Memory Effects on Infrared Adsorbate Spectra

by

Henk F. Arnoldus and Thomas F. George

Prepared for Publication

in

Advances in Laser Sciences - III
edited by A. C. Tam and J. L. Gole
AIP Conference Proceedings

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

November 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
A vibrational bond between an adsorbed atom and a crystal can absorb photons from a weak (probe) laser field (frequency ω). The line shape for this process is usually assumed to be a Lorentzian, which reflects that the kinetic coupling to the phonon reservoir is supposed to be a memoryless process. Due to the finite cutoff of the phonon dispersion relation (Debye frequency ω_D), this is not an accurate approximation if the transition frequency ω between two levels of potential well is of the same order magnitude as ω_D. A finite memory-time reservoir theory is applied to the evaluation of the line shape, and two distinct properties are found. First, it is shown that the modified Lorentzian is identically zero for $\omega > \omega_D$, and then a memory-induced line at $\omega : \omega + \omega_D$ is predicted. The physical origin of these features is explained in terms of energy-conserving diagrams.
MEMORY EFFECTS ON INFRARED ADSORBATE SPECTRA

Henk F. Arnoldus and Thomas F. George
Department of Physics, 239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

ABSTRACT

A vibrational bond between an adsorbed atom and a crystal can absorb photons from a weak (probe) laser field (frequency \(\omega\)). The line shape for this process is usually assumed to be a Lorentzian, which reflects that the kinetic coupling to the phonon reservoir is supposed to be a memoryless process. Due to the finite cutoff of the phonon dispersion relation (Debye frequency \(\omega_D\)), this is not an accurate approximation if the transition frequency \(\omega\) between two levels of potential well is of the same order of magnitude as \(\omega_D\). A finite memory-time reservoir theory is applied to the evaluation of the line shape, and two distinct properties were found. First, it is shown that the modified Lorentzian is identically zero for \(\omega > \omega_D\), and then a memory-induced line at \(\omega - \omega + \omega_D\) is predicted. The physical origin of these features is explained in terms of energy-conserving diagrams.

ABSORPTION PROFILE

An atom is confined to the surface of a harmonic crystal by the van der Waals force. The potential depends on the atom-surface distance. Thermal motion of the crystal atoms makes this distance a dynamical variable, and the coupling provides an energy-exchange mechanism. Phonons in the crystal can be absorbed by the adsorbate, and the bond can emit energy into the crystal by excitation of a phonon. This process gives rise to thermal relaxation of the adsorbate density operator \(\rho(t)\) to a steady state \(\rho\) (thermal equilibrium).

This system is irradiated by a low-intensity infrared laser, and the probability for the absorption of a photon as a function of its frequency \(\omega\) is indicated by \(I(\omega)\). With \(d\) the dipole moment of the bond, projected on the laser-polarization direction, \(L\) the Liouvillian of the atom in the potential well and a suppression of an overall factor, a general expression for the absorption profile reads

\[
I(\omega) = \text{Tr} \left(\frac{i\omega}{\omega - L + i\Gamma(\omega)} (d, \rho) - i\Gamma(\omega) \rho \right) .
\]

In a Markov approximation the relaxation operator \(\Gamma(\omega)\) becomes \(\omega\)-independent, and the second term in round brackets, \(\Gamma(\omega)\rho\), disappears. For potential wells which have resonance frequencies of the order of \(\omega_D\), a zero memory-time approximation, which leads to a Lorentzian line shape, cannot be justified.
MEMORY EFFECTS

Expression (1) for the profile pertains to any configuration of levels, any shape of the potential, and includes multiphonon transitions. In order to study the effect of a finite reservoir response time we consider the case where the potential supports only two bound states, separated by \(\omega_0 \). In Fig. 1 we have plotted the line shape for the situation \(\omega_0 \approx 3\omega_D \). The left peak comes from the term \([d, \rho]\) in Eq. (1), which would be a Lorentzian around \(\omega_0 \) in the Markov approximation. Due to the \(\omega \)-dependence of \(\Gamma(\omega) \) the line is cut off at \(\omega_D \), and only the low-frequency wing at \(\omega < \omega_D \) remains. The line at the right-hand side is situated at \(\omega = \omega_0 + \omega_D \), and it comes from the term proportional to \(T(\omega) \) in Eq. (1). Without a memory in the interaction, this line vanishes identically. We predict a memory-induced line at the sum frequency \(\omega_0 + \omega_D \).

In tracing back the mathematical origin of the operator \(T(\omega) \), it appears that this term enters as a consequence of the fact that the density operator of the entire system does not factorize into a product of the crystal density operator times the adsorbate density operator.

The physical origin of the two lines in Fig. 1 can be illustrated with the diagrams from Fig. 2. Process (a) is

![Figure 1. Typical absorption profile for a two-level system. Here, \(\hat{\omega} = \omega/\omega_D \) and the dotted line indicates the resonance frequency \(\omega_0 = 3\omega_D \).](attachment:figure1.png)
responsible for the line at \(\omega < \omega_0^D \), which would usually be a Lorentzian. Since there are no phonons with a frequency larger than \(\omega_0 \), however, photon absorptions with \(\omega > \omega_0^D \) do not occur. Consequently, the line vanishes for \(\omega > \omega_0^D \). Diagrams (b) and (c) explain the line around \(\omega - \omega_0 + \omega_0^D \), and it follows immediately that the line must disappear for \(\left| \omega_0 - \omega_0^D \right| > \omega_0^D \).

Figure 2. Transition diagrams which are responsible for the profile of Fig. 1. Double arrows indicate photons and single arrows are phonons.

ACKNOWLEDGMENTS

This research was supported in part by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009.

REFERENCES

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Code 334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NORDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>NSTL, Mississippi 39529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td>Chemistry Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Commandant of the Marine Corps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>Code RD-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Government</td>
<td>1</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>high</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Materials Branch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Naval Ship Engineering Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Marine Sciences Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>San Diego, California 91232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Dr. David L. Nelson</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800 North Quincy Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington, Virginia 22217</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
ABSTRACTS DISTRIBUTION LIST, 056/625/669

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH
UNITED KINGDOM

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853
END
Feb.
1988
DTIC