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1. INTRODUCTION: A BIT OF HISTORY

...no one doubts that the modern formulations (of science) are clear,

elegant, and precise; it's just that it's impossible to comprehend how

anyone ever thought of them."

--Michael Spivak, A Comprehensive Introduction to Differential Geometry

In the last few years, the word "fractal" (a set with noninteger

fractional dimension) has worked its way out from research into more general

use in the scientific community. The word was coined in the seventies by

Benoit B. Mandelbrot to describe the elaborate images he was producing on %

comr .ers at the Watson IBM Research Center. However, as Mandelbrot himself

poin, out in his book, The Fractal Geometry of Nature (1983),* the roots of

the fractal idea reach back over a century.

In the nineteenth century, mathematicians were working to develop rigor in

their study of mathematics. They encountered curious phenomena, which forced

the rethinking of some concepts. Four of these phenomena are cited:
p.0

I. In 1874, K. Weierstrass produced a continuous, but nowhere differen-

tiable function. To create this function, he employed trigonometric series

and lacunary (or "gap") series. An example of a Weierstrass function (fig. 1)

is given by the formula

f(t) = [ [( )n] cos(2nt)
n

(Weierstrass' original results were more general.)

2. In the 1870's, G. Cantor produced several results which gave relation-

ships between set theory and calculus. In 1874, he produced his proof that

there are only countably many algebraic numbers, and became increasingly

fascinated with the concept of infinity in mathematics. A concrete example of

his ideas is the "middle thirds" set, which was used by H. Lebesgue in the
1920's to produce the Cantor-Lebesgue function (fig. 2). This singular func-

tion has a derivative equal to zero at almost all points in the set (0,I), yet

is monotonically increasing.

3. In 1890, G. Peano produced an example of a continuous space-filling 4
curve (fig. 3). This curve maps the unit interval [0,1] onto the unit square
[0,1] [0,1].

4. In 1904, H. von Koch produced his snowflake (fig. 4). This curve has

infinite length, but is contained in a finite area. The snowflake is non-

intersecting and is self-similar, i.e., it appears the same despite successive -

magnifications.

In each of the above examples, a rigorous limit procedure was used (uni-

form convergence in the proper topology). However, because each of these
examples conflicted with the geometric intuition of the time, they were

*See hibliography.
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labeled "pathological." Yet, because of further scientific research, and
especially because of the introduction of the computer, it is now possible to
see that these examples appear to model nature quite well. Each curve fits
Mandelbrot's basic definition of a fractal curve: a curve having fractional F,
dimension higher than one. Mandelbrot cites all of them as important examples
in his book.

In the following sections, theory and procedure for the creation of frac- -"

tal images are discussed. The discussion is aimed at the reader with some
computer graphics experience and/or software. Numerous fractal images are
included, and algorithms for the production of some of these images are pro-
vided. The algorithms can be set up to run on almost any system--whenever
possible, hardware specifics are eliminated. Thus, readers can run these

algorithms on their own systems and proceed to explore the world of fractals.
Discussion is divided into three areas: fractals on complex dynamical sys-
tems, seed fractals, and squig fractals.

The theoretical discussions in the following sections are independent of

the descriptions of algorithms which produce fractal images. In particular, W

theoretical discussions precede algorithms in section 2 (on complex analytic
dynamics). These were provided to give the interested reader some insight as
to why the algorithms work. Also, section 3.2 (on dimension) must be labeled
"theoretical," as discussion and calculation here are rather involved. Theo-
rptical sections can be skipped over with a minimal loss of continuity.

2. COMPLEX ANALYTIC DYNAMICS %

Many pioneers besides those already mentioned were involved in the evolu-
tion of the fractal--Riemann, Hausdorff, Klein, Cesaro, and Bernoulli, to name
a few--the list is very long. One research field related to fractals that has
had quite a revival lately is the field of iteration theory, or complex analy-

tic dynamics. This was started in the early 1900's by P. Fatou and G. Julia.
Both wrote long monographs on the subject. Today, its pioneers include D.
Sullivan, J. Hubbard, and A. Douady.

2.1 Theory

A dynamical system consists of a pair, (X, 0), where X is a topologi-
cal space,* and V = {¢t: t E R) is a set of dynamics, i.e., rules for the
evolution of the system in time. If t is continuous, the pair (X, t ) is
usually called a flow.

Examples of dynamical systems appear in numerous places: the cardlo-
vascular system, the capitalist system, and the solar system are all dynamic.
In each, a process is occurring which can be thought of as evolving in time.

*A topological space is a set in which the concept "open set' is well defined. These topics are discussed by

Munkres (1975), bibliography.
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In this section, the underlying space of the dynamical system is the
a, Riemann sphere, C, where

C=C U jw} = 1z = x + iy: x, y E R, i = /7T} U {cm}

The point "®" is added to C, the complex plane, by rolling the plane up into a
sphere, and letting - be the north pole. The dynamic is an analytic func- -

tlon.* Let f(z) denote this function. Then, by iterating the function
4"

Zn+1 = f(zn)

one gets a dynamical system. Note that this system is discrete.

The computer has proven to be a most useful tool in the study of nonlinear
dynamical systems. This study has produced as a byproduct some of the fractal
images seen here. Of these, many have been produced by complex analytic
dynamics. Probably the most common dynamic in generating these images has
been the now-famous equation

f(z) -Z + X

Using this equation, we can discuss the two different types of images it
produces. The first type is a C-dynamical system. In this process, the
number A is kept constant, and z is varied. The second type of image is a
parameter space image. Here, z is fixed, and the number A is varied. Each
different value of A parameterizes a dynamical system from C. The Mandelbrot
set, which is generated in this fashion using z2 + A, is a parameter space
image.

The following discussion of some of the theory behind generating these
images comes under the category "complex quadratic dynamics." Blanchard
(1984 ) gives a more complete discussion (see bibliography, "Mathematics," for -
other necessary background).

First, consider the dynamics in C. Heuristically, the Riemann sphere,
instead of just the complex plane, C. is the base space because of the impor-
tance of infinity in dynamics. In C, the group of one-on-one analytic map-
pings is the group of Moebius transforms, that is, maps of the form

-az + b
g(z) cz + d ad - bc * 0cz + d

Moebius transformations have one zero and one pole. Using these maps, it is
possible to get some insight into why the single equation f(z) = z' + A is so
powerful. Let h(z) = Az2 + 2Bz + C be a general quadratic equation in C. For
f(z) as above, it is possible to solve for a Moebius transform g(z) and a
value of A in f(z) such that

h(z) = g-' I f g(z) = g-'(f(g(z)))

*A function is called analytic in some open set if it can be expanded in a Taylor series in that set. In
C-analysis, if afunction has a continuous derivative in an open set. it is analytic there.

40
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The solution is given by

g(z) = Az + B

I = AC + B -B 2

Since two dynamical systems in C conjugate by a Moebius transform are the

same, every quadratic dynamical system in C can be obtained by varying X. In 'S

other words, every quadratic system is parameterized by the complex number X.

Given the dynamic f(z) = z 2 + X for fixed A, iteration produces a dynam-
ical system. Under this iteration, individual points will have neighborhoods
(small open sets containing the point in discussion) that exhibit one of two
types of behavior. Points in these neighborhoods will either converge to a
point after repeated iteration, or they will not converge. Those points that
have a neighborhood of points that converge are called elements of the Fatou

set. The points not in the Fatou set are called elements of the Julia set.

The function f(z) = z2 provides an enlightening example of this dichot-
omy. Note that under iteration of f, every point with absolute value strictly
less than one will converge to zero, while every point z with Izi > 1 will
converge to infinity. However, under

f = f  . C f = f(f(...(f(z)))) , n times,

most points on the unit circle ({izi = 11) are just "spun around" at a faster
and faster rate. In fact, if z = exp(ia), where a is an irrational number,

there exists an iterate of z coming quite close to any point on the unit
circle. Thus, although the point 1 remains fixed under iterates of f, there
always exists a point close by that will be moved somewhere else under itera-
tion. A similar fate falls upon all points in izi = 1), and thus it is
possible to see that the Julia set of f(z) = z2 is { z 1 }.

By adding a constant A with relatively small absolute value, the dynamical

system produced by f(z) = z2 + A will still have a Julia set that is a simple
closed curve. However, this curve exhibits a quasi-self-similarity, i.e., it
Is a fractal. As the value of tAl gets larger, the curve degenerates and no

longer has a nicely defined inside and outside. (Fig. 5 shows various Julia
sets produced by different functions.)

•S

This behavior shows up in the parameter space image of z 2 + A and is
represented by the Mandelbrot set. Recall that this set is generated by

fixing z and varying X. By definition, the Mandelbrnt set is the set of
complex numbers for which the dynamical system generated by f(z) =Z

2 
+ A has

a connected Julia set. For A = 0, the Julia set is jizi =}. As Al in-
creases, the resultant Julia set of the dynamical system generated by f will
degenerate from a simple closed curve. When jA1 gets sufficiently large, the
attractive basis inside the curve bifurcates, i.e., splits. When this occurs,
the boundary of the Mandlebrot set has been reached. Thenreticallv, it has
been proven that this behavior is completely determined by the growth of z = 0

C, 10
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N0

under iteration of z 2 + A. If Ifn(O)I is sufficiently large, say larger than

2, then fn(0) will converge to . This indicates that the Julia set for that
value of A is not, a simple closed curve. However, if Ifn(O)l remains bounded,
then the Julia set is a simple closed curve.

2.2 Algorithms

The programs in listing 1 allow the user to plot some pointillistic
fractal images called Julia sets (listings are provided at the end of this

section). They work for all values of X and any starting point. They require

only a simple point plotter to produce images, and only as much memory as the
number of iterates desired. The programs were written in VAX-11 FORTRAN (DEC)

because it supports a complex variables format and has many intrinsic math

functions. If FORTRAN is not available, the code listings can serve as a

model for writing a program.*

(For the reader who has braved the theory section, an explanation of

why these algorithms work is now simple. First, the Julia set is the set in

which the function does not have convergent ;ieighborhoods. It is preserved

under backward iteration, (f-1 )n. For example, if r

w = f(z) = Z' + X ,-'

z f-(w) = X

and so

(f 1 )- f 0 ... 0 , n times.

*Without t'; complex variable format, support routines have to be written. For example, multiplication

must follow the r de

(a,b) *(c,d) (ac -bd, ad + bc)

A complex square root can be written using polar coordinates. Since

V.- = 4re F--e

by an application of Euler's formula and the half-angle formulas, we obtain

, z , ( + Cos t)"
2 + i -Cost I 2

where signs are chosen according to quadrant. Therefore, because

,z r= (x2 +2)) , x=rcost , and y=rsint
VS

we obtain
r x 1/2 + 1'/2

(x,y) 1/2  _ -

121 2 "V

I
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Therefore, to get an iterate into the Julia set, iterate backwards, choosing a
branch (±) of the square root at random. Thus, the iterate is never allowed
to converge, and therefore must land in the Julia set. Once captured there,

it just moves around within the set.)

Color dynamical images in E are produced by a different procedure %.,

(see fig. 6, center spread, pp 22 and 23). Here, the colors represent conver-
gence rates. After a domain has been chosen, the image is produced by pro-
ceeding pixel by pixel across that domain, iterating the function for the
value of z represented by that pixel. Iteration continues until Ifn( z ) l

reaches a certain size, or the function has been iterated a predetermined

maximum number of times.
%"

The number of iterations then determines the color of that pixel. .

(This is essentially the same procedure which was outlined by Dewdney, 1985.)
It is interesting to note that in producing these color images, it is possible
to see the various orbits of the regions computed.

The color images in parameter space are produced in the same way as
described in the procedure above. However, in this situation, a given value

of z is fixed throughout the entire procedure, while the position of the pixel

determines the value of A.

The color images of both the C dynamics and the parameter spaces are
not limited to iterating f(z) = z' + A. All the color images shown in ffgure

6 came from a different dynamic.

Listing 2 is a FORTRAN program for iterating Newton's method of
finding zeroes as applied to f(z) = z - 1. This produced the pixel informa-
tion to create figure 6(i).

There were a few tricks involved in computing and storing the data
files for these color images. As this type of program is computationally
intensive and requires quite a bit of computer time, computations were simpli-
fied when possible (e.g., using 1zJ2 instead of IzI, thus eliminating a square
root for each iteration). Since the resulting data file would nccupy much
disk space, only the minimal amount of information needed to produce an image

was stored. Pixels were computed sequentially on a given row with the fune-
tion producing a color value for each pixel. Adjacent pixels of the same
color were considered a horizontal vector. When a new colorr value fr a pixel
was computed, the previous pixel's column position (terminal point for the
vector) and the vector's color were loaded into a large data buffer:

databuf(n) 4 x

databuf(n+1 ) oldcount
n n + ._

oldcountX curt

When the buffer became full, it is writtor, t-) a disk file as a block
of unformatted data. A second program is stirig 3) must be used to plot the
vector file. Other techniques that are hardware dependent were also, used.

13
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Listing 1. Code producing data for Julia set images%

* ----------------------------------------------------------------------------------------
c Plots Julia sets for quadratic maps by iterating
c w - SQRT(z - 0).
c Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
c Programmer :S. Casey
c--------------------------------------------------------------------------------------

PROGRAM FRAC
COMPLEX16 z. C. CDSQRT
REAL*8 x, y
INTEGER*4 Niter, Iseed, Tineseed

WRITE (6.*) This routine plots Julia sets for f~z) - z**2 +c.'

WRITE (6,*) 'Enter the constant . .. c-Cab)' '

READ (5,*)c
WRITE (6.*) 'Enter the initial z value ... z(~)

* READ (5,*) z
WRITE (6,*) Enter the # of backward iterates ... Niter'
READ (5,*) Niter

Iseed - Timeseed() get seed for random number generator
c RANCIseed) returns a floating-point number -= 0.0 and ,1.0

OPEN C 10, FILE-'FRAC.DAT'. STATUS='NEW', ERR=999. IOSTAT-IOS,
1 CARRIAGECONTROL- 'LIST')

DO I = 1, Niter Plots positive branch
IF ( RAN(Iseed) .LT. 0.5 )THEN

z ~.z
ENDIF
Z Z-c
z -CDSQRT~z)

x =DREAL~z)

y -DIMAG(z)

IF (I .GE. 11 )THEN Let fn~z) converge into Julia set
WRITEC1O,*) x, y

ENDIF
ENDDO

DO I1 1. Niter IOther branch
IF CRANIseed) .LT. 0.5 )THEN

z -. z
ENDIF

z =-1. * CDSQRT~z)
x =DREAL~z)

y =DIMAG(z)

I'IF CI .GE. 11 ) THEN Let fn~z) converge into Julia set
WRITE(10,*) x, y

ENDIF
ENDDO

CLOSEC 10)
STOP

999 WRITE (6,*) 'Error opening new file FRAC.DAT - ' 10
STOP
END



. 4 .

Listing 1. Code producing data for JIulia set images (contd)

C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTEGER*4 FUNCTION Timeseed C

o This function returns a large, odd integer to serve as an initial
0 seed for a random number generator.

Timeseed - INT(SECNDS(O.0)) get number of seconds since midnight s

IF ( MOD(Timeseed,2) .EQ. 0 )Timeseed - Timeseed + 1 odd value J

RETURN
END

c--------------------------------------------------------------------------------------
o Plots Julia sets for f(z) - z**2 + L*z by iterating
o 1/2( -L (+/-) (L**2 + 4*z) )

o Some subroutine calls are intrinsic to VAX-11 FORTRAN CDEC)
o Programmer :S. Casey "

o--------------------------------------------------------------------------------- .

PROGRAM FRAC2 -

COMPLEX*16 z, L, Det, Rootunity, CDSQRT
REAL*8 x, y
INTEGER*4 K, Niter, Iseed, Timeseed
CHARACTER Answer

WRITE (6,s) 'This routine plots Julia sets for f(z) =z**2 +L~z.'
WRITE (6>,*) 'The results are interesting if'
WRITE (6,*) 'L is a root of unity.,
WRITE (6,*) 'Do you wish to enter a root of unity?'
WRITE (6,*) 'Answer y for yes.'

95 FORMAT (A)
READ (5,95) Answer

IF ((Answer .EQ. 'Y') .OR. (Answer .EQ. 'y')) THEN
WRITE (6,*) ' Enter the integer denominator.'
READ (5,*) K
L = Rootunity (K)
WRITE (6,*) ' L = ,L

GO TO 20
ENDIF

WRITE (6,*) Enter the constant ... L(~)
READ (5,*) L

20 WRITE (6,*) 'Enter the initial z value ... z(~)
READ (5,") z
WRITE (6,") 'Enter the # of backward iterates ... Niter'
READ (5,*) Niter

Iseed - Timeseedo ) get seed for random number generatorZ
o RAN(Iseed) returns a floating-point number )- 0.0 and ' 1.0

OPEN ( 10, FILE-=FRAC2.DAT', STATUS-'NEW', ERR=999. IOSTAT-IOS, 4'

* CARRIAGECONTROL= 'LIST')

15
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Listing 1. Code producing data for Julia set images (cont'd) :

Do I - 1, Niter
DET - CDSQRT ( (L * L) + (4. *Z))

IF C RANCIseed) .LT. 0.5 ) THENR
DET -- 1. DET

ENDIF
z - (1./2.) *C(-l.* L) + DET)
x - DREAL~z)
y - DINAGCz)
IF C I .GE. 11 )THEN Let fn(z) converge into Julia set

WRITEC1O t*) x, y
ENDIF

ENDDO

CLOSE(10)
STOP

99 WRITE C6,*) 'Error opening new file FRAC2.DAT = , OS
STOP

44 END

C-------------------------------------------------------------------------------------

INTEGER*4 FUNCTION Timeseed C)
0 This function returns a large, odd integer to serve as an initial

-, seed for a random number generator.

Timeseed - INTCSECNDS(.0)) 1get number of seconds since midnight
IF C MOD(Timeseed.2) .EQ. 0 ) Timeseed = Timeseed + 1 odd value
RETURN
END

c---------------------------------------------------------------------------

COMPLEX*16 FUNCTION Rootunity~l)

COMPLEX16 CDEXP. ITPIK
REAL*8 PI, TPIK
INTEGER*4 K

PI - 3.14159265358979323846
TPIK - (2. * PI) /K
ITPIK - (0.0,1.0) *TPIK

Rootunity =CDEXP( ITPIK)
RETURN
END

*1
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Listing 2. Code producing pixel information for iteration of Newton's
method as applied to f(z) = z7 1

C--------------------------------------------------------------------------------------
c Iteration of Newton's method on f(z) - z**7 - 1.
c Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
c Programmers: R. Miller and S. Casey
0---------------------------------------------------------------------------------------------

PROGRAM NEWT
COXPLEX*16 Znew, Zold, Ztemp
REAL*8 Diff abs
INTEGER*2 iterations, oldount, X, count, rows, cols, X, N
INTEGER*2 databuf( 16384)
INTEGER*4 K. J
REAL*8 acorner, bcorner, side, gap, realc, image

COMMON /BLOCK1/ databuf, K

c Parms passed from command line: iterations, acorner, bcorner, side, cols
c--------------------------------------------------------------------------------------
c This routine calculates pixel Information for a rectangular region R.

S..c iterations - maximum number of times calculating loop is executed
c acorner - Real part of coordinate of lover left hand corner of R
c bcorner - Imaginary part of coordinate of lower left hand corner of R
c side - length of horizontal side of R
c rows~cols - number of pixels in R
C--------------------------------------------------------------------------------------

ACCEPT *, iterations, acorner, bcorner, side, cols S

rows - cols

OPEN( 10, FILE- 'NEWT.VEC', STATUS- 'NEW', IOSTAT-IOS,
*ERR-999, FORX-'UNFORMATTED')

CALL OUTBUF( cols, iterations )load first data pair

A gap - side / REAL(rovs) N
DO N - rows - 1, 0. -1 compute pixels

imagce REALMN gap + bcorner
DO X 0, cols -1

realc - REAL(M) * gap + acorner
Znew - DCMPLX( realc, image )combine real/imaginary parts
count - 0
Diffabs - 1.0

DO WHILE((count .LT. iterations).AND.(Diffabs .GT. 0.0001))
Zold -Znew

Ztemp -7.0 *Znew*6

IF ( CDABS(Ztemp) .LT. .00001 ) THEN absolute value
c ount - 0
GOTO 222

ENDIF
Znew - ((6.0 *Znew**7) + 1.0) /Ztemp
Diffabs - CDABS( Znew -Zold

count -count + 1
ENDDO

17
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Listing 2. Code producing pixel information for iteration of Newton's
method as applied to f(z) = z- 1 (cont'd) .

c Load vector data: column X or M and color 'count' or 'oldcount'

222 IF( M .EQ. 0) THEN
oldcount - count
X - 0

ELSE IF( M -EQ. (cols - 1) ) THEN
IF( count .NE. oldcount ) CALL OUTBUF( X, oldcount )
CALL OUTBUF( M, count )

ELSE
IF( count .NE. oldcount ) THEN

CALL OUTBUF( X, oldcount )
oldcount = count

ENDIF V
1=1+ 1

ENDIF

ENDDO
ENDDO

IF(( K .GT. 0 ) .AND. (K .LT. 16384)) THEN
DO J - K+1. 16384

databuf(J) = 0! fill remainder of buffer
ENDDO
WRITE(10) databuf! write last record

ENDIF

CLOSE( 10)
CALL EXIT

999 WRITE (6,*) Error opening new file NEWT.VEC ', IOS
CALL EXIT

END

SUBROUTINE OUTBUF( X, color )
INTEGER'2 X. color

INTEGER*2 databuf(16384)
INTEGER'4 K/0/1 data buffer index

COMMON /BLOCK1/ databuf, K

K=K+ 1
databuf(K) X I
K-K+1
databuf(K) - color

IF( K .EQ. 16384 ) THEN
WRITE(10) databuf write vector data
K - 0

ENDIF

RETURN
END

%76
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Listing 3. Code/pseudocode for plotting color fractal Images

PROGRAM PLOTFRAC
C-------------------------------------------------------------------------------------
c Pseudocode/FORTRAN listing illustrating how to plot vector files.
c The variable 'iterations' can be used for loading color look-up table
c Square images are produced ( rows - cols ).
o Programmer : R. Miller
c--------------------------------------------------------------------------------------

INTEGER*2 iterations, X, Y. color, rows, cols

INTEGER*2 xcenter, ycenter
CHARACTER filename*40

filename - 'NEWT.VEC'
OPEN( 10, FILE-filename, STATUS-'OLD', FORM-'UNFORMATTED' )

CALL READBUF(cols, iterations) get first data pair
rows - cols

c allocate IO device

c enter graphics mode
c reset graphics device

xcenter - cols / 2
ycenter = rows / 2

c set screen and coordinate origins to center image on the screen

c load 'iterations' number of colors into look-up tables

Y - rows - 1 1 range of rows for plot: 0 to rows -
cols - cols - I ' range of columns : 0 to cols -

c plot left to right and top to bottom of screen
DO WHILE( Y .GE. 0 )

c MOVE 0,Y Move to beginning of row Y
CALL READBUF(X, color) get first vector data pair for row
DO WHILE( X .LT. cols )

c VALUE color set current drawing color
c DRAW X+1.Y draw to X+1 to avoid a MOVE X+1,Y

CALL READBUF(X, color) I get next vector data pair

ENDDO
c VALUE color set drawing color
c DRAW X,Y draw last vector of row Y

Y Y-lI ..

ENDDO

c exit graphics mode
c de-allocate 1/O device

CLOSE(10) close file

CALL EXIT
END

%.'
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Listing 3. Code/pseudocode for plotting color fractal images (cont'd) a,

C ----------------------------------------------------------------------------

SUBROUTINE READBUF( X, color )INTEGER*2 X, color
INTEGER*2 databuf(16384)
INTEGER*4 K/O/ data buffer index

IF( K .EQ. 0 ) READ(1O) databuf
" gK K + 1

X = databuf(K)• . K K + 1,"

color - databuf(K)
-. IF( K .EQ. 16384 ) K 0

RETURN
END

3. SEED FRACTALS

Fractal images may also be generated by the repetition of a given geomet-
" ric pattern. Examples of these types of fractals are seen in figures 1 to 4. ,.These images are generally called seed fractals.

By one definition, a fractal curve is a curve for which the fractional
dimension exceeds the topological dimension. Unless the curve is a space-
filling Peano curve, this topological dimension is 1. In some instances, thecurve may be a simple closed curve, as in the case of Koch's snowflake. If
the fractal is a seed fractal, the curve is constructed by a limit procedure
where a given seed design (some geometric shape) is scaled and repeated. This
produces a curve that is self-similar; that is, the curve pattern repeats
itself on any level of magnification. 

,

3.1 Procedure to Produce Seed Fractal Images

All the curves in figures 1 tn 4 are seed fractals. In each of
these, the algorithm to produce them was a twofold process. The basic pattern
had to be calculated, scaled, and moved to its proper place via a similarity a.t.*' transformation. Simultaneously, a data structure had to be set up in order to
prepare for the next level of iteration. The first step was achieved through ell
trigonometry and linear algebra. The second step was handled through
counting.

Listings 4 and 5 are the code listings for Sierpinski's gasket (fig.
7) and the Cantor-Lebesgue function (fig. 2). The first of these demonstrates
the drawing process, while the second provides an example of the counting
process. (Both listings are given at the end of this section, pp 28 to 31.

20
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3.2 Calculation of Topological and Fractional Dimension a,
,.

Seed fractals present a good opportunity to demonstrate the calcula-
tion of fractional dimension, as is seen in the following examples. Fraction-
al dimension is a precise gauge on how much an object "wiggles about," and is
given by a real number. It is different from our more intuitive understanding
of dimension, which is expressed precisely by topological diiiinsion. (Back-
ground for this section is provided by Guckenheimer and Holmes (1983),
Hurewicz and Wallman (1948), Lehto and Virtanen (1973), and Munkres (1973).)

Intuitively, given a mathematical object in Euclidean 3-space, that
object is usually thought of as having dimension 0, 1, 2, or 3 (which are the
dimensions of a point, line segment, square, and cube, respectively). This
intuitive dimension is topological dimension. Topological dimension is always
given by an integer, and corresponds to the minimal integer value, say m, for
which the following holds: given a topological space X, and an open cover A
of that space, there is a refinement B of A that has order m + 1. Here, a
collection B of subsets of A has order m + 1, if some point of A lies in m + 1
elements of B, and no point of A lies in more than m + 1 elements of B.

Let the diameter of a set be the least upper bound, or supremum (sup)
of the set of distances between points in the set.

Example: The unit interval I= [0,1] has topological dimension 1.

Let I be endowed with the subspace topology inherited from the Eu-
clidean metric topology on R.

To prove that dim I * 0, assume that the unit interval is connected,
that is, does not have two disjoint nonempty subsets whose union equals I. -

For 0 < c < , let A be any open covering of sets of diameter less than E.
a Suppose that A has order 1. Then, no two elements of A intersect. Also,

since E < 1, A must contain at least two elements. Let U be one element of A,
and let V be the union of the others. Then U f V = 0 and UU V = I, contra-
dicting connectedness.

Next, let A be any open cover of I. Then,

A = {[O,a 2 ), (al,a 3 ), ... , (an_2,1]1

for some partition PI of the unit interval.

0 = a0 < a, < ... < an an 

Let = min {jai - ai_1 1j. Now, refine PI to a partition P2 so that .•
i

, 2 = {bi: 0 = bO  < b I  < ... < b < bm  =

with Ibi - bi-11 < c12 for all i.

a.
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Figure 6. Color images from dynamics in C: (a) f(z) = X.exp(z), parameter
space; (b) f(z) = A.exp(z 2 ), parameter space (note symmetry, as expected);
(c) f(z) = A-sin(z), parameter space (note "mini-Mandelbrot sets");
(d) f(z) = A-cos(z), parameter space; (e) f(z) = A.tan(z), parameter space;
(f) f(z) = A-tan(z), parameter space (enlargement of a region in (e));
(g) f(z) = Z4 - z - A, parameter space; (h) f(z) = Z4 - z - A, parameter
space (enlargement of a region in (g)); (i) Newton's method applied, f(z)
z7 - , C-dynamical system; and (j) f(z) = z' + A, parameter space
(enlargement of a region on the boundary of the Mandelbrot set, containing an
outline of the original set).

Pixel colors represent convergence rates. In all the figures above, this ,
rate was an "escape rate"--how quickly the iterates of that pixel converged

to infinity. In general, the color schemes went according to color frequen-
cy. Thus, red was slow convergence, and violet was fast convergence. How-
ever, this scheme was not strictly adhered to. Also, scaling was required,
especially in figures (a) to (f) (expotential growth 4 logarithmic scaling).

All the color images seen were produced by R. Miller, who worked on compu-
ter graphics, and S. Casey, who did mathematical programming. The images
were produced in the spring and summer of 1986.
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Then,(g) .

0 B {[0,b 2), (bl,b 3 ), ... (bm_2,l]}

2is a refinement of A of order 2.

" Since this is true for any cover A,
it follows that

0 +?

- .... dim I I

o *, .124 , '- ;' Therefore, since topological dimen-

0 sion is integer valued, dim I 1. -

-1.00 -0.75.To prove that the topologi-
0!1- , -0.50 -. 25 00 25 0.50 0.75 ,.00 ca

X-axis cal dimension of a simple (noninter-

secting) continuous curve is equal to

1 requires a bit more machinery.

(h) o.
In order to calculate frac-

tional dimension, the idea of cover-
ing a set by open sets is used. How-

.'4.;. *,. ~ever in this situation, the diameter
of the sets used plays an important

0 -. role. The idea of fractional dimen-

0 sion goes back to the nineteenth cen-

S ..- tury, to F. Hausdorff and I. Besoco-

•,vitch. The following is the formal

.z . c,.. .V F. definition of the fratIional dimen-
sion named after them.

-o00075 -0.50 -025 000 025 050 075 1.00 Let X be some set in Euclid-
X-axis ean 3-space. Consider all coverings

of X by countably many sets of diam-

eter less than some d > 0. Given one
(i) - such covering, say cx1 , x2 •.•}, as-

C" tsociate with that cover the numberoA

0 dn
A .V• ,A. n n

where d is the diameter of the set

t and > 0. For every 6 let

0 . Al A'.

=(X) Ir {inf dI n]J"
00-075 -050 -025 000 02 0 '0 d-0 n

X -a.4is

Figure 7 (cont'd). The arrowhead: where inf (infimum) is the greatest

(g) defining procedure followed three lower bound. The quantity * is.

times, (h) four times, and i) five called the B-dimernsional HausdoPff-

times.
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Bee' zovitch outer measure. Then, the Hausdorff-Besocovltch dimension of X is
given by

dim X = in~f I8Ivi*(X) = 01

Again, this definition is best seen in the following examples.

Example-the Cantor middle thirds set: Let CO0  0 1 hn

F/i 2 / 8\

C 2 C-K

[(3n+1'3 1) , ... , -2 3fl+
n+1 n 3 +

The Cantor set C is lim Cn* Note that the set [0, 1] C has length

n=
4..c

On set of n

can be covered by 2stoflength 3 . Now,

nn
and so (nonrigorously)

ij*(C) =lim inf 2n(3 n)

To calculate the dimension of C, one must find the lnf {8Iii*(C) =01. As

2n3 n x n(log 2 - B log 3) = log x

and

log x-* as n + <log 3

* we obtain

dim C < log 2
-log 3

*With a bit more work, one can see that this bound is sharp. 0
26 26
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Example--Koch's snowflake: At the n stage of its construction, the snow-
flake can be covered by 4n sections of length 3

-n . Thus,

P*(K) = lim inf 4 -n ,B
n* 3

Therefore, since

4n -8
e = x n(log 4 - B log 3) = log x

and

log x w as n M 4* B < log 4
log 3 ,

we obtain

log '4dim K <
log 3

Discussions of t-,pological dimension may be found in Munkres (1975)
and Hurewicz and Wallman (1948). Discussio)ns of fractional dimension may be
found ir, Lchto, ind Virtanen (1973) and Mandelbrt (1983). One of Mandelrot's
main underlying themes is that a fract-a is characterized by its fractional
dimension. Thus, numerr,us <,aiculated examples can be found throughout the
book. "."
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Listing 4. Code producing vector data to draw Sierpinski's gasket
.

c----------------------------------------------------------------------------
c This routine draws Sierpinski's Gasket.

p c Some subroutine calls are intrinsic to VAX-I FORTRAN (DEC)
c Programmer : S. Casey
C-----------------------------------------------------------------------------------------------------

PROGRAM SGASKET
REAL*8 Con, Scale
REAL*8 Xnode(7,730), Ynode(7,730) Centers of the triangles...
REAL*8 Xreturn(3). Yreturn(3)
INTEGER Iter, I, J, K
CHARACTER'l Lntyp Draws either points(P) or vectors(V)...

WRITE (6,*) ' Enter the # of iterates ... a maximum of 7.'
94 READ (5,*) Iter

OPEN (10, FILE='SGASKET.DAT', STATUS='NEW', ERR=999, IOSTAT=IOS,
• CARRIAGECONTROL='LIST' )

Con = 3.0
Con - DSQRT(Con)

100 FORMAT(1X,F1O.3,1X,FIO.3,1X,A)
Lntyp = 'P'
WRITE(IO,100) 0.0, 1.0. Lntyp Scaling factors.
WRITE(10,100) 0.0, 0.0, Lntyp
Lntyp = 'V'
WRITE(10,100) 0.0, 0.0, Lntyp The outside triangle.
WRITE(10,100) 1.0. 0.0, Lntyp
WRITE(10,100) 0.5, (Con / 2.0), Lntyp
WRITE(10,100) 0.0, 0.0, Lntyp

Lntyp = 'P' i Lifting the pen.
WRITE(10,100) 0.25, (Con / 4.0). Lntyp
Lntyp = 'V'
WRITE(10,100) 0.75, (Con / 4.0), Lntyp The inside triangle.
WRITE(10,100) 0.5, 0.0, Lntyp
WRITE(10,100) 0.25, (Con / 4.0), Lntyp

Xnode(l,l) = 0.5
Ynode(1,1) - Con / 8.0

DO I = 1, Iter
Scale = 1.0 / (2.0**(I+1))

I,' DO J = 1, 3**(1-1)

CALL Gasketseed(Xnode(IJ), Ynode(I,J), Scale,
Xreturn, Yreturn)

DOK= , 3
Xnode((I+1), (3*J-(3-K))) = Xreturn(K)
Ynode((I+1). (3*J-(3-K))) = Yreturn(K)

ENDDO
ENDDO

ENDDO

CLOSE(10)
STOP

999 WRITE (6,4) ' Error opening new file SGASKET.DAT " ', IOS
STOP
END

28
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Listing 4. Code producing vector data to draw Sierpinski's gasket (cont'd) '

C--------------------------------------------------------------------------------------

SUBROUTINE Gasketseed(Xnode, Ynode, Scale, Xreturn, Yreturn)

* REAL* 8 Xnode, Ynode, Scale, Con
REAL*8 Xreturn(3). Yreturn(3)
REAL*8 Xvar(3,4), Yvar(3,4)
CHARACTER*1 Lntyp ! Draws either points(P) or vectors(V) ...

100 FORKAT(1X.Fl0.3,1X,F1O.3,1X,A)

* Con=-3.0
Con - DSQRT(Con)

Ireturn(1) - 1.0 /2.0
Yreturn(l) - -Con /8.0

5,Xreturn(2) - 0.0
Yreturn(2) - (3. Con) /8.0

Xreturn(3) - -1.0 /2.0
*Yreturn(3) = -Con /8.0

DO I -1, 3
Xreturn(I) = (2.0 *Scale * Xreturn(I)) + Xnode
Yreturn(I) = (2.0 * Scale * Yreturn(I)) + Ynode

ENDDO

*DOI =1, 3

Xvar(I,1) = -1.0 /2.0

Yvar(I.1) = Con /4.0

XvrI2 = 1.0/2.0
Yvar(I,2) = Con /4.0 -

Xvar(I,3) - 0.0
Yvar(I,3) = -Con /4.0 '

Xvar(,4) -Xvar('lp.

Xvar(I,4) = Xvar(I,l)

Lntyp -'P'

DO J 1, 4
Xvar(I,J) = (Scale * Xvar(IJ)) + Xreturn(I)
Yvar(I,J) = (Scale *Yvar(I,J)) + Yreturn(I)
IF ( J .EQ. 2 ) Lntyp -=V
WRITE(10,100) Xvar(I,J), Yvar(I.J), Lntyp

ENDDO

ENflDO

RETURN
END

* 29
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Listing 5. Code producing vector data to draw Cantor-Lebesgue function

C------------------------------------------------------------------------------------
o This routine draws the Cantor-Lebesgue funtion.
" Some subroutine calls are intrinsic to VAX-11 FORTRAN (DEC)
o Programmer :S. Casey
0------------------------------------------------------------------------------------

PROGRAM CANTOR
REAL*8 X1(8,256), Y1(8,256), X2(8.256). Y2(8,256), Xstep. Ystep
REAL*8 Xreturn/1.0/, Yreturn/0.0/, Xscalel/0.0/. Yscalel/0.O/
REAL*8 Xscale2/1.0/, Yscale2/1.0/
INTEGER*4 Iter, Count/0/

WRITE (6.') ' Enter the # of iterates ... a maximum of 8.'
READ (5,') Iter

OPEN ( 10, FILE= CANTOR.DAT , STATUS- NEW . ERR=999, IOSTAT=IOS,
1CARRIAGECONTROL= 'LIST')

DO I1= 1, Iter
IF (I EQ. Iter) THEN

WRITE(10,*) Zscalel. Yscalel
END IF
Count =Count + 2**(1-1)

DO J 1, Count
Xstep = (1.0 / (3.0**I))
Ystep = (1.0 / (2.0**I))
IF (J .EQ. 1) THEN

X1(I±,J) =Iste

Y1(I+1,J) = Ystep
Y2(I+1,J) = X1I+.Jt+ese
Y2(I+1,J) = Y1(I+1,J)+ se
IF (I+1J =EQ Iter)THEN
IFITEQ. Ote) THEN,) Y(+1J
WRITE(10,*) X2(I+1,J). Y2(I+1.J)

END E10* IFI1J, 2I1J
END IF

IF (MOD(J,2) .EQ. 0) THEN
X1(I+1,J) =X1(I,(J/2))

Y1(I+1,J) =Yl(I,(J/2))

X2(I+1,J) = X2(I,(J/2))
Y2(I+1,J) = Y2(I,(J/2))
IF (I -EQ. Iter) THEN

WRITE(lO,*) Xl(I+1,J), Y1(I+1,J)
WRITE(10.') X2(I+1,J). Y2(I+1,J)

END IF
ELSE

Xl(I+1,J) = X2(I,(J/2)) + Xstep
YI(I+1,J) = Y2(I.(J,/2)) + Ystep
X2(I+1,J) = Xl(I+1,J) + step
Y2(I+1,J) = Yl(I.1,J)
IF (I .EQ. Iter) THEN

WRITE(10,') X1(I+1,J), Yl(I+1,J)
WRITE(1O,') X2(I+1,J), Y2(I+1,J)

END IF
END IF

ENDDO

3 0



Listing 5. Code producing vector data to draw Cantor-Lebesgue

function (cont'd)

IF I .EQ. Iter) THEN
WRITE(1O,') Xscale2. Yscale2 14
WRITE(1O,*) Xreturn, Yreturn .

END IF
ENDDO

CLOSE(I0)
STOP 5,

999 WRITE (6,*) ' Error opening new file CANTOR.DAT - '. IOS
STOP .
END

4. SQUIG FRACTALS

As i3 known, fractal images seem to imitate nature rather well. Certain

types of fractals employ a controlled random motion to produce images of

landscapes, trees, etc. Mandelbrot calls these squig fractals.

Fractals have now worked their way into computer graphics art, and even

into the movie theatre. The sharp landscape images now seen in some films
were generated by taming Brownian (or random) motion. The techniques for

generating these squig fractals are somewhat similar to those employed in
generating the seed images. Again, an image must be drawn, and a data struc-

ture which anticipates the next level of iteration must be in place. However,

the big difference is that in the production of squigs, a computerized "coin

flip," provided by calling a random number routine, determines the final shape
of the fractal.

Uncontrolled random motion appears too rough to model nature. This can be

seen easily by randomly choosing (x, y) coordinates, and connecting the dots
(see fig. 8). However, if some control is introduced into this process, such
as scaling, transforming, or filtering, a pattern which imitates nature's own

"controlled randomness" seems to emerge. This technique of creating images by

controlled random motion has been employed successfully in the generation of

landscape images, including mountain ranges and lakes (see fig. 9).

Unfortunately, the computer code to generate even the most basic of the

squig images is long and tedious (listing 6, pp 34-40).

We can demonstrate the fundamental idea behind the creation of a squig

fractal by discussing a planar squig curve. Given a simple closed polygonal
curve, the squig procedure can be applied to produce a controlled Brownian

path which circumvents nearly the same area as the initial curve.

Cover the Initial curve with a grid of sufficiently small mesh size (say,
d/4, where d = minimal distance between vertices). Let the length of one line

segment in the grid be denoted by L. Align the mesh so that none of the

polygon's vertices matches a vertex of the mesh. Thus, in each square that
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Figure 8. Brownian motion. Figure 9. Skeletal fractal mountain.

the rriginal path intersects, the plygonal path will come in one side and

exit on another. Divide the box into four equal boxes having sides of length

L2. At this point, controlled random motion will produce the first genera-V

tion of a squig curve."

Consider a single square. Assume that the path enters the box from the

left. In the scale of the finer mesh (L/,,, the path could enter the box from

the top or bottom . I n the squig scheme, this3 is determined by a weightd coin z

flip , P•g •, 
-

if this is the first b rox prrc osed on t his level -,f i terat ion), t hen "-- ' i r
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0 In turn, each of these must be
divided in equal fourths, and the
next level of iteration in the squig

o procedure must be done. Iteration
continues a predetermined number of

0. . times.

o :";. "" The squig procedure is by no
* - means limited to curves. The idea

0 .. . of using chance to produce fractal

benavior is a particularly powerful
one. This is witnessed in The Frac-
tal Geometry of Nature, for Mandel-
brot devotes nearly the entire

o .second half of the book to this sub-

ject. One particularly interesting.? use of the squig procedure is in the
-40 -o 00 20 40 60 8 0 100 production of semirandom tree paths

4 X-axis called "graftals" (see fig. 11).

Estvanik's article on this subjectFigure 10. Possible two-dimensional

squig paths. (1986) is particularly useful.

Producing a squig is only the first step towards producing a realistic
landscape. Smoothing, coloring, shading, shadowing, and numerous other more
standard techniques from computer graphics must then be applied to produce the
finished product, a realistic image. It is interesting to note, however, that
because the squig (and other) fractal methods are so powerful, these tech-
niques, once considered esoteric, are rapidly being accepted into the main-
stream of computer graphics.
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Figure 11. Graftal tree (a) and bush (b)
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Listing 6. Code for plotting skeletal frvactal mountains

------------------------------------------------------------------------
c This program draws the skeleton of a fractal mountain "'
c range by means of the addition of random weights to
o the y values of a triangular lattice. The con-
o struction of this lattice goes from 0 to Iter. v
c Programmer : S. Casey %

PROGRAM MOUNTAIN

REAL*8 X(0:6, 24768), Y(0:6. 24768) Array of endpoints
REAL*8 Mx(24768). My(24768) I Array of midpoints
REALS8 Randbound The degree of roughness
REAL*8 Randshft ! Function giving random number with random sign
INTEGER*4 I, J, Iter, Level
INTEGER*4 Depth(O:6), Numpts(O:6), Numlns(0:6), Numtrg(0:6)

WRITE (6,*) ' Enter the # of iterates. Cannot do more than 6.'
READ (5,*) Iter

WRITE (6.*) Enter the degree of roughness. This is a number'
WRITE (6,") between 0 and 1.'
READ (5,*) Randbound C-

WRITE (6,*) ' Enter the initial triangle.'
DO I = 3 

READ (5,*) X(O, I). Y(O, I)
ENDDO
Depth(0) 2

Numpts(O) = 3
Numlns(O) = 3
Numtrg(0) = 1
DO I = 1. Iter

Depth(I) = Depth(I-1) + 2**(I-1)
Numpts(I) (Depth(I) (Depth(I) 1) ) / 2
Numlns(I) 3 ( ( (Depth(I) 1) Depth(I) ) / 2 )
Numtrg(I) - 4**I

ENDDO

Level 0-.
DO I 1, Iter

Level = Level + 1
'5

CALL Midpoints( X, Y, Randbound. Level, Mx, My )

CALL Reassign( X, Y. Level. Mx, My

ENDDO -

OPEN ( 10. FILE- MOUNTAIN DAT . STATUS='NEW', ERR=998,
* IOSTAT lOS, CARRIAGECONTROL 'LIST'

CALl, r)raw X. Y. Iter ) ,

CLOSEi 0,
STOP V-

998 WRITE (6. ) Error opening new file MOUNTAIN.DAT . 10V V.
STOP SENET.

E° P

0 &°
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Listing 6. Code for plotting skeletal fractal mountains (cont'd)

C----------------------------------------------------------------------------------------
c This function returns a bounded random number
c -Randbound/2**Level -= num -Randbound/2**Level
o with random sign.

J 11 6,0

REAL*8 FUNCTION RandshftC Randbound, Level)

REAL*8 Randbound Variable received from main
REAL*8 Rand, Sgn, Scale Local variables
INTEGER*4 Iseed, Timeseed 1For the random number generator
INTEGER*4 Level Level of iteration in main routine
LOGICAL First/.TRUE./ Flag which insures only one call of Timeseed

IF ( First ) THEN
Iseed = Timeseed()
First = .FALSE.

ENDIF

IF ( RAN(Iseed) .LT. 0.5 )THEN
4. gn =-1.0

ELSE
Sgn - 1.0

ENDIF

Rand =RANCIseed) *Randbound

Scale =1.0 / (2.0**Level)

Randshft =Sgn *Scale *Rand

RETURN
END

c------------------------------------------------------------------------
c -- This function is a sleazy trick which enables people with typing
o disabilities, like me, to get a large odd integer for RAN().P"
c

INTEGER*4 FUNCTION Timeseed()

* Timeseed = INT(SECNDS(0.0))
IF ( MOD(Timeseed.2) -EQ. 0 )Timeseed =Timeseed + 1
RETURN

A END

.oc------------------------------------------------------------------------
o - This subroutine calculates the midpoints of the lattice(level-1).
c

SUBROUTINE Midpoints( X. Y, Randbound, Level. Mx. My)

REAL*8 X(0:6, 24768). Y(0:6. 24768) Endpoints, from main
REAL' 8 Randbound Variable received from main
REAL*8 Mx(24768), Ny(24768) Returned to main
REAL*8 Randshft Random number with random sign
REAL*8 Rand. X1, X2, Y1, Y2 I Local variables

%1
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Listing 6. Code for plotting skeletal fractal mountains (cont'd)

INTEGER*4 Level I Level of iteration in main
INTEGER*4 I. J, Depth, Int, Count Local variables
INTEGER*4 Leadpt(129), Jump(0:129)

Depth 2
DO I - 1, (Level-i)

Depth - Depth + 2**(I-i)
ENDDO

Leadpt(l) = 1
Int 0
DO I = 2, (Depth+i) 5,

Int = Int + I
Leadpt(I) - Leadpt(I-i) + Int

ENDDO

c -- Calculating midpoints of line segments "slanting left"

Count -0
DO I- 1. (Depth-i)

Jump(O) - 0
DO J - 1, (Depth-I)

Jump(J) - (J + I - 1) + Jump(J-i)
X1 - V (Level-i), ( (Leadpt(I+l)-l) + Jump(J-i) ) )
YI - Y( (Level-i), ( (Leadpt(I+l)-l) + Jump(J-i) ) )
X2 = X( (Level-i), ( (Leadpt(I+I)-I) + Jump(J) ) )
Y2 - Y( (Level-i), ( (Leadpt(I+i)-I) + Jump(J) ) )
Rand - Randshft( Randbound. Level )
Count - Count + 1
Mx(Count) - (Xi + X2) / 2.0
My(Count) ((YI + Y2) / 2.0) + Rand

ENDDO
ENDDO

c - Calculating midpoints of line segments "slanting right"

DO I - i. (Depth-i)
Jump(O) - 0
DO J - 1, (Depth-I)

Jump(J) - (J + I) + Jump(J-i)
X1- X( (Level-l). (Leadpt(I) + Jump(J-i)) )
Y1 - Y( (Level-i). (Leadpt(I) + Jump(J-l)) )
X2 - ( (Level-i), (Leadpt(I) + Jump(J)) )
Y2 - Y( (Level-i). (Leadpt(I) + Jump(J)) )
Rand - Randshft( Randbound, Level ) S
Count - Count + 1
Mx(Count) - (X1 + X2) / 2.0
My(Count) - ((YI + Y2) / 2.0) + Rand

ENDDO
ENDDO
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Listing 6. Code for plotting skeletal fractal mountains (cont'd)

c -- Calculating midpoints of "horizontal" line segments

DO I - 2, Depth
DO J - Leadpt(I), Leadpt(I+i)-2

X1 - V (Level-l), J )
Y1 - Y( (Level-i), J )
X2 - V (Level-i), J+1 )
Y2 - Y( (Level-i), J+1 )
Rand - Randshft( Randbound, Level
Count - Count + 1
Mx(Count) - (X1 + X2) / 2.0
My(Count) - ((YI + Y2) I 2.0) + Rand

ENDDO
ENDDO

RETURN
END

C ----------------------------------------------------------------------
c-- This subroutine reassigns points of lattice(level-1) and new
c midpoints to the lattice(level).

SUBROUTINE Reassign( X, Y, Level, Mx, My )

REAL*8 X(0:6, 24768), Y(0:6, 24768) Array of endpoints
REAL*8 Mx(24768), My(24768) I Array of midpoints

INTEGER'4 Level Level of iteration in main
INTEGER*4 I, J, Int. Jump, Count I Local variables .

INTEGER*4 Skipl, Skip2
INTEGER'4 Depth(O:7), Leadpt(229)

Depth(0) = 2
DO I 1., Level+"

Depth(I) - Depth(I-i) + 2**(I-I)
ENDDO

Leadpt(1) - 1
Int = 0
DO I 2, Depth(Level+l)

Int - Int + I
Leadpt(I) = Leadpt(I-l) + Int

ENDDO

c -- Reassigning old lattice points

VC Level, 1 ) = V (Level-l), )
Y( Level. 1 ) = Y( (Level-i). 1 )
Jump - 0
DO I - 2, Depth(Level-1)

Jump - Jump + 1
X Level, Leadpt(I+Jump) ) - X (Level-i), Leadpt(I) ) 7

p Y( Level, Leadpt(I+Jump) ) - Y( (Level-i). Leadpt(I) ) '
Skipl -0
DO J - Leadpt(I)+l, Leadpt(I+l)-I

Skipl - Skipl + 1
XC Level. (Leadpt(I+Jump)+(2*Skipl)) ) = V (Level-l), J )
Y( Level, (Leadpt(I+Jump)+(2*Skipl)) ) - Y( (Level-i), J )

ENDDO
ENDDO
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Listing 6. Code for plotting skeletal fractal mountains (cont'd)

c -- Reassigning new midpoints to lattice

C -- Reassigning midpoints of line segments slanting left

Count - 0
Skipl = 0

DO I - 1, (Depth(Level)-l)
Skipl = Skipl + 1
Jump = 0
IF ( MOD(Skipl, 2) .NE. 0 ) THEN

DO J 1 1, (Depth(Level)-I)
Jump = (J + I - 1) + Jump
IF ( MOD(J, 2) NE. 0 ) THEN

.," Count = Count + 1
X Level, (Leadpt(I+1)-1+Jump) ) = Mx( Count )

,. Y( Level, (Leadpt(I+1)-l+Jump) ) = My( Count )
ENDIF

ENDDO
-' ENDIF

ENDDO

c -- Reassigning midpoints of line segemnts slanting right

Skipl - 0
DO I = 1, (Depth(Level)-1)

Skipl - Skipl + 1
Jump - o
IF ( MOD(Skipl, 2) .N1E. 0 ) THEN

DO J = 1. (Depth(Level)-I)
Jump - (J + I) + Jump
IF ( MOD(J, 2) NE. 0 ) THEN

Count - Count + 1
XC Level, (Leadpt(I)+Jump)) Mx( Count )
Y( Level. (Leadpt(I)+Jump)) = My( Count )

ENDIF
ENDDO

ENDIF
ENDDO

c -- Reassigning midpoints of horizontal line segments

Skipl - 1
Skip2 - 0
DO I = 2, Depth(Level)

Skipl - Skipl + 1 S
IF ( MOD(SkipI, 2) .NE. 0 ) THEN

DO J - Leadpt(1)+l, Leadpt(I+1)-I
Skip2 = Skip2 + 1
IF ( MOD(Skip2, 2) NE. 0 ) THEN

Count - Count + 1
X Level, J ) = Nx( Count )
Y( Level, J ) = My( Count)

ENDIF
ENDDO

ENDIF
ENDDO

RETURN
END

38 .

.5.L -J'



...sting b. Code for plotting skeletal fractal mountains (cont'l%

c------------------------------------------------------------------------------------
o - This subroutine draws the lattice(Iter).
C'-a

SUBROUTINE Draw( X, Y, Iter)

,REAL*8 X(0:6, 24768). Y(0:6, 24768) IArray of endpoints -

INTEGER*4 Iter
INTEGER*4 I, J, Depth. Int, Jump
INTEGER'4 Leadpt( 129)
CHARACTER*l Lntyp Draws either points(P) or vectors(v)

100 FORMAT( 1XFlO. 3.1!, F1. 3.1!,A)

Depth =2

DO 1 1. Iter
Depth Depth + 24*(1-1)

ENDDO

Leadpt(l) = 1
Int 0
DO 1 2, (Depth+1)

Int = Int + 1
Leadpt(I) = Leadpt(I-1) + Int

ENDDO

c - Drawing line segments "slanting left"

DO I - 1, (Depth-i)
Lntyp- P
WRITE(10.100) V( Iter. (Leadpt(I+1)-l) )

* Y( Iter. (Leadpt(I+1)-l) ),Lntyp
Jump -0
DO J -1, (Depth-I)

Jump =(J + I - 1) + Jump
Lntyp ='V'

WRITE(10.100) X( Iter, ((Leadpt(I+1)-1) +Jump ))
* Y( Iter, C(Leadpt(I+1)-1) + jump ))
* Lntyp

ENDDO,
ENDDO

c - Drawing line segments "slanting right"

DO I - 1, (Depth-i)
Lntyp - 'P'

* WRITE(10,100) X( Iter, Leadpt(I) )
* Y( Iter, Leadpt(I) ).Lntyp

Jump - 0
DO J - 1. (Depth-I)

Jump - (J + I) + Jump
Lntyp-'V
WRITE(10.100) X( Iter, (Leadpt(I) +Jump) )

* Y( Iter, (Leadpt(I) 4 Jump) ), ntyp
ENDDO

ENDDO

c--Drawing "horizontal" line segments

DO I -2, Depth
Lntyp -'P'
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Listing 6. Code for plotting skeletal fractal mountains (cont'd)

WRITE(lOlOO) X( Iter, Le8.dpt(I) )

Y( Iter, Leadpt(I) ),Lntyp

DO J - (Leadpt(I)+1), CLeadPt(l+1)-1)
Lntyp -'V
WRITE(lQ,100) X( Iter, J )

Y( Iter, J ),Lntyp
ENDDO S

ENDDO

RETURN
END

.. b.~
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5. REMARKS ON APPLICATIONS

Because fractals apparently mimic nature so well, they have been applied
to the study of numerous areas. Chemists, biologists, physicists, statiti-
cians, etc, have been using fractals lately to model behavior in their parti-
cular fields. Fractals could even be applied to digital signal processing, as
shown by the following argument.

Fractals are quasi-self-repeating images. Therefore, by definition, the
image seen on one level is nearly mimicked by an enlargement on the next.
Moreover, the only limitations to this magnification are the built-in limita-
tions of the image-producing machines (the fractal itself will allow any
magnification).

1 ".
Therefore, aligned in the proper digital fashion, a fractal could be used

as a communications code. The digitized fractal image would act like a
carrier or an envelope along which information would travel. It should make a
good code for the following two reasons:

Uniqueness--A fractal image has its own unique imprint. Small perturba-
tions in the fractal can produce large variation. (This can be demon-
strated by varying A in the iteration of z2 + k.) Thus, properly chosen,
a fractal can produce a unique digital sequence.

.5

Stability (and instability)--Fractals should be extremely stable with
respect to noise because of their quasi-self-repeating nature. To decide
whether or not a bit is a good piece of information, the bit could be
enlarged at a lower level. There, the criterion of the information's
correctness can be predetermined by how far it is from the fractal's basic
quasi-pattern. Further enlargements only improve upon the fractal's
estimate.
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