FRACTAL IMAGES:
LABS ADELPHI M0

PROC!
SD

EDURE

CRSEY

OR CU) _HARRY DIANOND
7 HDL-TR-2119

H

= ==

DO o

1 ©
2_§ ™) 3-w
= = p=

R

ddagsaa1.1

16

—
—

I

14

——
—
—
——

lI

2 |

BN

e o T T

HOL-TR-2119

A

vant 1Ay

.
L

1 v tmages: Procedure and Theory

ﬂ_,.; [y D Casey

U.S. Army Laboratory Command .
Harry Diamond Laboratories !
Adelphi. MD 207831197 j

4

1

App vt P R L . , P -

T

The findings in this report are not to be construed as an official Department
of the Aimy position unless so designated by other authornzed documents.

Ciation of manufacturers’ or trade names does not constitute an official
indorsement or approval of the use thereol.

Destroy this report when it is no longer needed Do not return it to the
originalor.

el ot sttt S — st ettt "~ Smasiesstessisbitainethoathonimstiuntiandhontunduuninbdtiodd ebietindiditnintiud h

T I O S PR TR T I TR TU TG TR TL L YO T3 e fia fab fat flav flas gat $at gas gut) ’ ua' et * Q> da® Sa¢
220,4% T Py a0 at Y 9, " M

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAG ’
. REPORT DOCUMENTATION PAGE]
7, F1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS” - Y a
. UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY QF REPORT
o OECLASSIFICATION | DOWNGRADING SCHEDULE Approved for public release; distribution uniimited.
SN 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
HDL-TR-2119 ﬁT\C
s 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION Quw® Civ-
, , (If applicable) ~E _E)
o Harry Diamond Laboratories SLCHD-RT-RB @ 08T
! 6c. ADDRESS (Gity, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) \\
o 2800 Powder Mili Road E
3 Adelphi, MD 20783-1197
Tl 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
- ORGANIZATION (If applicable)
N U.S. Army Laboratory Command AMSLC
N 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
N PROGRAM PROJECT TASK WORK UNIT
Sy 2800 Powder Mill Road ELEMENT NO. NO. NO. ACCESSION NO.
R Adelphi, MD 20773-1145
S 11. TITLE (Include Security Classification)
. Fractal Images: Procedure and Theory
N d 12. PERSONAL AUTHOR(S)
Stephen D. Casey
13a. TYPE QOF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Final rrom May 86 1o Dec 86 August 1987 44
- 16. SUPPLEMENTARY NOTATION
- HDL Project: 59B650
. 17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
e FIELD GROUP SUB-GROUP , .
. T 01 Dynamical system, squig fractal, seed fractal
.. '9. ABSTRACT (Continue on reverse if necessary and identify by block number)
-
h
~
- The paper gives a study on the theory and production of fractals. It focuses on three areas in which fractals
'S appear—dynamical systems, scaling, and random motion. In the section on dynamical systems, the dynamics of func-
- tions of one complex variable are discussed. The section on scaling includes a discussion of seed fractals, as well as a
v discussion of fractional dimension. The section on random maotion is a discussion of squig fractals. In each section, sam-
. ple images and computer code/pseudocode are provided. The paper concludes with application of fractals to digital signal
" processing.
- e
’b
)
.
>
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 23, ABSTRACT SECURITY CLASSIFICATION
: GJ UNCLASSIFIED/UNLIMITED (O SAME AS RPT CJ oTIC USERS UNCLASSIFIED
[-. 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
- Stephen D. Casey (202) 394-2520 SLCHD-RT-RB
S DD FORM 1473, 34 MAR 83 APR editton may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
'_ All other editions are obsolete.
8 UNCLASSIFIED
l. 2 -. R)

l'n_\ I-_ll \\"_ l"!
DN A AT AR A S s

o ‘_\:_*.;\'-.'__:.-_

Y

. "

AR TP VA

LA o om s S g

o e an g e L o o

CONTENTS

Page

1. INTRODUCTION: A BIT OF HISTORY t.vivreeninennncenns ereenaaan Ceeeeenes 5
2. COMPLEX ANALYTIC DYNAMICS Ceessesanssesaesasannnns ceseeeens 8
2.7 ThEOPY tivivennevsoscsssasncnsnsonans Ceeesen Cereeereneane ceeennn 8

R 0 {0) o 1 P o111 12

3. SEED FRACTALS et eesrsetaarceeenas it esecsaaas et eeseianasenes 20
3.1 Procedure to Produce Seed Fractal IMEEES +ivsevrovesccrssnosnnens 20

3.2 Calculation of Topological and Fractional Dimension 21

4, SQUIG FRACTALS Ceesesevsneseaan S eeessesessaeescenasssennons 30
5. REMARKS ON APPLICATIONS ...ceceeecnnn Cesreeseeesannans seetsseesssanans 41
ACKNOWLEDGEMENTS teesecnesens et e s s a et s asan e Ceeereaseee .o
BIBLIOGRAPHY Ceevescnsse st se st isssaneas e et e e nasacanasersoonronn 42
DISTRIBUTION .o iiuineneeeneeenossecsssensannnssassanannnsos st reecsaneersans 43

FIGURES
1. Weierstrass fUNCLION vt eeionenseenoaeserssssssnsssessssasonnas 6
2. Cantor-Lebesgue functionecevecevans eessnen cressesrseceanaann 6
3. PEANOD CUPVE it iiteeneeoaneeneessossasosssssssonssasssssnansnassnssans 7
4., Koch's snowflakeceeveecenenss et essseces sttt Crheriesees 7
B e JULIA SELS sttt rorroeassuseconesetoeassssonnssssosnssoasssansnsonns 11
6. Color images from dynamics in € «uuveuiieeiieeereerenernennnennennnens 22
7. Sierpinski's gasket, the antenna, and the arrowhead 0. 24
8. Brownian motionceeeseesncncnnncne Cieseeaea s et eteananan 32
9. Skeletal fractal mouUntain ... iinii et ierensrsseroestnononcnsanss 32
10. Possible two-dimensional sSQUIZ PALhS ittt rirereesnanrseasassansonses 33
11, Graftal tree and DUSH .t it it ii i ieietintensnessceeensasossessnansensas 33
3

L rr l.
22

?‘V“ﬁ P

X%

<

2

>

o,

o,
5
2,

5

e B

s

T g
’ ‘-'s"":\-

pad

&y

L3R 20
B

SRANY

PP A
A5

(2 s ou T B B 1

Y
..-' o,

.....,
Ly
RN RS

.

-
o

- - e -

P L &

T

VArS.

AR E RN LN N) NV I VO RN T YOI POR PN WO PN YU PR WON %) + o ot ba® Satals' 00" Ji2"

CODE LISTINGS
Code producing data for Julia set images ...viieeverinnsonnsnncasancs .14

Code producing pixel information for iteration of Newton's method as
applied to f(z) =27 - 1 cessnsenca Ceteetsettsceseenann R 4

Code/pseudocode for plotting color fractal images ceseeans ceves. 19
Code producing vector data to draw Sierpinski's gasketcoceos... 28
Code producing vector data to draw Cantor-Lebesgue function 30

Code for plotting skeletal fractal mountains P L |

“Accession For

“NTIS GRA&I
DTIC TAB ’g

Unannounced O
Justification]

By
D1§Eyibutionlh

Availability Codes
" Avatl and/or
Dist \ Special

Al

roprd ~ipnl contnind colew
pl .o 1 {1l DTV re, iuluvote
1.-. +i31 bte in biuck ~nd

—

>

| ML L

e |

&S

eeT s
)

: <

v,
f“- -

¢
FJ

5
’,

b

ﬁ’i

" 9 32

‘s

e

e
P
-,

s
Sow

RSN

RTINS
Y

[$

»
»

s 1
l'l ﬁ
¢

L s
.
g
P

.« .
.8,
PR

J

P

[. .
SR

A

a0, (.---..-$
2 --‘l{I’

5]

‘M ata: - o . . S NATata e e VR abe aEtata' REYoNE" Hat AR by tatole’ Sa° o’ SR afg 2he’ o¥e Aa JAa’ L84

. 1. INTRODUCTION: A BIT OF HISTORY

" ..no one doubts that the modern formulations (of science) are clear,
elegant, and precise; it's just that i{t's impossible to comprehend how
anyone ever thought of them."

--Michael Spivak, A Comprehensive Introduction to Differential Geometry

In the last few years, the word "fractal” (a set with noninteger
fractional dimension) has worked its way out from research into more general
use in the scientific community. The word was coined in the seventies by
Benoit B. Mandelbrot to describe the elaborate images he was producing on
comr cers at the Watson IBM Research Center. However, as Mandelbrot himself
poin.s ~ut in his book, The Fractal Geometry of Nature (1983),* the roots of
the fractal idea reach back over a century.

In the nineteenth century, mathematicians were working to develop rigor in
> their study of mathematics. They encountered curious phenomena, which forced
the rethinking of some concepts. Four of these phenomena are cited:

1. In 1874, K. Weierstrass produced a continuous, but nowhere differen-
tiable function. To create this function, he employed trigonometric series
and lacunary (or "gap") series. An example of a Weierstrass function (fig. 1)

is given by the formula
" 1 n
" £(t) =) [(E)n] cos(2't) .
N n
% (Weierstrass' original results were more general.)
N 2. In the 1870's, G. Cantor produced several results which gave relation-
N ships between set theory and calculus. In 1874, he produced his proof that
-, there are only countably many algebraic numbers, and became increasingly
: fascinated with the concept of infinity in mathematics. A concrete example of
- his ideas is the "middle thirds" set, which was used by H. Lebesgue in the
1920's to produce the Cantor-Lebesgue function (fig. 2). This singular func-
y tion has a derivative equal to zero at almost all points in the set (0,1!), vet
. is monotonically increasing.
; 3. In 1890, G. Peano produced an example of a continuous space-filling
) curve (fig. 3). This curve maps the unit interval [0,1] ontc the unit square
(0,11 = [0,1].
g 4., In 1904, H. von Koch produced his snowflake (fig. 4). This curve has
5 infinite length, but is contained in a finite area. The snowflake is non-
- intersecting and is self-similar, i.e., it appears the same despite successive

magnifications.

. In each of the above examples, a rigorous limit procedure was used (uni-
.. form convergence in the proper topology). However, because each of these
examples conflicted with the geometric intuition of the time, they were

*See hibliography

PR AL AL A AN

LY
Wt
LEBT

|) '." -

e Y
E P

.
P4

\ 5
LY

"’\

(';‘ ..r

N
v

v 3
«a

LR

. :"n_l.
y t 3 "’ . R

P Iy
Y 4 "

b T 4]

P

L)@

Lalla’afa” Bavaliatofa dab Reb Sk &8 L5 LWEL TN 2.5]

N
“
..'I
’:l' b5 2
#
oy (a) @
(]
W, ©
o o
n
W 2
,h. K 2
‘:Q‘ ? g L S T .o P CIJ
! > ' >
KT 3
2 o
Y T o~
'
[i
LY.
(2 . :
= N °
-2.0 -1.0 0.0 1.0 20 00 0.2 0.4 06 0.8 1.0
X—axis X—oxis
Y a (b) e
v
' (b)
Y
«©
S : ° —
> 2
ol
“ © -
g w 2]
[~ Xol.... .. YTV YT -]
_‘.. ?o rhespsperinsnnivinipiaidenton AR AR A A |
s >)
(Y 7
AS
.\.\
" e
— ! g 4
n
> o ©
§ ° ' ' ' ;
: -2.0 -10 oo 1.0 20 0.0 0.2 0.4 0.6 0.8 1.0
L% X—axis X=-axis
o (=]
9 ~ -
(c) (c)
-
o =R rF
- 9 /
o /
‘ b -
N ° 2® /
¢, X /
pe 7 —
o > > hd
< o
. /
o g oo
N ° /
LY /
= o
Fy ! © v v v v
{._ S0 Y) 10 o0 00 0.2 0.4 06 08 10
’-s X ~axis X-axis
I . . . C o . .
% Figure 1. Weierstrass function: Figure 2. Cantor-Lebesgue function:
f‘ defining procedure followed (a) four defining procedure followed (a) three
* times, (b) six times, and (c) eight times, (b) five times, and (c¢) seven

7
5
W
¥
Py

times.

times.

[e o, = ik w _ ‘
AN LLLL e e d © AN AN S M glWlY A A r............x KN g
w
P
)
3 . -
o
o | o
MU P &a e T R =
3 g k] iy oo om
S UERY - & b g -
{ f o S, e o
g 5
© A Sy @
o @ 5 yo.m
5 | & & <]
| X) o
o Mxrwawbuu
b
o~ o
Fo - o
S o b
< ﬁw S g o B
~ o~
[~} o
Y =T T [} — — T T Am T N [}
g0 ro 0 00 ZO- Z1 o1 g0 90 ¥0 TO0 00 TO-
SIXD—A - SIXD— A
L0
£

N

MOt th]

LAl

LA

LA

ol lr b

AL

Tt

(c)

80

90
SIXD—A

ro

X—axis

-Nﬂ- v

defining

Koch's snowflake:

Figure 4.

procedure followed (a) three times,
(b) four times, and (c) five times.

0 o
2 D
o ~ o wE E
- et
e
ﬁw K - = <20
/ P / ; nuw. m >
4 { TS e
w © | © e}
- P o o —_
e~ QO
A © © © D O~
S @ S @ [cw T
% % 5 So g
< b !l O3 &
= N R
S~ o
b &
T o~ XX 2 X ~ @~ D
] o A¢>A\/% ¢ ‘.0 % ..’OA m
{ A%wzwww S\V A(N o
; > o)]
/ 'M rM, A ﬂ\/« /\/\ /\/\ LS Q.-J W w
~ b i QD .ud.v m
(-3 o [~}
T — r 7 T T T T - T T | — T u — o | £ Q
90 ¥o 7o 00 ZO- 2 ol 80 90 ¥0 zZO 00 zoO- 7 oL 80 90 ¥o ZO 00 zo- S5 0~
SIXO—A SXD—4 SIXD—4A sl
—_ —_
re) B [
e L

LSS

oY

Py &

LA LAl

B

| 3 B 4

=5

T ol - - -
g

s

A

P d

\
.

labeled "pathological." Yet, because of further scientific research, and
especially because of the introduction of the computer, it is now possible to
see that these examples appear to model nature quite well. Each curve fits
Mandelbrot's basic definition of a fractal curve: a curve having fractional

dimension higher than one. Mandelbrot cites all of them as important examples
in his book.

In the following sections, theory and procedure for the creation of frac-
tal images are discussed. The discussion is aimed at the reader with some
computer graphics experience and/or software. Numerous fractal images are
included, and algorithms for the production of some of these images are pro-
vided. The algorithms can be set up to run on almost any system--whenever
possible, hardware specifics are eliminated. Thus, readers can run these
algorithms on their own systems and proceed to explore the world of fractals.
Discussion is divided into three areas: fractals on complex dynamical sys-
tems, seed fractals, and squig fractals.

The theoretical discussions in the following sections are independent of
the descriptions of algorithms which produce fractal images. In particular,
theoretical discussions precede algorithms in section 2 (on complex analytic
dynamics). These were provided to give the interested reader some insight as
to why the algorithms work. Also, section 3.2 (on dimension) must be labeled
"theoretical," as discussion and calculation here are rather involved. Theo-
retical sections can be skipped over with a minimal loss of continuity.

2. COMPLEX ANALYTIC DYNAMICS

Many pioneers besides those already mentioned were involved in the evolu-
tion of the fractal--Riemann, Hausdorff, Klein, Cesaro, and Bernoulli, to name
a few--the list is very long. One research field related to fractals that has
had quite a revival lately is the field of iteration theory, or complex analy-
tic dynamics. This was started in the early 1900's by P. Fatou and G. Julia.
Both wrote long monographs on the subject. Today, its pioneers include D.
Sullivan, J. Hubbard, and A. Douady.

2.1 Theory

A dynamical system consists of a pair, (X, ¢), where X is a topologi-
cal space,* and ¢ = {¢t: t € R} is a set of dynamics, i.e., rules for the
evolution of the system in time. If ¢, is continuous, the pair (X, ¢y) is
usually called a flow.

Examples of dynamical systems appear in numerous places: the cardio-
vascular system, the capitalist system, and the solar system are all dynamic.
In each, a process is occurring which can be thought of as evolving in time.

*A topological space is a set in which the concept “open set” is well defined. These topics are discussed by
Munkres (1975), bibliography.

o

.

L&W{?Zﬁe

et

‘{'.'u,l‘; ‘e hAY

L]
» 4

T e L f. "“-7

R | ,",' EAR AR .
KR ® L NI I P

v

e

s [Sy AN 5
3
; In this_section, the underlying space of the dynamical system is the
" Riemann sphere, C, where
. C=cule} ={z==x+1iy: x, y €ER, i =/} U [=} .
The point "«" is added to C, the complex plane, by rolling the plane up into a
I~ sphere, and letting « be the north pole. The dynamic is an analytic func-
Y tion.* Let f(z) denote this function. Then, by iterating the function
&l
't
3 zn+'| = f(zn) ’
- one gets a dynamical system. Note that this system is discrete.

= The computer has proven to be a most useful tool in the study of nonlinear
F. dynamical systems. This study has produced as a byproduct some of the fractal
images seen here. Of these, many have been produced by complex analytic
dynamics. Probably the most common dynamic in generating these images has
& been the now-famous equation

) f(z) =22 + 1

Using this equation, we can discuss the two different types of images it

produces. The first type is a C-dynamical system. In this process, the

. number A is kept constant, and z is varied. The second type of image is a
1: parameter space image. Here, z is fixed, and the number A is varied. Each
different value of A parameterizes a dynamical system from C. The Mandelbrot

ko set, which is generated in this fashion using z®> + A, is a parameter space
' image.
N The following discussion of some of the theory behind generating these
) images comes wunder the category "complex quadratic dynamics." Blanchard
: (1984) gives a more complete discussion (see bibliography, "Mathematics," for

other necessary background).

First, consider the dynamics in E. Heuristically, the Riemann sphere,
. instead of just the complex plane, C, is the base space because of the impor-
* tance of infinity in dynamics. In C, the group of one-on-one analytic map-
pings is the group of Moebius transforms, that is, maps of the form

, ad - bc = 0
Moebius transformations have one zero and one pole. Using these maps, it is

possible to get some insight into why the single equation f(z) = z* +) is so
powerful. Let h(z) = Az? + 2Bz + C be a general quadratic equation in C. For

., f(z) as above, it is possible to solve for a Moebius transform g(z) and a
’ value of A in f(z) such that

~ h(z) = g7' ° f ° g(z) = g~ ' (£(g(2)))

: *A function is called analytic in some open set if it can be expanded in a Taylor series in that set. In
“ C-analysis, if a function has a continuous derivative in an open set, it is analytic there.

l.

\‘ »
z
)

Ay ZLAAS
i W A Ay

-..o_- .:’.

The solution is given by

g(z) Az + B ,

A AC + B - B?

Since two dynamical systems in ¢ conjugate by a Moebius transform are the
same, every quadratic dynamical system in ¢ can be obtained by varying A. In
other words, every quadratic system is parameterized by the complex number A.
Given the dynamic f(z) = 2?2 +) for fixed A, iteration produces a dynam-
ical system. Under this iteration, individual points will have neighborhoods
(small open sets containing the point in discussion) that exhibit one of two
types of behavior. Points in these neighborhoods will either converge to a
point after repeated iteration, or they will not converge. Those points that
have a neighborhood of points that converge are called elements of the Fatou
set. The points not in the Fatou set are called elements of the Julia set.

The function f(z) = z? provides an enlightening example of this dichot-
omy. Note that under iteration of f, every point with absolute value strictly
less than one will converge to zero, while every point z with |z| > 1 will
converge to infinity. However, under

f =f° ... ¢ f =" f(f(...(£(2)))) , n times,

most points on the unit circle ({|z| = 1}) are just "spun around" at a faster
and faster rate. In fact, if z = exp(ia), where a is an irrational number,
there exists an iterate of 2z coming quite close to any point on the unit
circle. Thus, although the point 1 remains fixed under iterates of f, there
always exists a point close by that will be moved somewhere else under itera-
tion. A similar fate falls upon all points in {|z|l = 1}, and thus it is
possible to see that the Julia set of f(z) = z? is {|z]| = 1}.

By adding a constant X with relatively small absolute value, the dynamical
system produced by f(z) = z® +) will still have a Julia set that is a simple
closaed curve. However, this curve exhibits a quasi-self-similarity, i.e., it
is a fractal. As the value of [A| gets larger, the curve degenerates and no
longer has a nicely defined inside and outside. (Fig. 5 shows various Julia
sets produced by different functions.)

This behavior shows up in the parameter space image of 2z? +) and is
represented by the Mandelbrot set,. Recall that this set is generated by
fixing 2 and varying . By definition, the Mandelbrot set is the set of
complex numbers for which the dynamical system generated by f(z) = 2z? +)\ has
a connected Julia set. For X = 0, the Julia set is {|z| = t}. As || in-
creases, the resultant Julia set of the dynamical system generated by f will
degenerate from a simple closed curve. When]A[gets sufficiently large, the
attractive basis inside the curve bifurcates, i.e., splits. When this accurs,
the bouridary of the Mandlebrot set has been reached. Theoretically, it has
been proven that this behavior is completelv determined by the growth of z = 0

v 9o "
2% iy

CALNYA L

v

e

.t
-
o« 8_9

’

"

v »

i e

1

lI'D.

7

o -

. . MOOOOU oRR T e s ®
S .--.._-...M..A.J_ -\-\- .f\.\-.\.\p ShSD Cetete e ettt e e 5y - et e, t -..n.n# - o (RS] Nv(l*ﬂv

L = eighth root

2% + (-0.2,0.6),
= ze + Lz,

(e) f(z)

—~
N
~
L=
—
0
~

r
i,

22

)_—_22+

+ 0.3,

Sz

(a) f(z)
Z

(d) r

sets:
of unity, and (f) f(z)

Julia

(c) Douady's rabbit,

Figure 5.

Roree

Pt DA N R
PREGENIN A

P]

vay
»

»

.J“:: h .‘"

A

.s&’-'.‘-s

B A A "l’k

under iteration of z* + . If |f (0)| is sufficiently large, say larger than
2, then fn(o) will converge to «». This indicates that the Julia set for that
value of X is not a simple closed curve. However, if lfn(o)l remains bounded,
then the Julia set is a simple closed curve.

2.2 Algorithms

The programs in listing 1 allow the user to plot some pointillistic
fractal images called Julia sets (listings are provided at the end of this
section). They work for all values of X and any starting point. They require
only a simple point plotter to produce images, and only as much memory as the
number of iterates desired. The programs were written in VAX-11 FORTRAN (DEC)
because it supports a complex variables format and has many intrinsic math
functions. If FORTRAN is not available, the code listings can serve as a
model for writing a program.¥*

(For the reader who has braved the theory section, an explanation of
why these algorithms work is now simple. First, the Julia set is the set in
which the function does not have convergent iieighborhoods. It is preserved
under backward iteration, (f")n. For example, if

w=f(z) =2z +2x ,
z = "N w) =+,
and so
(™' = f7t o .. °f7' |, n times.

*Withowt 1w complex variable format, support routines have to be written. For example, multiplication
must follow the r de

(a,b) * (c,d) =(ac —bd, ad + bc) .
A complex square root can be written using polar coordinates. Since
Vz =Vret = Vr Vet ,

by an application of Euler’s formula and the half-angle formulas, we obtain

o 12 _ n
N W[i(l+cost) ii(l cosl)]

where signs are chosen according to quadrant. Therefore, because
—r=(x? +2 12 _ _ :
|z =r=U2+¥)" [x=rcost ,and y=rsint ,
we obtain

(x.y)m=(t r_E_)_c]lfl ,t[r—i—x]m),

12

»

- .
e

Yy 5.
.

5 Pe 2N 2 J

AR RN

{

NS

-‘:,,.

P
ﬁ‘

Ay

R L x
Ligsle

R . I.I..P ',"

b

=
Ll

. ol N g, T SV RO I YA LR URTORP RO R OO Y R PRI R Yt gt el tat s ‘ala Aty ‘ata’ "

Therefore, to get an iterate into the Julia set, iterate backwards, choosing a
branch (+) of the square root at random. Thus, the iterate is never allowed
to converge, and therefore must land in the Julia set. Once captured there,
it just moves around within the set.)

Color dynamical images in c are produced by a different procedure
(see fig. 6, center spread, pp 22 and 23). Here, the colors represent conver-
gence rates. After a domain has been chosen, the image is produced by pro-
ceeding pixel by pixel across that domain, iterating the function for the
value of z represented by that pixel. Iteration continues until |fn(z)|
reaches a certain size, or the function has been iterated a predetermined
maximum number of times.

The number of iterations then determines the color of that pixel.
(This is essentially the same procedure which was outlined by Dewdney, 1985.)
It is interesting to note that in producing these color images, it is possible
to see the various orbits of the regions computed.

The color images in parameter space are produced in the same way as
described in the procedure above. However, in this situation, a given value
of z is fixed throughout the entire procedure, while the position of the pixel
determines the value of .

The color images of both the 6 dynamics and the parameter spaces are
not limited to iterating f(z) = 2z? + XA. All the color images shown in figure
6 came from a different dynamic.

Listing 2 is a FORTRAN program for iterating Newton's method of
finding zeroes as applied to f(z) = z?7 - 1. This produced the pixel informa-
tion to create figure 6(i).

There were a few tricks involved in computing and storing the data
files for these color images. As this type of program is computationally
intensive and requires quite a bit »f computer time, computations were simpli-
fied when possible (e.g., using |z|? instead of |z|, thus eliminating a square

root for each iteration). Since the resulting data file would accupy much
disk space, only the minimal amount of information needed to produce an image
was stored. Pixels were computed sequentially on a given row with the func-

tion producing a color value for each pixel. Adjacent pixels of the same
color were considered a horizontal vectsr. When a new colar value foar a pixel
was computed, the previous pixel's column position (terminal point for the
vectaor) and the vectnr's color were loaded into a large data buffer:

databuf(n) ¢ x
databufi{n+1) « oldcount
n+<n+2

oldcount « count

X « X + 1
When the buffer became full, it wis written to a disk file as 4 black
of unformatted data. A second program (.isting 3) must be used to plot the

vector file. Other techniques that are hardware dependent were als~n used.

13

Pttt
‘0-

Y Y]
R I S

x

.l"

L ',1"-" 7,

EPX R X
LG

['v‘:.‘ ,,‘

s

e e e
]
TSR URL

A

..

)

]
s

’
P Ay

@ Lty

AR

« 1

“ NNy

o«
o %N %

4 l“l‘

N

-
»

tfl

-

N

Listing 1. Code producing data for Julia set images

Plots Julia sets for quadratic maps by iterating

w = SQRT(z -~ c).
Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
Programmer : S. Casey

[T SR dR Y o S o

PROGRAM FRAC

COMPLEX*16 z, ¢, CDSQRT

REAL*S8 x,

INTEGER*4 Niter, Iseed, Timeseed

WRITE (6.*) ' This routine plots Julia sets for f(z) = z**2 + c.'
WRITE (6,*) ' Enter the constant ... c=(a.,b)’

READ (5.*) ¢

WRITE (6,*) ‘ Enter the initial z value ... z=(a,b)’

READ (5,*) 2z

WRITE (6,*) ' Enter the # of backward iterates ... Niter’

READ (5,*) Niter

AL

AAA

RN

Iseed = Timeseed() ! get seed for random number generator
RAN(Iseed) returns a floating-point number >= 0.0 and ¢« 1.0

%A

’

OPEN (10, FILE='FRAC.DAT', STATUS='NEW’', ERR=999, IOSTAT=IOS,
CARRIAGECONTROL='LIST')

.

DNy

RN IAY)

DO I = 1, Niter ! Plots positive branch
IF (RAN(Iseed) .LT. 0.5) THEN
z=-1. *2
ENDIF
2 =2 -C
z = CDSQRT(z)
x = DREAL(z)
y = DIMAG(z)
IF (I .GE. 11) THEN ! Let fn(z) converge into Julia set
WRITE(10.*) x, y
ENDIF
ENDDO

-

B
o .
<,
o

—

3
y L
U

_ ?. ,_ l.-.'.‘ v’._ f‘ .
AN

~
o

«
an

DO I = 1, Niter ! Other branch
IF (RAN(Iseed) .LT. 0.5) THEN
Z = -1. * 2
ENDIF
2 =2z -2¢C
z = -1. * CDSQRT(z)
x = DREAL(z)
y = DIMAG(z)
IF (I .GE. 11) THEN ! Let fn(z) converge into Julia set
WRITE(10,.*) x, ¥y
ENDIF
ENDDO

L ¢

aa
. -
[

.‘
-
d Py
o @ foln e S

ool LY
A‘-

T X AARN

'I'Q.L.‘- 2l e

CLOSE(10)

STOP

WRITE (6,*) ' Error opening new file FRAC.DAT =
STOP

END

® LSS0 ARP

‘ot
?

i

.—‘ .I .' "
P A

o
N
Cd
)
Listing 1. Code producing data for Julia set images (cont'd) Hff
o
1 “39
f INTEGER*4 FUNCTION Timeseed ()
A c This function returns a large, odd integer to serve as an initial -y
i c seed for a random number generator. ;*
)
o
: Timeseed = INT(SECNDS(0.0)) ! get number of seconds since midnight o~
IF (MOD(Timeseed,2) .EQ. O) Timeseed = Timeseed + 1 ! odd value ;M}
RETURN A
’ END]
;‘ :-:.
b . s g
l @ oo e e R
q ¢ Plots Julia sets for f(z) = 2**2 + L*z by iterating -]
! c 1/2C -L (+/~) (L**2 + 4*z)).)
¢ Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
c Programmer : S. Casey :s
! O e e o
f Lo
PROGRAM FRAC2 By
: COMPLEX*16 z, L, Det, Rootunity, CDSQRT N
! REAL*8 x, ¥y Ly
INTEGER*4 K, Niter, Iseed, Timeseed o
CHARACTER Answer N
LS
WRITE (6,*) ' This routine plots Julia sets for £(z) = z**2 + L*z.’ R
WRITE (6,*) ' The results are interesting if’ N
WRITE (6,*) ' L is a root of unity.’ ‘n?
WRITE (6,*) ‘' Do you wish to enter a root of unity?’ S
WRITE (6,*) ' Answer y for yes.'
95 FORMAT (A) 2.
! READ (5,95) Answer S
“u
o
IF ((Answer .EQ. ‘Y’') .OR. (Amswer .EQ. 'y')) THEN ;Z:«:
WRITE (6,*) ' Enter the integer denominator.’ e
READ (5,*) K ~r
L = Rootunity (K)
WRITE (6,*) ' L = ', L SN
GO TO 20 N
ENDIF ‘;ﬁ
Ay
; WRITE (6,*) ' Enter the constant ... L=(&,b)’ ~
1 READ (5,*) L ;&
20 WRITE (6,*) ' Enter the initial z value ... z=(a,b)’ »
READ (5,*) z
WRITE (6,*) ' Enter the # of backward iterates ... Niter’ R
READ (5,*) Niter e
Iseed = Timeseed() ! get seed for random number generator 0
c RAN(Iseed) returns a floating-point number >= 0.0 and « 1.0 T
OPEN (10, FILE='FRAC2.DAT', STATUS='NEW', ERR=999, IOSTAT=-=IOS, f;
* CARRIAGECONTROL='LIST') AN
t .'.\‘.
[:’.'
| ‘:: !
]
15 5
N
9 :'.::
AN
K
T T AT T AT T AT e N A T T N N AT N e e e e e e e . S . -

-
-
-
v v g
-

'Y

M §

-

: 3
0 -
%
k Listing 1. Code producing data for Julia set images (cont'd) :,
DG .
l'-
DO I = 1, Niter
I DET = CDSQRT ((L * L) + (4. * z)))
D IF (RAN(Iseed) .LT. 0.5) THEN o,
) DET = -1. * DET ‘
ENDIF
nY z = (1./72.) * ((-1.* L) + DET) ‘
het x = DREAL(2)
y = DIMAG(z)
! IF (I .GE. 11) THEN | Let fn(z) converge into Julia set ’
a WRITE(10,*) x, y S
o ENDIF b
ENDDO o
b7 .'
iF CLOSE(10) :
STOP , .
W 999 WRITE (6,*) ‘' Error opening new file FRAC2.DAT = ', 108 :4\
. STOP N
¢ END v
[*o 2
b : N]
& e P
INTEGER*4 FUNCTION Timeseed () i
g c This function returns a large, odd integer to serve as an initial e
¥ c seed for a random number generator. Pt
- Timeseed - INT(SECNDS(0.0)) ! get number of seconds since midnight by
4 IP (MOD(Timeseed,2) .EQ. O) Timeseed = Timeseed + 1 ! odd value Y
— RETURN
END o
[} -
A o
§ C mmmm e e e e e e e .'.
) Ty
N COMPLEX*16 FUNCTION Rootunity(K) “
W : |
* COMPLEX*16 CDEXP, ITPIK
_ REAL*8 PI, TPIK ~
. INTEGER*4 K o
-~ -
o' J
- PI = 3.14159265358979323846 ;:
‘- TPIK = (2. * PI) / K Py
- ITPIK - (0.0,1.0) * TPIK o
Rootunity = CDEXP(ITPIK)
RETURN Bty
o END 4
e
¥ e
" ‘h. J
“ { L
1‘ Y
k- o
B ‘e
ey ‘o
[\ I
[*a
a G
;~ 16 o
K

VT UV UT N WU Y

08
fa
-
B A
" Listing 2. Code producing pixel information for iteration of Newton's ﬂ
" method as applied to f(z) = z7 - 1 A
‘Q. . ':
..l -
Y L I it it ittt
) ¢ Iteration of Newton’s method on f(z) = z**7 - 1.
¢ Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
;“ ¢ Programmers: R. Miller and S. Casey Y
N C e m e e s m e — "
4 :»
! PROGRAM NEWT f‘
: COMPLEX*16 2new, Zold, Ztemp N
REAL*8 Diffabs
‘ INTEGER*2 iterations, oldcount, X, count, rows, cols, M, N
- INTEGER*2 databuf(16384) >
INTEGER*4 K, J N
- REAL*8 acorner, bcorner, side, gap, realc, imagc -2
] =~
? COMMON /BLOCK1/ databuf, K N
' c Parms passed from command line: iterations, acorner, bcorner, side, cols -
.'. L T e e e e T e et e .\,f
N ¢ This routine calculates pixel information for a rectangular region R. o
~ c iterations = maximum number of times calculating loop is executed \:
™ c acorner = Real part of coordinate of lower left hand corner of R -~
1‘ c bcorner - Imaginary part of coordinate of lower left hand cornmer of R oy
c side - length of horizontal side of R b
o c rows,cols = number of pixels in R Eh
y C m e e .
. ACCEPT *, iterations, acorner, bcormer, side, cols N
- Tows = cols v
) v
- OPEN(10, FILE~'NEWT.VEC', STATUS-'NEW', IOSTAT=10S, o
* ERR=999, FORM='UNFORMATTED’) o
' CALL OUTBUF(cols, iterations) | load first data pair S
o
& gap - side / REAL(rows) 0
f DON = rows - 1, 0, -1 ! compute pixels e
) imagc = REAL(N) * gap + bcorner N
DO M =0, cols -1 ="
realc = REAL(M) * gap + acorner .
N Znev = DCMPLX(realc. imagc) ! combine real/imaginary parts -
) count = O o
. Diffabs = 1.0 .
; DO WHILE((count .LT. iterations).AND.(Diffabs .GT. 0.0001)) Z-j
K 2014 = Znew T
Ztemp = 7.0 * Znevw**6 %
' IF (CDABS(Ztemp) .LT. .00001) THEN ! absolute value N3
Y count = O 3
v GOTO 222 ,:.;
. ENDIF
: Znew = ((6.0 * Znew**7) + 1.0) / 2temp -
Diffabs = CDABS(2Znew - 2o0ld) e
~ count = count + 1 .
: ENDDO -
@
Pl N
‘< 17 o
o
L] .
; -

)

.- v o s e e

A

Faf by U N

CA N

&
4

Listing 2.

-
- o

Code producing pixel information for iteration of Newton's
method as applied to f(z) =27 - 1 (cont'd)

c Load vector data: column X or M and color ‘count’ or ‘oldcount’
222 IF(M .EQ. 0) THEN
oldcount = count
X =0
ELSE IF(M .BQ. (cols - 1)) THEN
IF(count .NE. oldcount) CALL OUTBUF(X, oldcount)
CALL OUTBUF(M, count)
ELSE
IFP(count .NE. oldcount) THEN
CALL OUTBUF(X, oldcount)
oldcount = count
ENDIF
X=X +1
ENDIF
ENDDO
ENDDO
IF((E .GT. O) .AND. (K .LT. 16384)) THEN
DO J = E+1, 16384
databuf(J) = G! fill remainder of buffer
ENDDO
WRITE(10) databuf! write last record
ENDIF
CLOSE(10)
CALL EXIT
999 VWRITE (6,*) Error opening new file NEWT.VEC ', IOS
CALL EXIT
END
c ——
SUBROUTINE OUTBUF(X, color)
INTEGER*2 X, color
INTEGER*2 databuf(16384)
INTEGER*4 K/0/! data buffer index
COMMON /BLOCK1/ databuf, K
K=K+ 1
databuf(K) = X
E =K + 1
databuf(K) = color
IF(K .EQ. 16384) THEN
WRITE(10) databuf ' write vector data
K =0
ENDIF
RETURN
END
18
T L N A O Ty

I A A S

k1

TR XS A
rﬁ

PN
Ly,

S

) OCRRARRE A iriins,

NS Wb

]

The variable ‘iterations’ can be used for loading color look-up table

Listing 3. Code/pseudocode for plotting color fractal images

PROGRAM PLOTFRAC

Pseudocode/FORTRAN listing illustrating how to plot vector files.

.
Square images are produced (rows = cols). oA
Programmer : R. Miller "

-

INTEGER*2 iterations, X, Y, color, rows, cols
INTEGER*2 xcenter, ycenter
CHARACTER filename*40

filename = 'NEVWT.VEC’
OPEN(10, FILE=filename, STATUS='OLD’', FORM='UNFORMATTED')

;
CALL READBUF(cols, iterations) ! get first data pair “a]
rows = cols

W
¢

allocate I/0 device

e’ .
« g

enter graphics mode
reset graphics device

[i

A

xcenter = cols / 2 .
ycenter = rows / 2
set screen and coordinate origins to center image on the screen

load 'iterations’ number of colors into look-up tables &

‘f
Y = rows - 1 ! range of rows for plot: O to rows - >
cols = cols - 1 ! range of columns : 0 to cols -

plot left to right and top to bottom of screen
DO WHILE(Y .GE. 0)

MOVE 0.Y ! Move to beginning of row Y -
CALL READBUF(X, color) t get first vector data pair for row bt
DO WHILE(X .LT. cols)

VALUE color ! set current drawing color -
DRAVW X+1.Y ! draw to X+1 to avoid a MOVE X+1,Y Y
CALL READBUF(X, color) ! get next vector data pair -

ENDDO

VALUE color ! set drawing color

DRAW X .Y ! drav last vector of row Y o

Y =Y -1 o
ENDDO =

x

e

£

exit graphics mode
de-allocate I/0 device

g

CLOSE(10) ! close file e
CALL EXIT N
END N
N
3
L]

J

19 o

.

‘.J'

R

-

L e

Listing 3. Code/pseudocode for plotting color fractal images (cont'd)

SUBROUTINE READBUF(X, color)

INTEGER*2 X, color

INTEGER*2 databuf(16384)

INTEGER*4 K/0/ ! data buffer index

IF(K .EQ. O) READ(10) databuf

K=K+ 1
X - databuf(K)
K=K+ 1

color = databuf(k)
IF(K .EQ. 16384) K = 0

RETURN
END

3. SEED FRACTALS

Fractal images may also be generated by the repetition of a given geomet-
ric pattern. Examples of these types of fractals are seen in figures 1 to 4.
These images are generally called seed fractals.

By o<ne definition, a fractal curve is a curve for which the fractional
dimension exceeds the topological dimension. Unless the curve is a space-
filling Peano curve, this topological dimension is 1. 1In some instances, the
curve may be a simple closed curve, as in the case of Koch's snowflake. If
the fractal is a seed fractal, the curve is constructed by a limit procedure
where a given seed design (some geometric shape) is scaled and repeated. This
produces a curve that is self-similar; that is, the curve pattern repeats
itself on any level of magnification.

3.1 Procedure to Produce Seed Fractal Images

All the curves in figures 1 tn U4 are seed fractals. In each of
these, the algorithm to produce them was a twofold process. The basic pattern
had to be calculated, scaled, and moved to its proper place via a similarity
transformation. Simultanecusly, a data structure had to be set up in order to
prepare for the next level of iteration. The first step was achieved through

trigonometry and linear algebra. The second step was handled through
counting.

Listings 4 and 5 are the code listings for Sierpinski's gasket (fig.
7) and the Cantor-Lebesgue function (fig. 2). The first of these demonstrates
the drawing process, while the second provides an example of the counting
process. (Both listings are given at the end of this section, pp 28 to 31.

20

LA Al LT A

]
.,

. .
Sy
8

"l‘ g

W" f-l’-f.-’:- 4 "i hS ‘.‘_‘..'..l. 'h“

»
Pl
» g

LA

.:‘. 0\

}‘:’.'. ..u 2y

-
L
s

.
LA
LSRN

> ‘v v v
.

S

N ya Ll
- .('\,'.I"’r‘pﬂ | 4

3.2 Calculation of Topological and Fractional Dimension

Seed fractals present a good opportunity to demonstrate the calcula-
tion of fractional dimension, as is seen in the following examples. Fraction-
al dimension is a precise gauge on how much an object "wiggles about," and is
given by a real number. It is different from our more intuitive understanding
of dimension, which is expressed precisely by topological diwmension. (Back-
ground for this section 1is provided by Guckenheimer and Holmes (1983),
Hurewicz and Wallman (1948), Lehto and Virtanen (1973), and Munkres (1973).)

Intuitively, given a mathematical object in Euclidean 3-space, that
object is usually thought of as having dimension 0, 1, 2, or 3 (which are the
dimensions of a point, line segment, square, and cube, respectively). This
intuitive dimension is topological dimension. Topological dimension is always
given by an integer, and corresponds to the minimal integer value, say m, for
which the following holds: given a topological space X, and an open cover A
of that space, there is a refinement B of A that has order m + 1. Here, a
collection B of subsets of A has order m + 1, if some point of A lies inm + 1
elements of B, and no point of A lies in more than m + 1 elements of B.

Let the diameter of a set be the least upper bound, or supremum (sup)
of the set of distances between points in the set.

Example: The unit interval I = (0,1] has topological dimension 1.

Let I be endowed with the subspace topology inherited from the Eu-
clidean metric topology on R.

To prove that dim I = 0, assume that the unit interval is connected,
that is, does not have two disjoint nonempty subsets whose union egquals I.
For 0 < ¢ < 1, let A be any open covering of sets of diameter less than e.
Suppose that A has order 1. Then, no two elements of A intersect. Also,
since € < 1, A must contain at least two elements. Let U be one element of A,
and let V be the union of the others. Then UN V = @ and UU V = I, contra-
dicting connectedness.

Next, let A be any open cover of I. Then,

A = {[0,a,), (ag,ag)y «ov sy (an_2,1]}

for some partition P1 of the unit interval.

O=ao<a-[<.--<an__1<an=1

Let ¢ = min {|a; - a;_q]}. Now, refine P, to a partition P, so that
i

P, = {bj: 0 =D

i o < b1 < ... <Db

m-1 < Pp = 1)

- bj_q| < es2 for all i.

?. '. "- 'l "l'l'k L]

L]
.

*
vt "

PO * w" \’ 'f V" <. -'
AN %*r~-‘ \ ‘ ‘¢Qﬂ\ e

¢ . R ' o .-“ - f RS

K .-.v.-\.r\l .,\f.unn&u-&uﬁ.-...\ -f%- \\. %-Nh Ky .r.rfla \\- -.\-P.f\;\ \a LHPAN . s (-.- .
t

R

x

i

¢

'

2
9

4

¢

-

; © o

.%\l". - -) - " .II. ¥ B Eance -

)

Wl '.'r-.;\"\"s."\'.-. AR

b

Figure 6. Color images from dynamics in G: <(a) f(z) = r+exp(z), parameter
space; (b) f(z) = reexp(z?), parameter space (note symmetry, as expected);
{(c) £(z) = A+sin(z), parameter space (note "mini-Mandelbrot sets");

(d) f(z) A+cos(z), parameter space; (e) f(z) = Astan(z), parameter space;
(f) f{z) = r+tan{z), parameter space (enlargement of a region in (e));

(g) f(z) z* - z -), parameter space; (h) f(z) = z* - z - A, parameter
space (enlargement of a region in (g)); (i) Newton's method applied, f(z) =
z7 - 1, C-dynamical system; and (j) f(z) = z? +), parameter space
{enlargement of a region on the boundary of the Mandelbrot set, containing an
outline of the original set).

Pixel colors represent convergence rates. 1In all the figures above, this
rate was an "escape rate"--how quickly the iterates of that pixel converged
to infinity. In general, the color schemes went according to color frequen-
cy. Thus, red was slow convergence, and violet was fast convergence. How-
ever, this scheme was not strictly adhered to. Also, scaling was required,
especially in figures (a) to (f) (expotential growth » logarithmic scaling).

All the color images seen were produced by R. Miller, who worked on compu-
ter graphics, and S. Casey, who did mathematical programming. The images
were produced in the spring and summer of 1986,

23

. e ee .-
BIRP, A S s AT

bty

N

(A&

© .
Ve

F RN
LI
a

-

.': ,

L] l‘\‘
A

Sy
-

-y

2
v
3
v

.‘. O

.
« ¥ 4
A

A
e
)

sl

o, o
\f e o~
s (a) (d, .
'.' .
L, ©
fe] . * [al
I'l Do s .
-~ . oxo= s
‘q' © . .
'I o 1 » EY » . “»
~ 2 P e e £,
o o . .
\i i DT S 1
\4 - - . .
o - L
R o 1
SN P
> soe s PO < .
Ny ~ e .y o = e e
LN o * .
f. o ow I P
f".' —— - ——— .o
(A\ -+ s r% — — — Y . o
Ll g =)
o 00 02 04 06 08 10 co 0% 0 15 20
X—axis X —oxis
» Qo
- <)
A (o) (-
N e) .
*‘ ., RS .
v, — P b
A N © R B
" o] s ph e . roe
o, o - e
* pL: i C R R I RIS
(‘ P N “ e 4 e e e e e
" ., # 4, [— [— [faa
o RN R e e s . .
© A A e e I B e S]
o "] 2 A R
N = Iy £ .'1 4 (3 F—t b 4 e [[r—
\' o A e LR X o T T T T
5] S hn Ak hp s EA AR e [R P e I R R R ke
" > o TR R SR S § B O
4 o 42 o > T e P
. R
Q t““‘—*’:‘ ':x--;‘ ‘t’if*j‘vbt‘:':‘ r:¢*4t-
¢ A Axh s e s
e o 2R, Kodir AR o | Do
° 2 A2 °© T
A’Jt‘ Ar g AR - or< »
(o L, . .
4’& “ AN [— 4 et 4y
Q; ¥y &) LAy A PN FICRY PR i i 1
g Jﬁ./:)\z @QH/‘—,‘,.r.r‘.‘;‘»c.‘.¢r, o %*
0.0 02 04 06 08 10 P —
X—axis 0.0 05
2 (=]
(c) no~
)
s i
% o oAb
b R B9
~ % b
oy b, t
> ped £
.l o + ‘IL
" ‘)/_(, ‘”‘)}-u‘.}"- v
o 8 X
> o P Xy o 1
9 (3} >
7
_
. .ﬁ% A‘é;
> 4
» #
- ~ fandndn
a, o 2
. s,
X v Y
5 2
L]
[=]
(=] o I
- o
O 1
o 00 02 04 L 0f ’ ’ 0.0 05 10 5 20
v X-axis .
L X—axis
LN
‘. Figure 7. Sierpinski's gasket (a-c) and the antenna (d-f): (a) defining
L. procedure followed three times, (b) four times, (¢) five times; and (d)
.
L]

defining procedure followed three times, {(e) four times, (f) five times.

.
e
‘l
‘o
A

-

-—-er

=3
o
)
@ = ‘
P +
© e
3’ L) * 4
© | X
et ¥l
" . — . * .
S .
2 © LECTRUR]
] N » .
*8 ‘
b N + N 4 *
© ey iy w \\I * oaen
R L
2 k”,x(tf * « L
' N S P . .
clj ¥ - II oy 1
(| -
kY N o — i
[=3 . £ a & o »
L
o
|
'y
~
S P

(h)

T T T
-1.00-0.75 -0.50 -0.25 000 025 050 075 100

X—axis
"l
~
[=
o
. .
" s Y
~
o RS
P P R
. 4
[} PR ey Tal
%8 LAY S
i e + uh‘.’l’f‘. -
> o A A
g . y N
. fag N
° “!‘ﬂ‘?' ~'.-r g "-& ?"‘:%"“g—n
2 T SR N Y A
> Y) oy . e
g — o L v Fao,
] SR A WS K4,
bt
®
? . ,
~100-075 -0.50 -025 000 025 0S0 €75 100
X-~axis
"l
~
o
o
; - &
1
0 L
©
° L)
- N &
2 & &
=) atg 1 LA
R4 gy ¢ 4
=0 AN G A &L
| « & ‘ " P -
.)
g EYYN " N
© Lt W
AE! X s ’.
4 - .o g 0 &
& PR &,
T Me ‘ F AN
) E A b N P
2 .ﬁ%x .xrn PR Py Py
(o]
t
al
EN
<
-100-07% -050 -025 GO 025 050 05 10
X~axi1s

Figure 7 {(cont'd). The arrowhead:

(g) defining procedure followed three
times, (h) four times, and (i) five
times.

Then,

B = {{0,b,), (by,03), ...y (by_p,1]}

is a refinement of A of order 2.
Since this is true for any cover A,
it follows that

dim I <1 .

Therefore, since topological dimen-
sion is integer valued, dim I = 1. <

To prove that the topologi-
cal dimension of a simple (noninter-
secting) continuous curve is equal to
1 requires a bit more machinery.

In order to calculate frac-
tional dimension, the idea of cover-
ing a set by open sets is used. How-
ever, in this situation, the diameter
of the sets used plays an important
role. The idea of fractional dimen-
sion goes back to the nineteenth cen-
tury, to F. Hausdorff and 1. Besoco-
vitch. The following is the formal
definition of the fra-*tional dimen-
sion named after them.

Let X be some set in Euciid-
ean 3-space. Consider all coverings
of X by countably many sets of diam-
eter less than some d > 0. Given one
such covering, say {a y Q ...}, as-
sociate with that cover the number

B
Ldy

n

where dn is the diameter of the set
oy and 8 > 0. For every R let

u)=1im[mr(2d$] .
d+0 n

where inf (infimum) is the greatest
lower bound. The quantity u¥* is
called the B-dimensional Hausdorff-

i

|

v

'.l"
S
1]

'ﬁ"’l) ®
5

v

VA

L)

-
1]

.
[

[N

.

et
IR
'
A

y et e
2

AR
l"
* v 92_2

s

[
. e
’

LA "A {I'.I(I{T{;
I L I e A
L v 2 .' P

1
T
it

bt
M

.
2

BN

‘9

»
@ .

%

" y oy -
l'

. -
14

v CE PR N PO FOR A TOR TR PO Y " g0 > L RN RN \J V. N Ch'a Bta e h'ad

-
~
.

.

[l

03

-
‘. -

i oy
l‘| ::
h)
" ~
) L
N Bes covitch outer measure. Then, the Hausdorff-Besocovitch dimension of X is %
. s ‘-
\ given by o
]
: dim X = inf {elug(x) =0} . B
Y e
:' Again, this definition is best seen in the following examples. ;
0 :I
i:: Example--the Cantor middle thirds set: Let Cy = [0, 1]. Then, A
' 12 .
= - (=, = <]
% 1= % (3 ‘ 3) '
<)
r“ a.-
v 1 2 7 8 ~
¥ -4 [(5-5) (o) - R
: r..
¥ c - 12 <3“” -2 ™. 1) i~
- et S8 T e) o Um0 T o
o‘ n 3n 3n 3n 3n <
R~ T
N The Cantor set C is lim C,. Note that the set (0, 1] - C has length 8
© -
s w t
N (\
- o
, z(e")g_ G - 3
n-o \3"*1/ 3 o\ 3\ - (273) .
-~ ey
ﬂ: To get an upper bound on dim C first work with the set C This set ::f:
: can be covered by 2" sets of length 3N Now, -7
‘ n -n ':.’
paf <"z, ;
o N
. and so (nonrigorously) Ny
\: n¢-~ny8 e
N ut(C) = lim inf 2 (37" . N
. i n+w -
=, To calculate the dimension of C, one must find the inf {elug(c) = 0}. &s 3
. ‘.
() - ~
y 2"3 "y e n(log 2 - B log 3) = log x , -
L] :.:
) and .\\
9 © log 2 .
‘: log x » as n - <+ B < log 3 ° o~
- 'I
. we obtain S
e . log 2 ’o
) d < .-
L im C ¢ Tog 3 :
= With a bit more work, one can see that this bound is sharp. ¢ o
T
Yy
- 26 L
P-. T
A

« s m 8 2 F

3
-

Dl el AN

A"t el N

AR RR AR R AN MR PN R R nal tataat tabatalotato 2t vat ot tal ta€ ol tal tate Al tal catiat tat st aby gt g \

Example--Koch's snowflake: At the ntD stage of its construction, the snow-

flake can be covered by 4" sections of length 3™". Thus,

WE(K) = lim inf yh3Tne
n4o

Therefore, since

ye N8 x o n(log 4 - 8 log 3) = log x ,

and

log 4
log x + a ©
8 vasn>eod log 3,
we obtain
. log 4
d —
im K < Tog 3 <

Discussions of t-pological dimension may be found in Munkres (1975)
and Hurewicz and Wallman (1948). Discussinns of fractional dimension may be
found in Lehtn and Virtanen (1973) and Mandelbrat (1983). One of Mandelorot's
main underlying themes is that a fractal is characterized by its fractional
dimension. Thus, numeraus calculated examples can be found throughout the
book .

Ky
" ._"

Y]
k_“.‘\.’\-“f P

&5t
T2 X000

..‘,,...
AR TR T 1 4,
- b 8 A .
P i

5,0 v
[
.

.
’

.t
4
.

‘)
Iy

IR

%

% v
0

._e ".'..
A /s.‘ 4

PR R
_'r%lﬂ'- Y b

.‘-' n':.q ‘v
)y

P

>
h)
)

~

Listing 4. Code producing vector data to draw Sierpinski's gasket

This routine draws Sierpinski's Gasket.
Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
Programmer : S. Casey

Iy
b

ﬂfctkﬁ

Al s

‘l“

100 FORMAT(1X,F10.

999

PROGRAM SGASKET
REAL*8 Con, Scale

REAL*8 Xnode(7.730), Ynode(7,730) ! Centers of the triangles...

REAL*8 Xreturn(3), Yreturn(3)

INTEGER Iter,

I, J, K

CHARACTER*1 Lntyp ! Draws either points(P) or vectors(V)...

WRITE (6,*) '

Enter the ¢ of iterates a maximum of 7.°

READ (5,*) Iter

OPEN (10, FILE='SGASKET.DAT', STATUS='NEW', ERR=999, IOSTAT=IOS,

CARRIAGECONTROL='LIST')

Con = 3.0

Con = DSQRT(Con)

Lntyp = 'P’

WRITE(10, 100)
WRITE(10,100)
Lntyp = 'V’

WRITE(10,.100)
WRITE(10,100)
WRITE(10,100)
WRITE(10,100)

Lntyp = ‘P’
WRITE(10,100)
Lntyp = 'V’
WRITE(10,100)
WRITE(10, 100)
WRITE(10,100)

3,1X,F10.3,1X,4)

1.0, Lntyp ! Scaling factors.
0.0, Lntyp

0.0, Lntyp ! The outside triangle.
0.0, Lntyp

(Con 7/ 2.0), Lntyp

0.0, Lntyp

! Lifting the pen.
0.25, (Con / 4.0), Lntyp

0.75, (Con / 4.0), Lntyp ! The inside triangle.
0.5, 0.0, Latyp
0.25, (Con / 4.0), Lntyp

Xnode(1l,1) = 0.5
Ynode(1,1) = Con / 8.0

DO I =1, Iter

Scale = 1.0 /7 (2.0**(I+1))

DO J =1,

3**(I-1)

CALL Gasketseed(Xnode(I,J), Ynode(I,J), Scale,

DO K =

Xreturn, Yreturn)

3

Xnodei(I+1), (3*3-(3-K))) = Xreturn(k)
3*J-(3-K))) =

Ynode((I+1), (

ENDDO
ENDDO
ENDDO

CLOSE(10)
STOP

E 3

Yreturn(k)

WRITE (6.*) ' Error opening new file SGASKET.DAT - ‘', IOS

STOP
END

28

~-¥
S -

g o o o g P8 g

e "y .A
«

Con = 3.0

ENDDO
ENDDO

RETURN
END

SUBROUTINE Gasketseed(Xnode, Ynode,

Listing 4. Code producing vector data to draw Sierpinski's gasket

REAL*8 Xnode, Ynode, Scale, Con
REAL*8 Xreturn(3), Yreturn(3)
REAL*8 Xvar(3,4), Yvar(3,4)
CHARACTER*1 Lntyp

100 FPORMAT(1X,F10.3,1X,F10.3,1X,A)

Con ~ DSQRT(Con)

Xreturn(l) = 1.0 /7 2.0

Yreturn(l) = -Con / 8.0
Xreturn(2) = 0.0
Yreturn(2) = (3.0 * Con) / 8.0
Xreturn(3) = -1.0 / 2.0
Yreturn(3) = -Con / 8.0
DOI =1, 3
Xreturn(I) = (2.0 * Scale * Xreturn(I)) + Xnode
Yreturn(I) = (2.0 * Scale * Yreturn(I)) + Ynode
ENDDO
DOI =1, 3
Xvar(I,1) = -1.0 / 2.0
Yvar(I,1) = Con / 4.0
Xvar(Il,2) = 1.0 /7 2.0
Yvar(I,2) = Con / 4.0
Xvar(I,.3) = 0.0
Yvar(I,3) = -Con / 4.0
Xvar(I,4) = Xvar(I,1l)
Yvar(I,4) = Yvar(I,1)
Lntyp = ‘P’
DOJ =1, 4
Xvar(I,J) = (Scale * Xvar(I,Jd)) + EXreturn(I)
Yvar(I,J) = (Scale * Yvar(I,J)) + Yreturn(I)

IF (J .EQ. 2) Lntyp = 'V’
WRITE(10,100) Xvar(I,J), Yvar(I,Jd), Lntyp

Scale, Xreturn, Yreturn)

| Draws either points(P) or vectors(V)...

PN

29

PR A | B L PR
)y :':'- e B o

s
el

- w e

RPN

5 A

‘i"'l"\f Y

,‘,‘-

T Listing 5. Code producing vector data to draw Cantor-Lebesgue function

» T» S r_®_E_%

c
¢ This routine draws the Cantor-Lebesgue funtion.

¢ Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
c

c

S5H

Programmer : S. Casey N

J ___ l.
o PROGRAM CANTOR ’
" j REAL*8 X1(8,256), Y1(8,256), X2(8.256), Y2(8,256), Xstep, Ystep .
» REAL*8 Xreturn/1.0/, Yreturn/0.0/, Xscalel/0.0/, Yscalel/0.0/ ;

REAL*8 Xscale2/1.0/, Yscale2/1.0/
v\ INTEGER*4 Iter, Count/Q/ 5

b WRITE (6.,*) ' Enter the # of iterates ... a maximum of 8.° y
L, READ (5,*) Iter N
& :

OPEN (10, FILE='CANTOR.DAT', STATUS=‘NEW', ERR=999, IOSTAT-I0S,
1 CARRIAGECONTROL='LIST')

.
!

N DO I = 1, Iter N
WS IF (I .EQ. Iter) THEN 3
+ WRITE(10,*) Xscalel, Yscalel N
o END IF .
ShY Count = Count + 2**(I-1) .
FA DO J = 1, Count =
- Istep = (1.0 / (3.0**I)) 4
L7, Ystep = (1.0 / (2.0**I)) -~
N IF (J .EQ. 1) THEN 5
N X1(I+1,3) = Xstep o
M Y1(I+1.J) = Ystep /]
-~ X2(I+1,J) = X1(I+1,J) + Xstep

. Y2(I+1,d) = Y1(I+1,d)
e IF (I .EQ. Iter) THEN R
" WRITE(10,*) X1(I+1,J), Y1(I+1,dJ) N
e WRITE(10,*) X2(I+1,d), Y2(I+1.,d) .
)’ END IF N
O~ END IF 3
- IF (MOD(J,2) .EQ. O) THEN X
e, X1(I+1,d) = X1(I,(Jd/2)) o
‘. Y1(I+1,3) = Y1(I,(d/2)) L
2 X2(I+1,J) = X2(I,(g/2)) o
o Y2(I+1,d) = Y2(I,(Jd/2)) :
N IF (I .EQ. Iter) THEN .

WRITE(10,*) X1(I+1.J), Y1(I+1,dJ)
WRITE(10,*) X2(I+1,d). Y2(I+1,d)
?; END IF)
o ELSE 3
Y X1(I+1,J) = X2(I,(J/2)) + Xstep -~
¢5 Y1(I+1,J) = Y2(I.(J’/2)) + Ystep >
oy X2(I+1,J) = X1(I+1,d) + Xstep 4
Y2(I+1,d) = Y1(I+1,d)

0
A

IF (I .EQ. Iter) THEN
WRITE(10,*) X1(I+1,J), Y1(I+1,d)
WRITE(10,*) X2(I+1.,J). Y2(I+1,d)
END IF
END IF .
ENDDO "

LR,

"':‘1":'1",5 J.

S . o
- - - a
\ﬁﬂrx’\fu BSOS \ \’-*s’-’ e "

Pl 2t T

.-

‘- e

Listing 5. Code producing vector data to draw Cantor-Lebesgue
function (cont'd)

IF (I .EQ. Iter) THEN
WRITE(10,*) Xscale2, Yscale2
WRITE(10,*) Xreturn, Yreturn

END IF
ENDDO
CLOSE(10)
STOP
999 gRéTE (6,*) ' Error opening new file CANTOR.DAT = ', IOS
TOP
END

4. SQUIG FRACTALS

As is known, fractal images seem to imitate nature rather well. Certain
types of fractals employ a controlled random motion to produce images of
landscapes, trees, etc. Mandelbrot calls these squig fractals.

Fractals have now worked their way into computer graphics art, and even
into the movie theatre. The sharp landscape images now seen in some films
were generated by taming Brownian (or random) motion, The techniques for
generating these squig fractals are somewhat similar to those employed in
generating the seed images. Again, an image must be drawn, and a data struc-
ture which anticipates the next level of iteration must be in place. However,
the big difference is that in the production of squigs, a computerized "coin

flip," provided by calling a random number routine, determines the final shape
of the fractal.

Uncontrolled random motion appears too rough to model nature. This can be
seen easily by randomly choosing (x, y) coordinates, and connecting the dots
(see fig. 8). However, if some control is introduced into this process, such
as scaling, transforming, or filtering, a pattern which imitates nature's own
reontrolled randomness" seems to emerge. This technique of creating images by
controlled random motion has been employed successfully in the generation of
landscape images, including mountain ranges and lakes (see fig. 9).

Unfortunately, the computer code to generate even the most basic of the
squig images is long and tedious (listing 6, pp 34-40).

We can demonstrate the fundamental idea behind the creation of a squig
fractal by discussing a planar squig curve. Given a simple closed polygonal
curve, the squig procedure can be applied to produce a controlled Brownian
path which circumvents nearly the same area as the initial curve.

Cover the initial curve with a grid of sufficiently small mesh size (say,
d/4, where d = minimal distance between vertices). Let the length of one line
segment in the grid be denoted by L. Align the mesh so that none of the
polygon's vertices matches a vertex of the mesh. Thus, in each square that

37

A S AT

\ N et s .
RSN SR I B i S R R AT e S
RSN ’<f.,.,:f;:.ﬂ:,.’.f.{:f:,.f:,x{.r$f?;.f\ ‘Ixr?lf('r?:‘c‘ \{\#>’$ \{\- N 3_\l\a\:

R

"'. vy '*'_".,"._

'lﬂ”'r‘v_

-
~
™
.

-
-
b
)
AN
N

Py

Lt
’ ‘l i .”

PR G N e

[N

BLAL AT ANN

)

2 a
-.l‘-

«

“s
.‘ -

LS T T 4

N

Y
AL Y

s

1.0
0

0 K%
5 5
- x
~ o~
i r r o
v - - i
0.0 02 0.4 . 0.8 os 1.0 00 0.2 04 06 o8 1o 1.2
X—axis X —axis
Figure 8. Brownian motion. Figure 9. Skeletal fractal mountain.

the original path intersects, the polygonal path will come in one side and
exit on another. Divide the box into four equal bnoxes having sides of length
L/2. At this point, controlled random motion will produce the first genera-
tion of a squig curve.

Consider a single square. Assume that the path enters the box from the
left. In the scale of the finer mesh (L/2), the path could enter the box from
the tap or bottom. 1In the squig scheme, this is determined by a weighted coin
flip, e.g8.,

ran {) £ 0.2% = 3/U4 weight .

If this is the first box processed on this level of iteration, then 1 fair
cnin flip f(i.e., ran () s 0.5%) will determine entry. If not, then entry
pasition is inherited from the previous vox. Similarly, in the scale of the
finer mesh, there are two chaoices of exit from each side. This is Jdecided by
a weighted caoin flip. (This exit pasition then determines entry of the adja-
cent box.) Between entry and exit, there are 22 possible paths aon the level
of the finer mesh. There are eight exiting from the opposite sile, and seven
edch from the adj)iacent sides. The chaojce of any of these paths comes from a
couple »f weighted coin flips, whi-h tot.omine Wwhether or 1t the path turns

;

or gnes straight (see fig. 10,

Throughnut the process, the osin £lip o weighted {n faver o the
straighter pdth. The tipgher the weight, the striiynter the paty, and the
lower the fractional dimension of the curve,

Once this process of choosing the path ~n the first level ~f iteration has
beeri ¢completed, the curve must Le oovered ty roxen with sides o length L/u4.

L SN N B §

PRI D,

V. vy v e

et Ay T

R AR

’

T AT

.=
[Y
A N

&

vy

o
-
[J

e v W - WU W ‘o o ha ol e ala s0n gbn ahe- e JUR VA J0n LUo e o) SRRy oD SR oL ok gih g)
-~ W O Wy - -) . TN, - WO - W W

"
", ol
:-
A
]
N ° In turn, each of these must be h
. o divided in equal fourths, and the :
0y .)]]] next level of iteration in the squig
. ° SR e e e procedure must be done. Iteration
- continues a predetermined number of -
’ ° T S times. e
™ s
N o v The squig procedure is by no 0
a3 L e : ! means limited to curves. The idea -
‘ fo g : of using chance to produce fractal
. - ST benavior is a particularly powerful
. o . _ one. This is witnessed in The Frac- .
- = RO A tal Geometry of Nature, for Mandel- 3
7 brot devotes nearly the entire o
v ° wp e ehe e second half of the book to this sub- y
PEe ject. One particularly interesting L
. ° use of the squig procedure is in the .
" '_40 -20 00 20 40 60 B0 100 production of semirandom tree paths "
:- X—axis called "graftals" (see fig. 11). -
) , i . stvanik's i i j o
oA Figure 10. Possible two-dimensicnal Estvanik's article on this subject .
s _ (1986) is particularly useful. o~
W squig paths.
ry Producing a squig is only the first step towards producing a realistic .
landscape. Smoothing, coloring, shading, shadowing, and numerous other more ..
\ standard techniques from computer graphics must then be applied to produce the r:.‘_
'$ finished product, a realistic image. It is interesting to note, however, that f,
because the squig (and other) fractal methods are so powerful, these tech-
niques, once considered esoteric, are rapidly being accepted into the main- -
N stream of computer graphics. -
-~ -
(a3 () 3 -
- b3 : 4 <
’ = 3 -
S 3 S
N g 8 e
- Se
ol) o -:'
" o =
", w3 PR N
- % ,6
. >|— =] > o -~
8 8 S
v, M
5 3
» ' y
(=] .
5 o 8 .-
L (=] 'I' v A
2000 3000 4000 5000 H000 7000 8000 3000 4000 5000 600 0 00 0 8000 :
e X —axis X —axis .
. .‘.-
,. . .-‘P
R Figure 11. Graftal tree (a) and bush (b). T
Al :::
’ 33 .,
N X
\. .
e ~
~ N~
R i A N e N G LU . . . N .
l':‘u'.-f S 'f~ \J'\.- \-'..-' ! ':-': '\ ::1'\\' "'\"::' -\‘\"."-' B *'.-" W R N - '\\" T

'y
’ Listing 6. Code for plotting skeletal fractal mountains
A)

' @ mm e e e e
2 ¢ This program draws the skeleton of a fractal mountain
i c range by means of the addition of random weights to

c the y values of a triangular lattice. The con-
a c struction of this lattice goes from O to Iter. -
. ¢ Programmer : S. Casey N
C T TTTTTTTT oo mm s e N

c >

‘ -
PROGRAM MOUNTAIN w

3 REAL*8 X(0:6, 24768), Y(0:6, 24768) ! Array of emndpoints :g
F. REAL*8 Mx(24768), My(24768) ! Array of midpoints I

. REAL*8 Randbound ! The degree of roughness s

X REAL*8 Randshft * Function giving random number with random sign Y

. INTEGER*4 I, J, Iter, Level -

INTEGER*4 Depth(o:e). Numpts(0:6), Numlns(0:6), Numtrg(0:6) =
S WRITE (6.*) ' Enter the # of iterates. Cannot do more than 6.’ N
3 READ (5,*) Iter

y WRITE (6,*) ' Enter the degree of roughness. This is a number’ ::

) WRITE (6,*) between O and 1.° ‘o
3 READ (5,*) Randbound £
.. WRITE (6,*) ' Enter the initial triangle.’
. DOI -1, 3 »
N READ (5,*) X{(0., I), Y(O, I) .
N ENDDO .
N ¢
s Depth(0) - 2 A

Numpts(Q) = 3 -

] Numlns(0) = 3 A
5 Numtrg(0) = 1 N
L DO I =1, Iter -

. Depth(I) = Depth(I-1) + 2**(I-1) -

X Numpts(I) = (Depth(I) * (Depth(I) + 1)) / 2 -
! Numlns(I) = 3 * (((Depth(I) - 1) * Depth(I)) / 2) -

Numtrg(I) - 4*°I !
y ENDDO o
'I l-’-
, Level - O E
DO I - 1, Iter
4 Level - Level + 1 ‘.
1‘..,

CALL Midpoints(X, Y, Randbound. Level, Mx, My)

f CALL Reassign(X. Y, Level. Mx. My)

S ENDDO
3 OPEN (10. FILE- MOUNTAIN DAT . STATUS-'NEW', ERR=998,

* IOSTAT 10S. CARRIAGECONTROL 'LIST) a
o l.‘

N CALL Draw: k. Y. Iter) v
) R
N CLOSE(10 e

STOP .

y 998 WRITE (6. *) Error opening new file MOUNTAIN.DAT - ', IOS ™

STOP

ENL

ol Sah 4o

Listing 6.

Code for plotting skeletal fractal mountains (cont'd)

¢ -- This function returns a bounded random number

C
o]
c

-Randbound/2**Level
with random sign.

<= num <= Randbound/2**Level

REAL*8 FUNCTION Randshft(Randbound, Level)

REAL*8 Randbound

REAL*8 Rand, Sgn, Scale
INTEGER*4 Iseed, Timeseed
INTEGER*4 Level
LOGICAL First/.TRUE./

IF (First
Iseed
First

ENDIF

) THEN
Timeseed()
.FALSE.

IF (RAN(Iseed)
Sgn = -1.0
ELSE
Sgn = 1.0
ENDIF

Rand =
Scale =

RAN(Iseed)
1.0 / (2.0**Level)

Randshft =

RETURN

* Randbound

Sgn * Scale * Rand

.LT. 0.5) THEN

Variable received from main

Local variables

For the random number generator
Level of iteration in main routine

! Flag which insures only one call of Timeseed

¢ -- This function is a sleazy trick which enables people with typing

c disabilities, like me, to get a large odd integer for RAN().
c

INTEGER*4 FUNCTION Timeseed()

Timeseed = INT(SECNDS(0.0))

IF (MOD(Timeseed,2) .EQ. 0) Timeseed - Timeseed + 1

RETURN

END
c __
¢ -- This subroutine calculates the midpoints of the lattice(level-1).
c

SUBROUTINE Midpoints(X, Y, Randbound,

REAL*8 X(0:6, 24768),
REAL*8 Randbound

REAL*8 Mx(24768). My(24768)
REAL*8 Randshft
REAL*8 Rand, X1, X2, Y1, Y2

35

Y(0:6, 24768)

Level, Mx, My)

Endpoints, from main

Variable received from main
Returned to main

Random number with random sign
Local variables

N %

Sl LSS

o -

AP A R oS oth L S R oA oWR 58 JFR Sth o]

=3

ol

A

A

\J

' A

o Listing 6. Code for plotting skeletal fractal mountains (cont'd) :

" r

) INTEGER*4 Level ! Level of iteration in main “
INTEGER*4 I, J, Depth, Int, Count ! Local variables -
INTEGER*4 Leadpt(129), Jump(0:129) .
- Depth - 2 -

. DO I = 1, (Level-1) o
n Depth = Depth + 2**(I-1) N

| ENDDO Ny

Leadpt(1l) =1 .

* Int = 0O J‘
T DO I = 2, (Depth+1) .
-+ Int = Int + 1 2
b Leadpt(I) = Leadpt(I-1) + Int o~
iy ENDDO ;‘
, ¢ -- Calculating midpoints of line segments “slanting left" 2

A "
~: Count = O ~

< DO I = 1, (Depth-1) i
~ Jump(0) = O ~3
- DO J = 1, (Depth-I) N
. Jump(J) = (J + I - 1) + Jump(J-1) N

: X1 = X((Level-1), ((Leadpt(I+1)-1) + Jump(Jd-1)))

- Yl -~ Y((Level-1), ((Leadpt(I+1)-1) + Jump(d-1))) N
. X2 - X((Level-1), ((Leadpt(I+1)-1) + Jump(J))) o
o Y2 = Y((Level-1), ((Leadpt(I+1)-1) + Jump(d))) o
> Rand - Randshft(Randbound, Level) N
. Count = Count + 1
s Mx(Count) = (X1 + X2) / 2.0 -

My(Count) = ((Yl + Y2) / 2.0) + Rand .

- ENDDO -

3 ENDDO s

: ¢ - - Calculating midpoints of line segments "slanting right" s

DO I - 1. (Depth-1) N4
Jump(0) = O -

X DO J - 1, (Depth-I) -
N Jump(Jd) = (3 + I) + Jump(J-1) 3
- X1 - X((Level-1), (Leadpt(I) + Jump(Jd-1))) :
, Yl = Y((Level-1), (Leadpt(I) + Jump(Jd-1))) N

. X2 - X((Level-1), (Leadpt(I) + Jump(J))) -

. Y2 = Y((Level-1), (Leadpt(I) + Jump(Jd))) s

Rand - Randshft(Randbound, Level) ®

v, Count = Count + 1 ED
N Mx(Count) = (X1 + X2) / 2.0 .
e My(Count) = ((Y1 + ¥Y2) / 2.0) + Rand
Y ENDDO -
\ .
) ENDDO 5

[
s

‘-.‘

e,
. %
<,

v‘ i
>
" Listing 6. Code for plotting skeletal fractal mountains (cont'd)
J ¢ -- Calculating midpoints of “"horizontal" line segments
[
DO I - 2, Depth

. DO J = Leadpt(I), Leadpt(I+1)-2

! X1 - X((Level-1), J)

N Yl = Y((Level-1), J)
! X2 = X((Level-1), J+1)

A Y2 = Y((Level-1), J+1)

o Rand = Randshft(Randbound, Level)
Count = Count + 1
Mx(Count) = (X1 + X2) /7 2.0

- My(Count) = ((Yl + Y2) / 2.0) + Rand
o, ENDDO
0 ENDDO
%
) RETURN
END
A Gm mm e o e e oo o—————eo- oo
Ny ¢ -- This subroutine reassigns points of lattice(level-1) and new
3 c midpoints to the lattice(level).
. c
A
' SUBROUTINE Reassign(X, Y, Level, Mx, My)
> REAL*8 X(0:6, 24768), Y(0:6, 24768) ! Array of endpoints
=< REAL*8 Mx(24768), My(24768) ! Array of midpoints
- INTEGER*4 Level | Level of iteration in main
< INTEGER*4 I, J, Int, Jump, Count ! Local variables
- INTEGER*4 Skipl, Skip2
- INTEGER*4 Depth(0:7), Leadpt(129)
o Depth(0) =
s DOI =1, Level+l
9’ Depth(I) = Depth(I-1) + 2**(I-1)
v ENDDO
Leadpt(1) = 1 .
. Int = O ::
N DO I = 2, Depth(Level+l) r e
-, Int = Int + 1 v
e Leadpt(I) = Leadpt(I-1) + Int e
) ENDDO N
A o
¢ -- Reassigning o0ld lattice points A
" :\
': X(Level, 1) = X((Level-1), 1) e
-, Y(Level, 1) = Y((Level-1). 1) >
v Jump = O o
2 DO I - 2, Depth(Level-1) N
s Jump = Jump + 1 h
X(Level. Leadpt(I+Jump)) = X((Level-1), Leadpt(I))
7 Y(Level, Leadpt(I+Jump)) = Y((Level-1)., Leadpt(I))
Skipl = O
A DO J - Leadpt(I)+1, Leadpt(I+1)-1
& Skipl = Skipl + 1
$ X(Level, (Leadpt(I+Jump)+(2°*Skipl))) - K((Level-1), J)
)¢ Y(Level, (Leadpt(I+Jump)+(2*Skipl))) = Y((Level-1), J)
ENDDO
¥, ENDDO
v
W
) 37
'
¢
?
[1
> 23
i a ch m e A
IR P P R P A ST R i O T Rt O R P ADIR 0 JL SEL *_‘.:\a_ PN - ".-\.-&.:__.-__.-\.-_.-\.
t“L“*.:,: RN :," W P I AN I AL NN WOTN f\a > ;\¢~ “ z~(. NP AN u a AL e

Listing 6. Code for plotting skeletal fractal mountains (cont'd)

¢ -- Reassigning new midpoints to lattice

¢ -- Reassigning midpoints of line segments slanting left

Count = O
Skipl = O
DO I = 1, (Depth(Level)-1)
Skipl = Skipl + 1
Jump = O
IF (MOD(Skipl, 2) .NE. O) THEN
DO J = 1, (Depth(Level)-I)
Jump = (J + I - 1) + Jump
IF (MOD(J, 2) .NE. O) THEN
Count = Count + 1
X(Level, (Leadpt(I+1)-1+Jump)) - Mx(Count)
Y(Level, (Leadpt(I+1)-1+Jump)) = My(Count)
ENDIF

ENDDO
ENDIF
ENDDO

S,
-)HI‘&’H*'-\W

¢ -- Reassigning midpoints of line segemnts slanting right

Skipl = O
DO I = 1, (Depth(Level)-1)
Skipl = Skipl + 1
Jump = O
IF (MOD(Skipl, 2) .NE. O) THEN
DO J = 1, (Depth(Level)-I)
Jump = (J + I) + Jump
IF (MOD(J, 2) .NE. O) THEN
Count = Count + 1
X(Level, (Leadpt(I)+Jump)) = Mx(Count)
Y(Level, (Leadpt(I)+Jump)) = My(Count)
ENDIF
ENDDO
ENDIF
ENDDO

- II
.
o "
>
.
- M’
X

c -- Reassigning midpoints of horizontal line segments

Skipl = 1
Skip2 = O
DO I = 2, Depth(Level)
Skipl = Skipl + 1
IF (MOD(Skipl, 2) .NE. O) THEN
DO J = Leadpt(I)+1, Leadpt(I+1)-1
Skip2 = Skip2 + 1
IF (MOD(Skip2, 2) .NE. O) THEN
Count = Count + 1
X(Level, J) = Mx(Count)
Y(Level, J) = My(Count)
ENDIF
ENDDO
ENDIF
ENDDO

LRARRAR)

SO0

R

:"v"r_

RETURN
END

4}

SUNNS

e ..-.', ," R BTAESUAER N TS AN
x\ .Mu¢ f.,\'\ SN Ny \fx,\¢\; Wi

Listing 6. Code for plotting skeletal fractal mountains (cont'd)

¢ -- This subroutine draws the lattice(Iter).
c

SUBROUTINE Draw(X, Y, Iter)

T

REAL®*8 X(0:6, 247€8), Y(0:6, 24768) ! Array of endpoints
INTEGER*4 Iter
) INTEGER*4 I, J, Depth, Int, Jump
N INTEGER*4 Leadpt(129)
CHARACTER*1 Lntyp ! Draws either points(P) or vectors(V)
i
100 FORMAT(1X,F10.3,1X,F10.3,1X.A) :f{
Depth = 2 L
DO I = 1, Iter .
Depth = Depth + 2**(I-1) A
ENDDO
\ Leadpt(1) = 1
Y Int = O
A DO I - 2, (Depth+1)
Int = Int + 1
Leadpt(I) = Leadpt(I-1) + Int
« ENDDO
”
. ¢ -- Drawing line segments “"slanting left”
. DO I - 1, (Depth-1)
; Lntyp = 'P’
' WRITE(10,100) X(Iter, (Leadpt(I+1)-1)),
: Y(Iter, (Leadpt(I+1)-1)), Lntyp
Jump = O
: DO J = 1, (Depth-I)
. Jump = (J + I - 1) + Jump
: Lntyp = 'V’
93 WRITE(10.100) X(Iter, ((Leadpt(I+1)-1) + Jump)),
' . Y(Iter, ((Leadpt(I+1)-1) + Jump)).
* Lntyp
d ENDDO
5 ENDDO
s ¢ ~- Drawing line segments "slanting right”
X DO I = 1, (Depth-1)
Lntyp = ‘P’
- WRITE(10,100) X(Iter, Leadpt(I)),
Ny . Y(Tter, Leadpt(I)). Lntyp
Jump = O
DO J = 1, (Depth-I)
Jump = (J + I) + Jump .
Lotyp = 'V’ o
WRITE(10,100) X(Iter, (Leadpt(I) + Jump)). -
. Y(Iter. (Leadpt(I) + Jump)), Lntyp X
ENDDO iy
- ENDDO e
A ¢ -- Drawing "horizontal" line segments P
&
DO I - 2, Depth
' Lntyp = 'P’
% 39

.V
Te e LS
) \}.._’. '}‘-

A
N ‘-.

oA

Listing 6. Code for plotting skeletal fractal mountains (cont'd)

ot
':.‘t‘-\

WRITE(10,100) X(Iter, Leadpt(I)),
Y(Iter, Leadpt(I)), Lntyp

DO J = (Leadpt(I)+1), (Leadpt(I+1)-1)

Lntyp = 'V’

WRITE(10,100) X(Iter, J),

Y(Iter, J), Lntyp
ENDDO
ENDDO

VSR

RETURN
END

Y RIS
f":""'

e v
P
x ﬁd

S,
A

Ly

o T The J Jod

N
\
20

~

.
r

e
%y
»” l}

- ..
P A
oy Ay 4, 2,
.
0

(4

& Ay
/3*;{f

.
L4

-’

L
g 4

K L]

. ;L

LAGLLRY
‘{.l

)
fv.' ~'r" 4 L e
w " e
-. “ ...‘.. - - ~'

TOST ORI VA AN I U O U U AV T U UV U U LY U g TUVUN UV U URUY U UW UV WU Ao ate 20 o %2 At ‘ate 200 aty at e, gby At D 0 3

. 5. REMARKS ON APPLICATIONS

3 Because fractals apparently mimic nature so well, they have been applied @
to the study of numerous areas. Chemists, biologists, physicists, statiti-
i cians, etc, have been using fractals lately to model behavior in their parti-)
o cular fields. Fractals could even be applied to digital signal processing, as ﬁ
$ shown by the following argument. A
:: Fractals are quasi-self-repeating images. Therefore, by definition, the .
image seen on one level is nearly mimicked by an enlargement on the next.
A Moreover, the only limitations to this magnification are the built-in limita- ,
. tions of the image-producing machines (the fractal itself will allow any -l
{: magnification). 74
» -
t/ Therefore, aligned in the proper digital fashion, a fractal could be used ;
as a communications code. The digitized fractal image would act 1like a
o, carrier or an envelope along which information would travel. It should make a Dy
:Q good code for the following two reasons: 3
T .
~rf Uniqueness--A fractal image has its own unique imprint. Small perturba- .

tions in the fractal can produce large variation. (This can be demon-
N strated by varying A in the iteration of z? + A.) Thus, properly chosen,

-
L

O a fractal can produce a unique digital sequence. f.
,:j Stability (and instability)--Fractals should be extremely stable with o
‘b respect to noise because of their quasi-self-repeating nature. To decide ~
= whether or not a bit is a good piece of information, the bit could be ;
i enlarged at a lower level. There, the criterion of the information's
h>, correctness can be predetermined by how far it is from the fractal's basic -

) quasi-pattern. Further enlargements only improve upon the fractal's
5: estimate.

-

W ACKNOWLEDGEMENTS
: I wouid like to thank Robert Miller for his work on graphics and especial- i:
[~ ly his work on the Raster Technologies equipment. -2

Y Y

» N

: Calculations were done on a Digital VAX 11/750. Color images were pro- a7
‘e duced on a Raster Technologies Model ONE/B0O, and the black and white images >

were printed on a QMS Laser Grafix 1200 laser printer. Assistance in data R

,, storage was provided by James Griffin. Steven Choy helped with the laser 'f
:' printer. The color photographs were taken from the display screen by Lawrence -
" Shank, who used Kodachrome 50 film at f4, 1/8 sec. "
. o
) Ca 5'_
3 -
> .

'n
$ "

‘l .*

4 s

' -
. @
™ I '
b -

o o
W, ‘:-
o
L

"

:~ v ‘:'r“ RN 'f‘f‘“) :‘3 ;'; f a I *\Q:)\"f e‘-“f‘a\J“ ‘e 3”:“ “ ‘ ‘ “ ':-iéi\i“aQ-}

) AAARELY) RN T,

’n'f"l'l'l.

.~

-
«'a

" %

--‘.
ALY

BIBLIOGRAPHY

Fractals

Dewdney, A. K. (1985, August). Computer Recreations, Scientific American, 253
No. 2, 16-24,

Estvanik, S. (1986, July). From Fractals to Graftals, Computer Language, 3,
No. 7, U5-58.

Mandelbrot, B. B. (1983). The Fractal Geometry of Nature, W. H. Freeman and
Company, New York.

Mathematics

Ahlfors, L. (1979). Complex Analysis, McGraw Hill, New York.

Benedetto, J. J. (1976). Real Variable and Integration, B. G. Teuber,
Stuttgart.

Blanchard, P. (1984). Complex Analytic Dynamics on the Riemann Sphere, Bull.
Am. Math. Soc., 11, No. 1, 85-141.

Guckenheimer, J., and P. Holmes (1983). Non-Linear Oscillations, Dynamical
Systems, and Bifurcation of Vector Fields, Springer Verlag, New York.

Hurewicz, W., and H. Wallman (1948). Dimension Theory, Princeton University
Press, Princeton.

Lehto, 0., and K. I. Virtanen (1973). Quasiconformal Mappings in the Plane,
Springer Verlag, Berlin.

Munkres, J. (1975). Topology, Prentice-Hall, New York.

L8 o8 4

NN

tge g

AR

" BR_V
A

e YW

>)
o L e

Y

.« - -
N Y
”_» L]
A. .' '}

. ‘-{'r' 'r' 'r' |

3 o' 2. 2 'R a%. a8 2t 2% a8 a4 aVa‘ afnt atat 9o et 8t 22" 22 BT hatlada® B2t 2.0 ‘A0t .08 804 00 ‘0t b0 0l (T Ly vy v ‘ol [PURTS R

DISTRIBUTION "]
ADMINISTRATOR DIRECTOR e
DEFENSE TECHNICAL INFORMATION CENTER NASA Laoh
ATTN DTIC-DDA (12 COPIES) LEWIS RESEARCH CENTER A
CAMERON STATION, BUILDING 5 ATTN TECHNICAL LIBRARY g
ALEXANDRIA, VA 22304-6145 CLEVELAND, OH 44135 0N
Y
US ARMY ELECTRONICS TECHNOLOGY
& DEVICES LABORATORY US ARMY LABORATORY COMMAND R
ATTN DELET-DD ATTN TECHNICAL DIRECTOR, AMSLC-CT o
FT MONMOUTH, NJ 07703 e
INSTALLATION SUPPORT ACTIVITY SOSAY
DEPT OF THE AIR FORCE, H1 ATTN LIBRARY, SLCIS-IM-TL (3 COPIES) A
6585TH TEST GROUP (AFSC) ATTN LIBRARY, SLCIS-IM-TL (WOODBRIDGE) o
RADAR TARGET SCATTER FaCILITY ATTN LEGAL OFFICE, SLCIS-CC N
ATTN LT COL RONALD L. KERCHER, CHIEF A
HOLLMAN AFB, NM 88330 USAISC o
ATTN RECORD COPY, ASNC-ADL-TS A
ENGINEERING SOCIETIES LIBRARY ATTN TECHNICAL REPORTS BRANCH, 27034
ATTN ACQUISITIONS DEPARTMENT ASNC-ADL-TR
345 EAST 47TH STREET A
NEW YORK, NY 10017 HARRY DIAMOND LABORATORIES .
ATTN D/DIVISION DIRECTORS S
INSTITUTE FOR TELECOMMUNICATIONS ATTN CHIEF, SLCHD-NW-E B
SCIENCES ATTN CHIEF, SLCDH-NW-EC o
NATIONAL TELECOMMUNICATIONS ATTN CHIEF, SLCDH-NW-ED T
& INFO ADMIN ATTN CHIEF, SLCHD-NW-EE R
ATTN LIBRARY ATTN CHIEF, SLCHD-NW-R -7y
BOULDER, CO 80303 ATTN CHIEF, SLCHD-NW-RA S
ATTN CHIEF, SLCHD-NW-RC ol
DIRECTOR ATTN CHIEF, SLCHD-NW-RE e
DEFENSE COMMUNICATIONS AGENCY ATTN CHIEF, SLCHD-NW-RH
ATTN TECH LIBRARY ATTN CHIEF, SLCHD-NW-RI T
ATTN COMMAND & CONTROL CENTER ATTN CHIEF, SLCHD-NW-P e
WASHINGTON, DC 20305 ATTN R. GOODMAN, SLCHD-DE-0S e
ATTN B. ZABLUDOWSKI, SLCHD-IT-EB i
DIRECTOR ATTN R. CHASE, SLCHD-NW-EC o
DEFENSE COMMUNICATIONS ENGINEERING ATTN C. KENYON, SLCHD-NW-EC e
CENTER ATTN T. WYATT, SLCHD-NW-EC N
ATTN TECHNICAL LIBRARY ATTN H. BOESCH, SLCHD-NW-RC i
1860 WIEHLE AVE ATTN F. MCLEAN, SLCHD-NW-RC e
RESTON, VA 22090 ATTN S. HAYES, SLCHD-NW-RE ARy
ATTN S. CHOY, SLCHD-IT-R NN
DIRECTOR ATTN N. BERG, SLCHD-RT-R e
NASA ATTN P. ALEXANDER, SLCHD-RT-AD BT,
GODDARD SPACE FLIGHT CENTER ATTN C. ARSEM, SLCHD-RT-AD “:ér'
ATTN 250, TECH INFO DIV ATTN J. COSTANZA, SLCHD~-RT-AD Al
GREENBELT, MD 20771 ATTN J. DAMMANN, SLCHD-RT-AD N
ATTN D. HULL, SLCHD-RT-AD G
DIRECTOR ATTN J. SELTZER, SLCHD-RT-AD 5
NASA ATTN W. SHVODIAN, SLCHD-RT-AD NE
ATTN TECHNICAL LIBRARY ATTN B. WEBER, SLCHD-RT-AC N
JOHN F. KENNEDY SPACE ATTN D. WONG, SLCHD-RT AD T
CENTER, FL 32899 ATTN A. FILIPOV, SLCHD-RT-RB DA
ATTN C. GARVIN, SLCHD-RT-RB AN
DIRECTOR ATTN D. GLENN, SLCHD-RT-RB
NASA ATTN J. GRIFFIN, SLCHD-RT-RB
LANGLEY RESEARCH CENTER ATTN R. JOHNSON, SLCHD-RT-RB
ATTN TECHNICAL LIBRARY ATTN N. KARAYIANIS, SLCHD-RT-RB
HAMPTON, VA 23665 ATTN D. MCGUIRE, SLCHD-RT-RB
43
b "-."'.';-\."\'.‘.";,5"-._';-';\;- :;' :: ::.;- - :.-.:’,\';, - -..';,-' AT RRARARSCRN T LTR SLE a‘_',,\:\ e AT

A AT o - ~ L Te e e - We e N Y
A ot e S L) " MNRSAS Qe A e TG L N -.'- AR IR Nl ¥ N 5"\-.

-
-
3
3
[
*
¥
.
.
.
Ly
&
»
-
-
-
-
(]
-
»
”,
e
4

‘. ™ - N » ;‘
;. ,‘
R DISTRIBUTION (cont'd) ”
T HARRY DIAMOND LABORATORIES (cont'd) 7
o ATTN R. MILLER, SLCHD-RT-RB g
Iy ATTN B. SADLER, SLCHD-RT-RB ”
! ATTN R. ULRICH, SLCHD-RT-RB -
t ATTN P. EMMERMAN, SLCHD-RT-RD (2 COPIES, v,
ATTN S. CASEY, SLCHD-RT-RB (100 COPIES)
“wy o
4
N -
3
& 7y
g 5
u? E.:
" >y
N
]
2 e
] R
., S
n -~
N
v, &
3
-, S
", -~
Ca) -
L4 o
-: ‘:
b £
< X
7o
J': -:.

-\
Y ¥
v, X
- "
Calt 5
.
) w?
- . -
"
I. .

'l{

@
4 .
- .
~” .
‘I "l
R K
P ¥ ’-q
> -
" .
l. - '..:
» -
., S
'’
o .
']
&
M
=,
"~
)
o
44
i - A L) v, % 0 \' - L \’ . - ” v \'. L3 v . - - ""- '-l "- "\' -- r\.‘ - -('\q"‘ (%'—\ * . f- - . '.. 3 .
' E L e) L] - S DI T I 2 e » " - P WA
e A L o N S N e Ea D T T e T

* 9¥0. 258 2% p'8.

WO AN Y

. 2 0
_ ..s.f.....\..w..\a ’ e
- P H% T-»-Vv..

N “e%
./-I, ?Ia\-lvul-t‘-h\c\n\- mr. s ...

o

R
-

DT

50 H Ll L AA AN T, A, T Nyt e P rY LY
ALS, A Vo o s e y B IR, s -

