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ABSTRACT

In recent years, there has been a considerable increase in both the
variety and number of sensors which needed to be tied together. A new
distributed estimation architecture for Distributed Sensors Networks (DSN) is
intcoduced. It is called Horizontal Estimation Architecture (HEA). The term
hocrizontal is used to imply that the geographically dispersed nodes do not
differ in rank and are peer-to-peer coupled. Each node is connected by a
data link to its neighbors (where possible), thus providing a mesh network
topology. The introduced HEA has four major components, the local
estimator, the information fusion process (both iogether are called a
horizontal estimator), the network access protocol, and the controller-
decisionmaker.

The HEA techniques are applied to the solution of Multitarget and
Multisensor Tracking (MMT) problems in Track-While-Scan (TWS) systems
with an emphasis towards track fusion. A mathematical framework which
encompasses the components of the horizontal estimator is developed, with
an emphasis towards the track [usion algorithm. An artificial intelligence
approach using expert systems for track fusion has been presented. Through
this HEA application its main features and practical usefuiness ace

addressed.
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1. INTRODUCTION

[n recent years, there has been ¢n increasing interest in Distributed
Sensors Networks (DSN). Examples can be found in Air Traffic Control (ATC)
systems, surveillance systems. and air defence systems. In these systems,
computers are siled essentially at the sensor sites, or in the display system.
and in the command and conirol areas. As a consequence, a distributed
sensors network implies a computer network, which ensures performance of
data processing, organization of infor mation display, and the communication
between the different network components, in addition to an estimation and

decision making processes.

A. MAIN DSN DEVELOPMENT ISSUES
There are many different issues which arise in the develop;xxent of a
DSN. The fundamental issues are :
1. The design of muitisensor architectures.

2. How much local processing capability should a sensor have, and how
should the data communicated by a sensor be summarized and
compressed?

3. The procedures for data fusion.
4. The performance evaluation of a muitisensor configuration.

S. The on-line management/control of an implemented muitisensors
network.

6. Provision of software and hardware, bearing in mind the growing,
restruciuring and reconfiguration capabilities.




These issues are difficuit. They become more s0 in the muititarget
environment faced in aircraft, missile, battlefield, and ocean surveillance. In
these environments, there is the added problem of data association. That is,
given a piece of data, one must determine to what it should be attributed.
Should it be one of the current objects being considered. and if so, which? or,
should it be a new clviect, or a fajse alarm?

General architectures of multisensor networks are centralized and
distributed. Several problems arise in the anaiysis and design of ihe
mentioned architectures, among them are:

a. Air-Space management, i.e, allotment of airspace sectors 1o the
sensors of the network.

b. Gathering, routing, management and dissemination of data and
results through the communication network.

¢. Organization of sensors and processors.

B. REQUIREMENTS FOR DEVELOPMENT OF DSN

There are technological advances in several disciplines, which are
providing tools for designers of DSN. An adequate development of DSN
requires the successful integration of these disciplines, e.g, modern theory of
systems and control, computer science. communications. man-machine
interactions. expert systems, information systems, reliability and
maintainability. In defense systems especiaily, there is an increasing
interest in simuitaneousty using various types of sensing techniques co-
operating with each other, such as various types of radars, infrared detecting
passive radio surveillance, and laser systems. The combination gives rise to
a system concept which requires [ocation of objects and detection over a

wide frequency spectrum. This decreases the effect of unintentional and
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intentional interferences, and increases the system reliability and
survivability. In addition, the use of passive sensors improves the system's
coveriness. Also, a defense system is required to remain reliable and secure
in the presence of intense hostile activity, which will probably include
destructive actions.

Today. the communication is both slower and more costly than
computation and processing. Present trends indicate that these imbalances
in speed and costs of communications and processing will not only continue
but are likely to greatly increase [Ref. 1). Military communication systems
are generally designed and tested in a peacetime setting. However, their
greatest test will come in a conflict situation, when the need to communicate
becomes great and hostile enemy actions, including physical destruction and
electronic counter measures will create node and link failures and a
dynamicaily changing network topology. So, one of the prime motivations in
DSN is to try to minimize the communication load between different sites or
nodes.

Since the sensors are the means by which a decision making process
observes the environment , which is generally a dynamically changing
environment in the presence of uncertainties, sensor measurements are used
to reduce these uncertainties, and determine the current state of the system.
So. DSN implicitly includes an estimation process in addition to a decision
making process. The future trends of decision making in domplex
technological environments are towards decentralized strategies. These

trends are being supported by the fruitful progress in the direction of

15




distributed computer architectures, distributed dala processing, distributed
knowledge based systems and fifth generatinn computers.

The Japanese Fifth Generation Computer Systems (FGCS) project is
direcied toward nonnumeric applications. The more traditional systems
application of number crunching is not an issue in the FGCS. It is expected
that the supercomputers being developed today will perform these tasks.
The FGCS project is directed instead toward applied artificial intelligence and
symbol manipuiation. In other words, the next generation of computers is
being designed to manipulate knowledge. It will employ and exploit
nowledge-based sysiem technology.

.. DISTRIBUTED ESTIMATION AECHITECTURES

A distributed estimation architecture for DSN is introduced bearing in
mind previously mentioned considerations. Research in distributed
estimation has progressed along severai directions. A survey of these
directions can be found in the paper by Chong, Tse and Mori [Ref. 2], and its
references [Ref. 3.4.5.6). The estimation architectures used are mainly
hierarchical and centralized. In our approach, the Horizontal Estimation
Architecture ( HEA ) is introduced. The term horizontal is used to imply that
the geographically dispersed nodes do not differ in rank. They are of equal
status and peer- 10 - peer coupled, and emphasizing the nonhierarchical
architecture used, ,

The practical usefuiness and the performance of HEA techigues are better
described with reference 10 the particular applications for which they are
designed. Multitarget Multisensor Tracking (MMT) problems in Track -
While-Scan (TWS) systems, has been selected as a specific problem o be

16




addressed, emphasising the infor mation (track) fusion process. A
mathematical model for MMT is presented. An algorithm for pairwise track
fusion is derived and the optimality of HEA track fusion is justified. An

artificial intelligence approach using expert systems for track fusion has

been presented. Through the HEA application its main features and practical
usefuiness are addressed.
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[1. HORIZONTAL ESTIMATION ARCHITECTURE

A. MAIN FEATURES OF HEA

The main concept of distributed estimation applied to DSN is used.
Specifically. each node in the network performs local processing of the data
collected only by its own sensor or sensors. The locally processed data from
each node are communicated through an appropriate data link to its
neighboring nodes (where possible), in addition to using it locally. Thus
providing a mesh network topology ( Figure 2.1).

o ° Network Node

— s Communication Link

FIGURE 2.1. Mesh Network Topclogy




B. GRAPH REPRESENTATION OF A MESH NETWORK

Using graph theory with some modifications, we represent the mesh
network as a directed graph G [Ref. 7:pp. 424-473].

Definition: Let V be a finite set. A mesh network can be represented as a
directed graph (or digraph) G on V. made up of the elements of V, called the
nodes of G, and a subset E of the cross product V X V, called the
commugication links of G. If ab € V and (a,b) €E. then there is a
communication link from a to b. Node a is called source of the link, with o
the terminus, or lerminating node, and we say that b is neighbor to a, and a
is neighbor to b. It is asumed that G is loop {ree, and there are no isolated
nodes. Generally each node is a source and terminus.

Based on that definition. let V be the set of nodes, whiie E is the set of
communication links, and it is a subset of the cross product of the sets V and
V.ie

EC(VxV) (2.1
where VxVs((abg,...n)labec..n€V) (2.2)
and we write the mesh network G as

G=(V.E) (2.3)

where G, usually is not fuily connected, i.e. for all 1.y € V. X1 # y, there is not
necessary a link from 1 to y. In mesh networks, a link is often directed in
both directions (bidirectional). Consequently, if G is a directed graph and ab
e€V.a# b, withboth (ab).(b.a) € E. the undirected link in Figure 2.2(b), are

used to represent the bidirectional link shown in Figure 2.2(a). In this case,

a and b are called neighboring nodes, and it is represented as




((a.b]) = ((a.b).(b,a)). In HEA the data processing capacity can vary from node

to node, and communication capacity can vary from link to link.

b b
/O
/
/
/
/
Q
d a
(a) (b)

Figure 2.2. Representation of a Bidirectional Link

V={apb,cde,[r)

E = ([a,0), (ael, [a1], [bf), [e.f], (b,0), (d,0), [de] ]

G=(V,E)

Figure 2.3. Mesh Network Representation Using
Directed Graphs
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Example: The mesh network shown in Figure 2.3, is represented as
G-(V,E)
where V - {ab.cdef)
and VxV-{(abcdef)labcdef €V}
and EC(V xYV)
E - {labl lael [af], [bf), [ef]. (be), (dc), [del}
It is clear that (b.c) indicate a unidirectional link from b to ¢, and [a,b]

indicate a bidirectional link between a and b.

C. PROPOSED DSN INTELLECTUAL ASSETS

In the literature, data and information are used interchangeably.
Actually, data and information are not synonymous. There is a distihction
between them. Data become infor mation only when they are useful and
available. This means that informatjon is produced as output of data
processing operations and used to enhance understanding and to achieve
specific purposes [Ref. 8). Figure 2.4, shows a pictorial view of a proposed .
DSN intellectual assets shown as a four layer pyramid. The bottom layer is
the data collected by sensors, which are processed using a data processing
mechanism. The results of the data processing are information, whick is the
second layer, and it is apparently the processed data. The information added
to the expertise of a human expert, resulting in knowledge, which is the
third layer. The knowledge is used for developing the knowledge-base,
which is the core of the expert system. The expert system is used for aiding
the controller-decisionmaker in giving intelligent decisions, which is the

utmost purpose of the DSN. It i3 noted that the human expert is kept in the
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loop from time to time to adapt the knowledge-base to cope with the
changes in any situation affecting the environment sensed by the sensors.

Based on that, .he result of processing data at each node taken by its own
sensor or sensors is local information, which is tied or fused with the
incoming information from neighboring nodes to obtain an updated situation
assesment at each node and forming a coherent picture that resembles as
closely as possible what is happening in the local area of interest.
Consequently, we have termed the bringing together of locally processed
data from different neighboring nodes ifito a coherent picture " infor mation
fusion”.

In fact, by infor mation fusion we also mean to inciude all sources of
infor mation. not just that from processing electromagnetic, acoustic, optical
and infrared sensors data. There are for example in defense systems, human
observers providing intelligence in.'ormatioh and a background of |
encyclopaedic infor mation and operational plans [Ref. 9]. Also, fusing local
infor mation and incoming infor mation from neighboring nodes can be done
only after deciding that they are originated only from thg same origin. So,

the fusion process implies a decision process.
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D. INFORMATION ELEMENTS OVERLAPPING IN HEA

The principle of inclusion and exclusion is adopted with slight
modifications to represent the information overlapping of different nodes in
HEA {Ref. 7:pp. 190-213]. Let S be a set with N=({S|, where Sl is the
cardinality or size of S. i.e. denotes the number of elements of S (in MMT
case it can be the number of tracks). Let ¢y, ¢y, ....C; be a collection of
conditions or properties satisfied by some, or all, of the elements of S. Some
elements of S may satisfy more than one of the conditions (e.g. range and

bearing in MMT case), while some may not satisfy any of them. For | i st
N(¢;) will denote the qumber of elements in S that satisfy condition ¢; For i, j

€ (1.2.3 . A}, ifj, N(cy) will denote the number of elements in S that
satisfy both of the conditions c;.c;, N(cc;) does not count the elements of S
that satisfy only one of the conditions ¢; and ¢;. If 1 £i,j, k St are ihree
distinct integers, then N(cicicy) denotes the number of elements in §
satisfying each of the conditions c;, ¢; and ¢, (e.g. range, bearing and velocity
in MMT case). For | $i 5t, N(C;) denotes the numter of elements in S that
do not satisfy condition c;. In this case, N(C;) = N- N(c;). If I si,j d¢, ifj,

N(¢,C;) = the sumber of elements in S that do not satisfy both of the

conditions c; and c;.




{
¢
[

FIGURE 2.5. Two Information Elements Inclusion and Exclusion

From the Venn diagram in Figure 2.5, it is seen that if N(c;) denotes the
number of elements in the left-hand circle and N(c;) denotes the aumber of
elements in the right-hand circle, then N{c;c;) is the aumber of elements in
the overlap, while N(C;C;) counts the elements outside the union of these
circles. Consequently, N(Eiéi) = N - [N(c;) + N(c;)] + N(c;cy), where Lhe fast term
is added ov since it was eliminated twice in the term [N(c;) + N(c))). In like
manner, from Figure 2.6,

N(€;CiS¢) = N - [N(c;) + Nlgy) + Nlcy )] + IN(cycp) + Nlcyeg) « Nlcyee)] - Nlcyeieg)
Generalfy, the number of elements of S that satisfy none of th2 conditions c;,
Sistis
N(€|C5Cs.....E) = N - [N(cy) + N(cg) « Nlcg) + -evoveecees + N(cy))
v [N(cicp) + Nlcjcs) #errveenn + N(cyc,) + Nlcaes) + -+ Nlcy. )]
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Igict bgicict feicBet
+ (-1)t Nlcyescq - ¢) (2.4)
[ -
, N(clc‘ck)

. S
N(c,c.c.) AN
LA N / N(c,)

N(clc‘ck)

FIGURE 2.6. Three Information Elements Inclusion and Exclusion

Now, assuming the number of elements in S that satisfy ezactly m of the t
conditions is ey Where | s m it then

e- N(C|E'253 ...... Et) . N(E|C2€3 ...... Et) & e + N((-:lEgEs ...... C‘). (2.3)

and
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€3 = N(¢;C2C3....Gy) + N(CCpCy..r§) + wonr # NGy €23 Gy g€y Gy, (2.6)

(t=23)

FIGURE 2.7. Information Elements Inclusion for t~3

Using these results as a starting place, as Figure 2.7 is examined, where

t=3, a numbered condition is placed beside the circle represeating those
elements of S satis{ying that particular condition. Then e, equais the

number of elements in region 2, 3, 4. But it can be written that
e, = N(cy) + Nlcy) » Nlc3) - 2[N(c cp) + N(cycs) + Nlcyea)l + 3N(cycqe3)  (2.7)
In Nlcy) + N(cp) + N(cz) the elements in regions S, 6, and 7 are counted twice

and those in region 8 are counted three times. [n the next term the

elements in regions S, 6. and 7 are deleted twice. The elements in region 8




are removed six times in 2[N(c;c;) + N(c,cs) « N(cyc3)l, so the term 3N(c,cac3)

is added and end up not counting the elements in region 8 at all. Hence,
€ =S;-25,+38;=8;-(3)s,+(3)ss (2.8)
For e, . the earlier equation indicates that it is needed to count the

elements of S in regions S, 6, and 7. From the Venn diagram
G- N(C,Cz) * N(C.Cg) + N(¢2C3) - 3N(C|C203)

~S2-383=8,-(])S; (2.9)
and
@3 = N(ciccs) = Sy (2.10)
Generally, for any | Sm st the number of elemexgts in S that satisfy exactly
@ of the conditions ¢y, Cq, C3 -+ ¢, is given by
€n = Sa - (7' )Sg.i + ( )Sgay - e+ (-1)@ (IS, (211

E. COMMUNICATICNS BETWEEN DIFFERENT NODES
To enable communications between different nodes (processors) the
following items must be considered (Ref. 10} :

1. The electrical and physical characteristics of the medium chosen for
the interconnection.

2. The signalling used to ensure the reliable transmission and reception
of data.

L

. The means of effecting flow controi in order 10 align the rate of daia
exchange with the processing capabilities of the machines.

Actuaily, when two information nodes communicate across a network, a
network access protocol between vach node and network is needed. The
requirements {or such a protocol differ significantly for a communication
networking technique to another. By protocols, we mean the set of :‘ules,

procedures and conventicns by which information is transported through the
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computer communications network. The key elements of a protocol are [Ref.
1)
1. Syntax: includes such things as information format and signal levels,

2. Semantics: includes control informatjon for coordination and error
handling.

5. Timing: includes speed matching and sequencing.

F. MAIN COMPONENTS OF HEA

Based on the previously mentioned distributed estimation approach,
Figure 2.8, shows a pictorial generic view of the main components of the
Horizontal Estimation Architecture (HEA). By architecture we mean the set
of algorithms, ruies, conventions and protocols that implement the horizontal
estimation fuactions and their interrelationships. The introduced HEA has
four major components, the local estimator, the information fusion process
(both together are called Horizontal Estimator), the network access protocois,
and the controller-decisionﬁaker. ,

The control policy used is decentralised, with control decisions made
independently by each node using the estimates of the states resulting from
the infor mation fusion process. The expected value of a quadratic
perfor mance index i minimized (o assure maximum sysiem robusiness.
That is, gradual or partial system failures would have minimum degradation
in the performance. Also, it avoids the development of complex strategies
which are difficult and costly 10 achieve and implement.
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6. PROPOSED FUNCTIONAL ELEMENTS OF A DSN

Based on the HEA, we view the DSN to be represented as shown in Figure
29, by five basic functional elements : the environment, sensors, ihe
horizontal estimator, data communications network. and controller-
decisionmaker.

Each sensor compiex. horizontal estimator. and controller -decisionmaker
18 sited in a node. Which we call an “information node” Lo differentiate it.
[rom a communication node. Throughout the sequel, node is used L0 indicate
the imnfor mauon node. Each information node is connected through a
communications node and an appropriate data link to its nearest neighboring
nodes, thus providing a mesh network topology. As mentioned before. each
information node performs processing [unctions by local estimator using the
local sensortsensors) data, communicating the processing re_sults to other
neighboring nodes, in addition to using it locaily. The information fusion
process fuses the information received from neighboring nodes with the local y
information. The HEA can be further extended to cover a very large scale .
DSN 1n the case when each node can be the central processor of 2 centralised
network, and, or a global estimator {parent node) of a hierarchicai network

tFigure 2.101

H MOTIVATIONS TO HEA

In HEA, the approach of “divide and conquer” which 1s useful f'or most
compiex probiems can be easily used. Partjtioning atllows any. {arge compiex
svstem 1o be divided into manageable portions. Another motivation to the
HEA is that network splitting and reformation or connection of additional

compatible networks are practicable during system operation and do not
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cause any restriction as a new system is initiated. Additional advantages of
this design approach are, usage of microcomputer systems. which provide a
cost-effective solution for data processing, reliability, survivability, local
autonomy, heterogeneous feature, [ow cost communications and its

practicability for already existing infor mation nodes, which need 1o be tied
together. The partitioning approach used in HEA allows large complex
systems to be divided into manageable proportions.
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I11. QVERYIEW OF TRACK-WHILE-SCAN SYSTEMS

A. TWS RADAR SYSTEM CONCEPT

The process of tracking targets based on discrete radar information
obtained while the radar continues to scan the airspace is referred to as the
Track-While-Scan (TWS) processiRef. 12}, and is accomplished in a digital
computer in modern day surveillance radars. For a TWS system. search and
track update functions are simuitaneously performed. in TWS, a single
sensor scanning at a constant rate illuminates new targets and targets
already in track files at the same time. Also, only those Labget tracks that
remain within the TWS search volume can be maintained. In an automatic
TWS air-surveillance system, the radar sensor reports measurements of
target observations at reguiar intervals of time to a computer, which then
assembies the observations from successive scans into tracks. The computer
software must correctly associate new plots v}itn the existing tracks and
initiate new tracks from reports received on air targets within range of the
radar. The association task is aided by tracking filters which combine noisy
measurements with track predictions to obtain smoothed updated track
estimates. The predicted position of the target for the next radar scan, based
on the smoothed estimate of the current position of the target, is used
together with the estimated standard deviation of the prediction to
determine the iocation and size of the region of acceptability of nev)
observations on the target. The tracking filter thus plays an essential role in

the function of plot- to- track association, in addition to its role of providing
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accurate estimates of the position and motion of the target. In TWS oaly
position and velocity states are estimated because with low updste rates

( like every 4 seconds), the noisy acceleration estimates would not contribute
very much. Typically, in intercept problems. the missile requires only line of
sight rates for deployment.

For the TWS system, both search and track update are done
simuftaneousiy. At the end of the scan intervali, all observations received
during the scan are correlated with the existing tracks. An operatjonal air-
surveillance system must be capabie of tracking magy targets
simuftaneousiy in an environmert that mav provide large numbers of {alse
.arget indications due 1o real and artificial cfutter as well as system noise.
The measurement accuracy obtained and the tracking precision of such
systems may not demand the most computationally compiex fiitering
operations. [t is essential that the filtering operations give sufficient support
to the association procedures; any .complexity beyond that and not necessary
for this task is of diminishing vaiue. It is important however that the filter
be sufficiently flexible to adjust quickly to changes in the traeking
environment. The literature on the techniques of track filtering is very large
and diverse. [t is important 10 use 3imple, easily implemented. and
computationally inexpensive fiiters whicih nevertheiess retain as far as
possible the features of optimality and (lexibility which the most general and
expensive forms embody.

3y automating the target detection and tracking procéss (Automatic
Detection and Tracking) which is called ADT, the bandwidth in the output of

a radar is reduced so as to allow the radar data to be transmitted (0 another




location via narrowband communication links rather than wideband
communication links [Ref. 12,13). This permits the outputs of many radars
to be intercommunicated economically.

B. TWS RADAR FUNCTIONS

The signal processor determines the presence or absence of targets while
rejecting unwanted signals due (o ground clutter, sea clutter, weather, radio-
frequency interference, noise sources and intentional jammers. It is
performed by coherent and/or non-coherent processing of time samples of
the received signals [Ref. 13]. The signal processor is implemented in real-
time special purpose hardware. Basic operations that are now routinely
exploited as a result of the advances in digital technology [Ref. 14], include:

1. Pulse Compression (PC) |

Pulse Doppler Processing (PDP)
Moving Target Indicator (MTI)
Moving Target Detector (MTD)
Constant False Alarm Rate (CFAR) circuit

W wnN
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The data extractor provides the target measurements in range, angles
(azimuth, elevation), radial velocity and possibly provides target signature.
In general, a target may cause several detections in adjacent cells in range,
Doppier frequency and angles. The centroid of the corresponding pattern of
detections gives an estimate of the target measurements. The data extractor
is generally impiemented with a dedicated microcomputer.

The data processing is performed on a digital computer inserted between
the piot extractor and immediutely before the dispiay. It can be defined as
the set of aigorithms which, when applied to the radar detections acquired
during successive scans, allows the following:

1. Recognition of a pattern of successive detections as pertaining 0 the
same target.

2. Estimation of the kinematic parameters (position, velocity, and
~acceleration) of a target, thus establishing a so-called " target track .

3. Extrapoiation of the track parameters.

4. Distinguishing of different targets and thus establishirg a different
track for each target.

S. Distinguishing of faise detections (caused by intentional or natural
interfereiice) from true targets.

€. Adaptive refinement of the threshoid setiing of the signal processor
in order t0 make the radar more or less sensitive in the different
spatial directions, depending on the content of a map of faise
detections refreshed on a scan-to-scan base.

As shown in Figure 3.1, it s importiant to smphasize that the cascade of
signal processor, data extractor, and data processor is uitimately a
bandwicth compressor. It receives data 51 a high rate and processes the
signal in such a manner that 4 relatively low data rate is achieved. This

feature is pictorially indicated by the natrowing of the arrows moving {rom
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the left to the right of the cascaded processors. At the same time, there is a
progressive discrimination between useful and clutter data, by means of a
stepwise decision process. The information handled by the processing “hain
i8 progressively manipulated into a form which allows easier decision
making by the user. In fact, the raw video signal contains many faise
echoes. The data extractor isolates the useful target and the data processor
identifies the target ( possibly labelled with a code), determines the target
velocity and additional parameters which are presented in a tabular dispiay.
A further observation can be made regarding the increase of the time span
in which processing is performed through the cascade. The signal processor
involves only a few puises, the data extractor some adjacent groups of puises
and the data processor consecutive radar scans. In other words, the memory
of the processing increases oo moving from left to right in Figure 3.1.

So, these TWS systems are excellent candidates for the application of HEA,
since they are aiready have their local estimation. processors which perform
the functions of track initiation, plot-track correlation, track prediction, track

filtering, and track termination.

C. RADAR OUTPUT

The output of a TWS radar is generally a display to visuajise the
infor mation contained in the radar echo signal in a form suitable for operator
interpretation and action. The visuaiised information on the dispiay is called
" synthetic video’ in contrast to the so cailed “ raw video” which is the
infor mation shown when the disglay is connected directly to the video
output of the receiver [Ref. 14,15]. Synthetic displayy, whilst being a

processed representation of the signais which are being received by the
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radar sensors, have the advantage that all responses, irrespective of the
weakness of the returned signal, can be dispayed at a constant level of
brilliance and clarity. The Plan Position Indicator (PPI), the usual display
employed in radar, indicates range ar.d azimuth of a detected target. The
idea of tracking is easily visualized if successive scans containing a maving
target are superimposed, the target then gives rise (0 a fairly regularly
spaced sequence of returns.

In the past, an operator manually marked the {ocation of the target at
each scan with a grease pencil on the face of PPI. This procedure was very
simple but offered poor accuracy and simultaneous processing of only a few
targets, due to operator fatigue. The limitations of the operator have been
overcome by resorting to a computer which automatically performs the
whole tracking process. This computer has been referred to as the ~ data
processor “ in Figure 3.1. In order to design an automatic procedure to track
one or more targets, it is convenient to examine the nature of the plot
sequence provided by TWS radar. The better the expected properties of the
sequence can be defined, the greater is the ability of the tracker to
distinguish among different targets and faise plots. False plots are caused by
clutter, intentional interference and noise which survives the action of signal
processing. The spacing of the consecutive target plots is caused by the
target velocity which may vary in time as the target executes various
maneuvers. [n the case where the target is an aircrafi, upper and lower
limits can be piaced on the magnitude of the velocity. Further, an upper
limit on the magnitude of the acceleration of the aircraft usefully restricts

the possible tracks the aircraft can make.
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D. CLASSES OF TRACKS
In a modern TWS system, a set of computer software establishes and
maintains a number of files pertaining to three different classes:

1. Firm tracks; a firm track occurs when the path of a target has been
acquired by the data processor and the kinematic parameters
estimated with sufficient accuracy.

2. Tentative tracks; a tentative track corresponds to the first phase of
the track acquisition of target or clutter plots.

3. Stationary tracks; a stationary track pertains to ciutter, since its
position does not significantly change from scan to scan.

The files are produced by processing the plots received from the radar on
a scan-to-scan basis and stored in a buffer as, as outlined in Figure 3.2. The
contents of the output buffers are periodically updated and displayed to the
operator. A firm track occurs when the path of a target has been aquired by
the data processor and the kinematic parameters estimated with sufficient
accuracy. By contrast, a tentative track corresponds to the first phase of the
track acquisition of target or clutier plots. Pinally, a stationary track
pertains to clutter, since its position does not significantly chzage from scan
to scan. The tracks have been divided into different classes because their

corresponding processing and utilization differ.
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E. THE CLUTTER MAP

Because an operational environment may be affected by a large number
of false target indications caused by fixed and moving clutter as well as
system noise, a particular attention must be paid to filtering out these
disturbances. This is carried out by the formation and updating of a clutter
map. which identifies spurious plots from the input buffer so that the
remaining plots pertain only to valid targets. The use of the ciutter map
produces some benefits to a radar operating in a ciutter environment:

{. It allows proper selection of signal-processor operating modes ( e.g.
the MTI is switcned on only where it is needed, thus avoiding
unnecessary detection performance degradation in a clear
environment, the thresholds of the detection logic are controlled
according to the residual ciutter power).

- 2. It allows removal of clutter points from the radar piot buffer, thus
preventing saturation of the processing and the formation of spurious
tracks which reduce confidence in the track data. The clutter map
updating process is also referred to as a Stationary Track Filter (STF) or
Scan to Scan Correlator (SSC), [Ref. 17).

The STF acts as a velocity discriminator upon the piot stream coming
from the data extractor. Plots which appear to be stationary or slowly
moving {rom scan to scan are stored in the clutter map. Each new incoming
plot is compared with the content of the map, if the plot fails within a
defined capture area around one of the clutter map entries. then the new
plot is deemed to be clutter. As a consequence , it updates the clutter map
content and is deleted from the radar pfot buffer. STF can aiso be considered
as a device capabie of forming canceilation masks centered around targets

(true or spurious) with a velocity befow an established threshoid value.
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The velocity discrimination is performed by comparing the plot
displacement in two or more of the subsequent scans with respect (o a gate
centred around the first position (aiready measured) of the clutter map
entry. [t is obvious that, for clutter points or slow-moving targets, the
subsequent echoes remain in the gate for a large number of scans, but for
fast targets, the echoes are in the gate for only few scans. By computation of
the scans required by the target to leave the gate, it is possible to determine
its velocity.

F. OPERATIONAL REQUIREMENTS

The operational requirements for data processing vary with the type of
application. Typical requirements are estimation accuracy, exirapolation
time and system reliability [Ref. 17). In maritime collision-avoidance
systems it is necessary to detect potential collisions well in advance (15-30
minutes) because of long reaction times, especially for large ships such as oil
tankers. The estimation error on the forecast position must be lower than
one nautical mile. Therefore the accuracy by which the velocity is estimated
must be within | knot. This requirement determines the degree of filtering
to be applied taking into account the measurement error and the data rate of
the radar.

In the case of ATC, the radar information may support the function of
tactical control, conflict alert and approach control. In tactical control, the
radar controiler checks the current positions of the aircraft to maintain the
standard separations. Whenever the separations tend 1o be violated, the
radar controller advises the piiots involved about the local trajectory

modifications required to re-establish acceptable conditions. [n conflict
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alert, the processing system estimates the forecast positions of al] the
aircraft to determine the conflicting pairs of aircraft; the extrapolation time
is from 1 to 2 minutes. The processing system can also evaluate the
trajectory modifications for one or both aircraft to resotve the conflict
situation. In this case, one nautical mile may also be assumed as an
acceptable accuracy in the estimation of forecast position. Of course, possible
maneuvers during the extrapolation time may be taken into account in the
evaluation of the conflict area. Therefore, where two aircraft are conflict
~free when [lying straight and could be taken into conflict if one or both
maneuver, an order may be given to both aircraft to keep the straight
trajectory constant. In approach control, the controller checks that aircraft
follow fixed paths to assure a safe landing. A higher accuracy than the
preceding one is required here, j.e. a fraction of one nautical mile.
In an air-defence system. the estimated trajectory is generally used to

help perform some of the following functions:

a. threat identification

b. threat evaluation

c. calculation of the forecast position (for fire or launch of missile)

d. weapon assignment

e. kill evaluation
The functions a 10 e do not necessarily use the measurements of one single
radar. For exampile the fire controf function ¢ is generally performed by a
tracking radar with the characteristics of good accuracy and high data rate.

It may be noted that in ATC, all the trajectories are easy to follow

because of path regularity, low acceleration (2-3 m/s?) and pilot
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collaboration; whereas, in air defence, targets have high accelerations (10-50
m/s?) and manoeuvres that are intentionally evasive. Furthermore, it is
important to have a very short reaction time, especially for targets detected
at short range such as low-{lying aircraft and sea -skimmer missiles.
Generally. the data processing from a radar extractor is more difficuit for
air-defence systems than that for civil-traffic control, because the target
acceleration is high and unpredictable. [n addition, jammers interfere with
the proper working of the system. The effects of these phenomena are
reduced by radar signal processing using pacticular devices, such as moving-

target detector and multisidelobe canceller, which limit the {aise detections.

G. NETTED RADAR SYSTEMS
Much recent interest has centered around radar netting. Estimation of
location, velocity and maneuver together with possible identification of each
relevant target can-be provided by Radar Data Processing (RDP) with an
accuracy and reliability greater than that available from a single look radar
report. Today, it is also very important to net different types of sensors in
addition to radars in order to enhance performance. The current various
types of radar networks can be classified according to the level at which the
merging of data is taking place into the two following classes: |
1. centralized
2. distributed
The centralized architecture (see Figure 3.3) is characterised by the use of
a single data processor t0 which radar plots are transmitted from radar sites.
These measurements are processed so as to obtain a single multiradar track

for each target. This architecture has the features of :
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a. using tracking algorithms with variable data rate.

b. reducing tracking errors because of the higher data rate than with a
single radar.

¢. requiring more powerful processing resources.

d. being the prevalent type in mijlitary applications owing to the higher
accuracy gained.

The distributed architecture (see Figure 3.4) is characterised by the use of
a computer at each site performing the tracking function on the
measurements of a single radar. The monoradar tracks instead of radar
plots are then transmitted to a single data-processing ceatre which combines
them in order to eétablish a single muitiradar track for each target. The

following featucres are relevant for this architecture:

it is capable of local operation.

it requires computing resources of limited power.

it mainly requires monoradar processing algorithms.

it prevails in ATC because of simplicity, reliability and growth capability.
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FIGURE 3.3. Centralized Architecture of a Radar Network
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The proposed HEA as a distributed architecture applied [or radar netting
would be convenient and cost effective to be used specially for modern TWS
radars which have their local tracking systems already installed and it
guarantees the maximum utilization of the local resources of each radar site
and taking advantage of the advanced techniques taking place in each major
block of the radar systems (Figure 3.5). The probjem of the lack of
experienced decision makers which lead 10 the centraiization of decision

making can be solved by the use of expert systems and encapsuiate the

decision maker expertise in computer software.
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FIGURE 3.5. Advanced Techniques ia the
Main Blocks of a Radar System
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1V. REA APPLICATION TO MMT PROBLEMS

A. OVERLAPPING COVERAGE OF A RADAR NETWORK
The HEA is applied to the Multitarget Multisenscr Tracking (MMT)

problems in a tactical air surveillance system. The problem is io produce a

~ statistically meaningful estimate of both the number of the targets present,

| and of their trajectories. It is assumed that the system employs Track-

While-Scan (TWS) radars with different scan rates and with overlapped
coverage. The degree of overlap of the radar coverage is defined is as

N
g - }__‘, A/ Ay, (4.1)
4=

Where AJ. is the area covered by the jth radar

Ay is the total surveillance area controlled by the radar

N  is the number of radar sites(nodes)
The parameter € ranges from | (absence of overlap) to N (total overlap).

Figure 4.1, shows an example of overiapping coverages between three
radars, R, R2 . R3 . If the degree of overiap is very small, the advantages of

the data redundancy are limited.on average, to stuall areas and few targets.
Assuming that the targets are evenly distributed in A with density §, then it

follows [rom equation ( 4.1 ) that

N
- 2 n 6/ 10,8 (4.2)
J=1
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N
- 2.0 /1, (4.3)
=

Where n is the number of targets in the area AJ

n, is the number of targets in the total area A

FIGURE 4.1. Example of Overlapping Coverage Between
3 Radars in a Network

Generally, the most obvious exyploitation of additional radar sites is (o
extend the coveragé beyond ine maximum range of a single radar, as
established either by line of sight or by radar power. Also, the viewing of a
target {from different aspects angles tends to reduce target fades, glint and
terrain masking effects. It is assumed that radar sites will be primarity
chosen with the aim of optimal radar coverage of the entire network. We
consider the multitarget and muitisensor problems separately, and then

merge the two. This means that the muititarget tracking problem is solved
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at the sensor (node) leve! using the appropriate local estimation algorithm.
When the multitarget tracking problem is scived separately for each
individual node, a somewhat redundant view of the surveillance area will
resuit, depending on the degree of overlapping coverages hetween the
radars. The output of the local estimator is a group of different tracks. A
track. is meant to be a state trajectory estimated from a set of sensor
measurements that have been associated with the same target (Ref. 18}. By
assuming that the multitarget tracking problem is solved separately for each
individual sensor (node), the track estimates for targets in the surveillance
area become consoﬁda-ted first at the level of each individual node. The
information fusion process decides whether more than one track from
different nodes represent the same target, and combines the corresponding
consistent tracks. The techniques for information fusion can be based on
algorithmic processing of lLarget kinematic information and heuristic
reasoning for attribute information by using expert systems L0 encapsulate
target identity, behaviour, intent, tactical appreciation and human expertise

in computer software.

B. DISCRETIZATION OF A SYSTEM DYNAMICS MODEL

The mathematicai modei of a target motion, as state equation, is derived
when assuming that the target nor maily moves at constant velocity, and
turns or evasive maneuvers may be considered as perturbations upon the
straight lines. Therefore acceleration is a driving input {or the state
equation which is usually linear. A simple way (0 model the unpredictable

behaviour of acceleration is to consider a non-Gaussian stochastic stationary

process (symmeiric with Zzero mean and proper standard deviation) with a




correfation depending on the time duration of manoeuvre [Ref. 18). When
an aircraft flies, it normally maintains a constant velocity, constant heading
trajectory. Consequently, the system dynamics model is given by the
following continuous time state equation

x(t) = A x(t)+ G wi(t) (4.4)
Where w(t) is the random forcing function ( continuous Lime white process
noise), w(t) ~( 0,0 ). We wish to put the continuous equation (4.4) into the
discrete form

x (k+1) =dx(k) + wik) (4.5)

Where w(t) is the confribution {rom the random forcing function. The
general solution of (4.4) for x(t) given the value x(t,) at initial time t, is

t
Xt = #(tt)) x(ty)+ [&(t,76(T w(T) aT (46)
%

Defining T to be the sampling interval, to describe the state propagation
between states, let ¢ = (k+1)T, ty> k7 for an integer k and assuming

stationarity, so that.

¢(t,t0)' ¢(t-to) = $(T) (4.7)
Defining the sampied state function as x(k) = x(kT ) we can write
(ke )T |
xtke1) = ®(T) x(k)+ [®((k*1) T-T) 6 w(T) d7 (4.8)
kT

The second term in the right hand side is a low pass fiitered version of the
continucus white process noise w(t) weighted by the state transition matrix

and the noise input matrix G.
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On changing variable twice ( £ = T— kT and then Also, T =T - §), the limits
of integration can be set to 0 and T, so that, as a first step in the discrete
formulation of (4.4), we obtain
T
x(k+1) = &(T) x(k)*{é(T)Gw(T) ar (4.9)

Again under the assumption of stationarity. the transition matrix can be
expressed in terms of the matrix exponential. Then, an expansion can be

performed to give an approximate solution:
S(T)xe™ =1« AT+ (AT)2/2% +( AT )*/ni (4.10)

Where | is the identity matrix. If terms of order T2 and higher are
disregarded, then the result is Euler's approzimation to the sampled svstem.
Equation (4.9) becomes

S(T)= | +AT (41D
and the discrete - time process noise w(k) relates to the continuous time one

as follows

wik) = [&(1)6 w(T) dt (4.12)
0

To find the covariance Q (k) of the new noise sequence w(k) in terms of Q,

we write : %
QK) =E[wk)w (K)] ‘

(keDT

Q (k)= ffﬂ(kd)T-T)G EIw(T) W' (0)16 9 ((k+1)T-0) dTdo  (4.13)
KT
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But Elw(m wT(o)l -Q 8 T-0)
So

ke T
Q)= [Slk+1)T-TVGQG" & ((k+1)T-T) a1 (4.14)

T
by changing variables twice as before

.
Q)= [HTIGAG (T dT (4.15)
0

It is worth noting that even if Q is diagonal, Q (k) need not be. Sampling can
destroy independence among the components of the process noise. Using
(4.10) then

Q(K)-6QG T+(AGQAG +6QAG A T2/ 2l e o (4.16)
In Buler’s approzimation the process noise covariance Q (k) results from
multiplication by T.

Q(k)=6QG'T

Figure 4.2. shows the sequence of operations used to evolve the discretized

equation of an aircraft.
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System State Equation

X(t) = A x(t) + G w(t)
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FIGURE 4.2. Evolving of the Discretized System
Dynamic Model
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C MMT MATHEMATICAL MODEL
Suppose that s targets are present, and the discretized equations of
motion for each target being tracked is adequately modeled by a separate
stochastic difference equations of the form
x' (k1) = &' {k+1,k) x' (k) + W' (K) K=0,1,2, (4.17)

The superscript indices | denote ihe various targets. x (k) is the nx1 state
vector (which generally includes at least position and velocity coordinates) of
the tracked target at the kth sample time. &'(..) is the (nxn) state transition
matrix, and w (k) is a pi x| state excitation vector, which is usually
constructed in aircraft tracking applications to account for both maneuvers

and modeling errors. and is generally assumed to be white and gaussian,
with zero mean and covariance Q' (k). In a TWS system, the kD sample will

occur approzimately at time kT, where T is the scan time of the |th sensor

The corresponding discrete measurement vector from each node is given by

2 (k) = W (x'(K).K) « v' (k) ja1,20 N (4.18)
Where the superscript j indicates the various nodes. 2°(k) is a qJ X1
dimensional measurement vector at node ; at stage k. h”(..) is the
observation equation for jth sensor, v’(K) is assumed to be white and
Gaussian, with zero mean and covariance R’(k). It is further assumed that
w (k) and v’ (k) are not serially or cross-dependent, in particular
Elw (kv (fH]=0 forall k and £ (4.19)

In the s-target case, each individual measurement 2’ (k) of an actual target

at time k is drawn from a mixture probability density of the form

$




B2 1) 1 X" ()X ()X (KD) = 2, P2 (K) X' (K)) (4.20)
=1
with unknown priors denoted P,

Denoting the number of measurements at time k by m(k), a set of Zm(k)

. k=1
measurements 1S

mk) n
Z-({Zw} ) Jo 1,2 N (4.21)
{ (3}

k=1

Where 2’ is the cumulative set of measurements at each node.

It is the essence of muititarget tracking problems that there is a large

amount of overiap among the component densities of (4.20), so that the
target-10- measurement correspondece x (k)«= 27 (k) is difficult to obtain.

The set of all measurements Z’ can be partitioned into m tracks

ANC 2 |
= UN UAS U TR
where AAN =0 for 14

One of the tracks (e.g A™) contains all of the false alarms. With this notation,

any hypothesis concerning measurements made by the surveillance system (
the number of targets present, which data points belong to which target) can
be defined as a family of subset |

A C 2!
The defining characteristic of multitarget tracking problem is that a number

of partitions can be found, each one composed of tracks A’ that appear

feasible from the standpoint of the likelihood tests.
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D. THE HORIZONTAL ESTIMATOR

Figure 4.3, shows the processing of target data using the Horizontal
Estimator (HE) at each node. By using tracking filters such as those discussed
in references [Ref. 18, 19, 20, 21], produces local track data bases consisting
of the target state vectors and estimation error covariances at specific points
of time. Typically, the local track data base will contain kinematic
information and sometimes attribute information is inciuded. The typical

Kinematic information would be :

X' (ki) -- The target local track estimate at time k using the local sensor
data of node {, i.e

x4 -Elx 12)
pi ] (klk) -- The local error covariance matrix associated with the target
local estimate X' J'(klk). ie
o' El(x' X' ax' X127
Thus. (Q‘ y . ni J.) records are created by processing the raw sensor for each
node with an appropriate filter (local estimator) to produce the local track
data base,
Before fusing any two tracks from two different nodes, the two tracks are
referred to the same coordinate system using the required transformation.

and to the common time instant using the prediction equations of the Kalman
filter (Ref. 22].

Al Y . i Ajy 1= 2 \

M et ) xMa ) o 4.22)

and [)“(l.lt.u)=¢i (tlt”)pij(tuh”) 1212 (4.23)
J=12




M

Where t is the common time instant
t, J is the time of the last updating for the ith track of the jth sensor

¢i is the transition matrix of the target model
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V. LOCAL ESTIMATION

A. LOCAL ESTIMATOR FUNCTIONS

Generally, the determination of position and velocity of a target using
radar measurements such as range, bearing and range rate, is a problem of
nonlinear estimation. In many cases, the relationship between the
measured data (e.g, range, azimuth, doppler velocity ) and the target
dynamic parameters is nonlinear. A rigorous treatment of the nonlinear
estimation problem requires the use of stochastic integrals and stochastic
differential equations. The optimal ( conditional mean ) nonlinear estimator
cannot be realized with a finite-dimensional implementation, and
consequently, all practical nonlinear filters must be suboptimal [Ref. 19].

As shown in Figure 5.1, the local estimator performs the functions of
track initiation, plot-track correlation, track prediction, track filtering, and
track termination. An overwheiming number of approaches to filtering and
prediction for multitarget tracking have deen developed recently in response
to the ever-increasing importance of the subject. However, at this stage of
development, no standard approaches are generally accepted for all
applications. A wide variety of techniques have been proposed for many

diverse applications, but the multitarget system designer must choose the

techniques best suited to his particular problem.
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There is a comprehensive set of papers that illustrate commonly known

e ——— i e

techniques for solving the multitarget tracking problem. Among them 1s the
paper by Reid [Ref. 23], the survey paper by Bar-shalom [Ref. 20], and the
paper bv Chang [Ref. 19]. There are two most common|v used conventional
approaches Lo filtering and prediction for muititarget tracking [Ref. 18]. The
lirst 18 10 use fixed tracking coefficients, like the a—@ tracker and the a-8-vy
wracker [Ref. 18, 24, 25, 26| which has computational advantages for
systems with large numbers of targets. The second is Kaiman filtering
which generates time-variable tracking coefficients that are determined by a
priori models for the statistics of measurement noise and target dvnamics.
So. a Kalman Filter (KF) is a computational algorithm that processes
measurements L0 deduce a mmnimum variance, unbiased error estimate ol
the state of a system by using the system and measurement dvnamics,
assumed statistics of system noises and measurement errors, and known

initial condition information.

B. CONVENTIONAL KALMAN FILTERING

With expanding computer capabilities, the Kalman filtering is becoming
increasingty more appec'ing to the system designer. The Kaiman gain
sequence 1S chosen autom~?.cally, based op the assumed target maneuver
and measurement noise models, which means that the same filter can be
used for varying targets and measurement environments, by changing a fe'.';
Key parameters. Also, the Kalman fiiter provides a convenient measure of
the estimation accuracy through the covariance matrix. This measure is
required to perform the gating and correlat‘on functions accurately. In

addition, having a measure of the innovation sequence, is useful for
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maneuver detection, and upon maneuver detection the Kalman filter model
provides a convenient way 1o adjust for varying target dynamics. The five

equations for the conventional Kaiman filter are:

Xklk-1) = & Q(k-llk- 1) w state extrapolation (5.1
piklk=1) = & pik-1ik-1) 4; +Q error covariance extrapolation (5.2)
K(K) = pikik=1)H (H plkik=i) HT + RY" Kalmangain (5.3
p(kik) = (I - KH ) ptklk-1) error covariance update (5.4}
RUKIK) = X(KIk=1) + K (2(k) - H X(kik-1)) state update (S.5)
X(klk-1) time updated state vector

X(K'K) measurement updated state vector

p(klk-1) time updated error covariance

plkik) measurement updated error covariance

¢ state trangition aatrix

K Kalmar, gain matrix

| identity matrix
measurement transformation matrix
measurement error covariance matrix

process noise

O £ ® I

process noise covariance matrix

2k) = (2(k) - HX(klk-1))  measurement residual

W(k) = H p(klk-1) HT + R measurement residual covariance

Once the initial state X(010) and the initial error covariance matrix p(0I10)
are established, the Xalman equations can be activated. Figure 3.2, shows a

simplified scheme of Kalman filter operation.
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When Kalman introduced these equations ((S.1) - (5.5)) 27 years ago [Ref.
29, they offered the engineering community a means to model discrete -
time systems via the state-space modeling method for multivariable
systems. Unfortunately, when the state equation was written for the

tracking applications, Kaiman's conventional equations were found to fall
short in two respects:

a. Finite wordlength computation.
b. Changing system dynamics model in real time.

Messurement
-I ng‘m —» State
| - Estimate
1 Measurements.
Predicted
Messurements

Figure 3.2. Simplified Scheme Of Kalman Filter
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C THE EXTENDED KALMAN FILTER

For nonlinear modeling problems, the Extended Kalman Filter (EKF) is
used to extend the linearized Kalman filter design by relinearizing about
each estimate ( i.e., Kalman equation (5.1)) once it has been computed. The
sucess of the method of linearization about a nominal trajectory in state
space depends upon the accuracy of the nominal trajectory. This technique
has little hope ot success in a situation where there is almost no prior
information apout the trajectory as in the situaticn of the target acquisition
problem. Here, a psuedo a priori may be generated from the incoming
observations. In EKF, as soon as a new state estimate is made, a new and
better reference state trajectory is incorporated into the estimation process.
In this manner, one enhances the validity of the assumption that deviations
from the reference (nominal) trajectory are small enough to allow linear
perturbation techrijues to be employed with adequate results [Ref. 27].
Radar measurements ( range, azimuth, elevation, and possibly range rate)
are in polar (spherical) coordinates. Thus there exist a known, nonlinear
retationship or transformation between the state of the system and

observations.

72




-24

TARGET

To Cantrs Of The Earth

Figure S.3. NED Coordinate Frame for TWS System

73




Assuming NED coordinate frame shown in Figure 5.3, where X,Y,and [ are
North, Bast, and Down, respectively. The NED coordinate frame is chosen
because it is applicable for surface (ground or shipbased) tracking systems,
in addition that it is particularly useful for airborne systems. As shown in
Figure 5.3, the origin of an aircraft tracking system is the TWS system site.
It is worth to note that the NED system is not strictly an inertial system for a
moving platform because the platform axes are siowly changing their
orientation in space as the vehicie moves over the earth's surface. However,
except near the North pole the effects of the rotations are negligible, and the
NED system is essentially inertial for aircraft platform. For the coordinate
system shown in Figure 5.3. we will have the following relationships

between spherical (polar) and cartisian coordinates

Range ra(x2y2e 22)03 (5.6)
Azimuth @ = arctan (y/x) (5.7)
Elevation § = arcsin (-2/r) . (5.8)
Range rate = (xX *yy + 22)/r (5.9)
Denoting that .

Xe= X (kIk-1) , Xo* X (Klk-1)

vor ¥ kk-1) Jor 7 (kik=1) (5.10)
2o= 2 (klk=1) . 2,=§(klk-!) |

.r° = (on " y°2 * 292 )O.S
The corresponding measurement transformation matrix H, is given by
{Ref. 28|
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hza O hz O O 0 )Aziowtn (5.11)
H= hy O hxm O hss O ) Elevation
v Do N2 Nz Ny Nes Neg ) Rage Rato
4 Messurements >
6 States
Where
Ry * X/ o

R =Ye/Te

hs =2,/T,

har == Yo/(Xe%*yg?)

Ngg = Xg/(Xg2+Ye2)

Ny = 2o %o /((Fg2) %2+ 2 )05)
Maz = Yo 2o /((r Dxe2+ ¥,2)05) .

has = (= (%24 ¥,2)%5) /(r,2) (5.12)

(Xe/ To) = ((XefXo %o * YoYo* Zo2q)) /1)

Na2 = X/Ty
(Yo/ Fo) = ((YolXa %o * YoVo * Zo2)) /Tg3)
Neg = Yo/ Tg
(24/1g) = (Zg(XoXe* YoVo* Zo2e)) /Tg3)

e
(]
"

4
0
"

h46 = 20/ r‘

D. UD COVARIANCE FACTORIZED KALMAN FILTER
The most troublesome numerical aspect of the Kaiman fiiter is the
measurement update of the error covariance matrix, so the properties of

alternate computational forms are of substantial interest. Potter {Ref. 30}
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introduced a square-root approach for propagating the error covaciance
matrix in the absence of process noise. This method is completely successful
in maintaining the positive semidefinite nature of the error covariance, and
it effectively reduced the precision requirements to about half the number
of bits needed [or the full covariance update. The outstanding numerical
characteristics and relative simplicity of this Potter square-root approach‘ led
to its implementation in the Apollo navigation filters [Ref. 31]. The
numerical characteristics of the [ilter have been further improved upon by
Agee and Turner {Ref. 32], Carlson [Ref. 33] and Bierman [Ref. 34l ambng
others. The benefits of square-root filters were attractive in the sense of
relieving the numerical problems and maintaining symmetry of the
covariance matrix. Bierman's method requires the fewest arithmetic
operations of the square-root formulations. Bierman's UD filter factorizes the

covariance matrix P in the filter as follows
P-UDU’ (5.13)

where U is an upper triangular matrix with |'s along its main diagonal and D
1s a diagonal matrix. The UD algorithm requires a diagonal measurement
covariance matrix R, which implies that the measurement errors are
uncorrelated. If the matrix is not diagonal, it can be made diagonal as
indicated by Yannone [Ref. 35). Bierman derived a recursive algorithm for
implementing a Kaiman filter in terms of U and D, rather than p [Ref. 34,
36l.
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E PARALLEL KALMAN FILTERING

In general, real-time filtering cannot be performed on large-scale
problems using a uniprocessor architecture because serious processing lags
can result. The Kalman filter can be extended to a much greater class of
problems by using parallel processing concepts. Full utilization of
parallelism can be obtained through insight in the stcucture of the problem
and decoupling of arithmetic processes L0 permit concurrent processing. One
@must simuitaneously develop the parallei aigorithms {or soiving the fiitering
problem, and the associated processor architectures to achieve the maximum
benefits from parallelism. Parallel Kaiman filter architectures based on this
design methodoiogy can be implemented with VLSI/VHSIC technoiogy (Ref.
37). VLSI technology allows the designer to map sysiem level architectures
directly into hardware. To date, relatively little research has been conducied
on restructuring the Kalman fiiter for parailel processing. Three approaches
that have been considered inciude (Ref. 37}

a. Vectorizing the standard Kaiman filtering equations by running the fiiter
on a vector (or array ) processor [Ref. 38).

b. Uncorreiating the measurement data to the fiiter so that each

measurement can be pipefined into each processor simuitaneously
[Ref. 39].

¢. Decoupling the predictor and corrector equations in the {ilter so that
these computations can be evaluated simuitaneousiy on separate
processors using multiprocessing (Ref. 36, 40].

Although the first approach can speed up computations considerabiy over
conventional techniques ( speed-up factors of 6 to 10 have been realised
[Ref. 38]). the computational throughput was limited primarily by the

architecture of the array processor. This occurred because the array
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processor architecture was optimized for Fast Fourier Transform (FFT)
computations, not Kalman filter computations.

An approach based upon mapping the Kalman filter equations directly
onto a highly parallel/pipelined architecture can be used. Thus, the paralle]
Kalman fiiters algorithms/architectures developed in [Ref. 36] exploit the
structure of the filter to improve thrcughput using pipelining and
multiprocessing.. This approach to speed up Kalman fiiter computations is to
perform paralle{ processing at three major levels:

i. The measurement data to the filter is uncorrelated so that each
measurement can be processed simuitaneously.

2. The predictor and corrector equations of the Kalman fiiter are decoupled
so that the predictor and corrector can be computed on separate
processors.

3. The measurement data are pipelined into each processor.

Thus. multiprocessing and pipelining are combined to achieve large
improvements in computational speed. Each processor architecture can be
implemented with VLSI technoiogy. To facilitate paraile] processing and
pipelining, the measurement data to the filter should be uncorrefated. The
data can be uncorrelaied by diagonalizing the covariance matrix associated
with the measurement noise in the filter. Procedures {or uncorrefating the
data generally utilize coordinate transfor mations based upon eigenvalue or
singular value decomposition [Ref. 41]. If the eigenvalues of R are not
distinct, the generalized eigenvectors of R must-be determined {Ref. 41].
Similarty, if the eigenvaiues of R are complex, R can be transformed to a

block diagonal matrix [Ref. 41].
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F. ROBUSTNESS OF THE KALMAN FILTER

An important part of the design of the Kalman filter is to regulate the
robustness of the filter to handle deviations from the prescribed systems
dynamics model in the cases when the target makes heading changes.
Without some form of re-modeling adaptively in real-time, the fiiter
diverges. When the conventional filter is emulated for constaat
vejocity/constant heading targets, rilter' divergence resuits after a number of

iterations, and the error covariance matrix goes negative definite. This lack l

of reliability forces the seeking of a more stable algorithm for implementing
the Kalman filter. The estimator eigenvajues control [Ref. 28], can be used.
In a Kalman [ilter, this amounts to the eigenvalues of (¢ - KH). The control
for any given (¢ , H) pair, is a function of K , K is a function of p(k+1ik), and
p(k+1Ik) is a function ofQ.

Whatever method is adopted for track filtering, it is usvally necessary to
combine it with some form of adaptation. An adaptive system is one which
continually adjusts its own parameters in the course of time (0 meet a
certain performance criterion. On-line adaptation is required when
significant changes occur in the target motion (maneuvers), measurement
accuracy or frequency of detection. The excitation noise covariance Q is a
statistical quantity used to cover uncertainties in the model of target motion
described by (4.5). Measurement accuracy is described statistically by the
noise covariance R, and the interval between filter updates is given by the
time T ( which appears in $,Q(k)). Changes in the tracking environment
must be reflected in the appropriate adjustment of these three filter

parameters during the track estimation process. Adaptive tracking requires

79




the 7n-line computation of a figure of merit , or track performance indicator,
whicu: typically involves a weighted combination of lerms in the residual
(the innovation sequence) ¥Kk). It also requires a practical procedure for
determining what quantitative adjustments should be made in the filter
parameters. Two approaches can be used to control the [ilter performance:

a. The system's eigenvalues are fixed and kept constant. By holding the
eigenvalues constant, a prescribed degree of stability is maintained.

b. A thresholding technique is mechanized to adaptively model
maneuvering/nonmaneuvering targets.

The first method, which computes the eigenvalues as function of the Q-
matrix with constraints based upon the damping sought (critical,
overdamped), starts with Kalman equations (5.2), (5.3). and (5.4):

K = function of (p(k+ 1lk), R, H)

p(k+11k) = function of (p(kik), Q, ®)
Sotving éeneralty. for p(k+ 1lk) and substituting into the equation for K leads
to the stability:

(® - KH) = function of (p(kik), Q, ¢, R, H)
The eigenvalues of (& - KH) can be sought, to yield a characteristic

polynomial
q(g)-gnoa15n'1+32§n'2¢ ................. +an_‘§+an (5.14)
For n = 6, (5.14) will be |
q(E)-55*3,55*3254*a353*a452+356*36 - (5.19)

Values of % through & can be chosen to yield a prescribed system response

in the z-piane. The unit circle represents underdamping (marginally stable

system, poles on the jw-axis in the s-plane). Within the unit circle

represents either critical or overdamped system responses. Selecting critical




damping leads to a polynomial q(£). The coefficients of the polynomial are
functions of (p(kik), Q, ®, R), from which equations of all non-zero Q- matrix
elements can be computed as functions of p(klk), $, R, an¢ constants. Thus
constrained eigenvalues of (¥ - KH) imply a prescribed system response
(critical. underdamped, or overdamped). They are regulated by resuiting
expressions of variable Q- matrix elements, which are, themselves, a
function of p(kik), &, and R.

The problem with this is that the optimum estimates may foi aiways be
derivable from a priori, critically-damped eigenvalues. Keeping the filter
bandwidth open (high) all the time is not the optimal sofution [or the
muititarget tracking problem. As a consequence, the other method is more
adequate.

The second method is a thresholding mechanism to adaptively open and
close(i.e, raise and lower) the filter bandwidth based upon information
about the target's actual activity. Trial and error led to a “high” and “low” Q
based on the range and range rate residuals. Emulation of the system TWS
estimator revealed that a system response lag of one frame could be
accommodated by evaluating the residuals prior to evaluating Kalman
equation (5.2). {f the threshold was broken, ihe Q- matrix was set to "high”
or “low” accordingly, then equation (5.2) was evaluated with this seiscted Q.
This effectively gave the filter a2 "sneak preview" one T ahead with which to
optimize the system robustness/stabiiity. The [act that the system dynamics
mode does change is the reason why the {irst method is not recommended 10

be used. The Kalman filter stability/robustness control can be summarized as

the following:




&@ - KH) ' =» stable
§® - KH) s | =» marginally stable (5.16)
&® - KH) > 1 = unstable

a. Transient response varies with the closed loop (ilter pole locations.

b. The input to the Kaiman filter which gives an indication that the target
i1 maneuvering, are Lthe residuais.

¢. Residuals regulate Q, and Q reguiates Kalman filter bandwidth.
robustness. and stability.

When a high Q is used on a non-maneuvering target, the filter is being
erroneously told that the constant velocity . .tant heading system
dynamics model is being viojated when in fact it isn't, and vice versa.
Consegently. the filter estimates are noisier {less accurate) for non-
maneuvering/"high” Q than necessary, and conversely, the [ilter diverges
(bre~ks track) for the maneuvering/"low" Q case. [n addition to the
adaptive tiresholding techniques, the state vector estimate accuracy was

improved by performing a relinearization about the best estimate

sequentiauy for each measurement made. Figure 5.4, shows the sequence of
computations.
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FIGURB 5.4. Computation Sequence and Sequential Relinearization
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G. MULTITARGET LOCAL ESTIMATORS

It was not until the early 1970's, that multitarget tracking theory became
a major topic of interest [Ref. 15, 18]. The papers by Singer and Stein [Ref.
42), Singer, Sea and Housewright [Ref. 43, Jaffer and Bar-shalom [Ref. 44],
Bar-shalom and Tse [Ref. 45|, began the development of modern multitarget
tracking techniques that combine correlation and Kalman [ili2ring theory
[Ref. 15. 18]. In a dense target environment, gaiing only begiils Lo solve the
problem of associating observat:bns with tracks. Additional logic is required
when an observation falls within the gates of multiple target tracks or when
multiple observations fall within the gates of a target track.

Figure 5.5, illustrates a typical situation in which both types of conflict
occur. This logic i3 required to face the ambiguity about the origin of the
observations, which originated.from the target of interest. The correlation
function takes the ouipu: of the gating function and cakes final observation-
to-track assignments. The various measures proposed against the
correlation conflict in automatic trackir.g can be reduced to ithe two
substantial principles :

1. Application of the nearest- neighbor- rule.

2. Application of branching procedures.




Gate
Gate

N

01,02,03  Observation Positions
P1,P2, P3 Predicted Target P¢sitions
Figure S.5. Ezxample of A Compiex Conflict
Situation

Gate
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1. Nearest-Neighbor Approach

The nearest-neighbor-rule prescribes correlation of that track-result
which is statisticaily nearest to the target's predicted pcsition (the search
plot in case of track initiation). It is based on the assumption, that the
return which is nearest to the predicted position, is most probabliy the true
target's return. The nearest-neighbor-rule is capable of solving satisfactorily
the correlation conflict. At smaller target distances it [ails to solve the
conflict, because miscorrelations generally produce deviations of the track
and target trajectory and finally lead to target loss. The track updating
process typically begins with a gating procedure that is used 1o eiiminate
unlikely observation-to-track pairings. The simplest multitarget system use
sequential data processing and the nearest-neighbor association ruje. For
example, this is normally the approach used with a TWS system. With this
approach, processing is done at each scan using only data received on that
scan to update the resuits of previous processing. The nearest-neighbor
assignment algorithm assigns observations for existing tracks in a manner
that minimizes some overall distance criterion. [t looks for a unique pairing
80 that at most one observation can be used to update a given track. Using
this approach, the optimal solution is obtained by assigning observations to
tracks in order to minimize the total summed distance {rom all observations
to the tracks to which they are assigned. A computationally efficient
suboptimal solutions, also can be used to illusirate one syboptimal soiution.

To illustrate one suboptimal solution, the example shown in Figure 5.6, is

solved using the [ollowing rules:




1. Ol is assigned to Tl because Ol is the only observation within the gates
of T1 while T2 has other observations (02, 03) within its gates.

2
2. 03 is assigned to T2 because 03 is closer than 02 (d“z’3<dzz ).

3. 04 can, without question, be used to initiate a new track, but new track
intiation using 02 may be restricted. This restriction 1s based upon the
practical consideration that multiple observations within the gate of a
single established track are often the result of a failure in the
observation redundancy-elimination logic. Thus, this restriction serves
to prevent initiation of extraneous tracks.




! Gate

o1, 02 03, 04 = Observation Positions

pl, p2 = Predicted Target Positions
d = Distance From p2 to 02
d = Distance From p2 to 03

Figure 5.6. Example of Gating and correlation for Two

Closely Spaced Tracks




Simple assignment techniques, such as the sequential nearest-neighbor
approach, can lead to miscorrelation with poor tracking as a consequence.
The problem with choosing the nearest-neighbor is that, with some
probability, it is not the correct measurement. Therefore, it will use
(sometimes) incorrect measurements while delieving that they are correct.
This can lead to the loss of target.

An alternative (o0 nearest-neighbor correjation is. the “ail neighbor”
approach, which incorporates all observations within the neighborhood, as
defined by the gate around the predicted target position. The position
update is then based on a weighted sum of all observations, with the
weighting calculated using probability theory [Ref. 45). This procedure is
called Probabilistic Data Association (PDA) since it associates probabilisticaily
all the neighbors to the target of interest. Then this probabilistic information
is used in a suitabply modified tracking filter, calied PDA Filter (PDAF), That
accounts for the measurements origin uncertainty. Later resuits [Ref. 21.46]
showed that the PDA did not perform weu‘in the presence of muitiple
targets, so 2 modified method denoted Joint Probabilistic Data Association
(JPDA) was derived to inciude the presence of muitiple targets [Ref. 21},

2. Branching Procedures

Branching procedures use all the resuits within the correiation gate in
order to form new tracks. So. at every sampling time when there is more
than one measurement in the validation region (correiation gate) the track is
split. The likelihood lunction of each split track is evaluated in order (o
eliminate uniikely tracks. Tracks whose likelihood is below a given
threshold are disregarded so as to keep the number of branches [inite. The

89




likelihood of a measurement 2(k), under a given assumption Q; for the model

is obtained from 2(k) and the predicted state Q(klk-l ) as

p (KN Q) = Cexp (-1/2 ¥ ()W (K)Kk)) (5.17)

When c is a normalizing constant. In the track- splitting techniques, it is
necessary to evajuate the likelihood of a whole track, ie. of a succession of
plots. The fundamental limitation of the mhimum likelihood techniques is
that no validation test is made to control the truth of a given assumtion.

This in practice leads to a feedforward approach 1o adaptivity by comparison
with the feedback concept underlying the Bayesian approach. The branching
procedures are marked by an unavoidable increase in the number of
branch-tracks in comparison to the number of reai targets. With regard to
the application in a real-time system, these methods are generally
computationally costly, so they are often inappropriate as true suppiement
to the nearest-neighbor approach.

Involving large computer burden and extensive memory requirements,
sub-optimal techniques are generally preferred, leading to simplified
algorithms and requiring storage of less data. [n practice, a trade-off
between cost and effectiveness is needed to sefect the most appropriate
algorithm for each application. In HEA approach, ihe output of the local
estimator is 2ssumed to be tracks which are formed and confirmed with

great confidence and low degree of uncetainty.




V1. ALGORITHMIC TRACK FUSION

A. TRACK-TRACK ASSOCIATION

Let x ' ' be the local state estimate of a target i by a sensor i and X ? ¢ be
the local state estimate of a target j by a sensor j. Local estimates x ' 'and
Adi

X © “could be for the same target or could be for different targets. It is

desired first to test the hypothesis that these estimates pertain to the same
target, in which case the two tracks will be associated as having a common
origin. The optimal test would require the entire data base through time k
and is probably not practical. In view of this, the test is carried out based
only on the most recent estimates.

The decision as to whether track “i" provided by node "i" and track "§"
provided by node “§”, should be associated can be posed as a test of |
hypotheses by defining a distance between the two tracks, so

djyeux't-5p (6.1)
wherell?“-g“llisthenormol‘lQ”-Q“]
xR TRt x dipyos

o PR LU A R
- (e BAx xR )OS

The distance between two vectors in the space is defined in the usual way

from the Jorm of a vector , %0
px g e ek VR x M) (6.2)
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Which is assumed to have a Gaussian distribution. The superscripts i and j
denotes the tracks i and ] and (i.j) denotes the nodes i and j respectively.
The statistical test is

re (a9 P d i) ] a2 (6.3)

VIAN F

0

Where hypothesis H 0 track i and track j belong to different targets
hypothesis B‘ : track i and track j bejong to the same target

and 22 can be chosen based on that r will have a chi-square distribution

with the number of degrees of freedom equal to the aumber of elements in

the state vector. The covariance matrix for the statistical distance P and the

resulting fused track can be given using the techniques mentioned in

[Ref. 47).

The test to accept or reject the hypothesis that the two tracks are from the

same target is defined using the similarity threshold a2

r 5232 ,tracks are from the same target

r > a2 ,tracks are from different targets
It is noted that in the H, hypothesis E( d'(ij)) =0 . The choice of a2 will

be based upon the chi-square properties of r with some experimentation
probably required for the particular application. The value of a2 would also

probably be chosen as a function of the target density if known [Ref. 18],
Also 22 can be chosen 10 achieve 3 specified probability of correct association
Pe.
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B. PROBABILITY OF CORRECT ASSOCIATION

Evaluation of the correct association probability P is now considered. The
probability of false association Py can be found in a similar way but with a
cumbersome calculations, owing to the non-zero mean value of di 3 (Lj) . The
probability P is equivalent to the probability that q' (Lj) lies inside the
hyperellipsoid in the n-dimensional space, defined by equation (6.3). It can
be compdted by resorting to an ortho-normalization procedure of the matrix
P, which transforms the hypereilipsoid into an equivalent hypersphere.
Hence,

3
Pe=1/7(2m™ [ exp(-r2/2)p(r) ar (6.4)
0

Where p(r) dr is the symmetric volume element in the in the n dimensional
space. For n=1,2,3 4, this expression particularises o
For n=i

Pe=v2m [ exp(-r2/2) or =2€ (a) » (65)
0

Where € (.) is the error function defined as

e@=1/von [ exp(-12/2) ¢z (6.6)
0 .
For n=2
3
Pc= f rexp( - r2/2) dr =1- exp( - a%/2) (6.7)
0
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For n=3

]
Pe=v2m [ r2 exp(-r2/2) dar=2€ @) - ¥ 2w a expl - 2%72) (6.8)
0

For n=4

a
Pe= 05 [ rSexpi -r2/2) ar =1~ (1+ a2/2) exp( - 3%/2) (6.9)
0
As an example, the valuesof P, forn =1,2,3 and 4 are shown in the

tables 6.1, 6.2, 6.3, and 6.4 respectively. [t is noticed that from the resuits
given in the previous mentioned tables that. for the same similarity
threshold a, the probability of correct association decrease as the number of
elements in the state vector increase. Generally, with 3=3, a high probability
of correct association is obtained. The resuits presented in tables 6.1, 6.2,
6.3, and 6.4 is produced by an innovative PC software product called
TKISoiver (see Appendix B). TKISolver shortcuts the problem-solving process
by el.minating two steps of developing an algorithm and writing a program.
Instead. the user puts the mathematical mode! expressing the relationships
between the variabies directly using standard aigebraic notation. in other
words, the user communicates with the computer at the ievel of
refationships (represented by equgtions) rather than at the level of
sequential programs and assignment statements. [n it, the input and output
information reside in a set of eight sheets and three subsheets that are
viewed on the screen. The principal ones are the Rule Sheet, used for
entering and displaying the equations or rules, and the Variable Sheet, used

for displaying the variable names. The Variable Sheet also serves for
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assigning input values and units as well as for displaying the results of the
solution. As an example, Figures 6.2, 6.3. and 6.4 show the variable and rule
sheets of equations 6.5, 6.7, and 6.9 respectively. Konopask and Jayaraman
view TK!Solver by itself as an expert system primarily in the area of

numerical problem solving (see Appendix B).




TABLE 6.1. PROBABILITY OF CORRECT ASSOCIATION FOR n=1

a pc
0.5 0.371773290
1.0 0.666557870
1.5 0.838640141
20 0.979560553
2.3 0.985390484
3.0 0.999999853
39 1.0
4.0 1.0
4.5 1.0
5.0 1.0
S.S 1.0
6.0 1.0
6.5 1.0
7.0 1.0
7.5 1.0
8.0 1.0




TABLE 6.2. PROBABILITY OF CORRECT ASSOCIATION FOR n=2

a pc

0.5 0.117503097
1.0 0.393469340
1.5 0.675347533
20 0.864664717
2.5 0.956063066
3.0 0.988891004
3.5 0.997812509
4.0 0.999664537
4.5 0.999959935
5.0 0.999996237
5.5 0.999999730
6.0 0.9999999895
6.5 0.999999999
7.0 {.0

7.5 1.0

8.0 1.0

7O W SRR SRGE, O AR RGOSR R I SO Y - S DTy I P S S
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TABLE 6.3. PROBABILITY OF CORRECT ASSOCIATION FOR n=3

Pe

0.5
1.0
1.5
2.0
25
30
3.3
4.0
45
5.0
3.5
6.0
6.3
7.0
7.5
8.0

0.019708344
0.18:.616987
0.500087808
0.763596943
0.897749084
0.973408794
0.993891228
0.998929339
0.999856146
0.999985142
0.999998815
0.999999927
0.999999996
1.0

1.0

1.0




TABLE 6.4. PROBABILITY OF CORRECT ASSOCIATION FOR n-4

a Pe
0.5 0.007150985
- 1.0 0.090204010
1.5 0.310113507
, 20 0.593994150
; 25 0.818760149
. 3.0 0.938900519
35 0.984414126
: 4.0 0.996980836
) 45 0.999554274
5.0 0.999949690
5.5 0.999995647
6.0 0.999999711
6.5 0.999999985
7.0 0.999999999
7.5 1.0
8.0 1.0
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FIGURE 6.1. Probability of Correct Association P Versus Similarity

Threshold 3 For Different Dimensional Space n of The
State Vector :
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1941

Probability of correct association

Function values

Values of independent variable
Approximate value of integral
Upper limic

Lower limit

Coefficients in simpson’'s formula

(7r) Rule:
VARIABLE SHEET
St Input Name Outpuc Unit
L P .88864014
L 0 a
L £
L O X
L S 1.1137466
L 1.5 x2
L O xl
L 0 c
RULE SHEET
S Rule

* faaxp(-(x"2)/2)
* Se(x2-x1)/(3*%10)*dot(’c,’'£f)
* Pu(2/3qrt(6.2832))*S

. FIGURE 6.2. Yariable and Ruie Sheets For Equation (6.5)
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(1i) Inpuc: O 201/!

VARIABLE SHEET

St Input Name Output Unic Comment

L 0 a

L P

(1r) Rule: P=l-exp(-(a”2/2)) . 2011
RULE SHEET

S Rule

FIGURE 6.3. Variable and Rule Sheets for Equation (6.7)




200/

(11) Input:
VARIABLE SHEET
St Input Name Output Unit Comment
L P
L O a
RULE SHEET
S Rule

FIGURE 6.4. Variable and Rule Sheet for Equation (6.9)
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C. COMPOSITE ESTIMATE OF TWO TRACKS
Since the tracks are from different sensors and at the same time instant,

the notation for sensors and time are dropped for simplicity of notation. If

Ji.*: defined as

the tracks are independent, the covariance matrix P for di
p-p. p (6.10)
Bar-Shalom [Ref. 33l has pointed out that the covariance defined by (6.10)
and the resuitant formation of r are not strictly valid because of error
correlation between the two sensor estimates. This correlation occurs, even
il the measurement errocs are independent, because of the common error
source due to the target dynamics that are seen by both sensors. A
technique outiined below, to account [or this error cocrelation can be applied

to modify the covariance matriz P.

"such that the initial condition is

Define a cross covariance matrix pI
p'4(010) - 0

Then, for k> 0 values of p”(kl k) are computed using the recursive

relationship :
p' kik) s A - 1At I (6.11)
Where
Al -1 -k n' (6.12)
Alky-1-Kk(k)nd (6.13)
B(k-1)- ¢ p'd(k-11k-1) (&))" +a(k-1) (6.14)

The superscripts i and j refer to sensors i and j, while $K.h, and Q are
defined for the Kaimae filter [Ref. 48,49]. Finally, the modefied covariance,

replacing that given by (6.10) becomes [Ref. 47)
p-pP. Pl o pld) (6.15)
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For combining tracks, we begin by considering the fusion relationships for a
scalar such that a composite estimate, using estimates
¥ax e (3E-%YH (6.16)
Where C 1s a weighting factor that will be chosen so that the expected Mean
Squared Error (MSE) on X' is minimized. The error in X_ is defined as
AC = A% v X2~ axh)
Then, the error variance on Ax' is defined as
E-E( A°))= 02+ 2cE[ &X' &F]-202¢c2052  (6.17)

Where
oZ~EN &X', o2 -El&X° ),

02 <El( &% - &X' 2] = 02+ 0,2-2E1 &X' A%
The correlation between errors is defined as
Elax ak’]-R"

Equation (22) becomes
ez-(l-2coc2)o,2*c2022+2(c-cz)R"" (6.18)

In order to form the minimum MSE estimates, we have
862/ 8¢« -2 (1- ¢ Jo? +2¢ 0,2+2(1-2¢ )R = 0 (6.19)

Solving (6.19) for ¢ gives

c(02-R%) (02+0,2 -2R") (6.20)

In the special case of no correlation
R'2 =(Q , we have
A2 A

At
af =x +lo?/ (o,2+022)l(x -%)
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= (02291 + 012?(2 Y ( o,"’* 022 ) (6.21)
In the case of combining state estimation vectors ( X , %2 ) , the same

general relationships given by (6.16) and (6.17) are used, except that the

variances become covariances:
012 - P‘ ' 022 - pz
2R N pnz R (pl2 )T)
and c becomes a weighting matrix:
c-| p'- p'zllp'* pz- p’z- (p"? 1! (6.22)
Finally, using (23) and (25), the resulting error variances (or covariances)
are
02 (X°)- 02- (02 + R?)2/ (02+ 0,2 -2R%) (6.23)

In the special case of no correlation ( th = 0 ), we have

02 (x°)- 0,2022/ ( 0'20022) C(6.24)

So, generally in the vector case, the resuiting combined vector, which
minimizes the expected error is

A

x° =% +c(x!-%" (6.25)
c-(p- p'hHp!
and the covariance matrix associated with the estimate of (6.25) is
P°-p'-(p'- 9P (p'- ') (6.26)
As a simpie example

Consider the two estimates, each a 2- dimensional vector, with the following

covariance matrices
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Figure 6.5. presents the 1 0 ellipses corresponding to these matrices,

namely
X(ph%= (=12 (6.27)

and |0 ellipse corresponding to the fused estimate whose covariance is

P- p (php’)'p (6.28)
The reduction of the uncertainty are noticed: the eilipse corresponding to the
fused estimate is strictly smaller than the intersection of the two eflipses
prior to fusion

Figure 6.6. shows the ellipses of uncertainty corresponding to
] -10 3]
p -
|3 10

2 {10 -6
p -
10

and the resulting fused estimate according to (6.29).
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FIGURE 6.5S. Error Ellipsoid For Fused Independeni Tracks
in Example | .
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FIGURE 6.6. Error Ellipsoid For Fused Independent Tracks
in Example 2
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D. OPTIMALITY OF HEA TRACK FUSION

Assuming that there are two sites (nodes) at which the same target is
tracked. At each site, each local estimates Q' J (kik), with the corresponding

pi I (kik) are computed. Hence, in this situation we are concerned only about

one target, the superscript i is dropped for the simplicity of notations, and
there will be x? (klk) with its corresponding p? (kik), with j=1,2.

Assuming the local measurements at each site are
z4Kk) = HAK) x(k) + viK) j=12 (6.29)

with R"(k) the corresponding measurement noise covariance.

Denoting -
2k - |2
_zz(k) ] (6.30)
Wi | WK
: | HK) (6.31)
f Rl - R o
i o R (6.32)
Ii Using the matrix inversion lemma
(p"'+HR'H) =p- pH (HpH +R)'Hp (6.33)
which can also be written as
(p+HRH J' ap’-p"H(H p'H +R)V'H p" (6.34)
( the recursion for the covariance p(kik) can be rewritten as
. p(kik) = [ plkik-17"+ H(K) RGO HK)] ! (6.35)
w plklk=1) - p(kik-1) HT(K) [ H(k) p(kik=1)HT(K) +RK)] "H(K) plKIk-1)
(6.36)

i
{
(
i
|

Defining




W(K) = H(K) p(klk-1)H (k) +R(K) (6.37)
K(K) = plklk-1) H (k) ¥'(k) (6.38)
the recursion for the covariance p(kik) can be rewritten more compactly as
p(kik) = [ T - K(k) H'(k)} plkik-1)]
- plkik=1) - K(K)W(KH (k) (6.39)
and the following identity can be written
p(kik) H'(K) R(K)" = ( pkik-1)H(K) -
- plkik- 1DHTOIH(K) plkik-1H(K) sR(K)] "H(K) plkik-1H (K)IR(K)"
= plkik- 1)H(OIH(K) p(kik-1)HT(K) +R(K)} ™
(H(K) p(kik=1)H'(K) + R(K) - H(K) p(klk-)H (KIR(K)™ = K(K)
So, the Kalman filter gain given by (5.3), can be given by the aiternate

expression

K(k) = plkik) H'(k) R(k)” (6.40)
Which i the case of HEA, for each site (node) it will take the form

K4K) - pki) HYK)T RK)! (6.41)
and equation (S.5) will have the form ,

% (ki) = %8 (kik-1) + KK € 22 0-HA0K (kik-1)) (6.42)
The recursion form for the inverse of the covariance update nJ (kik) is given
by the equation

pd ki) = pd (kik-1)" « HAK)T RAK) THAK) (6.43)

The estimate X’ (kik), using expression (6.41), (6.42) will be
3 ki)« % (kik-1)+ pAk) #0T RN ( ZHKk)-HAOX (Kik-=1))  (6.44)
Multiplying (6.43) by (6.44) yields for j=1,2
o (ki)™ % (ki) = 1p? (kik-1)" + WY T RAK) K01 X (kik-1)
v o (ki)™ i) AT RO ( 20-HAKOR? (KIk-1))
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= pd (kik- 17" %3 (kk-1) « HYK)T REK)™! Z4(K) (6.45)

Thus
HdK)T ROV 24K) = p? (k) X9 (ki) - p (kik- 1) % (kik-1)
(6.46)and this will be used to eliminate the measurements from the
combined
estiznation update equation which will be similar to (6.44) with the
superscript ¢ instead of §, i.e.
X (kik) = X% (kik=1) « p°(kik) HE(K)T REK)™( 2°(K)-HEK)X® (kik-1))
(6.47)
Using (6.30), (6.31) and taking advantage of the block-diagonal form of

(6.32), the combined state updating, given by equation (6.47), can be

rewritten as

2
X® (ki) = X° (kik-1) + p°(ki) THAK)T RAK)”' € ZXK)-HAK)RS \Kik-1))

i= o
| (6.48) |

Similarly, the combined covariance update is similar to (6.41) with the
superscript c instead of j, ie.

p° (ki)™ - p° (kik-1)"+ oK) RO(K)HO(K) (6.49)
Similar to (6.48), (6.49) can be rewritten as

p° ki)' = p°® (kik-1)"+ IHAK)T RAK) HAK) (6.50)

J=1 ‘

Multiplying (6.50) with (6.48) yields, after cancelations (similar to those in
(6.45))

R B
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2
p° (kIK)' X° (KIK) = p° (kik-1)"'X® (kik-1) + 3 H¥K)" RKY™ 2XK) (6.51)
J=1

Finally, substituting (6.46) into (6.51), one obtains

p° (kik) "' X° (kik) = p° (Klk-1)"%® (kIk-1)

2
e 197 (kIK)' %I (kIK) - p? (Kik-1)" %7 (kik-1)] (6.52)
=
Which is the sought-after expression of the combined estimate in terms of
only the local estimates. So, the fused track estimates combine the local
track estimates and the incoming track estimates without having to caiculate

cross covariance given by (6.11), and it can be stated that the fused
oatinmeg is the global estimates {or the tracks in the overlapping area.
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V1i. KNOWLEDGE-BASED TRACK FUSION

A. CAPTURING THE EXPERTIZE OF A HUMAN EXPERT

In multitarget tracking we are concerned with the position of targets and
their identity and behaviour. In [act, the position is of over-riding
importance because identity and behaviour mean little unless they can be
associated with position [Ref. 9]. Also, since we are cuncerned with a
dynamic environment we need to take time into account. So, it would appear
then that the first task with which we are faced is how to deal with
kinematic information. In order to combine track information from any two
radar sensors in a network, these are compared to determine whether they
pertain to the same target. The decision process is called cocrelation. As we
mentioned befoce, we consider this decision process implicitly included in
the fusion process, because there is no meaning of the fusion without it. In
real life, radar sensors provide different types of information with different
accuracies. A modern radar display includes alphanumeric characters and
symbois for directly conveying additional information. This is useful when
target identity and aititude are to be displayed. The target track might be
shown as a line on a synthetic display. The configuration of the line
indicates the direction of the target path while its length can be made
proportional to the target speed. This kind of display has a computer 10
generate the graphics and control the radar display. This permits
magnification of a selected area, stored flight plans, stoced clutter map and

so on. The operator can communicate with the computer in an interactive
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manner by means of a keyboard, track ball or light pen. Sometimes, an
auriliary display is mounted adjacent to the main display to provide tabular
data that would otherwise encumber the main display [Ref. 15]. Current
systems rely largly on manual correlations to form a coherent picture of the
underlying situation. An operator at the radar display makes a visual
comparison of the information provided by two or more sensors and by
applying his experience arrives at a decision. But, even with moderately
compiex scenarios, the workload can easily overwhelm the limited number
of operators available and displays. This can lead (o important information
being overiooked. A computer program which could reliably carry out a
large fraction of this task would greatly assict the operation and
performance of the entire system. The operators become proficient after a
long time of practice. Discussions with for mer operators [Ref. 50], revealed
that they acquired (wo things as they become experts. First, they
memorized facts about the platforms operating in their area, the facilities
availabie in the countries of the area and the political alliances of those
countries. Secondly, they learned how to relate reports received to the
above facts and the current situation in a way which would aliow them to
develop hypotheses about future platform motions and activities.

Our initial approach to the multisensor information fusion was to search
for suitable techniques from the world of Al which:

1. Were well defined.
2. Had been demonstrated on a similar type of problem.

Perhaps the most well known and well defined part of the Al scene is expert

systems.
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With the arrival of expert systems , there is a great rush to encapsulate
human expertise in computer software, and multisensor infor mation fusjon
and its related fields are obvicus areas for attention. The expert system can
be considered in a wide sense as an application of artificial intelligence to
computer software. The philosophy of an expert system is to produce a
computer solution Lo a problem by capturing the expertize of a human
expert. So, it can emulate the performance of 2 human expert by
incorporating the analytic and heuristic knowledge which the human expert
has. Of the many expert sysiems that have been developed in the last
decade, the majority of the successful programs were designed to play a role
analogous o that of a human consultant. Not surprisingly. this work was
done in areas of Medicine, Chemistry, and Geology in which there is an
established tradition for consultation. Human consuitants in these fieids are
valuable because they are specialists who possess extensive knowledge
“about particular problem domains.

Expert consultation systems have focused on problems in which a human
expert's knowledge is largly factual in nature. Here, the key (o solving a
problem lies more in knowing the relevant infor mation than in ingeniously
constructing a solution from logical principles. The human expert is
distinguished by knowing all of the factors that are important, and by
processing judgment in combining diverse considerations Lo reach a decision.
It follows that a corresponding expert system must have effective ways (o

represent and empioy large amounts of different kinds of knowiedge bearing
on specialized problems. Generaly, the expertise is in the form of rules, and
these rules form the knowledge base of the system. Recently, expert




systems have been fouud effective in planning, monitoring, and
interpretation tasks [Ref. S1]. Researches have applied this technology to a
variety of military problems. For example, planning of aircraft missions (Ref.
52), simulation of air battles (Ref. S3], and analysis of platforms operating in
a certain area, and their location and the activity in which they are engaged.
The symbolic nature of the information fusion problem and absence of a well
developed approach 1o i, suggested that a system with rapid prototyping
capabilities would be helpful [Ref. 50]. Some expert system shells provide
tools which make prototyping of data structure quick and the rules
employed for reasoning easier to implement and modify than conventional

programs. Figure 7.1, shows the general structure of an expert sysiem.

B. KMOWLEDGE REPRESENT ATiON USING RULES
Rules provide a formal way of representing recommendations, directives,

or strategies. They are often appropriate when the domain knowledge
results from empirical associations developéd through years of e.perience
solving problems in an area. Rules are expressed as [P - THEN statements,
as shown below.
IF: A is true

and Bis true

and Cis false
THEN: conclude X
This is a type of production rule which has the general form [Ref. 43):

IF: logical conditions are satisfied
THEN: take the indicated action




When the [F portion of a rule is satisfied by the facts, the action specified
by the THEN portion is performed. Among the potentially important assets
of the production rules approach is that it provides the means of
understanding how a decision was reached and is able to explain and correct
erroneous conclusions.

A controlling framework is used to allow the user to access the
knowledge base in the manner of a consuitation whereby the user may
volunteer information or the machine may question the user until sufTicient
evidence is gx.2sred to produce useful conclusions. The user may also ask
the system to explain its reasoning so that he may understand its reasoning
and undestand how the conclusions were reached.

This method of problem solving was adopted as it seemed 1o it the
muitisensor data fusion problem, assuming that the human experiise exists.
However, most of the well-publicised expert systems are in quite different
problem domains to muitisensor infor mation fusion. Exampies being medical
diagnosis, fault diagnosis and the well- known mineral prospecting expert
system called PROSPECTOR. In this type of problem, it can be assumed that
all symptoms belong to the same patient, whereas, in multisensor
information fusion, there is the problem of finding out which evidence
belongs to which patients, and indeed how many patients are present. Also
the multisensor infor mation fusion problem is a continuous, real-time
probleni. rather than a single shot diagnosis. |

The heart of an expert system is its corpus of knowledge (Ref. S4). When
Al scientists use the term "knowledge", they mean the information a
computer program needs before it can behave intelligently. The knowledge
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in an expert system is organized in a way that separates the knowledge
about the problem domain from the system's other knowledge, such as
general knowledge about how to solve problems or knowledge about how to
interact with the user. Several advantages accrue to this separation:

a. The same knowledge can be used for more than one purpose. For
example, a given knowledge base can be used to solve a particular
problem, to provide an explanation for the solution, or to support
computer-aided instruction about the problem.

b. The power of the program can be extended either by expanding the
knowledge base or by adding facilities to the interpreter. In particular,
this ai'ows a large system to be developed incrementally.

¢. The problem-solving mechanisms and system facilities of the interpreter
can be applied to similar problem domains by replacing the old
knowledge base by a knowledge base for the new domain.

Knowledge Base

(Domain Knowledge)

_

Inference Engine
(General Problem-
Solving Knowledge)

Figure 7.1. General Structure of
an Expert System




The collection of domain knowledge is called the” knowledge base . while
the general problem- solving knowledge is called the "inference engine”. A
software with knowledge organized this way is called a "knowledge-based
svstem . Virtuaily, all expert systems are knowledge-based systems, while

the converse is not necessarily true [Ref. S4].

EXPERT SYSTEM

Knowledge Base

Focts Rules

Interpreter | Scheduler

Inference Engine

Figure 7.2. Structure of an Expert System

As shown in Figure 7.2, the knowledge base in an expert system contains
facts (data) and rules that use those facts as the basis for decision making.
The inference engine contains an interpreter that decides how to apply the
rules to infer new knowledge and a scheduler that decides the order in

which the rules should be applied. When the IF portion of a rule is satisfied
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by the facts, the action specified by the THEN portion is performed. When
this happens the rule is said to fire or execute [Ref. SS). A rule interpreter
compares the IF portions of rules with the facts and executes the rule whose
IF portion matches the facts as shown in Figure 7.3.

FACTS

RIBES 000

Match Execute

(SEREE ....OOO
RULES

Figure 7.3. The Rule Interprets Cycles Thrcough
a Match-Execute Sequence

C. INVOKING RULES IN A RULE-BASED SYSTEM
There are two important ways in which rules can be used and invoked in
a rule-based system; one is called backward chaining and the other forward
chaining.
|. Backward Chaipigg
Backward chaining is often described in terms of goal-directed

reasoning or top-down reasoning. In backward chaining the system has a

set of initial goals, and the rules are invoked in reverse order. The system




begins by examining a limited set of production rules, whose right-hand
sides are the goals. The system then proceeds to examine the left-hand side
of the rules to see which of the goals (RHS) are satisfied. As the rules are
examined in this backward uaraveling, some premises (of the left-hand side
of rules) are unknown (logically unsatisfied) and therefore they become new
subgoals. If a subgoal is unknown, a2 question may be asked to determine its
status. Its strategy can be summarized in the following steps:

(1) Find a rule a 'THEN" pattern that matches the goal.
Found ------- Go to step 2.
Not Found --- Fail.

(2) Use the "IF" part of the rule to establish new sub-goai(s).
(3) Find fact(s) that satis(ies the new sub-goal(s).
2. Forward Chaining
In forward chaining the system does not start with any particular goais

for it. That is, it has no initial subgroup of production rules which establish a
starting point. Instead, the system starts with a subset of evideace and
proceeds to invoke the production rules in a forward direction, continuing
until no further production rules can be invoked. Its strategy can be
summarized in the following steps:

- (1) Find a rule with an "IF pattern that matches a fact
Fouad -~--<=---- Go to step 2.
Not Pound ------ Fail to find a goal.

(2) Assert the rules “THEN" clause, i.e add a new fact to the data base.

(3) Does the new fact satisfy the goal?
Yes -vcneocceceee we are successful, quit
NO ----=evccece-- Go to step 1.
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3. Backward Versus Forward Chaining

Although several systems have been built emphasizing backward
chaining, both forms of invocation and evaluation of the production rules are
equally valid as iong as they yield the same cocrrect conclusions. The cate of
arriving at the conclusions will probably differ considerably depending on
the strategy adopted. Most classification problems can be solved using
either one ~. ihe approaches individually or 2 mixture for production rule
evaluation. The shape of the problem space determines which is beiter. As
shown in Figure 7.4, [an-in calls for forward chaining and fan-out calls [or
backward chaining. The bidirectional search is often favorable. Using it the
forward chaining begins from the known facts and the backward chaining

begins [rom the best hypothesis.
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Figure 7.4 Fan-IN and Fan-Out Stages of Knowiedge
Aquisition :




D. METAKNOWLEDGE AND EXPLANATION FACILITY

~ An expert system has knowledge that lets it reason about its own
operations plus a structure that simplifies this reasoning process. This
knowledge the system has about how it reasons is called "metaknowleuge",
which just means knowledge about knowledge. Also, it is better to have what

is ¢alled an "explanation racility".. This is knowledge for explaining how the
system arrived at its answer.

E. BLACKBOARDS

Blackboards refers 10 a particular Al problem solving methodology. The
best known applications of the blackboard methodology are HEARSAY-II, a
speech understanding system [Ref. 56}, and the HASP/SIAP sonar data
interpretation system [Ref. 57, $8).These applications effectively processed
regular streams of data from a single sensor, treating any other information
as locally static. But the blackboard methodology is more generally
gpplicable. In particular, it provides a convenient framework for integrating
mayimally reduced information from multiple sources with different
temporal characteristics.

The biackboard problem soiving methodofogy originated approximatety
10 years ago and has been evolving ever since [Ref. $9). The main feature
of a blackboard system is a global data store holding input data and
hypotheses sdbout the sofution of the problem derived from that data.
Related information is kept together. The global data store is known as the
blackboard.
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F. REPRESENTING UNCERTAINTY IN EXPERT SYSTEMS

Expert systems are often forced to make judgements in the light of
incomplete or unreliable data. The general problem of drawing inferences
from uncertain or incomplete data has inspired a variety of technical
approaches. Parade [Ref. 60] offers a review of different approximate
reasoning techniques which have been proposed for dealing with uncertain
or imprecise knowledée in expert systems. These tecniques can be
summarized as Bayesian model, Dempster-Shafer belief theory, fuzzy logics,
and ad hoc approaches.

1. Bayesian Modei

One of the most useful resuits of probability theory is Bayes theorem,

which provides a way of computing the probability of a particular event
given some set of observation which is made. Let
P(H,IE) = the probability that hypothesis H, is true given evidence E

P(EIH;) = the probability that the evidence E is observed given that
hypothesis i is true

P(H;) = the apriori probability that hypothesis i is true in the absence of

any specific evidence. These probabilities are called prior
probabilities or priors.

k = the number of possible hypotheses
The theorem then states that '

. )
P(H,(E) - PESH,) * P(H)) / > P(BMH,) * P(H,) (7.1)

n=l
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For a long time, the Bayesian model had been the only numerical
approach to inference with uncertainty, since no quantification was
introduced in the patterns of plausible reasoning. One of the best-developed
uses of Bayes theorem for Al problems is in the solution of pattern
recognition or classification problems. Bayes theorem can be modified to
handle a variety of more complicated situations. But there are several
drawbacks to the use of Bayes' theorem. It is often difficult to collect all the
a priori conditional and joint probabilities required. Doing so would require
accumuiating a great mass oi data. Doing so wouid also be very expensive.
But worse, the data would be obsolete by the time they were collected. |t is
very difficult 10 modify the database of a Bayesian sysitem because of 'tne
large number of interactions between the various components of it. Also,
evaluating Bayes' formula to give an accurate estimate of the probability of a
particular outcome must be disjoint. [t cannot ever happen that two of them
occur at once. This is often not the case, Thé accuracy of Bayes' formula also
depends on the availability of a complete set of hypotheses. In other words,
it must always be the case that one of the known hypotheses is true. For ail
of these reasons, Bayes' theorem does not appear to solve problems that
arise in uncertain reasoning in real-world problems, aithough it does serve
as the basis foc some probabilistic Al systems, e.g.. PROSPECTOR [Ref. 61].

2. Dempster-Shaler Theocy
Several mathematical modeis of uncertainty, which depart from the
usual probability approach, have been recently proposed, particulary,
Dempster- Shafer beiief theory [Fef. 62). It is also called mathematical
theory of evidence. A scheme for combining evidence which includes

127




uncertainty or ignorance was devised by Dempster and later formulated
within a flexible representation framework by Shafer. It is more general
than either a Boolean or Bayesian approach, providing a formal method for

integrating knowledge derived [rom a variety of sources (or use in
perceptual reasoning. In this formalism, the likelihood of a proposition A; is

represented as a subinterval, [s(A;), p(A;)]. of the unit interval, [0, I]. The
evidential support for proposition A, is represented by s(A;). while p(A;)
represents its degree of plausibility, p(A;) can also be interpreted as the
degree to which one fails to doubt A;, p(A;) being equal to one minus the
evidential support of ~A; (the symbol “~" is the Boolean NOT), i.e., the
plausibility is the complement of the support for “A;. So, p(Ai) is
p(A) =1 - s(TA)

The lower value, s(A;), represents the support for that proposition sets
a minimum value for its likelihood. The upper value, p(A;), denotes the
plausibility of that proposition and establishes its mazimum likelihood.
Support may be interpreted as the total positive effect a body of evidence
has on a proposition, while plausibility represents the total extent 10 which a
body of evidence fails to refute a proposition. The degree of uncertainty

about the actual probability value for a proposition correspond to the width
of its intervai. So, the "uncertainty of A;" is:

U(A;) - D(Ai) - S(Ag}




Dempster’s rule of combination requires that the knowledge sources be
independent. The representation involves the assignment by a knowledge
source of "probability masses”. The mass allocated by a certain knowledge
source to A; is denoted m(A;). To clarify, assume that there is a set of n
mutually exclusive and exhaustive propositions, such as that the target is of
type A Ag . . Aq. The method of evidential reasoning can assign a
probability mass denoted as m(A;) to any of the originai n propositions or to
disjunctions of the propositions. For example, a disjunction is the proposition
that the target is of type A or A, (denoted as A;VA,) and the mass
assignment is denoted as m(A,VA,). There are (2"-1) such general
propositions (including ail the possible disjunctions) that may be assigned
mass, and the masses summed over all of these propositions must equal
unity. It is noticed that this is a more general form of representation differs
from the standard Bayesian approach in which probabilities are assigned
only to the original n propositions, disjunctions are not considered. The

representation to uncertainty © is mass assignment to the disjunction of all
the original proboomons and is denoted by
m(6) = m(A VA, V........ VA,) (7.2)
Finally, mass can be assigned to the negation of a proposition. For
example, the mass assigned to the negation of a A (the target is not type A ) |
is denoted !
m(“A;) = m(AzVAs V... VA,) (7.3)
The support s(A) for the basic proposition that the target type is A is just
the mass associated with A (s(A;) = m(A,)). For 2 more complex proposition
such as that the target is either type A;, A; or A3, is expressed as
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${A;VA2VAs) = m(A)) + m(A2) + m(Ag) + m(A;VA2) + m(A| VA;3)
+ m(A;VA3) + (A VA VA,) (7.4)
The plausibility of a given proposition as mentioned before, is the sum of all
masses not assigned to its negation. Alternatively, plA;) can be computed by
summing all masses associated with A; and ail disjunctions, including 6, that
contain A;. For example,
P(A) = m(Ay) » m(A[VAg) + e + m(6) (7.5)
The use of these Shafer-Dempster techniques as they are known
appears more complex than the use of the simple Bayesian process with its
single set of probabilities and one of the difficulties in pursuing such an
approach is 10 determine whether the extra complezxity is justified by the
resuits which can be expected. It is important to remember that an operator
may have to make decisions based on the outcome of the identity process
[Ref. 63]. We can easily see that an output such as, for example, " the
probability that the detected aircraft is an enemy is at least 30% and could
be 70% " seems more likely confuse than to clarify.
3. Puzzy Logic
The objective of fuzzy logic is to modify (or “fuzzify") logic so that it
applies directly 10 informal arguments. Fuzzy logic results from two stages
of “fuzzification”;

a. The introduction of vague predicates into the object language. This
resuft in some form of multivalued logic.

b. Treating the metalinguistic predicates “true” and "faise” as themsejves
vague or fuzzy.

The second stage is by far the most radical and controversial. Fuzzy logics

have been imported into A] to deal with areas of vagueness and incomplete
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information. Most expert systems, for example, are forced to take decisions
when not all the facts pertaining to the decision are available. In such
contexts it is natural to employ logics which, unlike classical logic, are suited
to reasoning with such incomplete information. Non-monotonic logic has also
been developed, largly by the Al fraternity itself, to deal with reasoning
with incomplete information. Moreover, many concepts employed in natural
language and Al are claimed to be “vague”, and the necessity of reasoning
with such concepts suggests that some “logic of vagueness’ is appropriate
[Ref. 64). For example, the concept “young", it may be said that people
under 10 years of age are young and those above 60 years are not young.
However, there is no particujar day at which a person’'s age switches from
“young" 10 "not young", rather, this is a gradual transition. In fuzzy logic, the
concept of young is expressed by a "membership function” representing the
degree t0 which a person of a particular age can be considered (0 be young.
It should be said that many applications of fuzzy logic are both
philosophically and practicaily controversial, and the whole area is, at
present, controversial.

Zadeh offers two main reasons for adopting fuzzy logic [Ref. 65,66).
First, he claims that it avoids the complexities introduced by regimentation
of informal argument; secondly, he claims that it is the proper way to
acknowledge that ‘true’ and false’ are not precise but fuzzy.

In Fuzzy Logic (FL) the set of truth-values of the base logic, the set of
points in the interval (0,1}, is replaced by fuzzy subsets of that set. Zadeh
does not, however, allow all fuzzy subsets. This, it is claimed, would result in
‘unmanageable complexity’. Instead, Zadeh employs only a countable and
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structured set of fuzzy subsets of (0,1} referred to as “linguistic truth-
values”. More explicitly, the Truth-Values (TV) set of FL is assumed to be a
countable set, TV, of the form
TV = (truefalse, not true, very true, not very true,

more or less true, rather true, not very true,

not very false,.......... ) (7.6)
Each element of this set represents a fuzzy subset of (0,1]. Moreover, each
element of TV is generated from the fuzzy set denoted by the term ‘true’.

So, for example, if Uy is the membership function of the fuzzy subset true,

then the membership functions for the other members of TV might be given

as follows:
Utgise( V) = Upruel1- V) (7.7)
Unottruel V) = 1 - Uuel) (7.8)
Urerytrue( V) = (Ugrye( V)2 (7.9)
Uratbertsue( V) = (Ugrue( 0I)1/2 - (7.10)

etc., where v is the fuzzy variable. So that once the meaning of ‘true’, and
the rules of computation are fixed, then so is the meaning of all the members
of TV. As a consequence, the meaning of the linguistic truth-values (that is,
the fuzzy subsets they denote) is crucially dependent upon the meaning
chosen for ‘true’. Moreover, it is quite difficult to see such a choice as -
anything other than arbitrary. Zadeh hints that the choice is motivated by
the specific area of discourse under consideration. Consequently, the

meanings assigned (o the linguistic truth-values are Jocalised.




How are the jogical constants ~ , &, V and -, is used 1o obtain their

meanings in a regime where truth values are elementsof TV? As afirst
step we might proceed as follows:

[~Al (v) - T{Al() (7.11)
[A & Bl (V) - [Al(v) AlB]) (V) (7.12)
[AVBIH{v) - [Al(¥) VI(BI(V) (7.13)
[A-Bl(v) - [Al(v) - (Bl (v) (7.14)

where the connectives ~, &,V , |, Aand - are those of the base logic

and each [A] denotes a fuzzy subset of [0,1) represented above by its
membership function. But there is a problem with this way of proceeding.
We want each sentence in the language to denote not just an arbitrary fuzzy
subset of [0.1) but rather an element of TV. Unfortunatety, the above
semantics offers no guarantee of this. Zadeh circumvents this difficulty by
introducing the notion of & "Linguistic Approzimation” (LA). Bach fuzzy
subset A of [0,1] has associated with it an element A® of TV, it is called
Linguistic Approximation (LA). This is expressed as

A* = LA(A). (7.15)
Unfortunately, there is not an obvious candidate for the notion of best’ of
such approximation, nor a general techniqlie for computing ‘good’ ones. But
whatever the merits of this notion, Zadeh employs it to provide the meanings
of the logical constants as [ollows:

[~Al (V) < LACA. 7T (Al (o) (7.16)
[A & Bl (v) =  LACAU(A] (W AB} (D) (7.17)
(A VBl (v) - LACXu(IAl (v) VIB] (D)) (7.18)
(A - Bl (v) - LACX(A)(v) s (Bl (0))  (7.19)
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Now, the functions [A] and [B] associate with each sentence an element of TV,
the set of fuzzy truth-values.

The introduction of fuzzy truth-values paves the way for a rather
radical approach to inference. According to Zadeh, inference is only
‘approximate’. Zadeh illustrates his notion of approximate reasoning by
reference to examples of the form

a is small
a and b are approximately equal

b is more or less small
To illustrate, consider the statement

ais smail
Under the administration of classical logic this proposition would be
rendered irue just in case a belongs to the set which constitutes the
extention of the predicate small. In fuzzy logic, however, things are
somewhat more involved. The predicate small is fuzzy, and proposition "a is
small” is interpreted as the assignment of a fuzzy predicate as the value of a
variable which corresponds to an implied attribute of a. More explicitly, this
proposition would be interpreted as the assignment equation

Height(a) = small
where "Height" is the implied attribute. In equational terms the second
premise of our example would be rendered as

(Height(a), Height(b)) = approzimately equal
where the right-hand side represents a fuzzy subset of [0,1] x (0,1].
In general, then, a proposition of the form

is rendered as the assignment equation
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R(ay e 8) = €
where R is the implied atiribute. For simplicity Zadeh writes this as
(84, ) = C
The premises of our exampie thus constitute a pair of assignment equations
of the form
a - small
(a,b) = approximately equal
and, in general, a collection of propositions (ai................. aiy)i8 Ci,0 5i sn-1
yield a set of equations
€ TTYR—— . 2ig) = Ci 0sisn-I (7.20)
For Zadeh, approzimate inference amounts to solving such systems of
equations. As with equations in ordinary algebra, we can soive for any of
the variables invoilved in the equations. As an illustration, solving for b in
our example yields:
b = LA[small ° approtimately equal),
where °is the composition of uizy relations, and is given by
Usgait ¢ spproximstely .‘w(b) ®
\;lU...,.(x) A Uspproximatety squat{X. b))l (7.21)

where V represents the supremum over all objects in the domain of the
X

fuzzy predicate “small”.

Intuitively, the composition of the predicate “small” and the binary
relation “approximately equal” represents the fuzzy predicate which returns
that value which represents the best fit, between those objects which are in
the domain of smail, and which are approximately the same height as b.
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According to Zadeh, the consequence of a given set of premises depends in
an essential way on the meaning attached to the fuzzy sets which appear in
the premises. This is, apparently, a consequence of the local character of
fuzzy TV's. Consequently, validity can only be characterised semantically,
and the traditional notions of completeness and consistency are peripheral 1o
fuzzy logic.

In the light of the features of fuzzy logic, it would seem that it lacks
the precise formal rules of inference in addition to the absence and apparent
irrelevance of consistency and completeness resuits and the empioyment of
a philosophically suspect theory of truth. All these, engender a feeling of
insecurity. Indeed, as Haak points out [Ref. 67], fuzzy logic seems hardly
recognisable as a logic at ail. Probably, the best defence of fuzzy logic is
located not in its conceptual foundations but it its potential applications
(Ref. 68). After all, many formal frameworks have been employed with
much success even though thzir conceptual foundations have been in a sorry
state. |

4. Ad hoc Approaches

Many researchers in artificial intelligence have felt a need for
alternatives of the standard Bayesian approach and have proposed and used.
generally with success, more empirical models, particularly in expert
systems such as MYCIN [Ref. 69], and others (Ref. 70,71). Also many expert

systems employ some form of numerical assignments to assertions which are

often combined in ways which suggest that such assignments behave
mathematically like probabilities.




One of the earliest approaches t0 reasoning with uncertainty was
incorporated into the MYCIN system [Ref. 69). It introduced a notion of
approzimate implication” using numbers called “ certainty factors” which
were used to indicate the strength of 2 heuristic rule. For example, MYCIN's
knowledge base inciudes the rule:

IF The infection is primary-bacteremia and the site of the cuiture is
one of the sterile sites and the suspected portal of entry of the
organisa is the gastro-intestinal tract.

THEN There is suggestive evidence (.7) that the identity of the organism

is bacteroides.

The number .7 is the certainty factor (in the range 0 to 1) of the
conclusion. In MYCIN, assertions are not just true or false, the reasoning is
vague or inexact and is indicated on a numerical scale. MYCIN's conjunction
operator performs a minimisation, and its disjunction is furnished with a
Bayesian interpretation. To elaborate, all assertions being considered by
MYCIN have associated with them two numbers, a Meuurc" of Belief (MB)
snd a Measure of Disbelief (MD). The MB of a hypothesis h given evidence e
is the proportionate decrease in disbelief in h, and can be thought of in terms

of probabilities as
1 ifP(h)-1
MBlh.e) -{(wi?(hlo).?(h)l - P(h))/(maxl1,0) - P(H)) otherwise (7.22)

Similarty, the MD is the proportionate decrease in belief in h as a resuit of e
1 ifPh)«0
MDih.e] -[(nian(hlo),P(h)l - P(h))/(minl],0] - P(H)) othervise (7.23)




A particular piece of evidence either increases the probability of h, in which
case MB(h.e) > 0 and MD(h.e) = O (i.e., there is no reason to disbelieve h), or it
decreases the probability of h, in which case MD(h.e) > 0 and MB'h.e) = 0.
This relationship can be seen (rom the above formulas for MB ar d MD.

From these two measures, an overall estimate of the confidence of the
system in its belief about the hypothesis can be computed. This estimate is
called the Certainty Factor (CF) and is given as

CFlh.e] - MB(h.e] - MD{h.e] (7.24)
It is noticed that if CF is positive, the system believes that the hypothesis is
true; if CF is negative, there is more evidence against it and the system
believes it to be false. By separating this measure into the two components
MB and MD, the problem of slight confirmatory evidence being interpreted
as discon{ir mation is avoided. Considering several pieces of evidence, the
measures of belief and disbelier of a hypothesis 3i§'en two observations s,
and s, are computed by:

0 i MDI.s 48] - |
MBI(h,s&s;) -{MB(h,s,]o MBlh s]*(1-MBih s )) otherwise (7.25)
0 if MB{h ;&3] # |
MDih,s &s;) -(MD(h.s;l + MD{h,5;7)*(1-MDih.s( D) otherwise (7.26)

One way to state these formulas in English is that the measure of belief
inhis 0 if his disbelieved with certainty. Otherwise, the measure of belief
in h given two observations is the measure of belief given only one
observation plus some increment for the second observation. This increment

is computed by first taking the difference between | (ceriainty) and the




belief given only the [irst observation. This difference is the most that can
be added by the second observation. The difference is then scaled by the
belief in h given only the sécond observation. A corresponding explanation
can be given, then, for the formula for computing disbelief. From MB and
MD. CF can be computed. These formulas meet several requirements that
one might wish them to satisfy, including commutatjvity, the order in which
a set of observations is made is irrelevant. '

A simple example will show how these functions operate. Suppose that

an initial observation has been done that confirms our belief in h with
MB=0.3. Then MD{h.e]=0 and CF(h,s{)=0.3. Now a second observation has

been done, which also confirms h, with MB(h,s,)=0.2. Now

MBlh.s &3] = 0.3 + 0.2°0.7 = 0.44

MDih,s,&s;] « 0

CFlh.s; &s;] = 0.44
From this example it can be seen how slight confirmatory evidence can
accumulate to produce increasingly larger certainty factors.

Sometimes it may be necessary 10 consider the certainty factor of a
combination of hypotheses. It can be computed from the MB and MD of the
combination. The formulas MYCIN uses for the MB of the conjunction and
the disjunction of two hypotheses are

MB(h;&hje] - min(MB{h .e], MB(h;.e}) (7.27)
MBlh or hjel = max(MB(h,.e], MB(h,.el) (7.28)
MD can be computed analogousty.

From tactical intelligence, the advantage of employing deter ministic

values instead of probabilities is often called for. For instance, an enemy will
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most likely make a maximum g terminal maneuver rather than the average
from a Monte Carlo simulation of all possible maneuvers. This tactical
doctrine may prescribe a precise maneuver. Also, for very good reasons,
people often feel uncomfortable estimating prior probabilitiés [Ref. 72]. Yet,
they are willing to say whether a piece of evidence increases or decreases
the probability of a hypothesis with respect to its prior value, and are often
willing to use the certainty value to estimate the amount- of change. Thus,
certainties are particularly useful as a technique for taiking about relative
probabilities. [n addition, they seem more natural than probabilities when
establishing the context for a hypothesis.

By contrast to probability theory, these ad hoc approaches provide the
expert with a language for more directly specifying how degrees of belief
(expressed as subjective probabilities) are to be computed. The language
does impose some constraints. It requires that functions for computing
probabilities be composed out of small number of primitive functions.
However, it also provides considerable freedom, such 2s allowing the
specification of any loop-free network topology desired to group factors and
control the flow of information. The price paid for this freedom is that there
is no longer any guarantee that all of the axioms of probability theory will be
honored. However, if one views the values computed as heuristic measures
of degree of belief, then the only question is whether or not it is easy 1o
construct an inference network that adequately approximates the
specifications of the expert. A commonly voiced criticism of such approaches
is that they are unnecessarily ad hoc. It is claimed that there are alternative
approaches available which are better documented and understood (Ref. 72].
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Mamdari and Efstathion [Ref. 73] for example, claim that fuzzy logic itsell
would provide more secure foundation for the enterprise. As a matter of
fact, PROSPECTOR already employs some form of fuzzy-sets theory, at least
according to the recent account given by Gaschning [Rel. 611

Generally, it is hard to quanti{ly and mathematically relate such
subjective parameters as partial ECM, intelligence levels, the threat and
human experience. So, it is adequate and easy to use ad hoc approaches (o

approximate the specifications of the expert.

G. EXPERT SYSTEM DEVELOPMENT TOOLS

It is important to distinguish between expert systems and expert system
development tools. As shown in Figure 7.1, expert systems are specific
applications consisting of a knowledge domain and an inference engine. A
knowledge domain is generally the human expertize on 2 particular subject.
The inference engine is the reasoning software. To obtain advice from an
expert system, the user poses a problem via a user interface. The inference
engine accepts the request, reasons about the query and the knowledge
stored in the knowledge domain, and responds to the user. Expert systems
can be used tou provide expert advice and solve problems using a given
_knowledge domain. When a user presents a particular probiem to the expert
system, it uses the available reasoning knowledge Lo infer some advice,
which it then reports to the user.

An expert system development tool can take the form of an Artificial
Intelligence (A]) language such as Lisp or Prolog, an expert system shell, or

an integrated artificial intelligence environment. Shells, 2 higher level of

development tool, facilitate the development of expert systems by providing




a generalised inference engine and the ability to create knowledge domains
in any subject area. An integrated expert system environment provides all
the capabilities of a sheil as well as other tools, such as decision support
software. Expert system shells or environments (shell supersets) that
support rule representation consist of a rule set edjtor (also known as a rule
sel manager), an inference engine, and generally, a user interface. Actually,
the user interface and the rule editor can be embeded in the inference
engine. The developer of an expert system uses a rule set editor 10 write
rules. The inference engine uses the contents of the knowledge domain to
arrive at its solution or recommendation.

H. PAIRWISE CORRELATION FOR TRACK FUSION

Track fusion is a difficult process and numerous algorithms have been
defined for track correlation [Ref. 47,63, 74, 75, 76, 77). Many of these rely
on probabilities to combine evidence, while others make hard yes or no
decision. Because of the diversity of sensors that are operating in a large
area surveillance system, the state vector coordinate system where the
sensor /node level multitarget tracking problem is resoived will differ for the
varjous local-track data bases. Assuming that the required coordinate
transfor mation at each node is done using the appropiate transfor mation
algorithm, the information collected by each node is overlaid in a common
coordinate system. Furthermore, the time points at which the target states
(latitude, longitude, etc.) are estimated may not coincide. Before fusing any
two tracks, they are referred to a common time instant by using the
prediction equations of the Kalman filter [Ref. 22].
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Following Lakin and Miles [Ref. 9], we adopted pairwise correlations for
track fusion, Figure 7.5, shows the steps used in pairwise correlations to
solve the correlation ambiguity, which involves 3 distinct rule-driven steps :

1. First, assume all tracks (local and incoming) available at each node are
separate and each track implies a new target.

2. Second, apply rules which create the possible pairwise correlations
between each incoming track and existing local tracks. Those fail the

pairwise correjations are considered new tracks for targets beyond the
coverage of local sensor/sensors.

3. Thire, apply rules to confirm strong correlations and to deny others.
Where alternatives are of similar strengths, wait for further evidence.
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FIGURE 7.5. Pairwise Correlation for Track Fusion

144




The correlation process is basically based on the position and velocity
closeness of each two tracks. The next logical step is to combine the
correlated tracks to get the best estimate. A straightforward and a fairly
obvious approach is taking a weighted average with most weight being given
to the most accurate sensor. Another approach is using one track from a
correjated pair or group (one which is belived the most accurate) as a
representative track so that the other tracks are filtered out. One of the
primary reasons for using this approach is that it serves the immediate
purpose. If the accuracy available from a single sensor is sufficient to satisfy
the needed requirements, then it is sensible (0 use it.

AS it is mentioned before, the positional correjation process is a
prerequisite for the fusion of identity and behavioural information. As
noted earlier these types of information are of little practical use unless they
are associated with position. When we correlate kinematic infor mation we
deal with dimensional data to which we can apply recognized mathematical
tests for correjation. However, identity and behaviour cannot be treated the
same way. Expert systems can be used, in which inference is performed
using both sensor data and rules. Their structure allows the utilization of
fully different kinds of information regardless of its form. This means that
each information source is allowed to contribute information at jts own level
of detail. They process heuristic knowledge, apply logical inference, and
reason with the human knowiedge stored in the computer. Rather than
facts, this knowledge represents the human rules of thumb’ stored non-
procedurally in the knowledge domain. Like humans they can reason about

uncertain situations, factoring degrees of uncertainty into the reasoning




process. Certainty factors can be assigned and carried throughout the
reasoning process, then reflected in the advice the expert system derives.
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VIII. THE SIMULATION SCENARIO

A. BXPERTS' VIBW OF MODERN RADAR ENVIRONMENT

Technically, computers are concerned only with those radar signals which
relate to responses from aircrafts, and it is therefore unnecessary and
uneconomic to feed them with ail of the unwanted echoes which occur as a
radar antenna sweeps through 360°, out to the range of its transmitted
power. To be able to achieve this situation the radar signais of the
concerned targets require 10 be converted into 2 digitised format. In this
form the radar signals, radar data, or radar infor mation can be fed into a
computer, to be either displayed directly onto a radar display or, if the
computer has the capacity or is linked to an additional computer containing
the relevant flight plans and information, then both types of infor mation can
be correlated before being further processed onto the operator’s display. A
further key factor in this correjation, is the allocation of identity codes to
individual aircrafts, through the use of Identification of Friend or Foe (IFF)
for military aircrafts, or a Secondary Surveillance Radar (SSR) for civilian
aircrafts. Also, there is the ability to enabjes those aircrafts which do not
carry a transponder (SSR or IFF) to appear on the operator's display with a
computer-reiated indication of their identity.

By allocating to the concerned aircraft a discrete [FF or SSR code, and aiso
by informing the computer that the code so allocated refers to the specific

flight infor mation relevant to the aircraft, the computer is able to recognize




the radar information which it receives, and to correlate this infor mation
with the flight information already in its possession. The act of relating |
flight infor mation and radar information begins to open up wide horizons for
the application of automation to the tasks of controlling the air space. The
operator himself acts as a communicator, a navigator, a calculator and a
predictor of future events. [t is essential to recognise that the advantages in
automation are in reducing the workioad upon the operator and be applied
primarily to those of the operator's functions which limit his capability to
discharge his primary responsibility, which is that of a deg:ision-maker.

As an example of the standard format of the type of infcrmation of the
flight pian which are in general use are:

1. Aircraft type:

Aircraft callsign;
SSR or IFF code;
Aerodrome of departure;
The aerodome of destination;
The proposed route of flight;
Estimated Departure Time (EDT);
The estimgwd time at the Flight Information Region (FIR) boundaries;

© 0 N oA W N

Height or desired cruising level;

10. Aircraft's cruising speed;

11. Type of Might (e.g. military/scheduled/general aviation);

The radar viewing units have also changed dramatically from the ociginal

cathode ray tube. It is usual, in modern radar units to which automation is




being applied, to use a synthetic type of radar display. A modern radar
display console, adds the [ollowing facilities to the conventional radars:

2. Position symbols and labels adjacent to position symbols of selected
aircrafts displaying impoctant flight plan information.

b. Trail dots, which appear behind the aircraft's symbol to indicate the
track which it has been following.

¢. Visual alarms for an aircraft emergency, special hi-jack code, or radio
faliure, these are in the form of flashing symbols and labels.

d. Tabuiar areas, these are areas upon which can be displayed any
informatjon of intecrrst to the operator.

e. Synthetic map displays, such as the outline of airways, and air-routes,
the coast lines, danger areas, etc. These maps are usually programmed
within the consol's computer memory. Also there are facilities which
exist for the operator to draw-in on his display a synthetic map for any
special purpose, such as, for example, a military exercise area or a
temporary prohibited area for an air display.

Figure 8.1, provides some idea of the type of information which can be
presented on TWS radar displays as applied to modern ATC systems (Ref.
78,79, 80,81). For example, for satisfying the requiremtiu of modern ATC
systems, which must have instantly available information that is both
accurate and reliable, the aircraft itself is able to co-operate with the ground
based radar systems. That is, it can carry its on airbocne equipment,
known as a ‘iransponder’, which is capable of communicating with the
ground-based SSR system. The transponder is activated by pairs of pulses
iransmitted by a ground interrogator, and its reaction is to (r2nsmit a train
of pulses on a different radio [requency to the SSR interrogator receiver on
the ground. Because the transponder is not relying upon reflected energy

from the aircraft Lo provide a radar echo, but is making a full-blooded reply




iteelf, this enables the transmitters on the ground to be of lower power and
employ simpler and cheaper technology and aiso ensure a certainty of signal
return, unaffected by weather or other clutter factors. Also the returning
train of pulses from the aircraft can be coded to contain infor mation
pertinent to that specific aircraft such as, for example, the identity of the
aircraft and the height at which it is flying. This factor gives the SSR
receiver and its computer processor the ability to separate and identily
different targets in a manner that the ordinary radar cannot do, and then be
able to compute additional information such as the speed of the aircraft and
its flight attitude, all without recourse to any radio telophony speech with
the pilot, other than an initial request to seiect a special group of code
numerals on his SSR select panel in the cockpit.
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Figure 8.1. Modern ATC display with SSR Infor mation
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B. THE SCENARIO

The HEA approach is going to be applied on three different TWS systems
A. B. and C. These systems are assumed (o be tied together by appropriate
direct communication links as shown in Figure 8.2. Each system has detected
two different targets using its own radar sensor. The local data of each
system gathered by its own radar sensor have been processed using its local
estimation process, resulting in two well confirmed and distinct tracks. So,
six tracks will resuit from the local estimators of the three TWS systems.
These tracks are Al, A2, B1, B2, Cl, and C2 from TWS systems A, B, and C
respectively. The corresponding targets for these tracks are al, a2, b1, b2,
cl, and c2 for tracks A1, A2, B1, B2, Cl, and C2 respectively. Using Equation
(2.3), the network shown in Figure 8.2, is represented as

G=(V,E)
where V=(A BC)
and E- ([A.BLIA.ClL[B.C])

The TWS systems together are assumed to cover a large air-space area
with a partially overlapping fields of view. Each system is going to use
locally its track information resulting from its local estimator (as that
discussed in Chapter V), in addition to sending it to the the other two
systems via the communication link used to tie each of the two other
systems with the local one. By this way the area of coverage of each system
is extended to cover the whoje area covered by the three systems. This
means that each system may get track information pertaining targets
beyond the coverage of its local radar sensor. This can give the operator in

each system's site an advance details on aircrafts which are due to enter his




sector of responsibility which seems to be of great help especially in ATC
systems and C3 systems. [t is assumed that the suitable network access
protocol which secure error free exchange of track information is used, and
the needed coordinate transformation and the referring to the common time
instant as discussed in Chapter 1V is done.

It is also assumed that the type of modern radar display console like that
shown in Figure 8.1, is used at each TWS system. The fusion process is going
to be performed in TWS system A based on its local track information and
the other track information sent to it from TWS systems B and C. A pairwise
correlation process is used to correlate each of the tracks Al, and A2 with
the other tracks Bi, B2. Cl, and C2. The correlation process is going to be
based on the kinematic information of the last report of each track (range,
bearing and speed), in addition to its identity code, intent and behaviour. A
simplified expert system approach as outlined in Chapter V1I, using EXSYS
expert system development package is used to perform the fusion process.
The correlation process (embeded in the fusion process) will be basically
started based on the position and velocity closeness of each two tracks by
thresholding the absoluie value of the difference between their position and
velocity to a certain threshold value. This threshold value could be chosen
based on the error covariance.

Two expert systems, TRAFUS] and TRAFUS2 are developed. TRAFUS| is
a kind of an experimental hard decision knawledge-based track fusion
approach. TRAFUSZ is a kind of an experimental soft decision knowledge-
based track fusion approach. In these expert systems, simple inference rules

are used to perform the correlation process and eliminate obviously
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impossible pairing of tracks. The rules are allowed to be easily modified,
added or deleted. New rules entered can be checked against the existing
rules for consistency.

TRAFUS1 and TRAFUSZ obtain data needed to make a decision by asking
the user questions relevant to the tracks needed to be fused. The user can
also ask how the expert system reaches a decision. These two features are
very helpful in training novice operators in real life applications. Almost no
{raining is required to run any of them or any aiready developed expert
system using EXSYS expert system development package. Details of
TRAFUS] and TRAFUSZ2 are presented in Chapter IX aad Chapter X
respectively. Their rules are described in Appendix E and Appendix F
respectively.
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IX. TRAFUS1

A. RUNNING TRAFUS1

TRAFUS( from TRAck FUSion), refers to an experimental system to
exploce the applicability of artificial intelligence techniques to the
implementation of an automated, extremely [lexible track fusion consultant.
To run TRAFUSI, the user enters EXSYS TRAFUS1 or just EXSYS and he will
be asked for the filename which will be TRAFUS1. If TRAFUS! is on other
than the default drive, then he should enter the drive designator with the
filename. Por example, EXSYS B:-TRAFUS1. Then he will be asked if he
wishes instructions on how to use the program. After that he selects if he
wishes t0 have rules displayed as the program runs. Then he vill be asked
questions relevant to the subject. .The user answers by selecting one or more
answers [rom a list or entering a numeric value. The expert system will
continue to ask questions until it has reached a conclusion. The conclusion
may be the selection of a single solution or a list of possible solutions
arranged in order of likelihood. TRAFUS! can explain, in Bnglish, how it
arrived at its conclusion and why. If possible, the program will derive
infor mation from other rules rather than asking the user. This ability to
derive information allows the program to combine many small pieces of
knowledge to arrive at logical conclusions about complex problems. The
rules editor of EXSYS allows the rules to be easily modified, added or deleted.
All knowledge base files for TRAFUS1 are kept in two parts: one with a RUL
filename extension and one with a .TXT filename extension. Both must be on
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will start asking the user questions relevant to the subject area of the
knowledge base. This is how the program obtlains the data needed 10 make a
decision. There are two types of questions he may be asked: multiple choice
and numeric value.

Multiple choice questions will display a statement ending in a verb,
followed by a numbered list of possible completions of the senience. The
user should enter the number or numbers of the choices correct for his
situation and press the [ENTER| key. If more than one number is chosen, the
numbers should be separated with a space or a comma. If numbers outside
the range of the list are entered. the program will re-ask the question. In
fact the user won't get past the question until he answers jt.

The other type of information the user may be asked for is a numeric
value. There will be an explanation of what informaﬁon the program needs
and a space to inter the value by typing it and pressing [ENTER]. The
number can incjude a décimal point. _

The expert system will continue asking questions. When the program has
obtained enough information to determine that all the IF conditions in a rule
are true, it will display the rule, (unless the user has opted to not have rules
displayed as they are used). If the computer determines that any of the IF
conditions in a rule are false, it will reject the rule and go to the next

appropriate rule. An example of the resuits obtained from a run of TRAFUS |

18 presented in Figure 5.1.
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B. ASKING ABOUT RULES

When a rule is displayed the user has the option of asking how TRAFUSI
knows a condition in the IF part is true. To do this he enters the line
number of the IF condition. The expert system will respond with one of four

responses:

1. The expert system wiil display the rule or rules that allowed it to derive
the information. A rule used for derivation will have information about
the condition the user are asking about in its THEN part. He can then
continue asking how the expert system knew that rule’'s IF conditions
were irue and so on. If the user asks about a condition that is an
algebraic expression, the values of each of the variables in the
expression will be displayed. He may then asks how these values were
derived by entering the number of the variable.

2. If the user asks the expert system how it knows a condition is true
that it did not derive, but determined by asking him for input, it will
respond that he told it the information was true.

3. The user can ask for infor mation about a condition that is several
conditions down in the list and which the expert system may not have
yet tested. This can occur when the user asks the expert system WHY in
response to its question. If this is the case, the program will respond
that it does not yet know if the condition is true or not.

4. In certain situations where the expert system has just derived new
information, it may tell the user that the condition he is asking about is
false and the rule will be eliminated.

. Rules may have references for the source of the knowledge ( e.g. personal
cbservation, book, article, etc.). If, when a rule is displayed, the user presses
{R] the expert system will display the reference for the rule if it has one.
When the user are finished examining the rule, by pressing (ENTER|, the
expert system will continue asking him questions.
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C. USING "WHY"

If the user wonders why the expert system needs L0 know the
information it is requesting, he can ask it by typing WHY. instead of making
a selection from the list of values, and presses the [ENTER] key. The expert
system will respond by displaying the rule it is irying to determine the
validity of. He may now ask the expert system about the IF conditions or
references as described before. Then he presses [ENTER] when he is finished
examining the rule. The expert system may now have the question
originally asked redisplayed or it may display another rule. If the later is
the case, it is because the first rule displayed was being used only to derive
information needed by the second, and the second is the ruje actually being
tested. TRAFUS| will continue showing the rules it is using to derive
information until it reaches the base rule it is trying to apply. This rule will
have at least one choice in its THEN part. By pressing the [ENTER] key, the
program will b'e continued. If more than one rule was displayed, each time
the user presses [ENTER] he will go one rule up the list being used in the
derivation. }le will then be reasked the question he responded to with
"WHY".

D. ASKING HOW A CONCLUSION WAS REACHED

The user can ask the expert system how it arrived at its final value for a
specific choice or why a statement is diéplayed. If he enters the line number
for any choice or statement, TRAFUS1 wiil respond by displaying all of the
rules it used 10 determine the vaiue of that choice or statement. He again
has all of the options in requesting more information about each of the rules

as discussed above. If he wishes to learn why a choice not displayed was




eliminated by being given a probability value of 0, he presses [A] to have all
choices displayed. Then he enters the line number of the choice in question.

B. CHANGING, RERUNNING AND PRINTING THE DATA

The user can easily test and analyze the effect his input had on the {inal
outcome. He can change one or more of his answers, while holding the
remainder constant, reruns the data and sees what effect the changes have
on the final outcome. The current value for the choices can be saved for
comparison with the new values. To change the data he presses [C]. He will
be asked if he wishes to save the current values for comparison with the
new ones he will be caiculating. TRAFUS| will then display a list of all of the
informatijon he the user provided by answering questions. Then he enters
the number of the statement he wants 10 change and the expert system will
reask that question. By answering the question with the new values that he
wishes to try, the program will return to the display of all of the information
that he told it. The user continues changing statements until the data is the
way he wants it, then presses [R] to rerun the data. If, due to the changes,
the program realizes that it needs more information, it will ask for it. The
rules will not be displayed during the rerun. The program will then display
the new list of choices. If he opted to have the previous values for
comparison, they will be displayed in parenthesis.

He can change the data again in almost the same way. The only
difference is that when he presses [C] he will be given three options:

1. Keep the original values for comparison.
2. Keep the most recently calculated values for comparison.

3. Don't keep any comparison data.




-

The ability to change and rerun the data allows the user to test the expert
system and see if an answer that he were not sure of is vital to the final
outcome, or really has little effect. He can save a printed copy of the results
of the run by pressing [Pl. Then he will be asked if he wishes to have the
data he told the expert system also printed. If he presses [Y] he will have
both the final sorted list of choices printed along with all of the data he
provided the expert system in answer to its questions.

F. SAVING DATA AND RESULTS

The user has the option of storing the data he has input into TRAFUS],
exiting the program, and being abie to return to the same point jater. This
can be useful if he needs to look up information needed by TRAFUSI or if he
must leave the program but don't want (o loose the data he has aiready
input. He can select to store the data by entering QUIT in response to any of
the program requests for data. The program will then ask for the name of
the file to store the data in. A filename of up to 8 characters ( different than
TRAFUS1) is needed to be entered. Then he will be asked if he wishes to

return to the program or exjt to DOS. Also he can store the input provided to
reach the conciusions by pressing (Q). This is the same as using the QUIT
option when entering data. The data input will be stored in a disk file and
he will be able to return directly to this point. This is particularfy useful if

he wants to experiment with the " change and rerun” command.




X TRAFUS2

So far, in TRAFUS1, for the representation of facts and of methods for
deducing new [acts from old ones, we have almost always assumed that
either a fact is known to be true, or it is kaown not to be true (or nothing at
all is known about it). We have essentially not considered the possibility
that we might know something that is " probably true “. However, there are
situations in which such knowledge is important.

In TRAFUS2, An ad hoc approach is used, using the EXSYS 0-10 system.
The sysiems uses numerical assignments to assertions, which expressing the
degree of belief of the expert in these assertions. It is considered as a
certainty factor which expresses the degree of confidence about a certain
hypothesis. So,TRAFUS2 is generally similar to TRAFUS1, but the only
difference is that the value following the “probability-" is a ratio where the .
denominator is 10. This is the most practical system. 0/10 is equivaient to
“certainly false” and locks the value at 0/10 regardless of any other value
the choice may have received. A value of 0/10 eliminates the choice from
further consideration. A value of 10/10 is equivalent to “certainly true” and
also locks the value for the choice at 10/10 regardless of any other vaiues
the choize may have received. Values of 1 to 9 represent degri«s of
certainty ranging from “very probably faise” to "very probably true”. The
values from | to 9 do not lock the value and are averaged to give the [inal
value for a choice.

For example, if a choice appears in three rujes that had true IF parts with
values of 3/10, 8/10, and 4/10, the final value for the choice will be the
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average: 3/10. If the values found were 3/10,9/10 and 0/10, the 0/10
would prevail and resuit in a final value of 0/10 regardiess of other values.
Likewise, if the values were 1/10, 3/10 and 10/10, the 10/10 would lock
the value at 10/10 regardless of the previous lower values. Values of 1-9
are averaged to a finzl value only if not over-ridden by a 0/10 or 10/10.
The first 0/10 or 10/10 prevails and will not be changed even by another
10/10 or 0/10.

In developing TRAFUS2, several questions have arisen and needed
answers, among these questions are:

1. How to convert from human terms to numeric certainty factors. For
example, what does " It is very likely that * mean?

2. How 10 normalize across different people’s scales, particularty if the
sojution to question | is to get people to provide numbers directly.

3. How far to propagate changes in the Confidence Factor (CF) on the basis
of new evidence. If the CFlh ,e] changes very slightly and h is part of
the relevant evidence for another hypothesis, h, should CFlh.e] aiso be
changed? If very tiny changes are always propagated as far as possible,
the system may spend all of its time doing that with very little impact
on the final outcome. On the other hand, many 3mall changes can add
Up to a significant change that should not be ignored.

4. How to provide feedback to the database to improve the accuracy of the
CF's of the rule:. This probiem has been particulariy sotved in MYCIN
by the TEIRES(AS system's ability to explain the reasoning process to a
physician and then 10 accept statements from the physician about how
the rules should be revised.

For the solution of problems 1, 2, and 3, the word description of certainty
shown in Figure 10.1, is used. For solving problem 4, the capability of
EDITXS in EXSYS is used. Figure 10.2, shows the results obtained from a run
of TRAFUS2.
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FIiGURE 10.1. Word Description of Certainty in 0-10 System
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X1. CONCLUSIONS

In this dissertation, a new efficient and reliable distributed estimation
architecture for Distributed Sensors Networks (DSN) has been presented. [t
is called Horizontal Estimation Architecture (HEA). HEA is introduced
bearing in mind the technological advances in several disciplines, which are
providing the [uture toois for designers of DSN, especially, ithe application of
artificial intelligence and knowledge manipulation, and the adoption of
decentralized decision making strategies in complex technological
environments. In addition, the communication load is minimized between
different nodes of a network by exchanging locaily processed data between
these nodes instead of raw data. Also, the HEA is developed bearing in mind
the possibilicy of any hostile enemy actions, including physical destruction
and electronic countermeasures which can create node and link failures and
a dynamically changing network topology which are essential requirements
for military systems.

A great motivation to HEA is the applicability of partitioning approaches
which allow any large complex system to be divided into manageable
proportions. The partitioning allows the usage of microcomputer systems,
which provide a cost-effective sojution for data processing. Obvious
-advantage of HEA as applied to DSN are local autonomy, heterogeneous
feature, reliability, and survivability. Network splitting and reformation or
connection of additional compatible networks are practicable during system

operation and do not cause any restrictions as the new system is
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initiated. The main concepts and features of HEA were presented in two
conferences [Ref. 82, 83].

Through the integrated view of the assets of a DSN as shown in Figure 2.4,
the HEA has been applied to TWS radar systems. This application shows the
effect of the partitioning approach used by soiving the multitarget iracking
problem at the sensor (node) level using the appropriate local estimation
algorithm. This guarantees the maximum utilization of the local resources of
each radar site and takes advantage of the agvanced techniques taking piace
in each major block of a radar system. When the multitarget tracking
problem is solved separately for each individuai node, a somewhat
redundant view of the surveillance area will result, depending on the degree
of overlapping coverages between the radars. The output of the local
estimator is a group of different tracks. By solving the muiltitarget tracking
problem separately for each individual sensor (node), the track estimates for
the targets in the surveillance area become consolidated first at the level of
each individual node.

A major component of HEA is the information fusion process. The
information fusion process decides whether more than one track from
different nodes represent the same target. A pairwise correjation technique
is used for and proved to be easy to implement. The corresponding
consistent tracks are combined together. Two techniques are used for
information fusion. The (irst is based on algorithmic processing of track
kinematic information, and it is proved that the fused estimates can be
considered the global estimates of the tracks in the overlapping area

assuming that the local estimates are optimal. 1t is also proved that there is




no need for the calculation of the cross covariance of the fused tracks since
the local estimates and its associated covariance are the kind of infor mation
exchanged between different nodes. The second technique is based on
heuristic reasoning by using expert systems to encapsulate target identity,
behavior, intent and human expertise in computer software. An EXSYS
expert system development package is used for this purpose. EXSYS
employs Al techniques using currently available hardware and software. [t
does not require the complezity and cost of LISP driven architectures, nor is
there is a need for large on-site support staff. The developed expert systems
can be used mainly as an advisory tool for the manual operator. With
modifications, it may directly control the fusion process autonomously.

Using the expert system approach, the correlation process can be easily
implemented using simple production rules. The emraasis in the programs
TRAFUS1 and TRAFUSZ has been on the fusion of track information, but
fusion processes, especially in military applications, must integrally overiap
with planning, ECM effects, tactical doctrine, operational limitations, logistics
and historical reconstruction/analysis processes. The modification and
augmentation of these into expert systems can be done.

Further research is needed for the application of HEA in systems which
have different kinds of sensors. Also, many different kinds of knowledge
engineering approaches are being applied to the various facets of
information fusion problems. The data structures of the applicable expert
systems vary greatly, and, in general, “talk” among these systems has not

occurred. A considerable research effort is needed to establish a common

ground [or these systems to enable them to communicate with each other.




Another consideration about developing an expert system is tacit
knowledge. Tacit knowledge has implications for knowledge elicitation
within the current state of the art. One implication arises out of the
invisibility of the relation between formal knowledge and skilled
accomplishments, our lack of awareness of our own skills, and our [requently
misplaced respect [or theory-like representation of what we believe we
know. The only solution to the problem demands that the knowledge
engineer must do more than tap the knowledge of the expert, but must
undertake at least a short apprenticeship, a period of participation as an
observer, as part of the elicitation process.
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APPENDIX A

THE SPECTRUM OF SENSORS AVAILABLE FOR DATA FUSION

Detectable Spectral Sensor Systems
Characteristics Range
Acoustic 1 Hz - 10 kHz Acoustic Detectors
Frequency Active/Passive Sonar
Seismometers
Electromagnetics 1 Hz - 1 MHz (LF) Magnetometers
Radio Passive ESM
Frequency(RF) Receivers
10 MHz - 100 MHz Radar (Monostatic,
(HF/VHF/UHF) Multistatic )
1-10GHz - Surveillance
10 - 50 GHz (SHF/EHF) - Fire Coatrol
30 - 300 GHz (MMW) Millimeter Radar
Radiometers
InfraRed 300-10 IR Radiometers
Wavelength (IR) -Scanning IR Search
Track
-Focal Plane Arrays
Visible Light 07-040 Lazer Radar
UlteaViolet ( UV) 04-3x10-30 EO Sensors(TV)
UV Spectrometers
Nuclear 31102-3x10-4 A X - Ray Detectors
Paticies Gamma Ray Detectors
Non - Nuclear Mass Spectrometers
Particles
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APPENDIX B
OVERVIEW OF TKISOLVER

Computer-assisted problem- solving typicaily goes through the following

steps:
Problem - Mathematical Modél - Algorithm — Program - Resuits

The first step, based on the analysis of the problem. is to set up a
mathematical model expressing the relationships between the variables.
Then an algorithm (a precise description of how a computation is to proceed)
must be deveioped for solving specific problems. Next a program
implementing the algorithm is written in a conventional programming
language (e.g. BASIC, FORTRAN, or PASCAL). Frequently, the programmer
uses a diagram called a “flowchart” to facilitate the design and understanding
of the algorithm or the program structure. A considerable amount of time is
spent in these two stages, especially in the programming stage when the
computer must be instructed in a step- by- step manner. Finally, of course,
the program has to be debugged and run. All this means that a user has to
“think like a computer” 10 soive a problem. This siphons a lot of time into
other tasks necessary for fixing an unmatched parenthesis or formatting the
output correctly. Solving a slightly different problem often means modifying
the program and sometimes even reworking the aigorithm.

TK!ISolver shoricuts this problem-solving process by eliminating two steps,

developing an algorithm and writting a program. Instead, the user inputs
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the mathematical model directly using standard aigebraic notation. By this
way, the user and the computer interact at the level of mathematical models
or relationships between variables and the computer automatically takes
care of sequencing the operations. So, TKISolver lets the user focus on the
problem itself, not on how the problem is going to be solved using the
computer. The “TK" in TKISolver stands for Tool Kit, implying that there are
several problem-soiving tools in the kit and more to be expected. The
excilamation mark refers (0 the Action kee, which is pressed (o soive a
problem or to make other things happen. TKISolver solves problems for
professionals working with numbers and formulas. [t does this by
processing equations entered in their natural form (Ref. 84].

Considered as an expert system [Ref. 84|, figure B.1. shows the
architecture of TKISolver. The domain specific knowledge responsible for the
high performance of the system is contained in the knowledge base. The
problem solving tools embodying the control strategy, the direct and
iterative solvers, utilize the knowledge base in the process of sojving
particular problems. For interaction (or 1/0), TKISolver provides “sheets”
displayed through one or two windows on the screen. The main feature of
the architecture is the explicit division between the knowledge base and the
control strategy. Consequently, the expert/user deals only with issues of
domain specific knowledge, and is insulated from the details of the
implementation of the control strategy.

In the following paragraghs, the four components of the knowledge base,
the characteristics of a model and the problem-solving mechanism are

described:




. Rules: The rule is the basic component of the domain-specific
knowledge. It expresses the underlying mathematical relationship in
terms of the equality of left-hand and right-hand side expressions.
Equations, constraints, or definitions may all be represented as rules.
The set of rules can be represented in the form of a network of
relationships called R-graph (for relationships graph). A variable is
represented by a node in the R-graph and each subgraph or polygon
corresponds 10 a rule in the knowledge base.

. Unit Conversions: Units of measurement are associated with most
measurable quantities. Conversions between them are frequently
encountered in problem solving and have to be defined in the
knowledge base. The unit conversion feature in TKISolver simplifies
the conversion between the different units of measurement.

. User Functions: Empiric relationships between sets of variables are
expressed in the form of user-defined functions.

. Built-In Knowledge: Irrespective of the domain-specific know!edge,
TK!Solver can solve problems involving basic arithmetic operations and
a large variety of built-in mathematical functions. For example,
trigonometric functions, hyperbolic functions, exponential function, root
function, natural and decadic logarithms and circular or inverse
trigonometric functions. A standard variety of these is supplemented
by a few special ones like “element” for retrieving list components or
"apply” for associating empiric functions with arguments.

. Model: The model encompasses the first three components of the
knowledge base in Figure B.1. (rules, unit conversions, user functions)
as contained in the rule, variable, unit, and user function sheets. [n
more general terms, the model can be seen as a compact, high-level
representation of structure, organization, and content of the domain
knowledge. The composition of the model coupled with its elegant
internal representation allow for a simple yet powerful control
strategy. The mode! also serves as a user- friendly guide during the
problem-soiving process. The mode! usually reflects a certain part of -
the knowledge base in a particular discipline. The models may be
easily merged by the subsequent loading of some or all of the
knowledge base components into TKiSolver, in order to create larger
models capable of addressing more complicated problems. There is
also the concept of TKISolver packs or sets of models from particular
disciplines.




< model> ::~ <cule>[({newline)< rule >}

This means that a model consists of at least one rule; each rule must
start on a new line, and there may be any number of lines between the
rules.

crule> ::e <expression >=< expression >[« comment >}

This means that a rule is represented by two expressions linked by an
equal sign and followed, optionally, by a comment.

< comment > ::= “<character string >

This means that a rule comment consists of a quotation mark ()
followed by a string of characters.

. Problem-Solving Mechanism: The direct soiver is the workhorse of the

problem-solving mechanism. [n it lies the grace and power of
TKiSolver. It manipulates the equations depending on the problem
formulation and solves for the unknown. If an incosistency error or an
illegal operand is detected, the solution process is lerminated, and the
rule causing the problem is flagged with the appropriate error
message. Since the solution path depends on the problem formulation.
the control strategy may be considered as forward chaining or data-
driven. Whenever the direct solver cannot match the nature and
complexity of a given probjem, the jterative solver can be used. The
heart of the iterative solver is a modified Newton-Raphson procedure
which handies sets of simultaneous linear and nonlinear equations {].
It can be either explicitly invoked or automatically called when the
direct solver fails to produce a solution.
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FIGURE B.1. Functional Diagram Of TKISolver - User Interface




APPENDIX C
PRODUCTION RULES

In most areas of human decision making, the reasoning processes can be
modelled by rule-based systems. A rule, known in these applications as a
"production rule” or a "production”, is generally of the form

IP FyandFyand e andF, THEN C
or equivalently,
Py & Fp & oo &Fy »C

where F; is a fact, an event, a situation, a string of symbols, or 2 cause, and C

is a conclusion or hypothesized conclusion, an action to be performed, or an
effect. Some of the rules in a production system represent the knowledge of
trained experts, and others provide system organization.

In addition to an organized set of rules, a production system must have a
data base consisting, typically, of gathere& pieces of evidence which might be
relevant to the condition in the left side of some rules. System organization
is provided by several kinds of control mechanisms. An evaluation

mechanism is needed to evaluate the left side o a rule based on the
evidence in the data base. It is desirable to have a mechanism for
augmenting and modifying the system. A production system also needs
direction and weighting mechanism.

Figure C.1, is an illustration of a tree structure of a very simple production
sysiem. The AND arcs denote single productions (where multiple conditions
must be satisfied fcr the conclusion to follow), and OR inputs are separate




productions. The "direction” mechanism of a production system relates to
reasoning processes, where inferring and deducing new infor mation from
evidence can be considered opposite in direction from hypothesizing and
then testing the hypothesis. One type of system direction is [orward
chaining or running; these systems start with input data and proceed up to
conclusions. Backward chaining (running), or top down, start with
hypothesized conclusions that are selectively generated and proceed to see if
they are supported by the data base. Some systems use an ad hoc
combination of up and down directions.

When using a production system, there is often associated with each F; in

the premise a quantity known as a “certainty factor”, which indicates the
likelihood that F; is true based on the input data. Also, for most production
rules, the premise leads to the conclusion with , say, an 80% or 90%
probability, instead of absolutely true or faise. Similarly, there may be
significant probability that the concjusion is true even when the premise js
not satisfied. Measures of the latter two likelihoods are known as
“strengths’, “attenuation factors”, or “certainty factors”. All of these
quantities can be used in estimating the certainty factor of a conclusiou.
Many conclusions are intermediate conciusions that are then trealed as facls
for future productions. “Weighting~ is a term that refers 10 Lhese quantities
and their propagation through the tree. Weighting can be used 10 determine
the reliability of final conciusions and also 10 reduce the number of
computations through the pruning of unlikeiy hypotheses. If the statistics
of the process are known sufficiently, Bayesian weighting can be used. A
more common method of weighting is to use ad hoc scoring functions. When




the conditions F; or the evidence about them caniot be considered

independent, fuzzy set theory can be applied. For example, the fuzzy set
computations P(F,, -, Fy) = min P(F;) can be used at the AND nodes.

An advantage of a production systems is that it can be designed to
provide high user confidence. The user can read the lists of rules and can
question any conclusion, and the sysiem can present to him the facts and
logicieading to the conclusion. If he disagrees he can change the rules; with
an appropriate mechanism for modification and augmentation, modular
pieces of knowledge in the form of production rules can be added or changed
without difficulty. Ia automated fusion applicatinns, these system attributes
are especially important. A user is unlikely to accept the system's conclusion
ff does not understand the logic behind it or previous conclusions. And he
must be able Lo correct or refine the system and to incorporate new
knowledge into the system when changes occur in hostile force procedures
or equipment, '

Aside from the obviously difficuit task of acquiring rules, there are
several special problems that will be encountered in applying production
systems to fusion problems. At the system f{ront-end there is the problem of
evaluating the left side of a rule based on the conceptually structured data

ablained through the processing of natural language reports. In platform
identification applications, much of the data will b_o inaccurate or even
totally wrong because of deception or human error. Moreover, conciusions
will often have (0 be updated because of the continual arrival of data. There
are also the geometrical problems of track association to be solved, but these
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Probably the greatest problem with production systems or any automated

system is that there are innumerable nonroutine situations which could
occur. Wtile a human might be able 1o fuse the data in an intelligent way in
many of these situations, he probably wouid not be able to foresee the
possibility of these situations in time to incorporate the necessary knowledge
into an automated system. Generally, it seems that "blackboards” is a proper
starting way for soiving these problems.

a
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FIGURBC.1 Trees of Conclusion in a Production System
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APPENDIX D
OVERVIEW OF EXSYS

BXSYS is a generalized personal computer expert system development
package[Ref. 85). It works on IBM PC, XT, AT or compatible. It can create
about 700 rules, with an average of 6 or 7 conditions, per 64k of memory
over 192k. That is about 5000 rules in a PC with 640k. The EXSYS programs
are written in the C language producing small, fast ruaning programs. The
EXSYS development package consists of four main programs:

EXSYS.EXE: The runtime program for running existing expert sysien
knowledge bases

EDITXS.BXB: The program for generating, editing and testing your own
expert system knowiedge bases.

SHRINK.EXE: A utility program to compress the size of an edited knowjedge
base and rearrange the data in 2 knowledge base for rapid access.
PASTER.BXE: A utility program 1o rearrange the order of rules for
mazimum speed.

Expert systems work with knowledge to arrive at conclusions. This
knowledge is in the form of rules that both the user and the computer can

understand. The set of rules to solve a particular problem is often referred

10 as a2 knowiedge base. A rule is divided into {ive parts, an IF part, a THEN
part, an optinnal ELSE part, an optional NOTE and an optional REFERENCE.




IF
Condition
THEN
Conditions
ELSE
Conditions
and Choices

NOTE: eessonee
The IP part is simply a series of conditions, expressed as English

sentences or algebraic expressions. The computer tests the conditions
against the answers provided by a user and information that can be derived
from other rules, to see if the IF conditions are true. The THEN part is also a
series of condjtions; however, there can also be choices with their associated
probability values. The BLSE part is the same as the THEN part but is
applied if any of the IF conditions are false. The ELSB part is optional and
usuality nbt needed in most rules. In some cases it is desirable to add a note
to a rule to provide some special information to the user. If there is a NOTB,
it will be displayed with the rule. The NOTE does not mean anything to the
program, it is only for the user’'s information. The developer of the expert
system knowledge base may also add a REFERBNCE for a rule. This is
intended to help the user find the source of the knowledge contained in the
rule or more information if they should neea it. The REFERENCE is
displayed only if the user requests the reference; it is not automatically
displayed with the rule.

To understand how the BEXSYS expert systems are generated, it is needed

to understand the definitions of the {foliowing terms:
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1. Condition: In BXSYS, there are two main types of conditions, text and
mathematical. For text, the condition is made up of two parts, a
QUALIFIER and one or mor~ VALUES. The qulifier is usually the part
of the condition up to and including the verd. The values are the
possible completions of the sentence started by the qualifier. A
qualifier can have up to 30 possible values. If the developer finds that
he needs more than 30 values, tries to divide them into groups each
with less than 30 values. Then create a qualifier that selects among
the groups and use it in conjunction with new qualifiers for each of the
individual groups. When a new qualifier is created in BXSYS it is given
a list of possible values such that combining the qualifier with a value
{or values) makes a sentence. When more than one value is seiected,
the program will pu “or” between the values and, if any one of the
listed values is true the condition will be true. A condition can also be
formed by using a qualifier, "NOT" and one or more values. The
selection of qualifier and values should be such that combining them
with NOT, OR or AND makes a grammatically correct sentence. For
mathematjcal conditions, they are represented as algebraic
expressions. The mathematical expressions usually include
VARJABLES. A variable is any string of alphanumeric characters,
including spaces, enclosed in [ ]. The first 18 characters are significant
but the variable can be up t0100 characters. Only letters, digits and
spaces can be used in variable names. In this case the variables are
used to create evaluable algebraic expressions. An evaluable
expression can be any algebraic expression from a single number to
complex expressions. The following operators are recognized:

* (multiplication

/ (division)

+» (addition)

- {subtraction)

% (modulus operator)
Parentheses can be used to group expressions in the order of
calculation the developer desires. Spaces can be included between
operators 10 make the formula easier to read. The following functions
are supported:

SIN()

COs( )

TAN()

ASIN()

ACOS()
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ATAN()

EXP( )

LOG( )

ABS( )

SQRT( )

INT()
The trigonometric expressions are in radians. The log and exponential
functions are base e. ABS is the absolute value. SQRT is the square
root. INT is the integer part, with all fractions rounded down. The
functions evaluate the expression in parentheses and perform the
appropriate function on the result. The parenthetical expression must
immediately follow the function name, without a space. A rule can
have up to 126 conditions in-each of its IF, THBN or BLSE part.

2. Choice: Choices are all the possibie solutions to the problem among
which the expert system will decide. The goal of BEXSYS is to select the
most likely choice based on the data input, or to provide a list of
possiblie choices arranged in order of likelihood. The choices can be of
any form. item, actions, etc., depending on what type of expert system
is geing developed. EXSYS will display the text of the choice followed
by “- Probability=" and a number. The number indicates the
confidence that the choice is correct and is 0, |1 or a ratio such as A/B.
The denominator, B, indicates the maximum possible value (either 10
or 100) in the cz!culational system being used. The numerator, A, is
the probability value assigned to the choice, The person generating the
knowledge base must select one of three options for how the program
will use the probability data.

The rules are automatically invoked using backward chaining. BXSYS also
supports forward chaining. External programs can be called by EXSYS for
data acquisition and calculation and data can be passed back to BXSYS for
analysis. This powerful feature enables it to handle a wide range of
problems. The expert system can directly receive data from automatic
testing equipment, data bases, some spread sheets and dedicated programs. |

There are two ways to call external programs from the expert system. The

simplest is used to get data for a single variable or qualifier. The second




method is intended for obtaining data for a number of variables or qualifiers
such as might be done with a data base, spread sheet or automatic test
equipment. Both can easily be used with a wide range of programs and
programming languages, including BASIC. There must be enough memory
available for both EXSYS and the program called to run. EXSYS remains
resident in memory while the called program runs.

Blackboarding is a powerful technique by which more than one knowle&ge
base can share a common body of information. This can be done in EXSYS
by having one one knowledge base write data to a file that is read by other
knowledge bases. In version 3.1, special command options have been added
to make this easier to do. There are two basic ways of controlling the order
of execution of the various knowledge bases. The first is through the use of
a batch file. This is appropriate if the knowledge bases ace intended to be
called in a specific, defined order. Batch files can include loops to restart the
system. The second technique is to have an BXSYS expert system call other
EXSYS expert system. This is the most powerful technique, as the order of
excution of the knowledge bases can be varied depending on what is needed.
Blackboarding requires care in making sure that the knowledge bases
sharing the information each assign the data correctly, however, ihe benefits
in being able to segment a problem and allowing extremely complex systems
to be run in a PC make the technique quite worth while.
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APPENDIX E
SAMPLE OF TRAFUS1 PRODUCTION RULES

Subject:
Hard Decision Knowledge-Based Multitarget Multisensor Track Fusion

Author:
Alaa Eldin M. Fahmy

Starting text:
This Expert System is an experimental system to explore the
applicability of artificial intelligence techniques to the
implementation of an automated, extremely flexible track fusion
consultant. The expert system fuses tracks from three different TWS
systems, A,B8,C. Each system has two different tracks, resulting in a
total of 6 tracks. The tracks are Al,A2,B1,B2,C1,C2 from TWS sites
A,B,and C respectively. TWS sites are covering large air-space areas
with partiglly overlapping fields of view. Track fusion is based on
kinematic, attridbute and behavier information.

Ending text:
The expert system will display which tracks are the same and to. which
target they are belong. In addition to whether targets are friendly
or hostile targets.

Stops after first successful rule in data derivations.




RULES:

.................................

RULE NUMBER: 1

IF:
and

and
and

ELSE:

and
and

ABS([RAL]-[RB1l]) <= .15

ABS ([PHIAl)- [PHIB1]) <= 2

ABS({SPEED OF Al]-(SPEED OF Bl]) <= 20
(IDAl] = [IDB1]

Tracks Al and Bl are for the same target - Probabilityel
Targets al and bl are one target

Track Al is for target al - Probabilityel
Track Bl i{s for target bl - Probability=l
Targets al and bi are different targets

..................................

RULE NUMBER: 2

IF:
and

and
and

THEN:

and

ELSE:

and
and

ABS([RALl]-[RB2]) <= .15

ABS ([PHIAL]-[PHIB2]) <=2

ABS([SPEED OF Al)-(SPEED OF B2]) <= 20
(IDAl] = [IDB2]

Tracks Al and B2 are for the same targec - Probabilityel
Targets al and b2 are one target

Track Al {s for target al - Probability=l
Track B2 {s for target b2 - Probabilityel
Targets al and b2 sre different targets

189




RULE NUMBER: 8

IF:
and

and
and

THEN:

and

ELSE:

and
and

ABS([RA2]-([RC2]) <= .2

ABS ([PHIA2]-[PHIC2]) <= 3

ABS([SPEED OF A2)-(SPEED OF C2)) <= 30
(IDA2) = [IDC2]

Tracks A2 and C2 are for the same target - Probability=-l
Targets a2 and c2 are one target

Track A2 is for target a2 - Probabilicty=l
Track C2 is for target c2 - Probability=l
Targets a2 and c2 are different targets

..................................

RULE NUMBER: 9

IF:

and

THEN:

and

Tracks Al and Bl are for the same target
Tracks Al and Cl are for the same target

Tracks Al, Bl, and Cl are for the same target
Targets al, bl, and cl are the same and they are one target

----------------------------------

RULE INUMBER: 10

IF:

and

THEN:

and

Tracks Al and B2 are for the same target
Tracks Al and Cl are for the same target

Tracks Al, B2, and Cl are for the same target
Targets al, b2, and cl are the same and they are one target
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RULE NUMBER: 11
IF:

Tracks Al and Bl are for the same target
and Tracks Al and C2 are for the same target

THEN:
Tracks Al, Bl, and C2 are for the same target
and Targets al, bl, and ¢2 are the same and they are one target

----------------------------------------

RULE NUMBER: 12
1F:

Tracks Al and B2 are for the same target
and Tracks Al and C2 are for the same targst

THEN:
’ Tracks Al, B2, and C2 are for the same target
and Targets al, b2, and c2 are the same and they are one target

----------------------------------------

RULE NUMBER: 13
IF:

Tracks A2 and Bl are for the same target
and Tracks A2 and Cl are for the same target

THEN:

Tracks A2, Bl, and Cl are for the same target
and Targets a2, bl, and ¢i are the same and they are one target




RULE NUMBER: 18

IF:

Track Bl is for a target not filed in the flight plan
and Target of track Bl is not responding to IFF or SSR
and The position of track Bl {s outside all airliner airways
and Track Bl is comming from WEST

THEN:

Track Bl is for a hostile aircraft = - Probability=l
and Alert friendly forces - Probabilicy=l

ELSE:
Track Bl i{s for a friendly aircraft or an airliner - Probabilityel

........................................

RULE NUMBER: 19

IF:
Track B2 is for an aircraft not filed in the flight plan
and Target of track B2 i{s not responding to IFF or SSR

and The position of track B2 is outside all airliner airways
and Track B2 is comming from WEST

THEN:

Track B2 i{s for a hostile aircraft - Probability=l
and Alert friendly forces - Probabilityel

ELSE:
Track B2 is for a friendly aircraft or an airliner - Probability=l

----------------------------------------
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Track Cl is for a target not filed in the flight plan
Target of track Cl is not responding to IFF or SSR

The position of track Cl is outside all airliner airways
Track Cl {s comming from WEST

Track Cl is for a hostile alrcraft - Probability=1
Alert friendly forces - Probabilityel

Track Cl is for a friendly aircraft or an airliner - Probabilitye=l

----------------------------------

RULE NUMBER: 21

IF:
. and

and
and

THEN:

RULE NUMBER: 20
IF:
and
’ and
and
THEN:
and
ELSE:

Track C2 is for a target not filed in the flight plan
Target of track C2 is not responding to IFF-or SSR

The position of track C2 is outside all airliner airways
Track C2 is comming from WEST

Track C2 i{s for a hostile aircraft - Probability=l
Alert friendly forces - Probabilityel

Track C2 {s for a friendly aircraft or an airliner - Probabilityel

g RULE NUMBER: 22
t

IF:

ABS ({SPEED OF Al)) <= 350

Track Al is for a HELICOPIER
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RULE NUMBER: 27
IF:
ABS({SPEED OF C2]) <= 50

THEN:
Track C2 is for a HELICOPTER

........................................

RULE NUMBER: 28

IF:
SO < ABS([SPEED OF Al]) <= 200

THEN:
Track Al i{s for a CIVIL A/C

........................................

RULE NUMBER: 35

IF:
200 < ABS([SPEED OF A2)) <~ 400

THEN:
Track A2 is for a BOMBER

----------------------------
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QUALIFIERS:

1 Tracks Al and Bl are

-

r for the same target

Used in rule(s): 9 11

2 Tracks Al and Cl are

for the same target

Used in rule(s): 9 10

BRSPS S A

3 Tracks Al, Bl, and Cl sre

for the same target

Used in rule(s): ( 9)

4 Targets al, bl, and cl are

the same and they are one target

Used in rule(s): ( 9)




i

17 Tracks A2 and B2 are

for the gsame target

Used in rule(s): 14 15

44 Track A2 {s

fer a target not filed in the flight plan
for a target filed in the flight plan

Used in tule(s): 17

47 Track A2 is

comming from WEST
comming from EAST
comming from NORTH
comning from SOUTH

.

Used in rule(s): 17

€9 Track Al is

for a HELICOPTER
for an INTERCEPTOR
for a BOMBER

for a CIVIL A/C
for a MISSILE

Uged in rule(s): ( 22) ( 28) (
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VARIABLES:

1 Rl
Rl is the range of track Al at time t
Displayed at the end of a run

Used in rule(s):

2 RS
R5 is the range of track Bl at time t

Used in rule(s):

3 PHI1
PHIl is the bearing of track Bl at time t

Used in rule(s):

4  PHI3
PHI3 is the bearing of track Bl at time t
Displayed at the end of a run

Used {n rule(s):

5 Ipl
ID1 {s the identity of track Al
Displayed at the end of a run

Used in rule(s):

6 1ID3
ID3 i{s the identity of track Bl
Displayed at the end of a run

Used i{in rule(s):
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FORMULAS :

1

ABS(R1-R5) <=

Used in rule(s):

ABS([{R1]-{RS])) <= .15

Used in rule(s):

ABS([PHI1]- [PHI3]) <= 2

Used in rule(s):

(ID1] = [ID3)

Used in rule(s):

ABS([SPEED OF Al)-[SPEED OF Bl])

Used in rule(s):

ABS([R1]-[R7]) <= .15

Used in rule(g):




sPPENDIX F
SAMPLE OF TRAFUS2 PRODUCTION RULES

Subject:
Soft Decision Knowledge-Based Multitarget Multisensor Track Fusion

Author:
Alaa Eldin M. Fahmy

Starting text:

This expert system {s the same as TRAFUS1 except that the
probabilistic reasoning is used. In this case as a degree of belief
of a rule, a probabilty ratio (o/10 - 10/10) is attached to its then
part. The expert system obtains the data needed to make a decision by
asking the user questions relevant to the tracks needed to be fused.

decision. The user can easily test and analyze the effect his input
had on the final outcome. Also, the user can ask why the expert
system needs to know the information it is requesting.

Ending text:
The expert system will display which tracks are balonging to the
same target and which are not. The results will be associated with a
probability ratio as a degree of belief in jt. If there are mors than
one solution, they will be displayed according to their relative
likelihood. Whether the targets are friendly or hostile will be

displayed in addition to its kind (helicopter, fighter, bomber, civil
A/C, or missile)

Uses all applicable rules in data derivations.

LY
i
z
:
l The user can ask the expert system how it arrived at its final
g




RULES:

------

..................................

RULE NUMBER: 1

IF:
ABS{[RAl]-[RBl])) <=.2
THEN:
Tracks Al and Bl belong to the same target - Probabilicty=6/10
and Targets al and bl are the same target and they are one target -
Probability=6/10
ELSE:
Track Al belongs to tarzget al - Probability=7/10
and Track Bl belongs to target bl - Probabilicy=7/10
and Tracks Al and Bl belo.'g to different targets al and bl -
Probability=7/10
NOTE:
RALl and RB1 are in km.
REFERENCE:
Col. Fahmy's Ph.D. dissertation, Sep. 1987,




RULE NUMBER: 5

IF:
ABS([SPEED OF Al]) <=50

THEN:

Target al 1is a HELICOPTER - Probabilicy=8,/10

........................................

RULE NUMBER: 6
IF:
SO < ABS({SPEED OF Al]) <= 200
[

THEN:
Target al is a CIVIL A/C - Probabilicy=8/10

REFERENCE: °
Col. Fahmy’s Ph.D. dissertation, Sep. 1987.

........................................

1F:
200 < ABS([SPEED OF Al]) <= 400

i
i
\
i
E RULE NUMBER: 7
THEN:
Target al is a BOMBER - Probability=8/10
J
Q REFERENCE :
! Col. Fahmy’s Ph.D. dissertation, Sep. 1987.
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RULE NUMBER: 24

IF:

and

THEN:

and

and

ELSE:

NOTE:

ABS([RAl]-[RCl)) <=.2
ABS([PHIALl]-[PHICl]) <=3

Tracks Al and Cl belung to the ssme target - Probability=7/10
Targets al and cl are the same target and they are one target -
Probability=7/10

Tracks Al and Cl belong to different targets al and cl -
Probability=4/10

Tracks Al and Cl belong to different targets al and cl -
Probability=7/10

Bearing information of TWS system C is less accurate than that of TWS
systems A and B.

REFERENCE:

Col.

and
and

THEN:

and

and

ELSE:

Fahmy’s Ph.D. dissertation, Sep. 1987.

----------------------------------

ABS([RAl]-([RC1]) <=.2
ABS([PHIALl]- [PHICL]) <=3
ABS([SPEED OF Al]-[SPEED OF Cl]) <=25

Tracks Al and Cl belong to the came target - Probability=~8/10
Targets al and cl are the same target and they are one target -
Probability=8/10

Tracks Al and Cl belong to different targets al and cl -
Probability=2/10

Tracks Al and Cl belong to different targets al and cl -
Probability=7/10
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RULE NUMBER: 53 V2

IF:
ABS([RA2]-[RCl})) <=.2
and ABS((PHIA2]-[PHICl]) <=3
and ABS({SPEED OF A2]-(SPEED OF Cl]) <= 25
and ([1DA2] = [IDC1l]

THEN:
Tracks A2 and Cl belong to the same target - Probability=9/10
and Targets a2 and cl are the same target and they are one target -
Probabilicy=9/10

ELSE:
Tracks A2 and Cl belong to different targets a2 and cl -
Probability=10/10

RULE NUMBER: 60

IF:
Track B2 is for an aircraft not filed in the flight plan
and Track B2 is for an aircraft not responding to IFF or SSR

THEN:

Track B2 is for a hostile aircrafr - Probability=7/10
ELSE:

Track B2 is for a friendly aircraft or an airliner - Probability=7/10
REFERENCE:

Col. Fahmy’s Ph.D. dissertation, Sep. 1987.




RULE NUMBER: 638

IF:
Track Bl is for an aircraft not filed in the flight plan
and Track Bl is outside all airliner airways
and Track Bl is outside all airliner airways

THEN:
Track Bl is for a hostile aircraft - Probability=8/10

........................................

RULE NUMBER: 69

IF:
Track Bl i{s for an aircraft not filed in the flight plan
and Track Bl i3 outside all airliner airways
and Track Bl is outside all airliner ajirways
and Track Bl is comming from WEST

THEN:
Track Bl is for a hostile aircraft - Probability=9/10

RULE NUMBER: 70
IF:

Track B2 is for an aircraft not filed in the flight plan
and Track B2 {s for an aircraft not responding to IFF or SSR

THEN:
Track B2 is for a hostile aircraft - Probability=7/10
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RULE NUMBER: 88
IF:
Track Bl is for an aircraft responding to IFF or SSR

THEN:
Track Bl iz for a friendly aircraft or an airliner - Probability=8/10

........................................

RULE NUMBER: 89
IF:

Track Bl is inside any of airliner airways

THEN:
Track Bl is for a friendly aircraft or an airliner - Probability=6/10

........................................

Track Bl is comming from EAST or comming frocm NORTH or comming from
SOUTH

THEN:
Track Bl i{s fcr a friendly aircraft or an airliner - Probability=9/10

RULE NUMBER: 91
IP:
Track B2 is for an aircraft filed in the flight plan

THEN:
Track B2 is for a friendly aircraft or an airliner - Probability=9/10
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QUALIFIERS:

1 Track Al is

for an aircraft filed in the flight plan

for an aircraft not filed in the flighc plan
for an aircrafe responding co IFF or SSR

for an aircraft not responding to IFF or SSR
outside all airliner airvays

inside any of airliner alrwvays

comming from EAST

comming from WEST

comming from NORTH

comming from SOUTH

Used in rule(s): 57 63 64 79
82

Track A2 {s

for an aircraft filad i{n the flight plan

for an aircraft not filed {n the flight plan
for an aircraft responding to 1FF or SSR

for an aircrafr noc responding to IFF or SSR
outside all af{rliner airvays

inside any of airliner airways

comming from EAST

comming from WEST

comming from NORTH

comming from SOUTH

Used in rule(s): 58 6$ 66 83
86
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CHOICES:

1 Track Al belongs to target al

Used in rule(s): [ 1] | 2]

2 " Track A2 belongs to target a2

Used in rule(s):

3 Track Bl belongs to target bl

Used in rule(s): | 1] 2]

4 Track B2 belongs to target b2

Used in rule(s):

S Track Cl belongs to target cl

Used in rule(s):

6 Track C2 belongs to target c2

Used 1in rule(s):
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VARIABLES:

1 RAl

Range of last report of track Al
Numeric variable
Displayed at the end of a run

Used in rule(s): 1 2 k]
12 13 24
3 34

2 RBl

Range of last report of track Bl
Numeric variable
Displayed at the end of a run

Used in rvule’s): 1 2 3
42

3 PHIAL

Bearing of last report of track Al in degrees
Numeric variable
Displayed at the end of a run

Used in rule(s): 2 3 4
24 25 26

4  PHIB1

Bearing of last report of track Bl in degrees
Numeric variable '
Displayed at the end of a run

Used in rule(s): 2 3 4
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32

40

10
26

12
33

41

11
32

41

13
34

42




12 1DB2

Identity code of track B2
String variable
Displayed at the end of a run

Used in rule(s): 13 45

13 RCl

Range of last report of track Cl in km
Numeric variable
Displayed at the end of a run

Used in rule{s): 24 25 26 51

14 PHIC1

Bearing of last report of track Cl in degrees
Numeric variable
Di{splayed at the end of a run

Used 4n rule(s): 24 25 26 sl

15 SPEED OF Cl

Speed of track Cl {n m/s
Numeric variable
Displayed at the end of a run

Used in rule(s): 25 26 27 28
31 52 53

16 IDC1

Idencity code of track Cl
String variable
Displayed at the end of a run

Usead in rule(s): 26 $3

52

352

29

53

S3

30
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