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I. INTRODUCTION

The t 1 aveling, charge concept or "impulse gun" original ly proposed by
Langveiler in considered by ballisticians to offer the p~rospect of 2obtaining
nuzzle velocities on the order of 2 to 3 km/s withlut the large(.4) 2brg to
mans ratio and high breech pressures(700.1000 EPa) required of conventional
gun sysjler. The advantages of such veilocities have been discussed by various
authors and can be sumarized as improved dslivery range, increased target
penetration due to higher kinetic energy of the projectile. and enhanced hit
probability resulting from the decreased time-of-flight.

It is not within the scope of this report to present a theoretical
analysis of the traveling charge concept or review previous experimental
results. Th: intoresied reader is ref rred to the vrks of LangweilerLe
and Ladlerb Vinti, Cough, Baler,' May et al ., and Briand at al. for a
discussion of the theoretical analysis and development of computer models for
thts traveling charge concept. Findings ;f previgs experimental effort 11can
be found in reports tiO'Donnell et al.9 Baer, B' arbarek and Jeslis,
Saldini and Audette. and May et al. An idealized description of thg
traveling charge effect has been presented in an earlier work by Smith 3 and
is shown in Figure 1. The ignition process is in two stages. A conventional
"*booster' charge is used to rapi4ly pressurize the chamber and accelerate both
the projectile and a propellant charge(travelini cbarge) attached to the base
of the projectile. At some point past the peak pressure due to the "booster"
charge, the traveling charge is ignited. It burns in such a manner as to
generate and eject combustion products at sufficient velocity to maintain
constant thrust/pressure on thes projectile base and to increase projectile
velocity. At very high velocities, the traveling charge is expected to be
more efficio~nt than conventional propelling charges. An example of this is
included in Table A-2.

TRAVELING CHARGE GUN

ThAVOsGo soons
-HA reu PNOMfLL "imu

Figure 1. Idealized Travaling Charge G' 13
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In sainary, the traveling charge effect is characterized by:

a) The attachment to the projectile of a very high burning rate(VHIZ)
propellant which travels with the projectile down the tube.

b) Deviation from the "normal" presoure gradient which would be obtained
if all the propellant, "booster* and traveling charge.* were placed in the
chamber. The deviation should show lower chamer pressures and increased
dovnbore pressures.

c) An increase in muzzle velocity over the corresponding conventional
firing.

At the present time,* we are undertaking an experimental effort to
demonstrate the traveling charge effect as a practical and useful gun
propulsion system. An important com~ponent of this effort is the use of a
sephisticated comuputer code, INWdAXTC (XKTC) * which can miodel loth travelixag
charge and conventional Cun firings. An stated by May et &I.. a fl;Axible
computer model

"isnecessary as a learning tool to help explore
the consequences of the physics that has been incorporated,
and to guide the experimental program."

The purpose of this report is to su'arise the results of the initial
modeliing computations which were part of the above effort. These computations
include investigations in the following areas:

Applicability of the XKTC computer code to a small caliber (14-in) Mann
Barrel, a regime in which the code had not previously been exercised. In this
setting the predictive nature of XRTC for both conventional and traveling
charge firings is examined relative to experimintal results.

Sensitivity of the traveling char;. effect to the ignition time of the
traveling charge propellant. This paramitric study incorporated two distinct
burning rate laws for the traveling charge due to the uncertainty of the
burning behavior of the VHBR propellant.

Sensitivity of the traveling charge effect te the burning rate of the
traveling charge propellant.

11. XKTC COMPUTER CODE

The computer code selected to model the interior ballistic event was the
XNOVAKTC (XOCTC) code developed by Paul Goul& Associates. This code Is a6
combination of a newer version of the NOV/A' code together with the BP.UXC
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code. Selection of XTC *as based upon several factors. First, the code has
the capability to modal conventional, traveling charge, and a combination of
"booster* and traveling charge Sn firings. Second, the code includes kinetic
options which allow fLexibility in investigating the traveling charge effect.
The details of the kinetic options pertainigg to the traveling charge were
presented by P. Cough in a separate paper. The final factor in selecting
XKTC yev its demonstrated accuracy in predicting gun performance, in terms of
pressure profiles, pressure oacillations, and velocity, at least for large
caliber conventional gun firings. int1 accuracy is illustrated for a 120-M
tank gun in a paper by Pbbins et al. Figure 2 shows the measured pressures
at various pesitions along the gum tube and pressure differenne measured
between the ends of the chamber for a 120-mm caseless round. Figure 3
presents the pressures and pressure difference calculated by XKTC for the
caseless round. A comparison of the pressure and pressure difference curves
for the measured and calculated results shows excellent agreement. The
difference in breech pressures is approximately 4 HPa while at the muzzle the
diffeirence is aboua 7 iFe. Also, the curves for the pressure differences,
which masure the pressure oscillations in the chamber, have the same general
characteristics.

3
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Althoug XKTC showed excellent agreement for large caliber gul systems,
its predictive ability for small caliber systems was unknown. Therefore, code
validation was extended to small caliber applications and used as a tool to
evaluate ballistic improve&ants due to the traveling charge effect.

I.I. EXPERIMENTAL FIXTURE AND GUN FIRINGS

A schematic -f the test gun fixture together with the locatio'n of
pr suoure gages is shown in Figure 4. 1he fixture has a chamber volume of 100
cm , a bore diameter of 14-mm, a tube length of 2900-rn and an expansion ratio
of 5.3. A schematic of the traveling charge projectile to scale is presented
in Figure 5.

A--304

W-•295

-2857 '219 L5-
S153 -

Figure 4. Schematic of the ExDerimen=al Gun Fixture
(dimension_ in cm)

.241 0 aa e t

rigure 5. Traveling Charge ProTectile
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At the time of this report 12 firings with 6 different configurations of
"booster" and traveling charge propellant have t7 en performed. Details on
these firings can be found in a separate paper. For this study, two of
these firings were selected for detailed analysis. The configurations for
these firings are shown in Table 1.

TABLK 1. Configuation of Firings Used in Study

Round 0 Booster (g) T.C. (g) Projectile (g)

6 34 -- 24.59

12 34 8.53 22.0

For round 6, the cavity of the traveling charge projectile was filled
with a nylon insert. The "bocoster" charge for both rounds was a non-deterred
ball propellant manufactured by the Olin Corporation. The traveling charge
propellant used in round 12 was a combination of RDX and a boron hydride salt
with a KRATON binder pressed to 1000 theoretical maximum density. Results are
tabulated in Table 2. Pressures are given in KPa and velocity in m/s.

TABLE 2. Experimental Results Of Rounds 6 and 12

.Rd 0 Gage 1 Gage 2 gage 3 Gage 5 Gage 7 Velocity
PmX Pmax Pm Pmax Pm
SPa MPa MPa HP& KPa 2/s

6 339 325 281 71 29 1567

12 555 458 590 98 44 1770

Pressure vs. time curves for the two rounds at the indicated gages are

given in Figures 6 and 7.

7
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IV. COMPARISONS BETWEEN XKTC AND EXPERIMENTAL MEASUREMENTS

Although the XKTC code has never been fully exercised for small caliber
guns, because of its agreement with experimental results from large caliber
firings, it was expectig that the code would also be in good agreement with
small caliber firings. Thus, the only parameters adjusted in the code in
attempting to match experimental results were bore resistance and shot start
pressure.

Thermochemical informatjin for the "booster" propellant was obtained
through the use of the BLAKE code. Burning rates for the "booster" were
obtained from closed bomb firings and subsequent data reduction using
CBRED2. For the purposes of simplification, the thermochemn$cal properties
of the traveling charge propellant were assumed to be identical to those of
the "booster". However, the burning rate for the traveling charge was
adjusted to prodY9e burning times similar to those obtained in the closed bomb
diagnostic work.

Discussion of Round 6: To simulate round 6, the XKTC code waa run in a
conventional gun firing mode. Table 3 shows the final computed results after
a series of parametric runs involving varying the shot start pressure and bore
resistance profile. The final values selected were a shot start of 6 MPa and a
bore resistance of 19 MPa from 51 cm of travel to muzzle exit. Although the
bore resistance profile is unusual in that the resistance increases after a
certain amount of travel it was felt that this situation was not physically
impossible. This belief was based upon the design of the projectile which had
a very thin walled sleeve. It was felt that the pressure exerted on the
sleeve was sufficient to distend the sleeve resulting in the higher resistance
used in the computer model. Also presented in the table is a comparison with
experimental results.

Computed pressure vs. time profiles from XKTC for round 6 are presented
in Figure 8. A comparison with the experimental pressure profiles, Figure 6,
shows the excellent agreement for breech pressures as indicated in Table 2.
Differences in the downbore pressures are also clearly evident. Fortunately,
the timing of the events (uncovering of gage locations, etc.)0are in close
agreement, which agrees with the close match on the velocities.

9



TABU 3. Compar aon of Predicted XWTC Results and
IxperLmental Results ior Round 6 --
Conventional Firing

Gage I OGag 2 Ga"e 3 G"So 5 Gage 7 Velocity
puan PMx Pax Phx Plam Interfero.eter
XPa NPa ePa WePa Pa n/s

XKM RWmd 6:

341 338 275 65 28 1571

Ixpertnat4I Round 6:

339 325 281 71 29 1567

Difference:

2 13 -6 -6 -1 4

Percent Difference:

.60 4% -2% -8.50 -3% .25%

410

I-
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For both che 120-ma conventional caseless firing presented earlier and
this small caliber (14-mr) conventional firing, XKTC appears to accurately
predict breech pressure, timing, and velority. On the other han.d, a
difference between measured and computed downbore pressures is present in both
comparisons. Whether these differences are due to incorrect resistance
profiles or other causes needs to be investigated in more depth.

Discussion of Roumd 12: The traveling charge option of the XKTC code was used
to simulate round 12. Given the success in matching experimental results for
round 6, all input variables, except those pertaining to the traveling charge
and "booster* charge weight, were kept the same. A burning rate law (r-bPn,
where b-0.065 and n-1.05) was used to describe the traveling charge burning.
Further, the ignition of the the traveling charge was delayed 1.15 ms after
the ignition of the "booster" charge. The time delay for the traveling charge
was estimated from the pressure vs. time curves from the experimental results.
Table 4 summarizes the computed results and comparisons with' the experimental
data.

TABLE 4. Comparison of Predicted XKTC Results and
Experimental Results for Round 12 --

Traveling Charge Firing

Gage 1 Gage 2 Gage 3 Gage 5 Gage 7 Velocity
Pmax Pmax Pmax Pmax Pmax Breakscreen
MPa Mpa MPa (Pa MPa i/s

XKTC Round 12:

554 472 620 89 39 1782

Experimental Round 12:

555 458 590 98 44 1770

Difference:

-1 14 30 -9 -5 12

Percent Difference:

-. 2% 3% 5% .9% -11i .7%

The pressure vs. time curves, for round 12, computed by XKTC are shown in
Figure 9. ;s in the two previous comparisons, XKTC results are in close
agreement with experimental results for breech premsure, timing, and velocity.

11



But on•e alpt. substantial differences are observed in the dovnbore pressures
espeocally for VS*e 5. Fortunately, the pressure vs. time curves computed by
XKTC exhtbit the saw behavior as the experimental pressure vs. time curves
for gages not located at the breech. An example of this clove agreement is
shown for pS S, (tube origin) in Figures 10 and 11.

M -

"IF---

GP

ini

0

Figure 9. Commuted Pressufe Vs. Tim. Profiles From TIC For
ound. 12 -- Travel ing ama Sirinm

.00

see

WOC

StIo,
10 5S10I

Figure 10. Ixterimantal Pressure Vs. Time Curve. Round 12
GaS. 3 (Tuba OriginI -- Traveling Charse Firing
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Figure 11. C•omutsd X Pressure Vs Tins Curve Round 12
gage 3 (Tube Origin) - Tr&aelini Charge FirLaff

V. IGNITION TIh STUDY

In concept, it is possible to place the entire charge at the projectile
base without 8 using any propellant in the chamber. However. from previous
computations it appears that there is little gain in efficiency in using a
traveling charge for the early portion of the ballistic cycle. On a more
practical side, the early portion of the ballistic travel can be 'greatly
affected by combustion variability and at this time there is some uncertainty
concerning the predictability of the burn rate of the VHBR formulations.
Additionally, the pressure drop at te projectile base is relatively small
when the projectile velocity is low. Hence, for these reasons it was decided
to use a conventional "booster* propellant for the initia; travel and have the
traveling charge ignite after the projectile has moved down tube. An
important question to address is: "Where is the most advantageous position in
the ballistic cycle to ignite the traveling charge?"

The purpose of investigating the ignition time of the traveling charge
was to determine its effect on muzzle velocity and maximum pressure within
the gun.

For the study, a traveling charge configuration similar to that of round
12 was used; that is, 34 grams of "booster" propellant with 8 grams of
traveling charge. Due to the uncertainty of the actual burning behavior of
VHBR propellants, two different burning rate laws were utilized. 'i6t, was
the pressure dependent law used in simulating round 12, r - 0.065P"' . The
second was a constant burning rate of 71 meters/secord. a rate which would
ensure the burn out of the traveling charge prior to muzzle exit. In

13
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addition, no bore resistance was incorporated into the model. It should also
be noted that no attempt was made to optimize the system with respect to
performance due to the lbooster" charge.

As a point of comparison, an all 'booster* case with 42 grams of
propellant was selected. Results of this all 'booster" case showed a maximum
gun pressure of 496 (Pa and a muszlo velocity of 1897 m/s.

The ignition time of the traveling charge with respect to the "booster"
ignition time was made a parameter in the calculations. The actual times used
in the study were based upon the assumption that the trsveling charge would
ignite no later than the time necessary to obtain 250 of travel. From the
all "booster* case the time to 250 of travel was 1.75 me and the time of
maximum pressure was 1.15 ma. Figure 12 summarizes the times selected for the
study.

Time(ms) 0 .475 .95 1.15 1.35 1.55 1.75
I I ' I,

Pmax

Figure 12. InILton Tines Chosen lor the Travelin.
Charga in the Ignition Ti'e -tufy

The effect of changing the ignition time of the traveling charge was
evaluated in the following mamer. Pressure vs. time curves for the all
"booster" run were compeared with those from the traveling charge cases for the
different traveling charge propellant ignition times. Differences in maximum
pressure and corresponding percent differences, with respect to the all
"booster* case, were determined. Similar cumparisons were performed for
differences in velocity. An example of this computation is shown in Figure 13
for the 42 gram all "booster" comparison case versus a traveling charga
simulation with an ignitions delay of 1.75 me. The difference between
maximum pressures is 147 NWa, which represents a percent decrease of 300 with
respect to the comparison case. Thes4 percent changes in maximum pressure and
velocity, as a function of traveling charge ignition time, are presented
graphically in Figures 14 and 15.

14
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As can be soon fro& Figure 14, MTC pradicts a velocity increase for a
configuration of 34 &raws of 'booster" and 8 grams of traveling charge
propellant over the all *booster" case regardless of th, ignition tim5 of the
traveling charge propellant. The only exception was the simulation using a
constant burn rate law with ignition at 1.15 as which resulted in the .same
velocity. It appears that the critical factor for the increased velocities is
the deviation of the ignition time from 1.15 ma, which is the time of Pmax for
the all "booster" case. For the pressure dependent burn rate law the maximum
percent increase in velocity of 7.3% ozcurred at an ignition time of 0.475
as, a deviation of 0.675 as from 1.15 as. Usirg the constant burn rate law,
the maximun parcent increase, 6.3%, in velocity occurred for an ignition time
of 1.75 as, a deviation of 0.6 as from 1.15 as. This same percent increase,6.3%, was also computed for the pressure dependent burn rate law with ignition
at m.75 as. Of interest is the lower percont increase in velocity recorded
for an ignition time of 0 an than for an ignition time of 0.475 ma with the
pressure dependent burn tate law. The cause of this drop needs to be
investigated in greater detail.

Although velocity increases are predicted by XKTC for ignition times both
before and after 1.15 ma, the same thing is not true for improvements in the
pressure profile as far as maximum gun pressure is concerned. As shown in
Figure 15, a time of ignition before or at 1.15 as shows an increase in
predicted maximum pressure for the pressure dependent burn rate law. Using
a constant burn rate law no increase in pressure is obtained for the same

16
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ignition times. However, both burn rate lavs exhibit a 30 maximau pressure
is4aanA if the ignition time is 1.35 as or later. In all instances, the
maximm prersure is observed at the breech.

Thus. for the ignition times selected and the specific Sun/propulsion
-,Asoe %uwed in this study, XKrTC predicts that the maximum improvement to the
traveling charge effect will occur for an ignition time of 1.75 ms for the
traveling charge ,).4pellant. It is important to emphasize that this
conclusion in applicable only to this specific case. Any change in the
gun/propulsion configuration, such as changing the ratio of "boostor" to
traveling charge propellant, may lead to a different predictions.

Two additionv~l observations noted while analyzing the results of -e
ignition time study are worth mentioning. First is the apparent insensi,'vity
of the resultA to the burn rate law used to describe the burning of the
traveling charge propellant. This facet needs to be investigated in greater
depth, especially since combustion diagnostics on the VHBR propellants have
indicated that their burning behavior may not be pressure dependent in the
normal sense. The second observation concerned downbore pressures. In
APPENDIX A, Tables A-1 and A-2 show the maximum pressure predicted by XKTC for
the various gages, ignition times, and burn rate lavs used in the study. It
was observed that for gage 7, located 20-cm before muzzle exit, the pressures
for the traveling charge cases were lower than the all "booster" case with one
exception. Additionally, the maximum pressure observed at gage 7 in all cases
correspon.a to the base pressure on the projectile. However, muzzle
velocities, which are reflective of base pressure, are higher for the
traveling charge cases. An answer to this apparent contradiction say lie in
the effect that the burn out of the traveling charge has on the base
pressure. In Figure 16, XKJC computed base pressure versus travel profiles
are plotted for the all "booster" case and two traveling charge cases. The
rapid drop in the base pressure curves for both traveling charge cases occurs
at the point in the travel where the traveling charge burned out. This rapid
drop in both cases resulted in the base pressure being lowa than the base
pressure for the all mbooster' case. Thus, it appears that the burn out of
the traveling charge may have a substantial effect on base pressure. If this
effect is present in actual gun firings, then tailoring the burn out of the
traveling charge may be as critical to final performance as the ignition time
of the traveling chaige.
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VI. BURNING RATE STUDY

In the ignition time study two different burn rate laws were utilized to
describe the burning behavior of the travelfrn6 5 charge propellant, a) r -71
rn/cl a constant burn rate and b) r - 0.065P ,a preastwe dependent
exponential law. Comparison of results showed some differences, especially in
pressure behavior, between predictions involving the two laws. Thus, it
became of interest to examine in greater detail the influence of the burning
behavior of the traveling charge on predicted ballistic results. For this
study the focus was on the effect of using different burning rates.

Specifically, the purpose of this study was to investigate the effect
that different burning rates of the traveling charge have on ballistic
performance. Again the parameters of major interest are velocity and maximum
gun pressure.

As in the ignition time study, a traveling charge configuration of 34
grams of "booster" and 8 grams of traveling charge was selected, Based upon
the result of the ignition time study, the ignition t:ime of the traveling
charge was chosen to be 1.75 an. A bin burn rate law, with b-.065 and n-1.05,
was used in the the study; and the variation in the burn rates was obtained
by varyin;, the value of the coefficient by +/-30, +/-20,+/-15, +/-10, and /

Sam Mig'18



5 percent.

Figures 17 and 18 predent the effects of variations in burning rate, as
predicted by XKTC, on the maximum pressure recorded in the gun and muzzle
velocity in ters of perc4'nt changes.
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Figure 17. Effect of VAQyinz the Burning Rate of the Traveling
Charge on Maximum Gun Pressure

The most striking feature of Figure 17 is the very large change in
maximum gun pressure, up to 140%, which is predicted by XKTC for increases in
the burning rate of the traveling charge beyond a 10% increase. If this
result is valid for actual gun firings, then controlling the burning rate of
the VRBR propellant may be of critical importance for improved ballistic
behavior. In fact, it may be that there is a narrow range for the burning
rate of the VHU for which the traveling charge effect can be effective. Too
low a burning rate producing no appreciable gain and too high a rate resulting
in unacceptable pressures. It is worth noting that the elevated pressures for
the increased burning rates in Figure 17 occurred at the projectile/traveling
charge base not the breech.
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'Uthough increased maxiima gun pressures are predicted by XK•TC for
increased burning rates of the traveling charge, this is not translated into
appreciable increases in velocity as seen in Figure 18. 13•r changes in the
burning rate up to +/- 20% the velocity changes by less than +/- 0.5%t.
However. the large drop from -0.250 to -1.90 in going from 20% to 30%
decrease in burning rate may indicate that there will be a significant
dec7:ease in performance if the burning rate of the traveling charge is too
low.

As with the ignition time study, the conclusions reached are based on
predicted results for a speci•fic gun/propulsion configuration. Any change,
such as altering the ignition time of the traveling charge, could lead to
different results.

VII. COMPARISON WITH OPTIMIZED ALL "BOOSTER" CASES

Based upon the results of the Ignition Time Study and Burn Rate Study it
appears that for a configuration of 34 g of" "booster" and 8 g of traveling
charge that the optimu velocity is approximately 2020 =/a if maximum gun
pressure is restricted to the maximum pressure due to the "booster". For 34
grams of "booster" in the test finture being utilized this corresponds to a
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pressure of 349 MPa. The obvious question is: "What performance could be
expected if the gun .ystem was optimized for a conventional propellant
configuration with the maximum pressure restricted to 350 NPa?" To answer
this question optimization studies were performed utilizing the XKTC computer
code. The results are summarized below.

TABLE 5. Results of Optimized Conventional Firings

OPTIMIZATION
Maximum Pressure < 350 MPa

Propellant Weight Velocity

Non-deterred Ball 50 g 1780 m/s

Seven Perforations 60 g 1900 m/s8

20% Traveling Charge 42 g 2020 m/s

As can be seen from the above the traveling charge configuration performs
better, in terms of increased velocity, than an optimized conventional
propellant charge by approximately 120 m/s. This corresponds to a 6% velocity
increase.

VIII. CONCLUSIONS AND FUTURE WORK

The conclusions of this initial modaling effort in support of a U.S. Army
undertaking to demonstrate the viability of the traveling charge effect cin be
summarized as follows:

The XNOVAKTC computer code is applicable to small caliber gun firings.
This includes conventional and traveling charge configurations. Predictions
in regards to breech pressure, velocity, and timing are excrllent. However,
downbore pressure results show larger than expected deviations.

The following conclusions are based upon a specific gun/propulsion system
and may not be the same for different systems.

The ignition time study indicates that the greatest improvement in the
traveling charge effect will occur if the ignition of the trav'eling charge is
delayed past the time of maximum pressure due to the "booster" charge.

The ignition time study indicates that the traveling charge effect may be
insersitive to the burning behavior, in terms of the burning rate law
utilized, of the traveling charge as long as the total burring time for the
traveling charge is within a givon range.

2.L
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The burning rate study indicates that relatively large changes in burn
rate (+/-30%) do not appreciably change muzzle velocity but can leaC to large
changes in maximum pressures.

Burn out of the traveling charge results in a large drop in base
pressure. See Figure 16.

Areas in which further computations are felt to be needed include:

Investigation into the source of the discrepancy between downbore
pressures predicted by XNOVAKTC and those observed in actual gun firings.

Generalization of the effects of traveling charge ignition time and
burning behavior on ballistic performance based upon various gun/propulsion
systems.

Investigation of the effect the burnout location of the traveling charge
has on base pressure and subsequent ballistic performance.

Investigation of the effect of different ratios of "booster" charge to
traveling charge on ballistic performance.

Investigation of the effect of using the kinetic options in XKTC to model
the traveling charge propellant. The kinetic options allow for a delayed
chemical reaction of the traveling charge propellant.

Investigation of the origin of the resistance profile used in modeling
the experimental firings. This investigation will be performed in an
experimental program.
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Tables A-1 and A-2 give the maxiuma pressures, at the indicated gages,
and muzzle velocities for the two different burn rate lava used in the
ignition time study.

TABLE A-1. Ignition Time Study - Constant Burn Rate

Ignition Gi 02 G3 G5 07 Velocity
Time(ms) P&a (Pa MPa EPa HPa M/s

o N/A N/A N/A N/A N/A N/A

.475 497 494 469 81 30 1998

.95 436 426 365 67 28 1926

1.15 373 364 399 55 28 1895

1.35 349 346 288 52 22 1946

1.55 349 346 288 49 22 1980

1.75 349 346 288 124 21 2017

* 496 492 394 71 33 1897

Note: Results for an ignition delay of 0 as was not
obtained due to difficulties with XKTC

* 42 g All *booster" Case

TABLE A-2. Ignition Time Study - Pressure Dependent Burn Rate

Ignition Ci 02 G3 G5 07 Velocity
Time(us) (Pa MPa (P•aMPa MP a

0 498 498 427 78 29 2011

.475 530 541 457 76 28 2035

.95 573 546 570 84 31 1989

1.15 535 437 626 73 38 1903

1.35 349 346 288 50 20 1917

1.55 349 346 288 47 21 1979

1.75 349 346 288 86 20 2018

* 496 492 394 71 33 1897
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