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I. INTRCDUCTION

The t:in\nun; charge concapt or "impulse gun" originally proposed by
Langweiler® is considered by ballisticians to offer the prospect of obtaining
muzzle velocities on the oxder of 2 to 3 km/s with gut the large(~4)* charge to
un ratio and high breech pressures(700-1000 MPa)” required of comnventional

lysio!a The advantages of such velocities have been discussed by various
authors and can be summarized as i{mproved dslivery rangs, increased target
penetration dus to higher kinetic energy of the projectile, and enhanced hit
prohability resulting from the decreased time-of-flight.

It is not within the acope of this rsport to preseat a theoretical
analysis of the traveling charge concept or ravisw previous oxporhontn}
results. 1nt:oru§cd read: r7h tofar:od to the vgrlu of Lun;\ni.lcr,z Lee
and uldhr. Vinti, Baer May et al.,” and Briand et al.” for a
discussion of the thootot:inl mlylie and dovolop-ont of computer modsls for
the traveling charge concept. Findings gf previw experimental ufforthcm
te found in reports ]B 0'Donnell et n} Baer, Barbarek and Jeslis,
3aldini and Audestte, and May et ¢l.”° An idealized description of t.ht
traveling charge effect has baen presented in an earlier wevck by Saith 3 an
is shown in Figure 1. The ignition process is in two stages. A comnntionnl
*booster” charge is used to rapidly pressurize the chamber and accelerate both
the projectile and a propellant charge(traveling chargs) attached to the base
of the projectile. At some point past the puak pressure due to the "booster"
charge, the traveling charge is ignited. It burns in such a manner as to
generate and eject combustion products at sufficient velocity to maintain
constant thrust/pressure on the projectile base and te increase projectile
velocity. At very high velocities, the traveling charge is expected to be
more efficisn: than conventional propelling charges. An exampls of this is
included in Table A-2.

TRAVELING CHARGE GUN

SOQSTIR PPOPRLLANT

VHER PROML ANT !

—3
ProscCTRS '
TRAVELING SO0STER E
R —
= .

Figure 1. Idealized Traveling Charge Gun'
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In summary, the traveling charge effect is characterised by:

a) The attachment to the projectile of a very high burning rate(VHBR)
propellant which travels with the projectile down the tube.

b) Deviation from the "normal® pressure gradient vhich would be obtained
if all the propellant, "booster" and traveling charge, were placed in the
chanber. The daviation should show lower chamber pressures and increased
downbore pressures.

c) An increase ‘n muzzle velocity over the corresponding conventional
firing.

At the present time, we are undertaking an experimental effort to
demonatrate the traveling charge effect as a practical and useful gun
propulsion system. An important component of this affort is the use of a
scphisticated computer code, XNGVAKTC (XKTC), which can model Both traveliug
charge and conventional gun firings. As atated by May et al.,” a fluxible
computer model

"{s necessary as a learning tool to help explore
the consequences of the physics that has been incoxporated,
and to guide the experimental progran.*

The purpose of this report is to susmarize the results of the initial
modeiing computations wvhich were part of the above efforct. These computations
include investigations in the following areas:

Applicability of the XKTC computer cods to a small caliber (14-mm) Mann
Barrel, a regime in which the code had not previously bheaen exercised. In this
setting the predictive nature of XKTC for both conventional and travaling
charge firings is examined relative to experimintal results.

Sensitivity of the traveling chaxge effect to the igniticn time of the
traveling charje propsllant. This paramitric study incorporated two distinct
burning rate laws for the traveling charge duc to the uncertainty of the
burning behavior of the VHER propellant.

Sensitivity of the traveling charge effect tc the burning rate of the
traveling charge propellant,

I1I. XKTC COMPUTER CODE

The computer code selected to modsl the interior ballistic event was the
XNOVAKTC (XKTC) code developed by Paul Associates. This code 1s a 6
combination of a newer version of the NOVA code together with the BRLIC

2
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code. Selection of XKIC was based upon several factors. First, the code has
the capability to model conventional, traveling charge, and a combination of
"booster® and traveling charge gun firings. Second, the code includes kinetic
options which allow fiexibility in {nvestigating the traveling charge effect.
The details of the kinetic cptions portnin*g; to the traveling charge were
presented by P. Gough in a separate paper. The final factor in selecting
XKTC war its demonstrated accuracy in predicting gun performance, in terms of
pressure profiles, pressure oscillations, and wvelocity, at least for large
caliber conventional gun firings. Thig accuracy is illustrated for a 120-mm
tank gun in a paper by Prbbins et al. Figure 2 shows the measured pressures
at various pcsitions along the gun tube and pressure difference measured
between the ends of the chamber for a 120-mm caseless round. Figure 3
presents the pressures and pressure diffarence calculated by XKTC for the
caseless round. A comparison of ths pressure and pressure difference curves
for the measured and calculated results shows excellent agreement. The
difference in breech pressures is approximately & MPa while at the muzzle the
diffurence is abouc 7 MPa. Also, the curvea for the pressure differences,
wvhich measure the pressure oscillations in the chamber, have the same general
characteristics.

;
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Although XKTC showed excellent agreement for large caliber gun systems,
its predictive ability for small caliber systems was unknown. Therefore, code
validation was extended to small caliber applications and used as a tool to
evaluate ballistic improven.nts due to the traveliny charge effect.

I. 1. EXPERIMENTAL FIXTURE AND GUN FIRINCS

A schematic ~f the test gun fixture together with the location of
prgsaure gages is shown in Figure 4. The fixture has a chamber volume of 100
cm”, a bore diameter of 14-mm, a tube length of 2900-mm and an expansion ratio
of 5.3. A schematic of the traveling charge projectile to scale is presented
in Figure 5.
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At the time of this report 12 firings with 6 different configurations of
"booster" and traveling charge propellant have Y,on performed. Details on
these firings can be found in a separate paper. For this study, two of
these firings were selected for detailed analysis. The configurations for
these firings are shown in Table 1.

TABLE 1. Configuration of Firings Used in Study
Round # Booster (g) T.C. (g) Projectile (g)
6 3% -- 2,59
12 34 8.53 22.0
For round 6, the cavity of the traveling charge projectile was fillad
with a nylon insert. The "bocuster" charge for both rounds was a non-deterred
ball propellant manufactured by the Olin Corporation. The traveling charge
propellant used in round 12 was a combination of RDX and & boron hydride salt

with a KRATON binder pressed to 1008 theoretical maximum density. Results are
tabulated in Table 2. Pressures are given in MPa and velocity in m/3.

TABLE 2. Experimental Results Of Rounds 6 and 12

Rd# Gage 1 Gagd 2 Gage 3 Gage 5 Gage 7 Velocity
Pmax Pmax Pmax Pmax Poax

MPs MPa MPa MPa KPa n/s
6 339 325 281 71 29 1567
12 555 458 590 98 b4 1770

Pressure vs. time curves for the two rounds at the indicated gages are
4 given in Figures 6 and 7.
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IV, COMPARISONS BETWEEN XKTC AND EXPERIMENTAL MEASUREMENTS

Although the XKTC code has never been fully exercised for small caliber
guns, because of its agreement with experimental results from large caliber
firings, it was expectgg that the code would also be in good agreement with
small caliber firings. " Thus, the only parameters adjusted in the code in
attempting to match experimental results were bore resistance and shot start
pressure.

Thermochemical informatign for the "booster" propesllant was obtained
through the use of the BLAKE"? code. Burning rates for the "booster" were
obtainegofrom closed bomb firings and subsequent data reduction using
CBRED2. For the purposes of simplification, the thermochemical properties
of the traveling charge propellant were assumed to be identical to those of
the "booster", However, the burning rate for the traveling charge was
adjusted to prodiﬁe burning times similar to those obtained in the closed bomb
diagnostic work.

Discussion of Round 6: To simulate round 6, the XKTC code was run in a
conventional gun firing mode. Table 3 shows the final computed results after
a series of parametric runs involving varying the shot start pressure and bore
resistance profile. The final values selected were a shot start of 6 MPa and a
bore resistance of 19 MPa from 51 cm of travel to muzzle exit. Although the
bore resistence profile is unusual in that the resistance increases after a
certain amount of travel it was felt that this situation was not physically
impossible. This belief was based upon the design of the projectile which had
a very thin walled sleeve. It was felt that the pressure exerted on the
sleeve was sufficient to distend the slaeva resulting in the higher resistance
used in the computer model. Also presented in the table is a comparison with
experimental results,. '

Computed pressure vs. time profiles from XKTC for round 6 are presented
in Figure 8. A comparison with the experimental pressure profiles, Figure 6,
shows the excellent agreement for breech pressures as indicated in Table 2.
Differences in the downbore pressures are also clearly evident. Fortunately,
the timing of the events (uncovering of gage locations, etc.) are in close
agreement, which agrees with the close match on the velocities.




TABLE 3. Compariaon of Predicted XKTC Results and
Experimental Results Yor Round 6 --
Conventiona) Firing

Gage 1 Gage 2 Gage 3 Gage 5 Gage 7 Velocity
Pmax Prax Pmax Paax Paax Interfarometer

MPa NPa MPa MPa MPa n/s
XXTC Round 6:
34l 338 275 63 28 15711

Experiment.l Round 6:

339 325 281 71 29 1567
Difference:
|
| 2 13 -6 -6 -1 4

Percent Difference:

.68 & -2% -8.5% -3s .23%

PAESSURE(MPA)




For both the 120-mm conventional caseless firing presented earlier and
this small caliber (l4-mm) conventionsl firing, XKTC appears to accurately
predict breech pressure, timing, and velecrity. On the cther hand, a
difference between measured and computed downbore pressures is present in both
comparisons. Whether these differences are due to incorrect resistance
profiles or other causes needs to be investigated in more depth.

Discussion of Round 12: The traveling charge option of the XKTC code was used
to simulate round 12. Given the success in matching experimental results for
round 6, all input variables, except those pertaining to the traveling charge
and "booster" charge weight, were kept the same. A burning rate law (r=bP",
where b=0.065 and n=1.05) was used to describe the traveling charge burning.
Further, the ignition of the the traveling charge was delayed 1.15 ms after
the ignition of the "booster" charge. The time delay for the traveling charge
was estimated from the pressure vs. time curves from the experimental results.

Table 4 summarizes the computed results and comparisons with the experimental
data. :

TABLE 4., Comparison of Predicted XKTC Results and
Experimental Results for Round 12 --
Traveling Charge Firing

Gage 1 Gage 2 Gage 3 Gage 5 Gage 7 Velocity
Pmax Pmax Pmax Pmax Pmax Breakscresn
MPa MPa MPa MPa MPa n/s
XKTC Round 12:

554 472 620 89 39 1782

Experimental Round 12:

555 458 590 98 44 1770
Difference:

-1 14 30 -9 -5 12
Percent Difference:
-.2% s 5% -9% -11s 7%
The pressure vs. time curves, for round 12, computed by XKTC are shown in
Figure 9. :s in the two previous comparisons, XKTC results are in close

agreement with experimental results for breech pressure, timing, and velocity.

11

e e e e e e e L M L Lt e e M R (e ¥ S A e i t S | e P e w e P | Lt | e T PR L M v AR P | e o e L B8 LB AR LFTR L7E ASER Lz LA A A LU LS A




But once agaim, substantial differences are observed in the downbore pressures
especially for gage 5. Fortunately, the pressure vs. time curves computed by
XKTC exhibit the same behavior as the experimental pressure vs. time curves
for gagea not located at the breech. An example of this clore agresment is
shown for gage 3, (tube origin) in Figures 10 and 11.
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PREISURE(MPA)
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Figure 11. Computad XKIC Pressure Va. Time Curve Round 12

V. IGNITION TIME STUDY

In concept, it is possible to place the entire charge at the projectile
base without using any propellant in the chamber. However, froam previous
computatiom8 it appears thet there is little gain in efficiency in using a
traveling charge for the early portion of the ballistic cycle. On a more
practical side, the early portion of the ballistic travel can be ‘greatly
affected by combustion varisbility and at this time there is some uncertainty
concerning the predictability of the burn rate of the VHBR formulations.
Additionally, the pressure drop at the projectile base is relatively small
when the projectile velocity is low. Hence, for these reasons it was decided
to use a conventional "booster" propellant for the initiai travel and have the
traveling charge ignite after the projectile has moved down tube. An
important question to address is: "Where is the most advantageous position in
the ballistic cycle to ignite the traveling charge?"

The purpose of investigating the ignition time of the traveling charge
was to determine its effect on muzzle velocity and maximum pressure within
the gun.

For the study, a traveling charge configuration similar to that of round
12 was used; tnat is, 34 grams of "booster" propellant with 8 grams of
traveling charge. Due to the uncertainty of the actual burning behavior of
VHBR propellants, two different burning rate liaws were utilized. Eisgt, was
the pressure dependent law used in simulating round 12, r = 0.065P*: The
second wvas a constant burning rate of 71 meters/secord, a rate which would
ensure the burn out of the traveling charge prior to muzzle exit. In

13




addition, no bore resistance was incorporated into the model. It should also
be noted that no attempt was made to optimize the system with respect to
performance dus tv the "booster" charge.

As a point of comparison, an all "booster® case with 42 grams of
propellant was selected. Results of this all "booster” case showed a maxiaunm
gun pressure of 496 NPa and a muzzle velocity of 1897 a/s.

The ignition time of the traveling charge with respect to the "booater"
ignition time was made a parameter in the calculations. The actual times used
in the study were based upon the assumption that the traveling charge would ' .
ignite no later than the time necessary to obtain 258 of travel. From the
all "boostex® case the time to 25% of travel was 1.75 ms and the time of
maxinum pregsure was 1.15 ms. Figure 12 summarizes the times selected for the
study.

Time(ms) 0 475 .95 b}

[ —
¥

1;-

Figure 12. Jgnition Times Choaen for the Iraveling
Chaxge in the Ignition Tima Study

The effect of changing the ignition time of the traveling charge was
evaluated in the following manner. Pressure vs. time curves for the all
"booster” run were compared with those from the traveiing charge cases for the
diffarent traveling charge propellant ignition times. DNifferences in maximum
pressure and cerresponding percent differences, with respect to the all
*booster" case, were determined. Similar cumpariscns were performed for
differsnces in velocity. An example of this computation is shown in Figure 13
for the 42 gram all "booster" compariscn case versus a traveling charge
simulation with an ignitions delay of 1.75 ms. The difference betwsen
maximum pregsures is 147 MPa, which represents a percent decrease of 30% with
respect to the comparison case. Thes: percent changes in maximum pressure and
velocity, as a function of traveling charge ignition time, are presented
graphically in Figures 14 and 15.
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As can be seen frox Figure 14, XKTC pradicts a velocity increase for a
configuration of 34 grams of "booster" and 8 grams of traveling charge
propeilant over the all "booster" cass regardless of thr ignition tims of the
traveling charge propellant. The only excepcion was the simulation using a
constant burn rate law with ignition at 1.15 ms which resulted in the saume
velocity. It appears that the critical factor for the increased velocities is
the deviation of the ignition time from 1.15 ms, which is the time of Pmax for
the all "booster" case. For the pressure dependent burn rate law the maximum
percent increase in velocity of 7.3% occurred at an ignition time of 0.475
ms, a deviation of 0.675 ms froa 1.15 ms. Using the constant burn rate law,
the maximum parcent increase, 6.3%, in velocity occurred for an ignition time
of 1.75 ms, a deviation of 0.6 ms from 1.15 ms. This same percent increase,
6.3%, vas also computed for tha pressure dependent burn rate law with ignition
at 1.75 ms. Of interest is the lower percont increase in velocity recorded
for an ignition time of 9 ms than for an ignition time of 0.475 ms with the
pressure dependent burn r1ate law. The cause of this drop needs to be
invostigated in greater detail.

Although velocity increases are predicted by XKTC for ignition times both
before and after 1.15 ms, the same thing is not true for improvements in the .
pressure profile as far as maximum gun pressure is concerned. As shown in
Figure 15, a time of ignition before or at 1.15 ms shows an increage in
predicted maximum pressure for the pressure dependent burn rate law. Using
a constant burn rate law no increase in pressure is obtained for the same
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ignition times. However, both burn rate laws exhibit a 308 maximum pressure
dacrsase if vae ignition time is 1.35 ms or later. In all instances, the
saximua prersure is observed at the breech.

Thus, for the ignition times selected and the specific gun/propulsion
cu88 uied in this study, XKTC predicts that the maximus improvement to the
traveling chargy effect will occur for an ignition time of 1.75 ms for the
traveling charge prupellant. 1t is important to saphasize that this
conclusion is applicable only to this specific case. Any change in the
gun/propulsion configuration, such as changing the ratio of "booater" to
traveling charge prcpellant, may lead to a different predictions.

Two additionzl observations noted while analyzing the results of : ae
ignition time study are worth mentioning. First is the apparent insensiilivity
of the results to the burn rate law used to describe the burning of the
traveling charge propellant. This facet needs to be investigated in greater
depth, especially sincs combustion diagnostics on the VHBR propellants have
indicated thaf their burning behavior may not be pressure dependent in the
normal sense. 7 The szecond observation concerned downbore pressures. In
APPENDIX A, Tables A-1 and A-2 show the maximum pressure predicted by XKTC for
the various gages, ignition times, and burn rate laws used in the study. It
vas observed that for gage 7, located 20-cm before muzzle exit, the pressures
for the traveling charge cases were lower than the all "booster" case with one
exception. Additionally, the maximum pr-~ssure observed at gage 7 in all cases
corresponds to the base pressure on the projectile. However, muzzle
velocities, which are reflective of base pressure, are higher for the
traveling charge cases. An anawer to this apparent contradiction may lie in
the effect that the burn out of the traveling charge haz on the base
pressure. In Figure 16, XKTC computed base pressure versus travel profiles
are plotted for the all "booster" case and two traveling charge cases. The
rapid drop in the base pressure curves for both traveling charge cases occurs
at the point in the travei where the traveling charge burned out. This rapid
drop in both cases resulted in the base pressure being lower than the base
pressure for the all "booster" case. Thus, it appears that the burn out of
the traveling charge may have a substantial effect on base pressure. If this
sffect is present in actual gun firings, then tailoring the burn out of the
traveling charge may be as critical to final performance as the ignition time
of the traveling charge.
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VI. BURNING RATE STUDY

In the ignition time study two different burn rate laws were vtilized to
describe the burning behavior of the trav.linﬁschntgo propellant, a) r = 71
m/s, a constant burn rate and b) r = 0.065P"*7~, a pressuire dependent
exponential law. Comparison of results showed some differences, especially in
pressure bshavior, between predictions involving the two laws. Thus, it
became of interest to examine in greater detail the influence of the burning
behavior of the traveling charge on predicted ballistic results. For this
study the focus was on the effect of using different burning rates.

Specifically, the purpose of this study was to investigate the effect
that differant burning rates of tha traveling charge have on ballistic

performance. Again the parameters of major interest are velocity and maximum
gun pressure.

As in the ignition time study, a traveling charge configuration of 34
grams of "booster" and 8 grams of traveling charge was selected. Based upon
the result of the ignition time study, the ignition time of the traveling
charge was chosen to be 1.75 ms. A bP™ burn rate law, with b=.065 and n-1.05,
was used in the the study; and the variation in the burn rates was obtained
by varyirg the value of the coefficient by +/-30, +/-20,+/-15, +/-10, and +/-
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5 percent.

Figures 17 and 18 present the affects of variations in burning rate, as
predicted by XKTC, on the maximum pressure recorded in the gun and muzzle
velocity in terms of percint changes.
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Figure 17. Effact of Varying the Burning Sate of the Traveling
Chaxge on Maximum Gun Pressure

The most striking feature of Figure 17 is the very large change in
maximum gun pressure, up to 1408, which is predicted by XKTC for increases in
the burning rate of the traveling charge beyond a 108 increase. If this
result is valid for actual gun firings, then controlling the burning rate of
the VHBR propellant may be nf critical importance for improved ballistic
behavior. In fact, it may be that there is a narrow range for the burning
rate of the VHBR for which the traveling charge effect can be effective. Too
low a burning rate producing no appreciable gain and too high a rats resulting
in unacceptable pressures. It is worth noting that the elevated pressures for

the increased burning rates in Figure 17 occurred at the projectile/traveling
charge basa not the breech.
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Figure 18.

Chaxge on Muzzle Velocity

‘Although increased maximum gun pressures are predicted by XKTC for
increased burning rates of the traveling charge, this is not translated into
appreciable increases in velocity as seen in Figure 18. I or changes in the
burning rate up to +/- 20% the velocity changes by less than +/- 0.5%.
However, the large drop from -0.25% to -1.9% in going from 20% to 30%
decrease in burning rate may indicate that there will be a significant
decrease in performance if the burning rate of the traveling charge is too
low. :

As with the ignition time study, the conclusions reached are based on
predicted results for a specific gun/propulsion configuration. Any change,
such as altering the ignition time of the traveling charge, could lead to
different results. '

VII. COMPARISON WITH OPTIMIZED ALL "BOOSTER" CASES

Based upon the results of the Ignition Time Study and Burn Rate Study it
appears that for a configuration of 34 g of "booster" and 8 g of traveling
charge that the optimum velocity is approximately 2020 m/s if maximum gun
pressure is restricted to the maximum pressure due to the "booster". For 34
grams of "booster" in the test fixture being utilized this corresponds to a

20
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pressure of 349 MPa. The obvious question is: "What performance could be
expected 1f the gun syntem was optimized for a conventional propellant
configuration with the maximum pressure restricted to 350 MPa?" To answer
this question optimization studies were performed utilizing the XKTC computer
code. The results are summarized below.

TABLE 5. Results of Optimized Conventional Firings
OPTIMIZATION

Maximum Pressure < 350 MPa

Propellant Weight Velocity

Non-deterred Ball 50 g 1780 m/s
Seven Perforations 60 g 1900 m/s
20% Traveling Charge 42 g 2020 m/s

As can be seen from the above the traveling charge configuration performs
better, in terms of increased velocity, than an optimized conventional
propellant charge by approximately 120 m/s. This corresponds to a 6% velocity
increase.

VIII. CONCLUSIONS AND FUTURE WORK

The conclusions of this initial modaling effort in support of a U.S. Army
undertaking to demonstrate the viability of the traveling charge effect can be
sumarized as follows:

The XNOVAKTC computer code is applicable to small caliber gun firings.
This includes conventional and traveling charge configurations. Predictions
in regards to breech pressure, velocity, and timing are excrllent. However,
downbore pressure results show larger than expected deviations.

The following conclusions are based upon a specific gun/propulsion system
and may not be the same for different systems.

The ignition time study indicates that the grestest improvement in the
traveling charge effect will occur if the ignition of the traveling charge is
delayed past the time of maximum pressure due to the "booster" charge.

The ignition time study indicates that the traveling charge effect may be
ingergitive to the burning behavior, in terms of the burning rate law
utilized, of the traveling charge as long as the total burring time for the
traveling charge is within a given range.
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The burning rate atudy indicates that relatively large changes in burn
rate (+/-30%) do not appreciably change muzzle velocity but can leacC to large
changes in maximum pressures.

BurnAout of the traveling charge results in a large drop in base
pressure. See Figure 16.

Areas in which further computations are felt to be needed include:

Investigation into the source of the discrepancy between downbore
pressures predicted by XNOVAKTC and those observed in actual gun firings.

Generalization of the effects of traveling charge ignition time and

burning behavior on ballistic performance based upon various gun/propulsion
systems.

Investigation of the effect the burnout location of the traveling charge
has on base pressure and subsequent ballistic performance.

Investigation of the effect of different ratios of "booster" charge to
traveling charge on ballistic performance.

Investigation of the effect of using the kinetic options in XKIC to model
the traveling charge propeliant. The kinetic options allow for a delayed
chemical reaction of the traveling charge propellant.

Investigation of the origin of the resistance profile used in modeling
the experimental firings. This investigation will be performed in an
experimental program.
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Tables A-1 and A-2 give the maximum pressures, at the indicated gages,
and wuzzle velocities for the two different burn rate laws used in the
iynition time study.

TABLE A-1l. Ignition Time Study - Constant Burn Rate

Ignition Gl G2 G3 G5 G7 Velocity

Time(ms) MPa MPa MPa MPa MPa n/s

i 0 N/A N/A N/A N/A N/A N/A
475 497 494 469 8l 30 1998

. .95 436 426 365 67 28 1926
1.15 373 364 399 55 28 1895

1.35 349 346 288 52 22 1946

1.55 349 346 288 49 22 1980

1.75 349 346 288 124 21 2017

* 496 492 394 71 33 1897

Note: Results for an ignition delay of 0 ms was not
obtained due to difficulties with XKTC
* 42 g All "Booster" Case
TABLE A-2. Ignition Time Study - Pressure Dependsnt Burn Rate
Ignition Gl G2 G3 G5 G7 Velocity

Time(ms) MPa MPa MPa MPa MPa n/s
0 498 498 427 78 29 2011
.475 530 541 457 76 28 2035
.95 573 546 570 84 31 1989
1.15 535 437 - 626 73 38 1903
1.35 349 346 288 50 20 1917
1.55 349 346 288 47 21 1979
- 1.75 349 346 288 86 20 2018

* 496 492 394 71 33 1897 |
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