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Part of the Rome Air Development Center's (RADC) speech

”
2

LA A
[

research 1s an in-house effort to develop vector classification B
concepts for recognition problems in general and for speech
recognition 1in particular. These concepts, referred to as Z\jy,:,
Mathematical Intelligence (MI), were developed by Capt William I. RN
Lundgren prior to his departure from RADC in October 1985. This e
report is designed to familiarize the reader with MI, show how it
applies to speech recognition, and discuss the preliminary test mTe e

results.

.S' s- ‘.:
Dﬂ .5“\

The MI system developed at RADC consists of numerous programs e

L -‘ .

»

that were written to run on a DEC PDP 11/70 minicomputer and an FPS

N
ri"

2
o

5210 floating point array processor. This configuration is Jﬁ:ﬂ:
: ENOLS,
discussed in more detail in Chapter 3. Many of the programs ‘aﬁvzf‘f

XX
22

implement a rudimentary digital speech processing tool (DSPT) that

ATOAT

performs such functions as digital record and playback of speech, :ﬁ:}kat
)

speech spectrogram display, and symbolic labeling of spectrogram EE:E:E
NN

f

segments. This tool is useful for observing speech data graphically : *

DRSS
to build the MI structure manually as discussed in Chapter 2. The }}jEﬁE‘
AR

remainder of the programs implement MI speech recognition. At this -}?xﬁt
A
IV R

time, the DSPT is functional and available for use. The MI speech ;V‘f;f
.\.. 'c‘

recognizer is not. ._,-\.::-\.:f-.:,
ROCAA
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The numerous MI programs developed at RADC are, for the most
part, undocumented. In addition, the algorithms used to write the
programs are also undocumented. For example, there 1is no
documentation on the windowing algorithm used in the DSPT. The
author believes, however, that the MI concepts are sufficiently
documented in this report to allow any speech researcher to

implement an MI development system (Chapter 2).
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1. Introduction

The goal of speech recognition is to provide a more natural way
for humans to enter commands and data to a computer. In some cases,
this is a convenience. In other cases, where a human's hands and/or
eyes are already busy, speech input is a necessity. The success of
applying current speech recognition technology is largely dependent
upon the particular application because human-1ike performance has
not yet been achieved. Some of the key issues in speech recognition
performance are listed in Table 1-1. Also shown is how these issues
compare between a fragile system and a robust system. A fragile
system's performance deteriorates quickly when strict constraints are
not maintained. A robust system requires fewer constraints. Humans

are the most robust speech recognition system available today.

Two of the most popular techniques currently used for speech Eiégi
recognition are Dynamic Time Warping (DTW) and Hidden Markov ;f{éf
Modeling (HMM). A detailed discussion of these techniques is beyond N
the scope of this report. However, the reader who is not familiar
with these techniques can consult the references. Since these
techniques have not produced human-like performance, further Vo

Ar
research and development are required to both modify these ﬁ;,;%
techniques and to investigate unique alternatives. MI falls into ;fidiy
the later category. 'ivb}
.
:
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Table 1-1

i
3
)
:':
' Issue
'
v .
Continuous/
«; Isolated
' Speech
l|.
Intraspeaker
Variability
y - Stress
y - Inflections
" - Enunciation
- Vocal Tract
Changes (e.g.,
’ I11ness)
'E Interspeaker
- Variability
N - Male/Female
- Dialect
[ Environmental
' Variability
: - Transducer
) Response
. - Noise
- Acoustic
5 Chamber
o
o
P Vocabulary Size
) Speech
Y Understanding
. Computational
Power Required
K,
. 4
S

Fragile System

Isolated and
Limited Connected

Increase in
Recognition Errors

Increase in
Recognition Errors

Increase in
Recognition Errors

Small

None or Syntactic
Only

Small

P O PN 2'he "l 4, 4.'.'

Speech Recognition Issues

Robust System

Continuous

Accurate
Recognition

Accurate
Recognition

Accurate
Recognition

Large
Syntactic,Semantic,
Pragmatic, & Goal
Understanding

Large
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2. Mathematical Intelligence

Both methods of recognition mentioned in the previous chapter
attempt to map similar inputs into a single class so a particular
class can be recognized. Similarity is measured between expected
(training) data and actual (recognition) data. Various methods are
used to modify the input so that it will be similar enough to match
at least one class. If the 1inputs are not similar enough,
recognition will not occur. With this approach, all of the input
information 1is used to determine similarity of the inputs and
subsequent vector classification. The key distinguishing feature of
Mathematical Irtelligence (MI) is that information in the input not
relevant to the recognition 1is filtered out by means of a
mathematical structure. In other words, not all of the input

information is used to classify a particular vector.

2.1. Vector Classification Concepts

This section describes how MI maps an input feature vector into
its appropriate class (Figure 2.1). The input feature vector is
derived from pre-determined mathematical operations on an input
analog signal. The mathematical operations result 1in parameters
that describe various features of the analog signal. These feature
vectors are sequenced in time so that each feature vector describes

the analog signal for some specific period of time. That period of
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;'0:: time is called a frame or window. A feature vector can contain :;:'
L) .
. features that span more than one window.
l"‘
"' Once a feature vector is determined, the magnitudes of the
L}
::: features within that vector are compared to each other. This is
N
. accomplished wusing pre-defined pseudo-logical functions. For
" A
[n >
. example, let the values of features A, B, C, and D be 0.8, 0.95, ::‘;
.:. '\."\-
:} 0.2, and 0.54, respectively. Then a function, F1, can be described :v;:
o O
o as "A and B are large compared to C." MI obtains this example - A
-: \"-:-
E relationship mathematically by L_"::"
N Ax B \::N
! F1 = ----- .
¥ + -
& 1+C :
- The number and type of functions used is determined by what is
7 required to separate an input feature vector into its class and by _“;_
’: the limit of information contained in that vector. The combined set .
X .
“
:f of pre-defined functions forms the function vector which is applied N
Y] to each class.
l." [
For each class, there is a Threshold Vector where each .
P
" component corresponds to a component in the Function Vector. I[f the ’
:l: function component 1is greater than the corresponding threshold :
» .
- component, then a value of one is assigned; otherwise a value of
D) a”
\" . - . k3 l--
. zero is assigned. The result of this sequence of operations is a e
. pre-output vector for each class composed of a set of ones and .jw;\'}'
W
K
=, zeros. <
: N
1] \:-\:h
23
o DY,
LS
1 F
>, .-
" .
) -4-
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Next, the ones and zeros in each Pre-output Vector are summed N SAN
to obtain an integer value corresponding to each class. The class o
with the largest integer value is the selected class for the input ?7
feature vector.
The MI vector classification procedure can be described

mathematically as follows:

Pm = TH(F1,T1m), TH(F2,T2m), . . . . , TH(Fn,Tnm)
Class = NUM (MAX (I1,I2,...,Im))
where
P = pre-output vector (one for each class).
m = class number. BN

TH = threshold function; results in a one if the first
argument is greater than the second,
otherwise results in a zero.

e N Y 1 Y W™ L
.. R
»

F = function. e
RN
n = function number. AR
N
SR
T = threshold. el
)
Class = class that the input feature vector is mapped -
into. g
MAX = function that Jetermines the maxinum value ;
of its arguments. .
)
I = integer sum of ones and zeros of the pre-output -
vector,
NUM = function that obtains the class number associated

with a particular integer sum.
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2.2. Vector Classification Example

Suppose there is an Input Feature Vector with four features, and
the objective is to map it into one of six classes. The following
are given:

Input Feature Vector = (A, B, C, D)
Feature Values: A = 0.25, B = 0.87, C = 0.79, D = 0.62
Function Vector = (F1, F2, F3, F4, F5)

Functions:
AxBxC
F1 = cceemeeaa
1+0D
Ax D
F2 =  cmeccmmmcmmma-
(1 +8) (1+C)
B x C
F3 = cccceccmce—eean
(1 +A) (1+0D)
C
F4= ________________________
(I +A) (1 +8) (1 +0D)
B
o T

Threshold Vectors:

Class 1: (.33, 1.0, .41, 1.0, 1.0)
Class 2: (1.0, .25, 1.0, .39, 1.0)
Class 3: (1.0, 1.0, .27, 1.0, .43)
Class 4: (.44, 1.u, 1.0, .36, 1.0)
Class 5:

5
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Class 6: (1.0, 1.0, .35, .42, 1.0)
By applying the functions of the Function Vector to the Input
feature Vector, the Evaluated Function Vector (EFV) obtained is
EFV = (.11, .05, .34, .21, .24).

Next, a Pre-Output Vector is calculated for each class. For Class

g
E
.
i
o
oy
3
i
E

1,
Pl = (TH(F1,T11), TH(F2,T21), TH(F3,T31), TH(F4,T41),
TH(F5,T51))
= (TH(.11,.33), TH(.05,1.0), TH(.34,.41), TH(.21,1.0), e
TH(.24,1.0)) -:;:3.
l-. %'
= (0, 0, 0, 0, 0) A
’ ./',:E
Thus, —
1= o. 3
Similarly, for Class 2 - 6, ;::'.'-;E.':‘:
' P2 = (0,0,0,0,0 12=0 i
@ P3=(0,0,1,0,0) I3=1 i
A
k P4 = (O’ 0, 0, 0, 0) 14 = 0 ,::{:E
PS = (0,0,0,0,0 I5=0 R
: P6 = (0, 0, 0, 0,0) 16=0 -
Then, ;':;-j-\
¢ Class = NUM (MAX (I1, 12, 13, 14, IS, 16))
QﬁJ
= NUM (MAX (0, 0, 1, 0, 0, 0)) PO
DL
= NUM (1) o
_ 3 '\:'f}*.'
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Thus, the Input Feature Vector, (.25, .87, .79, .62) belongs to

Class 3. This procedure is repeated for every Input Feature Vector.

2.3. Speech Recognition

The MI vector classification procedure is directly applicable
to speech recognition. In this case, the analog signal (Figure 2.1)
is transduced speech. The speech 1is digitized and various
parameters are extracted to construct the Input Feature Vector
(IFV). Features which might be considered include the Power
Spectral Density for a given set of frequency bands, pitch period,
formant frequencies, etc. The reader can consult the references for
a more detailed discussion of speech features.

Recognition occurs when the IFV(s) is mapped into its
appropriate class. Thus, there is one class or sequence of classes
that corresponds to each speech segment that the system has been

trained to recognize.

2.4 Training

Training an MI speech recognizer to recognize speech segments

involves constructing the Function Vector for all classes and a

Threshold Vector for each class. In the example of MI vector
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classification presented in an earlier section, the Function Vector
and the Threshold Vectors were simply given. However, these vectors
must somehow be derived by training the system. This can be done
manually by the user or automatically by the system.

It is crucial in the training process that valid selection
criteria are used to select the Function Vector and Threshold
Vectors that will be used for recognition. Unfortunately, the
author is not familiar with the c¢riteria that were wused in
implementing the MI system at RADC, nor the results of testing those

criteria.

2.4.1. Manual Structure Building

In order for the user to manually build an MI structure, he
must be able to isolate the speech segment to be recognized and
observe the sequence of Feature Vectors that represent that segment.
The user can then determine the relationships between the normalized
values (from 0 to 1) of the features, based on some selection
criteria.

For example, suppose the problem is to recognize several spoken
words, and the training vocabulary consists of the same words. An
algorithm could be employed to calculate the power spectral density
(PSD) wvalues for a spectrum divided logarithmically into 32

frequency bands. Each Feature Vector then would have 32 features.
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These features can be displayed as a spectrogram on a high-
resolution color graphics device. The color represents the PSD of
each feature over a single frame. The user observes the colors to
compare relative PSD between features and derives functions and
Threshold Vectors that describe the relationships. The choice of
functions and Threshold Vectors must be such that each word in the

training vocabulary is unique.

2.4.2. Automatic Generation

In the example presented in the previous section, the user was
required to select functions and Threshold Vectors. For a
vocabulary of just a few words (or other speech segments) the

selection criteria need not be well-defined as long as acceptable

W e oree o v
% l.."‘.‘.‘

¥

5 Y -y ?

2 Xy

8"
L
‘:;n

55 . e
. Fl ]
e S 5 R )

\Hli'
LR

’, L
% &

L
-
-
o

o

o
r" ~ N
'-P L ’.J‘
{

- .,

X%,
recognition performance is achieved. However, for a vocabulary of i%ﬂ;
A
practical size (100+ words), the selection criteria must be highly Ry
RN
definitive, or the user will spend endless hours "tweaking" the I
et
. g . OIS A
system to achieve acceptable recognition performance. If the ﬁnju;
St
Lo
selection criteria can be well-defined, then it's also possible to j:;x;*
fw l-\ -
automate the selection of functions and Threshold Vectors. This is AT
AR
DAL
the essence of the automatic generation process. ;212;
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2.5. MI Development Syste ZANT
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time, cost and manpower constraints, a complete development system ey
is required. The essential components and their interrelationships . '
S
are illustrated in Figure 2.2. The central component is the Digital Eﬁ\"
by
. AN
Speech Processing Tool (DSPT). ak A
The DSPT interacts directly with the user interface and with 7
o
’ \J
all other components of the MI development system. It has oy
N
Lo
facilities for evaluating recognition results, developing DSP oty
algorithms, training the system either manually or automatically, 5.;._
hY) .1,
) and supplying both raw and derived data to the user interface. nsSp :‘j-:\:
- Il
;‘ algorithms, the Function Vector, and the Threshold Vectors originate :‘C.
v )
;,.h in the DSPT and are then down-loaded into the MI recognizer. DSPT :,':.';5;
N el
& capabilities are summarized in Table 2-1. D
» N
ol :-g:fﬁ
::. i
- TABLE 2-1 DSPT Capabilities A
B~ W
X Digital Record/Playback DSP Feature Extraction e
iy T
I Provide Raw Data to User Provide Feature Data to :h):?
v Interface User Interface _
.
» )
M Window Type Window Length O
r_'.-::.
! Window Overlap Spectral Shaping
- AP
. . W
y High Pass Filter Low Pass Filter B
' Band Pass Filter Sampling Rate X
5 -
j:' Sample Quantization Length of Speech Segment o
¢ VA
<& Various Display Options DSP Algorithm e
Development i
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The Speech Data Base consists of digitally recorded audio >
A
correlated with the symbolic representation (e.g., phonemes, words) o
\
! of the audio. This is referred to as a "labeled” speech data base. %ég o
ol
N
Having correlated audio data and symbolic data allows for a direct o 4
Wit
' automated evaluation of the recognition results. It also allows _
d e
‘ the automatic generation algorithm to train the system without user :jtﬁ-a
PR
PRt
intervention. RO
AT
The User Interface consists of various Input/Output devices G
LN
RO
that link the user to the DSPT and the MI Speech Recognizer. These -t::?t‘
_\:_:-':v
' include microphones, speakers, amplifiers, textual display, graphics ;2;{:
-l
display, keyboard, etc. ot
anied
. s . AN,
2.6. Unresolved Difficulties e
i
IR,
The theoretical basis for MI speech recognition can be found in R
h _\r:.
two of the references (Lundgren 84, Lundgren 85). Although it is gﬁ:jb
PRl ¢
) not based on any well-recognized model of human aural cognition, it ﬁf: ¢,
RV 26
can still be useful. The author has identified several possible o
problems that should receive additional analysis and that may need ,Cj:ﬂ;
! to be resolved to make the MI method more useful. i;iﬂiy
1 SN
2.6.1. Selecting Largest Integer ffﬁ{}:
RN
Part of the example of MI vector classification presented in an }}Si:f
earlier section was to determine the integer sums (one for each class), ‘
determine the maximum of the integer sums, and select the class cor- agi\
. N
responding to the maximum integer sum. A conflict can arise if the %S&'( 33
L)
maximum integer sum value belongs to more than one class. Of course, oy
K
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the Function Vector and Threshold Vectors constructed during training
should minimize the possibility of such a conflict. Nevertheless, it
is possible and should be dealt with. The author is not a

or not this issue was addressed in the RADC MI system.

2.6.2. Non-Linear Functions

When a particular feature of an Input Feature Vector is used in
the numerator of a function, the calculated function value will
change linearly with respect to changes in the feature value.
However, if the feature is used in the denominator of a function,
the calculated function will change non-lirearly with respect to
changes in the feature value. The author does not know why this
dichotomy of functional behavior was implemented or whether it poses
a problem in the recognition process.

Consider as an example a function, F1=(AxB)/C and a sequence of

three Input Feature Vectors,

(A =0.85, B =0.75, C = 0.20)
(A =0.85, B =0.75, C = 0.40)
(A =0.85, B =20.75, C =0.80).

The calculated values for Fl1 are 0.53, 0.46 and 0.35, respectively.
While the value of C increased by a factor of two in each case
(vector 1 to 2, vector 2 to 3), the value of Fl did not decrease by
a factor of two. In fact, F1 first decreased by a factor of 0.87
and next by a factor of 0.76, indicating a non-linear relationship

between the value of C and F1.
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2.6.3. Combining Information
Iy f
Z:
. Suppose the values of an Input Feature Vector are (A = 0.75,
|'|
w 8 = 0.87, C = 0.98, D = 0.77). Two valid functions that could be
3’, constructed and correspond to the feature values are F1=AxBxCxD and
: F2=AxB. Intuitively, it seems because both functions apply, and :
~ because F1 uses more information from the Input Feature Vector than >
:: F2, that the calculated value of Fl would exceed F2. In other ::::;‘.-‘.'
3 DN
‘ words, one should have more confidence in F1 and F2. Yet just the '_I}‘,,’.E
iy sl
? SWAY
’ opposite is true. The confidence that A, B, C, and D are large is “_‘
3 N nd
'.: 0.49 for F1 and 0.65 for F2, even though F2 considered only two :2-_:::
P~ PO
o features! This reverse logic says, in effect, "to gain the highest ;::-;._
..'- .’::.\
bay confidence that a particular condition exists, use the least amount
~ W
N of information." SN
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3. Initial Testing of MI .
:}:j{f
Although speech recognition using MI has not been formally iI:_\_ij-::
RN
tested, some informal testing has been done. More specifically, B S
pitch detection was tested using MI. The prcoblem is to correctly -;wr"r
':MM )
classify the pitch frequency of a speaker's voice within each 10 Hz E:,‘;‘{;\
A
class for the duration of the speech utterance examined. The e,
automatic generation algorithm was not used so that the MI structure 5:::'{‘;';
R
frele
itself and not the automatic generation could be evaluated. -:-Zf_-'.:
LS
rouy
3.1 System Configuration fma e
..'.D\Q-‘
-\‘;.'.-.'
S
Figure 3.1 is a block diagrem of the basic system used to -.“_-::‘--Z:
:'4_*.’\
develop the MI software and perform the initial testing. The RS
operating system was RSX-11M by Digital Equipment Corporation (DEC). ::;.:::-J:'
The software run on *he PDP-11 was written in Fortran 77. Software :l;;:l;::._
)
AN
was also written to run on the Floating Point Systems (FPS) 5210 Sea
R
array processor. ';Z:;Z?.j:
:.r'_:.-'_.-
.-"f-‘-
R
J-T‘.\-:._f
3.2 Pitch Detection et
;:3::}\
The input data to the pitch recognition system was generated by ij‘.:
N,
. . ) P 7’ )
sampling speech at a rate of 10 kHz and using 3 Fast Fourie a'."_&'.
Transform (FFT) on 1024 samples to generate a 512-point Power »~‘

Spectral Density (PSD). This corresponds to 2x3amining sneech
segments 102.4 msec in length. A Hanning window was used with a

weighting of 6 dB/octave above 500 Hz. The pitch information fis
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pitch itself) and the harmonics (integral multiples of the pitch).

indicated that the MI system identified the
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DEC PDP

11/70 —

COMPUTER

FPS 5210
ARRAY PROCESSOR

DEC LPA-11

ANALOG-TO-
DIGITAL

CONVERTER

SPEECH INPUT

DEC V1102
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1/0
BUS

1 1
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Figure 3.1 Block diagram of the MI development system hardware
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4. Summary and Conclusions

This report has discussed the problem of speech recognition and
how MI can be employed to solve the problem. The basic Ml concepts
were described in enough detail to allow a speech researcher to
implement one form of a MI system. Much research is necessary to
permit a meaningful comparison of MI to other speech recognition
techniques. This will require a well-integrated MI development
system as described earlier and a library of popular speech data
bases used to evaluate speech recognition. Currently, only a
partial development system exists at RADC and there are no plans to

extend it beyond its present form.
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