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been presented. Through this HEA application its main features and practical
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ABSTRACT

In recent years, there has been a considerable increase in both the

variety and number of sensors which needed to be tied together. A new

distributed estimation architecture for Distributed Sensors Networks (DSN) is

int;.oduced. It is called Horizontal Estimation Architecture (HEA). The term

horizontal is used to imply that the geographically dispersed nodes do not

differ in rank and are peer-to-peer coupled. Each node is connected by a
data link to its neighbors (where possible), thus providing a mesh network
topology. The introduced HEA has four major components, the local

estimator, the information fusion process (both together are called a

horizontal estimator), the network access protocol, and the controller-

decisionmaker.

The HEA techniques are applied to the solution of Multitarget and

Multisensor Tracking (MMT) problems in Track-While-Scan (TWS) systems

with an emphasis towards track fusion. A mathematical framework which

encompasses the components of the horiaontal estimator is developed, with

an emphasis towards the track fusion algorithm. An artificial intelligence

approach using expert systems for track fusion has been presented. Through

this HEA application its main features and practical usefulness are

addressed.

Z



TABLE OF CONTENTS

I NTRODUCTION .................................................................................................... 13

A. MAIN DSN DEVELOPMENT ISSUES .......................................................... 13

B. REQUIREMENTS FOR DEVELOPMENT OF DSN ....................................... 14

C. DISTRIBUTED ESTIMATION ARCHITECTURES ...................................... 16

II. HORIZONTAL ESTIMATION ARCHITECTURE ............................................ 20

A. MAIN FEATURES OF HEA ............................................................................ 20

B. GRAPH REPRESENTATION OF A MESH NETWORK ..................................... 21

C. PROPOSED DSN INTELLECTUAL ASSETS ................................................ 23

D, INFORMATION ELEMENTS OVERLAPPING IN HEA .................. . 2

E. COMMUNICATIONS BETWEEN DIFFERENT NODES .............................. 30

F. MAIN COMPONENTS OF HEA ...................................................................... 31

G. PROPOSED FUNCTIONAL ELEMENTS OF A DSN ................................... 34

H. MOTIVATIONS TO HEA ............................................................................... 34

Ill. OVERVIEW OF TRA(CK-WHILE-SCAN SYSTEMS .................................... 37

A. TWS RADAR SYSTEM CONCEPT ....................................................................... 37

B. TWS RADAR FUNCTIONS ........................ , ...................................................... 39

C. RADAR OUTPUT ............................................................................................. 42

D. CLASSES OF TRACKS ..................................................................................... 44

E. THE CLUTTER M AP ........................................................................................ 46

F. OPERATIONAL REQUIREMENTS .................................................................. 47

G. NETTED RADAR SYSTEMS ............................................................................ 48

5



IV. HEA APPLICATION TO MMT PROBLEMS ................................................ 55

A. OVERLAPPING COVERAGE OF A RADAR NETWORK .......................... 55

B. DISCRETIZATION OF A SYSTEM DYNAMICS MODEL .......................... 57

C. MMT MATHEMATICAL MODEL ............................................................... 62

D. THE HORIZONTAL ESTIMATOR .................................................................. 64

V. LOCAL ESTIM ATION ........................................................................................... 67

A. LOCAL ESTIMATOR FUNCTIONS ............................................................ 67

B. CONVENTIONAL KALMAN FILTERING ................................................ 69

C. THE EXTENDED KALMAN FILTER ............................................................. 72

D. UD COVARIANCE FACTORIZED KALMAN FILTER ............................. 75

E. PARAL".EL KALMAN FILTERING ............................................................ 77

F. ROBUSTNESS OF THE KALMAN FILTER ................................................ 79

G. MULTITARGET LOCAL ESTIMATORS ................................................... 84

I. Nearst-Neighbor Approach ................................................................... 86

2. Branching Procedures ............................................................................ 89

VI. ALGORITHMIC TRACK FUSION ............................... 91

A. TRACK-TRACK ASSOCIATION .................................................................. 91

B. PROBABILITY OF CORRECT ASSOCIATION ......................................... 93

C. COMPOSITE EST!MATE OF TWO TRACKS ................................................ 104

D. OPTIMALITY OF HEA TRACK FUSION ...................................................... 110

VII. KNOWLEDGE-BASED TRACK FUSION ............................................................ 114

A. CAPTURING THE EXPERTIZE OF A HUMAN EXPERT ........................... 114

B. KNOWLEDGE-REPRESENTATION USING RULES .................................. 117

C. INVOKING RULES IN A RULE-BASED SYSTEM ...................................... 121

1. Backw ard Chaining ..................................................................................... 12 1

6



2. Forward Chaining ........................................................................................ 122

3. Backward Versus Forward Chaining .................................................. 123

D. METAKNOWLEDGE AND EXPLANATION FACILITY ........................ 125

E. BLACKBO ARDS .................................................................................................... 125

F. REPRESENTING UNCERTAINTY IN EXPERT SYSTEMS .................... 126

1. Bayesian M odel ............................................................................................ 126

2. Dempster-Shafer Belief Theory ............................................................ 127

3. Fuzzy Logic .................................................................................................... 130

4. A d hoc A pproaches .................................................................................... 136

G. EXPERT SYSTEM DEVELOPMENT TOOLS ................................................. 141

H. PAIRWISE CORRELATION FOR TRACK FUSION ................................... 142

VIII. THE SIMULATION SCENARIO ............................................................................ 148

A. EXPERTS' VIEW OF MODERN RADAR ENVIRONMENT ....................... 148

B. THE SCEN A R IO .................................................................................................. 153

IX. TR A FUS I ................................................................................................................... 157

A . RUNN ING TRA FUS I ........................................................................................ 157

B. ASKING ABOUT RULES .................................................................................. 160

C. U SIN G W HY ........................................................................................................ 16 1

D. ASKING HOW A CONCLUSION WAS REACHED ..................................... 161

E. CHANGING, RERUNNING AND PRINTING THE DATA ......................... 162

F. SAVING DATA AND RESULTS ..................................................................... 163

X . T R A FU S2 .................................................................................................................... 16 4

CON CL U SIO N ............................................................................................................ 168

;NDIX A: THE SPECTRUM OF SENSORS AVAILABLE FOR DATA
FU S IO N ....................................................................................................... 17 2

APPENDIX B: OVERVIEW OF TKISOLVER ................................................................. 173

7

U



APPENDIX C: PRODUCTION RULES .............................................................................. 178

APPENDIX D: OVERVIEW OF EXSYS 1........................................................................... 183

APPENDIX E: SAMPLE OF TRAFUS I PRODUCTION RULES ................................. 188

APPENDIX F: SAMPLE OF TRAFUS2 PRODUCTION RULES .................................. 199

L IST OF REFERENCES ........................................................................................................... 2 10

B IBL IOGR A PHY ........................................................................................................................ 2 18

S,4ITIAL DISTRIBUTION LIST ..................................... 225

8



LIST OF TABLES

6.1 Probability of Correct Association for n- I .................................................. 96

6.2 Probability of Correct Association for n-2 .................................................. 97

6.3 Probability of Correct Association for n,3 ................................................. 98

6.4 Probability of Correct Association for n-4 ................................................. 99

9



LIST OF FIGURES

1.1 Centralised Estimation Architecture ............................................................... 18

1.2 Hierarchical Estimation Architecture ............................................................. 19

2.1 Mesh Network Topology ..................................................................................... 20

2.2 Representation of Bidirectional Link .................................................................... i2

2.3 Mesh Network Representation Using Directed Graphs ................................. 22

2.4 Pictorial View of a Proposed DSN Intellectual Assets ............................ 25

2.5 Two Information Elements inclusion and Exclusion ............................... 27

2.6 Three Information Elements Inclusion and Exclusion ............................ 28

2.7 Information Elements for t-3 ........................................................................... 29

2.8 Pictorial View of HEA Major Components .................................................... 32

2.9 Distributed Sensors Network (DSN) ...................................................................... 33

2.10 Very Large Scale DSN ........................................................................................ .36

3.1 Outline of Functions Performed in Modern TWS Radar Rec. Phase ......... 40

3.2 Track Classes in TWS System .......................................................................... 45

3.3 Centralised Architecture of a Radar Network ............................................ 51

3.4 Distributed Architecture of a Radar Network .................................................. 52

3.5 Advanced Techniques in the Main Blocks of a Radar System .................. 54

4.1 Example of Overlapping Coverage Between Three Radars in
a N etw ork ...................................................................................................................... 56

4.2 Evolving of the Discretized System Dynamic Model .............................. 61

4.3 Processing of Radar Data at Each Node in HEA ......................................... 66

5.1 Basic Functions of Local Estimator ................................................................. 68

10



5.2 Simplified Scheme of KalmaD Filter ..................................................................... 71

5.3 NED Coordinate Frame for TWS System ..................................................... 73

5.4 Computation Sequence and Sequential Relinearization About
the Best Estim ate ............................................................................................... 83

5.5 Example of a Complex Conflict Situation ....................... 85

5.6 Example of Gating and Correlation for Two Closely Spaced Tracks ......... 88

6.1 Probability of Correct Association PcVersus Similarity Threshold a
for Dfferent Dimensional Space n of the State Vector .............................. 100

, 6.2 Variable and Rule Sheets for Equation (6.5) ....................... I 01

6.3 Variable and Rule Sheets for Equation (6.7) ................................................. 102

6.4 Variable and Rule Sheets for Equation (6.9) ................................................. 103
6.5 Error Ellipsoid for Fused Independent Tracks in Example I .................. 108

6.6 Error Ellipsoid for Fused Independent Tracks in Example 2 ........... 109

7.1 General Structure of an Expert System ............................................................ 119

7.2 Structure of an Expert System ........................................................................ 120

7.3 The Rule Interprets Cycles Through a Match-Execute Sequence ......... 121

7.4 Fan-in and Fan-Out Stages of Knowledge Aquisition ................................ 124

7.5 Pairwise Correlation for Track Fusion .............................................................. 144

7.6 An Expert System Architecture for Track Fusion ....................................... 147

8.1 Modern ATC Display with SSR Information ................................................... 152

8.2 The Sim ulation Scenario ......................................................................................... 156

9.1 Results Obtained from a Run of TRAFUSI ...................................................... 159

10.1 Word Description of Certainty in 0-10 System ............................................ 166

10.2 Results Obtained from a Run of TRAFUS2 ...................................................... 167
B. I Functional Diatram of TKISolver - User Interface ...................................... 177

C.1 Trees of Conclusion in a Production System .................................................. 182

SII1

14



ACKNOWLEDGEMENT

Among the many people who have contributed to the success of this

research. I would like to first express my deepest gratitude to Professor

Harold A. Titus, my dissertation supervisor, for his constant encouragement.

professional guidance, and enthusiasm throughout the course of this study.

Professor Titus's incessant urging for better understanding of the results

obtained has often provided needed inspirations.

Special thanks are due to Distinguished Professor G. J. Thaler, Professor R.

Panholzer, Professor N. F. Schneidewind, and Professor M. F. Platzer,

for serving as members of the Ph.D committee and for providing valuable

comments. The constant encouragement of Distinguished Professor G. J.

Thaler is highly appreciated.

The financial and moral support from the Egyptian Government, and the

privilege to pursue graduate study at Naval Postgraduate School are greatly

appreciated.

Finally, and perhaps most importantly, I thank my wife, Azza, for her

love, patience, understanding, and consistent encouragement and for keeping

me sane, especially during the last few months. Special thanks to my

children, Hany. Ahmad, Mohammad. and Hebba for their understanding and

endurance during this work.

12



In recent years. there has been ,n increasing interest in Distributed

Sensors Networks (DSN). Examples can be found in Air Traffic Control (ATC)

systems. surveillance systems, and air defence systems. In these systems.

xomputers are sited essentially at the sensor sites, or in the display system.

and in the command and control areas. As a consequence, a distributed

sensors network implies a computer network, which ensures performance of

data procesing, organization of information display, and the communication

between the different network components, in addition to an estimation and

decision making processes.

A. MAIN DSN DEVELOPMENT ISSUES

There are many different issues which arise in the development of a

DSN. The fundamental issues are:

1. The design of multisensor architectures.

2. How much local processing capability should a sensor have, and how
should the data communicated by a sensor be summarized and
compressed?

3. The procedures for data fusion.

4. The performance evaluation of a multisensor configuration.

5. The on-line management/control of an implemented multisensors
network.

6. Provision of software and hardware, bearing in mind the growing,
bog resrut..uring and reconfiguration capabilities.

13

0



These issues are difficult. They become more so in the multitarget

environment faced in aircraft, missile, battlefield, and ocean surveillance. In

these environments, there is the added problem of data association. That is,

given a piece of data, one must determine to what it should be attributed.

Should it be one of thle current objects being considered, and if so, which? or,

should it be a new c'.,ect, or a false alarm?

General architectures of multisensor networks are centralized and

distributed. Several problems arise in the analysis and design of the

mentioned architectures, among them are:

a. Air-Space management. i.e. allotment of airspace sectors to the
sensors of the network.

b. Gathering, routing, management and dissemination of data and
results through the communication network.

c. Organization of sensors and processors.

B. REQUIREMENTS FOR DEVELOPMENT OF DSN

There are technological advances in several disciplines. which are

providing tools for designers of DSN. An adequate development of DSN

requires the successful integration of these disciplines. e.g, modern theory of

systems and control, computer science. communications. man-machine

interactions, expert systems, information systems, reliability and

maintainability. In defense systems especially, there is an increasing

interest in simultaneously using various types of sensing techniques co-

operating with each other, such as various types of radars, infrared detecting

passive radio surveillance, and laser systems. The combination gives rise to

a system concept which requires location of objects and detection over a

wide frequency spectrum. This decreases the effect of unintentional and

14



intentional interferences, and Increases the system reliability and

survivability. In addition, the use of passive sensors improves the system's

covertness. Also, a defense system is required to remain reliable and secure

in the presence of intense hostile activity, w:iich will probably include

destructive actions.

Today, the communication is both slower and more costly than

computation and processing. Present trends indicate that these imbalances

in speed and costs of communications and processing will not only continue

but are likely to greatly increase (Ref. I ). Military communication systems

are generally designed and tested in a peacetime setting. However, their

greatest test will come in a conflict situation, when the need to communicate

becomes great and hostile enemy actions, including physical destruction and

electronic countermeasures will create node and link failures and a
dynamically changing network topology. So, one of the prime motivations in

DSN is to try to minimize the communication load between different sites or

nodes.

Since the sensors are the means by which a decision making process

observes the environment, which is generally a dynamically changing

environment in the presence of uncertainties. sensor measurements are used

to reduce these uncertainties, and determine the current state of the system.

So. DSN implicitly includes an estimation process in addition to a decision

making process. The future trends of decision making in complez
technological environments are towards decentralized strategies. These

trends are being supported by the fruitful progress in the direction of

15



distributed computer architectures, distributed data processing, distributed

knowledge based systems and fifth generation computers.

The Japanese Fifth Generation Computer Systems (FGCS) project is

directed toward nonnumeric applications. The more traditional systems

application of number crunching is not an issue in the FGCS. It is expected

that the supercomputers being developed today will perform these tasks.

The FGCS project is directed instead toward applied artificial intelligence and

symbol manipulation. In other words, the next generation of computers is

being designed to manipulate knowledge. It will employ and exploit

knowledge-based system technology.

". DISTRIBUTED ETIMATION AECHITECTURES

A distributed estimation architecture for DSN is introduced bearing in

mind previously mentioned considerations. Research in distributed

estimation has progressed along several directions. A survey of these

directions can be found in the paper by Chong, Tse and Mori [Ref. 21, and its

references [Ref. 3.4.5,61. The estimation architectures used are mainly

hierarchical and centralized. In our approach, the Horizontal Estimation

Architecture ( HEA ) is introduced. The term horizontal is used to imply that

the geographically dispersed nodes do not differ in rank. They are of equal

I status and peer- to - peer coupled, and emphasizing the nonbierarchical

architecture used.

The practical usefulness and the performance of HEA techiques are better

described with reference to the particular applications for which they are

designd. Multitarget Multisensor Tracking (MMT) problems in Track-

While-Scan (TWS) systems, has been selected as a specific problem to be

16
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addressed, emphasising the Information (track) fusion process. A

mathematical model for MMT is presented. An algorithm for pairwise track

fusion is derived and the optimality of HEA track fusion is justified. An

artificial intelligence approach using expert systems for track fusion has

been presented. Through the HEA application its main features and practical

usefulness are addressed.

17
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[I. HORIZONTAL ESTIMATION ARCHITECTURR

A. MAIN FEATURES OF HEA

The main concept of distributed estimation applied to DSN is used.

Specifically, each node in the network performs local processing of the data

collected only by its own sensor or sensors. The locally processed data from

each node are communicated through an appropriate data link to its

neighboring nodes (where possible), in addition to using it locally. Thus

providing a mesh network topology ( Figure 2.1).

o Network Node

-- - Communication Link

FIGURE 2. 1. Mesh Network Tope'ogy

20



B. GRAPH REPRESENTATION OF A MESH NETWORK

Using graph theory with some modifications, we represent the mesh

network as a directed graph G [Ref. 7:pp. 424-4731.

Definition: Let V be a finite seL A mesh network can be represented as a

directed graph (or digraph) G on V, made up of the elements of V, called the

nodes of G, and a subset E of the cross product V x V. called the

communication links of G. If a,b E V and (a.b) E E. then there is a

communication link from a to b. Node a is called source of the link, with b

the terminus, or terminating node, and we say that b is neighbor to a, and a

is neighbor to b. It is asumed that G is loop free, and there are no isolated

nodes. Generally each node is a source and terminus.

Based on that definition. let V be the set of nodes. while E is the set of

communication links, and it is a subset of the cross product of the sets V and

V, i.e

E C(V x V) (2.1)

where V x V - ( a,b,c ....... n) I a,b,c ...... ,n e V} (2.2)

and we write the mesh network G as

G - ( V. E ) (2.3)

where G. usually is not fully connected, i.e. for all i.y e V. 1 0 y, there is not

necessary a link from x to y. In mesh networks, a link is often directed in

both directions (bidirectional). Consequently, if G is a directed graph and a,b

E V. a ý b, with both (a.b) , (ba) E E. the undirected link in Figure 2.2(b), are

used to represent the bidirectional link shown in Figure 2,2(a). In this case,

a and b are called neighboring nodes, and it is represented as

21



([a,b]) - ((a,b),(b,a)). In HEA the data processing capacity can vary from node

to node, and communication capacity can vary from link to link.

b b

0
//

//

a a

(a) (b)

Figure 2.2. Representation of a Bidirectional Link

e

r 
:b

C

V {a,b,c,d,e,f)

E ( [a,b], [a,eJ, [a,ri, [b,]ri, [e, (], (b,c), (d,c), [d,e] J
G - (V,E)

Figure 2.3. Mesh Network Representation Using

Directed Graphs
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Example: The mesh network shown in Figure 2.3. Is represented as

G - ( V. E)

where V - { a,b~c,d.ef}

and V x V - { (ab,c,d,eJf) I a,b,c,d,ef E V)

and EC(VxV)

E - { [a,bl. [a,el. [all, [b~f. [efi1. (b,cJ, (d,c), [d,e] }

It is clear that (b,c) indicate a unidirectional link from b to c, and [a,bI

indicate a bidirectional link between a and b.

C. PROPOSED DSN INTELLECTUAL ASSETS

In the literature, data and information are used interchangeably.

Actually, data and information are not synonymous. There is a distinction

between them. Data become information only when they are useful and

available. This means that information is produced as output of data

processing operations and used to enhance understanding and to achieve

specific purposes [Ref. 81. Figure 2.4, shows a pictorial view of a proposed

DSN intellectual assets shown as a four layer pyramid. The bottom layer is

the data collected by sensors, which are processed using a data processing

mechanism. The results of the data processing are information, which is the

second layer, and it is apparently the processed data. The information added

to the expertise of a human expert, resulting in knowledge, which is the

third layer. The knowledge is used for developing the knowledge-base,

which is the core of the expert system. The expert system is used for aiding

the controller-decisionmaker in giving intelligent decisions, which is the

utmost purpose of the DSN. It is noted that the human expert is kept in the

23



loop from time to time to adapt the knowledge-base to cope with the

changes in any situation affecting the environment sensed by the sensors.

Based on that, the result of processing data at each node taken by its own

sensor or sensors is local information, which is tied or fused with the

incoming information from neighboring nodes to obtain an updated situation

assesment at each node and forming a coherent picture that resembles as

closely as possible what is happening in the local area of interest.

Consequently, we have termed the bringing together of locally processed

data from different neighboring nodes itto a coherent picture" information

fusion".

In fact, by information fusion we also mean to include all sources of

information, not just that from processing electromagnetic, acoustic, optical

and infrared sensors data. There are for example in defense systems, human

observers providing intelligence information and a background of

encyclopaedic information and operational plans [Ref. 91. Also, fusing local

information and incoming information from neighboring nodes can be done

only after deciding that they are originated only from the same origin. So,

the fusion process implies a decision process.
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D. INFORMATION ELEMENTS OVERLAPPING IN HEA

The principle of inclusion and exclusion is adopted with slight

modifications to represent the information overlapping of different nodes in

HEA [Ref. 7:pp. 190-2131. Let S be a set with N-ISI. where ISI is the

cardinatity or size of S, i.e. denotes the number of elements of S (in MMT

case it can be the number of tracks). Let cI, c2 ...... c be a collection of

conditions or properties satisfied by some, or all of the elements of S. Some

elements of S may satisfy more than one of the conditions (e.g. range and

bearing in MMT case), while some may not satisfy any of them. For I i i I t.

N(c,) will denote the number of elements in S that satisfy condition ci. For i,

e (1.2.3 ............ 0, ij, N(ci•c) will denote the number of elements in S that

sat.esfy both of the conditions cj.q. N(cjcj) does not count the elements of S

that satisfy only one of the conditions ci and cj. If I 2 i. j. k 2 t are three

distinct integers, then N(clct) denotes the number of elements in S

satisfying each of the conditions cj. c, and ck (e.g. range, bearing and velocity

in MMT case). For I Z i I t, N(E1) denotes the number of elements in S that

do not satisfy condition c1. In this case, N(I) - N- N(c1). If I Z i. i ; t, ij,_

N(E,1j) - the number of elements in S that do not satisfy both of the

conditions ci and cj.
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From the Venn diagram in Figure 2.5, it is seen that if N(c1 ) denotes the

number of elements in the left-hand circle and N(cj) denotes the number of

elements in the right-hand circle, then N(cjcj) is the number of elements in

the overlap, while N(ý;) counts the elements outside the union of these

circles. Consequently, N(21ý) - N - IN(c1) + N(cj)i + N(ciic), where Lhe last term

is added o. since it was eliminated twice in the term [N(c 1) + N(cI). In Like

manner, from Figure 2.6.

NIC14) - N - IN(cl) + N(cI) + N(ck)] + IN(cjcj) + N(cict) + N(cict)l - N(clcc)

Generally, the number of elements of S that satisfy none of the conditions cj,

I A i - t, is

N(EIZ2Z3 ...... Et) - N - IN(cl) + N(c2) + N(c3) . .............. + N(ct)J

+ IN(cjc 2) + N(cjc 3) ........... + N(cIct) + N(c2c3) .... + N(ct-Ict)I
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- IN(cIc 2c3) + N(cjc 2c4 ) . ..... .N(clcF.q) + N(cc 3c4) . .......

* N(cjc 3c;) . ...... +N(ct2ct 1c)] + .... + (-I)t N(cjc 3c4 ...-- c),

-N(cIcI.3 ...... Cd)- N- •N(cj), +7N(cjcj) - •N(cicick) . ......
I J<k l.i~id. I .iiI( t

+ (-I )t N(cc 3c4 ...... c) (2.4)

N( N(•,cjc

FIGURE 2.6. Three Information Elements Inclusion and Exclusion

Now, assuming the nlumber of elements in S thlat satisfy exactly rn of" the t

conditions is e•= whlere I = in < t, then

Nic - 15) " (2\

and
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02 N(cjcj 3 ...... -t) N(c 1I cs ...... . ...... + N(EIZA ...... 4-A-lq). (2.6)

1C

2

I.• 4/

CCC2 C 3

(t - 3)

FIGURE 2.7. Information Elements Inclusion for t-3

Using these results as a starting place, as Figure 2.7 is examined, where

t-3, a numbered condition is placed beside the circle representing those

elements of S satisfying that particular condition. Then ea equals the

number of elements in region 2, 3, 4. But it can be written that

a, - N(cj) + N(c2) + N(c3) - 21N(cjc 2) + N(cjc 3) + N(c2c3)1+ 3N(cjc 2c3) (2.7)

In N(c,) + N(c2) + N(c3) the elements in regions 5, 6, and 7 are counted twice

and those in region 8 are counted three times. In the next term the

elements in regions 5, 6. and 7 are deleted twice. The elements in region 8
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are removed six times in 2[N(clc 2) + N(cjc 3 ) + N(c2c3)1, so the term 3N(cjc 2cq)

is added and end up not counting the elements in region 8 at all. Hence,

e, -S, - 2S2 + 3S3 - S,- ( 2)s2 .+ (3)S3 (2.8)

For e2,. the earlier equation indicates that it is needed to count the

elements of S in regions 5, 6. and 7. From the Venn diagram

e2 - N(cjc 2) - N(cjc 3 ) + N(c 2c3 ) - 3N(cIc 2c3)

-S2 -3S3-Si-( 3)s3  (2.9)

and

03 - N(cjc 2c3) - S3 (2.10)

Generally, for any I <= m 2 t. the number of elements in S that satisfy exactly

m of the conditions c , ,0c1C3 ........... C isg1iven by
0, _ Sn ( *)Si'l I 2)s,-2 . ...... - (-I )t-a (t-'n)St (2 11 *j

E. COMMUNICATIONS BETWEEN DIFFERENT NODES

To enable communications between different nodes (processors) the

following items must be considered (Ref. 101:

1. The electrical and physical characteristics of the medium chosen for
the interconnection.

2. The signalling used to ensure the reliable transmission and reception
of data.

3. The means of effecting flow controi in order to align the rate of data

exchange with the processing capabilities of the machines.

Actually, when two information nodes communicate across a network, a

network access protocol between each node and network is needed. the

requirements for such a protocol differ significantly for a communication

networking technique to another. By protocols, we mean the set of .,ules,

procedures and conventions by which information is transported through the
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computer communications network. The key elements of a protocol are [Ref.

IlII:

1. Syntax: includes such things as information format and signal levels.

2. Semantics: includes control information for coordination and error
handling.

3. Timing: includes speed matching and sequencing.

F. MAIN COMPONENTS OF HEA

Based on the previously mentioned distributed estimation approach,

Figure 2.8, shows a pictorial generic view of the main components of the

Horizontal Estimation Architecture (HEA). By architecture we mean the set

of algorithms, rules, conventions and protocols that implement the horizontal

estimation functions and their interrelationships. The introduced HEA has

four major components, the local estimator, the information fusion process

(both together are called Horizontal Estimator), the network access protocols,

and the controller-decisionmaker.

The control policy used is decentralised, with control decisions made

independently by each node using the estimates of the states resulting from

the information fusion process. The expected value of a quadratic

performance index is minimized to assure maximum system robustness.

That is, gradual or partial system failures would have minimum degradation

in the performance. Also, it avoids the development of complex strategies

which are difficult and costly to achieve and implement.
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FIGURE 2.9. Distributed Sensors Network (DSN)
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G. PROPOSED FUNCTIONAL ELEMENTS OF A DSN

Based on the HEA, we view the DSN to be represented as shown in Figure

Z9, by five basic functional elements: the environment, sensors, the

horizontal estimator, data communications network, and controller-

decisionmaker.

Each sensor complex, horizontal estimator. and controller-decision maker

is sited in a node, which we call an 'information node LO differentiate it.

irom a communication node. Throughout the sequel, node is used to indicate

Lhe information node. Each information node is connected through a

communications node and an appropriate data link to its nearest neighboring

nodes, thus providing a mesh network topology. As mentioned before, each
information node oerforms processing functions by local estimator using Uie

local sensor sensors) data, communicating the processing results to other

neighboring nodes, in addition to using it locally. The information fusion

process fuses the information received from neighboring nodes with the local
information. The HEA can be further extended to cover a very large scale

DSN in the case w'hen each node can be the central processor of a centralised

network, and. or a global estimator (parent node) of a hierarchicai network

,Figure 2. 10'

I. MOTIVATIONS TO HEA

In HEA, the approach of "divide and conquer' which is useful for most

Complex problems can be easily used, Partitioning allows any, large complex

system to be divided into manageable portions. Another motivation to the

HEA is that network splitting and reformation or connection of additional

compatible networks are practicable during system operation and do not
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cause any restriction as a new system is initiated. Additional advantages of

this design approach are, usage of microcomputer systems. which provide a

cost-effective solution for data processing, reliability, survivability, local

autonomy, heterogeneous feature, low cost communications and its

practicability for already existing information nodes, which need to be tied

together. The partitioning approach used in HEA allows large complex

systems to be divided into manageable proportions.
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III. QVERV IEW OF TRACK-WHILE-SCAN SYSTEMS

A. TWS RADAR SYSTEM CONCEPT

The process of tracking targets based on discrete radar information

obtained while the radar continues to scan the airspace is referred to as the

Track--While-Scan (TWS) process(Ref. 121, and is accomplished in a digital

computer in modern day surveillance radars. For a TWS system, search and

track update functions are simultaneously performed. In TWS, a single

sensor scanning at a constant rate illuminates new targets and targets

already in track files at the same time. Also, only those target tracks that

remain within the TWS search volume can be maintained. In an automatic

TWS air-surveillance system, the radar sensor reports measurements of

target observations at regular intervals of time to a computer, which then

assembles the observations from successive scans into tracks. The computer

software must correctly associate new plots with the existing tracks and

initiate new tracks from reports received on air targets within range of the

radar. The association task is aided by tracking filters wlich combine noisy

measurements with track predictions to obtain smoothed updated track

estimates. The predicted position of the target for the next radar scan, based

on the smoothed estimate of the current position of the target, is used

together with the estimated standard deviation of the prediction to

determine the location and size of the region of acceptability of new

observations on the target. The tracking filter thus plays an essential rote in

the function of plot- to- track association, in addition to its role of providing
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accurate estimates of the position and motion of the target. In TWS only

position and velocity states are estimated because with low update rates

( like every 4 seconds), the noisy acceleration estimates would am contribute

very much. Typically, in intercept problems, the missile requires only line of

sight rates for deployment.

For the TWS system, both search and track update are done

simultaneously. At the end of the scan interval, all observation3.received

during the scan are correlated with the existing tracks. An operational air-

surveillance system must be capable of tracking many targets

simultaneously in an environment that may provide large numbers of false

.arget indications due to real and artificial clutter as wedl as system noise.

The measurement accuracy obtained and the tracking precision of such

systems may not demand the most computationally complex filtering

operations. It is essential that the filtering operations give sufficient support

to the association procedures; any complexity beyond that and not necessary

for this task is of diminishing value. It is important however that the rilter

be sufficiently flexible to adjust quickly to changes in the tracking

environment. The literature on the techniques of track filtering is very large

and diverse. It is important to use simple, easily implemented, and

computationally inexpensive filters which nevertheless retai, as far as

possible the features of optimality and flexibility which the most general and

expensive forms embody.

3y automating the target detection and tracking process (AuWmatic

Detection and Tracking) which is called ADT, the bandwidth in the output of

a radar is reduced so as to allow the radar data to be transmitted to another
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location via narrowband communication links rather than wideband

communication links [Ref. 12,131. This permits the outputs of many radars

to be intercommunicated economically.

B. TWS RADAR FUNCTIONS

The signal processor determines the presence or absence of targets while

rejecting unwanted signals due to ground clutter, sea clutter, weather, radio-

frequency interference, noise sources and intentional jammers. It is

performed by coherent and/or non-coherent processing of time samples of

the received signals (Ref. 131. The signal processor is implemented in real-

time special purpose hardware. Basic operations that are now routinely

exploited as a result of the advances in digital technology [Ref. 141. include:

1. Pulse Compression (PC)

2. Pulse Doppler Processing (PDP)

3. Moving Target Indicator (MTI)

4. Moving Target Detector (MTD)

5. Constant False Alarm Rate (CFAR) circuit
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The data extractor provides the target measurements in range, angles

(azimuth. elevation), radial velocity and possibly provides target signature.

In general, a target may cause several detections in adjacent cells in range,

Doppler frequency and angles. The centroid of the corresponding pattern of

detections gives an estimate of the target measurements. The data extractor

is generally implemented with a dedicated microcomputer.

The data processing is performed on a digital computer inserted between

the plot extractor and immediately before the display. It can he defined as

the set of algorithms which, when applied to the radar detections acquired

during successive scans, allows the following:

I. Recognition of a pattern of successive detections as pertaining to the
same target.

2. Estimation of the kinematic parameters (position, velocity, and
acceleration) of a target, thus establishing a so-called " target track

3. Extrapolation of the track parameters.

4. Distinguishing of different targets and thus establishing a different
track for each target.

5. Distinguishing of false detections (caused by intentional or natural
interfereaice) from true targets.

6. Adaptive refinement of the threshold se6ting of the signal processor
in order to make tne radar more or less snsitive in the different
spatial directions, depending on the content of a map of false
detections refreshed on a scan-to-scan base.

As shown in Figure 3.1. it is important to emphasize that the cascade of

signal processor, data extractor, and data processor is uitimately a

bandwidth compressor. It receives data at a high rate and processes the

signal in such a manner that a relatively low data rate is achieved. This

feature is pictorially indicated by the natrrowing of the arrows moving from
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the left to the right of the cascaded processors. At the same time, there is a

progressive discrimination between useful and clutter data, by means of a

stepwise decision process. The information handled by the processing -hain

is progressively manipulated into a form which allows easier decision

making by the user. In fact, the raw video signal contains many false

echoes. The data extractor isolates the useful target and the data processor

identifies the target ( possibly labelled with a code), determines the target

velocity and additional parameters which are presented in a tabular display.

A further observation can be made regarding the increase of the time span

in which processing is performed through the cascade. The signal processor

involves only a few pulses, the data extractor some adjacent groups of pulses

and the data processor consecutive radar scans. In other words, the memory

of the processing increases oa moving from left to right in Figure 3. .

So, these TWS systems are excellent candidates for the application of HEA,

since they are already have their local estimation processors which perform

the functions of track initiation, plot-track correlation, track prediction, track

filtering, and track termination.

C. RADAR OUTPUT

The output of a TWS radar is generally a display to visualise the

information contained in the radar echo signal in a form suitable for operator

interpretation and action. The visualised information on the display is called
" synthetic video" in contrast to the so called " raw video" which is the

information shown when the display is connected directly to the video

output of the receiver [Ref. 14,151. Synthetic displays, whilst being a

processed representation of the signals which are being received by the
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radar sensors, have the advantage that all responses, irrespective of the

weakness of the returned signal, can be dlsplayed at a constant level of

brilliance and clarity. The Plan Position Indicator (PPI), the usual display

employed in radar, indicates range and azimuth of a detected target. The

idea of tracking is easily visualized if successive scans containing a moving

target are superimposed, the target then gives rise to a fairly regularly

spaced sequence of returns.

In the past, an operator manually marked the location of the target at

each sai with a grease pencil on the face of PPI. This procedure was very

simple but offered poor accuracy and simultaneous processing of only a few

targets, due to operator fatigue. The limitations of the operator have been

overcome by resorting to a computer which automatically performs the

whole tracking process. This computer has been referred to as the" data

processor " in Figure 3. 1. In order to design an automatic procedure to track

one or more targets, it is convenient to examine the nature of the plot

sequence provided by TWS radar. The better the expected properties of the

sequence can be defined, the greater is the ability of the tracker to

distinguish among different targets and false plots. False plots are caused by

clutter, intentional interference and noise which survives the action of signal

processing. The spacing of the consecutive target plots is caused by the

target velocity which may vary in time as the target executes various

maneuvers. In the case where the target is an aircraft. upper and lower

Limits can be placed on the magnitude of the velocity. Further, an upper

limit on the magnitude of the acceleration of the aircraft usefully restricts

the possible tracks the aircraft can make.
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D. CLASSES OF TRACKS

In a modern TWS system, a set of computer software establishes and

maintains a number of files pertaining to three different classes:

1. Firm tracks: a firm track occurs when the path of a target has been
acquired by the data processor and the kinematic parameters
estimated with sufficient accuracy.

2. Tentative tracks; a tentative track corresponds to the first phase of
the track acquisition of target or clutter plots.

3. Stationary tracks; a stationary track pertains to clutter, since its
position does not significantly change from scan to scan.

The files are produced by processing the plots received from the radar on

a scan-to-scan basis and stored in a buffer as, as outlined in Figure 3.2. The

contents of the output buffers are periodically updated and displayed to the

operator. A firm track occurs when the path of a target has been aquired by

the data processor and the kinematic parameters estimated with sufficient

accuracy. By contrast, a tentative track corresponds to the first phase of the

track acquisition of target or clutter plots. Finally, a stationary track

pertains to clutter, since its position does not significantly change from scan

to scan. The tracks have been divided into different classes because their

corresponding processing and utilization differ.
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E. THE CLUTTER MAP

Because an operational environment may be affected by a large number

of false target indications caused by fixed and moving clutter as well as

system noise, a particular attention must be paid to filtering out these

disturbanceo. This is carried out by the formation and updating of a clutter

map, which identifies spurious plots from the input buffer so that the

remaining plots pertain only to valid targets. The use of the clutter map

produces some benefits to a radar operating in a clutter environment:

I. It allows proper selection of signal-processor operating modes ( e.g.
the MTI is switcned on only where it is needed, thus avoiding
unnecessary detection performance degradation in a clear
environment, the thresholds of the detection logic are controlled
according to the residual clutter power).

2. It allows removal of clutter points from the radar plot buffer. thus
preventing saturation of the processing and the formation of spurious
tracks which reduce confidence in the track data. The clutter map
updating process is also referred to as a Stationary Track Filter (STF) or
Scan to Scan Correlator (SSC). IRef. 171.

The STF acts as a velocity discriminator upon the plot stream coming

from the data extractor. Plots which appear to be stationary or slowly

moving from scan to scan are stored in the clutter map. Each new incoming

plot is compared with the content of the map, if the plot falls within a

dlefined capture area around one of the clutter map entries, then the new

plot is deemed to be clutter. As a consequence . it updates the clutter map

content and is deleted from the radar plot buffer, STF can also be considered

as a device capable of forming cancellation masks centered around targets

(true or spurious) with a velocity below an established threshold value.
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The velocity discriminatlon is performed by comparing the plot

displacement in two or more of the subsequent scans with respect to a gate

centred around the first position (already measured) of the clutter map

entry. It is obvious that, for clutter points or slow-moving targets, the

subsequent echoes remain in the gate for a large number of scans, but for

fast targets, the echoes are in the gate ror only few scans. By computation of

the scans required by the target to leave the gate, it is possible to determine

its velocity.

F. OPERATIONAL REQUIREMENTS

The operational requirements for data processing vary with the type of

application. Typical requirements are estimation accuracy, extrapolation

time and system reliability [Ref. 171. In maritime collision-avoidance

systems it is necessary to detect potential collisions well in advance (15-30

minutes) because of long reaction times, especially for large ships such as oil

tankers. The estimation error on the forecast position must be lower than

one nautical mile. Therefore the accuracy by which the velocity is estimated

must be within I knot. This requirement determines the degree of filtering

to be applied taking into account the measurement error and the data rate of

the radar.

In the case of ATC, the radar information may support the function of

tactical control. conflict alert and approach control. In tactical control, the

radar controller checks the current positions of the aircraft to maintain the

standard separations. Whenever the separations tend to be violated, the

radar controller advises the pilots involved about the local trajectory

modifications required to re-establish acceptable conditions. In conflict
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alert, the processing system estimates the forecast positions of all the

aircraft to determine the conflicting pairs of aircraft; the extrapolation time

is from I to 2 minutes. The processing system can also evaluate the

trajectory modifications for one or both aircraft to resolve the conflict

situation. In this case, one nautical mile may also be assumed as an

acceptable accuracy in the estimation of forecast position. Of course, possible

maneuvers during the extrapolation time may be taken into account in the

evaluation of the conflict area. Therefore, where two aircraft are conflict

free when flying straight and could be taken into conflict if one or both

maneuver, an order may be given to both aircraft to keep the straight

trajectory constant. In approach control, the controller checks that aircraft

follow fixed paths to assure a safe landing. A higher accuracy than the

preceding one is required here, i.e. a fraction of one nautical mile.

In an air-defence system. the estimated trajectory is generally used to

help perform some of the following functions:

a. threat identification

b. threat evaluation

c. calculation of the forecast position (for fire or launch of missile)

d. weapon assignment

e. kill evaluation

The functions a to e do not necessarily use the measurements of one single

radar. For example the fire control function c is generally performed by a

tracking radar with the characteristics of good accuracy and high data rate.

It may be noted that in ATC, all the trajectories are easy to follow

because of path regularity, low acceleration (2-3 m/s 2 ) and pilot
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collaboration; whereas, in air defence, targets have high accelerations (10-50

m/s 2 ) and manoeuvres that are intentionally evasive. Furthermore, it is

important to have a very short reaction time, especially for targets detected

at short range such as low-flying aircraft and sea -skimmer missiles.

Generally, the data processing from a radar extractor is more difficult for

air-defence systems than that for civil-traffic control, because the target

acceleration is high and unpredictable. In addition, jammers interfere with

the proper working of the system. '"he effects of these phenomena are

reduced by radar signal processing using particular devices, such as moving-

target detector and multisidelobe canceller, which limit the false detections.

G. NETTED RADAR SYSTEMS

Much recent interest has centered around radar netting. Estimation of

location, velocity and maneuver together with possible identification of each

relevant target can be provided by Radar Data Processing (RDP) with an

accuracy and reliability greater than that available from a single look radar

report. Today, it is also very important to net different types of sensors in

addition to radars in order to enhance performance. The current various

types of radar networks can be classified according to the level at which the

merging of data is taking place into the two following classes:

I. centralized

2. distributed

The centralized architecture (see Figure 3.3) is characterised by the use of

a single data processor to which radar plots are transmitted from radar sites.

These measurements are processed so as to obtain a single multiradar track

for each target. This architecture has the features of:
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L using tracking algorithms with variable data rate.

b. reducing tracking errors because of the higher data rate than with a
single radar.

c. requiring more powerful processing resources.

d. being the prevalent type in military applications owing to the higher
accuracy gained.

The distributed architecture (see Figure 3.4) is characterised by the use of

a computer at each site performing the tracking function on the

measurements of a single radar. The monoradar tracks instead of radar

plots are then transmitted to a single data-processing centre which combines

them in order to establish a single multiradar track for each target. The

following features are relevant for this architecture:

- it is capable of local operation.

- it requires computing resources of limited power.

- it mainly requires monoradar processing algorithms.

- it prevails in ATC because of simplicity, reliability and growth capability.
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The proposed HEA as a distributed architecture applied for radar netting

would be convenient and cost effective to be used specially for modern TWS

radars whici have their local tracking systems already installed and it

guarantees the maximum utilization of the local resources of each radar site

and taking advantage of the advanced techniques taking place in each major

block of the radar systems (Figure 3.5). The problem of the lack of

experienced decision makers which lead to the centralization of decision

making can be solved by the use of expert systems and encapsulate the

decision maker expertise in computer software.
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IV. REA APPLICATION TO MMT PROBLEMS

A. OVERLAPPING COVERAGE OF A RADAR NETWORK

The HEA is applied to the Multiuaget Multisenso" Tracking (MMT)

problems in a tactical air surveillance system. The problem is to produce a

statistically meaningful estimate of both the number of the targets present,

and of their trajectories. It is assumed that the system employs Track-

While-Scan (TWS) radars with different scan rafts and with overlapped

coverage. The degree of overlap of the radar coverage is defined is as

9- 7 A /A (4.A)

thWhere A. is the area covered by the j radar

Atot is the total survefflance area controlled by the radar

N is the number of radar sites(nodes)

The parameter & ranges from I (absence of overlap) to N (total overlap).

Figure 4. 1, shows an exam. pie of overlapping coverages between three

radars. Ri, R 3 . If the degree of overlap is very small, the advantages of

the data redundancy are Iimited.on average, to smnall areas and few targets.

Assuming that the targets are evenly distributed in A with density 6, then it

follows from equation ( 4.1 ) that

n S/ nt8 (4.2)

Jtot
j=5
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.- , nj n tot (4.3)

j=1

Where n is the number of targets in the area AJ
ntot is the number of targets in the total area A

A2

A1

Atot

FIGURE 4. 1. Example of Overlapping Coverage Between
3 Radars in a Network

Generally, the most obvious exploitation of additional radar sites is to

extend the coverage beyond the maximum range of a single radar, as

established either by line of sight or by radar power. Also, the viewing of a

target from different aspects angles tends to reduce target fades, glint and

terrain masking effects. It is assumed that radar sites will be primarily

chosen with the aim of optimal radar coverage of the entire network. We

consider the multitarget and multisensor problems separately. and then

merge the two. This means that the multitarget tracking problem is solved
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at the sensor (node) level using the appropriate local estimation algorithm.

When the multitarget tracking problem Is solved separately for each

individual node, a somewhat redundant view of the surveillance area will

result, depending on the degree of overlapping coverages between the

radars. The output of the local estimator is a group of different tracks. A

track. is meant to be a state trajectory estimated from a set of sensor

measurements that have been associated with the same target (Ref. 181. By

assuming that the multitarget tracking problem is solved separately for each

individual sensor (node), the track estimates for targets in the surveillance

area become consolidated first at the level of each individual node. The

information fusion process decides whether more than one track from

different nodes represent the same target. and combines the corresponding

consistent tracks. The techniques for information fusion can be based on

algorithmic processing of target kinematic information and heuristic

reasoning for attribute information by using expert systems to encapsulate

target identity, behaviour, intent, tactical appreciation and human expertise

in computer software.

B. DISCRETIZATION OF A SYSTEM DYNAMICS MODEL

The mathematical model of a target motion, as state equation, is derived

when assuming that the target normally moves at constant velocity, and

turns or evasive maneuvers may be considered as perturbations upon the

straight lines. Therefore acceleration is a driving input for the state

equation which is usually linear. A simple way to model the unpredictable

behaviour of acceleration is to consider a non-Gaussian stochastic stationary

process (symmetric with zero mean and proper standard deviation) with a
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correlation depending on the time duration of manoeuvre [Ref. 181. When

an aira'aft flies, it normally maintains a constant velocity, constant heading

trajectory. Consequently. the system dynamics model is given by the

following continuous time state equation

x (t) - A x(t) + G w(t) (4.4)

Where w(t) is the random forcing function ( continuous time white process

noise), w(t) -~( O,0 ). We wish to put the continuous equation (4.4) into the

discrete form
x (k+ 1) - ,4 x(k) + w(k) (4.5)

Where w(t) is the con-ribution from the random forcing function. The

general solution of (4.4) for x(t) given the value x(t 0 ) at initial time to is

t

x(t) - 4k (t, to) x(tO) + f (t, T) G(T) W (T) dTr (4,6)

to

Defining T to be the sampling interval, to describe the state propagation

between states, let t - (k+ I )T to - kT for an integer k and assuming

stationarity, so that:
4 (l:,tO) - •(t-to) a 4 ( T )(4.7)

Defining the sampled state function as x(k) - x(kT ) we can write

(k.I)T

x(k+l1) - *( T ) x(k) + j' ((k+ 1)T-T)G w(l") dT (4.8)
kT

The second term in the right hand side is a low pass filtered version of the

continuous white process noise w(t) weighted by the state transition matrix

and the noise input matrix G.
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On changing variable twice ( T T- kT and then Also, " = T - V), the limits

of integration can be set to 0 and T. so that, as a first step in the discrete

formulation of (4.4), we obtain

T

x(k+1) - 4. ( T ) x(k) + f-.((T) G w(T) dT (4.9)
0

Again under the assumption of stationarity. the transition matrix can be

expressed in terms of the matrix exponential. Then, an expansion can be

performed to give an approximate solution:

*4 ( T ) - e " A I + AT + ( AT )2 /2 . ....................... +( AT )r/n! (4.10)

Where I is the identity matrix. If terms of order T2 and higher are

disregarded, then the result is Euler's approximation to the sampled system.

Equation (4.9) becomes

#(I")- I +AT (4.11)

and the discrete - time process noise w(k) relates to the continuous time one

as follows

T

w(k) - f*"(T) G w(T) dT (4.12)
0

To find the covariance 0 (k) of the new noise sequence w(k) in terms of 0,

we write

0 (k). E I w(k) w (k) I

(k+l)T

0(k)- f-fJ((k+l)T-Tr)G EIw(T)wT(o')IGTjT((k+I)T-Cr) dTda (4.13)
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But E Jw(T) WT (a), _ 0 8( T- a)

So

0(+I)T

O(k) - f#((k. )T-T)G0G T ,M((k,1)T-T) dT (4.14)

xT

by changing variables twice as before

T

O(k)- jCr()GOG 0 *(k)d (4.15)
0

It is worth noting that even if 0 is diagonal, 0 (k) need not be. Sampling can

destroy independence among the components of the process noise. Using

(4.10) then

0 (k) - G 0 GT T + (A GG T G+ 0G T AAT )T2 / 21 ........ ...... (4.16)

In Euler's approximation the process noise covariance 0 (k) results from

multiplication by T

0 (k) - G 0 GTT

Figure 4.2. shows the sequence of operations used to evolve the discretized

equation of an aircraft.
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System State Equation

x(t) = A x(t) + G w(t)

State Transition Matrix

AT

Driving Terms
T

0 0G w d'r- w(k)

Discretized System
Dynamics Model

x(k.l) - 4 x(k) + w(k)

FIGURE 4.2. Evolving of the Discretized System
Dynamic Model
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C. MMT MATHEMATICAL MODEL

Suppose that s targets are present, and the discretized equations of

motion for each target being tracked is adequately modeled by a separate

stochastic difference equations of the form

x (k- I) - *'(k+ I,k) x'(k) w'(k) k - O, 1,2 ....... n (4.17)

i - 1,2 ,' ........... 3

The superscript indices i denote the various targets. x'(k) is the nxl state

vector (which generally includes at least position and velocity coordinates) of

the tracked target at the kth sample time. •' (.,.) is the (nxn) state transition

matrix, and w'(k) is a pi xl state excitation vector, which is usually

constructed in aircraft tracking applications to account for both maneuvers

and modeling errors, and is generally assumed to be white and gaussian,

with zero mean and covariance Q' (k). In a TWS system, the kth sample will

occur approximately at time kTj, where Tj is the scan time of the jth sensor
The corresponding discrete measurement vector from each node is given by

z (k) - hJ (x)(k),k) , v'(k) j - 1,2 ......... N (4.18)

Where the superscript j indicates the various nodes. zj(k) is a qJ Xi

dimensional measurement vector at node j at stage k. VJ (.,.) is the

observation equation for jth sensor, vJ (k) is assumed to be white and

Gaussian, with zero mean and covariance Ro (k). It is further assumed that

wI (k) and vj(k) are not serially or cross-dependent, in particular

Sfw(k) vJ() J - 0 for aLl k and 1 (4.19)

In the s-target case, each individual measurement ZJ (k) of an actual target

at time k is drawn from a mixture probability density of the form
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P(ZJ(k) I x (k)x 2 (k), ........ Ix (k)) - ZPI P(ZJ(k) I x'(k)) (4.20)

with unknown priors denoted p. n

Denoting the number of measurements at time k by m(k), a set of Zm(k)

measurements is k=1

m (k) n

ZJ (. ZJ (k)) ) J- 1,2 ......... ,N (4.21)
L L=I k:1

Where Z' is the cumulative set of measurements at each node.

It is the essence of multitarget tracking problems that there is a large

amount of overlap among the component densities of (4.20). so that the

target-to-measurement correspondece xI (k)*-, z' (k) is difficult to obtain.

The set of all measurements Zj can be partitioned into m tracks

XIC ZJ

Z,-x' .XIU\ 2 ux 3 U ....... uxm

where x'n sý - o for Iij
One of the tracks (e.g 0m) contains all of the false alarms. With this notation,

any hypothesis concerning measurements made by the surveillance system (

the number of targets present, which data points belong to which target) can

be defined as a family of subset

xC ZJ
The defining characteristic of multitarget tracking problem is that a number

of partitions can be found, each one composed of tracks Xe that appear

feasible from the standpoint of the likelihood tests.
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D. THE HORIZONTAL ESTIMATOR

Figure 4.3. shows the processing of target data using the Horizontal

Estimator (HE) at each node. By using tracking filters such as those discussed

in references [Ref. 18, 19, 20, 211, produces local track data bases consisting

of the target state vectors and estimation error covariances at specific points

of time. Typically, the local track data base will contain kinematic

information and sometimes attribute information is included. The typical

kinematic information would be:

Al
x J (klk) -- The target local track estimate at time k using the local sensor
data of node j, i.e

A"x -E Ix I V)

p'j (kNk) -- The local error covariance matrix associated with the target

local estimate xj (ktk), i.e

pif -Ej xi j• (X.iTIZ

Thus. (N j. pi ' ) records are created by processing the raw sensor for eachi

node with an appropriate filter (local estimator) to produce the local track

data base.

Before fusing any two tracks from two different nodes, the two tracks are

referred to the same coordinate system using the required transformation.

and to the common time instant using the prediction equations of the Kalman

filter (Ref. 221.

ix, 1(t t Ij) =O (t t j J) X~ Oj It J ) , 1,2 (4.22)

~ j: 1,2

and pj(tlt ) I (tlta) ptj (tIt 1l) it1,2 (4.23)
SIj : 1,2
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Where t is the common time instant
t is the time of the last updating for the ith track of the jth sensor

*' is the transition matrix of the target model

65

S. . J ; - i . .. =i ! ! ... . ! • ! • - i. . .T



Radar P Iot I Trck Inforvtion
froz Data L froa Other

EtctrLocal CoordinmteExtractor U i a o o v r 0A Nod 03
Estlmtor j C onversion

Local Tracik

__tore 
Tize

1 S~toreRef erence

IWi

0c3k tore

71GURE 4.3. Processing oi Radar Data at Each Node in HEA

66



V. LOCAL ESTIMATION

A. LOCAL ESTIMATOR FUNCTIONS

Generally, the determination of position and velocity of a target using

radar measurements such as range, bearing and range rate, is a problem of

nonlinear estimation. In many cases, the relationship between the

measured data (e.g. range, azimuth, doppler velocity ) and the target

dynamic parameters is nonlinear. A rigorous treatment of the nonlinear

estimation problem requires the use of stochastic integrals and stochastic

differential equations. The optimal ( conditional mean ) nonlinear estimator

cannot be realized with a finite-dimensional implementation, and

consequently, all practical nonlinear filters must be suboptimal [Ref. 191.

As shown in Figure 5.1, the local estimator performs the functions of

track initiation, plot-track correlation, track prediction, track filtering, and

track termination. An overwhelming number of approaches to filtering and

prediction for multitarget tracking have been developed recently in response

to the ever-increasing importance of the subject. However, at this stage of

development, no standard approaches are generally accepted for all

applications. A wide variety of techniques have been proposed for many

diverse applications, but the multitarget system designer must choose the

techniques best suited to his particular problem.
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There is a comprehensive set of papers that illustrate commonly known

techniques for solving the multitarget tracking problem. Among them is the

paper by Reid [Ref. 231. the survey paper by Bar-shalom [Ref. 201, and the

paper by Chang [Ref. 191. There are two most commonly used conventional

approachez to filtering and prediction for multitarget tracking fRef. 181. The

first is to use fixed tracking coefficients. like the cL-A tracker and the (--y

tracker 1Ref. 18, 24, 25, 261 which has computational advantages for

systems with large numbers of targets. The second is Kalman filtering

which generates time-variable tracking coefficients that are determined by a

priori models for the statistics of measurement noise dnd target dynamics.

So, a Kalman Filter (KF) is a computational algorithm that processes

measurements to deduce a minimum variance, unbiased error estimate of

the state of a system by using the system and measurement dynamics,

assumed statistics of system noises and measurement errors, and known

initial condition information.

B. CONVENTIONAL KALMAN FILTERING

With expanding computer capabilities, the Kalman filtering is becoming

increasingly more appe.aing to the system designer. The Kalman gain

sequence is chosen autom?,,ically, based on the assumed target maneuver

and measurement noise models, which means that the same filter can be

used for varying targets and measurement environments, by changing a fe,'.

key parameters. Also, the Kalman filter provides a convenient measure of

the estimation accuracy through the covariance matrix. This measure is

required to perform the gating and correlat~on function; accurately. In

addition, having a measure of the innovation sequence, is useful for
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maneuver detection, and upon maneuver detection the Kalman filter model

provides a convenient way to adjust for varying target dynamics. The five

equations for the conventional Kalman filter are:

X(kIk- I) - f (k- Ilk- 1) - w state extrapolation (5.1)

p(klk- 1). -) p(k- Ilk- 1) + 0 error covariance extrapolation (5.2)

K(k) = p(kIk- I) HI (H p(klk- i) HT+ R)-' Kalman gain (5.3)

p(klk) - (I - KH ) p(klk- I) error covariance update (5.4)

klk) . klk- I) K (z(k) - H (klk- I)) state update (5.5)

(klk- I) time updated state vector

x(k!k) measurement updated state vector

p(klk- I) time updated error covariance

p(klk) measurement updated error covariance

4) state transition matrix

K Kalman gain matrix

I identity matrix

H measurement transformation matrix

R measurement error covariance matrix

w process noise

o process noise covariance matrix

z~k) = (z(k) - H X(kIk- 1)) measurement residual

l(k) - H p(klk- 1) HT + R measurement residual covariance

Once the initial state X(0l0) and the initial error covariance matrix p(OO)

are established, the Kalman equations can be activated. Figure 5.2. shows a

simplified scheme of Kalman filter operation.
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When Kalman Introduced these equations ((5.1) - (5.5)) 27 years ago [Ref.

291, they offered the engineering community a means to model discrete -

time systems via the state-space modeling method for multivariable

systems. Unfortunately, when the state equation was written for the

tracking applications. Kalman's conventional equations were round to fall

short in two respects:

a. Finite wordlength computation.

b. Changing system dynamics model in real time.

N -U

SOpUBs lDynmuc Stew
Gi SyT"M Mo&Del Eý

M rem~rafents.

Memuroments
"-r"-'- Transformation

MeasurementsMee

Figure 5.2. Simplified Scheme Of Kalman Filter
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C THE EXTENDED KALMAN FILTER

For nonlinear modeling problems, the Extended Kalman Filter (EK?) is

used to extend the linearized Kalman filter design by relinearizing about

each estimate ( i.e., Kalman equation (5. )) once it has been computed. The

sucess of the method of linearization about a nominal trajectory in state

space depends upon the accuracy of the nominal trajectory. This technique

has little hope of success in a situation where there is almost no prior

information aoout the trajectory as in the situation of the target acquisition

problem. Here, a psuedo a priori may be generated from the incoming

observations. In EUF, as soon as a new state estimate is made, a new and

better reference state trajectory is incorporated into the estimation process.

In this manner, one enhances the validity of the assumption that deviations

from the reference (nominal) trajectory are small enough to allow linear

perturbation techr•4ues to be employed with adequate results [Ref. 271.

Radar measurements ( range, azimuth, elevation, and possibly range rate)

are in polar (spherical) coordinates. Thus there exist a known, nonlinear

relationship or transformation between the state of the system and

observations.
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Figure 5.3. NED Coordinate Frame for TWS System
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Assuming NED coordinate frame shown in Figure 5.3, where X,Yand Z are

North, East, and Down, respectively. The NED coordinate frame is chosen

because it is applicable for surface (ground or shipbased) tracking systems,

in addition that it is particularly useful for airborne systems. As shown in

Figure 5.3, the origin of an aircraft tracking system is the TWS system site.

It is worth to note that the NED system is not strictly an inertial system for a

moving platform because the platform axes are slowly changing their

orientation in space as the vehicle moves over the earth's surface. However,

except near the North pole the effects of the rotations are negligible, and the

NED system is essentially inertial for aircraft platform. For the coordinate

system shown in Figure 5.3. we will have the following relationships

between spherical (polar) and cartisian coordinates

Range r (x2 y2 + z2 ) (5.6)

Azimuth 0 3-rctan (y/x) (5.7)

Elevation 0 d arcsin (-z/r) (5.8)

Range rate X (x; y+ Z)/r (5.9)

Denoting that
A,9 - x (kik- ) 0o × (klk- 1)
AA A

y. y (kik-') . Y (klk-J) (5.10)
A

S(kik- 1) Z •(K<k-!

r.r (x0
2 . ye2 *Z02 )0 5

The corresponding measurement transformation matrix H. is given by

[Ref. 281
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h" 0 ht 0 h5 0 )RO

h12 0 h23 0 0 0 )MAkuwU (5.11)

H h3l 0 hW 0 h5 0 )IEIfmUo

h41  h42 h43  h4 h4 h46  p Rats

6 Statu

Where
h~n - x, / r.

h13 -Y y/ r.r• "ze/re

h21 - - Yq/(Xe 2, e e2)

h23 - xs /(x,.2 . ye 2)

h31 - z. x. /((re2)(X 02 ÷ ye 2)0.5)

h33 a y.z./((r,2)(xl2+ ye2)0.5)

h35 (- (xN2 + ye2 )0.5)/(r.2) (5.12)

h41 (- /r) -((x,(x,, + ey + ze~)) /r.3)

h42  - x. / rs
h4,3 a (ý / r. ) -(( A~.. * yq• + z. 1..) r.3 )
h44 - ysl r.

h45 - (is /r.) -((Z.(XN. ; +ye +Z-)) / r,,3

h46e - zs/ r.

D. UD COVARIANCE FACTORIZED KALMAN FILTER

The most troublesome numerical aspect of the Kalman filter is the

measurement update of the error covariance matrix, so the properties of

alternate computational forms are of substantial interest. Potter [Ref. 301
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introduced a square-root approach for propagating the error covariance

matrix in the absence of process noise. This method is completely successful

in maintaining the positive semidefinite nature of the error covariance, and

it effectively reduced the precision requirements to about half the number

of bits needed for the full covariance update. The outstanding numerical

characteristics and relative simplicity of this Potter square-root approach led

to its implementation in the Apollo navigation filters [Ref. 3 11. The

numerical characteristics of the filter have been further improved upon by

Agee and Turner [Ref. 321, Carlson [Ref. 331 and Bierman [Ref. 341, among

others. The benefits of square-root filters were attractive in the sense of

relieving the numerical problems and maintaining symmetry of the

covariance matrix. Bierman's method requires the fewest arithmetic

operations of the square-root formulations. Bierman's UD filter factorizes the

covariance matrix P in the filter as follows

SP- UDUT (5.13)

where U is an upper triangular matrix with l's along its main diagonal and D

is a diagonal matrix. The UD algorithm requires a diagonal measurement

covariance matrix R, which implies that the measurement errors are

uncorrelated. If the matrix is not diagonal, it can be made diagonal as

indicated by Yannone [Ref. 351. Bierman derived a recursive algorithm for

implementing a Kalman filter in terms of U and D, rather than p [Ref. 34,

361.
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E, PARALLEL KALMAN FILTERING

In general, real-time filtering cannot be performed on large-scale

problems using a uniprocessor architecture because serious processing lags

can result The Kalman filter can be extended to a much greater class of

problems by using parallel processing concepts. Full utilization of

parallelism can be obtained through insight in the structure of the problem

and decoupling of arithmetic processes to permit concurrent processing. One

must simultaneously develop the parallel algorithms for solving the filtering

problem, and the associated processor architectures to achieve the maximum

benefits from parallelism. Parallel Kalman filter architectures based on this

design methodology can be implemented with VLSI/VHSIC technology (Ref.

371. VLSI technology allows the designer to map system level architectures

directly into hardware. To date, relatively little research has been conducted

on restructuring the Kalman filter for parallel processing. Three approaches

that have been considered include (Ref. 371:

a. Vectorizing the standard Kalman filtering equations by running the filter
on a vector (or array ) processor [Ref. 381.

b. Uncorrelating the measurement data to the filter so that each
measurement can be pipelined into each processor simultaneously
[Ref. 391.

c. Decoupling the predictor and corrector equations in the filter so that
these computations can be evaluated simultaneously on separate
processors using multiprocessing [Ref. 36, 401.

Although the first approach can speed up computations considerably over

conventional techniques ( speed-up factors of 6 to 10 have been realised

[Ref. 381). the computational throughput was limited primarily by the

architecture of the array processor. This occurred because the array
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wocessor architecture was optimized for Past Fourier Transform (FFT)

acmputations, not Kalman filter computations.

An approach based upon mapping the Kalman filter equations directly

onto a highly parallel/pipelined architecture can be used. Thus, the parallel

:Kalman filters algorithms/architectures developed in [Ref. 361 exploit the

structure of the filter to improve throughput using pipelining and

multiprocessing. This approach to speed up Kalman filter computations is to

perform parallel processing at three major levels:

1. The measurement data to the filter is uncorrelated so that each
measurement can be processed simultaneously.

2'. The predictor and corrector equations of the Kalman filter are decoupled
so that the predictor and corrector can be computed on separate
processors.

3. The measurement data are pipelined into each processor.

Thus, multiprocessing and pipelining are combined to achieve large

improvements in computational speed. Each processor architecture can be

implemented with VLSI technology. To facilitate parallel processing and

pipelining, the measurement data to the filter should be uncorrelated. The

data can be uncorrelated by diagonalizing the covariance matrix associated

with the measurement noise in the filter. Procedures for uncorrelating the

data generally utilize coordinate transformations based upon eigenvalue or

singular value decomposition [Ref. 411. If the eigenvalues of R are not

distinct. the generalized eigenvectors of R must- be determined [Ref. 411.

Similarly, if the eigenvalues of R are complex, R can be transformed to a

block diagonal matrix (Ref. 411.
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F. ROBUSTNESS OF THE KALMAN FILTER

An important part of the design of the Kalman filter is to regulate the

robustness of the filter to handle deviations from the prescribed systems

dynamics model in the cases when the target makes heading changes.

Without some form of re-modeling adaptively in real-time, the filter

diverges. When the conventional filter is emulated for constant

velocity/constant heading targets, filter divergence results after a number of

iterations, and the error covariance matrix goes negative definite. This lack

of reliability forces the seeking of a more stable algorithm for implementing

the Kalman filter. The estimator eigenvalues control [Ref. 281, c-an be used.

In a Kalman filter, this amounts to the eigenvalues of (* - KH). The control

for any given (*, H) pair, is a function of K , K is a function of p(k+ lk) , and

p(k+ Ilk) is a function ofO.

Whatever method is adopted for track filtering, it is usually necessary to

combine it with some form of adaptation. An adaptive system is one which

continually adjusts its own parameters in the course of time to meet a

certain performance criterion. On-line adaptation is required when

significant changes occur in the target motion (maneuvers), measurement

accuracy or frequency of detection. The excitation noise covariance 0 is a

statistical quantity used to cover uncertainties in the model of target motion

described by (4.5). Measurement accuracy is described statistically by the

noise covariance R, and the interval between filter updates is given by the

time T ( which appears in *,O(k)). Changes in the tracking environment

must be reflected in the appropriate adjustment of these three filter

parameters during the track estimation process. Adaptive tracking requires
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the -n-line computation of a figure of merit, or track performance indicator,

whicii typically involves a weighted combination of terms in the residual

(the innovation sequence) tuk). It also requires a practical procedure for

determining what quantitative adjustments should be made in the filter

parameters. Two approaches can be used to control the filter performance:

a. The system's eigenvalues are fixed and kept constant. By holding the
eigenvalues constant, a prescribed degree of stability is maintained.

b. A thresholding technique is mechanized to adaptively model
maneuvering/non maneuvering targets.

The first method, which computes the eigenvalues as function of the 0-

matrix with constraints based upon the damping sought (critical,

overdamped), starts with Kalman equations (5.2), (5.3). and (5.4):

K - function of (p(k+ Ilk), R, H)

p(k+ Ilk) a function of (p(klk), 0, C)

Solving generally, for p(k+ Ilk) and substituting into the equation for K leads

to the stability:

(# - KH) = function of (p(klk), 0, 4, R. 11)

The eigenvalues of (4 - KH) can be sought, to yield a characteristic

polynomial

e +ale-' +a -2 .................. . (5.14)

For n - 6, (5.14) will be
64

Values of ý through t. can be chosen to yield a prescribed system response

in the z-plane. The unit circle represents underdamping (marginally stable

system, poles on the jw-axis in the s-plane). Within the unit circle

represents either critical or overdamped system responses. Selecting critical
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damping leads to a polynomial q(t). The coefficients of the polynomial are

functions of (p(klk), 0, #, R). from which equations of all non-zero 0- matrix

elements can be computed as functions of p(klk), 4, R, and constants. Thus

constrained eigenvalues of (* - KH) imply a prescribed system response

(critical. underdamped, or overdamped). They are regulated by resulting

expressions of variable 0- matrix elements, which are, themselves, a

function of p(kk), 4, and R.

The problem with this is that the optimum estimates may not always be

derivable from a priori, critically-damped eigenvalues. Keeping the filter

bandwidth open (high) all the time is not the optimal solution for the

multitarget tracking problem. As a consequence, the other method is more

adequate.

The second method is a thresholding mechanism to adaptively open and

close(i.e., raise and lower) the filter bandwidth based upon information

about the target's actual activity. Trial and error led to a "high" and "low" Q

based on the range and range rate residuals. Emulation of the system TWS

estimator revealed that a system response lag of one frame could be

accommodated by evaluating the residuals prior to evaluating Kalman

equation (5.2). If the threshold was broken, the 0- matrix was set to "high"

or "low" accordingly, then equation (5.2) was evaluated with this selscted 0.

This effectively gave the filter a "sneak preview" one T ahead with which to

optimize the system robustness/stability. The fact that the system dynamics

mode does change is the reason why the first method is not recommended to

be used. The Kalman filter stability/robustness control can be summarized as

the following:

81



a* - KH) < I stable

4•( - KH) a I marginally stable (5.16)

t(# - KH) > I = unstable

a. Transient response varies with the closed loop filter pole locations.

b. The input to the Ka!man filter which gives an indication that the target
is maneuvering, are Lhe residuals.

c. Residuals regulate Q, and 0 regulates Kalman filter bandwidth.
robustness. and stability.

When a high 0 is used on a non-maneuvering target, the filter is being

erroneously told that the constant velocity :)..tant heading system

dynamics model is being violated when in fact it isn't, and vice versa.

Conseqently, the filter estimates are noisier (less accurate) for non-

maneuvering/"high" 0 than necessary, and conversely, the filter diverges

(brepts track) for the mane uvering/"low" 0 case. In addition to the

adaptive thresholding techniques, the state vector estimate accuracy was

improved by performing a relinearization about the best estimate

sequentiauy for each measurement made. Figure 5.4, shows the sequence of

computations.
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FIGURE 5.4. Computation Sequence and Sequential Relinearization
About The Best Estimate
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G. MULTITARGET LOCAL ESTIMATORS

It was not until the early 1970*s. that multitarget tracking theory became

a major topic of interest [Ref. 15, 181. The papers by Singer and Stein [Ref.

421, Singer, Sea and Houzewright [Ref. 431, Jaffer and Bar-shalom [Ref. 441,

Bar-shalom and Tse [Ref. 451, began the development of modern cmultitarget

tracking techniques that combine correlation and Kalman fil1-•ring theory

[Ref. 15, 181. In a dense target environment, gating only begiais to solve the

problem of associating observations with tracks. Additional logic is required

when an observation falls within the gates of multiple target tracks or when

multiple observations fall within the gates of a target track.

Figure 5.5, illustrates a typical situation in which both types of conflict

occur. This logic is required to face the ambiguity about the origin of the

observations, which originated. from the target of interest. The correlation

function takes the ouipu" of the gating function and makes final observation-

to-track assignments. The various measures proposed against the

correlation conflict in automatic trackirng can be reduced to the two

substantial principles:

1. Application of the nearest- neighbor- rule.

2. Application of branching procedures.
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Gate

03

P2

P01

Gate P

01,02, 03 Observation Positions

PI, P2, P3 Predicted Target Positions

Figure 5.5. Example of A Complex Conflict

Situation
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1. Nearest-Neihbor Anproach

The nearest-neighbor-rule prescribes correlation of that track-result

which is statistically nearest to the target's predicted pcsition (the search

plot in case of track initiation). It is based on the assumption, that the

return which is nearest to the predicted position, is most probably the true

target's return. The nearest-neighbor-rule is capable of solving satisfactorily

the correlation conflict. At smaller target distances it fails to solve the

conflict, because miscorrelations generally produce deviations of the track

and target trajectory and finally lead to target loss. The track updating

process typically begins with a gating procedure that is used to eliminate

unlikely observation-to-track pairings. The simplest multitarget system use

sequential data processing and the nearest-neighbor association rule. For

example, this is normally the approach used with a TWS system. With this

approach. processing is done at each scan using only data received on that

scan to update the results of previous processing. The nearest-neighbor

assignment algorithm assigns observations for existing tracks in a manner

that minimizes some overall distance criterion. It looks for a unique pairing

so that at most one observation can be used to update a given track. Using

this approach, the optimal solution is obtained by assigning observations to

tracks in order to minimize the total summed distance from all observations

to the tracks to which they are assigned. A computationally efficient

suboptimal solutions, also can be used to illustrate one suboptimal solution.

To illustrate one suboptimal solution, the example shown in Figure 5.6, is

solved using the following rules:
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1. 01 is assigned to T I because Ol is the only observation within the gates
of T I while T2 has other observations (02, 03) within its gates.

2. 03 is assigned to T2 because 03 is closer than 02 (d2C<d 2 ).

3. 04 can, without question, be used to initiate a new track, but new track
initiation using 02 may be restricted. This restriction is based upon the
practical consideration that multiple observations within the gate of a
single established track are often the result of a failure in the
observation redundancy-elimination logic. Thus, this restriction serves
to prevent initiation of extraneous tracks.
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Gate
04 2ate

"P2

o2 P Il

01, o2 o3, o4 - Observation Positions

p 1. p2 - Predicted Target Positions

d a Distance From p2 to 02
d -Distance From p2 to o3

Figure 5.6. Example of Gating and correlation for Two

Closely Spaced Tracks
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Simple assignment techniques, such as the sequential nearest-neighbor

approach, can lead to miscorrelation with poor tracking as a consequence.

The problem with choosing the nearest-neighbor is that. with some

probability, it is not the correct measurement. Therefore, it will use

(sometimes) incorrect measurements while believing that they are correct.

This can lead to the loss of target.

An alternative to nearest-neighbor correlation is the "all neighbor"

approach, which incorporates all observations within the neighborhood. as

defined by the gate around the predicted target position. The position

update is then based on a weighted sum of all observations, with the

weighting calculated using probability theory (Ref. 451. This procedure is

called Probabilistic Data Association (PDA) since it associates probabilistically

all the neighbors to the target of interest. Then this probabilistic information

is used in a suitably modified tracking filter, called PDA Filter (PDAF), That

accounts for the measurements origin uncertainty. Later results [Ref. 21,461

showed that the PDA did not perform weil in the presence of multiple

targets, so a modified method denoted joint Probabilistic Data Association

(JPDA) was derived to include the presence of multiple targets [Ref. 21 1.

2. BRanchins Procedures

Branching procedures use all the results within the correlation gate in

order to form new tracks. So. at every sampling time when there is more

than one measurement in the validation region (correlation gate) the track is

split The likelihood function of each split track is evaluated in order to

eliminate unlikely tracks. Tracks whose likelihood is below a given

threshold are disregarded so as to keep the number of branches finite. The
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likelihood of a measurement z(k), under a given assumption A. for the model

A
is obtained from z(k) and the predicted state x(klk 1) as

p (z(k)l A.) - C exp (-1/Z vT(k)V'V(k)zik)) (5.17)

When c is a normalizing constant. In the track- splitting techniques, it is

necessary to evaluate the likelihood of a whole track, Le. of a succession of

plots. The fundamental limitation of the maximum likelihood techniques is

that no validation test is made to control the truth of a given assumtion.

This in practice leads to a feedforvard approach to adaptivity by comparison

with the feedback concept underlying the Bayesian approach The branching

procedures are marked by an unavoidable increase in the number of

branch-tracks in comparison to the number of real targets. With regard to

the application in a real-time system, these methods are generally

computationally costly, so they are often inappropriate as true supplement

to the nearest-neighbor approach.

Involving large computer burden and extensive memory requirements,

sub-optimal techniques are generally preferred, leading to simplified

algorithms and requiring storage of less data. In practice. a trade-off

between cost and effectiveness is needed to select the most appropriate

algorithm for each application. In HEA approach, the output of the local

estimator is assumed to be tracks which are formed and confirmed with

great confidence and low degree of uncetainty.
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VI. ALGORITHMIC TRACK FUSION

A. TRACK-TRACK ASSOCIATION
A% j A

Letx 'be the local state estimate of a target i by a sensor i and x be
A jj

the local state estimate of a target J by a sensor j. Local estimates x and

x J could be for the same target or could be for different targets. It is

desired first to test the hypothesis that these estimates pertain to the same

target, in which case the two tracks will be associated as having a common

origin. The optimal test would require the entire data base through time k

and is probably not practical. In view of this, the test is carried out based

only on the most recent estimates.

The decision as to whether track 1"T provided by node 1" and track "j"

provided by node "J", should be associated can be posed as a test of

hypotheses by defining a distance between the two tracks, so

dj j(i~j) . U ̂  i. I J 1112(61

Ajj A j J J_ A j
where 1I -x x llisthenorm of IX -x.

0.5 Aj j Aj j T Aj j)_-1x -x (E(Ix -x li -xIl]) °
O Ajl A jj T A ij-A jjI 1TIA iA "j))0

- (trE(lx .x Jix xJJJ)0O

The distance between two vectors in the space is defined in the usual way

from the norm of a vector, so
All A j 2 All AJJ AlI A jjIxI IIx E{ H .x - Ix -x D (6.2)
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Which is assumed to have a Gaussian distribution. The superscripts i and I

denotes the tracks i and I and (Q,j) denotes the nodes i and j respectively.

The statistical test is

"HI

r - di J(,J) ITPrId J(id ) JI • a (6.3)

HO

Where hypothesis ff.: track i and track J belong to different targets

hypothesis H1 : track i and track i belong to the same target

and a2 can be chosen based on that r will have a chi-square distribution

with the number of degrees of freedom equal to the number of elements in

the state vector. The covariance matrix for the statistical distance P and the

resulting fused track can be given using the techniques mentioned in

IRef. 471.

The test to accept or reject the hypothesis that the two tracks are from the

same target is defined using the similarity threshold a2

r a2 , tracks are from the same target

r > a2 , tracks are from different targets

It is noted that in the H1 hypothesis E( d' , (iJ)) -0 . The choice of a2 will

be based upon the chi-square properties of r with some experimentation

probably required for the particular application. The value of a2 would also

probably be chosen as a function of the target density if known (Ref. 181,

Also a2 can be chosen to achieve a specified probability of correct association

PC.
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B. PROBABILITY OF CORRECT ASSOCIATION

Evauation of the correct association probability PC Is now considered. The

probability of false association PF can be found in a similar way but with a

cumbersome calculations, owing to the aon-zero mean value of di j (Lj). The
probability Pc is equivalent to the probability that di j (Li) lies inside the

hypereilipsoid in the n-dimensional space, defined by equation (6.3). It can
be computed by resorting to an ortbo-normalization procedure of the matrix

P. which transforms the iyperellipsoid into an equivalent hypersphere.

Hence,
a

Pc" - /(2.0) n"*2 exo( - r2 /2) P(r) dr (6.4)

0

Where p(r) dr is the symmetric volume element in the in the n dimensional

space. For n- 1,2,3,4, this expression particularises to

For n-I

Pc . V2;; f exp( - r2 /2) dr -2e (a) (6.5)
0

Where e (.) is the error function defined as

a
e(a)ai/J f exp(-z 2 /2) dz (6.6)

0

For n-2

PC• f r exp( - r2-/2) dr -1 - exp( - a2 /2) (6.7)
0
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For n-3

PC - I far2 exp( - r 2 /2) dr - 2e (a) - •/_- a ex)( - a2/2) (6.8)
0

For n-4

a

Pc" 0.5 J r- exp( - r2 /2) ar s-I - 0+ a2/2) exp( - a2 /2) (6.9)

0

As an example, the values of Pc for n - 1,2,3 and 4-are shown in the

tables 6.!, 6.2, 6.3, and 6.4 respectively. It is noticed that from the results

given in the previous mentioned tables that. for the same similarity

threshold a. the probability of correct association decrease as the number of

elements in the state vector increase. Generally, with a-3, a high probability

of correct association is obtained. The results presented in tables 6.1, 6.2,

6.3, and 6.4 is produced by an innovative PC software product called

TLISolver (see Appendix B). TKISolver shortcuts the problem-solving process

by eLminating two steps of developiog an algorithm and writing a program.

Instead, the user puts the mathematical model expressing the relationships

between the variables directly using standard algebraic notation. in other

words, the user communicates with the computer at the level of

relationships (represented by equations) rather than at the level of

sequential programs and assignment statements. In it. the input and output

information reside in a set of eight sheets and three subsheets that are

viewed on the screen. The principal ones are the Rule Sheet, used for

entering and displaying the equations or rules, and the Variable Sheet, used

for displaying the variable names. The Variable Sheet also serves for
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assigning input values and units as well as for displaying the results of thle

solution. As an example, Figures 6.2, 6.3. and 6.4 show the variable and rule

sheets of equations 6.5, 6.7. and 6.9 respectively. Konopask and Jayaraman

view TKISolver by itself as an expert system primarily in the area of

numerical problem solving (see Appendix B).
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TABLE 6.1. PROBABILITY OF CORRECT ASSOCIATION FOR n-I

a PC

0.5 0.371773290
1.0 0.666557870
1.5 0.888640141
2.0 0.979560553
2.3 0.985390484
3.0 0.999999853
3.5 1.0
4.0 1.0
4.5 1.0
5.0 1.0
5.5 1.0
6.o 1.0
6.5 1.0
7.0 1.0
7.5 1.0
8.0 1.0
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TABLE 6.2. PROBABILITY OF CORRECT ASSOCIATION FOR n-2

a PC

0.5 0.117503097
1.0 0.393469340
1.5 0.675347533
2.0 0.864664717
2.5 0.956063066
"3.0 0.988891004
3.5 0.997812509
4.0 0.999664537
4.5 0.999959935
5.0 0.999996237
5.5 0.999999730
6.0 0.999999985
6.5 0.999999999
7.o 1.0
7.5 1.0
8.0 1.0
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TABLE 6.3. PROBABILITY OF CORRECT ASSOCIATION FOR n-3

a PC

0.5 0.019708344
1.0 0.18i616987
1.5 0.500087808
2.0 0.763596943
2.5 0.897749084
3.0 0.973408794
.35 0.993891228
4.0 0.998929359
4.5 0.999856146
5.0 0.999985142
5.5 0.999998815
6.0 0.999999927
6.5 0.999999996
7.0 1.0
7.5 1.0
8.0 1.0
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TABLE 6.4. PROBABILITY OF CORRECT ASSOCIATION FOR n-4

a Pr

0.5 0.007190985
1.0 0.090204010
1.5 0.310113507
2.0 0,593994150
2.5 0.818760149
3.0 0.938900519
3.5 0.984414126
4.0 0.996980836
4.5 0.999554274
5.0 0.999949690
5.5 0.999995647
6.0 0.999999711
6.5 0.999999985
7.0 0.999999999
7.5 1.0
8.0 1.0
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1.20000+0

1.00000 --

8.oooo0-1-

6.0000*- 1 - Pc frn-2Pt fo rn-5

4.0000*-)

2.0000#-1-

2.7 106t-20
0 2 4 6 a 10

FIGURE 6. 1. Probability of Correcv. Association PC Versus Similarity
Threshold a For Different Dimensional Space n of The
State Vector
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(7r) Rule: 194/!

VARIABLE SHEET
St Input Name Output Unit Comment

L P .88864014 Probability of correct association
L 0 a
L f Function values
L 0 x Values of independent variab1'!
L S 1.1137466 Approximate value of integral
L 1.5 x2 Upper limit
L 0 xl Lower limit
L 0 c Coefficients in simpson's formula

RULE SHEET
S Rule

* f-exp(-(x42)/2)
* S-(x2-xl)/(3*1O)*dot('c,'f)
* P-(2/sqrt(6.2832))*S

FIGURE 6.2. Variable and Rule Sheets For Equation (6.5)
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(li) Input: 0 201/!

VARIABLE SHEET

St Input Name Output Unit Comment

L 0 a
LO P

(Ir) Rule: P-l-exp(-(a^2/2)) 201/!

RULE SHEET
S Rule

* P-.l-exp(-(a^2/2))

FIGURE 6.3. Variable and Rule Sheets for Equation (6.7)
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(1i) Input: 200/!

VARIABLE SHEET
St Input Name Output Unit Comment

L P
L 0£

RULE SHEET
S Rule

* P-1o(1+(aA2/2))*exp(.(aA2/2))

FIGURE 6.4. Variable and Rule Sheet for Equation (6.9)
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C. COMPOSITE ESTIMATE OF TWO TRACKS

Since the tracks are from different sensors and at the same time instant,

the notation for sensors and time are dropped for simplicity of notation. If

the tracks are independent, the covariance matrix P for d is defined as

p =pPI + pj (6.10)

Bar-Shalom [Ref. 331. has pointed out that the covariance defined by (6.10)

and the resultant formation of r are not strictly valid because of error

correlation between the two sensor estimates. This correlation occurs, even

if the measurement errors are independent, because of the common error

source due to the target dynamics that are seen by both sensors. A

technique outlined below, to account for this error correlation can be applied

to modify the covariance matrix P.

Define a cross covariance matrix pt 1 such that the initial condition is

p1J (010) - 0

Then. for k> 0 values of p'J(kl k) are computed using the recursive

relationship:

p1 J(kik) aA(k)0,k-l) Aj(k) (6.11)

Where

Al (k) -1 - Kl(k) h' (6.12)

AJ(k) - I - Kj(k) hi (6.13)
BUk-l)= 4, p'J(k-llk-!) (#,J)T +okl (6.14)

The superscripts i and j refer to sensors i and j. while 4.KIh. and 0 are

defined for the Kalman filter (Ref. 48.491. Finally, the modefied covariance.

replacing that given by (6.10) becomes [Ref. 471

p.pi+ I- p ij. lp'j ]T (6.15)
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Por combining tracks, we begin by considering the fusion relationships for a

scalar such that a composite estimate, using estimates
AC Al A2 Al
x• x +C(2 xc x (6.16)

Where c Is a weighting factor that will be chosen so that the expected Mean
AC. AC.

Squared Error (MSE) on x is minimized. The error in x is defined as
AC A A2 A,

X +A *C( &X_ Ax)
Then, the error variance on Axc is defined as

e+-E[(Ac)21-o2,2cE!IA &x 1-2Ca 22+ C2za2 (6.17)

Where
( A, )21 , 2 AE( 2 )21,

A2_A Al 2=02 2^ A2a62 -f E ( -A )2A- A 2 1a 2 -2 E[ IAx Ax

The correlation between errors is defined as
Al A2 12

EIAX AX ]OiR
Equation (22) becomes

e2- (1-2c + C2)a012+ c2a 22,2 (c - c2)R (6.18)

In order to form the minimum MSE estimates, we have
ae2/ac - -2 0 - c )a( 2 +2c a22+2 (1-2c) R12 -0 (6.19)

Solving (6.19) for C gives

C - (al 2 - R12 )/ ( a, 2 + a"22 -2R 12) (6.20)

In the special case o( no correlation

R12 -0 ,wehave
02 ^ 2I/ (722)1(^2_^1
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(a 22•' • 12 2 )/ (a 2 1
2 a 2 a 2

2 ) (6.21)

In the case of combinin state estimation vectors ( 1 , 2 ), the same

general relationships given by (6.16) and (6.17) are used, except that the

variances become covariances:
al 2 -) Pt I I0.2_2 P 2

2R12 . 12 + (p12) T

and c becomes a weighting matrix:
c 1 [ p I p12 1 p'+ p2. 12 ( 12)T 1-1 (6.22)

Finally, using (23) and (25), the resulting error variances (or covariances)

are

a2 ('c)- 2- (_ 1a- 2 + R12 )2/ ( a2+ oa22 -_2 '2 ) (6.23)

12
In the special case of no correlation ( R 0 ), we have

ar2 (AC)or a12 o2 2 / ( a 12 + a 22 ) (6.24)

So, generally in the vector case, the resulting combined vector. which

minimizes the ex pee d error is
AC Aj AJAl
. X c ( X X (6.25)

C .(p - pIJ)p-1

and the covariance matrix associated with the estimate of (6.25) is
p. p _ ( i ) -i-)J ( p I P 11) T (6.26)

As a simple example

Consider the two estimates. each a 2- dimensional vector, with the following

covariance matrices
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5 10

Figure 6.5. presents the I a ellipses corresponding to these matrices,

namely
AT i _ I I xi,2 (6.27 )

and I a ellipse corresponding to the fused estimate whose covariance is

Pa pI ( pI+ p2).' P2 (6.28)

The reduction o( the uncertainty are noticed: the ellipse corresponding to the

fused estimate is strictly smaller than the intersection of the two ellipses

prior to fusion

Figure 6.6. shows the ellipses of uncertainty corresponding to

10 ]

2 6 1:0
and the resulting fused estimate according to (6.25).
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P2

FIGURE 6.5. Error ELlipsoid For Fused Independent Tracks
in Example I

108



FIGURE 6.6. Error Ellipsoid For Fused Independent Tracks

in Example 2

0~0
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D. OPTIMALITY OF HEA TRACK FUSION

Assuming that there are two sites (nodes) at which the same target is

tracked. At each site, each local estimates x• J (kik), with the corresponding

p1 J (kik) are computed. Hence, in this situation we are concerned only about

one target, tbe superscript i is dropped for the simplicity of notations, and

there will be •j (kik) with its corresponding pJ (kik), with j-1,2.

Assuming the local measurements at each site are

zJk) - HVk) x(k) + vj(k) j - 1,2 (6.29)

with R'kk) the corresponding measurement noise covariance.

Denoting

Z (k) - I(k
z2(k) (6.30)

H J(k)-
H H2 (k) (6.31)

R J(k). R I(k) 0

0 R2(k] (6.32)

Using the matrix inversion lemma
-1 T -I I1 T T -

( . R-H )- H Pp- H (HpH +R 'Hp (6.33)

which can also be written as
( p + H R HT f- P -! -1 H ( HT p-1H + R-1 )-H T p-1 (6.34)

the recursion for the covariance p(klk) can be rewritten as

p(klk) - ( p(kik- I Y' + HT(k) R(k)-' H(k)] (6.35)

p(kjk- 1) - p(klk-1) HT(k) + (H(k) p(klk-i )HT(k) +R(k)] -'H(k) p(klk- 1)

(6.36)

Defining
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W(k) - H(k) p(klk-I )H R(k) (6.37)

K(k) - p(klk-I) HT(k) VV(k) (6.38)

the recursion for the covariance p(klk) can be rewritten more compactly as

p(klk) - I I - K(k) HT(k)j p(klk-I)]

- p(klk-l)- K(k) *(k)H T(k) (6.39)

and the following identity can be written

p(kJk) HT(k) R(k)"l- ( p(klk- )HT(k) -

- p(kik 1 )H T(k)[H(k) p(klk-I )HT(k) ,R(k)I "IH(k) p(klk-I )HT(k))R(k)"t

- p(klk- I )H'(k)lH(k) p(klk- I )HT(k) +R(k)]I

(H(k) p(kjk-1 )HT(k) + R(k) - H(k) p(klk-I )H T(k))R(k)- K(k)

So, the Kalman filter gain given by (5.3), can be given by the alternate

expression

K(k) - p(klk) HT(k) R(k)"I (6.40)

Which in the case of HEA, for each site (node) it will take the form

KJ(k) - p1(klk) HJ(k)T R(k)"' (6.41)

and equation (5.5) will have the form

x (kk) (klk-1) . Kk) ( zX(k)-HJ(k)•J (klk-1)) (6.42)

The recursion form for the inverse of the covariance update pJ (kik) is given

by the equation
pj (klk)-' - pJ (kik-I 0-'+ HJ k)T Rk)-'HAk) (6.43)

The estimate (kDk), using expression (6.41). (6.42) will be

X (kik)- X (kik- 1)+ pJklk) HJk)T R"(k)' ( zkk)-HJkk) J (klk- )) (6.44)

Multiplying (6.43) by (6.44) yields for j-1,2

PJ (klk' k (kk) p (kik-)-'+ Hjk)T R4(k)-H 1(k)i J (klk- 1)

+ pJ (klkf' pJ(ktk) HJ(k)T R(kf' ( z'kk)-H1(k)^x (klk-1))
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- pJ (klk-I -f•A (klk-I) + Hik)T R(k)' Zkk) (6.45)

"Thus

HlAk)T R(kf' zkk) - pj (klk)"'! j (klk) - pJ (klk- I1 F'^X (klk- I1)

(6.46)'and this will be used to eliminate the measurements from the

combined

estimation update equation which will be similar to (6.44) with the

superscript c instead of i, i.e.
x6 (kik) - x6 (klk- ) + p(klk) HX(k)T RO(k)" ( z?(k)-HX(k)x; (klk- 1))

(6.47)
Using (6.30), (6.31) and taking advantage of the block-diagonal form of

(6.32), the coum.bined state updating, given by equation (6.47), can be

rewritten as

2
x (kik) - ^© (kk- 1)+ pe(klk) D Ak)1 Rjkf' ( zjk)-Hjk)IJ %kIk- I))

J=!

(6.48)

Similarly, the combined covariance update Is similar to (6.41) with the

superscript c instead of J. ie.
pa (klk)- 1= p* (kik- I)'+ H@(k)T R (k) 'H (k) (6.49)

Similar to (6.48), (6.49) can be rewritten as

2
pa (k*-'. p" (ktk- I + DJkT R k)'fH'(k) (6.50)

J=l

Multiplying (6.50) with (6.48) yields, after canoelations (similar to those in

(6.45))
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2

P (klkf'' (klk) - P (klk- I e (kik-1) HIk)7 R(kf' ZA(k) (6.51)
,j~

Finally, substituting (6.46) into (6.51), one obtains

p (klk)-x O(klk) - p (ktk- 1)-^x' (kIk-1)

2

+ •[pj (klk)- X, (kik) - VJ (klk- 1 J (klk-x)] (6.52)

Which is the sought-after expression of the combined estimate in terms of

only the local estimates. So, the fused track estimates combine the local

track estimates and the incoming track estimates without having to calculate

cross covariance given by (6.11). and it can be stated that the fused

estimates is the global estimates for the tracks in the overlapping area.
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VII. KNOWLEDGE-BASED TRACK FUSION

A. CAPTURING THE EXPERTIZE OF A HUMAN EXPERT

In multitarget tracking we are concerned with the position of targets and

their identity and behaviour. In fact, the position is of over-riding

importance because identity and behaviour mean little unless they can be

associated with position [Ref. 91. Also, since we are concerned with a

dynamic environment we need to take time into account. So, it would appear

then that the first task with which we are faced is how to deal with

kinematic information. In order to combine track information from any two

radar sensors in a network, these are compared to determine whether they

pertain to the same target. The decision process is called correlation. As we

mentioned before, we consider this decision process implicitly included in

the fusion process, because there is no meaning of the fusion without it. In

real life, radar sensors provide different types of information with different

accuracies. A modern radar display includes alphanumeric characters and

symbols for directly conveying additional information. This is useful when

target identity and altitude are to be displayed. The target track might be

shown as a line on a synthetic display. The configuration of the line

indicates the direction of the target path while its length can be made

proportional to the target speed. This kind of display has a computer to
generate the graphics and control the radar display. This permits
magnification of a selected area, stored flight plans, stored clutter map and

so on. The operator can communicate with the computer in an interactive
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manner by means of a keyboard, track ball or light pen. Sometimes, an

auxiliary display is mounted adjacent to the main display to provide tabular

data that would otherwise encumber the main display [Ref. 151. Current

systems rely largly on manual correlations to form a coherent picture of the

underlying situation. An operator at the radar display makes a visual

comparison of the information provided by two or more sensors and by

applying his experience arrives at a decision. But, even with moderately

complex scenarios, the workload can easily overwhelm the limited number

of operators available and displays. This can lead to important information

being overlooked. A computer program which could reliably carry out a

large fraction of this task would greatly assi't the operation and

performance of the entire system. The operators become proficient after a

long time of practice. Discussions with former operators [Ref. 301, revealed

that they acquired two things as they become experts. First they

memorized facts about the platforms operating in their area, the facilities

available in the countries of the area and the political alliances of those

countries. Secondly, they learned how to relate reports received to the

above facts and the current situation in a way which would allow them to

develop hypotheses about future platform motions and activities.

Our initial approach to the multisensor information fusion was to search

for suitable techniques from the world of AI which:

1. Were well defined.

2. Had been demonstrated on a similar type of problem.

Perhaps the most well known and well defined part of the Al scene is expert

systems.
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With the arrival of expert systems . there is a great rush to encapsulate

human expertise In computer software, and multisensor information fusion

and its related fields are obvicus areas for attention. The expert system can

be considered in a wide sense as an application of artifLicial intelligence to

computer software. The philosophy of an expert system is to produce a

computer solution to a problem by capturing the expertize of a human

expert. So, it can emulate the performance of a human expert by

incorporating the analytic and heuristic knowledge which the human expert

has. Of the many expert systems that have been developed in the last

decade, the majority of the successful programs were designed to play a role

analogous to that of a human consultant. Not surprisingly, this work was

done in areas of Medicine. Chemistry, and Geology in which there is an

established tradition for consultation. Human consultants in these fields are

valuable because they are specialists who possess extensive knowledge

about particular problem domains.

Expert consultation systems have focused on problems in which a human

expert's knowledge is largly factual in nature. Here, the key to solving a

problem lies more in knowing the relevant information than in ingeniously

constructing a solution from logical principles. The human expert is

distinguished by knowing all of the factors that are important, and by

processing judgment in combining diverse considerations to reach a decision.

It follows that a corresponding expert system must have effective ways to

represent and employ large amounts of different kinds of knowledge bearing

on specialized problems. Generaly, the expertise is in the form of rules, and

these rules form the knowledge base of the system. Recently, expert
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systems have ben found effective in planning, monitoring, and

interpretation tasks [Ref. 511. Researches have applied this technology to a

variety of military problems. For example, planning of aircraft missions [Ref.

521, simulation of air battles [Ref. 531, and analysis of platforms operating in

a certain area, and their location and the activity in which they are engaged.

The symbolic nature of the information fusion problem and absence of a well

developed approach to ::. suggested that a system with rapid prototyping

capabilities would be helpful [Ref. 501. Some expert system shells provide

tools which make prototyping of data structure quick and the rules

employed for reasoning easier to implement and modify than conventional

programs. Figure 7. 1. shows the general structure of an expert system.

B. KNOWLEDGE REPRESENTATION USING RULES

Rules provide a formal way of representing recommendations. directives,

or strategies. They are often appropriate when the domain knowledge

results from empirical associations developed through years of e-.perience

solving problems in an area. Rules are expressed as IF - THEN statements,

as shown below.

IF: A is true

and B is true

and C is false

THIN: conclude X

This is a type of production rule which has the general form [Ref. 431:

IF: logical conditions are satisfied

THIEN: take the indicated action
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When the IF portion of a rule is satisfied by the facts, the action specified

by the THEN portion Is performed. Among the potentially important assets

of the production rules approach is that it provides the means of

understanding how a decision was reached and is able to explain and correct

erroneous conclusions.

A controlling framework is used to allow the user to access the

knowledge base in the manner of a consultation whereby the user may

volunteer information or the machine may question the user until sufficient

evidence is gh 1.*red to produce useful conclusions. The user may also ask

the system to explain its reasoning so that he may understand its reasoning

and undestand how the conclusions were reached.

This method of problem solving was adopted as it seemed to fit the

multisensor data fusion problem, assuming that the human expertise exists.

However, most of the well-publicised expert systems are in quite different

problem domains to multisensor information fusion. Examples being medical

diagnosis, fault diagnosis and the well- known mineral prospecting expert

system called PROSPECTOR. In this type of problem, it can be assumed that

all symptoms belong to the same patient, whereas, in multisensor

information fusion, there is the problem of finding out which evidence

belongs to which patients, and indeed how many patients are present. Also

the multisensor information fusion problem is a continuous, real-time

problem, rather than a single shot diagnosis.

The heart of an expert system is its corpus of knowledge [Ref. 541. When

Al scientists use the term "knowledge". they mean the information a

computer program needs before it can behave intelligently. The knowledge
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in an expert system Is organized in a way that separates the knowledge

about the problem domain from the system's other knowledge, such as

general knowledge about how to solve problems or knowledge about how to

interact with the user. Several ahdvantages aproue to this separation:

a. The same knowledge can be used for more than one purpose. For
example, a given knowledge base can be used to solve a particular
problem, to provide an explanation for the solution, or to support
computer-aided instruction about the problem.

b. The power of the program can be extended either by expanding the
knowledge base or by adding facilities to the interpreter. In particular,
this allows a large system to be developed incrementally.

c. The problem-solving mechanisms and system facilities of the interpreter
can be applied to similar problem domains by replacing the old
knowledge base by a knowledge base for the new domain.

Knowledge Base

(Domain Knowledge)

Inference Engine

(General Problem-
Solving Knowledge)

Figure 7. 1. General Structure of
an Expert System
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The coUection of domain knowledge is called the" knowledge base", while

the general problem- solving knowledge is called the "inference engine". A

sdtware with knowledge organized this way is called a "knowledge-based

system". Virtually, all expert systems are knowledge-based systems, while

the converse is not necessarily true (Ref. 541.

EXPERT SYSTEM

Knowledge Base

Facts Rule J

Intwpreter .cheduler

Inference Engine

Figure 7.2. Structure of an Expert System

As shown in Figure 7.2, the knowledge base in an expert system contains

facts (data) and rules that use those facts as the basis for decision making.

The inference engine contains an interpreter that decides how to apply the

rules to infer new knowledge and a scheduler that decides the order in

which the rules should be applied. When the IF portion of a rule is satisfied
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by the facts, the action specified by the TEHN portion is performed. When

this happens the rule is said to fire or execute [Ref. 551. A rule interpreter

compares the IF portions of rules with the facts and executes the rule whose

IF portion matches the facts as shown in Figure 7.3.

FACTS

t it i000

Match Execute

Iilt .•000

RULES

Figure 7.3. The Rule Interprets Cycles Through

a Match-Execute Sequence

C. INVOKING RULES IN A RULE-BASED SYSTEM

There are two important ways in which rules can be used and invoked in

a rule-based system; one is called backward chaining and the other forward

chaining.
S~1. BacGJiu-dSCALnina

ie Backward chaining is often described in terms of goal-directed

reasoning or top-down reasoning. In backward chaining the system has a

set of initial goals, and the rules are invoked in reverse order. The system
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begins by examining a limited set of production rules, whose right-hand

sides are the goals. The system then proceeds to examine the left-hand side

of the rules to m. which of the goals (RHS) are satisfied. As the rules are

examined in this backward unraveling, some premises (of the left-band side

of rules) are unknown (logically unsatisfied) and therefore they become new

subgoals. If a subgoal is unknown, a question may be asked to determine its

status. Its strategy can be summarized in the following steps:

(1) Find a rule a 'THEN" pattern that matches the goal
Found ------- Go to step 2.
Not Found --- Fail.

(2) Use the "M part of the rule to establish new sub-goal(s).

(3) Find fact(s) that Satisfies the new sub-goal(s).

2. FradQ~na

In forward chaining the system does not start with any particular goals

for it. That is, it has no initial subgroup of production rules which establish a

starting point. Instead, the system starts with a subset of evidence and

proceeds to invoke the production rules in a forward direction, continuing

until no further production rules can be invoked. Its strategy can be

summarized in the following steps:

(1) Find a rule with an "IF' pattern that matches a fact
Found ---------- Go to step 2.
Not Found ---- P- Fail to find a goal.

(2) Assert the rules 'THEN" clause, i.e add a new fact to the data base.

(3) Does the new fact satisfy the goal?
Yes ------------- we are successful, quit
No--------- Go to step 1.
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3.I award Versus Eorward CniAn

Although several systems have been built emphasizing backward

chaining, both forms of invocation and evaluation of the production rules are

equally valid as long as they yield the same correct conclusions. The rate of

arriving at the conclusions will probably differ considerably depending on

the strategy adopted. Most classification problems can be solved using

either one ý. die approaches individually or a mixture for production rule

evaluation. The shape of the problem space determines which is better. As

shown in Figure 7.4. fan-in calls for forward chaining and fan-out calls for

backward chaining. The bidirectional search is often favorable. Using it the

forward chaining begins from the known facts and the backward chaining

begins from the best hypothesis.

i

I

t

II
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s~m

Figure 7.4. Fan-IN and Fan-Out Stages of Knowledge
Aquisition
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D. METAKNOWLEDGE AND EXPLANATION FACILITY

An expert system has knowledge that lets it reason about its own

operations plus a structure that simplifies this reasoning process. This

knowledge the system has about how it reasons is called "metaknowledge ,

which just means knowledge about knowledge. Also. it is better to have what

is dolled an "explanation facility". This is knowledge for explaining how the

system arrived at its answer.

E. BLACKBOARDS

Blackboards refers to a particular Al problem solving methodology. The

best known applications of the blackboard methodology are HEARSAY-If, a

speech understanding system [Ref. 561, and the HASP/SIAP sonar data

interpretation system [Ref. 57, 581.These applications effectively processed

regular streams of data from a single sensor, treating any other information

as locaUy static. But the blackboard methodology is more generally

applicable. In particular, it provides a convenient framework for integrating

maximally reduced information from multiple sources with different

temporal characteristics.

The blackboard problem solving methodology originated approximately

10 years ago and has been evolving ever since [Ref. 591. The main feature

of a blackboard system is a global data store holding input data and

hypotheses about the solution of the problem derived from that data.

Related information is kept together. The global data store is known as the

blackboard.
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F. REPRESENTING UNCERTAINTY IN EXPERT SYSTEMS

Expert systems are often forced to make judgements in the light of

incomplete or unreliable data. The general problem of drawing Inferences

from uncertain or incomplete data has inspired a variety of technical

approaches. Parade [Ref. 601 offers a review of different approximate

reasoning techniques which have been proposed for dealing with uncertain

or imprecise knowledge in expert systems. These tecniques can be

summarized as Bayesian model, Dempster-Shafer belief theory, fuzzy logics,

and ad hoc approaches.

1. Bayesian Model

One of the most useful results of probabiilty theory is Bayes theorem,

which provides a way of computing the probability of a particular event

given some set of observation which is made. Let

P(H1JE) - the probability that hypothesis H, Is true given evidence E

P(EIHI) - the probability that the evidence E is observed given that
hypothesis i is true

P(H ) = the a priori probability that hypothesis I is true In the absence of
any specific evidence. These probabilities are called prior
probabilities or priors.

k - the number of possible hypotheses

The theorem then states that

k

P(IiNIB) - P(EIHI) " P(H) / ZP(EIHO) P(HO) (7.!)

n12I
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For a long time, the Bayesian model had been the only numerical

approach to inference with uncertainty, since no quantification was

introduced in the patterns of plausible reasoning. One of the best-developed

uses of Bayes' theorem for Al problems is in the solution of pattern

recognition or classification problems. Bayes' theorem can be modified to

handle a variety of more complicated situations. But there are several

drawbacks to the use of Bayes" theorem. It is often difficult to collect all the

a priori conditional and joint probabilities required. Doing so would require

accumulating a great mass of data. Doing so would also be very expensive.

But worse, the data would be obsolete by the time they were collected. It is

very difficult to modify the database of a Bayesian system because of the

large number of interactions between the various components of it. Also,

evaluating Bayes' formula to give an accurate estimate of the probability of a

particular outcome must be disjoint. It cannot ever happen that two of them

occur at once. This is often not the case. The accuracy of Bayes' formula also

depends on the availability of a complete set of hypotheses. In other words,

it must always be the case that one of the known hypotheses is true. For ail

of these reasons, Bayes' theorem does not appear to solve problems that

arise in uncertain reasoning in real-world problems, although it does serve

as the basis for some probabilistic Al systems, e.g.. PROSPECTOR [Ref. 6 1.

2. Demoster-Shafer Theory

Several mathematical models of uncertainty, which depart from the

usual probability approach, have been recently proposed, particulary,

Dempster- Shafer belef theory i[ef. 621. It is also called mathematical

theory of evidence. A scheme for combining evidence which includes
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uncertainty or ignorance was devised by Dempster and later formulated

within a flexible representation framework by Shafer. It is more general

than either a Boolean or Bayesian approach, providing a formal method for

integrating knowledge derived from a variety of sources for use in

perceptual reasoning. In this formalism, the likelihood of a proposition Ai is

represented as a subinterval, [s(Al), p(Ai)], of the unit interval, 10, 11. The

evidential support for proposition A1 is represented by s(Al). while p(Aj)

represents its degree of plausibility, p(Aj) can also be interpreted as the

degree to which one fails to doubt A. p(A1 ) being equal to one minus the

evidential support of "Ai (the symbol """ is the Boolean NOT), Le., the

plausibility is the complement of the support for ~A1. So, p(Al) is

p(A1) - I - s(~A1 )

The lower value, s(A1 ), represents the support for that proposition sets

a minimum value for its likelihood. The upper value, p(A1 ), denotes the

plausibility of that proposition and establishes its maximum likelihood.

Support may be interpreted as the total positive effect a body of evidence

has on a proposition, while plausibility represents the total extent to which a

body of evidence fails to refute a proposition. The degree of uncertainty

about the actual probability value for a proposition correspond to the width

of its interval. So, the "uncertainty of A," is:

u(A1 ) - p(A1) - s(A1)
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Dempster's rule of combination requires that the knowledge sources be

independent. The representation involves the assignment by a knowledge

source of "probability masses". The mass allocated by a certain knowledge

source to A, is denoted m(A1 ). To clarify, assume that there is a set of n

mutually exclusive and exhaustive propositions, such as that the target is of

type A IA2. .. . . .. Al. The method of evidential reasoning can assign a

probability mass denoted as m(Ai) to any of the original n propositions or to

disjunctions of the propositions. For example. a disjunction is the proposition

that the target is of type A 1 or A2 (denoted as A I VA2 ) and the mass

assignment is denoted as m(A1 VA2). There are (2 n -1 ) such general

propositions (including all the possible disjunctions) that may be assigned

mass, and the masses summed over all of these propositions must equal

unity. It is noticed that this is a more general form of representation differs

from the standard Bayesian approach In which probabilities are assigned

only to the original n propositions, disjunctions are not considered. The

representation to uncertainty e is mass assignment to the disjunction of all

the original propositions and Is denoted by

m(e) - m(A1 VA2 V ....... VAg) (7.2)

Finally, mass can be assigned to the negation ao a proposition. For

example, the mass assigned to the negation of a AI(the target is not type A,)

is denoted

m(CA 1) - m(A 2VA 3V ....... VA,) (7.3)

The support s(AI) for the basic proposition that the target type is AI is just

the mass associated with At(s(AI) - m(AI)). For a more complex proposition

such as that the target is either type AI, A2 or A3, is expressed as
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s(AIVA2VAS) C m(AI) + M(A2 ) m(AS) + m(AIVA2) + m(A VA3 )

m(A 2VA 3) + (AIVA2VA 3) (7.4)

The plausibility of a given proposition as mentioned before, is the sum of all

masses not assigned to its negation. Alternatively, p(Ai) can be computed by

summing all masses associated with A, and all disjunctions, including e, that

contain A,. For example,

p(A1) - M(A1) + m(AI VA 2 ) . ............. . M(e) (7.5)

The use of these Shafer-Dempster techniques as they are known

appears more complex than the use of the simple Bayesian process with its

single set of probabilities and one of the difficulties in pursuing such an

approach is to determine whether the extra complexity is justified by the

results which can be expected. It is important to remember that an operator

may have to make decisions based on the outcome of the identity process

[Ref. 631. We can easily see that an output such as, for example, " the

probability that the detected aircraft is an enemy is at least 30% and could

be 70% "seems more likely confuse than to clarify.

3. FuzzyLaic
The objective of fuzzy logic is to modify (or "fuzzify") logic so that it

applies directly to informal arguments. Fuzzy logic results from two stages

of "Tuzzification":

a. The introduction of vague predicates into the object language. This
result in some form of multivalued logic.

b. Treating the metaLinguistic predicates "true" and "false" as themselves
vague or fuzzy.

The second stage is by far the most radical and controversial. Fuzzy logics

have been imported into Al to deal with areas of vagueness and incomplete
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information. Most expert systems, for example, are forced to take decisions

when not all the facts pertaining to the decision are available. In such

contexts it is natural to employ logics which, unlike classical logic, are suited

to reasoning with such incomplete information. Non-monotonic logic has also

been developed, largly by the A I fraternity itself, to deal with reasoning

with incomplete information. Moreover, many concepts employed in natural

language and Al are claimed to be "vague", and the necessity of reasoning

with such concepts suggests that some 'logic of vagueness is appropriate

[Ref. 641. For example, the concept "young", it may be said that people

under 10 years of age are young and those above 60 years are not young.

However, there is no particular day at which a person's age switches from
"young" to "not young", rather, this is a gradual transition. In fuzzy logic, the

concept of young is expressed by a "membership function" representing the

degree to which a person of a particular age can be considered to be young.

It should be said that many applications of fuzzy logic are both

philosophically and practically controversial, and the whole area is, at

present, controversial.

Zadeh offers two main reasons for adopting fuzzy logic IRef. 65,661.

First, he claims that it avoids the complexities introduced by regimentation

of informal argument; secondly, he claims that it is the proper way to

acknowledge that 'true' and 'false' are not precise but fuzzy.

In Fuzzy Logic (FL) the set of truth-values of the base logic, the set of

points in the interval [0, 11, is replaced by fuzzy subsets of that set. Zadeh

does not, however, allow all fuzzy subsets. This, it is claimed, would result in

unmanageable complexity'. Instead, Zadeh employs only a countable and
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structured set of fuzzy subsets of 10, 11 referred to as "linguistic truth-

values". More explicitly, the Truth-Values (TV) set of FL is assumed to be a

countable set TV, of the form

TV - (truefalse, not true, very true, not very true,

more or less true, rather true, not very true,

not very false ........... ) (7.6)

Each element of this set represents a fuzzy subset of 10, 11. Moreover, each

element of TV is generated from the fuzzy set denoted by the term 'true'.

So, for example, if Utrus is the membership function of the fuzzy subset true,

then the membership functions for the other members of TV might be given

as follows:

Ufsjg(oi) Utrtu( 1- U) (7.7)

*U.(V) I - Utrm(v) (7.8)

U) - (UWW(v)) 2  (7.9)

Ur, *aM(a) (UtrU*(V))"/ 2  (7.10)

etc., where v is the fuzzy variable. So that once the meaning of 'true', and

the rules of computation are fixed, then so is the meaning of all the members

of TV. As a consequence, the meaning of the linguistic truth-values (that is,

the fuzzy subsets they denote) is crucially dependent upon the meaning

chosen for 'true'. Moreover, it is quite difficult to see such a choice as

anything other than arbitrary. Zadeh hints that the choice is motivated by

the specific area of discourse under consideration. Consequently, the

meanings assigned to the linguistic truth-values are localised.
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How re the logical constants - , &. V and - is used to obtain their

meanings in a regime where truth values are elements of TV? As a first

step we might proceed as follows:
I-Ai (V) -I(JAI (W)) 71

[A & BI (v) JAI (v) A [BI (V) (7.12)

[A V BI() IAI(v) v IBI (V) (7.13)

[A -+ BI (u) [AI (v) -+ BI (v) (7.14)
where the connectives - , &. V, 1, A and - are those of the base logic

and each [Al denotes a fuzzy subset of [0.11 represented above by its

membership function. But there is a problem with this way of proceeding.

We want each sentence in the language to denote not just an arbitrary fuzzy

subset of 10.11 but rather an element of TV. Unfortunately, the above

semantics offers no guarantee of this. Zadeh circumvents this difficulty by

introducing the notion of a -inguistic Approximation" (LA). Each fuzzy

subsetA of (0.11 has associated with it an element A* of TV. It is called

Linguistic Approximation (LA). This is expressed as

A* - LA(A). (7.15)

Unfortunately, there is not an obvious candidate for the notion of 'best' of

such approximation, nor a general technique for computing 'good' ones. But

whatever the merits of this notion. Zadeh employs it to provide the meanings

of the logical constants as follows:

[vAl (v) - LA( Xv. 1 ([Al (tO)) (7.16)

[A & BI (v) - LA( Xv.([AI (v) A [(B (0)) (7.17)

(A VB](t) - LA( X.(AI (v) V IBI (0)) (7.18)

(A -4 Bl (BI - LA( Xv.(A(V) -+ B1(0))) (7.19)
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Now, the functions [Al and [B1 associate with each sentence an element of TV,

the get of fuzzy truth-values.

The introduction or fuzzy truth-values paves the way for a rather

radical approach to inference. According to Zadeh, inference is only
.approximate'. Zadeh Illustrates his notion of approximate reasoning by

reference to examples of the form

a is $mall
a and b are approximately equal

b is more or less small

To illustrate, consider the statement

a is small

Under the administration Of classical logic this proposition would be

rendered true just in case a belongs to the set which constitutes the

extention of the predicate small In fuzzy logic, however, things are

somewhat more involved. The predicate small is fuzzy, and proposition "a is

small" is interpreted as the assignment or a fuzzy predicate as the value of a

variable which corresponds to an implied attribute of a. More explicitly, this

proposition would be interpreted as the assignment equation

Height(a) - small

where 'leight" is the implied attribute. In equational terms the second

premise of our example would be rendered as

(Height(a), Height(b)) - approximately equal

where the right-hand side represents a fuzzy subset oa 10, 11 x (0, 1).

In general, then, a proposition of the form

(a, ...... ,a) is C

is rendered as the assignment equation
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R,(al,--. ....... ) - C

where R is the implied attribute. For simplicity Zadeh writes this as

(at,. .......... a,) - C

The premises of our example thus constitute a pair of assignment equations

of the form

a - small

(a, b) - approximately equal
and, in general, a collection of propositions (aiul ...... ais) is Ci. 0 2 i a n-I

yield a set at equations

(al ................. ,ai) - Ci 0 Ii In-l (7.20)

For Zadeh. approximate inference amounts to solving such systems of

equations. As with equations in ordinary algebra, we can solve for any at

the variables involved in the equations. As an illustration, solving for b in

our example yields:

b - LAismall o approximately equal],

where * is the composition at fuzzy relations, and is given by
U&NW, * 0mrxift"ly "quw(b) o

V [Uwl(x) A Uw,.,,,,Iy .,W(x, b)] (7.21)
X

where V represents the supremum over all objects in the domain of the
x

fuzzy predicate 'small'.

Intuitively, the composition of the predicate "smaWl" and the binary

relation "approximately equal" represents the fuzzy predicate which returns

that value which represents the best fit, between those objects which are in

the domain at small, and which are approximately the same height as b.
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According to Zadef. the consequence of a given set of premises depends In

an essential way on the meaning attached to the fuzzy sets which appear in

the premises. This is, apparently, a consequence of the local character of

fuzzy TV's. Consequently, validity can only be characterised semantically,

and the traditional notions of completeness and consistency are peripheral to

fuzzy logic.

In the light of the features of fuzzy logic, it would seem that it lacks

the precise formal rules of inference in addition to the absence and apparent

irrelevance of consistency and completeness results and the employment of

a philosophically suspect theory of truth. All these, engender a feeling of

insecurity. Indeed, as Haak points out [Ref. 671. fuzzy logic seems hardly

recognisable as a logic at all. Probably. the best defence of fuzzy logic is

located not in its conceptual foundations but in its potential applications

[Ref. 681. After all, many formal frameworks have been employed with

much success even though Oti:r conceptual foundations have been in a sorry

state.

4. Ad hoc Agoroaches

Many researchers in artificial intelligence have felt a need for

alternatives of the standard Bayesian approach and have proposed and used.

generally with success, more empirical models, particularly in expert

systems such as MYCIN [Ref. 691. and others [Ref. 70,711. Also many expert

systems employ some form of numerical assignments to assertions which are

often combined in ways which suggest that such assignments behave

mathematically like probabilities.
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One of the earliest approaches to reasoning with uncertainty was

incorporated Into the MYCIN system (Ref. 691. It introduced a notion of

approximate implication" using numbers called "certainty factors" which

were used to indicate the strength of a heuristic rule. For example, MYCIN's

knowledge base includes the rule:

IF The infection is primary-bacteremia and the site of the culture is

one of the sterile sites and the suspected portal of entry of the

organism is the gastro-intestinal tract.

THEN There is suggestive evidence (.7) that the identity of the organism

is bacteroides.

The number .7 is the certainty factor (in the range 0 to I) of the

conclusion. In MYCIN. assertions are not just true or false, the reasoning is

vague or inexact and is indicated on a numerical scale. MYCIN's conjunction

operator performs a minimisation, and its disjunction is furnished with a

Bayesian interpretation. To elaborate, all assertions being considered by

MYCIN have associated with them two numbers, a Measure of Belief (MB)

and a Measure of Disbelief (MD). The MB of a hypothesis ft given evidence e

is the proportionate decrease in disbelief in h. and can be thought of in terms

of probabilities as

I if P(h), I

MB~h.e] - ((azll(hl.),kh)) - P(h))/(ni 1,0) - P(H)) othervwn (7.22)

Similarly, the MD is the proportionate decrease in belief in h as a result o( e

iftP(h)- 0

MD(h,eI - ( (minlP(hl@),P(h)I - P(h))/(minl 1,0) - P(H)) otherwise (7.23)
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A particular piece of evidence either increases the probability of h, in which

case MB(h,e) > 0 and MD(h,e) - 0 (i.e., there is no reason to disbelieve h), or it

decreases the probability of h. in which case MD(h.e) > 0 and ME'h.e) - 0.

This relationship can be seen from the above formulas for MB ar d MD.

from these two measures, an overall estimate of the confidence of the

system in its belief about the hypothesis can be computed. This estimate is

called the Certainty Factor (CF) and is given as

CF(h,eI - MB(h,eJ - MD(h,eJ (7.24)

It is noticed that if CF is positive, the system believes that the hypothesis is

true; if CF is negative, there is more evidence against it and the system

believes it to be false. By separating this measure into the two components

MB and MD. the problem of slight confirmatory evidence being interpreted

as disconfirmation is avoided. Considering several pieces of evidence, the

measures of belief and disbelief of a hypothesis given two observations st

and s2 are computed by:

0 itDh~s1&s2)- I

MBlh,s 1&s2i -(MB(h.st I + MB(h.s 21(I-MD(hst)) otherwise (7.25)

0 if MB(h.sI.s 2 ) -I

MD(h,s1&s 21 - (MD(h.s I MD(h,s 2W'(u-MDlh.s9)) otherwise (7.26)

One way to state these formulas in English is that the measure of belief

in h is 0 if h is disbelieved with certainty. Otherwise, the measure of belief

in h given two observations is the measure of belief given only one

observation plus some increment for the second observation. This Increment

is computed by first taking the difference between I (certainty) and the
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belief given only the first observation. This difference is the most that can

be added by the second observation. The difference is then scaled by the

belief in h given only the second observation. A corresponding explanation

can be given. then, for the formula for computing disbelief. From MB and

MD. CF can be computed. These formulas meet several requirements that

one might wish them to satisfy, including commutativity, the order in which

a set of observations is made is irrelevant.

A simple example will show how these functions operate. Suppose that

an initial observation has been done that confirms our belief in h with

MB-0.3. Then MD(h.e]-0 and CFth.3,)u0.3. Now a second observation has

been done, which also confirms h, with MB(h,s 2)-0.2. Now

MB(h,s 1&s21 - 0.3 + 0.2"0.7 - 0.44

MD(h,s 1&s21 - 0

CFIILS1&s21 - 0.44

From this example it can be seen how slight confirmatory evidence can

accumulate to produce increasingly larger certainty factors.

Sometimes it may be necessary to consider the certainty factor of a

combination of hypotheses. It can be computed from the MB and MD of the

combination. The formulas MYCIN uses for the MB of the conjunction and

the disjunction of two hypotheses are

MBWhI&h 2,eI - min(MBlh,,e], MBNh2,e1) (7.27)

MBIhI or h2,e0 - max(MB(hl,eI. MBlh 2,eI) (7.28)

MD c,• be computed analogously.

From tactical intelligence, the advantage of employing deterministic

values instead of probabilities is often called for. For instance, an enemy will

139



most likely make a maximum g terminal maneuver rather than the average

from a Monte Carlo simulation of all possible maneuvers. This tactical

doctrine may prescribe a precise maneuver. Also, for very good reasons,

people often feel uncomfortable estimating prior probabilities (Ref. 721. Yet,

they are willing to say whether a piece of evidence increases or decreases

the probability of a hypothesis with respect to its prior value, and are often

willing to use the certainty value to estimate the amount of change. Thus,

certainties are particularly useful as a technique for talking about relative

probabilities. In addition, they seem more natural than probabilities when

establishing the context for a hypothesis.

By contrast to probability theory, these ad hoc approaches provide the

expert with a language for more directly specifying how degrees of belief

(expressed as subjective probabilities) are to be computed. The language

does impose some constraints. It requires that functions for computing

probabilities be composed out of small number of primitive functions.

However, it also provides considerable freedom, such as allowing the

specification of any loop-free network topology desired to group factors and

control the flow of information. The price paid for this freedom is that there

is no longer any guarantee that all of the axioms of probability theory will be

honored. However, if one views the values computed as heuristic measures

of degree of belief, then the only question is whether or not it is easy to

construct an inference network that adequately approximates the

specifications of the expert. A commonly voiced criticism of such approaches

is that they are unnecessarily ad hoc. It is claimed that there are alternative

approaches available which are better documented and understood [Ref. 72!.
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Mamdarl and Erstathlon [Ref. 731 for example, claim that fuzzy logic itself

would provide more secure foundation for the enterprise. As a matter of

fact, PROSPECTOR already employs some form of fuzzy-sets theory, at least

according to the recent account given by Gaschning [Ref. 611.

Generally, it is hard to quantify and mathematically relate such

subjective parameters as partial ECM. intelligence levels, the threat and

human experience. So, it is adequate and easy to use ad hoc approaches to

approximate the specifications of the expert.

G. EXPERT SYSTEM DEVELOPMENT TOOLS

It is important to distinguish between expert systems and expert system

development tools. As shown in Figure 7. 1, expert systems are specific

applications consisting of a knowledge domain and an inference engine. A

knowledge domain is generally the human expertize on a particular subject.

The inference engine is the reasoning software. To obtain advice from an

expert system, the user poses a problem via a user interface. The inference

engine accepts the request, reason about the query and the knowledge

stored in the knowledge domain, and responds to the user. Expert systems

can be used tw provide expert advice and solve problems using a given

knowledge domain. When a user presents a particular problem to the expert

system, it uses the available reasoning knowledge to infer some advice,

which it then reports to the user.

An expert system development tool can take the form of an Artificial

Intelligence (AI) language such as Lisp or Prolog, an expert system shell, or

an integrated artificial intelligence environment. Shells, a higher level of

development tool, facilitate the development of expert systems by providing
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a generallsed inference engine and the ability to create knowledge domains

in any subject area. An integrated expert system environment provides all

the capabilities of a shell as well as other tools, such as decision support

software. Expert system shells or environments (shell supersets) that

support rule representation consist of a rule set editor (also known as a rule

set manager), an inference engine, and generally, a user interface. Actually.

the user interface and the rule editor can be embeded in the inference

engine. The developer of an expert system uses a rule set editor to write

rules. The inference engine uses the contents of the knowledge domain to

arrive at its solution or recommendation.

H. PAIRWISE CORRELATION FOR TRACK FUSION

Track fusion is a difficult process and numerous algorithms have been

defined for track correlation [Ref. 47, 63, 74, 75. 76, 771. Many of these rely

on probabilities to combine evidence, while others make hard yes or no

decision. Because of the diversity of sensors that are operating in a large

area surveillance system, the state vector coordinate system where the

sensor/node level multitarget tracking problem is resolved will differ for the

various local-track data bases. Assuming that the required coordinate

transformation at each node is done using the appropiate transformation

algorithm, the information collected by each node is overlaid in a common

coordinate system. Furthermore, the time points at which the target states

(latitude, longitude, etc.) are estimated may not coincide. Before fusing any

two tracks, they are referred to a common time instant by using the

prediction equations of the Kalman fiiter [Ref. 221.
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Following Lakin and Miles [Ref. 91, we adopted pairwise correlations for

track fusion. Figure 7.5. shows the steps used In pairwise correlations to

solve the correlation ambiguity, which involves 3 distinct rule-driven steps:

I. First, assume all tracks (local and incoming) available at each node are
separate and each track implies a new target.

2. Second, apply rules which create the possible pairwise correlations
between each incoming track and existing local tracks. Those fail the
pairwise correlations are considered new tracks for targets beyond the
coverage of local sensor/sensors.

3. ThirL. apply rules to confirm str-ng correlations and to deny others.
Where alternatives are of similar strengths, wait for further evidence.
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1. topi1. 111 12 13

Assume all tracks aval labe at
each node are separate and each
track Implies a new target.

2. Step 2. 11 32 95

Apply rules which create the
possible pairwise correlations
between each Incoming track
and existing local tracks. Those
fail the paIrwlse correlations C
are considered new tracks.

Ti 72 13

3. Step 3. 111 13

Apply rules to confirm strong
correlations and to deny others.
Where alternatives are of similar
strengths, wait for further evidence. @ (C

TI, 19203 Targets Tracks Ti (- T3)

611, 32, 83 Different Assumed Targets

C PaIrwise Correlation Process

FIGURE 7.5. PaIrwlse Correlation for Track Fusion
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The correlation process is basically based on the position and velocity

closeness of each two 'racks. The next logical step is to combine the

correlated tracks to get the best estimate. A straightforward and a fairly

obvious approach is taking a weighted average with most weight being given

to the most accurate sensor. Another approach is using one track from a

correlated pair or group (one which is belived the most accurate) as a

representative track so that the other tracks are filtered out. One of the

primary reasons for using this approach is that it serves the immediate

purpose. If the accuracy available from a single sensor is sufficient to satisfy

the needed requirements, then it is sensible to use it.

As it is mentioned before, the positional correlation process is a

prerequisite for the fusion of identity and behavioural information. As

noted earlier these types of information are of little practical use unless they

are associated with position. When we correlate kinematic information we

deal with dimensional data to which we can apply recognized mathematical

tests for correlation. However, identity and behaviour cannot be treated the

same way. Expert systems can be used, in which inference is performed

using both sensor data and rules. Their structure allows the utilization of

fully different kinds of information regardless of its form. This means that

each information source is allowed to contribute information at its own level

of detail. They process heuristic knowledge, apply logical inference, and

reason with the human knowledge stored in the computer. Rather than

facts, this knowledge represents the human 'rules of thumb stored non-

procedurally in the knowledge domain. Like humans they can reason about

uncertain situations, factoring degrees of uncertainty into the reasoning
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process. Certainty factors can be assigned and carried throughout the

reasoning procis, then reflected in the advice the expert system derives.
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VIII. THE SIMULATION SCENARIO

A. EXPERTS' VIEW OF MODERN RADAR ENVIRONMENT

Technically, computers are concernad only with those radar signals which

relate to responses from aircrafts, and it is therefore unnecessary and

uneconomic to feed them with all of the unwanted echoes which occur as a

radar antenna sweeps through 3600, out to the range of its transmitted

power. To be able to achieve this situation the radar signals of the

concerned targets require to be converted into a digitised format. In this

form the radar signals, radar data, or radar information can be fed into a

computer, to be either displayed directly onto a radar display or, if the

computer has the capacity or is linked to an additional computer containing

the relevant flight plans and information, then both types of information can

be correlated before being further processed onto the operator's display. A

further key factor in this correlation, is the allocation of identity codes to

individual aircrafts, through the use of Identification of Friend or Foe (1FF)

for military aircrafts, or a Secondary Surveillance Radar (SSR) for civilian

aircrafts. Also, there is the ability to enables those aircrafts which do not

carry a transponder (SSR or IFF) to appear on the operator's display with a

computer-related indication of their identity.

By allocating to the concerned aircraft a discrete IFF or SSR code, and also

by informing the computer that the code so allocated refers to the specific

flight information relevait to the aircraft, the computer is able to recognize
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the radar information which it receives, and to correlate this information

with the flight information already in its possession. The act of relating

flight information and radar information begins to open up wide horizons for

the application of automation to the tasks of controlling the air space. The

operator himself acts as a communicator, a navigator, a calculator and a

predictor of future events. It is essential to recognise that the advantages in

automation are in reducing the workload upon the operator and be applied

primarily to those of the operator's functions which limit his capability to

discharge his primary responsibility, which is that of a decision-maker.

As an example of the standard format of the type of information of the

flight plan which are in general use are:

1. Aircraft type,

2. Aircraft callsign;

3. SSR or IFF code;

4. Aerodrome of departure;

5. The aerodome of destination;

6. The proposed route of flight;

7. Estimated Departure Time (EDT);

8. The estimated time at the Flight Information Region (FIR) boundaries;

9. Height or desired Cruising level;

10. Aircraft's cruising speed;

11. Type of flight (e.g. military/scheduled/general aviation);
The radar viewing units have also changed dramatically from the original

cathode ray tube. It Is usual, in modern radar units to which automation is
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being applied, to use a synthetic type of radar display. A modern radar

display console, adds the following facilities to the conventional radars:

a. Position symbols and labels adjacent to position symbols of selected
aircrafts displaying important flight plan information.

b. Trail dots, which appear behind the aircraft's symbol to indicate the
track which it has been following.

C. Visual alarms for an aircraft emergency, special hi-jack code, or radio
faliure, these are in the form of flashing symbols and labels.

d. Tabular areas, these are areas upon which can be displayed any
information of interrst to the operator.

e. Synthetic map displays, such as the outline of airways, and air-routes,
the coast lines, danger areas, etc. These maps are usually programmed
within the consol's computer memory. Also there are facilities which
exist for the operator to draw-in on his display a synthetic map for any
special purpose, such as, for example, a military exercise area or a
temporary prohibited area for an air display.

Figure 8.1, provides some idea of the type of information which can be

presented on TWS radar displays as applied to modern ATC systems (Ref.

78, 79, 80,81L For example, for satisfying the requirements of modern ATC

systems, which must have instantly available information that is both

accurate and reliable, the aircraft itself is able to co-operate with the ground

based radar systems. That is. it can carry its ovn airborne equipment,

known as a 'transponder', which is capable of communicating with the

ground-based SSR system. The transponder is activated by pairs of pulses

transmitted by a ground interrogator, and its reaction is to transmit a train
of pulses on a different radio frequency to the SSR interrogator receiver on

the ground. Because the transponder is not relying upon reflected energy

from the aircraft to provide a radar echo, but is making a full-blooded reply
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itself, this enables the transmitters on the ground to be of lower power and

employ simpler and cheaper technology and also ensure a crtainty of signal

return, unaffected by weather or other clutter factors. Also the returning

train of pulses from the aircraft can be coded to contain information

pertinent to that specific aircraft such as. for example, the Identity of the

aircraft and the height at which it is flying. This factor gives the SSR

receiver and its computer processor the ability to separate and identify

different targets in a manner that the ordinary radar cannot do, and then be

able to compute additional information such as the speed of the aircraft and

its flight attitude, all without recourse to any radio telophony speech with

the pilot, other than an initial request to select a special group of code

numerals on his SSR select panel in the cockpit.
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Figure 3.1, Modern ATC display with SSR Information
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B. THE SCENARIO

The HEA approach is going to be applied on three different TWS systems

A. D. and C. These systems are assumed to be tied together by appropriate

direct communication links as shown in Figure 8.2. Each system has detected

two different targets using its own radar sensor. The local data of each

system gathered by its own radar sensor have been processed using its local

estimation process, resulting in two well confirmed and distinct tracks. So.

six tracks will result from the local estimators of the three TWS systems.

These tracks are A 1, A2, B 1. B2, Cl, and C2 from TWS systems A, 3. and C

respectively. The corresponding targets for these tracks are a I, a2. b 1, b2,

ci, and c2 for tracks Al, A2. B1, B2, Cl, and C2 respectively. Using Equation

(2.3), the network shown in Figure 8.2, is represented as

G-(V.E)

where V - (A. , C)

and E - ( [A. BI, [A. Cl[3,. C1)

The TWS systems together are assumed to cover a large air-space area

with a partially overlapping fields of view. Each system Is going to use

locally its track information resulting from its local estimator (as that

discussed in Chapter V) , in addition to sending it to the the other two

systems via the communication link used to tie each of the two other

systems with the local one. By this way the area of coverage of each system

is extended to cover the whole area covered by the three systems. This

means that each system may get track Information pertaining targets

beyond the coverage of Its local radar sensor. This can give the operator in

each system's site an advance details on aircrafts which are due to enter his
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sector of responsibility which seems to be of great help especially in ATC

systems and C3 systems. It is assumed that the suitable network access

protocol which secure error free exchange of track information is used, and

the needed coordinate transformation and the referring to the common time

instant as discussed in Chapter IV is done.

It is also assumed that the type of modern radar display console like that

shown in Figure 8.1, is used at each TWS system. The fusion process is going

to be performed in TWS system A based on its local track information and

the other track information sent to it from TWS systems B and C. A pairwise

correlation process is used to correlate each of the tracks A 1. and A2 with

the other tracks B 1. B2. C 1, and C2. The correlation process is going to be

based on the kinematic information of the last report of each track (range,

bearing and speed), in addition to its identity code, intent and behaviour. A

simplified expert system approach as outlined in Chapter VII, using EXSYS

expert system development package is used to perform the fusion process.

The correlation process (embeded in the fusion process) will be basically

started based on the position and velocity closeness of each two tracks by

thresholding the absolute value of the difference between their position and

velocity to a certain threshold value. This threshold value could be chosen

based on the error covariance.

Two expert systems. TRAFUS I and TRAFUS2 are developed. TRAFUS I is

a kind of an experimental hard decision knowledge-based track fusion

approach. TRAFUS2 is a kind of an experimental soft decision knowledge-

based track fusion approach. In these expert systems, simple inference rules

are used to perform the correlation process and eliminate obviously
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impossible pairing of tracks. The rules are allowed to be easily modified,

added or deleted. New rules entered can be checked against the existing

rules for cuistency.

TRAFUS I and TRAFUS2 obtain data needed to make a decision by asking

the user questions relevant to the tracks needed to be fused, The user can

also ask how the expert system reaches a decision. These two features are

very helpful in training novice operators in real life applications. Almost no

training is required to run any of them or any already developed expert

system using EXSYS expert system development package. Details of

TRAUS I and TRAFUS2 are presented in Chapter IX and Chapter X

respectively. Their rules are described in Appendix E and Appendix F

respectively.
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IX. RAMSI

A. RUNNING TRAFUS I

TRAFUS( from TRAck FUSIon). refers to an experimental system to

explore the applicability o( artificial intelligence techniques to the

implementation of an automated, extremely flexible track fusion consultant.

To run TRAFUSI, the user enters EBSYS TRAMUSI or just EXSYS and he will

be asked for the filename which will be TRAFUSI. If TRAFUS I is on other

than the default drive, then he should enter the drive designator with the

filename. For example. EXSYS B:TRAFUSI. Then he will be asked if he

wishes instructions on how to use the program. After that he selects if he

wishes to have rules displayed as the program runs. Then he will be asked

questions relevant to the subject. The user answers by selecting one or more

answers from a hist or entering a numeric value. The expert system vial

continue to ask questions until it has reached a conclusion. The conclusion

may be the selection of a single solution or a list of possible solutions

arranged in order of likelihood. TRAFUS I can explain, in English. how it

arrived at its conclusion and why. If possible, the program will derive

information from other rules rather than asking the user. This ability to

derive information allows the program to combine many small pieces of

knowledge to arrive at logical conclusions about complex problems. The

rules editor of EXSYS allows the rules to be easily modified, added or deleted.

All knowledge base files for TRAFUS I are kept in two parts: one with a .RUL

filename extension and one with a .TXT filename extension. Both must be on
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will start asking the user questions relevant to the subject area of the

knowledge base. This is how the program obtains the data needed to make a

decision. There are two types of questions he may be asked: multiple choice

and numeric value.

Multiple choice questions will display a statement ending in a verb,

followed by a numbered lst of possible completions of the sentence. The

user should enter the number or numbers of the choices correct for his

situation and press the [ENTERI key. If more than one number is chosen, the

numbers should be separated with a space or a comma. If numbers outside

the range of the list are entered, the program will re-ask the question. In

fact the user won't get past the question until he answers it.

The other type of information the user may be asked for is a numeric

value. There will be an explanation of what information the program needs

and a space to inter the value by typing It and pressing [ENTER). The

number can include a decimal point.

The expert system will continue asking questions. When the program has

obtained enough information to determine that all the IF conditions in a rule

are true, it will display the rule, (unless the user has opted to not have rules

displayed as they are used). If the computer determines that any of the IF

conditions in a rule are false, it will reject the rule and go to the next

appropriate rule. An example of the results obtained from a run of TRAFUS I

is presented in Figure 9. 1.
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Tracks Al 3ftd 31 esionq "t: 1 0e sane Z3rget

2 Tracks A2 and C2 belonq to Jie same tarqet
1

3 Tracks Al and 82 belonq to different targets al and D2
I

4 Tracks Al and Cl. belonq to different t.rqgets al and ca

1

7 Tracks A2 and 82 belonq to different targets &2 and b2I

S Ttracks A2 and C1 belong to different targets a2 and bi

9 Track 32 is for a hostile aircraft
I

10 Track Cl is for a hostile aircraft
I

11 Track Al is for a friendly aircraft or an airliner

'2 Track A2 is for a friendly aircraft or an airliner

13 Track 31 is for a friendly 4ircraft or an airliner
1 II

14 TraSUc C2 is for a friendly u~rzraft or an airliner

'-S Track .1 is a 90MUER

16 Track Al is a CZVZL A/C
1

I? Track A2 is a FIGHTER

FIGURE 9. 1. Results Obtained from a Run of TRAFUSI
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B. ASKING ABOUT RULES

When a rule is displayed the user has the option of asking how TRAFUS I

knows a condition in the IF part is true. To do this he enters the line

number of the IF condition. The expert system will respond with one of four

responses:

I. The expert system will display the rule or rules that allowed it to derive
the information. A rule used for derivation will have information about
the condition the user are asking about in its THEN part. He can then
continue asking how the expert system knew that rule's IF conditions
were true and so on. If the user asks about a condition that is an
algebraic expression, the values of each of the variables in the
expression will be displayed. He may then asks how these values were
derived by entering the number of the variable.

2. If the user asks the expert system how it knows a condition is true
that it did not derive, but determined by asking him for input, it will
respond that he told it the information was true.

3. The user can ask for Information about a condition that Is several
conditions down in the list and which the expert system may not have
yet tested. This can occur when the user asks the expert system WHY in
response to its question. If this is the cae, the program will respond
that it does not yet know if the condition is true or not.

4. In certain situations where the expert system has just derived new
information, it may tell the user that the condition he is asking about is
false and the rule will be eliminated.

Rules may have references for the source of the knowledge ( e.g. personal

observation, book, article, etc.). If, when a rule is displayed, the user presses

(RI the expert system will display the reference for the rule if it has one.

When the user are finished examining the rule, by pressing (ENTERI, the

expert system will continue asking him questions.
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C. USING "WHY"

If the user wonders why the expert system needs to know the

information it is requesting. he can ask it by typing WHY. instead of making

a selection from the list of values, and presses the [ENTERI key. The expert

system will respond by displaying the rule it is trying to determine the

validity of. He may now ask the expert system about the IF conditions or

references as described before. Then he presses [ENTERI when he is finished

examining the rule. The expert system may now have the question

originally asked redisplayed or it may display another rule. If the later is

the case, it is because the first rule displayed was being used only to derive

information needed by the second, and the second is the rule actually being

tested. TRAFUS I will continue showing the rules it is using to derive

information until it reaches the base rule it is trying to apply. This rule will

have at least one choice in its THEN part. By pressing the [ENTER] key, the

program will be continued. If more than one rule was displayed, each time

the user presses [ENTER! he will go one rule up the Ust being used in the

derivation. Hle will then be reasked the question he responded to with
.WHY".

D. ASKING HlOW A CONCLUSION WAS REACHED

The user can ask the expert system how it arrived at its final value for a

specific choice or why a statement is displayed. If he enters the line number

for any choice or statement, TRAFUS I will respond by displaying all of the

rules it used to determine the value of that choice or statement. He again

has all of the options in requesting more information about each of the rules

as discussed above. If he wishes to learn why a choice not displayed was
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eliminated by being given a probability value of 0, he presses [Al to have all

choices displayed. Then he enters the line number of the choice in quewion.

. CHANGING, RERUNNING AND PRINTING THE DATA

The user can easily test and analyze the effect his input had on the final

outcome. He can change one or more of his answers, while holding the

remainder constant, reruns the data and sees what effect the changes have

on the final outcome. The current value for the choices can be saved for

comparison with the new values. To change the data he presses [Cl. He will

be asked if he wishes to save the current values for comparison with the

new ones he will be calculating. TRAUS I will then display a list of all of the

information he the user provided by answering questions. Then he enters

the number of the statement he wants to change and the expert system will

reaak that question. By answering the question with the new values that he
wishes to try, the program will return to the display of all of the information

that he told it. The user continues chaning statements until the data is the

way he wants it, then presses [RI to rerun the data. If, due to the changes,

the program realizes that it needs more information, it will ask for it. The

rules will not be displayed during the rerun. The program will then display

the new list of choices. If he opted to have the previous values for
comparison, they will be displayed in parenthesis.

He can change the data again in almost the same way. The only

difference is that when he presses [CC he will be given three options:

I. Keep the original values for comparison.

2. Keep the most recently calculated values for comparison.

3. Don't keep any comparison data.
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The abiity to change and rerun the data allows the user to test the expert

system and see if an answer that be were not sure of is vital to the final

outcome, or really has little effect. He can save a printed copy of the results

of the run by pressing [P1. Then he will be asked if he wishes to have the

data he told the expert system also printed. If he presses [YJ he will have

both the final sorted list of choices printed along with all of the data he

provided the expert system in answer to its questions.

F. SAVING DATA AND RESULTS

The user has the option of storing the data he has input into TRAFUS I,

exiting the program, and being able to i-eturn to the same point later. This

can be useful if he needs to look up information needed by TRAMUSI or if he

must leave the program but don't want to loose the data he has already

input. He can select to store the data by entering QUIT in response to any of

the program requests for data. The program will then ask for the name of

the file to store the data in. A filename of up to 8 characters ( different than

TRAMS I) is needed to be entered. Then he will be asked if he wishes to

return to the program or exit to D(O. Also he can store the input provided to

reach the conclusions by pressing (QJ. This is the same as using the QUIT
., option when entering data. The data input will be stored in a disk file and

he will be able to return directly to this point. This is particularly useful if

he wants to experiment with the "change and rerun" command.
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X. TRA S2

So far, in TRAFUS1, for the representation of facts and of methods for

deducing new facts from old ones, we have almost always assumed that

either a fact is known to be true, or it is known not to be true for nothing at

all is known about it). We have essentially not considered the possibility

,rat we might know 3omething that is'- probably true ". However, there are

situations in which such knowledge is important.

In TRAFUS2, An ad hoc approach is used, using the EXSYS 0-10 system.

The systems uses numerical assignments to assertions, which expressing the

degree of belief of the expert in these assertions. It is considered as a

certainty factor which expresses the degree of confidence about a certain

hypothesis. So,TRAFUS2 is generally similar to TRAFUSI, but the only

difference is that the value following the "probability-" is a ratio where the

denominator is 10. This is the most practical system. 0/10 is equivaient to
"certainly false" and locks the value at 0/10 regardless of any other vAlue

the choice may have received. A value of 0/10 eliminates the choice from

further consideration. A value of 10/10 is equivalent to "certainly true" and

also locks the value for the choice at 10/10 regardless of any other values

the choixe may have received. Values of I to 9 represent degre'-s of

certainty ranging from "very probably false" to "very probably true". The

values from I to 9 do not lock the value and are averaged to give the final

value for a choice.

For example, if a choice appears in three rules that had true IF parts with

values of 3/10, 8/10, and 4/1 0, the final value for the choice will be the
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average: 5/10. If the values found were 3/10'9/110 and 0/10, the 0/10

would prevail and result in a final value of 0/10 regardless of other values.

Likewise. if the values were 1/ 10. 3/10 and 10/10. the 1O/10 would lock

the value at 10/10 regardless of the previous lower values. Values of 1-9

are averaged to a final value only if not over-ridden by a 0/10 or 10/1 0.

The first 0/1 0 or 10/1 0 prevails and will not be changed even by another

10/10 or 0/10.

In developing TRAFUS2, several questions have arisen and needed

answers, among these questions are:

I. How to convert from human terms to numeric certainty factors. For
example, what does" It is very likely that" mean?

2. How to normalize across different people's scales, particularly if the
solution to question I is to get people to provide numbers directly.

3. How far to propagate changes in the Confidence Factor (CP) on the basis
of new evidence. If the CFth el changes very slightly and h is part of
the relevant evidence for another hypothesis, h, should CFihel also be
changed? If very tiny changes are always propagated as far as possible,
the system may spend all of its time doing that with very little impact
on the final outcome. On the other hand, many small changes can add
up to a significant change that should not be ignored.

4. How to provide feedback to the database to Improve the accuracy of the
CF's of the rule. This problem has been particularly solved in MYCIN
by the TEIRELAS system's ability to explain the reasoning process to a
physician and then to accept statements from the physician about how
the rules should be revised.

For the solution of problems 1, 2, and 3, the word description of certainty

shown in Figure 10.1. is used. For solving problem 4, the capability of

EDITXS in EXSYS is used. Figure 10.2, shows the results obtained from a run

of TRAFUS2.
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Certainly True to Highest
Confidence

Very Probably True 9

Probably True 8

Likely 7

Somewhat Likely 6

No Opinion 5

Somewhat Unlikely 4

Unlikely 3

Probably False 2

Very Probably False 1

Certainly False 0 Lowest

Conf idence

FIGURE 10.1. Word Deswription of Certainty in -010 System
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'.,uaC •uaaod on 0 • 10 svscat .AWZ

T.:acr AL and C'" belong :0 different czclecs &I and cl z0
-.racks Al and C2 beoing :0o different Srarget &I and c2 10

3 Tracks A2 and 31 *e*ong to different targeta a2 and bl 10
1. Tracks A2 and 32 beLong to different cargects 2 and b2 10
5 Tracks A2 and C1 " Lonh -o different targecs &I and cl 10
i Tracks A2 anW C2 belong to dtfferenC tArgjet &2 and c. 10

TrackA 2 is tor a friendly aircraft or an airliner 9
9 Track AL is for a friendly aircraft or an iLrLiner I
9 Track A2 is for a friendly aircraft or an airliner I
10 Trak L1 ,s for a friendly aircraft or aen rliner S
11 Track C2 Ls for a friendly aircraft or an airliner 8
12 Tracks Al and 32 belong to different targoct aI and b2 a
U3 Tearete & L a WMIX. I
14 Target &I is a CMIL A/C I
15 Targ*c &2 La a 8AC• 5 S
16 Taggec bl is a IMSI 8
17 Target *L Ls a CW!L A/C I
18 Target b2 is a IMtU S
19 Tatar b2 La a CML A/C I
20 Target cL La a CIMVL A/C 8

. Tacc o2 lis a AMAil S
22 Track 32 is for a hosecile aicer•af
23 Track Cl is for a hoetile aircraft
24 Tracks Al and U belong :o r-e Jasa argrc 7
25 Targ•ts al and bl are the sam target a they are one target 7
26 Target aI is a CIVzI. A/C 7
27 Target c€ is a CtVL A/C 7

23 Range of last report of track Al - 90.000000
29 Lange of Last report of track $1 - 90.200000
30 tearing of lstc report of :rack AL in degree@ - 2ý.000000
31 Ba*&ring of Last repocr of crack IH in dagreoe - 27.000000
32 Speed of targec a& in ei/e - 440,000000
33 Speed of target bl in u/l - 415.000000
.. :dentiC/ of :.rack Al - ,D343

• :danclv code of :rack 51 - ID345
R& aange of *c sreport 'f :rack 52 - 250.300000

37 1poed of :rack 52 'n a.s - 200.000000
19 .ang. of• "asc reptrt of :rack Cl In ra - 230.000000

FIGURE 10.2. Results Obtained from a Run of TRAFUS2
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In this dissertation, a new efficient and reliable distributed estimation

architecture for Distributed Sensors Networks (DSN) has been presented. It

is called Horizontal Estimation Architecture (HEA). HEA is introduced

bearing in mind the technological advances in several disciplines. which are

providing the future tools for designers of DSN, especially, the application of

artificial intelligence and knowledge manipulation, and the adoption of

decentralized decision making strategies in complex technological

environments. In addition, the communication load is minimized between

different nodes of a network by exchanging locally processed data between

these nodes instead of raw data. Also, the HEA is developed bearing in mind

the possibi!y of any hostile enemy actions, including physical destruction

and electronic countermeasures which can create node and link failures and

a dynamically changing network topology which are essential requirements

for military systems.

A great motivation to HEA is the applicability of partitioning approaches

which allow any large complex system to be divided into manageable

proportions. The partitioning allows the usage of microcomputer systems,

which provide a cost-effective solution for data processing. Obvious

advantage of HEA as applied to DSN are local autonomy, heterogeneous

feature, reliability, and survivability. Network splitting and reformation or

connection of additional compatible networks are practicable during system

operation and do not cause any restrictions as the new system is
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initiated. The main concepts and features of HEA were presented in two

conferences [Ref. 82, 831.

Through the integrated view of the assets of a DSN as shown in Figure 2.4.

the HEA has been applied to TWS radar systems. This application shows the

effect of the partitioning approach used by solving the multitarget tracking

problem at the sensor (node) level using the appropriate local estimation

algorithm. This guarantees the maximum utilization of the local resources of

each radar site and takes advantage of the aovanced techniques taking place

in each major block of a radar system. When the multitarget tracking

problem is solved separately for each individual node, a somewhat

redundant view of the surveillance area will result, depending on the degree

of overlapping coverages between the radars. The output of the local

estimator is a group of different tracks. By solving the multitarget tracking

problem separately for each individual sensor (node), the track estimates for

the targets in the surveillance area become consolidated first at the level of

each individual node.

A major component of HEA is the information fusion process. The

information fusion process decides whether more than one track from

different nodes represent the same target. A pairwise correlation technique
is used for and proved to be easy to implement. The corresponding

consistent tracks are combined together. Two techniques are used for

information fusion. The first is based on algorithmic processing of track

kinematic information, and it is proved that the fused estimates can be

considered the global estimates of the tracks in the overlapping area

assuming that the local estimates are optimal. It is also proved that there is
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no need for the calculation of the cross covariance of the fused tracks since

the local estimates and its associated covariance are the kind of information

exchanged between different nodes. The second technique is based on

heuristic reasoning by using expert systems to encapsulate target identity,

behavior, intent and human expertise in computer software. An EXSYS

expert system development package is used for this purpose. EXSYS

employs Al techniques using currently available hardware and software. It

does not require the complexity and cost of LISP driven architectures, nor is

there is a need for large on-site support staff. The developed expert systems

can be used mainly as an advisory tool for the manual operator. With

modifications, it may directly control the fusion process autonomously.

Using the expert system approach, the correlation process can be easily

implemented using simple production rules. The emphasis in the programs

TRAFUSI and TRAFUS2 has been on the fusion of track information, but

fusion processes, especially in military applications, must integrally overlap

with planning, ECM effects, tactical doctrine, operational limitations, logistics

and historical reconstruction/analysis processes. The modification and

augmentation of these into expert systems can be done.

Further research is needed for the application of HEA in systems which

have different kinds of sensors. Also, many different kinds of knowledge

engineering approaches are being applied to the various facets of

information fusion problems. The data structures of the applicable expert

systems vary greatly, and, in general, "talk" among these systems has not

occurred. A considerable research effort is needed to establish a common

ground for these systems to enable them to communicate with each other.
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Another consideration about developing an expert system is tacit

knowledge. Tacit knowledge has implications for knowledge elicitation

within the current state of the art. One implication arises out of the

invisibility of the relation between formal knowledge and skilled

accomplishments, our lack of awareness of our own skills, and our frequently

misplaced respect for theory-like representation of what we believe we

know. The only solution to the problem demands that the knowledge

engineer must do more than tap the knowledge of the expert, but must

undertake at least a short apprenticeship, a period of participation as an

observer, as part of the elicitation process.
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THE SP•CTRUM OF SENSORS AVAILABLE FOR DATA FUSION

Detectable Spectral Sensor Systems
Characteristics Range

Acoustic I Hz - 10 kHz Acoustic Detectors
Frequency Active/Passive Sonar

Selsmometers

Electromagnetics I Hz - .1 MHz (LF) Magnetometers
Radio Passive ESM

Frequency(RF) Receivers
10 MHz - 100 MHz Radar (Monostatic.
(HF/VHF/UHF) Multistatic )
I - I0GHz - Surveillance
10 - 50 GHz (ShF/EHF) - Fire Control
30 - 300 GHz (MMW) Millimeter Radar

Radiometers

InfraRed 300 - 10 IR Radiometers
Wavelength (IR) -Scanning IR Search

Track
-Focal Plane Arrays

Visible Light 0.7 - 0.4 0 Lazer Radar
UltraViolet ( UV) 0.4 - 31 10-3 0 EO Sensors(TV)

UV Spectrometers

Nuclear 3z 102 - 3z 10-4 A X - Ray Detectors
Paticies Gamma Ray Detectors

Non - Nuclear Mass Spectrometers
Particles
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APENDiIX B
OVERVIEW OF TKISOLVER

Computer-assisted problem- solving typically goes through the following

steps:

Problem -+Mathematical Model =+ Algorithm =+ Program -+ Results

The first step. based on the analysis of the problem, is to set up a

mathematical model expressing the relationships between the variables.

Then an algorithm (a precise description of how a computation is to proceed)

must be developed for solving specific problems. Next a program

implementing the algorithm is written in a conventional programming

language (e.g. BASIC, FORTRAN, or PASCAL). Frequently, the programmer

uses a diagram called a "flowchart" to facilitate the design and understanding

of the algorithm or the program structure. A considerable amount of time is

spent in these two stages, especially in the programming stage when the

computer must be instructed in a step- by- step manner. Finally, of course,

the program has to be debugged and run. All this means that a user has to

"think like a computer" to solve a problem. This siphons a lot of time into

other tasks necessary for fixing an unmatched parenthesis or formatting the

output correctly. Solving a slightly different problem often means modifying

the program and sometimes even reworking the algorithm.

TKISolver shortcuts this problem-solving process by eliminating two steps.

developing an algorithm and writting a program. Instead, the user inputs
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the mathematical model directly using standard algebraic notation. By this

way. the user and the computer interact at the level of mathematical models

or relationships between variables and the computer automatically takes

care of sequencing the operations. So. TKISolver lets the user focus on the

problem itself, not on how the problem is going to be solved using the

computer. The "rK" in TKISolver stands for Tool Kit, implying that there are

several problem-solving tools in the kit and more to be expected. The

exclamation mark refers to the Action kee, which is pressed to solve a

problem or to make other things happen. TKISolver solves problems for

professionals working with numbers and formulas. It does this by

processing equations entered in their natural form [Ref. 841.

Considered as an expert system (Ref. 841. figure B. I. shows the

architecture of TKISolver. The domain specific knowledge responsible for the

high performance of the system is contained in the knowledge base. The

problem solving tools embodying the control strategy, the direct and

iterative solvers, utilize the knowledge base in the process of solving

particular problems. For interaction (or I/0). TKISolver provides "sheets"

displayed through one or two windows on the screen. The main feature of

the architecture is the explicit division between the knowledge base and the

control strategy. Consequently. the expert/user deals only with issues of

domain specific knowledge, and is insulated from the details of the

implementation of the control strategy.

In the following paragraghs, the four components of the knowledge base,

the characteristics of a model and the problem-solving mechanism are

described:
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1. Rules: The rule is the basic component of the domain-specific
knowledge. It expresses the underlying mathematical relationship in
terms of the equality of left-hand and right-hand side expressions.
Equations, constraints, or definitions may afl be represented as rules.
The set of rules can be represented in the form of a network of
relationships called R-graph (for relationships graph). A variable is
represented by a node in the R-graph and each subgraph or polygon
corresponds to a rule in the knowledge base.

2. Unit Conversions: Units of measurement are associated with most
measurable quantities. Conversions between them are frequently
encountered in problem solving and have to be defined in the
knowledge base. The unit conversion feature in TKISolver simplifies
the conversion between the different units of measurement.

3. User Functions: Empiric relationships between sets of variables are
expressed in the form of user-defined functions.

4. Built-in Knowledge: Irrespective of the domain-specific knowledge,
TKISolver can solve problems involving basic arithmetic operations and
a large variety of built-in mathematical functions. For example,
trigonometric functions, hyperbolic functions, exponential function, root
function, natural and decadic logarithms and circular or inverse
trigonometric functions. A standard variety of these is supplemented
by a few special ones like "element" for retrieving list components or
"apply" for associating empiric functions with arguments.

5. Model: The model encompasses the first three components of the
knowledge base in Figure B.I. (rules, unit conversions, user functions)
as contained in the rule, variable, unit, and user function sheets. In
more general terms, the model can be seen as a compact, high-level
representation of structure, organization, and content of the domain
knowledge. The composition of the model coupled with its elegant
internal representation allow for a simple yet powerful control
strategy. The model also serves as a user- friendly guide during the
problem-solving process. The model usually reflects a certain part of
the knowledge base in a particular discipline. The models may be
easily merged by the subsequent loading of some or all of the
knowledge base components into TKISolver, in order to create larger
models capable of addressing more complicated problems. There is
also the concept of TLISolver packs or sets of models from particular
disciplines.
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< model : < rule >[((newUne)< rule 4)1
This means that a model consists of at least one rule; each rule must
start on a new line, and there may be any number of lines between the
rules.
( rule > < expression >-< expression +[ comment >1
This means that a rule is represented by two expressions linked by an
equal sign and followed, optionally, by a comment.
<comment > :: - "<character string >
This means that a rule comment consists of a quotation mark (C)
followed by a string of characters.

6. Problem-Solving Mechanism: The direct solver is the workhorse of the
problem-solving mechanism. In it lies the grace and power of
TK!Solver. It manipulates the equations depending on the problem
formulation and solves for the unknown. If an incosistency error or an
illegal operand is detected, the solution process is terminated, and the
rule causing the problem is flagged with the appropriate error
message. Since the solution path depends on the problem formulation.
the control strategy may be considered as forward chaining or data-
driven. Whenever the direct solver cannot match the nature and
complexity of a given problem, the iterative solver can be used. The
heart of the iterative solver is a modified Newton-Raphson procedure
which handles sets of simultaneous linear and nonlinear equations [H.
It can be either explicitly invoked or automatically called when the
direct solver fails to produce a solution.
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USER MODEL DESIGN PROBLEM SOLVING

SHEETSTAL

RULE UNIT FUNCTION VARIABLE GLOBAL LIST

KNOWLEDOE BASE PROBLEM-SOLVING MECHANISr
.. . ..........................................

RULES DIRECT SOLVER
UNIT CONVERSIONS ITERATIVE SOLVER
USER FUNCTIONS
BUILT-IN FUNCTIONS

iOmn

EXPERT
SYSTEM

FIGURE B. 1. Functional Diagram Of TKISolver - User Interface
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AP2EMILC

PRODUCTION RULES

In most areas of human decision making, the reasoning processes can be

modelled by rule-based systems. A rule, known in these applications as a
"production rule" or a "production", is generally of the form

IF F1 and F2 and ............... and F. TIEN C

or equivalently,

FI&F2& .......... &Fn =-C

where Fi is a fact, an event, a situation, a string of symbols, or a cause, and C

is a conclusion or hypothesized conclusion, an action to be performed, or an

effect. Some of the rules in a production system represent the knowledge of

trained experts, and others provide system organization.

In addition to an organized set of rules, a production system must have a

data base consisting, typically, of gathered pieces of evidence which might be

relevant to the condition in the left side of some rules. System organization

is provided by several kinds of control mechanwms. An evaluation

mechanism is needed to evaluate the left side oi a rule based on the

evidence in the data base. It is desirable to have a mech~anism for

augmenting and modifying the system. A production system also needs

direction and weighting mechanism.

Fisure C 1. is an illustration of a tree structure of a very simple production

system. The AND arcs denote single productions (where multiple conditions

must be satisfied for the conclusion tW follow), and OR inputs ate wparatt
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productions. The "direction" mechanism of a production system relates to

reasoning processes, where inferring and deducing new information from

evidence can be considered opposite in direction from hypothesizing and

then testing the hypothesis. One type of system direction is forward

chaining or running; these systems start with input data and proceed up to

conclusions. Backward chaining (running). or top down, start with

hypothesized conclusions that are selectively generated and proceed to see if

they are supported by the data base. Some systems use an ad hioc

combination of up and down directions.

When using a production system, there is often associated with each F? in

the premise a quantity known as a "certainty factor", which indicates the

likelihood that Fj is true based on the input data. Also, for most production

rules, the premise leads to the conclusion with . say, an So% or 90%

probability, instead of absolutely true or false. Similarly, there may be

significant probability that the conclusion is true even when the premise is

not satisfied. Measures or the latter two likelihoods are known as

"strengths", "attenuation factors", or "certainty factors". All of these

quantities can be used in estimating the certainty factor of a conclusiou.

Many conclusions are intermediate conclusions that are then treated as facts

for future productions. "Weighting" is a term that refers to these quantities

and their propagation through the tree, Weighting can be used to determine

the reliability of final conclusions and also to reduce the number of

computations through the pruning of unlikely hypotheses. If the statistics

of the process are known sufficiently. Bayesian weighting can be used. A

more common method of weighting is to ute ad hoc scoring functions. When
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the conditions F1 or the evidence about them cannot be considered

independent, fuzzy set theory can be applied. For example, the fuzzy set

computations P(FI, ............. . FO) - min P(Fi) can be used at the AND nodes.

An advantage of a production systems is that it can be designed to

provide high user confidence. The user can read the lists of rules and can

question any conclusion, and the system can present to him the facts and

logicleading to the conclusion. If he disagrees he can change the rules; with

an appropriate mechanism for modification and augmentation. modular

pieces of knowledge in the form of production rules can be added or changed

without difficulty. In automated fusion applicat~ins, these system attributes

are especially important. A user is unlikely to accept the system's conclusion

if does not understand the logic behind it or previous conclusions. And he

must be able to correct or refine the system and to incorporate new

knowledge into the system when changes occur in hostile force procedures

or equipment,

Aside from the obviously difficult task of acquiring rules, there are

several special problems that will be encountered in applying production

systems to fusion problems. At the system front-end there is the problem of

evaluating the left side of a rule based on the conceptually structured data

obtained through the processing of natural language reports. In platform

identification applications, much of the data wil be inaccurate or even

totaldy wrong because of deception or human error. Moreover, conclusions

will often hav, to be updated because of the continual arrival of data. There

we also the geometrical problems of track association to be solved, but these
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Probably the greatest problem with production systems or any automated

system is that there are innumerable nonroutine situations which could

occur. Wtile a human might be able to fuse the data in an intelligent way in

many of these situations, he probably would not be able to foresee the

possibility of these situations in time to incorporate the necessary knowledge

into an automated system. Generally, it seems that "blackboards" is a proper

starting way for solving these problems.

I
I.
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FIGURE CI Trees of Conclusion in a Production System
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APENDIX D
OVERVIEW OF EXSYS

EXSTS is a generalized personal computer expert system development

package(Ref. 851. It works on IBM PC. XT, AT or compatible. It can create

about 700 rules, with an average of 6 or 7 conditions, per 64k of memory

over 192k. That is about 5000 rules in a PC with 640k. The EXSYS programs

are written in the C language producing small, fast running programs. The

EXSYS development package consists of four main programs:

EXSTS.EXE: The runtime program for running existing expert systen

knowledge bases

EDITXS.EJ]: The program for generating, editing and testing your own

expert system knowledge bases.

SERINLEXE: A utility program to compress the size of an edited knowledge

base and rearrange the data in a knowledge base for rapid access.

FASTER.BB: A utility program to rearrange the order of rules for

maximum speed.

Expert systems work with knowledge to arrive at conclusions. This

knowledge is in the form of rules that both the user and the computer can

understand. The set of rules to solve a particular problem is often referred

to as a knowledge base. A rule is divided into five parts, an IF part, a THEN

part, an optinnal ELSE part, an optional NOTE and an optional RuFERENCE.
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I?
Condition

TREK
Conditions

ELSE
Conditions

and Choices

NOTE ..........................
MWELE CI ...........................•

The IF part is simply a series of conditions, expressed as English

sentences or algebraic expressions. The computer tests the conditions

against the answers provided by a user and information that can be derived

from other rules, to see if the IF conditions are true. The THEN part is also a

series of conditions; however, there can also be choices with their associated

probability values. The ELSE part is the same as the THEN part but is

applied if any of the IF conditions are false. The ELSE part is optional and

usually not needed in most rules. In some cases it is desirable to add a note

to a rule to provide some special information to the user. If there is a NOTE.

it will be displayed with the rule. The NOTE does not mean anything to the

program, it is only for the user's information. The developer of the expert

system knowledge base may also add a JEFUENCE for a rule. This is

intended to help the user find the source of the knowledge contained in the

rule or more information if they should neea it. The EFRUENCE is

displayed only if the user requests the reference; it is not automatically
displayed with the rule.

To understand how the BIUYS expert systems are generated, it is needed

to understand the definitions of the following terms:
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1. Condition: In RISTS, there are two main types of conditions, text and
mathematical. For text, the condition is made up of two parts, a
QUALIFIER and one or mor,. VALUES. The qulifier is usually the part
of the condition up to and including the verb. The values are the
possible completions of the sentence started by the qualifier. A
qualifier can have up to 30 possible values. If the developer finds that
he needs more than 30 values, tries to divide them into groups each
with less than 30 values. Then create a qualifier that selects among
the groups and use it in conjunction with new qualifiers for each of the
individual groups. When a new qualifier is created in HISTS it is given
a list of possible values such that combining the qualifier with a value
(or values) makes a sentence. When more than one value is selected,
the program wil pu 'or" between the values and, if any one of th!
listed values is true the condition will be true. A condition can also be
formed by using a qualifier. "NOT" and one or more values. The
selection of qualifier and values should be such that combining them
with NOT, OR or AND makes a gram matically correct sentence. For
mathematical conditions, they are represented as algebraic
expressions. The mathematical expressions usually include
VARIABLES. A variable is any string of alphanumeric characters,
including spaces, enclosed in ( 1. The first 18 characters are significant
but the variable can be up tol00 characters. Only letters, digits and
spaces can be used in variable names. In this case the variables are
used to create evaluable algebraic expressions. An evaluable
expression can be any algebraic expression from a single number to
complex expressions. The following operators are recognized:

*(multiplication
/ (division)
+ (addition)
- (subtraction)

% (modulus operator)
Parentheses can be used to group expressions in the order of
calculation the developer desires. Spaces can be included between
operators to make the formula easier to read. The following fUnctions
are supported:

SIN(
COS()
TAN()
ASIN()
ACOS()
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ATAN()

EMP
LOG(
ABS()
SQRT()
INT( )

The trigonometric expressions are in radians. The log and exponential
functions are base e. ABS is the absolute value. SQRT is the square
root. INT is the integer part, with all fractions rounded down. The
functions evaluate the expression in parentheses and perform the
appropriate function on the result. The parenthetical expression must
immediately follow the function name, without a space. A rule can
have up to 126 conditions in each of its IF, THEN or ELSB part.

2. Choice: Choices are all the possible solutions to the problem among
which the expert system will decide. The goal of LXSTS is to select the
most likely choice based on the data input, or to provide a list of
possible choices arranged in order of likelihood. The choices can be of
any form. item, actions. etc., depending on what type of expert system
is geing developed. EXSYS will display the text of the choice followed
by % Probability-" and a number. The number indicates the
confidence that the choice is correct and is 0, 1 or a ratio such as A/B.
The denominator, B, indicates the maximum possible value (either 10
or 100) in the ctculational system being used. The numerator, A, is
the probability value assigned to the choice. The person generating the
knowledge base must select one of three options for how the programwill use the probability data.

The rules are automatically invoked using backward chaining. KISYS also

supports forward chaining. xternal programs can be called by LISTS for

data acquisition and calculation and data can be passed back to EISTS for

analysis. This powerful feature enables it to handle a wide range of

problems. The expert system can directly receive data from automatic

testing equipment, data bases, some spread sheets and dedicated programs.

There are two ways to call external programs from the expert system. The

simplest is used to get data for a single variable or qualifier. The second
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method is intended for obtaining data for a number of variables or qualifiers

such as might be done with a data base, spread sheet or automatic test

equipment. Both can easily be used with a wide range of programs and

programming languages, including BASIC. There must be enough memory

available for both MTSIS and the program called to run. EXSTS remains

resident in memory while the called program runs.

Blackboarding is a powerful technique by which more than one knowledge

base can share a common body of information. This can be done in EXSYS

by having one one knowledge base write data to a file that is read by other

knowledge bases. Inversion 3.1. special command options have been added

to make this easier to do. There are two basic ways of controlling the order

of execution of the various knowledge bases. The first is through the use of

a batch file. This is appropriate if the knowledge bases are intended to be

called in a specific, defined order. Batch files can inclUde loops to restart the

system. The second technique is to have an lISTS expert system call other

EXSYS expert system. This is the most powerful technique, as the order of

excution of the knowledge bases can be varied depending on what is needed.

Blackboarding requires care in making sure that the knowledge bases

sharing the information each assign the data correctly, however, the benefits

in being able to segment a problem and allowing extremely complex systems

to be run in a PC make the technique quite worth while.
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APPENDIX E

SAMPLE OF TRAFUS I PRODUCTION RULES

Subject:
Hard Decision Knowledge-Based Multitarget Multisensor Track Fusion

Author:
Alaa Eldin K. Fabmy

Starting text:
This Expert System is an experimental system to explore the
applicability of artificial intelligence techniques to the
implementation of an automated, extremely flexible track fusion
consultant. The expert system fuses tracks from three different TJS
systems, A,S,C. Each system has two different tracks, resulting in a
total of 6 tracks. The tracks are Al,A2,Bl,B2,Cl,C2 from TWS sites
A,B,and C respectively. TWS sites are covering large air-space areas
with partially overlapping fields of view, Track fusion is based on
kinematic, attribute and behavier information.

Ending text:
The expert system will display which tracks are the same and co. which
target they are belong. In addition to whether targets are friendly
or hostile targets.

Stops after first successful rule in data derivations.
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RULES:

RULE NUMKBER: 1

IF:
A.BS((RA[]-(RBl]) <- .15

and ABS([PHIAI]-[PHIBI]) <- 2
and ABS((SPEED OF AlI-ISPEED OF B1]) <- 20
and [IDA1] - [IDBl]

THEN:
Tracks Al and B1 are for the same target Probability-I

and Targets al and bl are one target

ELSE:
Track Al is for target al Probability-i

and Track Bi is for target bl - Probability-I
and Targets al and bi are different targets

RULE NUtB ER: 2

IF:
ABS([RAl].[RB2]) <- .15

and ABS([PHIA1]-[PHIB2j) <-2
and ABS([SPEED OF Al]-(SPEED OF B2]) <- 20
and [IDA1] - [IDB2]

THEN:
Tracks Al and 32 are for the same target - Probability-i

and Targets al and b2 are one target

ELSE:
Track Al is for target al Probability-I

and Track B2 is for target b2 - Probability-i
and Targets al and b2 are different targets
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RULE NUMBER: 8

IF:
ABS([RA2]-[RC2]) <- .2

and ABS((PHIA2]-[PHIC2]) <- 3
and ABS((SPEED OF A2]-[SPEED OF C2]) <- 30
and (IDA2] - [IDC2]

THEN:
Tracks A2 and C2 are for the same target - Probability-I

and Targets a2 and c2 are one target

ELSE:
Track A2 is for target a2 - Probability-i

and Track C2 is for target c2 - Probability-i
and Targets a2 and c2 are different targets

RULE NUMBER: 9

IF:
Tracks Al and B1 are for the same target

and Tracks Al and Cl are for the same target

THEN:
Tracks Al, B3, and Cl are for the same target

and Targets al, bl. and cl are the same and they are one target

RULE IMM3ER: 10

IF:
Tracks Al and B2 are for the same target

and Tracks Al and Cl are for the same target

THEN:
Tracks Al, B2, and Cl are for the same target

and Targets al, b2, and cl are the same and they are one target
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RULE NUMBER: 11

IF:
Tracks Al and BI are for the same target

and Tracks Al and C2 are for the same target

THEN:
Tracks Al, BI, and C2 are for the same target

and Targets al, bl, and c2 are the same and they are one target

RULE 'MtMER: 12

IF:
Tracks Al and B2 are for the same target

and Tracks Al and C2 are for the same target

THEN:
Tracks Al, 52, and C2 are for the same target

and Targets al, b2, and c2 are the same and they are one target

RULE NUMBER: 13

IF:
Tracks A2 and Bl are for the same target

and Tracks A2 and Cl are for the same target

THEN:
Tracks A2, Bl, and Cl are for the same target

and Targets a2, bl, and cl are the same and they are one target
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RULE NUMBER: 18

IF:
Track B1 is for a target not filed in the flight plan

and Target of track B1 is not responding to IFF or SSR
and The position of track B1 is outside all airliner airways
and Track Bl is comming from WEST

THEN:
Track Bl is for a hostile aircraft - Probability-I

and Alert friendly forces Probability-l

ELSE:
Track B1 is for a friendly aircraft or an airliner Probability-1

i........................................

RULE NUMBER: 19

IF:
Track B2 is for an aircraft not filed in the flight plan

and Target of track B2 is not responding to IFF or SSR
and The position of track B2 is outside all airliner airways
and Track B2 is comming from WEST

THEN:
Track B2 is for a hostile aircraft Probability-1

and Alert friendly forces Probability-I

ELSE:
E Track B2 is for a friendly aircraft or an airliner Probability-I
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RULE NUMBER: 20

IF:
Track Cl is for a target not filed in the flight plan

and Target of track Cl is not responding to IFF or SSR
and The position of track C1 is outside all airliner airways
and Track Cl is comming from WEST

THEN:
Track Cl is for a hostile aircraft - Probability-I

and Alert friendly forces - Probability-i

ELSE:
Track C1 is for a friendly aircraft or an airliner - Probability-i

RULE NUMBER: 21

IF:
Track C2 is for a target not filed in the flight plan

and Target of track C2 is not responding to IFF-or SSR
and The position of track C2 is outside all airliner airways
and Track C2 is comming from WEST

THEN:
Track C2 is for a hostile aircraft - Probability-i

4nd Alert friendly forces - Probability-i

Track C2 is for a friendly aircraft or an airliner - Probability-1

RULE NUMBER: 22

IF:
A.BS([SPEED OF Al]) <- 50

THEN:
Track Al is for a HELICOPTER
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RULE NTUMBER: 27

IF:
ABS((SPEED OF C21) <- 50

THEN:
Track C2 is for a HELICOPTER

RULE NUMBER: 28

IF:
50 < ABS([SPEED OF All) <- 200

THEN:
Track Al is for a CIVIL A/C

RULE NUMBER: 35

IF:
200 < ABS([SPEED OF A21) <- 400

THEN:
Track A2 is for a BOMBER

.......... ... ........1
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QUALIFIERS:

1 Tracks Al and B1 are

for the same target

Used in rule(s): 9 11

2 Tracks Al and Cl are

for the same target

Used in rule(s): 9 10

3 Tracks Al, Bl, and Cl are

for the same target

Used in rule(s): ( 9)

4 Targets al, bl, and cl are

the same and they are one target

Used in rule(s): ( 9)
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17 Tracks A2 and B2 are

for the same target

Used in rule(s): 14 15

44 Track A2 is

for a target not filed in the flight plan
for a target filed in the flight plan

Used in rule(s): 17

47 Track A2 is

comming from WEST
comming from EAST
comming from NORTH
comming from SOUTH

Used in rule(s): 17

69 Track Al is

for a HELICOPTER
for an INTERCEPTOR
for a BOMBER
for a CIVIL A/C
for a MISSILE

Used in rule(s): ( 22) ( 28) ( 34) ( 40)
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VARIABLES:

1 RI
R1 is the range of track Al at time t

Displayed at the end of a run

Used in rule(s):

2 R5
R5 is the range of track B1 at time t

Used in rule(s):

3 PHIl
PHIl is the bearing of track Bl at time t

Used in rule(s):

4 PHI3
PHI3 is the bearing of track B1 at time t

Displayed at the end of a run

Used in rule(s):

5 IDi
IDI is the idert•ity of track Al

Displayed at the end of a run

Used in rule(s):

6 ID3
ID3 is the identity of track B1

Displayed at the end of a run

Used in rule(s):
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FORMULAS:

1 ABS(Rl-R5) <'-

Used in rule(s):

2 A3S([RI]-LR5]) <- .15

Used in rule(s):

3 ABS([PHI1]-[PHI3]) <- 2

Used in rule(s):

4 (ID1] - [(631

Used in rule(s):

5 ABS((SPEED OF A1]-[SPEED OF 31]) <- 3

Used in rule(s):

6 ABS([Rl]-[R7]) <- .15

Used in rule(s):

198



SAMPLE OF TRAFUS2 PRODUCTION RULES

Subject:
Soft Decision Knowledge-Based Multitarget Multisensor Track Fusion

Author:
Alaa Eldin M. Fahmy

Starting text:
This expert system is the same as TRAFUS1 except that the

probabilistic reasoning is used. In this case as a degree of belief
of a rule, a probabilty ratio (o/10 - 10/10) is attached to its then
part. The expert system obtains the data needed to make a decision by
asking the user questions relevant to the tracks needed to be fused.
The user can ask the expert system how it arrived at its final
decision. The user can easily test and analyze the effect his input
had on the final outcome. Also, the user can ask why the expert
system needs to know the information it is requesting.

Ending text:
The expert system will display which tracks are belonging to the

same targot and which are not. The results will be associated with a
probability ratio as a degree of belief in it. If there are more than
one solution, they' will be displayed according to their relative
likelihood. Whether the targets are friendly or hostile will be
displayed in addition to its kind (helicopter, fighter, bomber, civil
A/C, or missile)

Uses all applicable rules in data derivations.

199

-- ------ --



RULES:

RULE NUMBER: 1

IF:
ABS([RAl]-fRBl]) <-.2

THEN:
Tracks Al and B1 belong to the same target - Probability-6/10

and Targets al and bl are the same target and they are one target
Probability-6/lO

ELSE:
Track Al belongs to target al - Probability-7/10

and Track B1 belongs to target bl - Probability-7/10
and Tracks Al and B1 belo,-c to different targets al and bl -

Probability-7/10

NOTE:
RAl and RBI are in ki.

REFERENCE:
Col. Fahmy's Ph.D. dissertation, Sep. 1987.
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RULE NUMBER: 5

IF:
ABS([SPEED OF Al]) <-O50

THEN: Target al is a HELICOPTER - Probability-8/lO

RULE NUMBER: 6

IF: 50 < ABS([SPEED OF All) <- 200

k THEN:
Target al is a CIVIL A/C - Probabiliry-8/1O

REFERENCE:
Col. Fahmy's Ph.D. dissertation, Sep. 1987.

................................................

RULE UUMBER: 7

IF:
200 < ABS([SPEED OF All) <- 400

THEN:
Target al is a BOMBER -Probability-8/10

REFERENCE:
Col. Fahmy's Ph.D. dissertation, Sep. 1987.
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RULE NUMBER: 24

IF:
ABS([RA1]-[RCI]) <-.2

and ABS((PHIAl]-[PHICI]) <-3

THEN:
Tracks Al and Cl belung to the same target - Probability-7/lO

and Targets al and cl are the same target and they are one target -

Probability-7/1O
and Tracks Al and Cl belong to different targets al and cl

Probability-4/1O

ELSE:
Tracks Al and C1 belong to different targets al and cl
Probability-7/lO

NOTE:
Bearing information of TWS system C is less accurate than that of TWS
systems A and B.

REFERENCE:
Col. Fahmy's Ph.D. dissertation, Sep. 1987.

RULE NUMBER: 25

IF:
ABS([RAl]-(RCl]) <-.2

and ABS([PHIA1].[PHICl) <-3
and A3S([SPEED OF Al)-[SPEED OF Cl]) <-25

THEN:
Tracks Al and Cl belong to the same target - Probability-8/lO

and Targets al and cl are the same target and they are one target
Probability-8/1O

and Tracks Al and Cl belong to different targets al and cl -
Probability-2/IO

ELSE:
Tracks Al and Cl belong to different targets al and cl -
Probability-7/lO
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RULE NUMBER: 53

IF:
ABS([RA2].[RCl]) <-.2

and ABS([PHIA2]-[PHIClJ) <-3
and ABS((SPEED OF A2]-[SPEED OF C1]) <- 25
and [IDA2] - (IDCl]

THEN:
Tracks A2 and Cl belong to the same target - Probability-9/lO

and Targets a2 and cl are the same target and they are one target -

Probability-9/lO

ELSE:
Tracks A2 and Cl belong to different targets a2 and cl -
Probability-lO/lO

RULE NUMBER: 60

IF:
Track B2 is for an aircraft not filed in the flight plan

and Track B2 is for an aircraft not responding to IFF or SSR

THEN:
Track B2 is for a hostile aircraft - Probability-7/lO

ELSE:
Track B2 is for a friendly aircraft or an airliner Probability-7/lO

REFERENCE:
Col. Fahmy's Ph.D. dissertation, Sep. 1987.
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RULE NUMBER: 68

IF:
Track B1 is for an aircraft not filed in the flight plan

and Track B1 is outside all airliner airways
and Track B1 is outside all airliner airways

TH E:
Track B1 is for a hostile aircraft - Probability-8/lO

RULE NUMBER: 69

IF:
Track B1 is for an aircraft not filed in the flight plan

and Track B3 is outside all airliner airways
and Track B1 is outside all airliner airways
and Track B1 is co-ming from WEST

THEN:
Track B1 is for a hostile aircraft - Probability-9/1O

RULE NUMBER: 70

IF:
Track B2 is for an aircraft not filed in the flight plan

and Track B2 is for an aircraft not responding to IFF or SSR

THEN:
Track B2 is for a hostile aircraft - Probability-7/l0

204



RULE NUMBER: 88

IF:
Track Bi is for an aircraft responding to 1FF or SSR

THEN:
Track B1 is for a friendly aircraft or an airliner - Probability-8/lO

RULE NUMBER: 89

IF:
Track BI is inside any of airliner airways

THEN:
Track B1 is for a friendly aircraft or an airliner Probability-6/lO

RULE NUMBER: .90

IF:
Track Bl is comming from EAST or comming from NORTH or comming from
SOUTH

THEN:
Track B1 is fcr a friendly aircraft or an airliner - Probability-9/lO

..............................................

RULE YUMER: 91

IF:
Track B2 is for an aircraft filed in the flight plan

THEN:
Track B2 is for a friendly aircraft or an airliner - Probability-9/1O
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QUALIFIERS:

Track Al Is

for an aircraft filed in the flight planfor an aircraft not filed in the flight planfor an aircraft responding to IFF or SSRfor an aircraft not responding to IFF or SSR
outside all airliner airways
inside any of airliner airways
comming from EAST
comming from WEST
comming from NORTH
comming from SOUTH

Used in rule(s): 57 63 64 79 80 81
82

2 Track A2 is

for an aircraft filed in the flight planfor an aircraft not filed in the flight planfor an aircraft responding to IFF or SSRfor an aircraft not responding to IFF or SSR
outside all airliner airways
inside any of airliner airways
comming from EAST
comming from 'WEST
comming from NORTH
comming from SOUTH

Used in rule(s): 58 65 66 83 84 8586
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CHOICES:

1 Track Al belongs to target al

Used in rule(s): 1 1] ( 2]

2 Track A2 belongs to target a2

Used in rule(s):

3 Track B1 belongs to target bl

Used in rule(s): 1 ]1

4 Track. B2 belongs to target b2

Used in rule(s):

5 Track Cl belongs to target cl

Used in rule(s):

6 Track C2 belongs to target c2

Used in rule(s):
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VARIABLES:

1 RAl
Range of last report of track A!

Numeric variable
Displayed at the end of a run

Used in rule(s): 1 2 3 4 10 11
12 13 24 25 26 32
33 34

2 R.Bl
Range of last report of track B1

Numeric variable
Displayed at the end of a run

Used in tleý(s): 1 2 3 4 6 41
42

3 PHIAI
Bearing of.last report of track Al in degrees

Numeric variable
Displayed at the end of a run

Used in rule(s): 2 3 4 11 12 13
24 25 26 32 33 34

4 PHIBl
Bearing of last report of track Bl in degrees

Numeric variable
Displayed at the end of a run

Used in rule(s): 2 3 4 40 41 42
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12 IDB2
Identity code of track B2

String variable
Displayed at the end of a run

Used in rule(s): 13 45

13 RCI
Range of last report of track Cl in km

Numeric variable
Displayed at the end of a run

Used in rule(s): 24 25 26 51 52 53

14 PHICl
Bearing of last report of track Cl in degrees

Numeric variable
Displayed at the end of a run

Used in rule(s): 24 25 26 51 52 53

15 SPEED OF Cl
Speed of track C1 in m/s

Numeric variable
Displayed at the end of a run

Used in rule(s): 25 26 27 28 29 30
31 52 53

16 IDCl
Identity code of track C1

String variable
Displayed at the end of a run

Used in rule(s): 26 53

209

n --6 . . . . . . . . . . . .. " -.. . I I I I]1



LIST OF REFERENCES

1. Ricci, Fred J. and Schutzer Daniel, U.S Military Communications
Computer Science Press, 1986.

2. Chong C. Y., Tse E.. and Mori S., Distributed Estimation in Networks
Proc. ACC, San Fracisco, CA, 1983.

3. Chong C. Y., Hierarhical Estimation , Second MIT/ONR Workshop on
Distributed Information and Decision Systems. NPGS, Monterey, CA.
July 1979.

4. Castanon D. A., and Sandell N. R.,Jr.. Distributed Estimation for Larye-
Icale Event-Driven Systems. in Control and Dynamic Systems. Vol. 22,
pp. 1-45. Academic Press, 1985.

5. Tracker, E. C., and Sanders, C. W., Decentralined Structures for State
Estimation in Large Scale Systems Large Scale Systems Theory and
Applications, Vol. 1, No. 1, pp. 39-49, Feb. 1980.

6. Chong, C. Y., Mori S., Tse E., and Wishner R. P., Distributed Estimation in
Distributed Sensor Networks. Proc. of American Control Conference,
Arlington, VA, 1982.

7. Grimaldi, R. P., Discrete and Combinatorial Mathematics. Addison-
Wesly, 1985.

8. Sanders, Donald H.. Comouters Today. Academic Press, Inc., 1979.

9. Lakin W. L., and Miles J. A., IKBS in Multisensor Data Fusion.
International Conf. on C3, Conf. Public. No. 247, 16-18 April, 1985.

10. Bird, D. F., International Standerds in Militar- Communications.
"International Conf. on C3, Conf. Public. No. 247, 16-18 April, 1985.

11. Stallings William, Data and Comouter Communications. Macmillan
Publish., 1985.

210

'4 - • • • -u_. . ...



12. Hovanessian S. A.. Radar Detection and Tracking Systems Artech

House. 1982.

13. Skolnik Merrill I., I1ntroduction to Radar Systems. McGraw Hill, 1980.

14. Brookner.•, Devel.poment in digital radar orocessin. Trends and
perspective in signal processing, pp. 7-23, January 1982.

15. Farrina A.. and Studer F. A.. Radar Data Processing, Vol. 1. Research
Studies Press. 1985.

16. Field Arnold. International Airtraffic Control. Pergamon Press. pp. 88-
102,1985.

17. Farina, A., Pardini, S., Survey of Radar Data Processing Techniaues in
Air- Trafic- Control and Surveillance Systems. IEE Proc., Vol. 127, No. 3,
pp. 190-203, June 1980.

18. Blackman Samuel S., Multiole-Target Tracking with Radar
AIgliQ11L Artech House, 1986.

19. Chang C. B., and Tabaczywski A., Apolication of State Estimation to

LTariet TraLing. IEEE Trans. on Automat. Contr., Vol. AC-29, No. 2,

February 1984.

20. Bar-Shalom Yaakov, Tracking Methods in a Multitaruet Environment
IEEE Transact. on Automat. Contr., Vol. AC-23, No. 4, August 1978.

21. Fortmann, T.E..Bar-Shalom Y., and Scheffe M., Multi-Tareet Tracking
Us[ng jQint Probabilistic Data Association. Proceedings of the 1980 IEEE
Conference on Decision and Control, Albuquerque, NM, pp. 807-812,
Dec. 1980

22. Farrina A., and Studer F. A., Radar Data Processing Vol. 2. Research
Studies, 1986.

23. Reid Donald B.. An Algorithm for Tracking Multiple Targets. IEEE

Transact. on Automat. Contr., Vol. AC-24, No. 6, December 1979.

211

L



24. Cantrell B., Description of an a.-1 Filter in Cartesian Coordinates-
Naval Research Laboratory Report 7548, Distributed by NTIS, AS 759-
011, March 1973.

25. Schooler C. C., Ootimal a-8 Filter for Systems with Modeling
Inaccuracies, IEEE Transact. on AES, Vol. AES- 11, No. 6, pp. 1300-
1306, November 1975.

26. Navarro A. M., General Pro2erties of c-§ and a-0-y Tracking Filters.
Physics Laboratory Report PHL 9977-02. Distributed by NTIS, N77-
24347. January 1977.

27. Maybeck, Peter S., Stochastic Models. Estimation and Control. Vol. I,
Academic Press. 1982.

28. Yannone, Ronald M., An Adalptive UD Factorized Kalman Filter For Real-
Time Tactical Aircraft Track-While-Scan Systems Proc. IEEE
Conference on Decision ana Control, pp. 358-364, 1985.

29. Kalman. R. E., A New Aooroach to Linear Filtering and Prediction
P robems Trans. ASME, Vol. 82D. pp. 35-50, 1960.

30. Battin, R. H., Astronautical Guidance McGraw Hill, pp. 338-340, 1964.

31. Battin, R. H., and Levine, G. M., A22lication of Kalman Filtering
Techniaues in The Aoollo Program, in Theory and Aolications of
Kalman Filtering, AGARD, Feb. 1970.

32. Agee, W. and Turner, R.. Triangular Decomposition of a Positive Definite
Matrix Plus a Symmetric Dyad. with Agolication to Kalman Filtering
U.S. Army, White Sands Missile Test Range, Technical Report, No. 38,
October 1972.

33. Carlson, N.. A Fast Triangular Formulation of the Sguare-Root Filter
AIAA journal. Vol. It. No. 9, pp. 1259-1265, 1973.

34. Bierman, G. J., Factorization Methods For Discrete Seguential Estimation,
Academic press, 1977.

212

I



35. Yannone, R. M., Use of Cholesky Sguare Roots Amidst the LID
FactorizAtion Implementation of Kalman Filters R&al Time Airborne
Iradkig Systems 23rd IEEE Conference on Decision and Control.
December 1984.

36. Travassos, R. H., and Andrews, A., VLSI Imolementation of Parallel
KalImIa Filters. AIAA Guid. and Cont. Coaf., Advanced Avionics Session,
San Diego, August 1982.

37. Kung, S. Y.. Whitehouse H. J., and Kailath T., VLSI and Modern Signal
P el Prentice-Hall, Inc.. pp. 375-388, 1985.

338. Bucy, R. S., and Senne K. D., Nonlinear Filtering Algorithms for Vector
procssing Machines Comp. & Math. with AppI., Vol. 6, No. 3, pp. 317-
338, March 1980.

39. Andrews, A.. Parallel Processing of The Kalman Filter. Int. Conf. on
Parallel Processing, pp. 216-220, August 1981.

40. Travassos, R. H., Parallel Kalman Filterina ISI-04 Tech. Report, Oct.
1981.

41. Chen, C. T., Introduction to Linear System Theory Holt., Rinehart and
Winston, Inc., New York, pp. 35-49, 1970.

42. Singer. R. A. and Stein J. J, Sensor Data of Imorecisely Determined
Origin in Surveillance Systeras. Proc. of the IEEE Conf. on Decision and
Control. Miami Beach, FL.. pp. 171 -175, Dec. 197 1.

43. Singer, R. A., Sea R. G., and Housewright K. B., Derivation and
Evaluation of Imoroved Tracking Filters for Use in Multitarget
Environments. IEEE Tras. Inform. Theory, Vol. IT-20, pp. 423-432,
July 1974.

44. Jaffer, A. J. and Bar-Shalom Y., On Ootimal Tracking in Multiole-Target
nyirogments. Proc. of the Third Symp. Nonlinear Estimation and Its

Applications, pp. 112 -117, San Diego, CA, Sept. 1971.

213



45. Bar-Shalom Y., and Tse E., Tracking in a Cluttered Environments with
Probabilistic Data Association Automatica, Vol. 11, pp. 451-460, Sept.
1975.

46. Fortmann.T. e., Bar-Shalom Y., and Scheffe M.. Sonar Tracking gL
Multiple Tartets Using loint Probabilistic Data Association. IEEE Journal
of Oceanic Engineering, OE-8, No. 3, pp. 173-184, July 1983.

47. Bar-Shalom. Y.. On The Track-To-Track Correlation Problem IEEE

Trans. On AC, Vol. AC-26, April 1981.

4&. Gelb A., Anplied Ogtimal Estimation MIT Press, 1974.

49. Maybeck Peter S., Stochastic Models. Estimation. and control, Volume
I, Academic Press, Inc., 1979.

50. Hills Frederick L.. A Tactical Intelligence Processing System (TIPS)
Proc. Of The ACC, pp. 445-451, June 18-20. Seattle, WA, 1986.

51. Hayes-Roth, Frederick, ed., Building Exo-rt Systems. Addison-Wesly,
1986.

57. Engleman, C.,Berg C. H.,and Bischcoff M., KNOBS: An Exrerimental
Knowledee Based Tactical Air Mission Planning System and A Rule
Based Aircraft Identification Simulation Facility. Proc. 6th IJCAI, 1979.

53. Klahr, P., McArthur, D., and Narian, S., SWIRL: An Object-Oriented Air
Battle Simulator. Proc. AAAI, 1982.

54. Weiss, Sholom M., and Kulikowski, Casimir A., A Practical Guide to
Desig•nng Expert Systems Rowman & Allanheld Publishers, 1984.

55. Waterman Donald A., A Guide to Expert Systems Addison-Wesly, 1986.

56. Erman, L. D., Hays-Roth F., The HEARSAY-I Sgeech Understanding
System: Intetratinn [nowledge to Resolve Uncertainty Computing
Surveys, V.12, pp. 213-253, December 1980.

214



57. Nii H. P., and Feigenbaum E. A., Rule-Based Understandin? of Signals
in D. A. Waterman and Hays-Roth F., Pattern-Directed Inference
System, Academic Press, pp. 483-50 1, San Francisco, 1978.

58. Niu H. P., Feigenbaum E. A,, Anton J. S., and Rockmore A. J., SignaUt
Symbol Transformation: HASP/SIAP Case Study Al Magazine, Vol. 3,
No. 2, pp. 23-25, Spring 1982.

59. Delaney John R.. Multi-System Renort Integration Using Blackboards
Proc. of ACC, pp. 457-462, June 18-20, Seattle, WA, 1986.

60. Prade, H., A Synthetic View of Aoproximate Reasoniin. Proc. 8th
IJCAI, pp. 130-136. 1983.

61. Gaschning, J., PROSPECTOR: An Expert System for Mineral Exoloration.in
Introductory Readings in Expert Systems, Michie D. (ed.). pp. 47-65,
Gordon & Breach. 1982.

62. Shafer, G., A Mathematical Theory of Evidence Princeton University
Press, 1976.

63. Wilson G. B., Some Asoects of Data Fusion. Inter. Conf. on C3. Conf.
Public. No. 249, April 1985.

64. Barr Avron, and Feigenbaum Edward A., The Handbook of Artificial

Iziigenc. Addison-Wesley, 1982.

65. Zadeh. L. A., PROF: A Meaning R2eresentation Language for Natural
Languaes. In Fuzzy Reasoning and its Anolications Mamdani, E. H. and
Gaines, B. R. (eds.), Academic Press, 1981.

66. Zadeb L. A., Fuzzy Sets as a Basis for a Theory of Possibility Fuzzy Sets

and Syst. I, pp. 3-28, 1978.

67. Haack. S., The Philosoohy of Loics. Cambridge University Press. 198 .

68. Mamdani. E. H.. and Gaines, B. R., Fuzzy Reasoning and its Applications,
Academic Press, 198 1.

69. Shortliffe, E. H., Comouter Based Medical Consultation: MYCIN
New York: American Elsevier, 1976.

215

I



70. Weiss S. M.. Kulikowskl C. A., A marel S., Safir A.,& Model -Bsasd
Method for Computer-Aided Medical Decision-Makine. Art.
lnteUig.,l l,pp. 145-172, 1978.

71. Ishizuka M., Fu L S., YooJ. T. P., Inexact Inference &or Rule-Based
Damajge Assessment of Existing Structures. Proc. 7th IJCAI, pp. 837-842,
Vancouver, 198 1.

72. Turner Raymond. Logics for Artificial [ntelligene. Ellis Horwood
Limited,pp. 101-1 14, 1984.

73. Mamdari, E. H. and Efstathion, J., Fu= J.i. Proc. ACM Symp. on
Expert Systems, Brunel University, 1982.

74. Waltz, E. L., Data Flsion For C31 Systems, In C31 Handbook, Ist Ed.
1986.

75. Kanyuck A. j., and Singer r. a.. Correlation of Multinle -Site Track Data
IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-6, No.
2. March 1970.

76. Kenefic R. J., and Goulette P. L., Sensor Netting via the Discrete
TimeExtended Kalman Filter, IEEE Transactions on Aerospace and
electronic Systems, Vol. AES- 17. No. 4, July 198 1.

77. Chang C. B., and Youens L. C., Measurement Correlation for Multiole
Sensor Tracking in a Dense TrUe_ Environment, IEEE Transactions on
AC, Vol. AC-27, No. 6, Dec. 1982.

78. Erick Chr., Introduction on LORADS and ASDE. AGARD Conference Procc.
No. 273, pp. 19-1 to 19-18, October 1979.

79. Stoddart D. L., Aolications of Microorocessors in Air Traffic Control
Sylltm AGARD Conference Procc. No. 273, pp. 22-1 to 22-10, October
1979.

80. Woodall P. J., and Shagena J. L., Very Lightweight Air Traffic
ManaGement System Using an Eloctronic Scan Antenna AGARD
Conference Procc. No. 273, pp. 14-1 to 14-12, October 1979.

216

..... I I" - -I----- ------



81. Field Arnold, International Air Traffic Control. Pergamon Press,pp. 42-
68, 1985.

82. Fahmy Alaa M., and Titus H. A., !iQ~zontal Estimation and Information
Fusion in Distributed Sensors Networks Proc. of International
Symposium on Circuits and Systems, pp. 243-245, Philadelphia, PA,
May 4-7. 1987.

83. Fahmy Alaa M., and Titus H. A., Horizontal Estimation for the Solution of
Multitarwet Multisensor Tracking Problems. Proc. of American Control
Conference, pp. 2103-2108, Minneapolis, MN, June 10-12, 1987.

84. Konopasek Milos, and Jayaraman Sundaresan, TKISolver Book: A Guide
to Problem-Solving in Science. McGraw-Hill, 1984.

85. EXSYS, Inc., Manual of EXSYS Expert System l)evelogment Package.
Albuquerque, NM 87194, 1987.

217



BIBLIOGRAPHY

Alspach P. L., and Lobbia R. N., A Score For Correct Data Association in Multi-
Target Tracking-. 18th IEEE Conf. on Decision and Control, Dec. 12-14, Fort
Landerdale, Florida, 1979.

Baheti R. S., Efficient Aoproximation of Kalman Filter for Target Trackin.
IEEE Trans. on Aero. and Elec. Systems, Vol. AES-22, No. 1, pp. 8-14 January
1986.

Baird P. D. A., RF Simulation For Co-Ordination of E=EM Inter. Conf. on Radar,
Codt. Publication No. 155, pp. 460-462, 25-28 October 1977.

Bar-Shalom Yaakov, and Marcus Glenn D., Tracking with Measurements of
Uncertain Origin and Random Arrival Times. 18th IEEE Conf. on Decision and
Control, Dec. 12-14, Fort Landerdale, Florida. 1979.

Beam W. R.. Automated Suooort Systems in Military Command and Control
Proc. of Expert Systems in Government Symposium. pp. 357-361. Mclean,
Virginia, Oct. 22-24, 1986.

Bechtel R. J.,and Morris P. H., STAMMER; System for Tactical Assess o
Multisource Messages. Even Radar, Technical Document 252, Naval Ocean
Systems Center, May 1979.

Bechtel R. J., Morris P. H., McCall D. C., and Kibler D. F., STAMMER2: System for
Tactical Assessment of Multisource Messages. Even Radar. Technical
Document 298, Naval Ocean Systems Center, Volumes I and 2. October 1979.
Berenji Hamid, and Lum Henry, Ao2lication of Plausible Reasonin to Al

Based Control Systems Proc. of ACC, pp. 1655-1661, June 1987.

Dilletter D. R., Efficient Radar Control. Microwave lournal. January 1986.

-Binias G., Computer Controlled Tracking in Dense Tar&et Environment Usinr a
Phased Array Antenna, Inter. Conf. on Radar, Conf. Public. No. 155, pp. 155-
159, October 1977.

218



Bowman C. L.. Maximum Likelihood Trae. Correlation for Multisensor
1.m1graion 18th IEEE Conference on Decision and Control, Dec. 12-14. Fort
Landerdale, Florida 1979.

Casner P. G.. and Prengaman R. J., Integration and Automation of Multi2le Co-
Located Radars, Inter. Confer. on Radar, Conf. Publication No. 155. 25-28
October 1977.

Castella F. R.. An Adatotive Two-Dimensional Kalman Tracking Filter. IEEE
Trans. on Aero. and Elec. Systems. Vol. AES-16, No. 6. pp. 822-829,
November 1980

Castella F. R., Tracking Accuracies with Position and Rate Measurements IEEE
Trans. on Aero. and Elec. Systems, Vol. AES-17, No. 3, pp. 433-437, May
1981.

Chair 7.. Varshney P. K., Optimal Data Fusion in Multiole Sensor Detection
Systems IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-
22, No. l. January 1986.

Chong C. Y.. Mori S., and Chang K. C., Information Fusion in Distributed Sensor
Networks. Proc. of American Control Conference. 1985.

Chong C. Y., Chang L. C., and Mori S., Distributed Tracking in Distributed
Sensor NetworLs. Proceedings of ACC. June 18-20, Seattle, WA, 1986.

Cochran J. G., Current Develooments In The Design Of Air Defence Ground
Radar Systems, Inter. Conf. on Radar, Conf. Publication No. 155, pp. 16-19,
25-28 October 1977.

Courtemonche A. N.. A Rule-Based System for Sonar Disolay Analysis, Proc. of
Expert Systems in Government Symposium, pp. 338-341, Mclean, Virginia,
Oct. 22-24. 1986.

Cram L. A.. Gilday M. R.- and Rossiter K. 0., Basic Radar Evaluation By
Comouter Simulation. Inter. Conf. on Radar, Conf. Publication No. 155, pp.
455-459, 25-28 October 1977.

Dillard R. A., New Methodologies for Automated Data Fusion. Technical Report
364, Naval Ocean Systems Center, September 1978.

219



Dillard L A., Hieher Order Loqic for Platform Identification in a Production

stem Technical Document 288, Naval Ocean Systems Center, October 17,
1979.

DiUllard R. A., Rinerimental Tests of PTAIS Performance in Three Tvoes of
Production System Structures Technical Document 385, Naval Ocean Systems
Center, September 17, 1980.

Dullard R. A., A Platform-Track Association Production Subsystem. in Proc. of
the Fourth MIT/ONR Workshop on Command and Control, June 1981.

Dockery J. T., The Use of Fuzzy Sets in the Analysis of Military Command, in
Pror. 39th MORS, 1978.

Dunning B. B., Ambiguity Resolution in Contact Data Correlation. ACC.
June 18-20, Seattle, WA pp. 452-456. 1 q86.

Farina A., and Pardini S.. Track- While -Scan Aliorithm In A Clutter
wIEEE Trans. on Aerospace and Electronic Systems, Vol. AES- 14,

No. 5. pp. 769-779, Sept. 1978.

Farina A., and Pardini S., Multiradar Tracking System Using Radial Velocity
Masurments. IEEE Trans. on Aero. and Elec. Systems, Vol. AES-15, No. 4,
pp. 555-563, July 1979.

Farina A., and Studer F. A., Radar and Sensor Netting: Present and Future
Microwave Journal, January 1986.

Fitts J. M., Precision Correlation TrackinG via Optimal Weighting Functions.
18th IEEE Conference on De.sion and Control, Dec. 12-14, Fort Landerdale,
Florida, 1979.

Forrest R. N.. Three Position Estimation Pr-ocaures. Report Number NP 555-
84-13, June 1984.

Galati G., and Farina A., Signal Processing Techniques for Surveillance Radar:
An Ovriew Microwave Journal, pp. 133-140, June 1985.

220



Handelman D. A., and Stengel R. F., An Architecture for Real-Time Rule-Based
Contl Proc. of ACC, pp. 1636-1642, June 1987.

Hayes-Roth. B., The Blackboard Architecture: A General Framework for
Problem Solving. Heuristic Programming Proiect Report No. HPP-83-30,
Stanford University, May 1983.

Hayes-Roth, B., A Blackboard Model of Control. Heuristic Programming
Proiect Report No. HPP-83-38. Stanford University, June 1983.

Hutchinson C. E., The Kaiman Filter Apolied to Aerospace and Electronic
:ystems IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-20, No.
4, pp. 500-504, July 1984.

Jain R., Decisionmaking in the Presence of Fuziness and Uncertainty Proc.
Speciai Symp. on Fuzzy Set Theory and Applic.. Vol. 2 of Proc. 1977 IEEE
Conf. on Decision and Control, pp. 1318-1323. 1977.

Jazwinski A. H., Adaotive Filtering. Automatica, Vol. 5, pp. 475-485, 1969.

Kandel Abraham, Fuzzy Mathematicl Techniaues with Aoolications
Addison-Wesley Publishing Company, Inc., 1986.

Keirsey D. M., Natural Lan2ua&e Processing Anolied to Nan Tactical
ftw=z Technical Document 405, Naval Ocean Systems Center, Dec. 17,
1980.

Klemm R., Adantive Pre-Whitenin_ Filter, AGARD-CP-103, 15-18 May, 1972.

Kurien Thomas. and Washburn, Jr R. B., Multiobiect Tracking Using Passive
Sensors Procc. of ACC. June 1985.

Lindgren A. G., Irza J.. and Nardone S. C., Trajector Estimation with
Uncertain and Nonassociated Data IEEE Transactions on Aerospace and
Electronic System Vol. AES-22, No. 1. January 1986.

Marcus M., A Theory of Syntactic Recognition for Natural Language. MIT
D .Press, 1980.

221

14



McAulay R. J.,and Dentinger E., A Decision - Directed Adantive Tracker. IEEE
Tranc. on Aerospace and Electronic Systems, Vol. AES-9, No. 2. March 1973.

Mehra R. K., A2oroaches to Adaptive Filterin?. IEEE Transactions on
Automatic Control. October 1972.

Michels K. M., An Exoert System for Missile and Space Mission Determination
Proc. of Expert Systems in Government Symposium, pp. 2-13, Mclean,
Virginia, Oct. 22-24. 1986.

Miller, Jr. J. T., and Berry J. P., Multisensor Utilization Investigation IEEE
Inter. Couf. on Radar, Publication No. 155, 25-28 October 1977.

Morefield C. L., Solution of Multitarnet Multisensor Trackin Problems on the
ILLIAC IV Parallel Processor, Anual Asilomar Conference on Circuits,
Sysrems, and Computers, Nov. 22-24, 1976.

Morefield C. L., Decision Directed Multitarget Tracking- IEEE Conf. in Decision
and Control, pp. 1195-1201, 1978.

Morley A. R., and Wilson A. S., Multiradar Tracking in a Multisite
Envirnment* IEE Inter Conf. on Radar. Publication No. 155, pp. 66-7 1, 25-28
October 1977.

Nahin P. J., and Pokoski J. L., NCTR Plus Sensor Fusion Equals IFFN or Can Two
Plus Two Egual Five? IEEE Trans. on Aero. and Elec. Systems, Vol. AES- 16.
No. 3, pp. 320-337, May 1980.

Neshine F. W., and Zarchan P., Decision Tree Filters - A Nonlinear Aoo'c I&
Filtering for Fire Control APPLICATIONS IEEE Conf. on Decisiot. and Control,
San Diego, Jan. 1 0-12. 1979.

Pal Sankar K., and Majumder D. K., Fuzzy Mathematical A2oroach to Pattern
keonition. Wiley Eastern Limited, 1986.

Popoli R., and Blackman S., Exoert System Allocation for the Elect'oaically
Scanned Antenna Radar. Proc. of ACC, pp. 1821-1826, June 1987.

222

-- - -- - -- -



Porter D. W., and Engler T. S., Multi-Object Tracking via a Recursive
Generalized Likelihood Approach 18th IEEE Conference on Decision and
Control, Dec. 12-14, Fort Landerdale, Florida, 1979.

Quigley, A. C., Holmes J. E., and Tunnicliffe R. J., Radar Track Extraction
Systms Proc. of AGARD No. 197, June 1976.

RaJph A. P., Non-Linear Tracking Using Dopoler Information. Microwave
Journal, June 1985.

Ramachandra K. V.. Position. Velocity and Acceleration Estimates From The
.Noisy Radar Measurements IRE Proc. Vol. 131. Part F. No. 2. pp. 167-168,
April 1984.

Reid Donald B., An Algorithm for Trackin2 Multiple Targets. IEEE
Transactions on Automatic Control, Vol. AC-24, No. 6. December 1979.

Roberts J. B. G., Simpson P.. Merrifield B. C.. Aoolyin_ Digital VLSI Technology
to Radar Signal Processing. Microwave Journal, January 1986.

Shimura M., An A1proach to gattern Reconnition and Associative Memories
Using. Fu=zzy Logi. in Fuzzy Sets and their Application to Cognitive and
Decision Processes, Academic Press, 1975.

Singer R. A., Estimating Optimal Tracking Filter Performance for Manned
Maneuvering Targets, IEEE Trans., AES-6, pp. 473-483, 1970.

Singer R. A., and Kanyuck A. J., Comouter Control of Multiole Site Track
Correi,.Lion. Automatica, VoL 7, pp. 455-463., 1971.

Singer R. A., Stein J. J., An Optimal Trackinm Filter for Processing Sensor Data
of lmorecisely Determined Origin in Surveillance Systems IEEE Conference
on Decision and Control, December 15-17, Miami Beach, Florida, 1971.

Smith F. W.,and Spain D. S., Multisensor Tracking of Re-Entry Vehicles Proc.
of IEEE Conf. on Decision and Control, pp. 575-578, Clearwater, FL, Dec. 1976.

Smith, P. and Benchler G., A Branching Algorithm For Discriminating and
Tracking Multiple Objects IEEE Trans. AC, Vol. AC-20, pp. 10 1-104, 1975.

223

S.... ..... ..... J- ... .. ....., ....... ... ... . i- .. ... .. .. .i . ... . . ... i . ... ... .. ..... .. ... .. .. . ...i. . . ... ..... .i... . .... i.. ... .. .....i... . .... ....



Sorenson H. W., On the Development of Practical Nonlinear Filters.
Information Sciences 7, pp. 253-270. 1974.

Stigter Leo, Experience With Automatic Traakinn Systems Of The Royal
Netheriands Ntay, AGARD 78, 1978.

Tapley B. D., Schutz B. E., and Abusali P. A. M., A New Method For
Fnhancement of Data Separability and Data Classification in Multisenso' -

Multitarget Tracking Problems. Proc. of ACC, PP. 1056-1058. June 1985.

Thomas H. W., and Lafas C. C.. Use of Aircraft- Derived Data to Assist in ATC
Tracking Systems. Parn 1: Accuracy and Theoritical Considerations IEE Proc.,
Vol. 129, Pt. F, No. 4, pp. 281-288, August 1982.

Thomas H. W., and Lefas C. C., Use of Aircraft- Derived Data to Assist in ATC
Tracking Systems. Part 2: Some practical Tracking Filters IEE Proc., Vol. 129,
Pt. F. No. 5, pp. 359-365, October 1982.

Tickle G., Radar System Simulation And Performance Prediction. Inter. Conf.
on Radar, Conf. Publication No. 155, pp. 451-454, 25-28 October 1977.

Tugnait J. K., Detection and Estimation for Abruotly Chinginn Systems IEEE
Conference on Decision and Control, 1981.

Verriest E., Friedlander B.. and Morf M., Distributed Processing in Estimation
aln Detectign, Procc. of the 18th IEEE Conference on Decision .nd Control, pp.
153-157, December 12-14, Fori Lauderdale, Florida, 1979.

Wiiner D., Chang C. B., and Dunn K. P., Kalman Filter Algorithms For a Multi-
Sensor System Procc. of IEEE Conference on Decision and Control, Clearwater,
FL., Dec. 1976.

Wilson J. D., and Trunk G. V., Initiation of Tracks in a Dense Jetection
SEnvironment AGARD 78, 1978.

224

'4



INITIAL DISTRIBUTION LIST

No. Copies
I. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library. Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor H. A. Titus, Code 62Ts 3
Naval Postgraduate School
Monterey, California 93943

4. Distinguished Professor G. J. Thaler, Code 62Tr
Naval Postgraduate School
Monterey, California 93943

5. Professor Rudolf Panholzer, Code 62Pz
Naval Postgraduate Schoo
Monterey, California 93943

6. Professor N. M. Schneidewind. Code 54Ss
Naval Postgraduate School
Monterey, California 93943

7. Professor M. F. Platzer, Code 67PI
Naval Postgraduate School
Monterey, California 93943

8. Department Chairman, Code 62Po
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

9. Commander, Air force Academy
Egyptian Airforce Academy
Belbiss, Egypt

225



10. Chief, Research and Advancements Authority I
Egyptian Armored Forces Headquarter
Nacre City, Cairo, Egypt

11. Chief, Armament Authority 1
Armament Authority of Egyptian Armored Forces
Koprey EI-qubaa, Cairo, Egypt

12. Chief, Training Authority
Egyptian Armored Forces Headquarter
Nasre City. Cairo. Egypt

13. Col. Alaa M. Fahmy 13
4 All EI-laithy Street, Ard E!-golf
Heliopolis, Cairo, Egypt

14. Chief. Military Technical College I
Military Technical College
Koprey EI-qubaa. Cairo. Egypt

226


