LEFT, RIGHT : INTEGER) return RATIONAL;

defined above. It is hard to imagine any better way of writing

ALMOST_PI := 355/113;
But this requires the ability to overload "/" on the result type.

We conclude that the use of the function result type in overload resolution is
methodologically the better choice, and one that enhances the freedom of the programmer to
write natural, comprehensible expressions.

Overloaded Names

Named procedures and functions, called by conventional prefix notation, present a rather
different issue. This is because Ada permits both positional and named parameter association,
for the reasons given in section 8.3. Moreover, procedure parameters may take one of three
modes: in, in out, out; and in parameters may be defaulted. Potentially, all this information is
available for overload resolution.

To resolve overioading, Ada uses the formal names but not the modes; that is, (d), (e) and (f)
above, as described in RM 6.6. The reason is simple: the programmer may write the formal
names explicitly in the call statement, but has no means of indicating the modes at the place
of the call (since all parameter associations use "=>"). Hence, the formal names can be made
explicit, but the modes are always implicit, and the natural action is to use explicit
information where given, but to avoid using implicit information that the human reader
might have difficulty in deducing.

234 A-”a Rationale

11.5.3 Ambiguity

An overloaded name is potentially ambiguous. In practice, even with the best programming
style, actual ambiguities will sometimes arise, in the form of expressions that cannot be
resolved. The most common reason is accident: two packages are jointly used; each defines a
consistent set of names; but there is a clash of names. For example, consider the packages
PALETTE and BOTANY defined above. One cannot find fauit with these packages
individually, but then

with PALETTE, BOTANY;
use PALETTE, BOTANY;
procedure P is

PUT(ORANGE);
end P;

contains an ambiguous call of PUT - one that is ambiguous even when all available
information is used.

Clearly, the programmer must provide more information. There are two sorts of information
that Ada permits one to provide: information about the source of a name, and information
about its type. To illustrate the former, consider

BOTANY.PUT(ORANGE),

This is clearly unambiguous, since only one PUT is defined in package BOTANY. Ada dot
notation can always be used to give information about the source that provides the name,
and, if the package in question has been properly written, this information should suffice.
Indeed, this property is essential if packages are to be generally useful software components,
since it guarantees that a properly-constructed package can be used by anyone, regardless of
what other packages they may need.

To illustrate how type information can be given, consider

PUT(FRUIT '(ORANGE));
This also is unambiguous: ORANGE is a FRUIT, and so the PUT that puts fruits is
intended. Since type names cannot be overloaded, and since all expressions can be qualified,

this method also ensures overload resolution.

By either of these methods, the user who by accident encounters an ambiguity can make the
intended meaning explicit.

R R R R ———"m—m————————

Generic Units 235

12. Generic Units

12.1 Introduction

Generic units are a general form of parameterized program units. As with other
parameterization mechanisms, the primary purpose is factorization, resulting in a reduction in
the size of the program text while also improving maintainability, readability, and efficiency.

Parameterization by generic units is a natural extension of subprogram parameterization.
When otherwise identical actions differ by a particular value or variable, these actions may
be encapsulated in a subprogram where the value or variable appears as a parameter. Having
thereby factored out the common part, the text becomes smaller and easier to read; and
clerical errors, resulting from accidental lack of identity among the copies, are eliminated.
Moreover, compilers can take advantage of this commonality to produce more compact code.

Traditional parameterization mechanisms are usually in terms of values and variables. But the
same factorization arguments apply when two otherwise identical program units differ by
some other property, such z; a type.

A classical example is provided by stacks. In Ada, stacks would typically be formulated as a
private type, encapsulated with its associated operations within a package. Although one may
want to have stacks of integers and stacks of real numbers, it is clear that neither the stack
algorithms, nor the proof of their correctness, depends upon the type of the items to be
stacked. However, the typing rules will not allow the writing of a single procedure to deal
with items that are either integer or real values: if this were allowed, there would be no way
to guarantee that a given stack does not contain intermixed integer and real values, Hence
another parameterization mechanism is needed to express the intent that, although all items
of a stack have the same type, we may want to specify this type independently for individual
stacks: this parameterization mechanism is what is provided by the generic formal part of a
generic unit.

Generic units are parameterized program units (for example, generic packages) for which
parameters can be types and subprograms as well as values i~d variables. Replication of text
can thereby be avoided, yielding better readability and maint.. ability. In addition, compilers
may use their knowledge of type representations to achieve certain optimizations; for

236 Ada Rationale

example, reusing the same code for stacks of integers and reals if the same number of bits is
used for the mapping of values of these types. Seen in this light, the generic facility provides
a natural complement to strong typing, minimizing the unnecessary duplication of both
source text and object code.

One of the commonest applications of any generic facility is factoring out dependences on
particular types. Several earlier languages have accordingly introduced language features to
accommodate this sort of parameterization. By far the most powerful is that provided by the
language EL 1; however, this generality is achieved at the cost of interpreting types in a fully
dynamic fashion, which is incompatible with the efficiency and security criteria imposed in
the present context.

Languages such as Simula, Clu, and Mary offer a reasonably elegant approach to this
problem, but all require that all objects be handled by reference. This introduces additional
overhead - namely, indirect access - even in cases where this generality is neither needed
nor wanted. To some degree, type discriminants and variants (such as in Euclid and Ada) or
type unions (such as in Algol 68) provide a possible approach when the alternative types are
known in advance; similarly the language CS-4 provides a limited facility that may only be
used in conjunction with predefined types. Neither approach offers the flexibility that is
required when the definition of new data types is viewed as the rule rather than the
exception.

A review of the shortcomings of existing mechanisms that allow types to be used as
parameters showed that it was inappropriate to introduce overly elaborate language features
solely for this purpose, principally because the same effect (and many others as well) can be
essentially achieved by far simpler means using traditional macro-expansion techniques -
although in a context-sensitive manner, The problem then reduced to integrating this well-
established approach into the framework of a high-order language at reasonable cost.

In Ada, the more sophisticated sorts of parameterization are accommodated by generic
program units, which are a restricted form of context-sensitive macro facility. The main
objectives in providing this particular mechanism have been:

« to allow an additional degree of freedom in factorization without sacrificing efficiency;

s to allow compilers to take advantage of this factorization to minimize the size of the
code;

s to preserve the security that is present for ordinary, unparameterized program units; in
particular, the degree of compilation-time error checking.

Generic Units 237

12.2 Informal Presentation of Generic Units

A generic unit is a program unit; it is either a generic subprogram or a generic package. The
declaration of a generic unit starts with a generic formal part which defines compilation-
time generic formal parameters; the generic formal part is followed by a subprogram
declaration (for a generic subprogram) or by a package declaration (for a generic package).

A generic subprogram is not an ordinary subprogram: for example it cannot be called; it is
rather a template for all (ordinary) subprograms that can be obtained by associating specific
actual parameters with the generic formal parameters. Similarly a generic package is a
template for (ordinary) packages.

A specific program unit that corresponds to a given template is created by a declaration
called a generic instantiation. This has the effect of creating a named instance. In the case of
a subprogram, for example, this named instance can then be called in the usual way. Thus,
apart from parameterization, generic declaration is for nongeneric program units what a type
declaration is for data objects:

data objects program units
defining the template: type declaration generic declaration
defining an instance: object declaration generic instantiation

12.2.1 Generic Formal Parts

A generic formal part starts with the reserved word generic and includes declarations of
generic formal parameters. These can be formal objects (variables and constants, as in the
case of parameters of subprograms); but they can also be generic formal subprograms and
generic formal types. For example, the generic formal part

generic
type ITEM is private;

declares the generic formal type ITEM. We find this generic formal part in the declaration of
the following generic procedure:

238 Ada Rationale

generic
type ITEM is private;
procedure EXCHANGE(LEFT, RIGHT : in out ITEM);

procedure EXCHANGE(LEFT, RIGHT : in out ITEM) is
OLD_LEFT: constant ITEM := LEFT,

begin
LEFT := RIGHT;
RIGHT := OLD_LEFT;

end;

In this example, LEFT and RIGHT are the ordinary (that is, nongeneric) parameters: each
procedure obtained by instantiation of this template will have these parameters, which are
subject to dynamic replacement. In contrast, the type ITEM given in the generic formal part
is a generic formal parameter which is to be substituted for at compilation time. This generic
parameter may appear in the body of the generic subprogram; here it is used in the
declaration of the constant OLD__LEFT.

12.2.2 Generic Instantiations

A generic instantiation creates an instance of a generic unit by replacement of the generic
parameters. A generic instantiation is a declaration and it associates a name with the
corresponding instance. Usually, there will be several different instantiations of a given
generic unit:

procedure SWAP_INT is new EXCHANGE(ITEM => INTEGER);
procedure SWAP_CHAR is new EXCHANGE(ITEM => CHARACTER);
procedure SWAP_COLOR is new EXCHANGE(ITEM => COLOR);

Each resultant program unit is an ordinary procedure, applicable to actual parameters of the
corresponding type. The resulting procedure specifications are as follows:

procedure SWAP_INT (LEFT, RIGHT : in out INTEGER);
procedure SWAP_ CHAR (LEFT, RIGHT : in out CHARACTER);
procedure SWAP_COLOR (LEFT, RIGHT : in out COLOR);

In each case, the name of the generic procedure has been replaced by the name given in the
instantiation, the formal type by the actual type, and everything else remains the same - the
names and modes of the formal parameters of the instantiation are the same as those of the
generic procedure.

" Generic Units 239

The fact that these procedures are obtained by generic instantiation does not preclude
overloading of their names:

procedure SWAP is new EXCHANGE(ITEM => INTEGER),
procedure SWAP is new EXCHANGE(ITEM => CHARACTER);
procedure SWAP is new EXCHANGE(ITEM => COLOR);

Calls of these procedures will be as usual; for example:

SWAP(, J); -- for integers
SWAP(SHADE, TINT), -- for colors

In general, a generic instantiation for a procedure has the form

procedure identifier is
new name [(generic_association {, generic_association)));

The syntax of generic associations is similar to that of parameter associations for subprogram
calls. Note that both named associations and positional associations are possible, as usual.
Thus our previous example can be written equivalently in positional form as:

procedure SWAP is new EXCHANGE(INTEGER);
procedure SWAP is new EXCHANGE(CHARACTER);
procedure SWAP is new EXCHANGE(COLOR);

A program unit obtained by generic instantiation can be viewed as a copy of the
corresponding generic unit where each formal parameter has been replaced by the
corresponding actual parameter. For example, the declaration of SWAP_INT produces a
procedure equivalent to

procedure SWAP_INT(LEFT, RIGHT : in out INTEGER) is
OLD_LEFT : constant INTEGER := LEFT;

begin
LEFT := RIGHT;
RIGHT := OLD_LEFT;

end;

A generic instantiation need not appear in the same declarative part as the corresponding
generic declaration - it may appear at any point where the name of the generic unit is
visible,

The rule followed for the identification of names within a generic unit is similar to that used
for subprograms: All non-local identifiers of the body of a generic unit are identified in the
context of the generic declaration. In contrast, the actual parameters given in the generic
associations must be interpreted in the context of the generic instantiation.

240 Ada Rationale

Note that this rule differs from a simple textual substitution. In the latter case all identifiers,
including non-local ones, would be interpreted in the context of the instantiation. Hence it
would not be possible in general to obtain the effect of generic program units by a simple
(context-free) macro facility; and this was our reason for referring to context-sensitive macro
expansion, earlier in the introduction.

To summarize, the generic parameter names (and the name of the unit itself) are the only
unresolved identifiers in the body of a generic program unit. For any generic instantiation,
replacements must be provided for all generic parameters. These replacements are to be
interpreted in the context of the instantiation.

12.2.3 Private Types as Generic Formal Types

In the simple EXCHANGE example presented so far, very little information is needed about
the type given as a generic parameter; within the body of this generic procedure, the only
operation assumed available for objects of the type is assignment. Hence this template can be
applied to any type for which assignment is available; that is, to any type except a limited
type.

In general when a generic formal type is specified as being private, no operations are
assumed to be available aside from assignment, the predefined comparison for equality and
inequality, and certain attributes such as SIZE. Furthermore, if the generic formal type is
declared as limited private, then not even assignment and the comparison for equality and
inequality are available.

For such types - whether limited or not - each operation that is used within the generic
body must be specified by another generic formal parameter, namely, a generic formal
subprogram. As an example, consider the generic function:

generic

type ELEM is limited private;

with function "*" (LEFT, RIGHT : ELEM) return ELEM;
function SQUARING(X : ELEM) return ELEM;

function SQUARING(X : ELEM) return ELEM is
begin

return X * X;
end;

Since nothing is known a priori about the type ELEM, it would not be possible to write X *
X if the specification of "*" were not provided explicitly by a generic formal parameter (this
specification is prefixed by the reserved word with to distinguish it syntactically from the
generic function itself and thus to show that we are still in the generic formal part):

with function "*" (LEFT, RIGHT : ELEM) return ELEM;

Generic Units 241

Instances of SQUARING are created by supplying the corresponding actual parameters. For
example, for the instantiation

function SQUARE is new SQUARING(INTEGER, "*");
the operation "*" used in the body is the operation defined as
function "*" (LEFT, RIGHT : INTEGER) return INTEGER;

that is, the normal integer multiplication. Thus the generic instantiation produces a function
body equivalent to the following:

function SQUARE(X : INTEGER) return INTEGER is
begin

return X * X;
end;

Of course, other instantiations are possible. For example, we may want to use SQUARING
for matrices, to extend the existing component-by-component multiplication

function MULT(X, Y : MATRIX) return MATRIX;
Thus with the generic instantiation
function SQUARE is new SQUARING(ELEM => MATRIX, "*"=> MULT);

we obtain a function that performs component-by-component squaring of a matrix.

12.2.4 Other Forms of Generic Formal Types

Types are by far the most useful form of generic formal parameter. For this reason, the
language provides (beyond formal private types) forms of formal type that correspond to
major families of types in Ada. Many of these formal types appear as type patterns formed
with the box symbol. For example:

type BASE is (<>); -- discrete

type INT is range <>; -- integer

type FIXED s delta <>; -- fixed point
type MASS s digits <>; -- floating point

In each case, the box symbolizes what is not there, what is left unspecified. So for example,
the type INT will stand for any integer type, with any possible range; the type BASE will
stand for any discrete type, whether an enumeration or an integer type.

242 : Ada Rationale

Each formal type specifies minimum requirements for the corresponding actual types, and
the specification and body of the generic unit can rely on these minimal assumptions. For
example, for a formal type such as BASE, we can count on the availability of all properties
of discrete types:

s assignment: =

s comparison for equality and inequality: = /=
s ordering relations: < <= > >=

s attributes: FIRST, LAST, SUCC, PRED, ...

s use for array indexing

Similarly for a formal type such as INT we can count on the availability of all properties of
discrete types, and also on the additional properties of integer types:

s« binary adding oOperators: + -
=« unary adding operators: + -
= multiplying operators: * / mod rem

s highest precedence operators: *%* abs

For a given instantiation, the actual type will have to satisfy the minimum requirements
established by the formal type. Thus any enumeration type and any integer type will match
the formal type BASE; on the other hand, only an integer type will match the formal type
INT (not an enumeration type).

As an example, consider the treatment of sets. In Pascal, sets are dealt with by means of a
specific language feature. In Ada a specific feature is unnecessary since sets can be defined
by a generic package:

Generic Units 243

generic

type BASE is (<>); -- any discrete type
package ON_SETS is

type SET is array (BASE) of BOOLEAN;

EMPTY : coastant SET := (BASE => FALSE);
FULL : constant SET := (BASE => TRUE);,

type SEQUENCE is array (POSITIVE range <>) of BASE;

function SET__OF(S : SEQUENCE) return SET;
function "+" (LEFT : SET; RIGHT : SET) return SET; -- set union
function "+" (LEFT : SET; RIGHT : BASE) return SET; -- element insertion
-- other set operations:

end ON_SETS;

The declaration of the formal type BASE requires the actual type to be discrete and we are
clearly using this assumption when using BASE as index subtype for the type SET,; and
similarly when using BASE as a choice for the aggregates that give the values of EMPTY
and FULL.

We can now use ordinary set operations with a chosen discrete type by instantiation of this
generic package. For example, for the enumeration type:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
we can create the instance

package DAY_SETS is new ON_SETS(BASE => DAY),
and then

use DAY_SETS;
S: SET;

S := SET_OF((SUN, TUE, WED));
S:= § + SAT;

S:= S + SET_OF((MON, THU));

The actual parameter of SET_OF is a SEQUENCE - an array of values of the base type,
indexed by the positive numbers 1, 2, and 3 - and the function constructs the corresponding
set. The next statements then use set addition. A sketch of the generic body is given below:

244 Ada Rationale

package body ON_SETS is

function SET__OF(S : SEQUENCE) return SET is
RESULT : SET := EMPTY,
begin
for N in S'RANGE loop
RESULT(S(N)) := TRUE;
end loop;
return RESULT;
end;

function "+" (LEFT : SET; RIGHT : SET) return SET is
begin

return LEFT or RIGHT;
end;

function "+" (LEFT : SET; RIGHT : BASE) return SET is
RESULT : SET := LEFT;

begin
RESULT(RIGHT) := TRUE;
return RESULT;

end;

end ON_SETS;

On top of these type patterns with boxes we can construct other type patterns by means of
array type definitions and access type definitions. For example, a generic sorting procedure
could be specified as:

generic

type ITEM is private;

type INDEX is (<>);

type ROW is array (INDEX range <>) of ITEM;

with function "<" (LEFT, RIGHT : ITEM) return BOOLEAN;
procedure SORT(R : in out ROW);

An instantiation would have to meet the minimum requirements established by this generic
formal part. For example, consider:

T R EEEEEEEEIm=——

Generic Units ' 245

type MEETING s ... -- some record type
type AGENDA is array (DAY range <>) of MEETING;
function LESS _IMPORTANT(X, Y : MEETING) return BOOLEAN;

procedure ORDER is
new SORT(ITEM => MEETING,
INDEX => DAY,
ROW => AGENDA,
"<" => LESS_IMPORTANT),

MY_WEEK : AGENDA(MON .. FRI),

ORDER(MY_WEEK);

The matching types are clearly shown by the named parameter associations. Consider for
example the definition of the formal type ROW:

array (INDEX range <>) of ITEM;

After repiacing ITEM by MEETING, and INDEX by DAY, we obtain the type definition

array (DAY range <>) of MEETING;

which is exactly the way AGENDA is defined, so that AGENDA matches ROW correctly.
Similarly, the function LESS_IMPORTANT matches the operator "<", once we have replaced
ITEM by MEETING.

The types used in this example are certainly not the usual types we find in ordinary
programming, and yet the instantiation works because we have limited our required
assumptions to the minimum. We did not assume anything about ITEM, apart from the
ability to assign, which is needed for sorting; the only assumption that we made about the
index type was that it was discrete (assuming an integer type would have been
overspecification); finally we assumed the existence of an order relation for ITEMS. Had we
assumed more than is strictly needed (for example, real items, integer indices) the
instantiation would have failed.

246 ‘ Ada Rationale

12.2.5 Default Parameters

Default values can be defined for generic parameters that are subprograms. Thus an
alternative form of definition for SQUARING might be

generic

type ELEM s private;

with function "*" (LEFT, RIGHT : ELEM) return ELEM is <>;
function SQUARING(X : ELEM) return ELEM;

function SQUARING(X : ELEM) return ELEM is
begin

return X * X;
end;

The specification of the formal function "*" indicates, by means of a box, that a
corresponding actual parameter need not be present in instantiations of the generic function
SQUARING. For example, we can write:

function SQUARE is new SQUARING(INTEGER);

As usual, the box stands for what is missing - in this case it is a function whose
specification is obtained by replacing ELEM by INTEGER:

function "*" (LEFT, RIGHT : INTEGER) return INTEGER;

and since there is such an operation for the type INTEGER, this integer multiplication is
used -~ by default - in place of the actual parameter.

This form of default corresponds to very good programming practice: We have a natural
notation, such as "*" for multiplication, and we expect users to make natural use of this
notation. With this form we can specify the box for the corresponding formal parameter so
that instantiations will select by default the "natural” operation.

Naturally, we can always override the default by providing an explicit actual parameter:
function SQUARE is new SQUARING(ELEM => MATRIX, "*" => MULT),
There is another form of default, which names the default actual subprogram; for example:

with procedure STEP(X : in out INTEGER) is INCREMENT;

where the procedure INCREMENT 1is a procedure visible at the place of the formal
parameter declaration, and whose profile matches that of the formal procedure:

procedure INCREMENT(N : in out INTEGER);

Generic Units 247

For this second form of default, the actual parameter is to be found in the context of the
generic declaration, whereas in the case of the box, the default was to be found in the
context of the generic instantiation.

12.23 The Use of Generic Units

This section contains a number of examples illustrating the use of generic units.

12.3.1 Examples of Generic Functions

The following program fragment defines a generic function POWER to raise the value of an
object of a type T to its nth power. This exponentiation is defined by repeated
multiplication, and the corresponding multiplication operation must be supplied as a generic
actual parameter.

generic

type ELEM is private;

with function OPER(LEFT, RIGHT : ELEM) return ELEM;
function POWER(E : ELEM; N : POSITIVE) return ELEM;

function POWER(E : ELEM; N : POSITIVE) return ELEM is
RESULT : ELEM = E;
begin
for J in 2 .. N loop
RESULT := OPER(RESULT, E);
end loop;
return RESULT;
end POWER;

This generic function can be used to define exponentiation for types for which a
multiplication operation is known. For example:

function "**" js new POWER(ELEM => RATIONAL, OPER => "#");
function "**" js new POWER(ELEM => MATRIX, OPER => MULT),

Each of these declarations defines an overloading of the operator ** obtained by generic
instantiation. For example, the first declaration defines a function with the following
specification:

function "**" (E : RATIONAL; N : POSITIVE) return RATIONAL;

248 Ada Rationale

It can be used to exponentiate rational numbers by repeated application of the multiplication
operation defined for this type. Note also that the generic function can be used to apply any
meaningful operation repeatedly, for example multiplication of a rational by a positive
integer performed by repeated addition:

function "*" is new POWER(ELEM => RATIONAL, OPER => "+");
or repeated catenation of strings:

function "*" is new POWER(ELEM => STRING, OPER => "&");
RULER : constant = "l----4----" % §5;

so that

RULER = "™ecoctomo—lacmpom ool ool ool

The generic function body can be expressed more briefly in the following recursive form:

function POWER(E : ELEM; N : POSITIVE) return ELEM is
begin
if N =1 then
return E;
else
return OPER(POWER(E, N - 1), E);
end if;
end;

which eliminates the local declaration and is thus easier to maintain.

We next consider a variation of the preceding generic function, repeatedly appiying a unary
operation:

generic
type ELEM is private;
with fuaction NEXT(X : ELEM) return ELEM;
function INVOLUTION(E : ELEM; N: NATURAL) return ELEM;

function INVOLUTION(E : ELEM; N: NATURAL) return ELEM is
RESULT : ELEM := (E);
begin
for Jin 1 .. N loop
RESULT := NEXT(RESULT);
end loop;
return RESULT;
end INVOLUTION;

Generic Units 249

or the briefer recursive form:

function INVOLUTION(E : ELEM; N : NATURAL) return ELEM is
begin
if N = 0 then
return E;
else
return NEXT(INVOLUTION(E, N - 1));
ead if;
end,

This generic function can be used to apply any unary function repeatedly, for example, to
produce the nth successor or predecessor of an enumeration value

function SUCC fis new INVOLUTION(ELEM => COLOR,

NEXT => COLOR 'SUCC);
function PRED is new INVOLUTION(ELEM => COLOR,

NEXT => COLOR !PRED);

Again, these generic instantiations declare functions, whose specifications are:

function SUCC(E : COLOR; N : POSITIVE) return COLOR;
function PRED(E : COLOR; N : POSITIVE) return COLOR;

Similar functions can be instantiated to find the nth successor or predecessor of an item in a
list, where the successor and predecessor are defined by the unary functions:

function SUCC(X : LIST) return LIST is
begin

return X.SUCC;
end;

function PRED(X : LIST) return LI>T is
begin

return X.PRED;
end,

function SUCC is new INVOLUTION(ELEM => LIST, NEXT => SUCC),
function PRED is new INVOLUTION(ELEM => LIST, NEXT => PRED);

Note that these involutions overload (but do not hide) the functions SUCC and PRED.
Actually, the immediate successor of an element can be obtained in three ways:

X.sucCc -- using rhe component SUCC
SUCC{X) -- the unary function
SUCC(X,1) -- the involution

250 Ada Rationale

12.3.2 An Example of a Generic Package

A discussion of generic units would probably not be complete without a presentation of the
treatment of either stacks or queues. Since the example of stacks has already been given 1n
the Reference Manual, we shall give here a formulation of queues.

Here is the specification of the generic package QUEUE_OF :

generic
-- the formal parameters are:
type ITEM is private; -- the type of the items in the queues
MAX_LENGTH : in POSITIVE := 400; -- the maximum length for all the queues
package QUEUE_OF is
type LENGTH is new INTEGER range | .. MAX LENGTH;
type QUEUE(SIZE : LENGTH := MAX_LENGTH) is limited private
-- the only operations that will be available on queues are
-- the operations declared in this visible part:
procedure ADD(X : in ITEM; Q: in out QUEUE),
-- adds an item to a queue
procedure REDUCE(Q : in out QUEUE);
~- removes the first item from the queue
function EMPTY(Q : in QUEUE) return BOOLEAN
-~ returns TRUE if the queue is empty
function FRONT(Q : in QUEUE) return ITEM;
-- returns the first item of the queue (not removed)

OVERFLOW, UNDERFLOW : exception;
~- raised when illegal operations are attempted
private -- this part will not be available to users
type VECTOR is array(LENGTH range <>) of ITEM;
type QUEUE(SIZE : LENGTH ;= MAX_LENGTH) is

record
POOL : YECTOR(] .. SIZE); -- the queued items in a circular list
COUNT : NATURAL := 0; -- their number
IN_INDEX : LENGTH = 1 -- position of next in
OUT_INDEX : LENGTH := I: -- position of next out

end record;
end QUEUE_OF;

Generic Units 251

The package body provides the bodies of the functions and procedures promised in the
specification:

package body QUEUE_OF is
function NEXT(Q : in QUEUE; INDEX : in LENGTH) return LENGTH is
-- returns the position that follows INDEX in queue Q
begin
return (INDEX mod Q.SIZE) + I;
end NEXT;

procedure ADD(X : in ITEM; Q: in out QUEUE) is
-- adds item X at the end of queue Q,
-- or raises OVERFLOW if Q is full
begin
if Q.COUNT < Q.SIZE then
Q.POOL(Q.IN_INDEX) := X,
Q.IN_INDEX := NEXT(Q, Q.IN_INDEX),
Q.COUNT = Q.COUNT + I;
else
raise OVERFLOW;
end if;
end ADD;

procedure REDUCE(Q : in out QUEUE) is
-.- removes the first item from queue Q,
-- or raises UNDERFLOW if Q is empty
begin
if Q.COUNT > 0 then
Q.OUT_INDEX = NEXT(Q, Q.OUT_INDEX);
Q.COUNT = Q.COUNT - I;
else
raise UNDERFLOVW,
end if;
end REDUCE;

function EMPTY(Q : in QUEUE) return BOOLEAN is
-- returns TRUE if Q is empty

begin
return Q.COUNT = 0;

end EMPTY;

252 Ada Rationale

function FRONT(Q : in QUEUE) return ITEM is
-- returns the first item in queue Q
-- but does not remove it
begin
if Q. COUNT > 0 then
return Q.POOLQ.OUT__INDEX);
else
raise UNDERFLOVW,;
end if;
end FRONT;

end QUEUE_OF,;

Having defined QUEUE_OF, it is now possible to insténtiate two packages that deal
respectively with queues of integers and queues of reals:

package ANY_INT_QUEUE is
new QUEUE_OF(ITEM => INTEGER, MAX_LENGTH => 200);

package ANY_REAL_QUEUE is
new QUEUE_OF(ITEM => REAL), -- default maximum length

In effect, these two declarations have created two packages (two ordinary nongeneric
packages). In the present case, a compiler may be able to reuse the same code for the
procedures of the two packages if reals and integers are represented with the same number
of bits.

A block dealing with real queues may appear as below:

declare
use ANY_REAL_QUEUE;
QA : QUEUE(SIZE => 100);
QB : QUEUE(SIZE => 200);
begin
ADD(3.14, QA);

if FRONT(QA) = FRONT(QB) then
REDUCE(QA);
ADD(FRONT(QB) + 1.0, QA);
end if;

end ;

With the use clause for ANY _REAL_QUEUE, the type QUEUE is made directly visible
and can be used to declare the queues of reals QA and QB.

Generic Units 253

A slight difficulty exists if we want to use both ANY_REAL_QUEUE and
ANY_INT_QUEUE in the same block, since both declare a type QUEUE. The name
conflict can be resolved by the use of expanded names for the type names:

declare
use ANY_REAL QUEUE, ANY_INT_QUEUE;
QC: ANY_REAL_QUEUE.QUEUE(SIZE => 50);
QD : ANY_INT_QUEUE.QUEUE(SIZE => 40),
begin

ADD(3.0E5, QC),

REDUCE(QD),
XDD(15, QD)
end;

Using expanded names for the type names will usually be sufficient (repeated use can be
avoided by declaring corresponding subtypes). Thereafter, subprograms (such as ADD)
appear as overloaded subprograms, and no confusion is possible. For example, the expanded
specifications of ADD correspond to

procedure ADD(X : in REAL; Q: in out ANY_REAL_QUEUE.QUEUE),
procedure ADD(X : in INTEGER; Q: in out ANY_INT_QUEUE.QUEUE);

In the case of the exceptions OVERFLOW and UNDERFLOW, overloading is of no help and
either expanded names or renaming declarations must be used.

A final word on these two exceptions: the bodies of ADD, REDUCE, and FRONT are
written so that no damage occurs to the queue if either exception occurs. In consequence it is
possible to provide a local handler for these exceptions:

254 Ada Rationale

declare
use ANY_REAL_QUEUE, ANY_INT_QUEUE;
subtype INT_QUTUE is ANY_INT_QUEUE.QUEUE;
-- INT_QUEUE defined as an abbreviation
INTQ_ERROR : exception renames ANY_INT_QUEUE.OVERFLOW,
QA : INT_QUEUE(SIZE => 100);

begin
ADD(3, QA);

exception
when INTQ_ERROR =>
-- actions to be performed if QA overflows.
end;

12.3.3 A Generic Package with Tasks

The parameterization mechanism provided by a generic unit applies to all entities nested
within the generic unit. Thus it can be used to parameterize a task type - indirectly. As an
example consider the buffering interposed between a producer and a consumer (the example
of section 9.12 of the Reference Manual). This might be reformulated as a task type defined
within a generic package where the type of the buffered items as well as the size of the
buffer in question have been factored out as generic parameters.

generic
type ITEM is private;
SIZE : POSITIVE := 400;
package ON_BUFFERS is
task type BUFFER is
entry READ(C : out ITEM),
entry WRITE(C : in ITEM);
end;
end ON_BUFFERS;

Generic Units : 255

package body ON_ BUFFERS is
type LENGTH is new INTEGER range | .. SIZE;
type VECTOR is array (LENGTH range <>) of ITEM;
task body BUFFER is
POOL : VECTOR(I .. SIZE),
COUNT : NATURAL & 0;
IN_INDEX, OUT_INDEX : LENGTH := I;
begin
loop
select
when COUNT < SIZE =>
accept WRITE(C : in ITEM) do
POOL(IN_INDEX) := C;
end;
IN_INDEX := (IN_INDEX mod SIZE) + I,
COUNT := COUNT + 1;
or
when COUNT > 0 =>
accept READ(C : out ITEM) do
C = POOL(OUT_INDEX);
end;
OUT_INDEX := (OUT_INDEX mod SIZE) + I;
COUNT = COUNT - I;
or
terminate;
end select;
end loop;
end BUFFER;
end ON__BUFFERS;

A task equivalent to that given in the Reference Manual is obtained by the generic
instantiation:

package CHARACTER _BUFFERING is
new ON_BUFFERS(ITEM => CHARACTER, SIZE => 100);

followed by the declaration of a task object:

A_BUFFER : CHARACTER_BUFFERING.BUFFER;

256 : Ada Rationale

Use of the generic formulation permits the same strategy to be employed in a variety of
different applications; for example:

package MESSAGE_ BUFFERING is
new ON_BUFFERS(ITEM => MESSAGE, SIZE => BACKLOG);

where MESSAGE is assumed to be a previously declared type and BACKLOG yields an
estimate for a reasonable buffer size.

It is interesting to observe that the logic of the queuing strategy, shown by the example in
the previous section, and that of the buffering strategy, presented above, are in many
respects identical. The essential difference between the two approaches is that overflow and
underflow are treated as exceptions in the former case, whereas in the latter case they merely
result in some parallel task waiting until it can proceed.

12.3.4 A More Complicated Example

A final example, involving binary trees, is presented to illustrate the use of different kinds
of generic units in combination. A frequently encountered data type like binary trees is best
encapsulated within a package, where the types of the leaves and nodes can be factored out
as generic parameters. A straightforward definition of the (recuvrsive) data structure in
question might then be formulated as follows:

generic
type LEAF_TYPE is private;
type NODE_TYPE is private;
package BINARY_TREES is
type FORM is (INTERMEDIATE, TERMINAL);

type TREE(KIND : FORM);
type LINK is access TREE;

type TREE(KIND : FORM) is
record
case KIND is
when TERMINAL =>
LEAF: LEAF_TYPE;

_‘

Generic Units 257

when INTERMEDIATE =>
NODE : NODE_TYPE;
LEFT : LINK,;
RIGHT : LINK;
end case;
end record;

-~ specifications of standard operations on binary trees

end BINARY_TREES;

A number of standard operations associated with binary trees would normally be included
within the generic package given above; for simplicity, they will not be detailed here.
Instead, we shall illustrate the typical ways in which binary trees are processed. These
generally involve a recursive traversal (or walk) of the tree in one of a few characteristic
orders (namely, prefix order, infix order, or postfix order). These orders can be expressed as
generic operations.

The commonest of these orders is used in the example below. This is the postfix walk, where
a certain operation is applied to each leaf, while another operation is applied to each node, as
well as to the results of previously processed left and right branches. The desired generic
function might be defined within the package BINARY_TREES as follows:

generic
type RESULT is private;
with function LEAF_ACTION(L : LEAF_TYPE) return RESULT;
with function NODE__ACTION(N : NODE_TYPE;
L, R: RESULT) return RESULT;
function POST_WALK(T : LINK) return RESULT;

function POST__WALK(T : LINK) return RESULT is
begin
case T.KIND is
when TERMINAL =>
return LEAF__ACTION(T.LEAF);,
when INTERMEDIATE =>
return NODE__ ACTION(N => T.NODE,
L => POST_WALK(T.LEFT),
R => POST_WALK(T.RIGHT));
end case;
end POST_WALK;

Note that the recursive invocations of POST__WALK within this function cause no confusion
(or infinite loop during instantiation) since, within an instantiation of a generic function
body, the name of the generic function refers to the name of the current instantiation.

258 Ada Rationale

A number of useful utility functions on binary trees follow the pattern of a postfix walk.
Some of these might well be included within the package BINARY_TREES itself. For
example, given the functions ONE, SUM, SUM_PLUS_ONE, and MAX:

function ONE(L : LEAF_TYPE) return INTEGER is
begin

return |;
end;

function SUM(N : NODE_TYPE; L, R: INTEGER) return INTEGER is
begin

return L + R;
end;

function SUM_PLUS_ONE(N: NODE_TYPE; L, R: INTEGER) return INTEGER
is
begin
return L + R + 1;
end;

function MAX(N : NODE_TYPE; L, R: INTEGER) return INTEGER is
begin
if L < R then
return R;
else
return L;
end if;
end,;

- where a dummy parameter of node type or leaf type has been provided in order to match
the generic functions - then the usual tree functions COUNT, DEPTH, and WIDTH are
obtained by generic instantiation:

function COUNT is new POST_WALK(RESULT => INTEGER,
LEAF_ACTION => ONE,
NODE_ ACTION => SUM_PLUS_ONE),
-- the number of leaves and nodes

function DEPTH is new POST_WALK(RESULT => INTEGER,
LEAF_ACTION => ONE,
NODE__ ACTION => MAX),
-- the length of the longest path from root to leaf

e

Generic Units :) 259

function WIDTH is new POST_WALK(RESULT => INTEGER,
LEAF__ACTION => ONE,
NODE__ACTION => SUM);
-- the number of leaves

The advantages of using the generic facility in this fashion to formulate a basic pattern for
several similar definitions are obvious. Another application of such definitions involves the
use of binary trees to represent simple arithmetic expressions, where the leaves are integer
values and the nodes correspond to the usual operators:

type OPERATOR is (ADD, SUB, MUL, DIV);

The appropriate definition can be obtained by instantiating the generic package

package EXPRESSION_TREES is
new BINARY_TREES(LEAF_TYPE => INTEGER,
NODE_TYPE => OPERATOR);

In an application, a use clause would be provided for this package and, to introduce a name
more appropriate to the application, the tree type would be renamed by a subtype
declaration:

use EXPRESSION _TREES;
subtype EXPRESSION is EXPRESSION_TREES.TREE;

One may then introduce the specific operations associated with the type of tree in question.
The most obvious is the evaluation function

function EVAL(E : EXPRESSION) return INTEGER;

This, however, exactly follows the pattern of a postfix walk, and may therefore be obtained
directly by instantiation:

function EVAL is new POST_WALK(RESULT => INTEGER,
LEAF_ACTION => VALUE,
NODE__ACTION => INTERPRET);

where the requisite definitions of VALUE and INTERPRET are as follows:

function VALUE(I : INTEGER) return INTEGER is
begin

return I
end;

260 ‘ _ ’ Ada Rationale

function INTERPRET(OP : OPERATOR; L, R: INTEGER) return INTEGER is
begin
case OP is
when ADD => return L + R;
when SUB => return L - R;
when MUL => return L * R;
when DIV => return L / R;
end case;
end ;

Once again, the desired function is obtained by merely providing the appropriate operati