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An Algebraic Approach to
A Calculus of Functional Differences:
Fized Differences and Integrals

*

B. J. MacLennan
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract

We introduce a notion of functional differences in which the difference of a function f with respect
to a function h is that function g that describes how the value of f changes when its argument is
altered by h: f h(z)] = gif(z)]. We also introduce the inverse operation of functional integra-
tion and derive useful properties of both operations. The result is a calculus that facilitates
derivation and reasoning about recursive programs. This is illustrated in a number of simple
examples. The present report uses algebraic methods to establish preliminary results pertaining
to fired differences, that is, functional differences that do not depend on the value of the argu-
ment r.

1. Motivation
Simple recursive definitions often take the following form:

Jro =y -
f(hr) = g(fr), for z#z, (1)

The assumption here is that an arbitrary domain value z can be reached by finitely many appli-
cations of h. That is, for all acceptable r there is an n such that z = A" z;, More general pat-

terns of recursive definition will be considered in Section 6 and more generally in ‘MacLennan

88 .

Many of the results in this report are included in [MacLennan '86 . however, that report used
methods from the calculus of relations [Carnap '58'. The present report obtains the same results
more easily by use of the methods of abstract algebra. The reason that the algebraic approach is

easier seems to be that the algebraic notion of a function. which incorporates the domain and

Author's current address: Department of Computer Science, Ayres Hall, University of Tennessee. Knoxville. TN
37996-1301.
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codomain as part of its definition, automatically takes care of issues that must otherwise be han-
dled explicitly. In particular. the algebraic notation (and its assumption that all functions are
total) simplifies reasoning about the domains of functions. Comparing the derivations in
MacLennan '86" and the present report is illuminating in this regard. The algebraic approach is
essential for the investigation of variable differences and their associated integrals that will be
presented in a later report [MacLennan °88!; for now we restrict our attention to fixed

differences.!

In deriving a recursive definition for a particular f. there are four unknowns that must be
found. g, k, z, and y,. Since h and z; are usually determined by the domain in question (e.g..
they are zero and the successor function for the domain of natural numbers), and y, is usually

easily determined from the definition of f, the main problem is determining the function g.

To see how this can be done consider the second line in Eq. 1:

f(hz) - g(f2)

The function g tells us how much the value of the function f changes when its argument is
changed by h. That is, if f’s argument is changed by h, then its value is changed by ¢. This

equation is analogous to the finite difference equation

f(h1) g+ (fr)

The difference is that in the first equation the ‘*amounts of change™ are expressed as functions
rather than numbers, as they are in the finite difference equation. This is because we want to be
able 1o deal with functions whose domains and ranges are nonnumeric (e.g.. lists, sets, relations).”

Based on this analogy we introduce

Definition 1: Suppose f: 5 + T.¢: T - Tand h: 5 - S, We detine g to be a (fired) fune-

1. Note that for fized differences there is no distinction between forward differences and backward differences. This

distinc tion will become important in the study of variable differences.

A different noticn of functional differences is described in Paige & Koenig ‘K2 Their’s v addressed to the
problem of updating data structures such as sets in an imperative context
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tional difference of f with respect to h if and only if it satisfies f - h - g o f. Furthermore, if

the functional difference is unique, we write ¢ = h A f, and call g the **h difference of f.”
also call g “*the change in f with respect to A" or *"the change in f given the change £." Thus.

when the difference exists and is unique we have

foh (RA[)<f

2. Existence and Uniqueness of Fixed Differences

Equation 2 defines the functional difference implicitly: to get an explicit definition we need to
solve it for A A f. This can be accomplished by composing with the inverse of f, f7!, on both

sides of the equation to yield:

KOS = fohe !

This seems to yield an explicit formula for the functional difference, but it is necessary to be more
careful, since it assumes the existence of the (right) inverse f !. Recall that a right inverse fL

with f = f ! = 1, exists only if f is surjective. (We write I; for the identity I. T - T.)

Theorem 1: Let f: S —~ T be a surjection. let h: § - S, and let g: T - T be any function

satisfying the equation f - h = g - f. Theng - f - h - f ! where f, !is a right inverse of f.

Proof: We compose on the right with f, ' on both sides of the equation and simplify:

The preceding theorem assumes a difference existo. The following theorem establishes conditions

<ufficient for its existence.
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Theorem 2: Let f: § -~ T be an injection and let h: S - S. The functional equation

f+h = g fhassolutions f - h - f; !, for each left inverse f !t of £.

Proof: For convenience we represent composition by juxtaposition when no ambiguity will
result. Since f is injective it has a left inverse f,_l. with f/ by - I;. Hence, letting g = fhf !, we

have

9/ = (fh/,'l)f = fh(fflf) = fhls = fh

Hence, the difference equation is satisfied. C

We observe in passing that none of the preceding results depend on h being either injective or

surjective. Thus, they apply to any function A: § - S.°

Theorem 2 establishes sufficient conditions for the existence of solutions to the difference
equation, namely that f is an injection. The following theorems establish necessary and sufficient
conditions for the existence and uniqueness of solutions. However, to state them we need the con-

cept of an equivalence kernel MacLane & Birkhoff '67..

Definition 2: The equivalence kernel E; of a function f: § — T is the following relation on

S x S:

Ep = {(r.2)e Sx S| fr-fi)

Thus (r.17) - Eyifandonly if fr  fr'. Now we can state our existence theorem:
Theorem 3: A solution ¢ to the difference equation fh  gf exists if and only if E,  Ep.

Proof: To prove the “if " part. assume that £y F,. Every function f: § + T can be writ-
ten as a composition f &F in which o: ¥ £ - T is an injection and F: § - S E, is a surjec-
tion. Also.since £y Ep. fh can be written as a composition

3. In MaclLennan ‘86 we introduced at this point the idea of an “isomorphic image” from the calculus of relations.
This was used to prove a number of existence theorems for functional differences. Algebraic methods obviate the
need for this approach. However. Hasse diagrams are still useful for visualizing functional differences.
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fh - nPF
(4)

where m: S, E5 - T is an injection and P: S E, - S E, is a surjection. Now we claim that
i3 ! I J

¢ - omo; !is a solution to the difference equation. This is checked by substitution:

il

of = (oo ')(¢F) = éxF = fh

Therefore we have shown that a solution exists if E/ C Eﬂ,.
Now to show the “only if" part assume that there is a ¢ such that fh = gf. Observe that

E, E, is always true, since g cannot separate values that have already been mapped together

by f. Butsince fb - gf. Ep = E, and therefore £, C E,. ©

Theorem 4: Suppose § # 1 and the equation fh = ¢f has a solution g. Then this solution is

unique if and only if f is surjective.

Proof: We prove the contrapositive of the “only if"’ part. Therefore suppose that f: § - T is

not surjective. Therefore there isa y ¢ T such that

y§ R - Imf = {y y - frforsomeze S}

(3)
We construct a ¢~ different from ¢ that also solves the equation. Let ¢'y = a = gy. which is pos-

sible so long as & # 1. Note that since y ¢ R, ¢'f - ¢f, and hence ¢'f - fh.
For the ~if " part. suppose that both g and ¢~ are solutions and that f is a surjection. Hence,

9/ of
(6)

Since fis surjective it has a right inverse; compose with both sides of Eq. 6 to yield:

g 9o ff,Y Wt g

Hence. ¢ ¢ and the so the solution is unique.
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Obviously it is a critical issue whether f is surjective or not. Therefore we investigate the

relationships between the differences of surjective and nonsurjective functions.

Definition 3: The difference equation fh - gf is called homogeneous if f is surjective, and

nonhomogeneous if f is not surjective.

Corollary 4-1: Homogeneous difference equations have at most one solution; nonhomogene-
ous difference equations do not have unique solutions (i.e., they have no solutions or more than

one solution).

Proof: Follows from Theorem 4 and the definition of homogeneous. O

Next we characterize the many solutions of a nonhomogeneous equation as a family of functions

derived from an associated homogeneous equation.
Definition 4: If S C T, we use jg_ r for the trivial injection of S into T: js_ rz = z.

Definition 5: Suppose that f: § -~ T, ¢: T -~ T. h: § -~ S, and R = Im f. Note that f can
be written uniquely in the form f = j,_f" where f: § - R. Then we call f'h - gf" the homo-

geneous equation associated with the nonhomogeneous equation fh = ¢f.

Definition 6: If f:S, - T and g¢:S5,~» T, then we define the direct sum,

(f - g) (5 - Sg) - T, by

fr ifze S,
(f - 9)x

gr ifz ¢ S, (

-1
~—

Theorem 5: Let f: S . T.¢:T -T.h:S -S.R Imf,Q-T Randj  jp.r Thengyg

is a solution to the nonhomogeneous equation fh  gf if and only if it can be written in the form

9 J(gs - €)
(%)

where g.: R - R is the solution of the associated homogeneous equation. and ¢: Q@ -+ K.
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Proof: For the “‘only if"* part assume that fh = g¢f has a solution. Therefore.

Img - Imgf = Imfh - Imf = R

Hence, Im ¢ Z R. This means that g can be written as the direct sum in Eq. 10. It remains to

show that g, is a solution to the homogeneous equation f'h = gof". Since fh = gf, f = jf* and
9 = j{gy — ¢), we know:

Who= jlge = c)af”
Since j is an injection, we can compose its inverse on the left of both sides of this equation to
yield:

I'h = (90 - )if’
Now notice that (g, - ¢)j = gy therefore f°h = gof" and we have proved that g, is a solution.

In fact it is the unique solution because the equation is homogeneous.

To prove the “if " part we assume that there is a g, such that f"h = ¢.f". Let ¢ = j(gy - ¢):

our goal is to show fh = gf. Noting again that (g, ~ ¢)j - g, derive:

b= 3f"h
J90f°
= g0 - )if
gf
Hence g solves the nonhomogeneous equation. "
Corollary 5-1: A nonhomogeneous functional difference can be written uniquely in terms of b

the associated homogeneous difference:

haf  jJhAf - ) ,
(9) )

where f: § + R is surjective, and h: § + 8, k.o and o @ - R. This is call the general
J J Ik cRr-@ {
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form of the solution of the nonhomogeneous equation.

Proof: Follows from the preceding proof.

3. Examples of Differences

In this section we give several examples of functional differences. We begin with numerical func-
tions, since they are most familiar. Let IN be the natural numbers and let ¢: IN - IN be the suc-

cessor function. We use the presection and postsection notations Wile 73: a -z a - 1.

b r =2z ~ b,etc. Also, we let ‘*” represent exponentiation.a " n = a".

Definition 7: We write *{(power, f) n’ for the n'* power of function f applied to initiai value
a: (power, f) n = f" a. This is defined recursively:
(power, f)0 = a
(

(power, f) (n+1) = f (power, f) n, forn -0 (10)

We call power, f ‘the power from a of f. If f: § - S and a- S. then it is clear that

power, f: IN -+ &,
Theorem 6: The difference of the power {from a) of f with respect to successor is f,

o A power, [ f,
(11)

provided that power, f is surjective.
Proof: This follows directly from the definition of ‘power™:
(power, f) (o n) [ (power, f) n

Therefore. (power, f) o [ (power, f).

Theorem 7:

g A poner, f 5 - e

. A e A A —




(1)
where ;o gp oo B b (power, f)and e: (8 R} - R,
Proof: Let =2 B -+ R be power, f with its range restricted to K. Thus.
JrT power, [
(13)

Since 7 ois surjective, ¢ A 7w exists. Observe that
Im f) Im f{power f) Im (power,flo Im (power_f) R

Therefore. f f's domain is restricted to K then its image is a subset of B. Hence there i« a

o: B+ R such that

Jo 5
(14)

The definition of power, f is equivalent to:
jro (power, flo - f(power,f) fin jor
Hence. yro jor. Composing a left inverse of j with both sides of the equation vieids

Te ~ QN

(15)

NSince 7 is surjective ¢ A = o. Then. by Cor. 5-1,

o Apower, [ - oA gm

jleAx - ¢)
jo - )
Jjo - e
fi - e
.9.
-'.';‘24":‘l\"--"':".--’;-'. A T e T e T e e
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Now observe that

a ~! = power, o

a - = power, g!
- a - power , o
‘a x| = powery a +j
@] = power, a x;

Notice that the last two of these are not surjective. The differences of these functions follow from

the theorem:

cA'a~ =0
cAa- =o'
cA -a =0
oA ax: = a-j+jc where j = jJin. N
oAjal] = ax;j~+jc where j = jinaq) -

4. Properties of Differences
We develop a number of simple, useful properties of functional differences.

Theorem 8: The functional difference of the identity I: S - S with respect to any function

h: S - Sis that function: h AT = h.

Proof: Observe that g = h satisfies Ih = ¢gI and that I is surjective. C

Theorem 9: A functional difference of h: § - S with respect to itself is itself. Further, if &

is surjective then h A h - h,

Proof: Observe g - h satisfies hh = gh. =

Corollary 9-1: A difference of a power of a function with respect to that function is that

-10-
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function. Also. if A" is surjective then A A A" h.

rﬂ“' s
L

v . f
el

Proof: Let ¢ = hin h"h - gh". -

f..f.:'d

“»
s
‘*&o‘ i,

Theorem 10: A (left) inverse of a difference of a function with respect to a surjection is a

i

h_‘b

difference of the function with respect to a (right) inverse of the surjection. That is. if fh - ¢f

N Y
o
N e N

then

N °
.
o,
ARG
v
MR

AT

fh;l = gl‘lf

v
P A
5

(16)

If fis surjective, then (R A f),! = A ' A [

LN
XA

LN Y S

P
1.:5:5 5
%

Proof: Suppose h is a surjection and there is a g satisfving fh = gf. Suppose that g, ! is a left

inverse of g. Then compose g, ! with both sides of fh = gf. This yields ¢, 'fh = f. Since h is

v et

surjective it has a right inverse h!. Composing with k, ' on both sides of f/ ¢, 'fh yields: fh, '

?
I

AR
,

R . AR A !

.
«
.
’

= g, 'f. Hence g;' is a functional difference of f with respect to h, '.

A
It will usually be clear to drop the [ and r subscripts and write (h A f) ! hlAay ::::
e

Theorem 11: A difference of a composition of two functions with respect to a third is a RN
t.'..

difference of the first function with respect to a difference of the second with respect to the third. :::-:f
PN

That is, if ¢ is a difference of ¢ with respect to h and v is a difference of f with respect to ¢. then '.::':-'_
e

L

v is also a difference of fg with respect to h. Alsa, if f and ¢ are surjective.

SA Sy

hAfg-(hAg)Af R
|"::.

. . . . , "

Proof: The derivation is direct. Suppose gh - ¢g and f¢ = ¢'f. Then o
LSl

(fo)h = f(gh) ~ [leg) - (fo)g - (vflg - w(fg). o
ROAS!
Hence. (fg)h - «(fg). If f and g are surjective then the differences are unique. \‘::\‘
NN
[ J

Corollary 11-1: If g is surjective and f is any function such that the differences exist. then ':::
.-".-"

KRN
hAfg (hAg)df RN
A
-11- _,.®
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Proof: Suppose that f = jo, with ¢ surjective. We expand the general form for the

difference:

h A fg h A jog

J(h A ¢g +c)

1]

ji(hAg)A ¢ +c]

I

(hAg)A jo

1]

(hAg)Af

The third line above follows from the preceding theorem. ©

Theorem 12: The difference of a bijection with respect to a composition of functions is the

composition of the differences of the bijection with respect to each of the functions:

gh Af = (gAf)(hAY)

Proof: Since f is bijective it has the two-sided inverse /7' hence by Theorem 1:

-

]

gh & [ = [ghf™!
fa(f ' Nkf
(fof )(SAf7Y)

= (gAaNhAay

I

]

The preceding theorem provides a kind of chain rule for evaluating differences of bijections. In

the following theorem we extend it to any functions with differences.

Theorem 13: A functional difference of a function with respect to a composition of functions
is the composition of the difference of the first function with respect to each of the other func-
tions. That is, if ¢ is a difference of f with respect to g and v is a difference of f with respect to

h. then oy is a difference of f with respect to gh.

-12-
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Proof: Since fg = ¢f and fh = ¥f we may derive:

f(gh) = (fa)h = (of)h = &(fr) = o(vf) = (ow)f

Hence f(gh) = (ov)/f, and ¢y is a functional difference of f with respect to gh. =

Corollary 13-1: If f is any function, gh A f = (g A f)(h A f), provided the differences
exist. Note that if f is not surjective, this corollary asserts the identity of the general forms of

the differences.
Proof: If the differences exist, then they may be written
9Af = jgA¢ +¢), hASf = j(hAd +¢)
where jo = f. Now observe the product:

(g AS)RAS) = j(gAd + c)j(hA¢ + )

= j(gAd)(hAP + ¢7)
= Ji(9A0)(hAY) + (9Ad)c”
= J(gA)(hAS) + ¢

= j(ghAd + ¢ ")

The last line follows by the preceding theorem; it is the general form of gh A f. ©

Corollary 13-2: A difference of a function with respect to the nth power of a function is the

nth power of a difference: A" A f = (h A f)".

Proof: This is an inductive application of the previous theorems.

We use a product notation for compositions:

n

INF, = F,-Fyo - - F - F,
1=1
Using this notation we can express
~13-
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‘:, Corollary 13-3: A difference of a function with respect to a product of functions is the pro-
|'.
[

o duct of differences with respect to each of those functions:
l

i Th) AT = Tk

] ( hl -

- I (18)
¢
il Proof: An inductive application of the theorems. o
]
o

>
'y Corollary 13-4: If z, = h"z,, then fz, = (k A f)" (fz;,), where A A f is any difference of f
e with respect to h. That is, if y, = fz, then y, = (R A f)"y,. Equivalently. y = power, hAf.
»
! ? Proof: This is an induction basedon y, = f(kz,;,) = (hRA f)(fz,_.;) = (hAf)y,.,. 2
1.
:;.' n n

- Corollary 13-5: Ifz, = |J[ H,|zpandy, = Fz;theny, = |J] H, A F|y,

3 i=1 =1
2! Proof: This is just an application of Cor. 13-3. O
>,
‘\‘
" : : : .

A This theorem tells us how to use functional differences to get from fz; to fz,, provided z, is
L)
L reachable from z,. It is a functional difference analogue of Taylor’s Theorem.
W We define! ‘Af’ so that (Af) h = h A f. Since Af leaves h unspecified, we call it the
\.

:& indefinite functional difference of f. One difficulty with this notation is that (Af)h is defined
-

only if E; C Ep (Theorem 3), and is single valued only if f is surjective (Theorem 4). To avoid

¥
b these problems we restrict the notation Af to the case in which f is bijective, since then we are
Y
'.. guaranteed that the indefinite difference exists (Theorems 2 and 4).
]

: Definition 8: The indefinite functional difference Af: (S -~ S) - (T — T) is defined:

ﬁ
.'
s (Afh - hAS
R (19)
.' for any bijection f: S «+ T. Note that the signature of A is:

- 4. This is simply the postsection notation from Wile '73 .
‘)
)

'n
- -14-
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-------------

A: Bijec (S, T) - (§ = §) ~(T - T)
(20)

where Bijec (S, T) is the category of all bijections from Sto T,

Theorem 14: The indefinite difference of the composition of bijections is the composition of

the indefinite differences of the bijections:

A(f-9g)  (Af) (Ag)

Proof: By Theorem 11:

(A fag)h = hASfg
(hAg)A S
(A f)(h Ayg)

Af (A gk

Hence. A fg = Af - Ag. O

The preceding theorem is a kind of chain rule for functional differences. It leads to

Corollary 14-1: The indefinite difference of the nth power of a bijection is the nth power of

the indefinite difference of that bijection: A f* = (Af)".

Proof: This is just the inductive extension of the previous theorem. O

Corollary 14-2: The indefinite difference of the product of bijections is the product of the

indefinite differences of those bijections:
Al f.] = I A/,
1= 1 1=1

n

IT a/,

1-1

Tmm&ha(ﬁfJL (k)

[ |

Proof: This also follows inductively from the theorem.
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5. Recursive Programs

Let T* be the type of all LISP-like lists whose members are of type T. Consider the following
equations. which define the function length: T* ~ IN on lists:
length nil = 0

length (z:y) = 1 ~ length y (21)

(Here *z : y* denotes the result of prefixing z on the list y — the LISP ‘cons’ operation.) The
second equation is a homogeneous functional difference equation, as can be seen by writing it in

the form:

length - r: = o - length
(22)

(Note that r:: T* —~ T*.) Hence it is easy to see that the change in length with respect to

prefixing is the successor:

z: Alength = o

(23)
On the other hand, if we were to define length recursively, we would write something like this:
’ lfL = nll
length L = 1y . length (rest L), if L # nil (24)
This corresponds to the equations
length nil = 0
length L - 1 - length (rest L), for L = nil (25)

The second equation here is also a sort of difference equation, but it does not fit our earlier form.

Written in terms of compositions it is:

length ;. o - length rest

(26)

where we have composed length with j. to restrict it~ domain to nonnull lists. The function




3

. J. " Jp .gp. injects the type of nonnull sequences T into the type of (possibly null) sequences

T*. Note also that we assume ‘rest’ is a total function. rest: T- - T*. Hence the domains and

ranges of the functions match as required by the compositions.

What is the relationship between the two difference equations satisfied by length? Consider

the first difference equation (22):

length - 'z : o - length
(22)

We would like to compose with the inverse of z :" on both sides. Unfortunately we can’t do this
because z : is not a surjection, so it's not right invertible. Therefore we will have to use an

alternate approach.

Let rT* © T~ represent the type of all sequences that begin with z. Since the meaning of

r: is to put r on the front of its argument, we will consider the bijection 7_: T* -+ zT*; this

“Jpar - dince

operation is r: with its range restricted to zT*. Hence r: - j j 7, where j,

7, is a bijection, it inverse 7, ': xT* - T" exists (and is a bijection). The meaning of r;'is to
take r off the front of a sequence that begins with r. On the other hand ‘rest’ takes the first
thing off the front of its argument no matter what it is. Hence 7! is like ‘rest’ except that it’s
defined only on lists whose first element is z. That is, x, ' is a restriction of ‘rest’ to the domain

. 1 . :
T . r, rest - J,.

Now we make two simple observations. First, the type of all nonnull lists is the direct sum.

for all 7. of the nonnull lists that begin with z:

T Y T
o T

Second. the ‘rest” function. which deletes the first element of a list no matter what it is, is the

direct sum of all the functions «, ! which delete r from the front of a list:

. . . ; 1
rest rest Y g, Y rest o7,
o T T T

1
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It is now easy to show the two difference equations are equivalent

Theorem 15: Suppose that

is true for all z. Then

length = 7, = ¢ < length - rest

The converse also holds.

roof: To prove the first (Eq. 27) implies the second (Eq. 28) we have
o - length = length -

length - 5, > j, - 7

z z

Compose on both sides with 7, ! to yield:

o - length 77! = length - j, - 3

z

Now derive:

length < j, length « 5. = %3 j,
ze T

S (length - 5, - 7,)
e T

3 (o - length - =)
e T
o > length - ¥ .}

o+ length > rest

This is Eq. 28.

To prove the second (Eq. 28) implies the first (Eq. 27) we restrict both sides to rT

length - 7.« j, o length - rest  j,
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1
; - .
* Recalling that rest - j, = x b
[}
. . )
length - 5, - j, o - length - =,
Now compose with 7, on both sides to obtain Eq. 27. =
)
' 6. Definition and Existence of Integral
. In this section we consider a functional integration operation that is inverse to the functional
difference. That is. given functions ¢: T —~ T and h: S - S we want to find an f: S —» T that
0
b satisfies the functional difference equation fh = g¢f.
, In general there may be many functions satisfying this relationship. Since this implies that
the solution to a functional difference equation is often underdetermined by the equation, to
d determine a particular solution it’s necessary to specify a boundary function b contained in the
solution. Thus the solution to the equation is required to be an extension of the boundary func-
. tion (i.e.. b = fjp .5, where D C S).
. Definition 9: Suppose D _ S. Let arbitrary functions g: T - T, h: S -~ Sand b: D — T be
given. If there is a function f: § — T, with b = fjp _, satisfying the equation
. foh = g-f
. then we call f the definite functional integral with respect to h, from b, of g. We write f:
h®,g
This is read “*the h integral from b of ¢.”"
f\ Theorem 16: If the definite functional integral exists. then it satisfies the equation:
.
) (h@hg' h 9'(’1@:,9)
X Proof: Follows< immediately from definition.
&
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Next we explore some of the conditions under which functional integrals exist.
Definition 10: S is generated from D by h: S -~ S if and only if

S = Y h"D,
n20 (29)

The notation h"!D| denotes the image of D under h™.) This is equivalent to S satisfying the
el ying

LI RRL A ANANE. e e e s o g dFd

recursive equation

o et ot

S = DU’I{S"\

[ S

Note that if S is generated by h, then & is surjective.

If the generation of S loses information that is required by g, then the functional integral can-
not be computed: this is formalized in the following theorems. To state them we introduce the

class of functions for which functional integrals will be shown to exist:

Definition 11: Suppose g T » T, b: D - T, and S is generated from D by h: § ~ 5. We

say that the functions g*b ignore the generation of S if and only if, for all I,z ¢ D.m,n 20,

(31)

That is. the functions ¢g*b don’t care if an element of S can be generated in two or more ways.

Lemma 17-i: Suppose b: D - T. f: S~ T. ¢: T - T, b= fjp.s. and S is generated from

D by h. If fo - gf has a solution then the functions g*b ignore the generation of S.

Proof: Let ¢ Sand j = jp.g. Suppose h™jry - z = h"jry” for 2y, ry” ¢ D. (Note that for

- D.jry  z5.) By Cor. 13-4,
fr [h"‘jzo B qujlo = gmblo
fr PYzyt - ¢"firy"  g"bzy”

Hence. ¢™bz, ¢"br, .

4
L
q
!
"




Next we give a formula for the h integral from b of g. It is defined in terms of the graph of

the function.

Definition 12: If 6: D ~ T, h: § ~ S, ¢: T - T.and D . S. define the relation &, as fol-

lows:

®yp, = {(R"25,¢"bz)) z5- D.n 20}
(32)

Lemma 17-2: If the ¢*b ignore the generation of S, then there is a unique function Oppy Such

that

graph &y, = @,
(3%)

where graph f is the graph of the function f (i.e., the set of (z, y) such that fr  y.). Further.

this function satisfies

Onsglh™2y) = g"bzy forzye D
(34)

Proof: Clearly there is at most one function ¢: § » T having a given graph. Thus it is necessary
to show that ¢ = Ohbg is defined and single valued for every member of S. Nince S is generated by
h from D. each r < S can be written z = A"z, for some z, D, n > 0. Hence, from the definition

of ¢hbg we see or is defined and

or - ¢"bry, forr - A"z,
(35)

To show ¢r is single valued. assume h™r, h"z,". By Eq. 35.
or gmbr,. or g bz’

But the ¢*b ignore the generation of S.so ¢™bry, - ¢"br,". Hence. o is single valued.

Next we prove that 0, is a solution provided the ¢*b ignore generation.

2y s ¥
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Lemma 17-3: If the g*b ignore the generation of S. then

Dhpg 9O g
(36)

Proof: For an arbitrary r = 5 we show ohz - goz, where 0 0,,,. Since 5 is generated from D

by h.write r - h"jz,, where j = jp_.g. Then,

ohr oh" ljz,, since z = h"jz,
"lbr,, by Lemma 16-2
gg"br,

gor. by Eq. 35

We can now prove our principal existence theorem:

Theorem 17: Let h: v 5. b6: D - T.¢g: T « T. and suppose S is generated from [ by A

Then fh ¢f has a solution if and only if the ¢*b ignore the generation of S.

Proof: This follows from Lemmas 17-1 and 17-3

Our next goal is to show that o, is the unique solution of the difference equation.

Lemma 18-1: Suppose h: & + 8. b: D +T.g: T - T.and f: S - T. If the ¢g*b ignore the

generation of S and fis a solution to fh ¢f. then f O oy

Proof: Suppose r  h"ryfor r, . By Cor. 13-4,

/I fhn]-’wl gan'Ir) g"bro Ohng

Theorem 18: Suppose h: 5 « S b D T, ¢g: T - T. If §is generated from D by A, but

the ¢*b ignore this generation, then

2.
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Proof: This follows from Lemmas 17-3 and 18-1.

7. Properties of Integrals

The following corollaries follow easily from the preceding theorems and from the properties of

differences in section 4.

Corollary 18-1:

(h ®, 9) (h"zy) = g"bxy, for zy< D

Proof: Follows from Theorem 18 and Lemmma 17-2.

Lo

Corollary 18-2: h @; h -

Proof: Follows from Thm. 8. =

Corollary 18-3: h @,, h - h.

Proof: Follows from Thm. 9. o=

Corollary 18-4: h h — h™

h‘lu.5

Proof: Follows from Cor. 9-1. =

Corollary 18-5: Suppose h: R

. S, S and R, R. Then. if the v*b ignore the generation of S by o. and the ofc ignore the

generation of R by k. and the v*be ignore the generation of R by h. then

T -T. b:85, - T, c: R
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(QS Qb l,”)(h @r ¢) = h @bjf U4

where j = jg .5

Proof: Follows from Thm. 13. o

The following two theorems are the Fundamental Theorems relating fixed differences and

integrals.

Theorem 19: Suppose f: S - T, h: S — S and b = fj5, 5. where S is generated from D by

h. f E, = Ep and [ is surjective,

h®,(hAf) = f (40)

Proof: Under the stated conditions the difference equation fh = gf has a unique solution
g = h A f. To show that f is the functional integral of g with respect to A we must show that
the ¢*b ignore the generation of S by h. Therefore suppose h™jz, = h"jz,", where j = Jp-s-

Then,

g™bz, = g¢™fjz,, by definition of b
= fh™jzy, Cor. 13-4
= fh"jz,”, by hypothesis
= ¢"fiz,", Cor. 13-4

= g"bz,, by definition of b

Hence f is the h integral from b of g: h @, g = f. Combining with ¢ = h A f yields the desired

result.,

Theorem 20: Suppose h: S -+ S, b:D - T, ¢: T - T, and S is generated from D by h.

Then.

-24-
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hA(h(I),,g)

if and only if T is generated from b{D! by ¢.

(11)

Proof: Under the stated conditions the integral f = h ¢, g exists. The difference will exist

and be unique if f is surjective and E, C E,. To determine the conditions under which f is sur-

jective we compute a formula for the image of f:

Im f

il

rng (b,,bg
= rng { (A*zy, g"bzy) | 15 D.n >0}
- {g"bzy - D,n -0}

= J Img"b

n->0

Now observe that T - | j Im ¢"b if and only if T is generated frem b D by g.

n20

Next we must show E, . Ep. Therefore assume fr - fr':thatis. fA™r;  fh"z,".

17-2, fh™z, = gMbryand fhz," = ¢"bz,". Hence, g™bry, - g"br, . Now derive:
fhe - [R™ 1z = g™ lbr,

© glgTbzy) = 9(9”’10’)

"Ybryt = fh" 'z

fhr’

Hence £, © E, and the difference is unique. =

By Lem.

The following corollary shows that the difference of a nonsurjective integral is the integrand plus

a remainder term.

Corollary 20-1:

If T is not generated from b [ by g¢. then
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h A (h P, g) = g7+ e (42)

where h: § - S5, 6: D - T,¢: T ~T,5=jg.r.¢:(T -R) ~R,and R = Im (j P, g).

Proof: Let @ = T - R. Since R = Im (h {, g) we can write ¢ = jg + r where ¢: R - R
and r: @ » T. Note that ¢ is surjective and R is generated from b'D! by ¢. Hence h @, ¢

exists, where a: D —~ R, ja = b. Note that h @, g = j(h &, ¢) and apply Cor. 5-1:

hA(h®yg) = A jhP,q)
= JIhA(hq)u q)*CE

= jlg +¢)
since h @, ¢ is surjective. Now observe that

97 =g +r)j = Jq

Hence the difference of the integral is ¢j + je. ©

The functional integral permits a different characterization of the power functional:

Theorem 21: The o integral from 0 - a of f is the power from a of f:

o (I)OM/ = power, [ (43)

Proof: Note that IN is generated from {0} by o; to show the existence of the integral we must
show that the f* « (0 - a) ignore this generation. Hence we need

o™ = 0" > f™(0 —a)0 - f*(0 — a)0

The left-hand side of this implication is equivalent to m - n, which obviously implies the right-

hand side. Therefore, the functional integral exists and satisfies the following equation:

(e ®0.rle 1o @0.. /]

-26-
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o
o
b
(44) iy
)
; 1
o
But this is just the difference equation which defines the power function. = h
~ 1
- "
The following corollary is Thm. 7, but obtained via the integral. '
, 4
Corollary 21-1:
R
o A power, [ = ff + je o
(45) N,
where j = jp_sand R = Im (power, f). '
Proof: By the theorem: \
‘9
k;?.
cApower, f = 0 A(c®y., f) = f1 +je .
N
— F\
c n
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