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1. Introduction
With the growing interest in expert systems in academia and industry, one question recurs

that never seems to receive a satisfying answer: How are expert systems different from
conventional programs?  Different perspectives suggest different answers. In terms of
programming language, expert systems are programs written in “logic,” "rules,” or "frames”
(Friedland, 1985). From the perspective of new computational capabilities, expert systems are
programs that can explain their reasoning (Davis, 1986). Or considering how these programs
are used, expert systems are consultants, monitors, designers, etc. (Hayes-Roth, et al., 1983).
But these perspectives are not completely satisfying because they fail to explain how
conventional programs are inherently different: Aren’'t Fortran conditional statements "rules"?
Why is it difficult to write a Fortran program that can explain its reasoning? Why isn't a
Bayesian diagnostic program an expert system?

An alternative point of view, which this paper develops, considers the nature of the
knowledge encoded in these programs. Expert systems deal with heuristics, uncertain knowledge
(Feigenbaum, 1977). Their reasoning is qualitative, not in terms of precise measures. But in
the Al literature, the term "qualitative reasoning,” characterizing an important and growing
subarea of research, has been almost exclusively applied to programs with some kind of
simulation model of a physical system, such as an electronic circuit (Bobrow, 1984,
Chandrasekaran and Milne, 1985). This common definition of qualitative reasoning excludes
the majority of expert systems, and, as this paper argues, it is largely responsible for the gap in
our understanding.

What is an expert system? A simple answer can be given, one that is half-known and has
been half-stated by many people: Expert systems contain qualitative models of the world, in
contrast with quantitative models, which involve mathematical laws, such as in physics,
electronics, and economics (Padulo and Arbib, 1974). The idea is half-stated in the common
view that Al is concerned with symbolic programming (Harmon and King, 1985), but this is
not a satisfying distinction because numbers are symbols, too. An alternative description,
"non-numeric programming,” avoids this ambiguity and is also widely used. However, the
emphasis on “"programming” has distracted us; the idea that these programs contain non-
numeric models has been generally ignored. Describing Al as "non-numeric science and
engineering” is more to the point: Artificial Intelligence is the study of computational
techniques for acquiring, representing, and using qualitative models of physical, perceptual,
cognitive, and social systems.

The purpose of this paper is to give this definition force by enriching our understanding of
what qualitative models are. Briefly, a qualitative model describes some system in the world in
terms of causal, compositional, or subtype relations among objects and events. One of the
most important ideas of this paper is that there is a well-established repertoire of methods for
representing qualitative models—networks based on the idea of prototype subsumption, state-




transition, and structural and procedural composition. By studying and using these network
representations, Al has established a foundation for a science and engineering of qualitative

models.

From early on, we have followed the approach of decomposing knowledge from how it is
used, abstracting knowledge structures and reasoning procedures, and formulating an
increasingly more general understanding of what knowledge engineering and knowledge bases
are all about (Swartout, 1981, Clancey, 1983a, Clancey, 1983b, McDermott, 1983, Szolovits, 198§,
Clancey, 1985, Smith, 1985). It is now apparent that knowledge bases contain models of
systems in the world. Reasoning involves sequences of tasks, such as "monitoring” and
“diagnosis,” by which an understanding or model of specific situations is related to action
plans (Section 3). Programs use a simple repertoire of gqualitative modeling techniques,
commonly called "knowledge representations” (Section 4). The idea of a situation-specific
model makes concrete what programs know and how problem solving can be described in terms
of model-manipulation operators (Section 5). Finally, an historical perspective shows how Al's
concern with adaptiveness and rationality of the autonomous agent emphasizes the role of a
model as what a problem solver knows (hence, "knowledge base™) (Section 6). This has been to
the detriment of understanding the primary characteristic of knowledge in terms of models that
partition the world, viewing it selectively and making it coherent for some purpose.

2. The need for a synthesis

Given the generality of the term "model” and the all-encompassing nature of this paper, it is
worthwhile addressing a few possible objections up front.

First, we tend to adopt an idealized view of what a model is. Observing how impoverished
our programs are, we tend to say that they are not models or, at least, “not real modeis.” This
critical point of view is valuable for carrying our research forward, but it creates a distinction
that only confuses what we are doing and have accomplished. This paper argues that
knowledge base structures are models because they describe what is happening in the world and
provide a basis for action, that is they function as models.

Second, when a number of pieces are brought together, it may look like the picture was
always obvious. For example, recalling the idea of a "frame” (Minsky, 1975)—a prototypic
description providing a basis for explaining what happens in the world, making predictions,
and taking action—it may seem obvious that frames are a kind of qualitative model. But why
don't we teach it this way? Our understanding of our field is fragmented and inconsistent.

Consider:

o Classification and causal network descriptions are commonly used for modeling
physical processes (Lehnert, 1978, Weiss, et al., 1978, Szolovits, 1985), but this work
is not integrated in the collection, "Qualitative Reasoning about Physical Systems”




(Bobrow, 1984).

o When we refer t0 a knowledge base as an “expert model” or "consultation model”
(Weiss, 1979), we tend to forget that it contains models of systems in the world.
By separating out the system descriptions in a knowledge base, we can begin to
identify particular kinds of network structures as differemt ways of modeling

processes (Section 4).

« In most medical expert sysiems, a diagnosis is taken to be the mame of a disease
rather than a coherent description of what is happening in the world—a model—that
causally relates states and processes. Perhaps because the programs do not
structuraily simulate pathophysiological processes, researchers have not thought about
inference in terms of model construction (Section §).

« Instructional research has emphasized that people generally have some model of how
a system works or what procedure to follow for solving a problem, sometimes buggy
and incomplete (Gentner and Stevens, 1983). From this, we might expect that
expert system explanations would relate the program's model to the user's, perhaps
focusing on violated expectations. Instead, we describe explanation in terms of
articulating what the program knows and what it did (Davis, 1976, Swartout, 1981,
Hasling, et al., 1984). By definition, the program has something the user does not
have, "expertise.” Thus, we think in terms of "transferring the expertise” (Davis,
1976, Clancey, 1979), rather than relating alternative models.

Similarly, the familiar line that Al is "constructing computer programs which exhibit
behavior we call 'intelligent behavior’ when we observe it in human beings” (Feigenbaum and
Feldman, 1963) has provided a useful focus, but leaves out the modeling methodology upon

which our work is based.

3. The inference structure of expert systems

Expert systems contain descriptions of system behavior and design, which are models, in the
usual sense of selective abstractions that allow explanation and/or prediction of events in the
world. The knowledge encoded in expert systems functions as a model, regardless of what
representational form it takes. In this section we describe what expert systems do in terms of
generic tasks for analyzing and synthesizing systems. The next section lays out a spectrum of

representational methods.
All expert systems make assertions about what is true in the world or what actions might be

taken: The patient has a fever, the infection might be meningitis, penicillin is a possible
therapy, etc. [If we lay out how assertions are related as chains of inference, we observe
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regularities. A kind of secondary structure emerges. One such structure, termed “heuristic
classification,” involves systematic abstraction, association between class hierarchies, and
refinement (Clancey, 1985). The inference process, that is, the order in which inferences are
made, is of course important, but it is a different issue.

Heuristic classification is a problem-solving method by which solutions are selected from a
set of pre-enumerated alternatives. The question naturally arises, for what kinds of problems
is heuristic classification useful? One approach is to consider what kinds of things might be
selected from a list of pre-enumerated alternatives. Examples include: user models, items in a
catalog, diagnoses, skeletal plans, numeric models (Clancey, 1985).

Continuing our attempt to generalize, are there patterns in what data and solutions can be?
What kinds of things are classified and heuristically related? We start by laying out common
sequences:

Inference Structure Example Program!

patient -> disease -> therapy MYCIN
reader -> book GRUNDY
customer -> wine WINE ADVISOR
structure -> numeric model -> analysis program SACON
circuit behavior -> fault SOPHIE
causal reasoning bug -> misconception -> instruction WHY
program bug -> misconception MENO

Several generalizations can be made:

1. The "things" being related are models, that is, general, abstracted descriptions of
specific things in the world. Different terminology—"disease prototype,” "user
stereotype,” "numeric model,” "structural abstraction"—has tended to obscure this
basic pattern, '

2. Models are related in a limited number of ways, by what are called generic tasks.
We introduce the idea of a system and redescribe the things being related in terms
of an operation performed (0 some system at each step (Clancey, 1985):

specify -> design -> assemble
monitor -> diagnose -> modify
identify -> predict
monitor -> control

For example, "patient -> disease” is replaced by "monitor (detect abnormal body
system states and environmental influences) -> diagnose (describe and determine

cause of the malfunctioning subsystem's structural and state abnormalities).”

3. We can extend the argument beyond heuristic classification to include all expert

Wy 17y

IReferenccs: myYCIn: (Shortliffe, 1976); Gru~wby: (Rich, 1979); wine aovisor:  Teknowledge, Inc.; sacon: (Benneut,
1979); somne: (Brown, et al., 1982); wiy: (Stevens, et al., 1982); wevo: (Soloway, et al., 1981)
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systems. The basis for this is simple: Patterns like “monitor -> diagnose -> repair”
are very familiar; we know that they go beyond how diagnoses and repairs are
reasoned about. For example, we can return to the pattern of the wine advisor
("specify -> design”) and include R1 because it relates a customer's requirements to
a VAX system configuration.

We aim for completeness, but of course establishing.that these generalizations are true for
every expert system is a daunting task. We can only consider them to be hypotheses, albeit
based on considerable experience, and see if they hold up to further analysis.

In introducing the idea of a “system” as the focus of reasoning, we view tasks not in
isolation (as described in (Hayes-Roth, et al., 1983)), but as the range of things that we can do
to any given system. On this basis, we can begin to argue about the completeness of the list of
tasks. For example, we can reformulate Davis's idea of fault models in these terms. Fault
models make explicit "what might have been done to a system” to cause faulty behavior (Davis,
1984):

« Monitor the system and determine how it is different from the intended design:
Structure intended to change, such as a gate, may be fixed; components may be
functioning wrong or have the wrong structure (e.g., a short).

o The system may have been assembled wrong (eg. chip flaw).
+ The design may be wrong.
o The specification may be wrong.

Davis emphasizes the heuristic value of ordering these considerations. Our system-model
orientation suggests that "fault models” can be generalized to all systems and generated from
the set of generic tasks. Specifically, we could add "wrong prediction” (observer's expectations
were incorrect) and "wrong control” (wrong input for desired output) to Davis's list.

We are now in a position to generalize once again, condensing the four sequences of generic
tasks into one sequence (Figure 3-1). In simple terms, we relate desired or observed system
behavior to a system description to some plan for taking action in the world or expectation
about what will happen in the world. Common names for action plans are: "assembly plan”
“instructional plan,” “therapy plan,” and “control plan." The intermediate design or
identification might describe a subsystem, as in the relation between a patient and his
infection. Also, in moving to the third stage, we often are describing a containing system that
will carry out the assembly, modification, or control process, as in the relation between a client
and his vacation plan or a design for a molecular structure and an experiment plan.

Again, this is a description of inference structure, not the order in which inferences are
made. For example, specification and design are commonly iterative. In cognitive modeling
for instruction, we work backwards from an artifact (say a student’s computer program), to an
implicit design (the model or plan for the program), to models of the environment in which




Model of desired (specified) System
system behavior identification
Assembly, modification, Predicted
or control plan behavior

kg Figure 3-1: General inference structure for reasoning about systems

it the artifact is to function (beliefs about what the program is supposed to do) and the
components out of which it is made (beliefs about the programming language) (Johnson and
Soloway, 1984). Note that for the special case of heuristic classification, system models and
action plans are selected from pre-enumerated descriptions.

4. Representation of qualitative models

& By relating qualitative methods for modeling systems, we can see our enterprise as a whole.
W One possible taxonomy distinguishes between the explanatory power of classification and
aut simulation models (Figure 4-1).

Classification models can be used to recognize processes, to "account for behavior” of a

;} system, by naming or categorizing the observed pattern (Minsky, 1963). As a phenomenological
J?}' description, this corresponds, in general terms, to the idea of frames (Minsky, 1975), with the
§§ temporal nature of processes made explicit in the idea of scripts (Schank, 1975, Stevens, et al.,
| 1982) and described more carefully as an “encapsulated history” (Forbus, 1984). A process
Y description identifies a sequence of events that happen over time, spread over several locations
?: (Ackoff, 1974). For example, an infectious process involves intrusion of an organism into the
:;z body, movement to a favorable growth site, response by the body, and inflammation. Typically
Al such descriptions are aggregated to reflect general properties and omit sequential details, thus
" treating the system as an “"object” (eg., descriptions of people as stereotypes (Rich, 1979)).
:: Such descriptions are models because they provide an explanatory accounting of what happens

'y in the world and a basis for action (Achinstein, 1983). . ‘

2 Simulation models, broadly construed, provide some description of how the system produces
the observed behavior. The model is "runnable,” allowing predictions to be made of how a
‘ system will change given a set of initial conditions. A behavioral simulation describes how a
X system appears, in terms of "hidden states,” "observed manifestations,” and causal relations
among them. A functional simulation model places behavior in a larger context, indicating the
" role it plays in achieving the properties of a larger system. For example, a functional model
" of a radio would refer to amplification and locking on to a broadcast station, while a
behavioral model would only describe current flow and changing voltages. Functional models

-
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TYPES OF
PROCESS MODELS
CLASSIFICATION SIMULATION
(CRITERIAL PATTERNS (CAUSE-EFFECT DESCRIPTIONS)
CHARACTERIZING OBJECTS
AND EVENTS AS PROCESSES)
Example: Disease prototypes
BEHAVIORAL FUNCTIONAL/STRUCTURAL
(TRANSITIONS AMONG PROTOTYPE (COMPOSITION OF STRUCTURAL
STATE DESCRIPTIONS) AND FUNCTIONAL MODULES

YIELDING BEHAVIOR)

Example: Causal network
of pathophysiologic states Example: Hierarchical
descripton of body

organs and systems
Figure 4-1: Types of qualitative models of processes

account for patterns in behavior and indicate what larger goals these patterns satisfy (Kosslyn,
1980). As an abstraction, a function is something the system can accomplish in multiple ways,
depending on its state and the demands of its environment (Ackoff, 1974).

Regarding completeness, classification and behavioral models do not necessarily characterize
the full state of the system being reasoned about on any level of analysis, and cannot
necessarily predict what state will follow from arbitrary initial conditions (for example,
allowing that parts of the system are functioning normally). "Hidden"” internal states may be
described, but the purpose of transitions and how transitions follow from the structure of the
system (the physical components) are not completely described (Weiss, et al., 1978, Szolovits,

1985).

In contrast, a functional model makes a claim about completeness of the explanation or
system description. The purpose of the system is captured proceduraily on multiple levels of
abstraction, so states can be related to functional goals. For example, a functional model of
diagnosis describes reasoning in terms of general goals for supporting and refining alternative
explanations (Patil, 1981, Clancey, 1984), rather than behaviorally, in terms of domain-specific

inferences.
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Finally, a structure/function model, to which the term “qualitative model” is usually applied
in Al research, gives a full accounting for esch component in the system in terms of its role
in fulfilling the function of the system. Thus, a functional/structural simulation constitutes a
strong theory of the design of a system and the mechanism that lies behind observed behavior

LR
- -

Y . .
& (De Kleer and Brown, 1984). A model may be functional, without a structural component, as
)
'Z: in models of human problem solving, which typically mention brain components in only very

general terms (Kosslyn, 1980).
1: Figure 4-2 summarizes the different perspectives by which qualitative models describe
:: systems: as processes (a prototype hierarchy of 170 or cause/effect patierns); stares (a graph
:: of states linked by cause and subtype); functions (procedural modules hierarchically composed

by 170 relations); and structures (physical components composing functional modules). The
W next step in the analysis, beyond the scope of this paper, is to relate these alternative models
) for recognizing a system and understanding its behavior to the demands of generic tasks
' (Section 3). Notice in particular that the qualitative modeling repertoire is not specific to
* physical systems; for example, similar techniques are used for modeling the cognitive processes
o of discourse, diagnosis, and planning.
b
T PROGRAM
. CONCEPT RELATION COMMON NAME
s EXAMPLES
e PROTOTYPE (Pauker, 1977)
. . PROCESS SUBSUMPTION CLASSIFICATION (Lehnert, 1978)
Y
) CONDITIONAL CAUSAL (Brown, et al.,1973)
) (CAUSE) (Weiss, ot al., 1978)
L]
)
. (Sacerdoti, 1974)

M. FUNCTION COMPOSITION PROCEDURAL (Brown, et al., 1982)
(Clancey, 1984)

¥
o STRUCTURE-FUNCTION (de Kleer, 1979)
3 IV. STRUCTURE COMPOSITION MODEL (Genesereth. 1982)
1:2 Figure 4-2: Conceptual structure of network representations for systems
fy
:, This framework can be used as a starting point for understanding the value of multiple
J
representations. For example, it is common for a causal-associational state network to be
mapped to a disease process hierarchy (Weiss and Kulikowski, 1984, Szolovits, 1985, Clancey
]
'.:: and Letsinger, 1984), thus relating a descriptive view of current system behavior to a
:: developmental accounting. Process descriptions can be combined with a structural simulation
)
W for coping with complex or unusual situations (Bylander and Chandrasekaran, 1985, Koton,
) 1985, Fink, 1985). Qualitative models can be useful for controlling and interpreting
Y quantitative simulations (Brown, 1975, Apte and Weiss, 1985). Finally, note that both
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simulation and classification models can be quantitative (Nilsson, 1965), so the ':':h‘;;
classification/simulation and qualitative/quantitative distinctions are orthogonal. et

5. Example: Applying the model perspective to diagnosis

i .‘:‘
e R X
iy

l A diagnosis explains why observed system behavior is different from expected, generally in ‘.::f

q-

| terms of a structural variation from the design. Corresponding to the types of qualitative .t

; models (Figure 4-1), the diagnostic process takes different forms: B

r \._".

‘ o recognizing a disorder as a set of features; g‘.‘_f Y

Ny
o constructing an "historical™ accounting for behavior (usually partial because only PN

; abnormal manifestations are explained, not normal functioning of the system); and ot

|

| o constructing a "complete” description of the system being diagnosed (accounting for Kxny

| both abnormal and normal system behavior in terms of structural components). o

| '

; As a model, a medical diagnosis is not just the name of a disease, but a causal story that :’a?f"

| relates the manifestations that need to be explained (because they are abnormal) to the ',3'5"::!:2

} processes that brought them about. Such an argument, shown as an inference network in

i Figure 5-1, is called a patient-specific model (Patil, 1981). In simple terms, it copies over ; 't,:

\ A 1]

| from models of system processes, states, function, and structure the concepts and relations that ::_,

N d

! are believed to hold in this particular problem. : $ ﬁ:
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Figure 5-1:  Partial diagnostic model in NEOMYCIN RO
b
The process of diagnosis can be viewed as the construction of a "proof tree." Proceeding :.:::::r
4 1
upwards, the explanation becomes more specific in terms of the cause or subtype of the process "\223:"‘
O"
that is occurring. At some intermediate stage when solving the problem, the network is TN
disconnected and partial (Figure 5-1). The state-transition model indicates that seizures might ::;::;.:.
be caused by increased intracranial pressure; this link is placed in the patient-specific model. :f.':-:::
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There is evidence for acute meningitis, but the alternative hypothesss have not been related. s
there some underlying cause or process that could account for all of the manifestations? Could
meningitis cause increased intracranial pressure? Thus, the problem solver returns 0 the
general model to s'earch for connections that will allow s coherent explanation (0 be
constructed.

While this description of diagnosis has intuitive appeal, most expert systems and their
developers never check to see whether all of the findings are covered by the final “diagnosis.”
Cursory examination of the inference network (as shown for NEOMYCIN in Figure 5-1) reveals
surprising gaps in the program’s model: Abnormal findings needing to be explained are found
to be unrelated to the most likely diagnosis. How can we account for the fact that these gaps
go unnoticed? '

In part, our language is too loose: The program prints out the name of a disorder, and we
say, "The program has made a diagnosis.” We don't think of a diagnosis as a description of a
system and how it evolved. Instead, emphasis is on “inferring the right answer.” We view
inference in terms of adding up belief or finding a linear path of assertions that ends in the
right diagnosis.

Accumulating evidence by some scoring function (Pople, 1982) or certainty factor
scheme—the predominant approach in expert system diagnosis—disguises the structural ispects
of diagnosis, that is, how the hypotheses explain the findings. [t would be difficult to find a
better example of the proverbial groping around the elephant, with each researcher proclaiming
a different aspect of the nature of diagnosis:

o In INTERNIST, a scoring function reduces a hypothesis score by the "“importance” of
the observed findings it fails to explain (Pople, 1982).

o Viewing diagnosis in terms of traversing a network of processes and states, CASNFT
extracts the longest path from findings to a disease process (Weiss, et al., 1978).

« Reggia defines the best diagnosis as one that satisfies the principle of parsimony,
covering the largest set of findings (Reggia, et al., 1984).

« In CADUCFUS, orthogonal relations and the possibility of multiple disorders make
linear network traversal combinatorially intractable. Operators piece together state
and process descriptions according to subtype and causal relations (Pople, 1982).

o In NEOMYCIN, diagnostic operators focus on, group, refine, and support the
differential, the most-specific state and process descriptions that explain the
findings (Clancey, 1984).

o Finally, in ABEL, these ideas are brought together, so that a diagnosis 1s a
ﬁglatslt)ructed graph that explains the findings on muitiple levels of detail (Paul,
Thus, research has progressed from viewing diagnosis in terms of inferring the name of
disease by chains of reasoning (MYCIN), or finding the best match (INTFRNIST), to reasoning
about a constructed inference network, the causal story. Inference is described not in terms of
particular evidence rules and backchaining, but 1n terms of operators for manipulating the
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pationt-specific model.

An interesting resuit is that the uncertainly of the diagnosis o longer resides 1n a numerc
score, but 1n the structure of the model: Alernative hypothesss are ranked by how well they
cover the Nindings (Panl, 1981). Furthermore, by laking Into account the puspese of the
model. (he 13sus becomes not (0 denive & precise measure of belef. but 10 determine if (he
uncertainty needs (0 be resolved. Medical diagnosss, like all engineering models, are partial.
They nesd only be good enough (0 discriminate among choices for action, perhags allowing for
monitonag successful compietion of a plan and 1mproving an nadequate chowe (Petrosk,
1985). However. today's programs make a diagnosis independently of how 1t will be used, or
therapeutic distinctions are imphicit 1n the disorder classificatron. For example, MYCIN doss
not distinguish among types of viral meniagitis because they are (reated equivalently. Further
development of this point would contrast the enginesring demands of diagnosis with scieat: fic
modeling of systems (a8 1n Dendral (Buchenan, et al. 1969)), which seehs mechensstic detasl,
and naive device models (Kieras, 1984, Suchman, 1989).

Even if 2 knowledge base lacks the detailed caues! relations thet enable reasoning abowt
INteractions as 1n ABEL. ihe patient-specific model can bs wesful. First, it can be used 28 2
giobal perspective for controling inference. For example, NEOMYCIN'S patient-specific model
indicates that unnecessary asser(ions are being made. Several mew metarvies prevent thes, for
example (stated negatively for clanty), "H a aew disease hypothesis does not explam il
abnormal findings, but some existing hypothesis does. them do not add the new hypothess (o

the patient-specific modet ~
Second, as a form of output. the model (Figure 5-1) 13 a powerful knowledge acquisition 0ol

It reveals:

o Gags in the hoowiedge buse. evident by 2 missing link between an admnormal Minding
an hypothesis (a feature we are exploiling 1R Our tesching program, GLIDON-OF BUG
(Clancey. et al, 198¢))

« Implicit inferences. evident by the program's nability 0 hink terms swch a0
“headache chromicity” and “cns finding duration” (something we must cofrect for

the program (o explain Its reasONINg).

o Missing quelitutive shetvactions, evident by a direct link Detwesn a numerc finding
(eg. “cof prowin i3 1007) and a disense. We must mabe explicit whet rangss are
Mgh or low and what 15 abnormal 1n order for (he program t0 kmow what findings
need (0 be explained.

o Undirected camsel lishs, where no distinclion 13 mads betwesn causes of correlsied
predispositions and effects (eg. the patient's age 15 never an effect of a disease)
Again, the program cannot know if 1ts explanation 13 complete if 1t doesm't know
what facts nesd (0 be cxplained

o Side-effects, evident by links composing a2 caussl relatton with 3 model-
manipulation strasegy (eg. if the csf 13 bloudy rule out bacterial-memngitis) The
model perspective disciplines the rule writer 10 record the correct cawssl 2880C180000
(bloody csf 18 caused by a subarachmord hemorrhage) and 1o write control rules (hat
reason about alternative explanations (suh i3 (he metaruie shown above)
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Thess obssrvations d0 not mean thet the classification/behavioral approach should be
sbendoned in favor of structure-function models. First, diagnosis based on structure-function
has generaily been restricted 10 component failures, rather than interactions the system has with
its environment. Given the open nature of the world, an “experiential” classification model
appears (o be practical. and perhaps necessaty. Second, regardless of diagnostic value,
classification and behavioral descriptions represent what people know in domains such as
medicing and everyday reasoning (Rosch, 1978, Feltovich, et al., 1984, Kolodner, 1984). Third,
belief maeintenance descriptions of inference (¢g. (De Kloer and Brown, 1984)) emphasize
model coherence, but do not capture the siructural aspects of situation-specific model
manipulation, evident in the description of diagnostic tasks as graph-construction operators
(Patil, 1961, Pople, 1982, Clancey, 1984). In applying the model perspective o classification
and behavioral descriptions, we are not dismissing them as inferior, but rather recognizing
their status as models and gaining a messure of quality for diagnostic inference,

Finally, the model-based perspective of Figure S-1 is compatible with the blackboard
peradigm (Hayes-Roth, 1984), viewing ressoning in terms of: A shared database; flexible,
opportunistic operators for posting and modifying solution clements; and a separate control
structure for scheduling inference. However, the blackboard is not just a database. It is a
situation-specific model of a system, made apperent by the use of different blackboards or
“panels” 10 separate different systems and action plans. The study of alternative kinds of
models (Section 4) and Ihe view of inference as model-manipulation operators is a step
towards formalizing principles for structuring a blackboard and describing what "knowledge
sources” do. This anmalysis also sugpests that heuristic classification is not adequate for
diagnosis and other systems problems when pre-enumerated processes or action plans can occur

together and interact.

6. Histerical perspective

We can resoive some ! the uncertainty about the nature of expert systems and Al in general
by relating ths work (o other science and engineering perspectives, placing it in historical
content, and defining 1t comparatively. This is the chapter that Al textbooks consistently omit.
We need 10 sl studonts not just what our goals and methodology are, but how we got here and
how what we're downg 15 different from (raditional science and engineering.

Today we take for granted that the words "machine” and “intelligence” go logether because
the 1des of a machine today allows for adaptivity (McCorduck, 1979). But this was not always
0. For xientists and engineers of the past, a "mechamism”™ was the antithesis of change and
flexidiiity. It was something fixed, composed of known parts, and fully predictable. The
“screntific perspective” 10 part had its ongin 1n ths mechanistic of deterministic conception of
nature. Thus, (he mysierious concepls of “a superhuman final cause” and “purpose” were
repecieod. and all obeerved behavior reduced 10 separate, discrete parts studied i1n 1solation
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(Frank, et al., 1948, Bertalanffy, 1968).

However, in this century, this view was found to be inadequate for understanding complex
systems. The concept of goal was re-introduced in cybernetics by models of self-regulation,
based on the concept of feedback (Wiener, 1961). Several sciences, including particularly
biology and economics, turned to the study of systems not as “constitutive characteristics,” of
elements in isolation, but as relations among elements (Bertalanffy, 1968). Thus, study turned
from invariant properties (such as molecular weight) to properties of a complex, dependent on
relations among interacting elements (such as topological structure of a molecule and the
Sunction of molecular units).

In modeling the open and non-linear character of systems, analytic techniques broadened to
include concepts such as: "compartmentalization” (near decomposability (Simon, 1969)),
topology, adaptiveness, information flow, state-transition, and rationality (Bertalanffy, 1968,
Newell and Simon, 1972). In particular, these perspectives address the need to represent
discontinuities (non-linearity) in system behavior: “Representation by differential equations is
too restricted for a theory to include biological systems and calculating machines where
discontinuities are ubiquitous” (Bertalanffy, 1968).

From this perspective, Artificial Intelligence merges the teleological concepts of choice,
regulation, adaptiveness and rationality with the modeling concepts of set, graph, net, and
automata theory and formal logic (Newell and Simon, 1972). Furthermore, emphasis has
shifted from modeling systems in themselves, to modeling "self-directed personalities” (Frank,
et al., 1948) that incorporate a model of the world, goals, and a reasoning process for solving
particular problems. The idea of the autonomous agent crucially frames our research. To
determine what could be the basis for rationality and adaptation, we have focused on the
individual interacting with the world to solve some problem. In order to generate intelligent
behavior in an autonomous agent, a program, we put inside a representation of the agent's
knowledge of the world and his goals. Rather than proving theorems about structures in
themselves (as in graph theory), we use them to represent concepts and relations. Thus have
evolved the well-known representational structures of our field: the augmented-transition
network, the procedural network, the causal-association network, the semantic network, and so
on.

In this historical context, we see that Al combines a framework for modeling (the idea of the
autonomous agent) with qualitative modeling techniques. In describing Al, we have tended to
emphasize the idea of generaling intelligent behavior, and not made clear how our modeling
techniques are different. Rather than numeric measures, we have devised methods for
describing physical and cognitive systems. Our programs describe a system's physical
appearance (structure), behavior, goals, and role in a larger context (function). These relations
are distinguished in our advanced representation languages (Bobrow, 1984, Brachman and
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e Levesque, 1985).

| In the buzzword "knowledge,” we emphasize that what the problem solver knows or believes
i;"“ is central, providing-a crucial focus for our research. But the term "knowledge” emphasizes the
f.ﬁ role of a representation, obscuring its primary status as a model of a system in the world. The
f:’ discussion in Sections 3 and 5 gives examples of how our understanding of inference,
Wt
o uncertainty, and knowledge base design can be improved by applying the systems model
;‘a; perspective.
&%,
Q'c, In general, the idea that knowledge bases, like all models, are selective, based on assumptions,

>
-
o

and prone to failure has been given almost no consideration in knowledge engineering research.
Perhaps the most basic engineering problem in constructing a model is to determine the range
of its applicability., How can we determine what cases—situations in the world—will not be
successfully modeled? Just as the structural engineer must ensure that his model of a bridge or

*,
Lo

-

S

i":: building will be adequate for every real world event that occurs (given some assumptions)
'.::: (Petroski, 1985, Weinberg, 1982), the knowledge engineer must certify the validity of his model.
”5‘5 Yet, outside of established domains with a strong theory, such as electronics, no strong
‘;:: statements can be made about the accuracy of expert systems, except perhaps that they will
20 work on the cases they have been tested on. While expert systems may only be designed to
... work for "typical cases,” we must find some way to describe the extremes and articulate
- procedures for detecting when they occur. Until we shift from continuously blessing our
;:. programs with the name of "expert,” and realize that they are only models, it is unlikely that
?:: the required engineering methodology will develop.

| "\

7. Conclusions
};. Focusing on the function of knowledge bases as models of systems, | have described expert-

; system problem solving in terms of generic tasks, provided a unifying description of qualitative
| representations, and related Al to the concerns of traditional science and engineering. Using
W medical diagnosis as an example, | showed the benefits of this perspective for detecting gaps in
oy a knowledge base and understanding inference in terms of a model-manipulation strategy.

5 All knowledge bases contain qualitative models. Describing expert systems has been difficult
4: ‘ because a "knowledge base” could be almost anything. Now, confronted with a knowledge base,
o you might ask: What system is it a model of? Whose model is it? Why is it believed? Is it
,’:: a classification, state-transition, functional, or structural model? Are these composed? What
-:: is the inference procedure? Are situation-specific models selected or constructed? What is the
E}: explanatory/predictive or system synthesis capability? For what world? For what task? Under
KN what assumptions? How do you know when it isn't good enough?

:}; Along these lines, problem solving, learning, and explanation can be reconceptualized in
ta terms of model acquisition, representation, and use. Many researchers have already adopted
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this perspective (for example, see (Weiss, et al., 1978, Gaschnig, 1980, Swartout, 1981, Kahn, et
al,, 1985, Soo, et al., 1985)). But our work has barely begun in developing this new science and

engineering of qualitative models:

We have explored a range of systems of different types: physical, perceptual, cognitive, and
social. But the modeling methods are not practically accessible to professionals in other fields.

We now can see that the locus of a model can be strikingly varied: mathematical equations,
a physical replica, a computer program, and a mental model. But we are struggling to
understand what a representation is and how it might be confused with "reality” (Smith, 1982,

Smith, 1985, Sloman, 1985).

We have developed qualitative models in expert systems for scientific and engineering
applications (Sriram and Rychener, 1986). But we have not developed a methodology for ;
testing models that distinguishes between these goals. '

We have qualitative models of systems in the world, second order models (eg., student
models), and discourse and instructional models for communication and modification of
models. But we are uncertain about how to represent these explicitly and to what extent they

can be separated.

We continue to study the evolution of models, their origin and development in the
individual, with recent successes in failure-driven and explanation-based learning (eg.,
(Kolodner, 1984, Mitchell, et al., 1985)). But this has underscored how models from different
domains and different perspectives interact in learning, in sharp contrast with the sparseness of
today's knowledge bases.

We have developed a repertoire of computational methods for representing qualitative models
and inference methods. But the relation of these methods to numeric techniques and their
psychological aspects remain to be understood (Gentner and Stevens, 1983, Kuipers, 1985, Patel
and Groen, 1986, Rouse and Morris, 1985).

Knowledge engineering is not just a new kind of programming. It is a new methodology for
constructing models of systems in the world so they can be automatically assembled, modified,
and controlled. We are not so much programmers as engineers, scientists, and perhaps
philosophers. If we view our work in this way, consistently attempting to unify it from a
modeling perspective, our claims and successes will be better understood.
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